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ABSTRACT OF DISSERTATION

Rule Mining and Sequential Pattern Based Predictive Modeling with EMR Data

Electronic medical record (EMR) data is collected on a daily basis at hospitals and
other healthcare facilities to track patients’ health situations including conditions,
treatments (medications, procedures), diagnostics (labs) and associated healthcare
operations. Besides being useful for individual patient care and hospital operations
(e.g., billing, triaging), EMRs can also be exploited for secondary data analyses to
glean discriminative patterns that hold across patient cohorts for different pheno-
types. These patterns in turn can yield high level insights into disease progression
with interventional potential. In this dissertation, using a large scale realistic EMR
dataset of over one million patients visiting University of Kentucky healthcare facili-
ties, we explore data mining and machine learning methods for association rule (AR)
mining and predictive modeling with mood and anxiety disorders as use-cases. Our
first work involves analysis of existing quantitative measures of rule interestingness to
assess how they align with a practicing psychiatrist’s sense of novelty/surprise corre-
sponding to ARs identified from EMRs. Our second effort involves mining causal ARs
with depression and anxiety disorders as target conditions through matching methods
accounting for computationally identified confounding attributes. Our final effort in-
volves efficient implementation (via GPUs) and application of contrast pattern mining
to predictive modeling for mental conditions using various representational methods
and recurrent neural networks. Overall, we demonstrate the effectiveness of rule min-
ing methods in secondary analyses of EMR data for identifying causal associations
and building predictive models for diseases.
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Chapter 1 Introduction

Increased digitization of data from various facets of our daily lives (including shop-
ping runs, fitness activities, hospital visits, and social media interactions) necessitates
new methodological advances in collecting, integrating, and mining extremely large
datasets. Many data mining algorithms have been proposed during the past three
decades in order to extract useful information from these large datasets. Such algo-
rithms are currently used in fields such as chemistry, finance, e-commerce, biomedicine,
and healthcare. In particular, the healthcare field has seen a major surge of appli-
cations of data mining mostly due to the deluge of digital data captured through
electronic medical records (EMRs). However, this area poses significant challenges
due to the high dimensionality (tens of thousands of variables), inherent errors, pri-
vacy concerns, and missing values. Our main goals are to leverage this EMR data
to identify interesting associations between different biomedical variables of interest
(potentially leading to new insights and hypotheses) and to build predictive models
to identify high risk patients for chronic conditions. Next, we discuss the various
patient attributes available in EMRs considered for this dissertation.

1.1 What is an EMR?

An EMR is a digital record that gets generated for each visit a patient makes to a
healthcare facility (e.g., hospital, emergency room, diagnostic lab, private clinic). As
such, each patient, as they go through a healthcare system, generates a trail (specif-
ically, a temporally ordered sequence) of EMRs, one per visit. An EMR contains
patient demographic information including the name of the patient, their gender,
and age. Basic variables such as height and weight (hence body mass index (BMI))
and smoking status may also be recorded. More importantly, depending on the visit,
an EMR may also have the following elements.

• At least one diagnosis code assigned from the standard terminology – inter-
national classification of diseases: clinical-modification standards (ICD-9/10-
CM). These codes represent different conditions the patient has been diagnosed
with during the visit.

• Depending on the nature of the visit, EMRs may also contain procedure codes
from the current procedure terminology (CPT) standard for any procedures
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performed (e.g., surgery) during the visit.

• If diagnostic lab tests (e.g., lipid panel) are done, values measured for differ-
ent biomarkers (e.g., cholesterol) may be recorded typically using the logical
observation identifiers, names, and codes (LOINC) terminology.

• Any medications administered during the visit or prescribed for subsequent
usage will also be recorded via a standard terminology such as the national
drug code (NDC).

• Besides these structured variables, free text is often included (especially for in-
patients) in the form of admission notes, progress notes, pathology/radiology
reports, and discharge summaries. Intuitively, the free text notes are expected
to contain case-specific elaborate details that are not captured in any of the
structured sources covered earlier (e.g., observed side affects, social variables
including employment/marital status).

1.2 Applications of EMRs

As the digital encapsulations of a patient’s health related events, EMRs are essential
in improving the operational side of delivering patient care. EMRs are instrumental
in maintaining continuity of care as patients go through different providers within
a healthcare system. For instance, they can be crucial in ensuring patients obtain
prescriptions that do not interfere with their existing medications. On the fiscal side,
EMRs (esp. the structured codes) are also critical in determining what the patient
or their insurance firm ought to be charged for the services the healthcare facility or
the physician has provided.

Due to recent rapid adoption of EMRs among many facilities and better linking of
records between different clinics that belong to larger systems, massive EMR datasets
are being curated for millions of patients. If the healthcare system covers a reason-
ably sized neighborhood, one could argue that, the chronological aggregation of a
patient’s EMRs constitutes their longitudinal EMR (LEMR). Although there may be
occasional visits to non-local clinics, given how insurance policies are tailored to mini-
mize co-pay and other out-of-pocket expenses for in-network visits, patients are likely
to limit most of their visits to a single healthcare system. The only exception to this
assumption is when patients move permanently to a different location, which is easy
to spot in their record based on the duration from their last visit to an in-network
clinic. Thus, an LEMR is in essence an (ill)health trajectory of a patient’s journey
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through the healthcare system. Both visit-level EMRs and patient-level LEMRs are
hence becoming goldmines for deriving insights across populations (as opposed to
their main purpose: individual patient care). With the evolution of data science
as a discipline and the rise of precision medicine initiatives for targeted therapies,
(L)EMRs are being repurposed for disease phenotype discovery, predictive modeling,
computational drug discovery and repositioning, cohort selection, and causal asso-
ciation mining. This secondary data analyses of EMR data for deriving insights at
the patient population level is the main focus of this thesis. Next, we present a brief
overview of this dissertation.

1.3 Overview of this Dissertation

This dissertation focuses on (1). assessing the potential of data mining approaches for
extracting statistically significant and causal associations from EMRs; (2). predicting
chronic conditions from LEMRs using recent advances in contrast pattern mining
and deep neural networks. Although current approaches have been shown to obtain
promising results, developing new approaches and/or cleverly configuring existing
ones may create more predictive power and improve the quality of the outcomes as
outlined in the following chronological introduction to the main ideas behind this
dissertation.

• Interestingness measures for association rule mining (ARM): Over the
past two decades, ARM has received significant attention from both the data
mining and machine learning communities. While data mining researchers focus
on designing efficient algorithms to mine rules from large datasets, the learning
community has explored applications of rule mining to classification. A major
problem with rule mining algorithms is the explosion of rules even for moderate
sized datasets making it extremely difficult for end users to identify both statis-
tically significant and potentially novel rules that could lead to interesting new
insights and hypotheses. Researchers have proposed many domain independent
interestingness measures using which, one can rank the rules and potentially glean
useful rules from the top ranked ones. However, these measures have not been
fully explored for rule mining in clinical datasets owing to the relatively large sizes
of the datasets often encountered in healthcare. Additionally, limited access to
domain experts creates another obstacle for the review/analysis.

In the first part of this dissertation, using an EMR dataset of 3.25 million visits to
UKHealthcare clinics, we studied the trade-off between rule novelty and statisti-
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cal significance using dozens of interestingness measures proposed in the literature
and also a few additional measures we devised for this study. The rules we studied
are of the form E ⇒ Y where E (antecedent) and Y (consequent) are item sets
formed from unique clinical variables: diagnoses, medications, procedures, and
labs. Typically (including in our analysis), Y is a singleton and in biomedicine it
is set to a medical/mental condition of interest. Here, we limited our analysis to
only medications and diagnoses in our initial work and our consequent of choice
is depressive disorders. The assessment of novelty of rules is conducted by a prac-
ticing psychiatrist (Dr. Rayapati) of UKHealthcare. Our results not only surface
new interesting associations for depressive disorders but also indicate classes of
interestingness measures that weight rule novelty and statistical strength in con-
trasting ways, offering new insights for end users in identifying interesting rules.
The details of the methods used and results of this work are published in ACM
BCB 2016 (Abar et al., 2016) and are presented in Chapter 3.

• Toward causal association rule (CAR) mining: Although association rules
of the form E ⇒ Y are interesting for further exploration, they may only indi-
cate correlations that may be spurious. In fields such as biomedicine, it is more
meaningful to identify causal association rules, where the antecedent E can be
thought of as an event (e.g., taking a medication) that maybe causing the con-
sequent Y (e.g., a condition, potentially as a side effect). Causal inference in
biomedicine is a highly nuanced subject but most definitions of causality have a
set of shared guidelines formulated by English epidemiologist Austin Bradford Hill
in 1965. An obvious guideline is temporal precedence of E with respect of Y . So
mining at patient-level LEMRs (the chronological EMR history) is a prerequisite.
Additionally, the association must hold after accounting for potential confounding
attributes, variables that may influence E and Y leading to a spurious correlation
between the pair. Other guidelines involve establishing/identifying the existence
of an actual plausible biomedical mechanism through which the causal association
manifests and evidence through experiments (e.g., randomized controlled trials).
Given our sandbox is the retrospective observational data in EMRs, we cannot
account for all requirements needed for causality. But, we can account for con-
founders and ensure temporal precedence. With circumspection, we hence qualify
our effort as moving “toward” CAR mining. Intuitively, however, CARs form a
smaller and manageable high confidence hypothesis space compared with the full
set of associations curated from EMRs.
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A major challenge for CAR mining even in the retrospective setup is that all
confounders are not known ahead of time besides the common ones such as gender,
age, and race. Furthermore, approaches that rely on learning Bayesian networks
(BNs) automatically from data do not scale to datasets with large variable spaces
such as those encountered here. CAR mining is a more practical alternative for
observational studies but has not been fully explored in current literature. In
this dissertation, using an LEMR dataset of over 900,000 patient records with
more than four million patient visits to the UKY medical center and affiliated
clinics, we studied the causal effects involving diagnoses and medications, and
patient demographics on two mental conditions: depressive disorders and anxiety
disorders. The process of generating CARs starts with computational confounder
detection. Next, using these confounders, we generate the so called “fair” datasets
(FDs) that consist of matched LEMR pairs to calculate the strength of possible
CAs. Then, rules with 95% CI-based odds-ratio lower bounds (ORLBs) greater
than one, as calculated from the FDs, are selected as CARs. Finally, we compare
these ORLB based causality rankings against expert judgments which are obtained
from two practicing psychiatrists to assess the utility of our method. We identify
interesting CARs and also find that the causality ratings produced by our method
align with those assigned by the domain experts. Full details of this effort and
corresponding findings are presented in Chapter 4.

• Predictive modeling with contrast patterns and neural networks: One in
four Americans and three in four Americans aged 65 and older suffer from multiple
chronic conditions leading to 71% of total healthcare spending in the U.S. Both
in terms of sheer suffering and high out-of-pocket expenses, patients with multiple
chronic conditions form a subgroup that are deservedly getting attention from the
research and health services communities. Once diagnosed with such conditions,
patients are usually on corresponding medications for the rest of their lives. Also,
multiple chronic comorbidities greatly compromise immunity and can make people
highly susceptible to acute infections that can rapidly lead to multiple organ failure.
Thus, being able to predict such conditions well before they manifest fully can be
of immense preventative and interventional value, which is clearly something all
stakeholders — patients, doctors, healthcare facilities, insurance providers, and
health policymakers — can get behind.

Because LEMRs represent patient trajectories through the healthcare system, we
can use supervised machine learning methods that take as input a prefix of a pa-
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tient’s LEMR and predict their future conditions. This can be further simplified,
if we formulate it as estimating the probability of first diagnosis of a particular
chronic condition in the future, predicted at different time horizons. In this dis-
sertation, this is the line of work pursued for depressive disorders as the target
condition group using different neural-network based representations of LEMRs.
Unlike prior efforts that only employ recurrent neural network (RNN) variants,
we also employ sequential contrast patterns (SCPs) derived from LEMRs and use
RNN based sequence compositions on top of SCPs. By carefully varying washout
periods, future time horizons, maximum inter-visit gaps, and minimum numbers of
visits, we first examine the performance of existing LEMR based predictive mod-
eling methods for different variants of LEMR input encoding. Next, we choose a
particular cohort of patients (diagnosed with depressive disorders) with a washout
period of six months, a one year maximum inter-visit gap, and with at least 30 vis-
its made to UKHealthCare facilities. Using this data, we predict the first diagnosis
of depressive disorders with a one year time horizon. We apply our novel model-
ing approach that hierarchically composes SCPs and SCP sequences using RNNs.
Our results show that a hybrid model that combines a conventional RNN with our
SCP-based RNN produces the best predictive performance. These models, their
variants, and results are presented in Chapter 5.
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Chapter 2 Related Work and Background

In this chapter, we will describe background concepts that are essential to the rest of
the dissertation.

2.1 Healthcare Cost and Utilization Project

The HCUP (Healthcare Cost and Utilization Project, n.d.) aims to generate health-
care related datasets and software tools to build national data resources. Diagnosis
and procedure classification via HCUP is carried out through its clinical classification
software (CCS), which is used to group various diagnosis codes in this dissertation.
HCUP has been created by the Agency for Healthcare Research and Quality (AHRQ),
a federal organization that oversees and guides health services and care delivery as-
pects at the national level. The purpose of developing CSS is to generate clinically
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Figure 2.1: Number of ICD-9-CM codes for each CSS classes

meaningful classification of ICD and CPT codes. Instead of using a single code, using
a group of codes related to same diagnosis or procedure is more beneficial in statistical
studies to obtain high level estimates as opposed to estimates for all suble variants
created originally for billing purposes. For example, ICD-9-CM consists of more than
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14,000 diagnosis codes and these codes can be classified into 282 different classes us-
ing CSS’ classification system. Figure 2.1 shows the number of ICD-9-CM codes in
each CSS classe. While some classes are small, some have a large number of ICD-
9-CM codes. For instance, class 144 (multi-level CSS category 18) “Residual codes;
unclassified; all E codes” has 1589 different ICD-9-CM codes which is the class with
highest number of codes while class 55 (multi-level CSS category 5.3.2) “Oppositional
defiant disorder” has exactly one code. Tables 2.1 and 2.2 presents ICD-9-CM codes
and descriptions related to depressive disorders and anxiety disorders respectively.

Table 2.1: List of ICD-9-CM codes related to depressive disorders

ICD-9-CM code Description

293.83 Mood disorder in conditions classified elsewhere
296.20 Major depressive affective disorder, single episode,

unspecified
296.21 Major depressive affective disorder, single episode, mild
296.22 Major depressive affective disorder, single episode,

moderate
296.23 Major depressive affective disorder, single episode,

severe, without mention of psychotic behavior
296.24 Major depressive affective disorder, single episode,

severe, specified as with psychotic behavior
296.25 Major depressive affective disorder, single episode, in

partial or unspecified remission
296.26 Major depressive affective disorder, single episode, in

full remission
296.30 Major depressive affective disorder, recurrent episode,

unspecified
296.31 Major depressive affective disorder, recurrent episode,

mild
296.32 Major depressive affective disorder, recurrent episode,

moderate
296.33 Major depressive affective disorder, recurrent episode,

severe, without mention of psychotic behavior
296.34 Major depressive affective disorder, recurrent episode,

severe, specified as with psychotic behavior
296.35 Major depressive affective disorder, recurrent episode,

in partial or unspecified remission
296.36 Major depressive affective disorder, recurrent episode,

in full remission
300.4 Dysthymic disorder
311 Depressive disorder, not elsewhere classified

2.2 Association Rule Mining

Let I be the union of all medications and diagnoses and any other biomedical variables
that are of interest for each patient. For our purposes, a set E = {i1, . . . , ik} ⊆ I is
called a clinical item set with k items and a patient visit transaction T = (pid, vid, I)

is defined over I where vid is the patient visit ID, pid is the patient ID, and I ⊆ I is
the item set corresponding to the current visit vid. The set of all visit transactions in
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Table 2.2: List of ICD-9-CM codes related to anxiety disorders

ICD-9-CM code Description

293.83 Mood disorder in conditions classified elsewhere
293.84 Anxiety disorder in conditions classified elsewhere
300.00 Anxiety state, unspecified
300.01 Panic disorder without agoraphobia
300.02 Generalized anxiety disorder
300.09 Other anxiety states
300.10 Hysteria, unspecified
300.20 Phobia, unspecified
300.21 Agoraphobia with panic disorder
300.22 Agoraphobia without mention of panic attacks
300.23 Social phobia
300.29 Other isolated or specific phobias
300.3 Obsessive-compulsive disorders
300.5 Neurasthenia
300.89 Other somatoform disorders
300.9 Unspecified nonpsychotic mental disorder
308.0 Predominant disturbance of emotions
308.1 Predominant disturbance of consciousness
308.2 Predominant psychomotor disturbance
308.3 Other acute reactions to stress
308.4 Mixed disorders as reaction to stress
308.9 Unspecified acute reaction to stress
309.81 Posttraumatic stress disorder
313.0 Overanxious disorder specific to childhood and

adolescence
313.1 Misery and unhappiness disorder specific to childhood

and adolescence
313.21 Shyness disorder of childhood
313.22 Introverted disorder of childhood
313.3 Relationship problems specific to childhood and

adolescence
313.82 Identity disorder of childhood or adolescence
313.83 Academic underachievement disorder of childhood or

adolescence

a given database is denoted as the visit database V . A visit transaction (pid, vid, I)

is said to support an item set E if E ⊆ I and the support of E in the database V is
defined as:

support(E,V) = |{vid : (pid, vid, I) ∈ V , E ⊆ I}|. (2.1)

An item set is deemed frequent if its support is greater than a given minimum support
σ. Thus, the set of frequent item sets with respect to σ is defined as:

F(V , σ) = {E : support(E,V) ≥ σ}. (2.2)

Next, an Association Rule (AR) is a rule of the form E ⇒ Y where E and Y are
item sets and E ∩ Y = ∅. The confidence of an association rule E ⇒ Y denoted by

conf(E ⇒ Y,V) =
support(E ∪ Y )

support(E)
, (2.3)
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models the probability P (Y |E) and establishes the association of the consequent item
set Y with the antecedent item set E. Beside minimum support for item sets, we can
establish a minimum confidence γ for ARs and define a stronger notion of frequent
and confident ARs over a visit database V as the set

R(V , σ, γ) = {E ⇒ Y : E ∪ Y ∈ F(V , σ), conf(E ⇒ Y ) ≥ γ}, (2.4)

which consists of confidence thresholded ARs obtained from frequent item sets.

2.3 Term Frequency-Inverse Document Frequency

Term Frequency - Inverse Document Frequency (TF-IDF) (Robertson, 2004) is a
commonly used statistical method in information retrieval. This is simple yet powerful
formula measures the relationship of the term with a given document in corpus.
Higher TF-IDF value indicates that the term have strong relationship with a given
document. TF-IDF consist of two numerical values; Term Frequency (TF) and Inverse
document frequency (IDF). TF-IDF value of a term for a given document in a corpus
is defined as:

TF − IDF (ti, d, C) = TF (ti, d)× IDF (ti, C) (2.5)

First value, TF, calculated as the number of occurrence of a term in a specific docu-
ment in other word frequency of the term. TF value is defined as:

TF (ti, d) = frequency(ti, d) (2.6)

Second value, IDF, is used to distinguish more meaningful words in a document. For
instance, articles “the”, “a”, and “an” tend to occur in every text document in the
corpus even if it has no meaning by itself. The idea is to give higher values to the
word occurs in less documents to increase the importance of the document specific
words. The basic and most commonly used formula to calculate IDF for a document
collection and a term, is defined as

IDF (ti, C) = log

(N
ni

)
(2.7)

In order to calculate IDF of the term ti in a corpus C, in equation (2.7), ni is the
number of documents contains the term, ti, where {ti : d ∈ C, ti ∈ d} and d corre-
sponds to a document in C as well as N = |C| is the total number of documents in
the corpus.
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2.4 Odds Ratio

Odds Ratio (OR) (Morris and Gardner, 1988) is a commonly used statistical mea-
surement to calculate the association of the exposure, a disease or medication, and
the outcome, a medical condition. Table 2.3 shows a 2 × 2 contingency table for an
AR. In this table, calculating OR gives the association between antecedent and conse-
quent where antecedent means a exposed disease or medication as well as consequent
corresponds to an another medical condition to relate. OR of an AR is calculated as

OR(E ⇒ Y ) =
a× d
b× c , (2.8)

where E ⇒ Y is an AR and a, b, c, and d are the values appear in the Table 2.3.
An association between the exposure and the outcome is decided according to the
OR value calculated. There are three different possible values of the calculation. If
OR = 1, there is no association between the exposure and the outcome because odds
of the outcome for the exposure is equal to odds of the outcome for not exposure.
If OR > 1, there is a positive association between the exposure and the outcome
as well as the odds of the outcome significantly increases when it is exposed to the
antecedent. If OR < 1, the odds of the outcome is lower for the exposure.

Consequent

Antecedent Y ¬Y Total

E a b a+b

¬E c d c+d

Total a+c b+d n

Table 2.3: 2 × 2 Contingency Table for Rule E ⇒ Y

Calculating the OR is not always enough to ascertain the association between
the antecedent and the consequent. Therefore, we will also calculate the Confidence
Interval (CI) to estimate the precision of OR. In order to calculate CI, we will first
calculate Standard Error (SE). The formula to calculate SE for ln(OR) is defined as:

SE(ln(OR)) =

√
1

a
+

1

b
+

1

c
+

1

d
. (2.9)

With this the OR lower bound (ORLB) and the OR upper bound (ORUB) are given

11



as:
ORLB(E ⇒ Y ) = e

(
ln(OR)− 1.96× SE(ln(OR))

)
(2.10)

and
ORUB(E ⇒ Y ) = e

(
ln(OR) + 1.96× SE(ln(OR))

)
(2.11)

Equation 2.10 and Equation 2.11 show how to apply SE value to OR after calculating
SE shown in Equation 2.9. These formulas, ORLB and ORUB, are calculated for the
95% confident interval. One of the advantages of using SE other than strengthening
association is to avoid misjudgment caused by very small a, b, c, or d values.

2.5 Inter-Rater Reliability Scores

Many studies in biomedical domain involve observational rating scores from multiple
people to demonstrate robustness of the annotation and the corresponding computa-
tional methodology. When there is more than one rater, the assessment of inter-rater
reliability (IRR) is required to measure the degree of consistency among raters (Hall-
gren, 2012). IRR score shows the degree of homogeneity or consensus between the
ratings given by the raters. There are a number of statistical measures to assess
IRR in the medical domain including Cohen’s Kappa (McHugh, 2012; Cohen, 1960;
Cohen, 1968), Spearman’s Rho (Mukaka, 2012), and Gwet’s AC1Wongpakaran et al.,
2013; Gwet, 2014. We will start by creating a 2×2 contingency table as shown in
Table 2.4 to explain how each measure is calculated.

Table 2.4: 2×2 Contingency table for the assessment of IRR

Rater 1

+ − Total

Rater 2
+ a b a+b

− c d c+d

Total a+c b+d n

One of the most frequently used statistics to assess IRR is Cohen’s Kappa also
called kappa statistic first introduced in (Cohen, 1960). Cohen’s Kappa symbolized
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by κ and ranges between -1 and +1. κ value is calculated as:

κ =
P (a)− P (e)

1− P (e)
(2.12)

where
P (a) =

a+ d

n
, (2.13)

and

P (e) =
(a+c)x(a+b)

n
+ (b+d)x(c+d)

n

n
(2.14)

Another measure to assess IRR, which is frequently used in biomedical domain is
the Spearman’s Rho (Spearman, 1904) symbolized by ρ or rs. The value of ρ ranges
from -1 to +1. In order to calculate ρ, first we rank each ratings separately from
lowest to highest. Then, for each data pair rank differences are calculated as di.
Finally, ρ is calculated as:

ρ = 1−
6

n∑
i=1

d2
i

n3 − n (2.15)

Gwet’s AC1 is also used for the assessment of IRR in biomedical data and was
first introduced in (Gwet et al., 2002). As with Cohen’s kappa, Gwet’s AC1 uses
probabilistic measurements to calculate IRR score which ranges between -1 and +1.
This score is introduced to overcome some issues with κ which can produce different
IRR values for same percent of agreement level. Additionally, κ is hard to interpret
and unstable. Gwet’s AC1 score is calculated as:

Gwet′s AC1 =
P (a)− P (γ)

1− P (γ)
(2.16)

where P(a) is calculated as in Equation 2.13 and P (γ) is calculated as:

P (γ) = 2q(1− q) (2.17)

with
q =

(a+ c) + (a+ b)

2n
. (2.18)

According to the value calculated by an IRR measurement, 1 means that the
degree of consistency among the raters is perfect while below and equal to 0 mean
that there is no agreement. Level of agreement can be classified in six groups which
are shown in Table 2.5.
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Table 2.5: The agreement level of IRR measures

Value Agreement Level

≤0 No Agreement
0.01-0.20 None to Slight
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial
0.81-1.00 Almost Perfect

2.6 Sequential Contrast Pattern Mining

Contrast pattern mining (CPM) was first introduced by Dong and Li (1999) to find
patterns contrasting multiple datasets or classes within a dataset. The idea is to
find patterns that feature more prominently in one class when compared with other
classes. For classification, we choose to compare two classes in an EMR dataset where
positive class includes patients with user defined target condition and negatives class
includes the rest of the patients. To apply contrast pattern mining approaches, let I
be the union of all medical codes that can be used for patients. For our purposes, a
pair wj consists of a set of items and visit order index wj = {(i1, i2, ..., il), tj} where
{i1, i2, ..., il} ⊆ I for l > 0 and a setW = {w1, w2, ...wj, ..., wk−1, wk} is an ordered list
item sets where tk−1 < tk, which includes k pairs from k different patient visits. The
set of all medical transactions in a given database is denoted as a sequential EMR

database. The positive sequential database, EMRp, is that includes all transactions
that contain z and the negative sequential database ,EMRn, is that includes all
transactions missing z where z is the desired medical code that we are using as output.
In this study, we only consider medical items that occur before z, and if there are
multiple occurrences of z with m days difference, we will use the first occurrence of
that output code. If there are multiple occurrences of z and there are more than m
days between two occurrences, we create a new transaction using the medical items
occurring with z in the same visit and after as a new transaction.

After creating two databases, we start mining all SCPs. Here, we consider 2
conditions: frequency and relative risk. A set s = {s1, s2, ..., sm} is m SP for m > 0

includes m items each sm ∈ I where sm−1 ∈ wi, sm ∈ wj, i < j, and j − 1 > α, .
Support of s defined as:

support(s, EMRp) = |{pid : (pid,W ) ∈ EMRp, s ∈ I}| (2.19)
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Figure 2.2: Sequential Contrast Pattern Mining Scheme

A pattern is frequent if its support is greater than a given support threshold σ for
EMRb or EMRa. Hence, the frequency condition for a sequence s with respect to σ
is defined as:

F(EMRp, σ) = {s : support(s, EMRp) ≥ σ} (2.20)

To find all contrast patterns we first calculate relative risk as:

RR(s, EMRp, EMRb) =
support(s, EMRp)/|EMRp|
support(s, EMRn)/|EMRn|

. (2.21)

To find all SCPs, we will extract patterns which satisfy frequency condition for the
positive dataset and then a separate relative risk condition: we consider SPs which
are β times more likely to feature in the positive class. Therefore, all SCPs with
respect to the relative risk condition are defined as:

SCP (F(EMRp, σ), EMRb,β) =

{s : s ∈F(EMRp, σ) & RR(s, EMRp, EMRn) ≥ β}
(2.22)

where β is the relative risk threshold for a sequence.

2.7 Recurrent Neural Network (RNN)

When sequential data is used, the order of each item in the sequence is important. For
instance, we read sentences word by word in order to make sense of it and if we change
the order, the sentence might become unintelligible or actually mean new things that
the original sentence does not communicate. An RNN is a neural network with cyclical
connections that naturally composes sequential information. Here, hidden layer of the
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current state is calculated by using the previous hidden layer and the current input
and this value is the summary of the information given until that point. Formula to
calculate the hidden layer of the current state is given as:

ht = tanh(Wxt + bx + Uht−1 + bh) (2.23)

where U ∈ Rp×p and W ∈ Rp×m are the parameters matrices, while b{x,h} ∈ Rp are
the related bias vectors with m being the embedding dimension of each word and p
being hidden layer size. Here xt is the input vector for current word (or any element
in the sequence) and ht is the hidden layer output of current state, and ht−1 is the
hidden layer representation from the previous time step. There are two important
variants of RNN used in the deep learning (DL) field.

2.7.1 Vanilla Long Short Term Memory (V-LSTM)

One well known RNN variant we employ in our studies is a standard LSTM, which we
hencerforth term V-LSTM. The hidden unit of a V-LSTM model contains an input
gate, output gate, and forget gate as shown in Figure 2.3. These gates have a value
ranging from 0 and 1 and each gate has a specific role to improve the performance.
Input gate controls how much of the new data will be used in current cell, forget gate
decides what portion of the previous cell state is needed to be retained, and finally
output gate decides how much information from current output will be sent to the
next cell. More formally, a V-LSTM is specified as:
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it = σ(Wixt + Uiht−1 + bi) (2.24)

ft = σ(Wfxt + Ufht−1 + bf ) (2.25)

ot = σ(Woxt + Uoht−1 + bo) (2.26)

c̃t = tanh(Wcxt + Ucht−1 + bc) (2.27)

ct = σ(ft � ct−1 + it � c̃t) (2.28)

ht = tanh(ct)� ot (2.29)

Here, Equations 2.24, 2.25, and 2.26 show the input, forget, and output functions
respectively. Equation 2.27 and 2.28 show memory cell equations using input and
forget gate. Finally, equation 2.29 calculates the hidden layer of the current V-LSTM
unit. it, ft, and ot are the input, forget, and output gates respectively. For embedding
dimension of m, and hidden layer size p, U{i,f,o,c} ∈ Rp×p and W{i,f,o,c} ∈ Rp×m are
the parameter matrices while b{i,f,o,c} ∈ Rp are the related bias vectors. Also, σ()

is the sigmoid function and tanh() is the hyperbolic tangent function. Here, xt is
the input vector, ct is the memory cell, and ht is the hidden layer of related LSTM
unit. Our intuition in the context of LEMRs is to represented all structured codes
just as one would embed words in a sentence. However, at each time step, there is
an entire EMR instead of a single word. To handle this, an EMR can be represented
by the simple average of embeddings of all constituent codes. Alternatively, different
classes of codes (e.g., diagnoses, medications) can be averaged separately and then
concatenated to come up with the fix dimensional embedding for an EMR. This latter
approach leads to longer representations due to the separation of different types of
codes.

2.7.2 Gated Recurrent Unit (GRU)

Another frequently used variation of the RNN model we employ is the GRU, which
contains 2 gates: reset gate and update gate. This model provides comparable pre-
diction power while the structure is simpler than the LSTM model. Figure 2.4 shows
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the structure of GRU and the formal description is as follows:

zt = σ(Wzxt + Uzht−1 + bz) (2.30)

rt = σ(Wrxt + Urht−1 + br) (2.31)

h̃t = tanh(Whxt + rt � Uhht−1 + bh) (2.32)

ht = zt � ht−1 + (1− zt)� h̃t (2.33)

Equations 2.30, 2.31, 2.32, and 2.33 show how to calculate the reset gate(r), the
update gate (z), the intermediate memory unit (h̃), and the hidden layer output (h)
respectively, where U{i,f,o,c} and W{i,f,o,c} are the parameter matrices while b{i,f,o,c}
are the related bias vectors. The purpose of training is to learn these matrices and
bias vectors. Because of the simpler architecture, GRUs tend to be faster. The
representation of EMRs to be processed by GRUs is the same as explained for LSTMs
in the previous section.
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Chapter 3 On Interestingness Measures for Mining Statistically
Significant and Novel Clinical Associations from EMRs

Association rule mining has received significant attention from both the data mining
and machine learning communities. While data mining researchers focus more on de-
signing efficient algorithms to mine rules from large datasets, the learning community
has explored applications of rule mining to classification. A major problem with rule
mining algorithms is the explosion of rules even for moderate sized datasets making
it very difficult for end users to identify both statistically significant and potentially
novel rules that could lead to interesting new insights and hypotheses. Researchers
have proposed many domain independent interestingness measures using which, one
can rank the rules and potentially glean useful rules from the top ranked ones. How-
ever, these measures have not been fully explored for rule mining in clinical datasets
owing to the relatively large sizes of the datasets often encountered in healthcare and
also due to limited access to domain experts for review/analysis. For this chapter,
using an EMR dataset of diagnoses and medications from over three million patient
visits to the University of Kentucky medical center and affiliated clinics, we conduct a
thorough evaluation of dozens of interestingness measures proposed in data mining lit-
erature, including some new composite measures. Using cumulative relevance metrics
from information retrieval, we compare these interestingness measures against human
judgments obtained from a practicing psychiatrist for association rules involving the
depressive disorders class as the consequent.

3.1 Introduction

Association rule mining (ARM (Agrawal and Srikant, 1994)) has emerged as an im-
portant methodology to gain insights into large databases of transactions each of
which contains a set of items. ARM first gained popularity for market-basket anal-
ysis where each transaction consists of a set of products purchased by a customer.
Using ARM, rules of the form E ⇒ Y are extracted which indicate that a customer
that buys a set of items E “tends” to buy items in Y in the same visit. ARs ob-
tained for this domain have been used to better design product placement layouts
in stores that encourage so called cross-selling among customers. Similar strategies
are also being employed by online stores to dynamically generate product recommen-
dations based on prior browsing/purchasing history. In the context of biomedicine
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and healthcare, ARM has also been applied to EMR data for association analysis
among biomedical and clinical variables (Brossette et al., 1998; Ordonez et al., 2006;
Wright et al., 2010; Wright et al., 2013). Before we proceed further, we establish
some primitives for ARM starting with the notion of a clinical item set.

3.1.1 Notions of Statistical Strength, Novelty, & Interestingness

Statistical significance and novelty are two important and complementary notions
that make a rule desirable for further examination. Generally speaking, an AR is
deemed statistically significant if its manifestation is not due to random chance.
Statistical strength is a measure-specific notion that attributes a gradation or degree
to the significance of the rule. Thus, we would at least want a rule to be statistically
significant and also prefer for it to have high statistical strength. However, statistically
significant ARs may not be meaningful or clinically relevant; even in cases when they
are meaningful, they might be too obvious. For example, in our experiments, the
association of antidepressants with depressive disorders is statistically significant but
is very obvious to most end users. For ARM, the notion of novelty indicates the level
of unexpectedness, surprise, or peculiarity associated with a rule. For example, the
association between antidepressants and depressive disorders is considered not novel.
For our current effort, to keep the terminology simple, novelty implicitly also includes
the notion of clinical relevance or plausibility. In data mining literature (Geng and
Hamilton, 2006; Shaharanee et al., 2011; Tan et al., 2002; Webb and Vreeken, 2014),
“interestingness” has been used as an umbrella term to describe a combination of
desirable rule properties including statistical strength and novelty and we employ the
same usage for the rest of our chapter. Although novelty is sometimes considered a
subjective measure, in this chapter we assess how various interestingness measures
model novelty. Next we outline our main contributions.

3.1.2 Our Contributions

Prior results on applying ARM to clinical datasets (Wright et al., 2010; Wright et
al., 2013) offer important insights but are based on relatively smaller datasets with
a focus on rediscovering known associations already recorded in external knowledge
bases. Hence they do not directly assess the novelty of the associations found. Fur-
thermore, their evaluations consider only few interestingness measures (up to five) in
their experiments and also limit the antecedent of an association to be a singleton.
In our current effort
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1. We use a dataset of diagnoses and medications from over 3 million patient visits to
the UKY medical center and its affiliated clinics to obtain all ARs with singleton
consequents and having minimum support 100 and minimum confidence 10%. We
do not limit the rule antecedents to be singletons; they can be combinations of
both diagnoses and medications.

2. We rank the specific set of rules with depressive disorders as the consequent using
over 40 different interestingness measures including most measures introduced in
data mining literature (Geng and Hamilton, 2006) and a few new measures we
introduce in this chapter.

3. We obtain manually assigned novelty scores (1 – 5) for the set of rules in the union
of top 100 rules from rankings produced by all interesting measures using the
help of a practicing psychiatrist (Dr. Rayapati, the domain expert of this effort).
We combine these novelty scores and odds ratio lower bounds (from 95% confi-
dence intervals) for these rules to compare against all interestingness measures and
identify classes of measures that trade-off novelty and statistical strength in con-
trasting ways. We also discuss the clinical plausibility of several novel associations
identified in our analysis.

The central premise for all our work is to pick specific diseases of interest as conse-
quents and identify groups of medications and other conditions (as antecedents) that
are associated with them. The associations may themselves manifest due to comor-
bidity situations (if antecedents are diseases). They can be indicative of treatment
relations or side-effect/adverse-reaction scenarios (if the antecedents are medications).
Combinations of medications and diseases as antecedents can represent more nuanced
and specific scenarios with high statistical strength.

3.2 AR Mining from Visits Data

ARM has been explained in Section 2.2. From a biomedical perspective, we can filter
ARs R(V , σ, γ) choosing interesting and meaningful consequents Y . For example,
we can set Y = {NSCLC}, that is, a consequent with just one item, NSCLC, which
corresponds to patient visits that had a diagnosis code for NSCLC.

As their name indicates, ARs are essentially associations (or correlations) and do
not indicate causality, although they have been known to manifest when there is a
causal relationship. ARs are also used as starting points to arrive at potential causal
relations (Hill, 1965) using additional retrospective analyses involving confounding
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factors (not all of which maybe recorded in a clinical database) or additional prospec-
tive experiments such as randomized control trials (which may not be feasible in all
situations) (Shadish et al., 2002). We emphasize that the scope of this chapter is
assessing rule interestingness measures in the context of ranking large AR sets to
enable discovery of interesting associations that can lead to novel hypotheses. Next
we discuss the notions of statistical strength, novelty, and interestingness of rules
generated by ARM. Here we primarily discuss the clinical dataset and methods used
to extract ARs.

3.2.1 Clinical Dataset Used

Our dataset is extracted from all patient visits (≈ 3.25 million) during the ten year
period 2004-2013 to the UKY medical center and its affiliated clinics. Each visit
transaction consists of medications and diagnoses recorded during a particular patient
visit∗. We also removed nearly 12,000 transactions that are very large (with 35 or
more elements per visit). Although rare and in this case constituting only 0.3% of the
full dataset, presence of such long transactions renders existing approaches to ARM
impractical given they all rely on generating frequent item sets as an intermediate
step. Thus we are still left with ≈ 3.25 million visits from around 572,000 unique
patients. Thus, on average, each patient had about 5.66 visits during the decade.
Given the ten year window of the study, we chose to treat different visits by the
same patient as giving rise to different transactions. This way, the co-occurrences of
medications and diagnoses are guaranteed to have the same time stamp in all our
transactions.

The dataset has 11,877 unique ICD-9-CM codes and 1032 unique medication
codes by Cerner MultumTM Lexicon Plus codes which are also used by CDC for their
medical care surveys. Current ARM approaches, even with the advent of “big data”
approaches, do not scale well to thousands of unique items for patient visit databases
with large transaction sizes especially if the minimum confidence and threshold are
chosen to be small, which is critical to surface novel associations; high support and
confidence rules may satisfy statistical strength requirements but tend to represent
common knowledge for most end users. At lower thresholds, scalability issues mostly
arise because of the combinatorial explosion of possible antecedent sets. Further-
more, considering all unique codes may not offer enough statistical strength (due to
sparsity) or yield informative rules (for manual AR interpretation). For example,

∗Although other variables such as procedures and labs are available, for computationally
tractability we limited our current study to medications and diagnoses.
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researchers might be more interested in knowing statistically significant and novel
associations of penicillins with other conditions rather than be subjected to a deluge
of weak associations involving specific penicillins such as Amoxicillin, Ampicillin, and
Dicloxacillin. However, sparsity issues may be overcome by working with much larger
datasets compared to the dataset used in our current effort.

Given above scenarios, we group diagnosis and medication codes using conven-
tional approaches. For diagnoses, we use ICD-9 code classes (Healthcare Cost and
Utilization Project, n.d.) developed by the HCUP, an affiliate of the AHRQ in the
US Department of Health and Human Services. These classes group related codes
resulting in 282 classes for the 11,877 codes in our dataset. For example, the HCUP
class for cancer of breast groups 13 different ICD-9 codes covering all female breast
cancer codes, male breast cancer codes, and a code for personal history of breast
cancer. We rolled-up the Multum medication codes using their class hierarchy which
resulted in 150 classes (e.g., Penicillins). In each transaction, we then replaced the
codes with the corresponding HCUP and Multum classes resulting in a total of 432
unique items (HCUP and Multum classes) populating 3.25 million transactions.

3.2.2 Generating Association Rules

Although there are several efficient implementations that extract frequent item sets (Han
et al., 2000; Zaki, 2000), including those that work on big datasets using MapRe-
duce (Moens et al., 2013), for our purposes the LCM Ver. 3 by Uno et al. (2005)
that exploits a clever combination of bitmaps, prefix trees, and array lists worked
best. We used a minimum support σ = 100 and confidence γ = 10% for singleton
consequent rule generation. That is, in each AR, we require that the antecedent items
and consequent co-occur at least 100 times in over 3 million transactions and at least
10% of the transactions that contain the antecedent set also include the consequent.
This is in line with other efforts (Wright et al., 2010; Wright et al., 2013) on applying
ARM to clinical datasets. LCM generated nearly 22 million rules for our dataset.

At this point, to evaluate interestingness measures for both statistical strength
and novelty, we needed to pick a narrow focus. According to the National Comor-
bidity Survey Replication (2001–2003), 68% of adults with mental disorders have
medical conditions and 29% with medical conditions have mental disorders (Kessler
et al., 2004). A February 2011 Robert Wood Johnson Foundation (RWJF) research
synthesis report (Druss and Walker, n.d.) presents evidence that this subgroup of
people with mental and medical disorder comorbidities are at significant risk for poor
quality of care and high costs. Depressive disorders are one of the most common
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mental disorders especially among adults and hence we picked the corresponding
HCUP class for our focused study. The depressive disorders HCUP class has sixteen
ICD-9 codes, which represent all variants of depression in . Our dataset has 54,923
transactions with a depressive disorder code. Post filtering all rules with depressive
disorders as the consequent, we obtained 126,540 rules. Upon on manual observation,
many of these rules had antidepressants as an element of the antecedent. Since the
presence of this well known drug class that treats depression leads to uninteresting
associations, we removed those rules with antidepressants as part of the antecedent,
which resulted in 75,465 rules. These are the rules we ranked based on different
interestingness measures.

3.3 Assessing Interestingness Measures for Association Rule (AR) Rank-
ing

We ranked all the 75,465 rules with depressive disorders as the consequent class
using nearly three dozen probability based objective interestingness measures from
a recent survey by Geng and Hamilton (Geng and Hamilton, 2006, Table IV). This
list includes popular measures such as confidence, lift, conviction, odds ratio, and
information gain. Additionally, we added the χ2-measure as it is well known for
studying statistically significant associations (Hämäläinen, 2011; Wright et al., 2010).
We also introduced some new measures which we describe here.

3.3.1 Additional Interestingness Measures

To model novelty, we introduce the notion of AIRF for a given AR E ⇒ Y . Recall
from Chapter 2, R(V , σ, γ) represents the set of ARs for the visit databases V satis-
fying minimum support σ and confidence γ. Let RY ⊆ R(V , σ, γ) be the set of rules
with Y as the consequent from the full set of rules, assuming the database V , σ, and
γ are fixed. We define

AIRF (E ⇒ Y ) =

∑
x∈E

|RY |
|{R: R∈RY ∧ x is in antecedent of R}|

|E| .

Inverse rule frequency is analogous to inverse document frequency (IDF) in the
TF-IDF term weighting scheme popular in information retrieval. The higher the
AIRF of a rule E ⇒ Y , the fewer are the rules that contain elements of E as
part of their antecedents – in this sense, rules with higher AIRF are expected to be
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novel/peculiar. The rationale for AIRF follows from the justification for IDF (Robert-
son, 2004).

Odds ratio (OR) is a well known measure for studying associations in epidemi-
ology† and more specifically, the ORLB (Morris and Gardner, 1988) of the 95%
confidence interval around sample OR is used as an important measure for assessing
statistical significance or lack thereof. ORLB > 1 indicates a statistically significant
association with higher values indicating stronger associations. Our new measures of
interestingness for a rule E ⇒ Y include its AIRF , ORLB,

ORLB

log2(|E|+ |Y |) , and
AIRF ·ORLB
log2(|E|+ |Y |) , (3.1)

where log2(|E|+ |Y |) indicates the length of the rule. (Note |Y | = 1 for our purposes
and the expression equals 1 for singleton associations where additionally |E| = 1).
Given ORLB indicates statistical strength and AIRF models novelty, we combined
both in the product measure. Although we support longer rules with |E| > 1, very
long rules are not interesting as they capture highly specific scenarios that are not
amenable to reasonable interpretation and typically have low support as noted in prior
efforts (Hämäläinen, 2011). At the same time we do not want to severely discount
long rules. So to prefer smaller rules and dampen the effect of the length on overall
interestingness score, we use log2(|E|+ |Y |) in the denominator of the two measures
in equation 3.1.

3.3.2 Domain Expert Novelty Assessments

We used ORLB introduced in Section 3.3.1 as a proxy for statistical strength in
our final assessment of all interestingness measures given it is routinely considered
in biostatistics. The rationale for using ORLB over OR is that ORLB balances
assurance that the result is not due to chance with the strength of the estimated
effect, considering the variance of the estimator. However, we do not have a similar
measure for novelty. Given it is unrealistic to have domain expert assessments on
75,000 rules we combined the top 100 rules from each of the rankings produced by
all interesting measures discussed in this section. That is, given M is the set of all

†For prospective studies, relative risk (RR) is a more intuitive measure of association strength,
but OR is a symmetric measure that is typically used for retrospective studies and approximates
RR for rare outcomes (Rosner, 2015, Chapter 13.3). The advantage of OR over RR is that OR
can be validly estimated whether random samples are drawn from the population as a whole, from
exposure/risk factor strata, or from outcome strata.
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Figure 3.1: Interestingness measure profiles with novelty-statistical strength trade-offs

interestingness measures, human annotations are assigned to the set of rules⋃
m∈M

Rank100
m (RY ), (3.2)

where Rankkm indicates a function that returns the top k rules (without any limita-
tions on rule length) obtained by ranking using measure m. In addition to this, all
singleton antecedents which had an ORLB > 1 were also presented to the domain
expert. We did this because singleton associations (|E| = 1) are easier to inter-
pret, relatively very few compared to longer rules, and ORLB > 1 already indicates
statistically significant association.

Novelty ratings were assigned on a scale of 1 to 5 (with 5 indicating most novelty)
by a practicing psychiatrist from the university’s department of psychiatry. As we
indicated earlier in Section 3.1.1, the notion of novelty (regardless of the degree) for
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our purposes includes plausibility. So a rating of 1 for a rule indicates it is a well-
known association whose underlying mechanism is also reasonably understood. On
the other hand a rating of 5 means it is a highly novel rule that is also clinically
plausible although the details of the mechanism may not be as clear as for a rule with
rating 1. This is to be expected given high novelty usually also implies that pertinent
broad knowledge is lacking (see Section 3.4 for literature search based evidence for
this). The assessments are informed by the physician’s general medical knowledge and
experiences as a practicing psychiatrist. Besides the actual rules, no other information
was provided to the physician, who was requested to provide additional qualitative
feedback on associations that were deemed highly novel. We chose the top 100 rule
set union from all measures in the interest of domain expert time needed for novelty
assessment. This limit has resulted in over 550 rules and we believe choosing larger
thresholds could help for future efforts.

3.3.3 Comparison of Interestingness Measures

Next we compare interestingness measures discussed in this section across two dimen-
sions, statistical strength and novelty, using rule ORLBs and psychiatrist assigned
novelty scores as corresponding proxies, respectively. Using each interestingness mea-
sure, we rank all rules in equation 3.2 and any other singletons with an ORLB > 1 for
the depressive disorders consequent. For reviewing convenience for the domain expert
and subsequent analysis, we split all these rules into singleton and non-singleton an-
tecedent rules. We ended up with a total of 231 singleton rules and 334 non-singleton
rules each of which was assigned a novelty score (1–5).

The NDCG (Järvelin and Kekäläinen, 2002, Sections 2.2–2.3) is a popular rank
quality metric in information retrieval (IR). It is typically used for search engines to
measure the gain in terms of graded relevance of retrieved documents where relevant
documents higher up in the ranking are given more weight compared with those that
come later in the ranking. For interestingness measure comparison in our effort, we
adapt NDCG to suit our purposes and compute normalized discounted cumulative
novelty (NDCN) (from expert assigned scores) and normalized discounted cumula-
tive ORLB ( NDCO) based on the rule ranking produced according to each measure.
Instead of the relevance judgment score of a retrieved document, we used a rule’s
novelty score (for NDCN) and ORLB (for NDCO). Besides this replacement of rele-
vance scores with novelty and ORLB values, the exact expression used for NDCN and
NDCO is identical to that of NDCG (Järvelin and Kekäläinen, 2002, Equation (2)).
We then sorted all measures based on the corresponding NDCN and NDCO values to
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identify best measures from the perspective of novelty and statistical strength. Like
NDCG, the normalization aspect of our formulations implies both NDCN and NDCO
take values in [0, 1], where a value to closer to 1 indicates higher rank quality.

Instead of a single measure, we found classes of measures that scored similarly
based on NDCN and NDCO values. Specifically, for singleton rules, AIRF · ORLB
gave the highest NDCN value of 0.88. Measures such as AIRF , Loevinger, and 2-
way support variation (Geng and Hamilton, 2006, Table IV) had NDCN values in
[0.87, 0.88]. The lowest values for NDCN resulted from measures such as relative risk,
Yule’s Q, information gain, lift/interest, and conviction (Geng and Hamilton, 2006,
Table IV) all of which had NDCN value around 0.81. On the other hand, for NDCO,
these measures gave the maximum values of around 0.99. Similarly, Loevinger, which
is among the top scorers for NDCN, generated the lowest NDCO score of 0.47. This
demonstrates the clear trade-off between statistical strength and novelty in terms of
what several interestingness measures are trying to capture.

To further compare the measures where different levels of importance are given
to novelty (vs statistical strength), we plotted a combination metric

α ·NDCN + (1− α) ·NDCO ∈ [0, 1]

for all measures for α = 0, 0.01, 0.02, . . . , 0.99, 1. The results of this plot are shown
in Figure 3.1. For convenience, we divided the measures into high level groups and
appropriate subgroups with memberships as indicated in the legend of the figure.
First we consider the six (Group1–6) different high level groups of measures with
their corresponding performance profiles as α is varied. These groups were identified
based on how they cluster together when statistical significance is solely considered
(that is, when α = 0). Group-1 has fifteen measures and is heavily biased toward
maximizing statistical strength but also represents the top set of measures even when
assigning equal importance to novelty and strength (α = 0.5). Group-4’s performance
is relatively stable but does not generate superior overall performance. Group-5
archives novelty values that are higher than those of groups 1, 3, and 4. If we look at
the measures from a novelty perspective, they break down into two distinct groups
as can be observed when α = 1 on the right most end of the plot in Figure 3.1.
The first group achieves higher NDCN values and has four measures: AIRF ·ORLB
(G5(e)), AIRF (G6(a)), Loevinger (G6(d)), and two way support variation (G5(b)).
The rest of the measures can be clustered into the second group. Depending upon a
particular user’s specific preferences toward strength and novelty, he/she can choose
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an appropriate measure based on variations noticed in the figure. When α = 0,
measures in Group-1 are recommended; but to maximize novelty (α = 1), measure
AIRF ·ORLB appears superior.

For longer rules, the highest NDCN of 0.933 was achieved by ORLB/ log2(|E| +
|Y |), where |E|+|Y | represents the length of the rule. However, several other measures
such as relative risk, Yule’s Q, information gain, lift/interest, and conviction all had
NDCN very close to 0.93. For NDCO, the highest value of 1 was achieved by Yule’s Q
and Yule’s Y (besides ORLB). Other measures that scored well for NDCN also scored
close to the maximum value for NDCO. Hence for longer rules, the trade-off effect
that led to different groups of measures that lean toward either novelty or statistical
strength does not seem to exist.

3.4 Quantitative & Qualitative Analysis of Novel Rules

We took two different approaches to analyze rules that were judged novel by the
domain expert. We first manually mapped the medications and disease classes to
MeSH terms, which are used to categorize biomedical articles by the US National
Library of Medicine (NLM). Our visit item to MeSH mapping was done based on
simple look-ups of the item names in the MeSH browser (https://www.nlm.nih.gov/
mesh/MBrowser.html) and with the assistance of NLM’s Unified Medical Language
System (UMLS) to identify synonymous names. Since some HCUP and medication
classes have multiple related items, some of them translated to multiple MeSH terms.
MeSH terms are typically used to search biomedical articles using NLM’s PubMed
web application. For a given singleton rule {e} ⇒ {y}, we searched PubMed with
the Boolean query  ∨

t1∈MeSH(e)

t1

∧ ∨
t2∈MeSH(y)

t2


for items e and y where MeSH(x) denotes the MeSH term set for item x. For those
singleton rules with expert assigned novelty scores ≤ 3 (total: 170), we retrieved an
average of 1168 articles per rule, but the corresponding average over rules with novelty
scores ≥ 4 (total: 61) is 264 and for those rules that have the top score five (total:
17), the average is 70 articles. This clearly shows that expert assigned scores seem
to be aligned with what is reported in scientific literature based on co-occurrence
analysis. For example, the drug class proton pump inhibitors (PPIs) has ORLB
9.98 and pulmonary heart disease has ORLB 3.07. Both were assigned a novelty
score of 4 for their association with depression. For the corresponding conjunctive
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queries with depression, one article was returned per query, but in both cases manual
review of the articles revealed no explicit discussion of the associations. For PPIs, a
similar association was found with myocardial infarction by Shah Shah et al. (2015)
in a recent effort. Our findings regarding rheumatoid arthritis (ORLB: 2.37) and
osteoarthritis (ORLB: 4.07) are also inline with a recent and thorough study (Ryu et
al., 2016) that specifically looked into the impact of 24 chronic conditions on diagnosis
of major depressive disorder, which differs in some aspects from the HCUP depressive
disorders class used in our effort.

Table 3.1: Antecedents with novelty ≥ 4 and ORLB ≥ 5

Antecedent Novelty ORLB

CNS stimulants 5 7.65

Antianginal agents 5 7.21

Acute posthemorrhagic anemia 5 6.64

Endometriosis 5 6.46

Somatoform disorders 4 12.33

Antacids 4 9.82

ACE inhibitors 4 8.35

Anticoagulants 4 8.27

Hormonal antineoplastics 4 8.23

Esophageal disorders 4 8.02

Muscle relaxants 4 7.28

Antiplatelet Agents 4 6.77

Leukotriene modifiers 4 6.73

Immunostimulants 4 6.52

Quinolones 4 6.24

Next, based on direct inputs from the domain expert, we comment on the clinical
plausibility of some of the high scoring (novelty score 4 or 5) associations for depres-
sive disorders. Novel associations with depression are identified for conditions such as
anemia (ORLB: 6.64), asthma (ORLB: 4.83), congestive heart failure (ORLB: 4.54),
coronary atherosclerosis (ORLB: 3.75), and pulmonary heart disease. All these con-
ditions can compromise oxygen flow to the brain and can contribute to microvascular
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injury in white matter and contribute to atypical depression. Parkinson’s disease
(ORLB: 5.3) and migraine (ORLB: 3.48) affect the brain and their treatments will
more than likely disrupt neurotransmitter systems implicated in depression. Behav-
ioral disorders such as ADHD (ORLB: 8.1), oppositional defiant disorder (ORLB:
15.6), and conduct disorder (ORLB: 7.73) occur in the context of unclear biological
vulnerability and psychological constructs of low self-esteem which tend to perpetu-
ate social chaos similar to the individual’s own developmental experience. Such social
stress factors (poverty, unemployment, inconsistent employment, legal consequence,
substance use, divorce, psychological trauma) have also been implicated in depressive
disorders. So far in this section, we have looked at 13 singleton novel antecedents
with some reflection on clinical relevance. In Table 3.1 we show the remaining novel
(score ≥ 4) associations with ORLB ≥ 5.

There were a significant number of non-singleton associations with depression
where the antecedent involves the suicide and intentional self-inflicted injury HCUP
class along with other conditions and medications. For instance, the combination
of the suicide HCUP code with osteoarthritis had ORLB over 150 but is peculiar
and could be due to the observed but not thoroughly understood link between in-
flammation (conditions with the “itis” suffix) biomarkers and depression. Similarly,
the association of suicide and alcohol related disorders with depression is well known
but when epilepsy is added as a third condition to the antecedent, the association
becomes statistically much stronger but also novel given seizures (from epilepsy) are
considered therapeutic for mood disorders. Given seizures are also a complication in
alcohol withdrawal, epilepsy might be indicating a more complex exacerbating alcohol
related disorder.

3.5 Concluding Remarks

With innovations in computer science, informatics, and health information technol-
ogy, EMR data from healthcare facilities and claims data from private and government
sponsored insurance programs have become very rich sources for mining new insights
for disease prevention and treatment. ARM has shown promise in other fields and is
currently being actively explored for biomedicine to generate new hypotheses and also
to build interpretable predictive models. An important concern in this era of big-data
is dealing with vast number of rules output by ARM methods. In this chapter, we
evaluate over 40 interestingness measures (including some new measures) for effective
ranking of ARs across two desirable properties of statistical strength and novelty.
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Using domain expert assigned novelty scores and ORLB for statistical strength, we
adapted information retrieval metrics to assess various interestingness measures and
identified classes of measures that seem to inherently weight novelty and statistical
strength in contrasting ways. End users can utilize a particular class of measures
depending on their goals that might influence their preferences for novelty and sta-
tistical strength. We conducted quantitive and qualitative analyses of some of the
novel associations obtained as part of this effort. To our knowledge, this is the first
effort to conduct a broad scoped comparative analysis of interestingness measures for
clinical ARM involving subject matter expert driven novelty assessment.
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Chapter 4 Toward Causal Association Rule Mining

Understanding the variation in risk profiles of conditions based on demographic
attributes of a patient is a well-known activity to tailor treatments to subpopula-
tions (McAlpine and Mechanic, 2000; Gove, 1984; Lasser et al., 2000). Researchers
found evidence that a person’s (ill)health condition is influenced by demographic in-
formation such as the age, gender, and race. Other life style related attributes such
as BMI and smoking status are also known to affect health conditions. Demographic
and life style variables may be mediators of a potentially spurious association be-
tween the antecedent and consequent of a conventional association rule (AR). As
such, these variables are known to confound the real relationship between the enti-
ties in the AR. Thus it is critical to account for these confounder variables (simply
called confounders) in assessing the strength of associations. The idea is to isolate a
potential causal effect by appropriately considering other variables that may be exag-
gerating the relationship. This will help researchers identify new hypotheses to design
interventions or recommend preventative measures. However, choosing demographics
alone as confounding variables is not enough. There maybe be other intermediate
conditions/medications that have a confounding effect on the participants in an AR.
Hence it is also necessary to identify such variables and then account for them when
computing the statistical strength of any AR to determine if it is causal or not. The
ARs E =⇒ Y derived from LEMRs with the temporal precedence constraint that are
deemed statistically significant after accounting for confounders are termed causal
associations (CAs) in this chapter.

There have been different strategies to generate CAs using the medical history
of patients. Randomized controlled trials (RCTs) are an experimental strategy of
discovering CAs from randomly separated groups of cases and controls. The control
group is given the standard treatment and the other group uses the new treatment
whose efficacy is being evaluated. To find CAs, RCT method is an effective method
among researchers who work in the medical domain. However, it may not be ethically
viable to conduct an RCT for each and every possible association of interest. Also,
not all associations are treatment related. Identifying causal side affects of long-term
exposure to certain medications cannot be typically launched as a prospective RCT
given the high risk of harm to the patients. Hence, researchers created alternative
computational retrospective methods to obtain comparable results. One method is
the causal Bayesian network (BN) model (Spirtes, 2010) which utilizes a graphical
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model with nodes and edges where each edge shows a CA between connected two
nodes, the variables. The major drawback of this method is that it is computationally
expensive to generate the graph for datasets with a larger number of variables. For
the itemset generated from our EMR database, creating such a large network is
impractical. The need of creating an automatic method remains unfulfilled for larger
datasets with BN. Recently, CAR mining method (Li et al., 2016) was developed to
generate CAs using the advantages of association rule mining (ARM) approaches for
the larger databases like the EMR database. In our work, we adapt this approach to
the clinical setting to improve the domain expert based validity of generated CARs.

In Section 4.1, we explain essential related works and list our contributions. We
present our EMR dataset and its details in Section 4.2. Additionally, in Section 4.3,
we discuss our method to mine CARs from the EMR dataset. Then, the experimental
configurations, results of our methods, causality ratings given by two medical experts,
and the comparison of our method with the expert scores are explained in Section 4.4.

4.1 Related Works and Our Contributions

Detecting CAs in the health domain is a very important task and studied by different
researchers (Moore et al., 2007; Abuse et al., 2006; Moore et al., 2007; Blakely et
al., 2003). Many researchers identify a condition as well as possible causes of that
particular condition and experiment to prove the association or the independence
of variables. Taylor et al. (1999) conducted an epidemiological study to answer the
question if autism is caused by a vaccine called MMR and showed that they are
not causally associated. According to the causal study conducted by Gillison et
al. (2000), human papillomaviruses and head & neck squamous cell carcinomas are
causally associated.

In (Moore et al., 2007), researchers studied the causal effect of using cannabis,
which is the most common illegal drug in the most of the countries (Abuse et al.,
2006), on any psychotic outcome and found consistent results of increased risk. Be-
sides, they mentioned that conducting RCTs for a study which includes the effect of
an illegal drug is neither practical nor ethical. Smith and Ebrahim (2002) mentioned
that employing an RCT study is hard to accomplish. Therefore, the successful at-
tempts of observational studies are not always verified. According to (Wald et al.,
2006), verifying the observational studies is not practical since a very large scale RCT
is typically needed. Hence, researchers have been developing automatic CA extraction
methods. BN (Heckerman et al., 2006; Spirtes, 2010) based approaches are provided
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for automatic detection of CAs which are often computationally expensive. Hence,
this method is not feasible for large numbers of variables. In order to overcome this
problem and automatically extract CAs, a CAR mining approach is introduced by Li
et al. (2016). This method is suitable for large datasets and is an efficient alternative
of BNs for finding CAs.

In healthcare studies, researchers set out to identify the real causes of mental
illnesses. These researchers found a particular condition or variable and checked
whether it has a causal association with a specific mental illness. Moore et al. (2007)
employed a longitudinal study to reveal the causal effect of cannabis usage to schizophre-
nia and depression. After reviewing patient data, they found sufficient evidence that
using cannabis increases the risk of mental illnesses. In (Miech et al., 1999), the au-
thors researched the CA between a demographic variable which is low socioeconomic
status and four different mental disorders: anxiety disorders, depression disorders,
antisocial disorders, and attention deficit disorders. Gariepy et al. (2010) conducted
a literature review to clarify the association between obesity and anxiety disorders.
They reviewed 16 epidemiological articles about obesity and anxiety disorders. Their
result shows that there is a positive association between these two conditions.

Opstelten et al. (2006) conducted a study and used age as a confounding vari-
able while assessing the relationship between the gender and herpes zoster. Con-
sequently, they found the gender is an independent risk factor for herpes zoster in
certain ages. Schneider et al. (2005) studied the effect of the gender and age groups
on “axis I disorders” which includes some of the most common mental disorders such
as anxiety disorders, eating disorders, and mood disorders. Some researchers used
demographics as confounding variables while Blakely et al. (2003) used mental health
conditions as confounding variables for investigating the effect of unemployment on
suicide. Low et al. (2016) compared 18 different methods to generate high-dimensional
confounders from the EMR database. After evaluating all the methods, they con-
cluded lasso regressionTibshirani, 1996 as the best method. Therefore, we exploit
lasso regression for our confounder list generation process.

Researchers in medical domain generally use their previous medical expertise to
focus on a specific condition and a potential hypothesized causative agent of that
specific condition. Then they conduct a study, which is an RCT in most cases, to
verify the CA of the hypothesized variable. Hence, the approach used by researchers
for a condition is not suitable for another condition. Moreover, the data they collect
for a study is limited to itself. As far as we know, an automatic and robust approach,
which is applied to a large dataset with expert verification is missing. In order to fill
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this gap, we pursue a study with the following contributions.

• We use an EMR dataset of demographic attributes, diagnosis and medication
codes from around 922,000 patients and 4.15 million patient visits to the Uni-
versity of Kentucky medical center and its affiliated clinics to obtain CARs for
anxiety disorders and depressive disorders. We start with all statistically sig-
nificant ARs having the minimum support of 100, the minimum confidence of
10% and odds ratio lower band (ORLB) (from 95% confidence interval) value
of greater than one. We decided to employ singletons as exposure so that our
medical experts can review all exposures manually in a timely manner.

• We impose temporal precedence since the cause of an event must precede the
event which we term as outcome for this study. To approximate the identi-
fication of first diagnosis, we use a washout period of six months where we
guarantee that each patient record we use has at least six months of known
prior history in our dataset before a diagnosis of the outcome is made.

• We average ORLB values of 11 different criteria (confounder lists) where the
confounders include demographics and those automatically generated by lasso
logistic regression.

• We obtain manually assigned causality scores (1-5) for all ARs for depressive
disorder and anxiety disorder outcomes using the help of two practicing psychi-
atrists (Dr. Rayapati and Dr. Zwiebel). Finally, we compare the results of our
method with domain experts’ results to assess the validity.

The main objective of this study is to apply CAR mining approach to our EMR
database to automatically generate accurate and informative CARs for a chosen target
condition. Finding such causes will help physicians to better understand the possible
future diagnoses of a disease and to assess risk factors for it. Our approach will
compare the outcome to all possible exposures. Therefore, it can surface a new
relationship which is previously unknown by the physician.

4.2 Clinical Dataset Used

In this research, we are using the EMR dataset extracted from patients’ health records
of UKY medical center and its affiliated clinics. Our dataset contains information
from ≈ 922,000 patients between 2004 and the first quarter of 2016. In this dataset,
there are 4.15 million patient visits with the average of 6.05 visits for a patient in
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a given time interval. We treat each patient’s medical information as a transaction
where it is a time labeled sequence of patient visits ordered chronologically. Each
patient visit contains medications and diagnoses as medical codes, patient demo-
graphics and a time label which shows the date when the patient visit occurs. Thus,
our dataset has around 922,000 transactions with the longest transaction size of 584
and the shortest transaction size of 1. Therefore, the average transaction size is equal
to the average number of visits.

In this study, we are using three data tables from the EMR dataset: medications,
diagnoses, and patient demographics. Diagnosis table contains more than 11,770
unique ICD-9-CM codes. These codes are standardized to advance physicians’ record-
ings related to the consistency of the health condition for a patient. Our medication
table has 1,397 unique medication codes by Cerner MultumTM Lexicon Plus codes
which are also used by Centers for Disease Control and Prevention for their medical
care surveys. Patient demographics table includes beneficial information about the
health status of patients. In our study, we are using six important patient demo-
graphics for exploring the psychological diseases: gender, BMI score, age, tobacco
usage, marital status, and race.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

50,000

1 · 105

1.5 · 105

2 · 105

2.5 · 105

3 · 105

3.5 · 105

4 · 105

4.5 · 105

5 · 105

5.5 · 105

Year

# of Patients # of Visits

Figure 4.1: Number of visits and patient to the UKY hospital and affiliated clinics for each
year

There are total of 15,072 ICD-9-CM codes and our dataset contains 11,770 of these
codes. Some diagnosis can be identified with multiple ICD-9-CM codes. Instead of
using each code separately, using the group of codes related to the same diagnosis is
more beneficial in statistical studies. Although grouping the codes lose precision, it
will improve the accuracy and efficiency of the statistical analysis. In order to group
ICD-9-CM codes, we use CSS developed as part of the HCUP
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Table 4.1: List of ICD-9-CM codes related to targeted disorders

Disorder ICD-9-CM code

Depressive Disorders 293.83, 296.20, 296.21, 296.22, 296.23,
296.24, 296.25, 296.26, 296.30, 296.31,
296.32, 296.33, 296.34, 296.35, 296.36,
300.4, 311

Anxiety Disorders 293.84, 300.00, 300.01, 300.02, 300.09,
300.10, 300.20, 300.21, 300.22, 300.23,
3002.9, 300.3, 300.5, 3008.9, 300.9, 308.0,
308.1, 308.2, 308.3, 308.4, 308.9, 309.81,
313.0, 313.1, 313.21, 313.22, 313.3, 313.82,
313.83

In our dataset, the medication table contains 1397 unique Multum medication
codes. We grouped these codes in higher level categories which yield 190 medication
groups. Each variable in the demographics table is grouped according to its value.
There are two gender groups: female and male. BMI variable is separated into 4
different groups which are underweight, normal weight, overweight, and obese (Flegal
et al., 2014). Age variable categorization ranges for our study are 1-12, 13-17, 18-24,
25-44, and over 44. There are two groups for tobacco usages where patients who have
never used tobacco and used tobacco at least once throughout his/her life. Divorced,
separated, single, married, and widowed are the categories for marital status. Finally,
we have nine race groups. For each variable, we have an unknown category for missing
value.

4.3 CAR Mining From Patient Data

In this section, we explain how to discover CARs from the EMR dataset which con-
tains over four million patients data. Our process includes three basic components:
(1) generating a list of confounding variables, which are essential for causal discov-
eries, for each medical item, (2) discovering statistically significant potential CARs
using the confounders, (3) analyzing the reliability of our method against domain
expert ratings for causality.

4.3.1 Generating Confounders

Confounding variables are independent factors which can affect both the exposure
and outcome variables and alter the true relationship between these variables. Age,
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gender, weight (BMI), or smoking status are attribtues that are typically considered
as the confounders in many health studies.

In order to identify the CAs, extraction of correct confounding variables is crucial.
Expert knowledge is the basis for detecting these variables. Beside expert knowledge,
there are various algorithms designed to discover the confounders. Low et al. (2016)
studied around 20 automated methods to discover confounding variables and the best
result was achieved with Lasso Logistic Regression (Tibshirani, 1996), which performs
L1 regularization, for an EMR database. L1 regularization includes a penalty based
on the sum of the magnitudes (absolute values) of coefficients, which reduces some
of the coefficients to zero during training. According to the results, there are two
possible dependencies: positive and negative. Positive dependency occurs if the in-
crease in the first (independent) variable causes the increase in the second (dependent)
variable. Whereas, negative dependency implies that the increase in the confounder
causes the decrease in the medical item or vice versa. The output values, which are
correlation coefficients, show the strength of the dependency between a confounder
and a medical item. Therefore, we will apply this analysis to outcome variables and
each medical code which has a strong association with our outcome variables to find
the confounders.

After finding the confounders for each medical item, we order them according
to their correlation coefficient to select the strongest common confounders for an
exposure and outcome. The process begins with identifying all common confounders
from the list of confounders for an exposure and outcome in a way that a confounder
has a positive or negative dependency for both items. That is, we keep all items
which have positively or negatively dependent on the exposure and the outcome of
the rule. Then, we sort the absolute value of results coming from the L1 regularized
logistic regression in descending order and keep the rank of each item. In the end,
we generate a final score for each confounder by adding the ranking for the exposure
and the outcome.

4.3.2 Causal Association Rules

Mining EMRs to identify potentially meaningful and novel clinical associations has
been gaining popularity in the medical informatics field. However, it is well known
that associations do not necessarily indicate causal relationships. A causal associa-
tion also indicates that there is a cause-effect relationship between an exposure and
outcome of a rule. That is, the change of the exposure causes the variation of the
outcome. To obtain CARs, we generate all ARs using our data. Then, we apply
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our method (a reranking approach) to the list of ARs. Additionally, we employ the
temporal precedence of E with respect to Y. To impose this, we treat a patient’s
longitudinal record of visits as a transaction.

Let I be union of all medical items coming from the medications, diagnoses, and
patient demographics tables. A set C = {i1, . . . , ik} ⊆ I is called a clinical item set
with k items and a patient visit sequence S = {V 1, ..., V n}. Here, V j = (vid, Cj, tj)

is a patient visit which is defined over I where vid is the patient visit ID, Cj is a
clinical item set and tj is the time of the related patient visit as well as tj−1 < tj

which also means V j−1 occurs before V j for values of j greater than one. For our
purposes, T = {pid, S} is called a patient transaction where pid is the patient ID and
S is a patient visit sequence. Then, we employ temporal restrictions to our patient
transactions as follows.

• Logic dictates that the cause has to occur before the effect. Therefore, we remove
all medical items which occur at the same visit and visits occurring after the patient
has been diagnosed with our target code.

• We apply a washout period of β (specfied usually in months). Thus, we only
identify transactions for a patient where the time difference between the first visit
and the last visit of the patient is higher than or equal to β. That is, we remove
all transactions where a patient who has only one visit to the hospital and does
not meet washout period restriction.

• If a patient has never been diagnosed with target condition all medical codes will
be used.

• If there is more than one occurrence of the target condition, first diagnosis time
will be used.

• We consider items occurring in the same visit with target condition and visits after
that as a new transaction. Then, we apply the same temporal restriction to this
new transaction. Thus, it is possible for a single patient’s visit sequence to result
in more than one transaction.

After the temporal restrictions applied, all patient transactions are denoted as the
patient database D.
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Association Rule Mining

Here, a set E is a clinical itemset and S is a patient visit sequence. A patient visit
sequence S is said to contain a clinical item set E via the definition

contain(E, S) =

{
true, if E ⊆ (C1 ∪ ... ∪ Ck)

false, otherwise
(4.1)

A patient transaction T = (pid, S) is said to support an item set E if contain(E, S) =

true and the support of E in a patient database D is defined as:

support(E,D) = |{pid : (pid, S) ∈ D, contain(E, S)}|. (4.2)

An item set is deemed frequent if its support is greater than a given minimum support
σ. Thus, the set of frequent item sets with respect to σ is defined as:

F(D, σ) = {E : support(E,D) ≥ σ}. (4.3)

Next, an Association Rule (AR) is a rule of the form E ⇒ Y where E and Y are
item sets and E ∩ Y = ∅. The confidence of an association rule E ⇒ Y denoted by

conf(E ⇒ Y,D) =
support(E ∪ Y )

support(E)
, (4.4)

models the probability P (Y |E) and establishes the association of the outcome item
set Y with the exposure item set E. Besides minimum support for item sets, we can
establish a minimum confidence γ for ARs and define a stronger notion of frequent
and confident ARs. Apart from minimum confidence and minimum support, we
implement another measure to select the list of AR over the patient database D
which is odds ratio lower bound (ORLB) with a 95% confidence interval. The set of
association rules are

R(D, σ, γ) = {E ⇒ Y : E ∪ Y ∈ F(D, σ), conf(E ⇒ Y ) ≥ γ,ORLBE⇒Y > 1},
(4.5)

which consists of confidence thresholded statistically significant ARs obtained from
frequent item sets.
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Generating Fair Dataset from EMR database

After selecting a list of the confounding variables, we generate a partly matched
dataset called FD (Li et al., 2015a). FD is created by selecting two transactions re-
gardless of the outcome where both transactions have the same values for confounders
but different (Boolean) values for the exposure. FD of a rule E ⇒ Y , where E is
the exposure and Y is the outcome, is a sub-database of the EMR database and
consists of one to one matched pairs. To obtain pairs, we divide the EMR database
into two parts: EMRE and EMR¬E without any consideration of the outcome Y .
Here, EMRE consists of exposed transactions and EMR¬E consists of unexposed
transactions. Then, we try to match each transaction in EMRE with a transac-
tion in EMR¬E where both transactions have the exact same values for confounding
variables. That is, we are not using any similarity measures. During the matching
process, we randomly pick a transaction from EMRE and try to identify a matched
transaction in EMR¬E. Finally, we move all such matched transaction pairs to the
FD.

Finding Causal Rules

Based on the generated FD, we create 2×2 contingency table for the rule E ⇒
Y . Here, our rows will represent transactions from EMRE database and columns
represent the transactions from the EMR¬E database. Each transaction has two
outcome values as shown in Table 4.2: Y indicates a true outcome and ¬Y expresses
a false outcome. In this table, each count corresponds to a pair. Therefore, the size
of FD is calculated as

|FD| = 2× n (4.6)

where n is the number of total matched pairs.

Table 4.2: 2×2 Contingency table for a rule E ⇒ Y on FD

EMR¬E

Y ¬Y Total

EMRE

Y a b a+b

¬Y c d c+d

Total a+c b+d n
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To create the contingency table, there are four possible values for each pair P =

(T1, T2) where transaction T1 ∈ EMRE and transaction T2 ∈ EMR¬E. The value of
“a” in Table 4.2 corresponds to the number of pairs where both transactions have the
true outcome value while the value of “b” is the number of pairs where T1 has the
true outcome value but T2 has the false outcome value. The value of “c” corresponds
to the number of pairs where T1 has the true outcome value and T2 has the false
outcome value while the value of “d” is the number of pairs where both transactions
have the false outcome value.

After building the contingency table, we will calculate the Odds Ratio (OR) score
to determine whether a rule is potentially causal. OR is commonly used to measure
the association strength of the exposure, a disease or medication, with the outcome,
a medical condition (Morris and Gardner, 1988). Table 4.2 shows a 2×2 contingency
table for a CAR. Using the values of the contingency table, calculating OR score
gives the causal association level between an exposure and an outcome. OR of a
CAR (Fleiss et al., 2013) is calculated as

ORFD =
b

c
(4.7)

where E ⇒ Y is a CAR candidate while b and c are the values appear in Table 4.2.
An association between the exposure and the outcome is identified according to the
calculated OR value. There are three possible values of the calculation. If OR = 1,
there is no association between the exposure and the outcome because odds of the
outcome for the exposure is equal to odds of the outcome for not exposure. OR > 1

indicates that there is a positive association between the exposure and the outcome
as well as the odds of the outcome significantly increases when it is exposed. When
OR < 1, there is a negative association between variables and the odds of the outcome
is lower for the exposure.

Evaluation of a rule by OR alone is not always enough to ascertain the association
between the exposure and the outcome especially for small FDs. Therefore, we also
calculate 95% confidence intervals to estimate the variation of the OR. The formula
to calculate standard error (SE) of 95% confidence intervals for ln(OR) is defined as

SEFD(ln(ORFD)) =

√
1

b
+

1

c
(4.8)

Using SEFD value, the OR lower bound (ORLBFD) and OR upper bound (ORUBFD)
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for FD of the 95% confidence interval of OR are

ORLBFD(E ⇒ Y ) = e

(
ln(ORFD)− 1.96× SE(ln(OR))

)
. (4.9)

and
ORUBFD(E ⇒ Y ) = e

(
ln(ORFD) + 1.96× SE(ln(OR))

)
(4.10)

For a rule to be considered causal, ORLBFD must be greater than 1. The rationale
for using ORLB over OR is that ORLB balances the assurance that the result is not
due to the chance with the strength of the estimated effect considering the variance
of the estimator. Another advantage is to avoid misjudgment caused by very small b
and c values. As seen on equations 4.8 and 4.9, using SE and 95% confidence intervals
gives a penalty equivalent to the square of the magnitude of the total multiplicative
inverse of b and c to ln(OR). That is, lower values will increase the penalty score.

4.4 Experiments and Results (Quantitative & Qualitative Analysis of
CARs)

In our experiments, we used the EMR dataset which has≈ 922,000 patient transaction
data collected between 2004 and 2016. Before running experiments, we applied 6
months of temporal restriction (β = 6) to choose patients with known enough medical
history to employ our method. That is, we only use the patients with at least six-
month medical history in our EMR database. When we remove all patients with the
time between the first and last visit is less than 6 months, people with only one visit
to the hospital are also be removed automatically. Consequently, we avoid the bias
that may occur because of patients with insufficient medical history. Then we apply
our method to mine all causal rules from the EMR database.

To generate CARs, we obtain all ARs with the support threshold σ = 100, confi-
dence threshold γ = 10% and ORLB > 1. In other words, we extract all rules with
at least 100 occurrences in all transactions where at least 10% of transactions that
contain exposure also contain outcome, and are statistically significant based on 95%
confidence intervals. When AR mining approaches are applied to clinical datasets,
these configuration settings yield optimum performance as in earlier studies (Wright
et al., 2010; Wright et al., 2013). The ARs are mined by the Linear-time Closed item
set Miner (LCM Ver. 3) by Uno et al. (2005) that utilizes a combination of convenient
data structures. Then, the OR restriction is applied.

We conduct experiments for two outcome variables: depressive disorders and anxi-
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ety disorders. We chose these outcomes are well known to be causing highest disability
among mental conditions and are also well represented in our dataset. Additionally,
our domain expert raters suggested these mental conditions for our research based
on their experiences as practicing psychiatrists. We chose to use our exposures and
outcomes as singletons. Besides, very long rules are not interesting as they cap-
ture highly specific scenarios that are not amenable to reasonable interpretation and
typically have low support as noted in prior efforts (Hämäläinen, 2011).

In our effort, statistical strength is measured by OR or more specifically ORLB.
A rule called statistically significant if the ORLB value is greater than 1. As we men-
tioned in section 4.3.2 to estimate the precision of the OR, calculating 95% confidence
intervals is suitable for observational studies.

4.4.1 Causality Scores

As we discussed in section 4.3.2, we first generate all confounding variables for each
possible exposure and two outcomes which are depressive disorders and anxiety dis-
orders. Then, we create the corresponding FD to compute the causality score. To
generate FDs, we use 11 different confounder sets presented in Table 4.3 based on
ranking of informativeness of confounders. In this table, c1 is the strongest common
confounder between an exposure and outcome as well as c2 is the second strongest
common confounder between related exposure and outcome and so on. To decide
the strongest common confounders, we remove all confounders from the list for ex-
posure and outcomes which do not occur in both lists. Subsequently, remaining
items are listed in descending order of the absolute value of coefficients calculated
by lasso regression. Then, we apply a rank quality metric, discounted cumulative
gain (DCG) (Järvelin and Kekäläinen, 2002, Sections 2.2–2.3) to each confounder
list. The final order of confounders is the total DCG values of exposure and outcome
in descending order. Later, we calculate ORLB value of the rule for each confounder
set to calculate final causality score — the average of these 11 ORLB values.

As shown in Table 4.4, we identified 300 and 313 statistically significant ARs for
depressive disorders and anxiety disorders respectively. From these ARs, there are
61 CARs for depressive disorders and 39 CARs for anxiety disorders. In our EMR
dataset, we have 216 ARs where the exposure is a diagnosis code and the rest have
a medication code as an exposure for depressive disorders. For anxiety disorders, we
have 228 ARs having a diagnosis code as an exposure and 85 ARs where the exposure
is a medication code. We identify 57 CARs and 39 CARs having a diagnosis code as
an exposure for depressive disorders and anxiety disorders, respectively. The number
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Table 4.3: The list of criteria to create FD

Method Confounders

1 Demographics
2 c1 ∪ Demographics
3 c1, c2 ∪ Demographics
4 c1, c2, c3 ∪ Demographics
5 c1, ..., c4 ∪ Demographics
6 c1, ..., c5 ∪ Demographics
7 c1, ..., c6 ∪ Demographics
8 c1, ..., c7 ∪ Demographics
9 c1, ..., c8 ∪ Demographics
10 c1, ..., c9 ∪ Demographics
11 c1, ..., c10 ∪ Demographics

of CARs where the exposure is a medication code is 4 for depressive disorders and
there is no medication code as an exposure for anxiety disorders. Finally, the average
ORLB score of CARs is 1.368 for depressive disorders and 1.3 for anxiety disorders.

Table 4.4: Statistics for CARs

Depressive Disorders Anxiety Disorders

# of ARs 300 313
# of CARs 61 39
# of diagnosis in ARs 216 228
# of medication in ARs 84 85
# of diagnosis in CARs 57 39
# of medication in CARs 4 0
Average ORLB of CARs 1.367513 1.300033

4.4.2 Domain Expert Assigned Plausibility Scores

To validate our final causality scores, we collaborated with two practicing psychia-
trists. Each assigned a graded ordinal score of 1 through 5 where a high score indi-
cates a causal relationship from the perspective of either phenotypical or bimolecular
plausibility. The interpretation of the graded score follows:

1. No evidence or possible explanation of causality,

2. Very minor evidence of plausible causal nature,

3. Fair evidence with some plausible mechanism of causality,
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4. Moderate evidence of a trail(s) leading from the candidate to outcome,

5. Clear (well known or commonly accepted) evidence of causal pathways between
the candidate and depression.

Regarding human expert evaluation, we are essentially looking at informed assess-
ment based on practice, research, literature exposure, and medical education for a
potential causal connection between each candidate and depressive disorders or anxi-
ety disorders. We gave them the exposure list of all statistically strong ARs for both
disorders without knowing the strength of neither the association nor the CA. The list
is ordered alphabetically not to leak any hints to the raters about the associations.
Also, our experts scored the rules without communicating with each other since we
did not want raters influencing each other.

According to the graded scores we collected from our raters, the score of 5 did not
occur for Anxiety while it occurred only once for depressive disorders which is given
by R1 to bipolar disorders. This outcome indicates that according to the knowledge
of R1 there is a clear evidence of causal pathways between bipolar disorders and
depressive disorders. There are 9 and 8 codes each with the score difference of two
between the raters for anxiety disorders and depressive disorders respectively. The
scores assigned by each expert is listed in Table 4.5. There are only three codes
scoring a 4 by both raters for depressive disorders. From the list of exposures, 110
codes have the common score of 1 for depressive disorders and 168 codes have the
common score of 1 for anxiety disorders.

Table 4.5: Scores assigned by raters for CARs

Rater 1 Rater 2

Score 1 2 3 4 5 1 2 3 4 5

Depressive Disorders 168 93 27 11 1 129 124 38 9 0
Anxiety Disorders 215 89 15 4 0 213 70 28 2 0

Typically IRR scores are calculated to measure the reliability of raters if more than
one rater is used. In this study, we calculated three well-known and reliable measures:
Cohen’s Kappa, Spearman’s Rho, and Gwet’s AC1. Table 4.6 shows the result for
five measures and Table 2.5 shows the agreement level for IRR measures. Since our
rater scored each possible exposure with the scale of 1 to 5, weighted measurements
will give more reliable scores. Both probabilistic measures, standard κ and Gwet’s
AC1, give the same penalty to all disagreements to calculate the IRR score. However,
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weighted scores give appropriate weights to the disagreements according to the score
differences.

Table 4.6: IRR scores for raters

Depressive Disorders Anxiety Disorders

Cohen’s Kappa(κ) 0.34795 0.30366
Weighted κ 0.63249 0.51550
Gwet’s AC1 0.5239 0.61463
Weighted Gwet’s AC1 0.92924 0.95131
Spearman’s Rho (ρ) 0.61415 0.46689

These results indicate that according to the Gwet’s AC1 score, our raters have
almost perfect agreement for depressive disorders and anxiety disorders with values
0.93 and 0.95 respectively. Weighted scores reveal better results for both measure-
ments and outcomes. Only standard κ shows that the agreement level between raters
is fair. While weighted κ and ρ indicate substantial agreement level for depressive
disorders, Gwet’s AC1 reveals a moderate agreement between raters. For anxiety
disorders, weighted κ and ρ indicate that there is a moderate agreement between
raters, whereas Gwet’s AC1 shows a substantial agreement.

4.4.3 Comparison of Scores

Our goal is to find medical codes which have a CA between an exposure and our
target code using only the EMR dataset. Essentially, we compared our causality
scores with graded scores by domain experts to test the accuracy of our method.

Table 4.7: Scores assigned by raters for CARs

Rater 1 Rater 2

Score 1 2 3 4 5 1 2 3 4 5

Depressive Disorders 22 24 12 3 0 13 30 16 2 0
Anxiety Disorders 15 16 5 3 0 13 13 12 1 0

From the list of exposures, 110 of them have the score of 1 from both raters for
depressive disorders and only 9 of them appeared in our list of CARs. 168 possible
CARs have the common score of 1 for anxiety disorders and 10 of them are found
causal according to our analysis. As shown in Table 4.5, our method finds 3 of 4
exposures with a score of 4 for anxiety disorders. Table 4.7 reveals the information
about our expert scores for CARs. It also indicates that a high number of ARs with
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low scores is not found causal. On the other hand, anxiety disorders which scored a
4 by both raters have the third highest ORLB value and are considered as causal for
depressive disorders. Whereas bipolar disorders which are the only exposure we have
with the score of 5 did not appear in our CAR list.

Table 4.8: Rater graded scores

Depressive Disorders Anxiety Disorders

Avg. score R1 1.61333 1.41853
Avg. score R2 1.75667 1.42173
Avg. of Averages 1.685 1.42013
Avg. score for causal values R1 1.93443 1.89744
Avg. score for non causal R1 1.53333 1.35273
Avg. score for causal values R2 2.11475 2.02564
Avg. score for non causal R2 1.67083 1.33455

Table 4.8 shows the average values of expert graded ordinal ratings for potential
CARs for both depressive disorders and anxiety disorders. The average score of rater
1 (R1) is 1.61333 for depressive disorders and 1.41853 for anxiety disorders. The
average score is 1.75667 and 1.42173 for depressive disorders and anxiety disorders
respectively by rater 2 (R2). The average score of both raters is 1.685 for depressive
disorders and 1.42013 for anxiety disorders. Moreover, the average graded score of
casual rules, which is discovered by our method, and non-causal rules are also shown
in Table 4.8. These scores show that causal rules are scored 40% and 51% higher
for anxiety disorders and 26% and 27% higher for depressive disorders by R1 and R2

respectively.

Exposure OR ORLB ORUB Avg. Score OR and 95%CI

0 5 10 15 20 30 40 50 55

ADD and ADHD 7.5175 3.7254 11.3096 2.5

Suicide and intentional self-inflicted injury 11.8428 3.5085 20.1771 2

Anxiety disorders 5.0126 3.2774 6.7478 4

HIV infection 3.4097 2.2729 4.5465 2.5

Leukemias 3.0407 1.8187 4.2627 1.5

Sleep disorders 4.1495 1.6748 6.6242 3

Spondylosis; IDD; other back problems 2.7011 1.6717 3.7305 1

Schizophrenia and other psychotic disorders 2.5838 1.6018 3.5658 2.5

Esophageal disorders 2.801 1.5605 4.0415 1

Antidepressants 2.4287 1.5066 3.3508 2

Abbreviations:ADD,Attention deficit disorder. ADHD,Attention deficit hyperactivity disorder. IDD,Intervertebral disc disorders.

Figure 4.2: Forest plot of top 10 exposures for depressive disorders
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Exposure OR ORLB ORUB Avg. Score OR and 95%CI

0 5 10 20 30 40 50 60 70 80

Depressive disorders 3.9888 2.1324 5.8452 3

Intellectual disabilities 5.6357 1.9468 9.3246 2.5

Somatoform disorders 6.9415 1.8418 12.0412 2.5

Bipolar disorders 3.7351 1.7889 5.6813 2.5

Other congenital anomalies 11.3467 1.6715 21.0219 1.5

HIV infection 4.1771 1.6271 6.7271 2

Substance-related disorders 3.2991 1.5835 5.0147 2.5

Communication disorders 5.1623 1.5812 8.7434 2.5

Other infections; including parasitic 3.4891 1.5811 5.3971 1

Anal and rectal conditions 5.5109 1.568 9.4538 1

Figure 4.3: Forest plot of top 10 exposures for anxiety disorders

In Figures 4.2 and 4.3, we show forest plots of top 10 exposures for depressive
disorders and anxiety disorders respectively. Squares indicate the OR values and the
lines present the error range. In these figures, exposures are ordered by the ORLB
values. That is, exposures with high OR do not necessarily rank higher due to the
confidence interval based ranking. We also compute the average expert scores for
CARs considering the top 5%, 10%, ..., 100% of the CARs cumulatively with 5%
increases for both depressive disorders and anxiety disorders. Figure 4.4a shows the
result for depressive disorders and figure 4.4b shows the result of anxiety disorders.
Clearly, when we consider all causal rules the average is 2.02 and 1.96 for depressive
disorders and anxiety disorders respectively. Figures 4.4a and 4.4b indicates top
CARs tend to have higher average scores from our experts.

4.5 Conclusion

In this chapter, we presented the CAR mining approach to extract all rules from
the EMR database, which contains data from more than 900,000 patients with visits
between 2004 and 2016, for anxiety disorders and depressive disorders as outcomes.
We exploited an AR mining technique to generate all statistically significant ARs as
part of our possible CAR universe. We built multiple confounder lists each of which
consists of all 6 different demographic and life style variables (gender, BMI score,
age, tobacco usage, marital status, and race) and related top common medical codes
ordered by the lasso regression score presented in Table 4.3. Then, we generated
the FD which consists of matched transaction pairs for each confounder criterion to
calculate the causality score — the ORLB of the 95% confidence interval, from the
FD. We collaborated with two practicing psychiatrists to rate all ARs without any
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(b) Anxiety disorders

Figure 4.4: Average score for related percentage for anxiety disorders and depressive disor-
ders

statistical information. They graded 300 rules for depressive disorders and 314 rules
for anxiety disorders. Our scores indicate that 62 of 300 rules are causal for depres-
sive disorders while 39 of 314 rules are causal for anxiety disorders. We presented
two forest graphs in Figures 4.2 and 4.3 to show the average causality scores of the
best 10 medical codes. Our results demonstrate that medical codes with a higher
causality score tend to have a higher plausibility rating from medical experts, thus
demonstrating that computational methods can be used to identify potential causal
associations from EMRs.
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Chapter 5 Predictive Modeling through Sequential Patterns and
Recurrent Neural Network (RNNs)

Being able to accurately measure the risk of a future incidence of a disease before it
fully manifests is arguably one of the most important applications of machine learning
for healthcare. In general, most people schedule regular visits to a healthcare provider
to be able to spot early symptoms of a condition. However, predicting a patient’s
future diagnosis is an arduous task for a busy physician due to the limited resources
during the short visit. Although doctors have useful information about a patient
including lab results, previous conditions, social changes, demographics, considering
all the data about the patient before making a decision is sometimes not feasible.
Hence, an automated early detection system of a disease, which considers as much
patient data as possible before making a prediction is of immense utility to assist
physicians in their patient interactions.

Prediction is at the core of machine learning and there is a rich history of combin-
ing classical data mining approaches such as ARM with machine learning under the
umbrella of associative classification (Yin and Han, 2003; Yang et al., 2016; Letham
et al., 2013). Deep learning methods (Choi et al., 2015; Choi et al., 2016b; Choi
et al., 2016c; Che et al., 2016) are also being independently studied for predictive
modeling in biomedicine. Here, we combine sequential pattern mining (Ghosh et al.,
2016; Wright et al., 2015) with RNNs to predict a future diagnosis of chronic condi-
tions (with depressive disorders use-cases). The central idea is to model a patient’s
medical history as a chronologically ordered sequence of transactions each of which
corresponds to a visit and consists of clinical variables (diagnoses, medications, proce-
dures, and visit demographics). Additional gap constraints are also imposed to ensure
that any two consecutive item sets in the sequence are not too far apart (temporally)
in terms of absolute time difference. Based on an experimentally chosen minimum
support, a few top sequential patterns are chosen and then used as features in ma-
chine learned models. However, we also imagine these sequential patterns forming a
meta-sequence by themselves based on the windows in time spanned by each pattern.
This makes it amenable to use recurrent neural networks that compose information
available in items that form a sequence. In order to assure that we can predict a tar-
get condition sufficiently ahead of time, we will restrict the prediction window to 12
months before the actual diagnosis date. A variant of sequential patterns, so called
contrast sequential patterns are used; contrast patterns are inherently expected to
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be more prominently occurring in the positive instances than the negative instances.
Contrast pattern mining also facilitates a new way of going about disease progno-
sis. By splitting a patient’s chronological record into two halves, we can create two
databases corresponding to subsets where the target condition is present and absent;
the first set is the positive database to find contrast sequential patterns. By focusing
on patterns that manifest more prominently with the diagnosis of a condition, we
can analyze different phenotypes of a condition and the corresponding courses as the
condition is treated.

In this effort, our specific contributions are:

• In current literature, much attention has not been paid to the effects of minimum
history available, inter-visit gaps, washout periods, and prediction horizons.
Using various settings for these variables, we create multiple subsets of our
EMR dataset with depressive disorders as the outcome.

• We apply different RNN based models along with V-LSTM model (from Sec-
tion 2.7.1) to assess their relative performances in each of the configurations
identified earlier.

• We also experiment with different ways to embed the input EMR code sets and
the unchangeable demographic variables (e.g., gender, race).

• We develop a novel method that leverages sequential contrast patterns (SCPs)
to build hierarchical RNNs that compose SCPs and then a sequence of chrono-
logically ordered SCPs, encapsulating each visit.

• We demonstrate that a novel architecture that combines the SCP based model
and the V-LSTM model produces the best predictive performance.

5.1 Related works

Several efforts apply SPM and SCP approaches for either classification or prediction
purposes. Cheng et al. (2016) applied SPM approach to early detection of COPD us-
ing National Health Insurance Research Database of Taiwan. This database contains
over 0.9 million patients’ medical history records coded by ICD-9 where each patient
visit consists of maximum of three ICD-9 codes. They implemented an SPM algo-
rithm called SPADE (Ayres et al., 2002) to mine all COPD related sequential patterns
to classify a new instance as COPD or non-COPD. Then, they verified their COPD
related rules by searching PubMed article count for each rule and used this count as

53



their novelty assessment. Hanauer and Ramakrishnan (Hanauer and Ramakrishnan,
2013) mined temporal relationships from the EMR database using diagnosis history
of patients coded by ICD-9. These temporal relationships include two different ap-
proaches. First, they found one to one associations applying item wise and pair wise
minimum support thresholds and then they chose p-value, χ2, and OR as statistical
measures of significance. Second, they applied temporal analysis to each pair with
five different time ranges between the diagnosis of antecedent and consequent. These
time ranges are between 1 day and 10 years. Ghosh et al. (2016) applied sequential
contrast mining approach to predict hypotension risk of Intensive Care Unit patients.
They divided their dataset into two parts: positive sequences and negative sequences.
Afterwards, they identified all SPs from each part and compared these patterns to
generate all SCPs which are used for classification. Wright et al. (2015) apply SPM
techniques to a medication database to predict the next prescribed medication for
the patients using their history of medications. They used diabetes and medications
related to diabetes as a test case due to the progressive nature of such disease. A step
wise pharmacological management technique is applied to control and avoid exacer-
bation of the disease. In this research, they studied both generic medication codes
and class level medication codes separately. They generated SPs and ordered them
according to the frequency. For a patient, they output best possible predictions ac-
cording to patient’s medication history. The class level approach gave almost 50%
better result than the generic approach. Reps et al. (2012) applied SPM approaches
to an EMR database in order to predict future illness of a patient. Besides the diag-
nosis of each patient, they also considered a couple of demographic attributes, gender
and age.

SCP mining process consists of multiple steps and the most time consuming part
is counting sequences to determine the support value. Due to the size of an EMR
database, even a typically less expensive task like FIM can take multiple hours.
Current approaches, which are computationally expensive and time consuming, for
mining SCPs on CPU fail due to the large size of an EMR database or the type of EMR
data structure. To overcome this struggle, researchers adapted FIM approaches to use
GPU for the frequency counting part (Teodoro et al., 2010; Zhang et al., 2011). They
conclude that the same task can be completed up to 173 times faster than when using
CPU implementation. Although FIM and SCPM approaches are different, they share
some similarities in their formulation. The database used in these approaches can be
represented as bit vectors and the support can be calculated by logical operations.
In order to increase the processing speed, we adopt minimal distinguishing sequential
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pattern mining algorithm (Ji et al., 2007) that runs on both CPUs and GPUs.
Choi et al. (2016c) used a GRU version of RNN to predict health failure using

patients’ medical records. They use the medication, diagnosis, and procedure his-
tory of a patient as input to their method and predict the heart failure as a binary
outcome. Their results show that deep learning approaches are better at predicting
future health conditions than other well known techniques such as MLP, SPM, KNN,
and LR. Choi et al. (2015) designed a multi-label classification model using GRU to
predict future diagnosis, medication, and procedures of a patient as well as predicting
a patient’s next visit time to the hospital. They evaluated their measure by recall@k
for k values of 10, 20, and 30 where top-k recall is equal to the number of true pos-
itives in the top-k predictions divided by the total number of true positives. Choi
et al. (2016b) implemented an algorithm adopting two-level attention mechanism in
reversed time order called RETAIN that focuses on visit level and code level signals.
They implemented both attention mechanisms using an RNN structure and they
combined all three values: visit level attention, code level attention, and the RNN
output to make the final prediction. A graph based attention mechanism was imple-
mented for healthcare representation learning in Choi et al. (2016a). In this study,
the embedded matrix was generated using the graph-based attention mechanism, and
then the input is transformed by the embedded matrix before being fed to the GRU
unit. Lipton et al. (2015) employ a LSTM model for the multilabel classification task
for predicting ICD-9 codes using patients’ clinical time series data. They used these
continuous data to predict the relationship between health episodes and diagnosis
codes. An EMR database contains both static and dynamic information about the
patients. All of the research studies using a RNN model discussed the need to focus
on dynamic information and missing static information. Esteban et al. (2016) created
a prediction mechanism by combining an MLP model and a GRU model together to
predict a future event. They input patients’ static information into an MLP model
and dynamic information into a GRU model for each type of data. DeepCare (Pham
et al., 2017) is another recent model to predict future diagnosis of a patient with con-
centration of the patient’s previous conditions, medications, procedures, and the time
between two consecutive hospital visits. They cleverly transformed LSTM structure
to the C-LSTM to handle each patient visit data in a time point. In this study, there
are two cohort studies designed for the EMR database: mental health and diabetes.
They compare their results with a Markov model, an LSTM, and a regular RNN and
show improvements over these models.
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5.2 The EMR Database and Cohort Selection

In this study, we obtain the EMR data from the UKY medical center and its affiliated
clinics which contains 14.3M patient visits for 1.12M patients between 2004-2018. The
average visit number for each patient is 12.75. We used three tables from the EMR
database and the demographics information of the patients. First Table is the ICD-9
and ICD-10 coded diagnosis codes grouped by the CSS software. Second table has
medication codes specifically Cerner MultumTM Lexicon Plus codes in which we used
the hierarchical structure to group. Third table has procedure codes specifically CPT
codes which are also grouped by CSS software. We also employ three different visit
level demographics of patients: tobacco usage, age, and BMI. Tobacco usage of a
patient is grouped into 3 groups: yes, no and unknown at that visit. Table 5.2 shows
six different age groups we used in this study and ten different BMI groups.

t
v1 v4 v5 v9 v10 v15 vk−5 vk−1 vk

Washout Period Pred. Window

CV G4 CV G9 CV Gk−1

Figure 5.1: Patient visit history

Table 5.1: List of variables and possible values to generate
database variations.N/S used as value when there is no limi-
tation specified.

Variable Posible Values

Min. number of visits N/S, 10, 20, 30
Max. gap N/S, 3, 6, 12
Observation window 6, 12
Washout Period 6

First part of this study showed us that longer patient records give a better pre-
diction accuracy. Therefore, we decided to crate a cohort from this EMR database
with respect to four variables. Figure 5.1 shows how variables are measured from a
patient’s visits. First variable is the prediction window which is the time horizon (in
number of months) into the future when we would like to make a prediction. This is
a period of time between last patient visit or the occurrence of the target disease in
patient’s medical history and the last visit our model is using to predict. In our work,
we are focusing on 12 months for the time horizon (prediction window). That is we
want to predict a patient’s future diagnosis a year before it actually occurs. Second
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variable is the washout period which is the minimum number of months a patient
must be in our system to be included in our input and when curating training data
this also implies the minimum time before the first diagnosis of the target condition
is made as per the EMR data. The third variable is the maximum consecutive visit
gap (CVG) which shows the time difference between consecutive patient visits to the
hospital. That is ∀ j = 1, . . . , (l − 1), we require tj+1 − tj < k for some small k
(months) for a patient with l visits. With maximum CVG of 12 months, we choose
only patients whose consecutive visits are at most CVG months apart. The last vari-
able is the minimum number of visits a patient has in our system. We chose this
variable as 30 to remove patients without enough number of total visits for us to
accumulate enough clinical history.

Table 5.2: Classes for BMI and age of a patient

Class Type Classes

BMI (<15), (15 ≤ · · · < 16), (16 ≤ · · · < 18.5), (18.5 ≤ · · · <
25), (25 ≤ · · · < 30),(30 ≤ · · · < 35),(35 ≤ · · · < 40),
(40 ≤ · · · < 55),(unknown)

Age (0-12),(13-17),(18-24),(25-44),(45 and over)

After applying these limitations 26,705 total patients are part of the final dataset.
Among these patients 5,405 of them are diagnosed with DD which form our positive
cases and remaining 21,300 of them constitute the negative instances of the study.
Including the settings described earlier, we created 32 different settings of variables
to generate 32 different cohorts using all combinations of variable values given in
Table 5.1. Total number of patients ranges from 1,729 and 412,454 depending on the
choice of parameter settings. Table 5.3 shows the total number of patients, positive
class and negative class sizes for each combination of possible values of variables.

To measure the performance of our models, we split each dataset into four parts:
training, validation1, validation2, and test with the corresponding proportions as
65%:10%:10%:15%. In each epoch, we use training data to train the model. Then,
validation1 data is used to decide best threshold value before prediction and finally
validation2 data with the threshold is used to generate the final score for this epoch.
After going through all epochs, we selected the training cut off and model correspond-
ing to the best score on validation2 data. This model is then applied to the test data
which has never been used in any stage of the model building process.
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Table 5.3: Positive and negative class sizes for each cohort

Min. Visit CVG Pred.Window Washout Total Positive Negative

0 0 6 6 412454 34013 378441
10 0 6 6 236696 27241 209455
20 0 6 6 137149 21309 115840
30 0 6 6 89613 17096 72517

0 3 6 6 4165 643 3522
10 3 6 6 4135 643 3492
20 3 6 6 3479 635 2844
30 3 6 6 2775 602 2173

0 6 6 6 23765 2919 20846
10 6 6 6 21478 2890 18588
20 6 6 6 14635 2724 11911
30 6 6 6 10331 2467 7864

0 12 6 6 81717 8493 73224
10 12 6 6 63831 8113 55718
20 12 6 6 41133 7288 33845
30 12 6 6 29181 6451 22730

0 0 12 6 369757 30935 338822
10 0 12 6 220998 24930 196068
20 0 12 6 131795 19677 112118
30 0 12 6 86966 15901 71065

0 3 12 6 2042 350 1692
10 3 12 6 2041 350 1691
20 3 12 6 1939 349 1590
30 3 12 6 1729 343 1386

0 6 12 6 13896 1941 11955
10 6 12 6 13510 1937 11573
20 6 12 6 10936 1889 9047
30 6 12 6 8408 1799 6609

0 12 12 6 56368 6383 49985
10 12 12 6 49836 6278 43558
20 12 12 6 36124 5898 30226
30 12 12 6 26705 5405 21300

5.3 Methods

In this section, we explain the process of creating SP based database after generating
SCPs from EMR database, building the two-level hierarchical LSTM model which
uses that database as input beside V-LSTM, and finally combining these two models
to increase predictive performance.

5.3.1 Support Counting on GPUs and Parallel Reduction

Counting the support of a candidate pattern is the most time consuming part of the
SPM process. We adapt this part to run on a GPU to accelerate the process given
GPUs can handle multiple comparisons running in parallel.

We altered the ConSGapMiner algorithm (Ji et al., 2007), which heavily depends
on bitwise operators, to mine our EMR database. This algorithm only uses single
item at each time point. However, our EMR database has one or more items at
each time point as a visit typically leads to multiple codes. Therefore, we need
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Figure 5.2: Unfolding parallel reduction steps

to implement I-extension as in (Ayres et al., 2002) beside the S-extension which is
currently implemented. The process other than support counting follows the same
sequence with the original application in parallel because until that point there is
a concern of memory conflicts. On the other hand, support counting in a parallel
manner requires more attention. To run support counting parallelly, we used the
parallel reduction technique which is also useful to find minimum or maximum element
in a large dataset in parallel. We can derive from the Figure 5.2, time complexity of
support counting using parallel reduction is O(log2 n) while counting sequentially is
O(n).

5.3.2 Creating Sequential Pattern Based Database

We will transform each longitudinal transaction T to an SCP based transaction, TSCP ,
where each item of TSCP will be an SCP instead of medical codes and a time for each
visit. After finding the best n patterns, we will go through each transaction and
convert it to a sequence transaction. Beginning with the first item, we will add each
SCP in order of its appearance in the transaction, as shown in Figure 5.3. Our new
transaction will be like the one shown in Figure 5.4. So our SCP based transaction
is a sequence of sequences.

In order to convert each transaction T to an SCP based transaction, we will
generate a set of rules to compare two SP s with each other and decide which sequence
will come before another one. Then, we will generate ordered sequences using this
set of rules. This comparison involves 13 possible scenarios studied in (Nebel and
Bürckert, 1995). To generate ordered sequences, we can summarize these 13 scenarios
into seven possible occurrences which are shown in Table 5.4. That is, we will not use
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Sequence
Relationship

Start&End
Points of Sequences

First
Sequence

SP1 equal SP2 SP−1 =SP−2 <SP+
1 =SP+

2 Choose Random
SP1 before SP2 SP−1 <SP+

1 <SP−2 <SP+
2 SP1

SP1 meets SP2 SP−1 <SP+
1 =SP−2 <SP+

2 SP1

SP1 overlaps SP2 SP−1 <SP−2 <SP+
1 <SP+

2 SP1

SP1 during SP2 SP−2 <SP−1 <SP+
1 <SP+

2 SP2

SP1 starts SP2 SP−1 =SP−2 <SP+
1 <SP+

2 SP1

SP1 finishes SP2 SP−2 <SP−1 <SP+
1 =SP+

2 SP2

Table 5.4: Sequence ordering criteria

both SP1 before SP2 and SP2 after SP1 because the before condition will be sufficient
to decide which sequence will come first and we will omit the after condition. For
a SP , let SP− is the starting point and SP+ is the ending point of that sequence.
We will use “SP−1 =SP−2 ” to indicate that both sequences start at the same time, and
“SP−1 <SP−2 ” to indicate that SP1 starts before SP2. In general, we will be looking
for the starting point of each sequence and choose the one that starts first. If both
sequences start at the same time, we look for the end points and choose the one
that finishes first. If both sequences start and finish at the same time, we choose the
ordering randomly.

In this structure, each SCP is an SP and, this gives us the opportunity to imple-
ment a hierarchical RNN structure. We convert each item or item groups in SCP to
a multi-hot vector where the corresponding bits for an item will be 1 if it’s present
and the remaining elements will be 0. This multi-hot vector will be the input for the
first level RNN and the intermediate output will be the fixed size n vector for the
corresponding SCP. Then, we will use this new vector as an input to the second level
RNN that composes the SCP representations.

t

SP1 SP2

SP3

SPkSP...

v1 v4 v5 v9 v11 v15 vk−5 vk−1vk

Figure 5.3: Sequence of sequential patterns encapsulating a patient’s visit history
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SP1 SP2 SP3 ... SPk

Figure 5.4: Example ordered TSCP based on patterns in Figure 5.3

t vt

1 i1, i3, i5, i6

2 i2, i4, i6

3 i1, i7




t

i1 i2 i3 i4 i5 i6 i7

1 1 0 1 0 1 1 0
2 0 1 0 1 0 1 0
3 1 0 0 0 0 0 1





Multi-hot encoding
xt

Figure 5.5: Transformation to the multi-hot representation

5.3.3 Input Representations

The raw EMR data goes through a pre-processing step to be converted to the desired
form to be fed to the neural models. A few input representation methods maybe be
designed for the EMR data. In this part, we describe two previously used represen-
tations and a new representation we create for this study. Let I be the union of all
medical codes that can be used for patients. For our purposes, vj is a set of items
and tj is the time point of the visit then a pair wj consists of a set of items and
visit order index wj = {vj, tj} or wj = {(i1, i2, ..., il), tj} where vj = {i1, i2, ..., il} ⊆ I
for l > 0 and a set W = {w1, w2, ...wj, ..., wk−1, wk} is an ordered list of item sets
corresponding to k visits where tk−1 < tk.

Multi-hot Vector Representation

We start with a well-known data representation technique call multi-hot vector. This
is based on the more common one-hot vector representation where only one element
in an dictionary size vector can be 1 and rest are all zeros. This approach is useful
when there is only one item at one time point. However, for the data we use, the
EMR database includes one or more medical items per visit. Therefore, we set all
items included in that visit to 1s and the rest are 0s. The input xt ∈ R|L| is the
multi-hot vector representation of vt for the t-th time point. Figure 5.5 illustrates
the conversion of item sets to multi-hot vectors where |L| = 7 and three visits of one
patient. Each vector (row of the matrics) is the summary of a patient visit input to
the model.
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Embedding Based Feature Vectors

Word embeddings are also a frequently used input representation where a lookup table
is created for items and their representations. Then each item goes through this layer
before entering the NN model. In this approach, a user can decide the output size
of the embedding vector. The main goal of this approach is to decrease the sparsity
by selecting a dimension smaller than the number of unique items. As the model
is trained, the embeddings are updated according to the backpropagated errors that
is computing based on the training objective. The training process typically allows
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Figure 5.6: EMR embedding layer and mean pooling

the model to learn similarities of items and help the model improve its prediction
accuracy. The embedding layer will output a fixed size vector for each item given
as input. The embedding vectors of each individual item are combined using mean
pooling approach because a visit is the combination of multiple items. Say, for a visit
vt = (i1, i3, i5, i6) at time point t, e is the embedding size and the output is a matrix
Et ∈ R|vt|×e as shown in Figure 5.6 (with e = 4). Then, mean pooling approach
decreases the dimension and creates input for model as

xt =
E1
t + E1

t + · · ·+ E
|vt|
t

|vt|
. (5.1)

This model is introduced in the DeepCare model to feed embedding vectors into
prediction task with RNN based methods using the EMR database. While previous
methods use diagnosis, procedure, and medication data all together as input, Deep-
Care separated diagnosis codes from others. However, is still combine medication
and procedure codes and does not use any demographics information of the patient.
After altering standard LSTM cell to handle these separate inputs, they showed per-
formance gains in prediction. We only employ mean pooling approach since they
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conclude that this approach gives better performance than other two approaches:
max pooling and normalized sum pooling.

Concatenate Mean Pool Embedding

The problem with multi-hot vector representation is that size will grow with the
unique item set size which makes it too sparse. Using embedding layer will solve the
sparsity issue but still considers all medical items as semantically similar. An EMR
dataset has multiple types of data and each type needs a different part in the input
vector that we give to the model. Hence, we separate each medical data type into
a new group. Then, each type goes through its own embedding and finally all type-
specific embedding vectors are concatenated to generate the final input to the model.
Let split medical items into 6 subgroups: diagnoses, procedures, medications, age at
the visit, bmi at the visit, and tobacco usage information at that visit as Licd, Lcpt,
Lmed, Lage, Lbmi, and Ltobac, respectively. Diagnoses, procedures, and medications
data of a patient are vectors and we use mean pooling embedding approach separately.
Each demographic information component of a patient is a scalar; therefore, the
embedding layer will be enough without the mean pooling part.

vicdt

vmedt

vcptt

vbmit

vaget

vtobt

MPEmbicd

MPEmbmed

MPEmbcpt

Embbmi

Embage

Embtob

[eicd1 , . . . ,eicds ]

[emed1 , . . . ,emedu ]

[ecpt1 , . . . ,ecptw ]

[ebmi1 , . . . ,ebmix ]

[eage1 , . . . ,eagey ]

[etob1 , . . . ,etobz ]

‖

xt = [eicd1 ,. . . ,eicds ,emed1 ,. . . ,emedu ,ecpt1 , . . . ,ecptw ,ebmi1 ,. . . ,ebmix ,eage1 ,. . . ,eagey ,etob1 ,. . . ,etobz ]

Figure 5.7: Concatenate embedding layer with mean pooling for input representation

Figure 5.7 illustrates the process of generating input vector from separate embed-
ding vectors where vicdt ∈ Licd, vmedt ∈ Lmed, vcptt ∈ Lcpt, vbmit ∈ Lbmi, vaget ∈ Lage,
and vtobt ∈ Ltob and s, u, w, x, y, and z are the embedding sizes respectively. In this
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Figure, Embs are embedding nodes, MPEmbs are mean pooling nodes while ‖ is the
concatenation function for the vectors.

5.3.4 RETAIN Model

The RETAIN architecture (Choi et al., 2016b) mimics doctors’ typical mode of op-
eration. Doctors review a patient’s medical history; by starting from the most recent
one, they check patient records to understand what is going on with their health.
RETAIN processes the longitudinal EMR data the same way. It uses two attention
mechanisms where first one takes the input with the same visit order while the second
attention mechanism reverses patient’s historical data and start from the latest one
and goes through the earliest patient visit. That is, the latest patient visit garners
more attention of the model. The attention components of the model are based on
GRU model and the general schema is shown in Figure 5.8. Each patient’s medi-
cal record in the EMR database is converted to a multihot vector and this vector is
given as input to the main structure. First, these multi-hot vectors go through the
embedding layer which consists of a linear unit. Second, two attention mechanisms
based on GRU use output of the embedding layer as input. One of them uses date
in default order while the other one reverses the order before starting. Then, output
of these three parts are combined and the final output is derived from them. The

xi

vi

yi

hi

βi

gi

αi�

Figure 5.8: The RETAIN longitudinal EMR modeling architecture
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mathematical equations for RETAIN are listed as:

vi = Wembxi, (5.2)

gi, gi−1, ..., g1 = RNNα(vi, vi−1, . . . , v1), (5.3)

ej = w>α gj + bα for j = 1, . . . , i, (5.4)

α1, α2, . . . , αi = Softmax(e1, e2, . . . , ei), (5.5)

hi, hi−1, ..., h1 = RNNβ(vi, vi−1, . . . , v1), (5.6)

βj = tanh(Wβhj + bβ) for j = 1, . . . , i (5.7)

ci =
i∑

j=1

αjβj � vj, (5.8)

ŷ = Softmax(Wci + b). (5.9)

Equation 5.2 is the first step where linear model is used to generate the embedding
from multi-hot input vector and Wemb is the weight matrix of embedding layer. α

values are generated by Equations 5.3, 5.4, and 5.5 while β values generated through
Equations 5.6, and 5.7 using the output of the previous step. Then, a context vector
is obtained by Equation 5.8 and prediction is made by Equation 5.9 using the context
vector ci. Cross-entropy loss function shown in Equation 5.10 where N is batch size
is used as the training objective. This method is also proposed to predict future
diagnoses of patients. However, we use a special case of the model where it predicts
only one specific disease.

L(x1, . . . , xN) = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)), (5.10)

where yi is the ground truth Boolean value and hatyi is the corresponding prediction
probability from the architecture.

5.3.5 DeepCare Model

The DeepCare (Pham et al., 2017) model is created by modifying the LSTM cell in a
way that separately accounts for each type of input codes to capture the therapeutic
effects of interventions (medications and procedures) on diseases. Input to DeepCare
consists of three parts: diseases, procedures, and medications, and CVG. At one time
point or for a patient visit in this case, there are one or more medical codes. The
embedding vectors are created for each code separately and need to be combined. In
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Figure 5.9: C-LSTM structure used in DeepCare model

this model, three different type of embeddings were tested and for simplicity we are
using mean pooling approach, which generated the best prediction accuracy. Mean
pooling is applied to diagnosis codes and the combination of procedure codes and
medication codes separately. The mathematical equations for DeepCare model are
listed as:

ot = σ(Woxt + Uoht−1 + Popt + bo) (5.11)

ft = σ(Wfxt + Ufht−1 +Qfq∆t−1:t + Pfpt−1 + bf ) (5.12)

it = σ(Wixt + Uiht−1 + bi) (5.13)

c̃t = tanh(Wcxt + Ucht−1 + bc) (5.14)

ct = σ(ft � ct−1 + it � c̃t) (5.15)

ht = tanh(ct)� ot (5.16)

In this Equations, Wo,Wf ,Wi,Wc, Uo, Uf , Ui, Uc, Po, Pf , and Qf are weight matri-
ces and bo, bf , bi, bc are the bias vectors that the model is training to learn. Equa-
tions 5.11, 5.12, and 5.13 are the output gate, forgot gate, and input gate respectively.
Here, disease codes are the main inputs and affect all gates, procedure codes are used
in output and forget gates. However, CVG data is only used by forget gate. An
example third-degree forgetting CVG data representation is created as:

q∆t−1:t =

(
∆t−1:t

60
,

(
∆t−1:t

180

)2

,

(
∆t−1:t

365

)3
)

(5.17)
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where ∆t−1:t is the CVG between visit t and t− 1. In this chapter, we use a special
case of the model with only one output. Binary cross-entropy used as the objective
for training.

5.3.6 Two Level Hierarchical LSTM Model

In this section, we describe a new architecture that combines sequential contrast
patterns with deep neural networks. The idea is to design a two-level hierarchical
model, as shown in Figure 5.10. We feed a transaction to the first level. This level
includes an embedding layer and LSTM cell running consecutively. Here, each SCP
consists of multiple itemsets in temporal order, Sk = ck1, c

k
2, . . . , c

k
l . Embedding layer

using mean pool embedding reads these itemsets and outputs embedded vectors as
shown in Figure 5.6. Embedding layer creates an embedded vector for each item.
However, each itemset in our sequence consists of multiple items, so we average
the embedded vector to derive the final embedding for the itemset. Mathematical
functions for the first level LSTM model are listed as:

i1t = σ(W 1
i xt + U1

i gt−1 + b1
i ), (5.18)

f 1
t = σ(W 1

f xt + U1
f gt−1 + b1

f ), (5.19)

o1
t = σ(W 1

o xt + U1
o gt−1 + b1

o), (5.20)

c̃t
1 = tanh(W 1

c xt + U1
c gt−1 + b1

c), (5.21)

c1
t = σ(f 1

t � c1
t−1 + i1t � c̃t1), (5.22)

gt = tanh(c1
t )� o1

t . (5.23)

Mathematical functions for the second level LSTM model are listed as:

i2t = σ(W 2
i gt + U2

i h
seq
t−1 + b2

i ), (5.24)

f 2
t = σ(W 2

f gt + U2
fh

seq
t−1 + b2

f ), (5.25)

o2
t = σ(W 2

o gt + U2
oh

seq
t−1 + b2

o), (5.26)

c̃t
2 = tanh(W 2

c gt + U2
c h

seq
t−1 + b2

c), (5.27)

c2
t = σ(f 2

t � c2
t−1 + i2t � c̃t2), (5.28)

hseqt = tanh(c2
t )� o2

t . (5.29)

At a high level, the first level LSTM cell is fed by embedded vectors of all code sets
in an SCP. Its output is its summary, gt, that goes to the second layer. The second
layer outputs ht as final output of this model. Here, embedding dimension is m and
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hidden layer size is p. Each U parameter is from Rm×p and eachW parameter is from
Rm×p and the bias parameters b are from Rm. cjt is the cell state of the corresponding
layer while gt is the hidden layer of the first level and hseqt is the hidden layer of the
second level LSTM.

S1 S2
... Sk

c1
1 c1

2
... c1

l

MAE MAE MAE MAE

g1 g2 g... gl

x1
1 x1

2 x1
... x1

l
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h2 h... hk
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Figure 5.10: 2-level hierarchical SCP based neural architecture for predictive modeling
through longitudinal EMRs

5.3.7 Combining Our Model with V-LSTM

In this section we describe a simple combination architecture that derives from the
V-LSTM model (Section 2.7.1) and the 2lvl-H-LSTM model (Section 5.3.6). For each
patient, we have both SP database and the input vectors. Intuitively we can run both
models simultaneously and merge the intermediate outputs before the prediction is
made in the final layer. To that end, the output vectors of both models are added
and the sum is fed to the dropout layer (see Figure 5.11). Afterwards, the output of
dropout layer is given as input to the ReLU unit. Finally, we added 2-level linear layer
on top of these layers to decrease the size to a single scalar since we are interested in
binary classification. The final prediction is made using a sigmoid unit.

Since we unbalanced EMR, we calculated the loss for the training by weighted
cross-entropy loss function shown as:

L(x1, . . . , xN) = − 1

N

N∑
i=1

(wpyi log(ŷi) + (1− yi) log(1− ŷi)) (5.30)
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Figure 5.11: Embedding layer and mean pooling

where N is the batch size and wp = |EMRn|
|EMRp| , the ratio of negative samples size over

positive sample size.

5.4 Results and Discussion

We first discuss the performance of our hierarchical model in comparison with the
results of other baseline models introduced earlier: Doctor AI, RETAIN, V-LSTM,
and DeepCare. For each of these models, we also generated a concatenate embedding
version by changing the embedding layer.

5.4.1 Experimental Setup

In this study, we designed a model which is the combination of two models where first
one is an 2lvl-H-LSTM taking SCP based database and second one is the V-LSTM
taking concatenated mean pool embedding () vectors of each input type. We used the
EMR dataset collected from 14,294,463 visits from 1,120,330 patients from the UKY
medical center and affiliated clinics. Before starting our experiments, we created a
cohort using 6 months of washout period, 12 months of max-CVG, 12 months of
prediction window, and patients with at least 30 visits to the medical center. These
database statistics are given in Table 5.5. We mine the top 10,000 SCPs according to
the relative risk score for our combined model using frequency threshold σ = 100 and
maximum gap allowed between consecutive itemsets in a sequence gap = 2. After

69



applying these restrictions, we obtained SCPs with relative risk value between 2.94
and 0.66. Relative risk higher than 1 indicates that the risk of a patient to develop
DD is increased by a given pattern while values below 1 indicate that the sequence
decreases such risk. Finally, the value of 1 means no relationship. We also run the
same experiment with 5% (σ = 176) frequency. At the beginning, our data contains
679 unique medical codes. After running SCPM application, 197 and 268 of them are
remained for support of 100 and 176 inputs respectively; Only 71 and 101 of them
are entered as input to the LSTM unit after converting our database to a SP based
one, respectively.

Measure Value

Total patient count 1,120,330
Patients diagnosed with depression 73,080
Total visit count 14,294,463
Average number of Visits 12.75
Washout period 6 Months

Table 5.5: The EMR database statistics used for predictive modeling for depressive disorders

5.4.2 Models

Here we compare the output of ten models to understand the performance of the
prediction task. We designed two new models for this study: one is the 2lvl-H-
LSTM and the other one is the combined model. We have output of our hierarchical
model with the support of 176 and 100. Four of them are previously designed models
by other researchers and the remaining four are the models we modified changing
embedding layer to a concatenate embedding approach. Then, we run each test 10
times with 20 epochs (i.e., 200 total runs over the whole training data) and changed
batch size depending on the model (to stick with the original implementations). The
final scores presented in this section are the averages of ten runs of each model. All
models used in this study are listed below.

• The first baseline is the Doctor AI with two hidden layers. Since we use grouped
medical codes, we set hidden layer size to 200, learning rate to 0.0001 and the
batch size to 32. This model uses a multi-hot vector as embedding.

• The second baseline of our study is RETAIN which uses hidden layer size of 128
for both GRU units and the batch size of 100. This model also uses a multi-hot
vector as embedding.
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• Next baseline is DeepCare model with hidden layer size of 100 and the batch
size of 64 patients. In this method, we used diagnosis codes separated from the
procedure and medication codes as explained in the original work. The embed-
ding size of this model is 200 for each of diagnosis codes and the combination
of procedures and medications. Here, we employed MPEmb technique (from
Section 5.3.3).

• We also designed a V-LSTM model as a baseline with batch size of 64 and
hidden layer size of 100, parameters we chose after trying a few settings. This
baseline uses only diagnosis, medication and procedure codes as input.

• First part of our original model is a 2lvl-H-LSTM model. We computed the
result of this model to compare with the baseline models. In this part, we used
hidden layer size of 50 for both layers with the batch size of 32.

• Next model is the combination of our 2lvl-H-LSTM and the V-LSTM models.
In the embedding layer, we separated each type of data and used different
embedding sizes for each one according to the number of unique inputs. We
employed six different input types which are diagnoses, medications, procedures,
tobacco status, patient age at the visit, and patient BMI at the visit with
embedding sizes of 50, 50, 50, 5, 5, 5 respectively. We run MPEmb layer for
each input type and concatenate these embedding vectors to create the final
input.

• Finally there are four modified baseline models having the same hidden and
batch sizes as the original versions with concatenated MPEmb vectors (from
Section 5.3.3).

5.4.3 Comparing the Results of Models

To measure the performance differences due to input representation, we run each
base model and the concatenated embedding version for 32 different cohorts (from
Table 5.3). Table 5.6 shows all the mean differences between F1-scores, precision
scores, and recall scores of an original baseline model and the corresponding model
with the concatenated MPEmb input version of it. The difference is taken as the
concatenated MPEmb version’s score minus original version. Therefore, in this table,
positive values mean the modified version has a better score. Our results show that V-
LSTMConCat model outperforms the original model in 30 of 32 cases (from Table 5.7)
with the average of 6.1% improvement while Doctor AIConCat model has 4.3% average
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Table 5.6: Comparison of the results of models with dif-
ferent input representations: the concatenated MPEmb
version versus original version. Mean is taken over the
differences from model performances on all 32 cohorts.

V-LSTM

Measure F1-Score Diff. Precision Diff. Recall Diff.

Mean 0.06187 0.0733 0.06187
Standard Error 0.00429 0.00519 0.00429
Median 0.06255 0.0668 0.06255
Minimum 0.0043 0.02432 0.0043
Maximum 0.09657 0.13263 0.09657
Sum 1.97982 2.34567 1.97982
Confidence Level (95.0%) 0.00876 0.01059 0.00876

Doctor AI

Mean 0.04329 0.03181 0.08848
Standard Error 0.00481 0.00586 0.02237
Median 0.03967 0.03770 0.10463
Minimum -0.01945 -0.03395 -0.27395
Maximum 0.10048 0.10718 0.30180
Confidence Level (95.0%) 0.00982 0.01196 0.04563

RETAIN

Mean 0.00039 0.00827 -0.10802
Standard Error 0.00318 0.00421 0.02500
Median 0.00027 0.00107 -0.06584
Minimum -0.04328 -0.02236 -0.50192
Maximum 0.04964 0.08975 0.03180
Confidence Level (95.0%) 0.00648 0.00859 0.05101

DeepCare

Mean 0.05369 0.06149 0.02541
Standard Error 0.00411 0.00461 0.00860
Median 0.05657 0.06524 0.02603
Minimum 0.00846 0.00714 -0.08679
Maximum 0.09572 0.10366 0.13307
Confidence Level (95.0%) 0.00837 0.00940 0.01754

improvement and outperforms in 31 scenarios (from Table 5.8). DeepCareConCat is the
model which yields better results (from Table 5.10) in all cases with the biggest mean
improvement of 5.3% on F1-score. On the other hand, the concatenated version of
RETAIN only outperforms in 17 of 32 cohorts (from Table 5.9) and the mean average
F1-score difference is 0.00039, which means that there is very slight improvement on
average F1-score of the original model and the modified version.

From Tables 5.7–5.10, our results also indicate that max-CVG of 12 months im-
proves the F1-score while applying 3 and 6 months restrictions decreases the perfor-
mance. That is, these restrictions may be too strong given they result in a significant
decrease in the data size. Another observation from the results is that the predic-
tion performance increases when the minimum number of patient visits restriction
is increased. We noticed that the RETAIN model gives some unexpected results.
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It outputs the worst results in all cases despite taking the longest running time of
all model. That outcome makes the RETAIN model unreliable among others for
our data. The validation part of our experiment chooses very low thresholds for the
classification part which results to the model to choose most patients as positive. Be-
cause of this behaviour, the recall score is always high while the precision score and
F1-score are very low. Another observation is that the prediction horizon window
of 6 months gives better performance in most cases as expected because choosing 12
months decreases observable history of each patient. This behaviour aligns with the
minimum number of visits restriction.

Table 5.7: Comparison of results for original V-LSTM model without demographics with
the V-LSTM model using ConCat Embedding across all 32 cohorts

V-LSTM V-LSTM ConCat Embedding

Min Visit CVG Obs Win Washout F-Score Presicion Recall F-Score Presicion Recall

0 0 6 6 0.26702 0.20403 0.3913 0.36359 0.28685 0.49814
10 0 6 6 0.35642 0.28336 0.48366 0.44417 0.36178 0.57656
20 0 6 6 0.46181 0.39685 0.55577 0.53105 0.48865 0.58555
30 0 6 6 0.52333 0.48742 0.57049 0.57942 0.55458 0.60932

0 3 6 6 0.27053 0.16042 0.89082 0.31564 0.21232 0.64388
10 3 6 6 0.27072 0.15821 0.9449 0.31106 0.22456 0.5551
20 3 6 6 0.31431 0.19289 0.87604 0.35906 0.27364 0.59271
30 3 6 6 0.36936 0.24627 0.76813 0.40007 0.29025 0.66703

0 6 6 6 0.31255 0.20672 0.65 0.37698 0.27039 0.63562
10 6 6 6 0.34245 0.23473 0.653 0.40527 0.29449 0.68134
20 6 6 6 0.39753 0.29098 0.64293 0.45852 0.38942 0.57049
30 6 6 6 0.496 0.46794 0.55606 0.54152 0.52504 0.57008

0 12 6 6 0.34033 0.25132 0.53114 0.42402 0.3706 0.49961
10 12 6 6 0.36309 0.26521 0.58071 0.45728 0.39784 0.54294
20 12 6 6 0.45222 0.37801 0.56654 0.51227 0.49135 0.54086
30 12 6 6 0.52072 0.47259 0.58998 0.57284 0.53729 0.61808

0 0 12 6 0.26376 0.20222 0.38602 0.34886 0.26341 0.52066
10 0 12 6 0.33067 0.24252 0.52385 0.42135 0.33503 0.56885
20 0 12 6 0.43429 0.36353 0.54383 0.50579 0.44744 0.58398
30 0 12 6 0.50669 0.4883 0.5298 0.57049 0.53552 0.61333

0 3 12 6 0.3003 0.17815 0.96038 0.3046 0.20614 0.6566
10 3 12 6 0.29867 0.17593 0.98868 0.33843 0.23205 0.69057
20 3 12 6 0.31497 0.19681 0.83396 0.32731 0.22124 0.68491
30 3 12 6 0.33751 0.208 0.89811 0.36288 0.23232 0.85849

0 6 12 6 0.29585 0.19343 0.6589 0.37685 0.25986 0.72192
10 6 12 6 0.33762 0.23864 0.66186 0.38019 0.27094 0.68454
20 6 12 6 0.33836 0.26214 0.57923 0.42014 0.31177 0.67324
30 6 12 6 0.39871 0.28679 0.67333 0.45819 0.35625 0.66037

0 12 12 6 0.31961 0.23803 0.50031 0.40079 0.33315 0.51303
10 12 12 6 0.33715 0.23716 0.5879 0.42587 0.35801 0.53153
20 12 12 6 0.38979 0.28789 0.63266 0.48538 0.40089 0.61989
30 12 12 6 0.48567 0.41827 0.58461 0.54795 0.52736 0.57241

Finally, we present the effect of combining SCPs with a deep learning model. We

73



Table 5.8: Comparison of results for original Doctor AI model with Doctor AI model using
ConCat embedding across all 32 cohorts

Doctor AI Original Doctor AI ConCat Embedding

Min Visit CVG Obs Win Washout F-Score Presicion Recall F-Score Presicion Recall

0 0 6 6 0.26548 0.21814 0.38692 0.36597 0.27061 0.56893
10 0 6 6 0.36315 0.29494 0.48727 0.44594 0.34560 0.63562
20 0 6 6 0.46895 0.39470 0.62270 0.52532 0.44762 0.65448
30 0 6 6 0.54184 0.48979 0.65083 0.57596 0.52294 0.67754

0 3 6 6 0.27374 0.18876 0.60918 0.35006 0.25195 0.74591
10 3 6 6 0.27393 0.19584 0.73061 0.34015 0.23194 0.75816
20 3 6 6 0.29826 0.23461 0.81562 0.33738 0.31368 0.54166
30 3 6 6 0.38813 0.24539 0.94175 0.41171 0.28899 0.89560

0 6 6 6 0.36317 0.27491 0.60251 0.39128 0.29879 0.73698
10 6 6 6 0.38166 0.28904 0.58640 0.39419 0.26158 0.85276
20 6 6 6 0.43358 0.35242 0.61707 0.47380 0.40584 0.68512
30 6 6 6 0.44469 0.37888 0.55390 0.51199 0.44491 0.76765

0 12 6 6 0.36884 0.32867 0.44400 0.43581 0.34348 0.64423
10 12 6 6 0.38231 0.29470 0.56642 0.42058 0.36542 0.66371
20 12 6 6 0.49470 0.42204 0.60813 0.51009 0.44234 0.70658
30 12 6 6 0.53180 0.44020 0.71332 0.58234 0.54739 0.69204

0 0 12 6 0.26272 0.19681 0.42113 0.34949 0.24294 0.63382
10 0 12 6 0.33529 0.26635 0.49109 0.41987 0.32736 0.60192
20 0 12 6 0.45671 0.40025 0.54285 0.49950 0.39587 0.69004
30 0 12 6 0.52188 0.46151 0.62489 0.54466 0.46161 0.72032

0 3 12 6 0.30143 0.18803 0.83018 0.32177 0.21931 0.78537
10 3 12 6 0.30831 0.19231 0.84716 0.28885 0.19061 0.71886
20 3 12 6 0.31031 0.18425 0.98742 0.34357 0.22356 0.89622
30 3 12 6 0.33674 0.20246 1 0.38998 0.25596 0.92075

0 6 12 6 0.36277 0.26350 0.63801 0.41243 0.31310 0.72945
10 6 12 6 0.35439 0.29180 0.53058 0.41326 0.31036 0.75326
20 6 12 6 0.41056 0.32628 0.64295 0.44472 0.37467 0.66302
30 6 12 6 0.44313 0.33611 0.67444 0.44575 0.30216 0.89703

0 12 12 6 0.35557 0.27910 0.54358 0.39370 0.27296 0.74629
10 12 12 6 0.35414 0.31613 0.45552 0.40788 0.29203 0.75732
20 12 12 6 0.43501 0.32181 0.69615 0.44390 0.32440 0.82892
30 12 12 6 0.50546 0.41805 0.67229 0.52202 0.41579 0.79692

show that creating a hybrid model has a positive effect to the prediction task. As
shown in Table 5.11∗, our model outperformed the state-of-the-art DeepCare model
with 6% higher F1-score for the original version and 4% for the concatenated em-
bedding versions and RETAIN model always gives the lowest score. Although SCPM
removes 60%-70% of total input, using 2lvl-H-LSTM solely has comparable predictive
power to the other models and even better results than the RETAIN model. When
we compare 2lvl-H-LSTM model with two different frequencies, we identified that
the lower frequency experiment gives better result (from an F-score perspective) but

∗It is important to note here that each of these scores is an average of performances from ten
different models (of the same architecture). As the average is taken for F-score, precision, and recall
separately, the displayed F-score may not compute using the shown recall and precision means.
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Table 5.9: Comparison of results for original RETAIN model with RETAIN model using
ConCat embedding across all 32 cohorts

Retain Original RETAIN ConCat Embedding

Min Visit CVG Obs Win Washout F-Score Presicion Recall F-Score Presicion Recall

0 0 6 6 0.13763 0.07520 0.81033 0.10242 0.05790 0.44437
10 0 6 6 0.19786 0.11159 0.87228 0.19816 0.11231 0.84133
20 0 6 6 0.26851 0.15713 0.92236 0.30204 0.23168 0.44426
30 0 6 6 0.33167 0.20358 0.89439 0.38131 0.25411 0.78768

0 3 6 6 0.26866 0.15594 0.96939 0.26080 0.15251 0.90000
10 3 6 6 0.27412 0.15901 0.99286 0.25803 0.15218 0.85000
20 3 6 6 0.31003 0.18471 0.96458 0.29837 0.17883 0.90000
30 3 6 6 0.36016 0.22170 0.95934 0.35619 0.22331 0.88242

0 6 6 6 0.20552 0.11659 0.86644 0.20678 0.11733 0.87009
10 6 6 6 0.21958 0.12574 0.86567 0.21773 0.12484 0.85092
20 6 6 6 0.31268 0.18883 0.90976 0.31446 0.19006 0.91098
30 6 6 6 0.38249 0.24098 0.92668 0.38719 0.24994 0.85957

0 12 6 6 0.17198 0.09600 0.82463 0.17467 0.09751 0.83702
10 12 6 6 0.21550 0.12297 0.87085 0.21709 0.12389 0.87677
20 12 6 6 0.29521 0.17811 0.86179 0.30041 0.18124 0.87879
30 12 6 6 0.36950 0.23152 0.91467 0.38749 0.25719 0.78833

0 0 12 6 0.14001 0.07658 0.81543 0.09673 0.05422 0.44885
10 0 12 6 0.19590 0.11017 0.88318 0.19753 0.11155 0.86195
20 0 12 6 0.25481 0.15124 0.80843 0.25164 0.15959 0.67368
30 0 12 6 0.31198 0.18876 0.89858 0.32399 0.27852 0.39665

0 3 12 6 0.28587 0.16782 0.96415 0.27719 0.16508 0.86415
10 3 12 6 0.29559 0.17343 1.00000 0.28691 0.17260 0.85094
20 3 12 6 0.30788 0.18299 0.96981 0.30972 0.18679 0.90755
30 3 12 6 0.33224 0.20030 0.97358 0.33187 0.20266 0.91698

0 6 12 6 0.23703 0.13645 0.90171 0.23770 0.13717 0.89041
10 6 12 6 0.23988 0.13838 0.90034 0.24013 0.13875 0.89210
20 6 12 6 0.29312 0.17360 0.94120 0.29109 0.17407 0.88873
30 6 12 6 0.34554 0.21336 0.90852 0.33295 0.20777 0.83889

0 12 12 6 0.19149 0.10790 0.84984 0.19720 0.11102 0.88165
10 12 12 6 0.21514 0.12254 0.88068 0.21152 0.12087 0.85042
20 12 12 6 0.27784 0.16405 0.90746 0.26595 0.17454 0.59684
30 12 12 6 0.34298 0.20972 0.94138 0.38565 0.25152 0.83128

the higher frequency one is better from a recall point of view. Here, decreasing the
minimum frequency also helps to capture more predictive sequences. This behaviour
is expected since higher frequency yields lower number of items, number of patterns
to compare, and quality patterns. Also, our model gives a better trade-off between
precision and recall with a four point difference. However, other baseline models tend
to heavily prioritize one over the other. The smallest difference between precision
and recall in our baseline experiments is the V-LSTM model with a nearly 10 point
gap.
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Table 5.10: Comparison of results for original DeepCare model with DeepCare model using
ConCat embedding across all 32 cohorts

DeepCare Original DeepCare ConCat Embedding

Min Visit CVG Obs Win Washout F-Score Presicion Recall F-Score Presicion Recall

0 0 6 6 0.26998 0.20952 0.38340 0.36570 0.29268 0.48907
10 0 6 6 0.35959 0.28895 0.47918 0.45467 0.39261 0.54138
20 0 6 6 0.48056 0.42000 0.56268 0.54561 0.50091 0.60053
30 0 6 6 0.55477 0.53700 0.57544 0.59959 0.57805 0.62390

0 3 6 6 0.29889 0.21791 0.49184 0.35804 0.25504 0.61531
10 3 6 6 0.32350 0.22606 0.59694 0.35869 0.25748 0.61224
20 3 6 6 0.34217 0.24926 0.56979 0.38016 0.28185 0.59896
30 3 6 6 0.44995 0.35014 0.64615 0.46366 0.35729 0.68352

0 6 6 6 0.35917 0.26957 0.54292 0.41606 0.34611 0.52740
10 6 6 6 0.38037 0.27927 0.60415 0.42977 0.33605 0.60230
20 6 6 6 0.45216 0.36528 0.59732 0.48616 0.42357 0.57341
30 6 6 6 0.52346 0.47688 0.58733 0.54922 0.50341 0.61078

0 12 6 6 0.36118 0.29774 0.46180 0.44046 0.38510 0.51843
10 12 6 6 0.38974 0.32072 0.50115 0.46353 0.40929 0.53645
20 12 6 6 0.47978 0.42345 0.55731 0.53000 0.50057 0.56581
30 12 6 6 0.54369 0.51179 0.58120 0.58566 0.58068 0.59163

0 0 12 6 0.26389 0.20502 0.37485 0.35730 0.27614 0.50793
10 0 12 6 0.33909 0.25787 0.49952 0.43063 0.35524 0.55035
20 0 12 6 0.45483 0.39157 0.54390 0.51451 0.46833 0.57253
30 0 12 6 0.52650 0.48746 0.57469 0.58287 0.54845 0.62234

0 3 12 6 0.33591 0.22363 0.68679 0.36348 0.26447 0.60000
10 3 12 6 0.33581 0.22536 0.67736 0.36105 0.26078 0.62453
20 3 12 6 0.35737 0.25335 0.65472 0.36583 0.27200 0.59434
30 3 12 6 0.38075 0.29139 0.56604 0.41743 0.30947 0.65660

0 6 12 6 0.36457 0.28003 0.53493 0.42136 0.33767 0.56849
10 6 12 6 0.36987 0.29285 0.51168 0.43116 0.37081 0.52509
20 6 12 6 0.41083 0.32832 0.55704 0.46783 0.39849 0.57359
30 6 12 6 0.45858 0.36258 0.62778 0.49707 0.41362 0.62852

0 12 12 6 0.33639 0.28055 0.42388 0.41688 0.36592 0.48613
10 12 12 6 0.37428 0.30616 0.48567 0.44093 0.39968 0.49682
20 12 12 6 0.43986 0.35422 0.58994 0.50282 0.44855 0.57480
30 12 12 6 0.51694 0.43223 0.64815 0.55462 0.49383 0.63547

5.5 Conclusion

In this chapter, we employed the EMR database containing 14.3M patient visits for
1.12M patients. This study involved two main parts: in the first part, we created
multiple test cases and applied baseline models as well as change input embedding
layers of these models to compare the improvements; in the second part we designed
our novel SCP based model and applied one of these 32 use cases to see the im-
provements in prediction. For the first task, we created 32 different scenarios and
outlined four baseline models previously studied in this area for the future diagnosis
prediction task. We applied these models to each use case we created as well as the
concatenated embedding versions. Our results show that changing the input improves
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Table 5.11: Comparing results using washout period: 6 months,
max-CVG: 12 months, prediction horizon window: 12 months,
and min patient visit size: 30, with our hierarchical and the
combined models.

Model F1-score Precision Recall

V-LSTMNoDem 0.46169 0.31963 0.87931
Doctor AIorg 0.50546 0.41805 0.67229
RETAINorg 0.34298 0.20972 0.94138
DeepCareorg 0.51694 0.43223 0.64815

V-LSTMConCat 0.52731 0.53723 0.63571
Doctor AIConCat 0.52202 0.41579 0.79692
RETAINConCat 0.38565 0.25152 0.83128
DeepCareConCat 0.55462 0.49383 0.63546

2lvl-H-LSTMσ=176 0.40730 0.27240 0.82998
2lvl-H-LSTMσ=100 0.42772 0.32989 0.63610

Combined model 0.59087 0.57238 0.61453

performance in most cases on every model. For the second part, we chose a cohort
with max-CVG of 12 months, washout period of 6 months, prediction window of 12
months, and minimum number of patient visits to the facilities as 30. In order to
predict a future condition of a patient, we designed a combined two component model
where one part uses the V-LSTM and other part uses a two level hierarchical LSTM
model with sequential database as input. We added the resulting vectors of these two
models before making the prediction in a hybrid neural architecture. We showed that
our model outperformed the best baseline model by 7.5% in F1-score when original
embedding is employed and by 3.5% in F1-score when concatenated embedding is
employed.
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Chapter 6 Conclusion

Rapid adoption of EMRs incentivized by the federal government has created new
affordances in secondary analyses and applications of EMR data beyond individual
patient care and operational functionality. In this dissertation, we studied three
possible applications using the EMR database from the UKHealthCare system with
mental disorders as use-cases for each of them. Despite this mental health focus,
our methods are readily applicable to any target chronic condition of interest. More
specifically, these are our contributions.

• Interestingness measures for association rule mining (ARM). In Chap-
ter 3, we ranked ARs using more than 40 interestingness measures including a
few measures that we created for this study. We also obtained manually assigned
novelty scores from our domain expert. Then, we ranked ARs according to the
statistical strength and novelty. Our experiments surface groups of interesting-
ness measures that weight rule novelty and statistical strength in contrasting
ways, offering new insights for end users in identifying interesting rules.

• Toward causal association rule (CAR) mining. In Chapter 4, we glean
CARs from the EMR database using matched fair datasets to calculate sta-
tistical strength after accounting for confounders. Then, we gather causal-
ity (biomedical plausibility) scores manually assigned by two domain experts.
Comparing the scores showed that statistical strength on fair datasets using ML
techniques align with domain expert scores for anxiety disorders and depressive
disorders use cases.

• Predictive modeling with contrast patterns and neural networks. In
Chapter 5, we designed a DL model to predict the first diagnosis of a medical
condition using longitudinal EMRs. This design includes two parts where the
first part is a traditional LSTM model and the second part enhances that model
by sequential contrast patterns. Results shows that our model outperforms
baseline models with at least 4 % improvement in F1-score. We also determined
the benefit of code-type specific input representations as part of this study.
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Limitations and Future Work

There are a few limitations in using an EMR database in ML applications. The
massive scale (in terms of (1). number of unique variables and (2). numbers of patients
and patient visits) makes most methods intractable for EMRs. In our experience, the
current state-of-the-art in conventional ARM approaches including those that use the
MapReduce paradigm do not scale well to very large datasets. The EMR databases
contain clinical text beside the medical codes, which we have not used in our methods
in this dissertation. We identify the following future opportunities to extend the work
proposed in this dissertaiton.

• Developing numerical similarity metrics between patients is a recent trend with
applications in decision making, predictive modeling (nearest neighbor meth-
ods), cohort selection, and phenotyping (Li et al., 2015b). Once patients are
represented in Rd, patient vectors will be compared using metrics such as cosine
similarity or more task specific metrics learned in a supervised manner. Using
patient LEMR vectors, we can use a basic cosine similarity model that takes
as input a patient ID and returns a ranked list of most similar patients. An
important goal of designing better patient representations and using them in
similarity computation is to enable specialty clinicians to identify most similar
patients to an incoming new patient in making choices about treatment options.

• With rapid rise in patients with multiple chronic comorbidities, we aim to gain
specific insights via discriminative sequential patterns that occur temporally
between the first diagnoses of two chronic conditions. An associated task is to
identify subtypes within the group of patients that have the chronic condition
pair. Here, we can impose a washout period for the first condition in the pair and
a minimum gap of between both conditions. Contrast pattern mining methods
can be used to identify discriminative sequential patterns that occur in the gap
period between the diagnoses when compared with patients who just have one
of the conditions in the pair.

• Finally, we plan to move toward associative classification (Yin and Han, 2003)
approaches for specific chronic diseases and for designing new classification fea-
tures for extracting coded information (Kavuluru and Lu, 2014; Kavuluru et al.,
2015) as a further step from ARM.

Copyright c© Orhan Abar, 2019.

79



Abbreviations

2lvl-H-LSTM 2-level hierarchical LSTM. 68–71, 74, 77

AHRQ Agency for Healthcare Research and Quality. 23

AIRF average inverse rule frequency. 24, 25

AR association rule. 19–22, 24, 31, 78

ARM association rule mining. 19–23, 31, 32, 79

BMI body mass index. 33, 37, 38, 50, 56

BN bayesian network. 33–35

C-LSTM Care Long Short Term Memory. 55

CA causal association. 5, 33–35, 39, 48

CAR causal association rule. 5, 34–36, 38, 39, 43–46, 48–50, 78

CDC Centers for Disease Control and Prevention. 22

ConSGapMiner Contrast Sequences with Gap Miner. 58

COPD chronic obstructive pulmonary disease. 53

CPM contrast pattern mining. 14

CPT Current Procedural Terminology. 56

CPU central processing unit. 54, 55

CSS clinical classifications software. 37, 56

CVG consecutive visit gap. 57, 65–67, 69, 72–77

DD depressive disorders. 57, 70

DL deep learning. 16, 78
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EMR electronic medical record. 14, 19, 20, 31, 34–39, 42–45, 48, 50, 54–56, 58,
61–64, 68, 69, 76, 78, 79

FD fair dataset. 5

FIM frequent itemset mining. 54

GPU graphical processing unit. 54, 55

GRU gated recurrent unit. 17, 18, 55, 64, 70

HCUP Healthcare Cost and Utilization Project. 23, 24, 29–31, 37

ICD-10 International Classification of Diseases 10th revision. 56

ICD-9 International Classification of Diseases 9th revision. 23, 24, 53–56

ICD-9-CM International Classification of Diseases, Clinical Modification, 9th revi-
sion. vi, 8, 9, 22, 37, 38

KNN k-nearest neighbour. 55

LCM Linear-time Closed item set Miner. 23

LR logistic regression. 55

LSTM long short term memory. 17, 55, 58, 62, 65, 67, 68, 70, 77, 78

MeSH medical subject headings. 29

ML machine learning. 79

MLP multilayer perceptron. 55

MPEmb mean pool embedding. 71

NDCG normalized discounted cumulative gain. 27

NDCN normalized discounted cumulative novelty. 27–29

NDCO normalized discounted cumulative ORLB. 27–29

NN neural network. 62
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NSCLC Non-Small Cell Lung Cancer. 21

OR odds ratio. 25, 54

ORLB odds ratio lower bond. 5, 25–32, 36, 41, 43–46, 49, 50

RCT randomized control trial. 33–35

ReLU rectified linear unit. 68

RETAIN REverse Time AttentIoN. 55, 64, 65, 69, 70, 72–74, 77

RNN recurrent neural network. 15–17, 52, 53, 55, 60, 62

SCP sequential contrast pattern. 14, 15, 53, 54, 58–60, 67, 69, 70, 73

SCPM sequential contrast pattern mining. 70, 74

SP sequential pattern. 14, 15, 54, 58, 60, 68, 70

SPM sequential pattern mining. 53–55, 58

UKY the University of Kentucky. 5, 21, 22, 36, 56, 69

V-LSTM the vanilla long short term memory. 16, 17, 53, 58, 68, 69, 71–73, 75, 77

82



Bibliography

[1] O. Abar, R. J. Charnigo, A. Rayapati, and R. Kavuluru. “On Interestingness
Measures for Mining Statistically Significant and Novel Clinical Associations
from EMRs”. In: Proceedings of the 7th ACM International Conference on
Bioinformatics, Computational Biology, and Health Informatics. ACM. 2016,
pp. 587–594.

[2] S. Abuse et al. “Results from the 2005 national survey on drug use and health:
national findings”. In: http://www. oas. samhsa. gov/nsduh/2k5nsduh/2k5Results.
pdf (2006).

[3] R. Agrawal and R. Srikant. “Fast Algorithms for Mining Association Rules in
Large Databases”. In: Proceedings of the 20th International Conference on Very
Large Data Bases. Morgan Kaufmann Publishers Inc. 1994, pp. 487–499.

[4] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. “Sequential pattern mining us-
ing a bitmap representation”. In: Proceedings of the eighth ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining. ACM. 2002,
pp. 429–435.

[5] T. A. Blakely, S. C. Collings, and J. Atkinson. “Unemployment and suicide.
Evidence for a causal association?” In: Journal of Epidemiology & Community
Health 57.8 (2003), pp. 594–600.

[6] S. E. Brossette, A. P. Sprague, J. M. Hardin, K. B. Waites, W. T. Jones,
and S. A. Moser. “Association Rules and Data Mining in Hospital Infection
Control and Public Health Surveillance”. In: Journal of the American Medical
Informatics Association 5.4 (1998), pp. 373–381. doi: 10.1136/jamia.1998.
0050373.

[7] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu. “Recurrent Neural
Networks for Multivariate Time Series with Missing Values”. In: arXiv preprint
arXiv:1606.01865 (2016).

[8] Y.-T. Cheng, Y.-F. Lin, K.-H. Chiang, and V. S. Tseng. “Mining disease se-
quential risk patterns from nationwide clinical databases for early assessment
of chronic obstructive pulmonary disease”. In: 2016 IEEE-EMBS International
Conference on Biomedical and Health Informatics (BHI). IEEE. 2016, pp. 324–
327.

83

https://doi.org/10.1136/jamia.1998.0050373
https://doi.org/10.1136/jamia.1998.0050373


[9] E. Choi, M. T. Bahadori, L. Song, W. F. Stewart, and J. Sun. “GRAM: Graph-
based Attention Model for Healthcare Representation Learning”. In: arXiv preprint
arXiv:1611.07012 (2016).

[10] E. Choi, M. T. Bahadori, and J. Sun. “Doctor AI: Predicting Clinical Events
via Recurrent Neural Networks”. In: arXiv preprint arXiv:1511.05942 (2015).

[11] E. Choi, M. T. Bahadori, J. Sun, J. Kulas, A. Schuetz, and W. Stewart. “RE-
TAIN: An Interpretable Predictive Model for Healthcare using Reverse Time
Attention Mechanism”. In: Advances in Neural Information Processing Systems.
2016, pp. 3504–3512.

[12] E. Choi, A. Schuetz, W. F. Stewart, and J. Sun. “Using recurrent neural network
models for early detection of heart failure onset”. In: Journal of the American
Medical Informatics Association (2016), ocw112.

[13] J. Cohen. “A coefficient of agreement for nominal scales”. In: Educational and
psychological measurement 20.1 (1960), pp. 37–46.

[14] J. Cohen. “Weighted kappa: Nominal scale agreement provision for scaled dis-
agreement or partial credit.” In: Psychological bulletin 70.4 (1968), p. 213.

[15] G. Dong and J. Li. “Efficient mining of emerging patterns: Discovering trends
and differences”. In: Proceedings of the fifth ACM SIGKDD international con-
ference on Knowledge discovery and data mining. Citeseer. 1999, pp. 43–52.

[16] B. Druss and E. Walker. Mental disorders and medical comorbidity.

[17] C. Esteban, O. Staeck, Y. Yang, and V. Tresp. “Predicting Clinical Events by
Combining Static and Dynamic Information Using Recurrent Neural Networks”.
In: CoRR abs/1602.02685 (2016). url: http://arxiv.org/abs/1602.02685.

[18] K. M. Flegal, B. K. Kit, and B. I. Graubard. “Body mass index categories
in observational studies of weight and risk of death”. In: American journal of
epidemiology 180.3 (2014), pp. 288–296.

[19] J. L. Fleiss, B. Levin, and M. C. Paik. Statistical methods for rates and propor-
tions. John Wiley & Sons, 2013.

[20] G. Gariepy, D. Nitka, and N. Schmitz. “The association between obesity and
anxiety disorders in the population: a systematic review and meta-analysis”. In:
International journal of obesity 34.3 (2010), p. 407.

[21] L. Geng and H. J. Hamilton. “Interestingness measures for data mining: A
survey”. In: ACM Computing Surveys (CSUR) 38.3 (2006), p. 9.

84

http://arxiv.org/abs/1602.02685


[22] S. Ghosh, M. Feng, H. Nguyen, and J. Li. “Hypotension Risk Prediction via
Sequential Contrast Patterns of ICU Blood Pressure”. In: IEEE Journal of
Biomedical and Health Informatics 20.5 (2016), pp. 1416–1426. issn: 2168-2194.
doi: 10.1109/JBHI.2015.2453478.

[23] M. L. Gillison, W. M. Koch, R. B. Capone, M. Spafford, W. H. Westra, L. Wu,
M. L. Zahurak, R. W. Daniel, M. Viglione, D. E. Symer, et al. “Evidence for a
causal association between human papillomavirus and a subset of head and neck
cancers”. In: Journal of the National Cancer Institute 92.9 (2000), pp. 709–720.

[24] W. R. Gove. “Gender differences in mental and physical illness: The effects
of fixed roles and nurturant roles”. In: Social Science & Medicine 19.2 (1984),
pp. 77–84.

[25] K. Gwet et al. “Inter-rater reliability: dependency on trait prevalence and
marginal homogeneity”. In: Statistical Methods for Inter-Rater Reliability As-
sessment Series 2 (2002), pp. 1–9.

[26] K. L. Gwet. Handbook of inter-rater reliability: The definitive guide to measur-
ing the extent of agreement among raters. Advanced Analytics, LLC, 2014.

[27] K. A. Hallgren. “Computing inter-rater reliability for observational data: an
overview and tutorial”. In: Tutorials in quantitative methods for psychology 8.1
(2012), p. 23.

[28] W. Hämäläinen. “Kingfisher: an efficient algorithm for searching for both pos-
itive and negative dependency rules with statistical significance measures”. In:
Knowledge and Information Systems 32.2 (2011), pp. 383–414. issn: 0219-3116.

[29] J. Han, J. Pei, and Y. Yin. “Mining frequent patterns without candidate gen-
eration”. In: ACM SIGMOD Record. Vol. 29. 2. ACM. 2000, pp. 1–12.

[30] D. A. Hanauer and N. Ramakrishnan. “Modeling temporal relationships in large
scale clinical associations”. In: Journal of the American Medical Informatics
Association 20.2 (2013), pp. 332–341.

[31] Healthcare Cost and Utilization Project. Clinical Classifications Software (CCS)
for ICD-9-CM.

[32] D. Heckerman, C. Meek, and G. Cooper. “A Bayesian approach to causal dis-
covery”. In: Innovations in Machine Learning. Springer, 2006, pp. 1–28.

[33] A. B. Hill. “The environment and disease: association or causation?” In: Pro-
ceedings of the Royal Society of Medicine 58.5 (1965), pp. 295–300.

85

https://doi.org/10.1109/JBHI.2015.2453478


[34] K. Järvelin and J. Kekäläinen. “Cumulated Gain-based Evaluation of IR Tech-
niques”. In: ACM Transactions on Information Systems 20.4 (Oct. 2002), pp. 422–
446. issn: 1046-8188.

[35] X. Ji, J. Bailey, and G. Dong. “Mining minimal distinguishing subsequence
patterns with gap constraints”. In: Knowledge and Information Systems 11.3
(2007), pp. 259–286.

[36] R. Kavuluru and Y. Lu. “Leveraging output term co-occurrence frequencies
and latent associations in predicting medical subject headings”. In: Data &
Knowledge Engineering 94.Part B (2014), pp. 189–201.

[37] R. Kavuluru, A. Rios, and Y. Lu. “An empirical evaluation of supervised learn-
ing approaches in assigning diagnosis codes to electronic medical records”. In:
Artificial intelligence in medicine 65.2 (2015), pp. 155–166.

[38] R. C. Kessler, P. Berglund, W. T. Chiu, O. Demler, S. Heeringa, E. Hiripi, R.
Jin, B.-E. Pennell, E. E. Walters, A. Zaslavsky, and H. Zheng. “The US National
Comorbidity Survey Replication (NCS-R): design and field procedures”. In: In-
ternational Journal of Methods in Psychiatric Research 13.2 (2004), pp. 69–
92.

[39] K. Lasser, J. W. Boyd, S. Woolhandler, D. U. Himmelstein, D. McCormick, and
D. H. Bor. “Smoking and mental illness: a population-based prevalence study”.
In: Jama 284.20 (2000), pp. 2606–2610.

[40] B. Letham, C. Rudin, and D. Madigan. “Sequential event prediction”. In: Ma-
chine learning 93.2-3 (2013), pp. 357–380.

[41] J. Li, T. D. Le, L. Liu, J. Liu, Z. Jin, B. Sun, and S. Ma. “From observational
studies to causal rule mining”. In: ACM Transactions on Intelligent Systems
and Technology (TIST) 7.2 (2015), p. 14.

[42] J. Li, T. D. Le, L. Liu, J. Liu, Z. Jin, B. Sun, and S. Ma. “From observational
studies to causal rule mining”. In: ACM Transactions on Intelligent Systems
and Technology (TIST) 7.2 (2016), p. 14.

[43] L. Li, W.-Y. Cheng, B. S. Glicksberg, O. Gottesman, R. Tamler, R. Chen,
E. P. Bottinger, and J. T. Dudley. “Identification of type 2 diabetes subgroups
through topological analysis of patient similarity”. In: Science translational
medicine 7.311 (2015), 311ra174–311ra174.

86



[44] Z. C. Lipton, D. C. Kale, C. Elkan, and R. C. Wetzel. “Learning to Diagnose
with LSTM Recurrent Neural Networks”. In: CoRR abs/1511.03677 (2015).
url: http://arxiv.org/abs/1511.03677.

[45] Y. S. Low, B. Gallego, and N. H. Shah. “Comparing high-dimensional con-
founder control methods for rapid cohort studies from electronic health records”.
In: Journal of comparative effectiveness research 5.2 (2016), pp. 179–192.

[46] D. D. McAlpine and D. Mechanic. “Utilization of specialty mental health care
among persons with severe mental illness: the roles of demographics, need, in-
surance, and risk.” In: Health services research 35.1 Pt 2 (2000), p. 277.

[47] M. L. McHugh. “Interrater reliability: the kappa statistic”. In: Biochemia medica
22.3 (2012), pp. 276–282.

[48] R. A. Miech, A. Caspi, T. E. Moffitt, B. R. E. Wright, and P. A. Silva. “Low
socioeconomic status and mental disorders: a longitudinal study of selection and
causation during young adulthood”. In: American journal of Sociology 104.4
(1999), pp. 1096–1131.

[49] S. Moens, E. Aksehirli, and B. Goethals. “Frequent itemset mining for big data”.
In: Big Data, 2013 IEEE International Conf. on. IEEE. 2013, pp. 111–118.

[50] T. H. Moore, S. Zammit, A. Lingford-Hughes, T. R. Barnes, P. B. Jones, M.
Burke, and G. Lewis. “Cannabis use and risk of psychotic or affective mental
health outcomes: a systematic review”. In: The Lancet 370.9584 (2007), pp. 319–
328.

[51] J. A. Morris and M. J. Gardner. “Statistics in Medicine: Calculating confidence
intervals for relative risks (odds ratios) and standardised ratios and rates”. In:
British Medical Journal 296.6632 (1988), pp. 1313–1316.

[52] M. Mukaka. “A guide to appropriate use of correlation coefficient in medical
research”. In: Malawi Medical Journal 24.3 (2012), pp. 69–71.

[53] B. Nebel and H.-J. Bürckert. “Reasoning about temporal relations: a maximal
tractable subclass of Allen’s interval algebra”. In: Journal of the ACM (JACM)
42.1 (1995), pp. 43–66.

[54] W. Opstelten, G. A. Van Essen, F. Schellevis, T. J. Verheij, and K. G. Moons.
“Gender as an independent risk factor for herpes zoster: a population-based
prospective study”. In: Annals of epidemiology 16.9 (2006), pp. 692–695.

87

http://arxiv.org/abs/1511.03677


[55] C. Ordonez, N. Ezquerra, and C. A. Santana. “Constraining and summarizing
association rules in medical data”. In: Knowledge and Information Systems 9.3
(2006), pp. 259–283.

[56] T. Pham, T. Tran, D. Phung, and S. Venkatesh. “Predicting healthcare trajecto-
ries from medical records: A deep learning approach”. In: Journal of biomedical
informatics 69 (2017), pp. 218–229.

[57] J. Reps, J. M. Garibaldi, U. Aickelin, D. Soria, J. E. Gibson, and R. B. Hub-
bard. “Discovering sequential patterns in a UK general practice database”. In:
Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and
Health Informatics. IEEE. 2012, pp. 960–963.

[58] S. Robertson. “Understanding inverse document frequency: on theoretical ar-
guments for IDF”. In: Journal of documentation 60.5 (2004), pp. 503–520.

[59] B. Rosner. Fundamentals of biostatistics. Cengage Learning, 2015.

[60] E. Ryu, A. M. Chamberlain, R. S. Pendegraft, T. M. Petterson, W. V. Bobo,
and J. Pathak. “Quantifying the impact of chronic conditions on a diagnosis
of major depressive disorder in adults: a cohort study using linked electronic
medical records”. In: BMC psychiatry 16.1 (2016), p. 1.

[61] B. Schneider, B. Bartusch, A. Schnabel, and J. Fritze. “Age and gender: con-
founders for axis I disorders as risk factors for suicide”. In: Psychiatrische Praxis
32.4 (2005), pp. 185–194.

[62] W. R. Shadish, T. D. Cook, and D. T. Campbell. Experimental and quasi-
experimental designs for generalized causal inference. Wadsworth Pub., 2002.

[63] N. H. Shah, P. LePendu, A. Bauer-Mehren, Y. T. Ghebremariam, S. V. Iyer,
J. Marcus, K. T. Nead, J. P. Cooke, and N. J. Leeper. “Proton pump inhibitor
usage and the risk of myocardial infarction in the general population”. In: PLoS
One 10.6 (2015), e0124653.

[64] I. N. M. Shaharanee, F. Hadzic, and T. S. Dillon. “Interestingness measures for
association rules based on statistical validity”. In: Knowledge-Based Systems
24.3 (2011), pp. 386–392.

[65] G. D. Smith and S. Ebrahim. “Data dredging, bias, or confounding: They can
all get you into the BMJ and the Friday papers”. In: BMJ: British Medical
Journal 325.7378 (2002), p. 1437.

[66] C. Spearman. “The proof and measurement of association between two things”.
In: The American journal of psychology 15.1 (1904), pp. 72–101.

88



[67] P. Spirtes. “Introduction to causal inference”. In: Journal of Machine Learning
Research 11.May (2010), pp. 1643–1662.

[68] P.-N. Tan, V. Kumar, and J. Srivastava. “Selecting the Right Interestingness
Measure for Association Patterns”. In: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’02.
Edmonton, Alberta, Canada: ACM, 2002, pp. 32–41. isbn: 1-58113-567-X.

[69] B. Taylor, E. Miller, C. Farrington, M.-C. Petropoulos, I. Favot-Mayaud, J. Li,
and P. A. Waight. “Autism and measles, mumps, and rubella vaccine: no epi-
demiological evidence for a causal association”. In: The Lancet 353.9169 (1999),
pp. 2026–2029.

[70] G. Teodoro, N. Mariano, W. Meira Jr, and R. Ferreira. “Tree projection-based
frequent itemset mining on multicore cpus and gpus”. In: Computer Architec-
ture and High Performance Computing (SBAC-PAD), 2010 22nd International
Symposium on. IEEE. 2010, pp. 47–54.

[71] R. Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of
the Royal Statistical Society. Series B (Methodological) (1996), pp. 267–288.

[72] T. Uno, M. Kiyomi, and H. Arimura. “LCM Ver.3: Collaboration of Array,
Bitmap and Prefix Tree for Frequent Itemset Mining”. In: Proceedings of the
1st International Workshop on Open Source Data Mining: Frequent Pattern
Mining Implementations. OSDM ’05. Chicago, Illinois: ACM, 2005, pp. 77–86.
isbn: 1-59593-210-0.

[73] D. S. Wald, N. J. Wald, J. K. Morris, and M. Law. “Folic acid, homocysteine,
and cardiovascular disease: judging causality in the face of inconclusive trial
evidence”. In: Bmj 333.7578 (2006), pp. 1114–1117.

[74] G. I. Webb and J. Vreeken. “Efficient discovery of the most interesting associ-
ations”. In: ACM Trans. on Knowledge Discovery from Data 8.3 (2014), p. 15.

[75] N. Wongpakaran, T. Wongpakaran, D. Wedding, and K. L. Gwet. “A compari-
son of Cohen’s Kappa and Gwet’s AC1 when calculating inter-rater reliability
coefficients: a study conducted with personality disorder samples”. In: BMC
medical research methodology 13.1 (2013), p. 61.

[76] A. Wright, A. McCoy, S. Henkin, M. Flaherty, and D. Sittig. “Validation of an
Association Rule Mining-Based Method to Infer Associations Between Medica-
tions and Problems”. In: Applied Clinical Informatics 4.1 (2013), p. 100.

89



[77] A. Wright, E. S. Chen, and F. L. Maloney. “An automated technique for iden-
tifying associations between medications, laboratory results and problems”. In:
J. of Biomedical Informatics 43.6 (2010), pp. 891–901.

[78] A. P. Wright, A. T. Wright, A. B. McCoy, and D. F. Sittig. “The use of se-
quential pattern mining to predict next prescribed medications”. In: Journal of
biomedical informatics 53 (2015), pp. 73–80.

[79] H. Yang, C. Rudin, and M. Seltzer. “Scalable Bayesian Rule Lists”. In: arXiv
preprint arXiv:1602.08610 (2016).

[80] X. Yin and J. Han. “CPAR: Classification based on Predictive Association
Rules.” In: SIAM International Conf. on Data Mining. Vol. 3. 2003, pp. 331–
335.

[81] M. J. Zaki. “Scalable algorithms for association mining”. In: Knowledge and
Data Engineering, IEEE Transactions on 12.3 (2000), pp. 372–390.

[82] F. Zhang, Y. Zhang, and J. Bakos. “Gpapriori: Gpu-accelerated frequent itemset
mining”. In: Cluster Computing (CLUSTER), 2011 IEEE International Con-
ference on. IEEE. 2011, pp. 590–594.

90



Vita

Name

Orhan Abar

Education

• 2005–2009 B.S. in Computer Engineering Firat University Elazig, Turkey

• 2011–2013 M.S. in Computer Science University of Texas at San Anto-

nio San Antonio, Texas

Experience

• 2018–present, Graduate Research Assistant, University of Kentucky, Lexington,
Kentucky

Awards

• 2009-2018, Full-Scholarship from Turkish Government for Graduate Study in
the USA

Publications

1. G. L. Heileman, W. G. Thompson-Arjona, H. W. Free andO. Abar. Does Cur-
ricular Complexity Imply Program Quality? Proceedings of the 2019 American
Society for Engineering Education (ASEE) Annual Conference, Tampa, June
16–10, 2019.

2. Abar, O., Charnigo, R. J., Rayapati, A., & Kavuluru, R. On Interestingness
Measures for Mining Statistically Significant and Novel Clinical Associations
from EMRs. In Proceedings of the 7th ACM International Conference on Bioin-
formatics, Computational Biology, and Health Info. (pp. 587-594). ACM (2016,
October).

91


	Rule Mining and Sequential Pattern Based Predictive Modeling with EMR Data
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 What is an EMR?
	1.2 Applications of EMRs
	1.3 Overview of this Dissertation

	2 Related Work and Background
	2.1 Healthcare Cost and Utilization Project
	2.2 Association Rule Mining
	2.3 Term Frequency-Inverse Document Frequency
	2.4 Odds Ratio
	2.5 Inter-Rater Reliability Scores
	2.6 Sequential Contrast Pattern Mining
	2.7 Recurrent Neural Network (RNN)
	2.7.1 Vanilla Long Short Term Memory (V-LSTM)
	2.7.2 Gated Recurrent Unit (GRU)


	3 On Interestingness Measures for Mining Statistically Significant and Novel Clinical Associations from EMRs
	3.1 Introduction
	3.1.1 Notions of Statistical Strength, Novelty, & Interestingness
	3.1.2 Our Contributions

	3.2 AR Mining from Visits Data
	3.2.1 Clinical Dataset Used
	3.2.2 Generating Association Rules

	3.3 Assessing Interestingness Measures for Association Rule (AR) Ranking
	3.3.1 Additional Interestingness Measures
	3.3.2 Domain Expert Novelty Assessments
	3.3.3 Comparison of Interestingness Measures

	3.4 Quantitative & Qualitative Analysis of Novel Rules
	3.5 Concluding Remarks

	4 Toward Causal Association Rule Mining
	4.1 Related Works and Our Contributions
	4.2 Clinical Dataset Used
	4.3 CAR Mining From Patient Data
	4.3.1 Generating Confounders
	4.3.2 Causal Association Rules

	4.4 Experiments and Results (Quantitative & Qualitative Analysis of CARs)
	4.4.1 Causality Scores
	4.4.2 Domain Expert Assigned Plausibility Scores
	4.4.3 Comparison of Scores

	4.5 Conclusion

	5 Predictive Modeling through Sequential Patterns and Recurrent Neural Network (RNNs)
	5.1 Related works
	5.2 The EMR Database and Cohort Selection
	5.3 Methods
	5.3.1 Support Counting on GPUs and Parallel Reduction
	5.3.2 Creating Sequential Pattern Based Database
	5.3.3 Input Representations
	5.3.4 RETAIN Model
	5.3.5 DeepCare Model
	5.3.6 Two Level Hierarchical LSTM Model
	5.3.7 Combining Our Model with V-LSTM

	5.4 Results and Discussion
	5.4.1 Experimental Setup
	5.4.2 Models
	5.4.3 Comparing the Results of Models

	5.5 Conclusion

	6 Conclusion
	Abbreviations
	Bibliography
	Vita

