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ABSTRACT OF DISSERTATION 

 
 

NEUROBEHAVIORAL MEASUREMENTS OF NATURAL AND OPIOID REWARD 
VALUE 

 

In the last decade, (non)prescription opioid abuse, opioid use disorder (OUD) 
diagnoses, and opioid-related overdoses have risen and represent a significant public 
health concern. One method of understanding OUD is as a disorder of choice that 
requires choosing opioid rewards at the expense of other nondrug rewards. The 
characterization of OUD as a disorder of choice is important as it implicates decision- 
making processes as therapeutic targets, such as the valuation of opioid rewards. 
However, reward-value measurement and interpretation are traditionally different in 
substance abuse research compared to related fields such as economics, animal behavior, 
and neuroeconomics and may be less effective for understanding how opioid rewards are 
valued. The present research therefore used choice procedures in line with 
behavioral/neuroeconomic studies to determine if drug-associated decision making could 
be predicted from economic choice theories. In Experiment 1, rats completed an 
isomorphic food-food probabilistic choice task with dynamic, unpredictable changes in 
reward probability that required constant updating of reward values. After initial training, 
the reward magnitude of one choice subsequently increased from one to two to three 
pellets. Additionally, rats were split between the Signaled and Unsignaled groups to 
understand how cues modulate reward value. After each choice, the Unsignaled group 
received distinct choice-dependent cues that were uninformative of the choice outcome. 
The Signaled group also received uninformative cues on one option, but the alternative 
choice produced reward-predictive cues that informed the trial outcome as a win or loss. 
Choice data were analyzed at a molar level using matching equations and molecular level 
using reinforcement learning (RL) models to determine how probability, reward 
magnitude, and reward-associated cues affected choice. Experiment 2 used an 
allomorphic drug versus food procedure where the food reward for one option was 
replaced by a self-administered remifentanil (REMI) infusion at doses of 1, 3 and 10 
μg/kg. Finally, Experiment 3 assessed the potential for both REMI and food reward value 
to be commonly scaled within the brain by examining changes in nucleus accumbens 
(NAc) Oxygen (O2) dynamics. Results showed that increasing reward probability, 
magnitude, and the presence of reward-associated cues all independently increased the 
propensity of choosing the associated choice alternative, including REMI drug choices. 
Additionally, both molar matching and molecular RL models successfully parameterized 
rats’ decision dynamics. O2 dynamics were generally commensurate with the idea of a 
common value signal for REMI and food with changes in O2 signaling scaling with the 
reward magnitude of REMI rewards. Finally, RL model-derived reward prediction errors 
significantly correlated with peak O2 activity for reward delivery, suggesting a possible 



 
 

neurological mechanism of value updating. Results are discussed in terms of their 
implications for current conceptualizations of substance use disorders including a 
potential need to change the discourse surrounding how substance use disorders are 
modeled experimentally. Overall, the present research provides evidence that a choice 
model of substance use disorders may be a viable alternative to the disease model and 
could facilitate future treatment options centered around economic principles. 

 
KEYWORDS: Choice, Remifentanil, Matching, Reinforcement Learning, Reward 

Prediction Error, Nucleus Accumbens 
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CHAPTER 1: 

VALUE AND ITS MEASUREMENT 

 

Functional Consequences in Decision Sciences 
 

 A significant portion of the scientific literature is aimed at studying how to 

attenuate maladaptive behavior. The behavior under study ranges from topics such as 

getting people to exercise more, avoid unhealthy diets, stop using illicit substances, 

prepare for long-term financial needs, and not spend money beyond their current means. 

There is no doubt that many factors separate the propensity of one maladaptive behavior 

from another. However, a common unifying mechanism is the choice to engage in one 

action at the exclusion of others. 

  If choice is indeed a unifying mechanism of maladaptive behavior, then the 

decision-making processes leading to choice are implicated as potential therapeutic 

targets. For example, one of the most prominent paradigms in which decision making has 

found predictive validity is delay discounting (Odum, 2011). Delay discounting describes 

the decreased propensity for individuals to choose increasingly temporally distant 

rewards in favor of more proximal ones. Interestingly, the impulsive choice propensity 

characterized by delay discounting has shown remarkable clinical relevance through 

associations with behavior such as illicit substance abuse (Mackillop et al., 2011), 

substance abuse-related treatment outcomes (Loree, Lundahl, & Ledgerwood, 2015), 

gambling (Alessi & Petry, 2003), the incurrence of debt (Beauchaine, Ben-David, & Sela, 

2017), attention-deficit hyperactivity disorder (Patros et al., 2016), and obesity 

(Rasmussen, Lawyer, & Reilly, 2010). However, perhaps more important was the 

functional characterization of delayed rewards becoming less valuable through time. 

Once known, interventions aimed at improving temporal perceptions (Smith, Marshall, & 

Kirkpatrick, 2015), delay tolerance (Renda & Madden, 2016), working memory (Renda, 

Stein, & Madden, 2015), and future orientation (Bulley & Gullo, 2017) became novel 
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therapeutic strategies to reduce impulsive choice and, ostensibly, other maladaptive 

choice behaviors. 

 Impulsive choice serves as a prominent example for how basic decision sciences 

can reveal potential therapies for clinically relevant disorders. However, just as choice 

can serve as a unifying process for many disorders, the hypothetical construct of reward 

value can serve as a mediating mechanism across different forms of choice. 

Reward valuation is a prominent point of study for the emerging sub disciplines 

of behavioral economics and neuroeconomics seeking to understand clinically relevant 

conditions under the umbrella term of reward pathology (e.g., Jarmolowicz, Reed, 

DiGennaro Reed, & Bickel, 2016). Reward pathology generally refers to a 

characterization of choices thought to be mediated by a disproportional valuation of one 

choice alternative over others. For instance, in delay discounting, an impulsive chooser is 

thought to overvalue rewards offered immediately or, inversely, undervalue future 

rewards.  

 

Brief History of the Concept of Value 
 

 Our current understanding about reward valuation stems from classical economic 

thought traditionally ascribed to renaissance economist Blaise Pascal (Glimcher, 2011; 

Glimcher, Camerer, Fehr, & Poldrack, 2013). Pascal was attempting to understand how 

people should make decisions under uncertainty. For example, should an individual pay 

45 florins for a ticket that provides a 50% chance at 100 florins? To answer decisions 

involving uncertainty, Pascal proposed the idea of expected value (EV), or the expected 

amount a decision returns on average. Shown in Equation 1, the EV is calculated by 

multiplying the magnitude of a gain or loss (xi) by the probability of its occurrence (pi). 

𝐸𝐸𝐸𝐸(𝑥𝑥) = �𝑥𝑥𝑖𝑖𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖)
𝑖𝑖

(1) 

Thus, purchasing the ticket in the above example is a wise decision, as it produces an 

expected value of 50 florins. Pascal’s contribution is notable as it is the first to ascribe 

what decision makers should do, otherwise known as normative decision making. 
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 Although EV was an important step towards understanding decision making, it 

became apparent to Daniel Bernoulli that it was an incomplete account (Bernoulli, 

1738/1954; c.f. Glimcher, 2011). Bernoulli noted that not all individuals appeared to 

behave as though absolute increases in reward amount translated to equivalent increases 

in reward value. For instance, imagine a beggar comes upon a ticket that offers a 50% 

chance of winning 20,000 florins. A wealthy individual notices the beggar’s ticket and 

then offers the beggar a certain 7,000 florins for the ticket. According to normative theory 

at the time, the beggar should refuse the ticket as it had an EV of 10,000 florins, or 3,000 

more than the offer. However, if the beggar chooses to accept the certain 7,000 florins, 

then it is not necessarily irrational, as it would mean both meal and shelter security for 

some time to come. 

To account for why the beggar might accept the offer, Bernoulli suggested the 

idea of utility loosely described as subjective value. To get at the idea of the hidden 

variable utility, Bernoulli computed the logarithm of an outcome’s amount to derive what 

he referred to as utils. When Bernoulli’s calculations are applied, the adjusted EV value 

of the beggar’s ticket becomes 2.15 utils (i.e., 0.5 * log [20,000]) which is less than the 

wealthy man’s offer of 3.8 utils (i.e., 1.0 * log [7,000]). Thus, a decision to take the 

certain 7,000 becomes justified. Stated differently, the utility of the beggar gaining a 

certain 7,000 was greater than the possibility of getting 3,000 more florins (on average); 

this is because rather than more florins producing a linear increase in reward value (as in 

Pascal’s case), an increase in florins produces marginal gains reflective of a concave (or 

negatively accelerating) utility function. The translation of Bernoulli’s subjective utility 

today (Glimcher et al., 2013) has been generalized to forms similar to Equation 2 

𝐸𝐸𝐸𝐸(𝑥𝑥) = �𝑢𝑢𝑖𝑖(𝑥𝑥𝑖𝑖)𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖)
𝑖𝑖

(2) 

in which the probability of a given outcome (pi(xi)) is multiplied by the outcome’s scaled 

utility (ui(xi)) to produce expected utility (EU). 

 The notion of EU helped describe  many violations of EV when the choices were 

isomorphic, or between commodities of the same type (cf. Glimcher, 2011; Glimcher et 

al., 2013). Once the appropriate utility function for a given set of choices was established, 

it could be used to predict future choices. However, an inherent problem with the idea of 
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the utility function was in the scaling of how valuable one commodity was relative to a 

different commodity, also known as allomorphic choice (Pareto, 1906/1971). Such 

scaling is difficult is because EU is not observable and only revealed through observed 

preferences. For instance, consider an example from Glimcher (2011) in which a 

participant prefers apples to oranges to grapes and we assign each fruit utilities of 3, 2, 

and 1, respectively. If our hypothetical person has two of each fruit, then they have a 

combined utility of 12, but we want to raise it to 16. One simple solution would be to add 

some combination of oranges and grapes to evenly raise the combined utility to 16. 

However, what if further preference tests reveal a new ordering of apples > oranges > 

pears > grapes > apricots. Suddenly, the assignment of utilities would necessarily change 

to perhaps 5, 4, 3, 2, and, 1. Thus, the potential combination of fruits to raise our 

participant’s overall utility to 16 is now altered. 

 The issue revealed by the above example is that measures of reward value do not 

operate at the level of a cardinal scale. Stated differently, knowing that our participant 

prefers oranges to grapes is an ordinal relationship, but it is unknown if oranges (2 utils) 

truly offer twice the utility of grapes (1 util). By extension, knowing that oranges have a 

utility of two from a model does not allow for the prediction of preferences against a yet 

untested commodity. If a cardinal scale were existent, one could theoretically know 

oranges have a “True” value of 2 utils that would be invariant and could be compared 

against preferences for other commodities not assessed in the same context. The 

limitations of utility are also further evidenced by more recent research showing that 

preferences can be influenced by the dimension on which someone is asked to decide 

(e.g., wins vs. losses) and the framing of information; these effects on decision making 

and others are often referred to as the contextual dependency of decision-making (e.g., 

Birnbaum, 1992; Kahneman & Tversky, 1979). Thus, alluding back to the example of 

delay discounting, simply knowing participants preferred temporally proximal rewards 

over distant ones was not the primary outcome of the studies. Rather, it was the 

understanding that rewards became less valuable as they were delayed through time (that 

is, the functional consequence) that informed potential treatment strategies. In the same 

way, future studies seeking to understand reward value will need to uncover the 
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functional consequences that modulate reward value rather than solely compiling a list of 

preferences amongst commodities. 

 

The Value of Drugs of Abuse 
 

 A prominent area of research that often invokes the idea of reward value is in 

substance abuse research. Illicit drug use is a pervasive public health concern estimated to 

cost the US $193 billion annually (National Drug Intelligence Center Product, 2011). 

Furthermore, the US is experiencing an opioid crisis stemming in part from the over-

prescription of opioid analgesics. In two decades, the number of annually dispensed 

opioids nearly tripled to $248 million (Dart  et al., 2015). Of those receiving opioids, 21-

29% misuse them, 8-12% develop opioid use disorder (OUD; Vowles et al., 2015), and 4-

6% transition to illicit opioid use (Carlson, Nahhas, Martins, & Daniulaityte, 2016). 

Additionally, 12.5 million people over the age of 12 reported past-year opioid misuse, 2.4 

million people met OUD criteria (SAMHSA, 2017), and the mean opioid overdose deaths 

nearly tripled since 2002 to an average of 91 per day across the US (CDC, 2017). Thus, 

there is substantial public health cost of opioid use that highlights the need for treatment 

and prevention strategies. 

 Substance use disorders (SUDs) like OUD have also been described as “disorders 

of choice” (Kalivas, Volkow, & Seamans, 2005; Lamb, Maguire, Ginsburg, Pinkston, & 

France, 2016), in that individuals must choose the drug reward at the expense of other 

nondrug alternatives. Indeed, the notion of drug choices at the expense of nondrug 

alternatives is also reflected in many DSM-V psychiatric criteria for OUD (Association, 

2013). Thus, decision-making processes, including reward-value mechanisms, have the 

potential to be therapeutic targets for reducing illicit drug use. Some laboratories have 

embraced the choice mechanism of decision making (e.g., Ahmed, 2010; Banks & 

Negus, 2012), but many use what is here referred to as single schedules of reinforcement 

(e.g., Belin-Rauscent, Fouyssac, Bonci, & Belin, 2016; Jones & Comer, 2013; Marchant, 

Li, & Shaham, 2013; N Kearns, A Gomez-Serrano, & J Tunstall, 2011; Sanchis‐Segura & 

Spanagel, 2006), as described below 
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Common Measures of Reward Value in Substance Abuse Research 
 

 Conditioned place preference (Spragg, 1940) is perhaps the most ubiquitously 

used preclinical procedure (Childs & de Wit, 2009 in humans) to study the rewarding 

efficacy of a drug without having individuals actually self-administer (Bardo & Bevins, 

2000). In a typical 3-chamber procedure consisting of two side chambers adjoined by a 

central chamber, an animal is initially placed in the central compartment and allowed 

access to the two side chambers. The time that the animal spends in the two separate 

rooms is measured as a baseline. Then, at separate time points, the animal is injected with 

either a dose of drug or saline and restricted to either the drug- or saline-paired room, 

which are made to be as distinct from one another as possible. Finally, after a number of 

conditioning sessions for both drug and saline, the animal is again placed in the central 

compartment and allowed free access to both rooms. The primary outcome measure is the 

time spent in each room. If the time spent in the drug-paired chamber is increased (both 

compared to the saline-paired chamber and baseline), then the results are interpreted as a 

binary distinction of the drug having reward value. 

 While conditioned place preference can assess drug reward value through 

noninvasive procedures, having an animal actually choose and take drug reward provides 

greater face validity as it reflects what human drug users do. As such, self-administration 

is generally referred to as the gold standard for assessing drug-associated reward value 

(Weeks, 1962). In animals, self-administration occurs via implantation of a catheter into 

the animal’s vein that allows for direct intravenous infusions of drug. Self-administration 

procedures typically use a constant response requirement, otherwise known as a fixed-

ratio (FR) schedule, on an operant such as a lever that, once completed, allows for self-

administration of a drug. The amount (or rate) of intake is then interpreted as an index of 

how valuable or rewarding the drug is to a particular individual (Belin-Rauscent et al., 

2016).  

Further methodologies have also been developed on top of self-administration to 

striate individuals into more or less addiction-prone categories. One of the earliest was 

the progressive ratio schedule (Griffiths, Findley, Brady, Dolan-Gutcher, & Robinson, 

1975; Hodos, 1961), in which the response requirement for each subsequent self-
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administered dose is increased either trial-by-trial or across sessions (Richardson & 

Roberts, 1996). The primary measure with progressive ratio is the breakpoint, or the last 

completed FR followed by a predetermined period of time during which no responding 

occurs. Relatively higher breakpoints are interpreted as the individual exerting more 

effort to earn the reward and, by extension, evidence of the reward providing more utility. 

Another variant is the escalation model (Ahmed, Walker, & Koob, 2000), where rats are 

given either short (~1-3 hr) or long (~ 6 hr) access to self-administer a drug. Rats given 

extended 6-hr access will typically increase their rate of intake beyond the short access 

group and show resistance to drug extinction or continued use despite concomitant 

punishment (e.g., shock; Ahmed & Koob, 1998; Edwards & Koob, 2013). The escalation 

of drug intake and resistance to punishment ostensibly represents a divergence from 

reward-based decision making to compulsive decisions for drug reward, regardless of 

consequences. 

 A final paradigm is an adaptation of the economic demand model (Hursh & 

Silberberg, 2008). In demand procedures, the value of a commodity is assessed by 

determining an individual’s response rate for a given commodity across different levels 

of an assumed unitary scale, unit price. Unit price is defined as the cost-benefit ratio of 

the reward magnitude divided by its cost (e.g., response requirement) that is manipulated 

across different experimental components. A demand equation, such as the exponential 

form shown in Equation 3, is then fit to the data.  

𝑄𝑄 =  𝑄𝑄0 + 𝑘𝑘(𝑒𝑒−𝛼𝛼𝛼𝛼 − 1) (3) 

In Equation 3, Q0 is the value of a commodity when it is freely available (or at least at 

minimum price), α determines the rate of decline in response rates as a function of unit 

price (or a commodity’s elasticity), and k is a scalar constant. While similar to 

progressive ratios, demand equations fit rates of intake as a function of unit price rather 

than only looking at the FR where responding stops. Commodities with relatively higher 

α parameters are said to be more elastic and maintain less reward value as a function of 

increases in price. Therefore, a commodity of greater reward value may have a relatively 

higher Q0 and/or lower α. The demand equation can suitably parametrize several different 

drug commodities (Bentzley, Fender, & Aston-Jones, 2013; Hursh & Silberberg, 2008), 

and there is some evidence that testing two commodities in isolation can predict ordinal 
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preferences in choice (Johnson & Bickel, 2006; Kearns, Kim, Tunstall, & Silberberg, 

2017; Schwartz, Kim, Silberberg, & Kearns, 2017; but see Schwartz, Silberberg, Casey, 

Paukner, & Suomi, 2016). 

 

Theoretical and Pragmatic Issues with Single Schedule Measures 
  

Rate Measures are Dissociable from Preferences 
 While there are merits to the above approaches, each procedure, when used to 

quantify the reward value of a single commodity (i.e., a single schedule), suffers from 

similar pragmatic and theoretical issues. One issue is the assumption that response rates 

serve as a valid measure for the utility of a commodity (Banks & Negus, 2012). 

Economic determination of reward value uses choice as the gold standard, and rates are 

often dissociated from choice preferences (e.g., Bonem & Crossman, 1988; Picker & 

Poling, 1982). Perhaps the most recognizable dissociation between rates and preference 

comes from the self-administration dose-response curve. In single schedules, increasing 

doses often produces a bitonic, “inverted U-shape” in response rates (e.g., Katz, 1989; 

Mello & Negus, 1996; Weeks, 1962), where intermediate dose values produce the highest 

rates of responding. Thus, one would conclude that the intermediate doses are the most 

rewarding due to the elevated rates of responding. The logic for higher doses decreasing 

rates is often attributed to aversive and nonspecific effects (Katz, 1989). However, when 

individuals are offered a choice between dose values and some other commodity (e.g., 

food) or a higher dose of the drug, the higher dose often produces larger drug preferences 

(Beckmann, Chow, & Hutsell, 2019; Freeman & Woolverton, 2011; Hutto & Crowder, 

1997; Johanson & Schuster, 1975; Negus, 2006). Additionally, individuals described as 

‘compulsive’ drug users that show escalated drug use in single schedules often do not 

show corroborative drug preference changes in choice procedures (Caprioli, Zeric, 

Thorndike, & Venniro, 2015; Lenoir, Serre, Cantin, & Ahmed, 2007; Schwartz et al., 

2017; c.f. Lenoir, Cantin, Vanhille, Serre, & Ahmed, 2013; Negus & Rice, 2009 ). Such 

dissociation suggests that rate measures of reward efficacy are not in agreement with 

choice procedures and are susceptible to other factors independent of the value of the 

commodity here called direct effects (Katz, 1989).  
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Direct Effects 
Two notable direct effects apparent from single schedules are satiation and 

motoric effects. Satiation refers to the hypothesis that the decrease in rates of responding 

at relatively higher doses is due to an individual needing fewer infusions to reach 

threshold levels of reward. Evidence for satiation comes from findings that animals will 

titrate their intake and show stable inter-reward-intervals as a function of dose (Katz, 

1989), and that higher doses can lead to increased latencies to respond in choice 

procedures without concomitant decreases in drug preference (Beckmann et al., 2019). 

Additionally, forced time-out periods between doses of self-administered cocaine can 

change the peak of the dose-response curve. Short timeouts shift the peak of the function 

to lower doses (Caine & Koob, 1994), while longer timeouts do not show the decreased 

rates or inverted U-shaped curve typical at higher doses (Griffiths, Bradford, & Brady, 

1979). Finally, relatively large amounts of food (Goldberg, 1973) and intracranial self-

stimulation voltage (Reynolds, 1958) can also produce decreases in response rates similar 

to a dose-response curve. Thus, some of the apparent decreases in response rates may be 

due to a satiety effect of the individual spacing their reward intake that, in temporally 

constrained procedures such as single schedules, appears as a reduction in value. 

The issue of motoric effects has two components: the rate-altering effects of some 

drugs and rate-dependent effects. In terms of gross motoric effects, stimulants (Antoniou, 

Kafetzopoulos, Papadopoulou-Daifoti, Hyphantis, & Marselos, 1998; Witkin, 1993) and 

opioids (Browne & Segal, 1980; Smith, Greene-Naples, Lyle, Iordanou, & Felder, 2009) 

can increase or decrease locomotor activity that is both temporally dependent and can 

change between acute versus chronic administration. Thus, when an individual’s ability 

to move is directly related to the measure of value, compounds that can affect motoric 

ability confound motoric and valuation processes. The potentially confounding motor 

effects are also a primary concern whenever a treatment is applied (be it pharmacological, 

genetic, or anatomical), as it can be difficult to dissociate any observed rate changes as 

being due to altered reinforcing efficacy of the scheduled commodity from a motoric-

altering effect of the treatment (Mello & Negus, 1996).  

The difficulty of dissociating motoric from preference effects is also further 

compounded by rate dependency (Branch, 1984). Rate dependency describes an 
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interaction of rate-altering effects with an individual’s baseline performance. Rate 

increases are more probable at lower baseline rates while decreases more probable with 

higher baselines. To demonstrate rate dependency, researchers have manipulated the 

baseline rate of responding through using either interval or ratio schedules (Kelleher & 

Morse, 1964; Lucki, 1983; McMillan, 1969; Thompson, Honor, Verchota, & Cleary, 

1984) that tend to produce lower and higher rates of responding, respectively (Powell, 

Honey, & Symbaluk, 2016). For example, individuals experienced with both schedules 

that are challenged by the same doses of amphetamine show divergent increases and 

decreases in rates depending on whether the baseline rate of performance was lower or 

higher, respectively (e.g., Kelleher & Morse, 1964). Importantly, the effects of rate 

dependency are contingent upon the baseline rate of behavior and not necessarily the type 

of schedule used (McMillan, 1969). Thus, the issue of motoric effects confounding single 

schedule measures of value is robust and makes comparisons of both within- and 

between-subject manipulations difficult to interpret. 

Inherent Invocation of the Cardinal Scale 
 A final more theoretical issue with single schedules is the lack of recognizing the 

contextual dependency of a commodity’s value by offering it in isolation. The contextual-

dependency of decisions has long been recognized in economics (e.g., Glimcher, 2011; 

Kahneman & Tversky, 1979) and represents an important theoretical assumption: choice 

preferences are relative to other available commodities. That single schedules offer 

reward commodities in isolation implies an assumption that the obtained measure of 

reward value is indicative of an inherent or “True” value, similar to the idea of the 

cardinal scale. However, from the earlier example of assigning utility values to different 

fruits, it is known that the idea of a cardinal scale is flawed. 

One prominent invocation of cardinal scale ideology (despite recognizing the 

variability of reward value) is the use of the essential value metric stemming from 

economic demand. Essential value (Hursh & Silberberg, 2008) describes the elasticity of 

a commodity (α) across the assumed unidimensional space of unit price after normalizing 

for differences in maximum consumption (Q0; Equation 3). The goal of the essential 

value metric is to create a single measure of reward value that can compare commodities 

across similar procedures (e.g., Christensen, Silberberg, Hursh, Huntsberry, & Riley, 
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2008; Schwartz et al., 2019; Smethells, Harris, Burroughs, Hursh, & LeSage, 2018) and 

be used to identify ‘addiction-like’ vulnerabilities in decision-making (e.g., Bentzley, 

Jhou, & Aston-Jones, 2014; Murphy, MacKillop, Skidmore, & Pederson, 2009).  

There are multiple problems with the idea that reward value as a function of unit 

price (i.e., essential value) is representative of an absolute measurement of value. First, as 

already mentioned, essential value invokes the idea of an invariant value measure that can 

be placed upon a cardinal scale from which to compare all commodities against. Second, 

the dimension of unit price fails to take into account that different dimensions (e.g., 

effort, time, magnitude, probability, etc.) are not psychophysically scaled the same 

(Stevens, 1957). For example, unit price is defined as the magnitude of a reward divided 

by its cost (except cost is ubiquitously effort). If unit price indeed represents a 

unidimensional space, then manipulating either the cost or magnitude of a commodity, 

such that unit prices are equivalent, should result in equivalent measurements of 

elasticity. However, manipulating cost or magnitude produces differences in essential 

value estimates (Smith, Rupprecht, Sved, & Donny, 2016) and subjects’ choices between 

commodities of identical unit prices (but varying in cost or magnitude) are not indifferent 

(Madden, Bickel, & Jacobs, 2000). Essential value is also altered by the presence of a 

concurrently available commodity (Carroll & Rodefer, 1993; Smethells et al., 2018) and 

the overall length of time that a commodity is available (Carroll & Rodefer, 1993; Foster, 

Kinloch, & Poling, 2011). Thus, unit price is not a singular dimension for comparing 

reward value, and the metric of essential value is dependent upon the decision-making 

context.  

While the above inconsistencies are troubling for essential value, they are also 

predictable from a differentially scaled multidimensional view of reward value. 

Differential scaling suggests that a change in one dimension (e.g., effort) may have 

different psychophysical effects than the addition of one food reward (i.e., magnitude), 

despite the same unit price. Therefore, inconsistencies in manipulations of magnitude or 

effort that return different essential value measurements are not without theoretical cause. 

Furthermore, manipulations of different commodity-relevant dimensions can have 

independent effects on choice preferences (Arvanitogiannis & Shizgal, 2008; Beckmann 

et al., 2019; Smith, Beckmann, & Zentall, 2017a), which are not possible under the unit 
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price unidimensional assumption. Indeed, the inconsistencies in effects with the demand 

paradigm point to the necessity of a multidimensional view (described in detail below). 

A distinction should be made between demand as a subdomain of economics and 

the essential value metric. The above section denotes issues with the use of essential 

value as a unifying metric for reward value; these same issues do not necessarily extend 

to broader applications of demand. Indeed, demand can serve as a useful behavioral 

economic tool (Bickel, Marsch, & Carroll, 2000) grounded by economic principles 

(Rachlin, Battalio, Kagel, & Green, 1981; Rachlin, Green, Kagel, & Battalio, 1976). 

Furthermore, demand can aid in understanding choice mechanisms such as cross-price 

elasticity assessments of substitutes and complements (Rachlin et al., 1976). However, 

researchers using essential value or single schedules as metrics of reward value should 

appreciate the shortcomings of single schedule measures, the contextual dependency of 

reward value, and the multidimensional nature of reward value less they become 

overconfident in their measures’ predictive efficacy.  

 

Multidimensional Scaling of Reward Value: The Progression of Matching 
 

One reason why single--schedule paradigms might persist despite the noted issues 

is hysteresis. Rates of behavior were originally thought to be a measure of reward 

strength (e.g., Skinner, 1932; Skinner, 1938), and some have posited that differences 

between rate and choice measures might be reflective of multiple decision systems or 

independent aspects of reward value (e.g., Berridge, Robinson, & Aldridge, 2009; Regier 

& Redish, 2015). A discussion of the latter point would extend beyond the scope of this 

manuscript. Rather, this section is meant to describe an alternative approach from the 

experimental analysis of behavior (EAB) literature that was also steeped in the notion of 

response rates as reward strength. However, upon meeting theoretical challenges similar 

to those noted above, the EAB field altered their formulations of reward value as told 

through the progression of the matching equations. 

Tautological Matching 
Matching was originally derived from the observation that response rates came 

under orderly control of relative schedules of reinforcement (Davison & McCarthy, 
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1988). In a typical matching experiment, subjects can choose to allocate responses to two 

operants that reward responding at different (and locally variable) rates, also known as 

variable interval (VI) schedules. Under concurrent VI schedules, Herrnstein (Herrnstein, 

1961) originally noted that the relative response rates of pigeons allocated their 

responding according to the relative reinforcement obtained on each key. Herrnstein 

quantified the effect using Equation 4 
𝐵𝐵1
𝐵𝐵2

=  
𝑅𝑅1
𝑅𝑅2

(4) 

where B refers to the absolute behavior (response rates) between choice alternatives and 

R refers to the obtained reinforcers for choice 1 and 2. Although originally formulated for 

relative rates of responding and reinforcers, both sides of the matching equation were 

easily expanded to other dimensions. For example, subsequent work showed that relative 

responding matched dimensions such as relative delay and magnitude of reward while 

relative rates could be substituted for relative time allocation (Davison & McCarthy, 

1988).  

 While Equation 4 does well to describe behavior under a variety of conditions, it 

soon needed alterations stemming from pragmatic issues in the use of rates as the output 

measure and in the extension to single schedules or operants (c.f., Davison & McCarthy, 

1988; Herrnstein, 1970, 1974). Herrnstein originally thought that response rates were a 

linear function of reward rates. However, Catania (1963a, 1963b) showed non-linearity 

between response and reinforcer rates due in part to an organism having a maximum 

motoric output. Thus, any subsequent formulations typically took on a hyperbolic form to 

allow for an asymptote in responding. A second extension was also needed to account for 

the fact that responding on scheduled operants was not the only behavior available to an 

individual. Indeed, typically non-measured ‘leisure behavior’ was recognized in matching 

research and encompassed a class of any behavior other than responding for the 

scheduled commodity (Be). Rather than simply being left out of the equations as error, 

leisure behavior was thought of as choice behavior (Herrnstein, 1970). The non-linear 

functionality between rates and reinforcers as well as leisure behavior were encompassed 

in Equation 5. 
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𝐵𝐵1
𝐵𝐵𝑒𝑒 … + 𝐵𝐵𝑁𝑁

=
𝑘𝑘𝑅𝑅1

𝑅𝑅𝑒𝑒 … + 𝑅𝑅𝑁𝑁
(5) 

Colloquially known as Herrnstein’s hyperbola, Equation 5 suggests the rate of responding 

for a behavior (B1, B2... BN) is now a function of its rate of reinforcement scaled 

according to an organism’s maximal rate of responding for a given operant (k) divided by 

the rate of reinforcement for all other extraneous reinforcement (Re) and other 

concurrently available choices (RN). Note that while the use of response rate as a 

dependent variable here suffers from similar issues noted above, scaling behavior 

according to an individual’s own motoric output takes one step towards trying to rectify 

the influence of extraneous variables other than experimenter manipulated variables (e.g., 

reward rate). 

Generalized Matching 
 Although Herrnstein’s hyperbola was a respectable step in attempting to control 

for confounding issues in rate measures of behavior, it was not consistent with empirical 

findings (Davison & McCarthy, 1988; McDowell, 2005, 2013). Namely, estimates of k 

and Re were not always independent or invariant. Herrnstein’s hyperbola was therefore 

replaced by the somewhat less theoretical generalized matching law (Baum, 1974) shown 

in Equation 6. 

𝐵𝐵1
𝐵𝐵2

= 𝑏𝑏 �
𝑅𝑅1
𝑅𝑅2
�
𝑠𝑠

(6) 

Equation 6 was the beginning of a more modern class of matching equations called power 

functions (McDowell, 2005) that suggest that behavior (B) is a function of reinforcement 

rate (R) scaled with a power term (s) and multiplied by a bias term (b). The use of bias 

and sensitivity account for deviations from matching similar to Herrnstein’s attempts, but 

in somewhat less of a theoretical manner using modeled free parameters. However, the 

sensitivity term (s) can be interpreted similar to power functions from previously-

mentioned psychophysical studies (e.g., Stevens, 1957) as an individual’s sensitivity to 

differences between and changes in relative rates of reinforcement. However, the 

behavior of interest needs to be measured under multiple levels of reinforcement rates to 

obtain theoretically accurate estimates of s. For tautological matching to occur, estimates 

of s and b should approximate values of one indicating that the relative response behavior 
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closely followed changes in relative reward rates and was without bias for either choice 

alternative. Despite some limitations of interpretation, the generalized matching equation 

has shown efficacy in describing a range of (non)human data from primarily concurrent 

VI choice studies (e.g., Baum & Rachlin, 1969; Wearden & Burgess, 1982) and can be an 

effective tool to describe how sensitive individuals’ preferences are to changes in 

experimenter-manipulated variables. 

 The progression of matching was still not finished. As noted earlier, multiple 

dimensions can affect behavior (Baum & Rachlin, 1969; Rachlin, 1971). To account for 

multiple dimensions affecting behavior, concatenation of each was suggested as shown in 

Equation 7.  
𝐵𝐵1
𝐵𝐵2

= 𝑏𝑏 ∗
𝑅𝑅1
𝑅𝑅2

∗
𝑀𝑀1

𝑀𝑀2
∗
𝐼𝐼1
𝐼𝐼2
∗

…𝑋𝑋1
…𝑋𝑋2

(7) 

In Equation 7, relative behavior is a function of the relative rates (R), magnitude (M), and 

immediacy (the inverse of delay; I) of reinforcement, while X denotes any number of not 

listed dimensions (X) between two alternatives (1 and 2). Going one step further, raising 

each dimension to a sensitivity term grants Equation 8: 

𝐵𝐵1
𝐵𝐵2

= 𝑏𝑏 ∗ �
𝑅𝑅1
𝑅𝑅2
�
𝑆𝑆𝑅𝑅
∗ �
𝑀𝑀1

𝑀𝑀2
�
𝑆𝑆𝑀𝑀
∗ �
𝐼𝐼1
𝐼𝐼2
�
𝑆𝑆𝐼𝐼
∗ �

…𝑋𝑋1
…𝑋𝑋2

�
𝑆𝑆𝑋𝑋

(8) 

where SR,M,I...X represent scaled sensitives to changes in each of the relevant dimensions. 

Thus, matching is primarily a formalized restatement of empirical findings known to 

affect behavior (i.e., differential scaling of multiple dimensions). When coupled with 

modern statistical approaches (Young, 2017), Equation 8 is an effective tool at capturing 

individual differences and couches them in a theoretically parsimonious interpretation of 

differences in contact with relevant reward dimensions. Furthermore, although each 

dimension is said to be independent of others, the use of mathematical formulation would 

allow for empirical testing of such assumptions (Davison & McCarthy, 1988). Finally, 

for the sake of completeness, we formulate what has been an overriding assumption in 

Equation 9 
𝐵𝐵1
𝐵𝐵2

=
𝐸𝐸1
𝐸𝐸2

(9) 

where the relative rates of behavior (B1 and B2) are reflective of a relative value (V1 and 

V2) for available alternatives. 
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 The progression of the matching equations exemplifies an approach to the 

treatment of data through quantitative models. Equation 5 is of particular importance, as 

Re was meant to correct for some of the motoric problems previously noted with single-

schedule measures of reward value. However, through formalizing testable predictions, it 

was shown that Re could not fully reconcile confounding motoric effects. Such instances 

show how mathematical models can be “better than mere words” (Mazur, 2006, p. 276) 

because they require unambiguous specification of theoretical assumptions. Ultimately, 

single schedule measures would become less prevalent in the matching literature (but see 

Killeen, 1994), perhaps with the suggestion that they are less robust or representative 

measures of reward value. The prevalence of single schedules in substance abuse is also 

not necessarily due to failures of matching in drug-associated decisions, as they can 

describe drug and nondrug choices (Beckmann et al., 2019). Thus, the distinction of 

measurement is important for the quantification of value both in understanding factors 

that lead to drug choices and for the relatively new neuroeconomic field that seeks to find 

neural underpinnings of reward value in the brain (Glimcher et al., 2013). 

 

Reward Value at Another Level: Neuroeconomic Reductionism 
 

 To this point, the discussion of reward value has revolved around the assumption 

of Equation 9: that measured behavior is a reflection of the hypothetical construct of 

value, or utility in the subjective case. Even in the matching equations, behavior is 

described as if a scaled multidimensional utility function is utilized to compare 

alternatives. The use of the phrase ‘as if’ is important (Glimcher, 2011; Glimcher, Dorris, 

& Bayer, 2005), as it serves to distance oneself from the false notion that individuals are 

consciously computing such values when they make decisions. However, if individuals 

do not consciously represent and adhere to their own utility functions, how are decisions 

made? The suggestion by the field of neuroeconomics is that decisions are made by the 

physiological architecture of neurons in the brain. 

 Glimcher (2011) suggested that one goal of neuroeconomics will be to move from 

the statement of individuals acting as if they represent values on a utility function to 

individuals making decisions because of value computations in the brain. However, for 
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brain value computations to be verified, understanding the implicated philosophical 

assumptions and a valid means of testing hypotheses are necessary. A core philosophical 

assumption for neuroeconomics is the idea of reductionism (McCauley, 2007), or that 

phenomena observed at one level of analysis can be reduced to another. For example, one 

mechanism as to why (non)humans may behave according to a monotonic utility function 

for food intake is because it leads to reproductive success. Thus, the concept of fitness 

maximization in evolutionary theory is a proposed mechanism for reducing the concept 

of rational human agency onto similar rational agency seen in animals (Kacelnik, 2006; 

Stephens, 2008). A further reduction could then imply that neuronal architectures lead to 

fitness maximization in animals that could be similarly present in mediating human 

decision making. 

 The second requirement for a neuroeconomic framework is a valid form of 

hypothesis testing. In order to test reductions in higher-order decision theories at the level 

of physiology, Glimcher (2011) suggested that researchers start by making assumptions 

from what is already known (i.e., utility models). Although no single utility function can 

describe choice data without fail, beginning with utility models allows for the 

identification of neural circuits involved in valuation when behavior is utility-theory 

compliant. Therefore, to test if brain areas “encode” reward value, physiological 

recordings of neuron activity or neurotransmitters are typically correlated with behavioral 

measures of reward value.  

Mesocorticolimbic Encoding of Ostensible Reward Prediction Errors 
 One promising line of neuroeconomics research was the identification of an 

ostensible reward prediction error (RPE). Schultz and colleagues (Schultz, Apicella, & 

Ljungberg, 1993) measured ventral striatum neuron activation as thirsty monkeys learned 

a cued choice procedure in which a discriminative stimulus signaled operant-contingent 

availability of a delayed juice reward (see also Apicella, Ljungberg, Scarnati, & Schultz, 

1991; Schultz, Apicella, Scarnati, & Ljungberg, 1992). Early in training, striatal neurons 

displayed a burst firing pattern of activation following reward delivery and a brief 

cessation of firing following reward omission. However, the pattern of neuronal activity 

also changed as the monkeys learned the task. Eventually the striatal neurons stopped 

firing when the reward was delivered and activated instead with the onset of the cue 
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signaling reward availability. The activity of the neurons therefore suggested not merely 

encoding a sensitivity to reward delivery, but also of cues providing information about 

reward and violations of reward expectations. 

 To further assess the plausibility of the RPE hypothesis, subsequent studies 

looked at neuronal activation under more uncertain conditions. For instance, providing 

reward in a random, behaviorally non-contingent manner can reestablish burst firing of 

striatal neurons to reward delivery (Mirenowicz & Schultz, 1994). Additionally, burst 

firing appears to scale with probability of reward. Fiorillo, Tobler, and Schultz (2003) 

trained monkeys on a Pavlovian procedure where a cue was probabilistically followed by 

a delayed reward. The results showed that burst firing to reward delivery was inversely 

related to the scheduled probability of that reward. However, burst firing to the cue 

predicting reward delivery was positively related to the scheduled probability, and 

activity between the cue and reward showed an inverted U-shaped pattern with maximal 

activity at 50% reward probability. Together, the results suggested that striatal neuron 

firing was encoding information about reward wherein reward-associated firing seemed 

contingent on how surprising an event was, while cue-associated activation was 

contingent on reward-predictive associability.  

 The finding of neural RPEs was exciting for multiple reasons, one being the 

possibility of an ostensibly common physiological signal for reward value (i.e., a 

common currency).The validation of a common currency mechanism would suggest that 

individuals do make decisions according to and because of neural representations of a 

utility function and provides a biological target to treat disorders stemming from reward 

pathologies (such as substance use disorders). Subsequent work has therefore attempted 

to evaluate the validity of the RPE as a common currency mechanism by testing 

commodities across a range of dimensions. For example, preclinical research has shown 

that RPEs in mesocorticolimbic areas appear to scale with changes in probability (Fiorillo 

et al., 2003; Hart, Rutledge, Glimcher, & Phillips, 2014; Lak, Stauffer, & Schultz, 2014), 

magnitude (Hart, Haney, Foltin, & Fischman, 2000; Kobayashi & Schultz, 2008; Padoa-

Schioppa & Assad, 2006; Saddoris, Cacciapaglia, Wightman, & Carelli, 2015a) and delay 

(Day, Jones, Wightman, & Carelli, 2010; Kobayashi & Schultz, 2008; Roesch, Calu, & 

Schoenbaum, 2007; Saddoris et al., 2015b) for either rewards or reward-associated cues. 
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Additionally, with modest success, some studies have manipulated mesocorticolimbic 

activity to causally relate RPEs to preferences (Hamid et al., 2016; Saddoris et al., 2015b; 

Stopper, Maric, Montes, Wiedman, & Floresco, 2014). 

Ostensible RPE signals have also been found in human mesocorticolimbic-

associated nuclei using functional magnetic resonance imaging techniques (fMRI; Levy 

& Glimcher, 2012). fMRI measures blood oxygen level-dependent (BOLD) signals that 

act as a proxy for brain region activity (discussed more below in the Oxygen 

Measurement and its Relation to Neuron Activity section) and allow for recording of 

brain activity similar to electrodes used in preclinical studies. However, assessment of 

what reward-relevant dimensions human RPEs are sensitive to is somewhat precluded 

due to prevalent use of model-based fMRI (O'Doherty, Hampton, & Kim, 2007). In 

model-based fMRI, reward-relevant dimensions are often converted to a prediction 

derived from a utility function (such as an expected value) that is correlated with brain 

activity. As such, the scaling of area-specific activity with a singular dimension is less 

available. Still, several studies using magnitude, probability, and delay manipulations on 

choice alternatives have shown mesocorticolimbic activity is related to model-derived 

parameters (Abler, Walter, Erk, Kammerer, & Spitzer, 2006; Ballard & Knutson, 2009; 

Gläscher, Daw, Dayan, & O'Doherty, 2010; Kable & Glimcher, 2007; Knutson, Taylor, 

Kaufman, Peterson, & Glover, 2005), and suggests RPE scaling of reward-relevant 

dimensions. Additionally, two recent meta-analyses of fMRI studies assessing 

correlations between brain activity and decision-making have found homology of results 

to two mesocorticolimbic areas: the striatum (both ventral and dorsal) and prefrontal 

cortices (Garrison, Erdeniz, & Done, 2013; Levy & Glimcher, 2012). Thus, in order for 

greater homology between (pre)clinical literatures and more informed hypothesis testing, 

animal research should also increase its use of models describing preference behavior 

with neurological measures of reward value. 

Molecular Analysis of Neurobehavioral Decision Making 
 One class of models that lends itself to the reductionist approach of 

neuroeconomics is reinforcement learning (RL) models (Sutton & Barto, 1998). RL 

models stem from Pavlovian conditioning research (Bush & Mosteller, 1953; Rescorla & 

Wagner, 1972) and suggest learning is dependent upon the unpredictability of rewards 
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and cues. The original intent of the Pavlovian equations was to model conditioned 

responses (CR) that occur when pairing a to-be conditioned stimulus (CS) with a 

biologically-relevant unconditioned stimulus (US; Rescorla & Wagner, 1972). The 

models later conceptually changed to modeling the associative strength between stimulus 

and reward in the modernized Equation 10 

𝐸𝐸𝐴𝐴𝑡𝑡+1 = 𝐸𝐸𝐴𝐴𝑡𝑡 + 𝛼𝛼(𝜆𝜆 − 𝐸𝐸𝐴𝐴𝑡𝑡) (10) 

where the associative strength (V) of stimulus A on the next trial (t) is a function of the 

difference between the current strength and asymptote of conditioning (λ) scaled by a 

learning rate parameter (α). Thus, similar to the idea of RPEs, the change in associative 

strength is a scaled correction between previous and new learning. Although inaccurate 

under certain conditions (e.g., Miller, Barnet, & Grahame, 1995), Equation 10 has served 

as a highly influential description of several conditioning phenomena (Miller et al., 1995; 

Rescorla, 2003).  

 Given the findings of Schultz and colleagues (e.g., Schultz et al., 1993), the use of 

RL models makes intuitive sense as it already applies a prediction correction algorithm as 

a learning mechanism. Additionally, application of RL models from computer science 

formulations (Sutton & Barto, 1998) and behavioral conditioning describe the neural RPE 

data well (Schultz, Dayan, & Montague, 1997). One formalization of how an RL model 

can update reward values is shown in Equation 11: 

𝐸𝐸𝐴𝐴𝑡𝑡+1 = 𝐸𝐸𝐴𝐴𝑡𝑡 + 𝛿𝛿𝑡𝑡 (11) 

where the value of commodity A on the next trial (t) is defined by the summation of its 

current value and the reward prediction error (δt). The reward prediction error is defined 

in Equation 12. 

𝛿𝛿𝐴𝐴𝑡𝑡 = 𝛼𝛼(𝜆𝜆𝐴𝐴𝑡𝑡 − 𝐸𝐸𝐴𝐴𝑡𝑡) (12) 

In Equation 12, the difference between a commodity’s expected value (V) and the 

received reward (λ) is scaled by a learning parameter (α). Equation 12 is applied 

independently to a commodity when it is chosen to determine the expected value for each 

reward. Then, to determine action selection, the values of the commodities are compared 

according to a softmax decision rule (Sutton & Barto, 1998) to determine the probability 

of a choice: 
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𝑝𝑝𝑝𝑝ℎ𝐴𝐴𝑡𝑡 =
1

1 + 𝑒𝑒𝑥𝑥𝑝𝑝(−[𝛽𝛽(𝐸𝐸𝐴𝐴𝑡𝑡 − 𝐸𝐸𝐵𝐵𝑡𝑡)])
(13) 

In Equation 13, the probability of choosing commodity A on the current trial (t) is 

determined by the difference between reward values (V) for commodity A and B scaled 

by an inverse temperature parameter (β). Hierarchical RL models such as in Equations 

11-13 have been shown to capture choice data of both humans (Rutledge et al., 2009) and 

animals (Groman, Rich, Smith, Lee, & Taylor, 2017). Additionally, RL models have the 

added benefit of being molecular analyses that capture choice-by-choice dynamics. While 

descriptive molar models such as the matching equation are often sufficient for 

describing choice behavior, their interpretation as a causal definition of choice behavior 

is strained due to its averaging over conditions of choice. Alternatively, RL models make 

a prediction for every choice that, if sufficient, grants one step closer to a causal 

interpretation. 

 

The Value in Studying Value: Applications to Opioid Use Disorder 
 

  The previous sections illustrated how the determination of reward value is more 

complex than perhaps let on by single schedule measures prevalent in substance abuse 

research. In order to properly assess the conditions under which a commodity is favorably 

chosen, experiments need to explore a range of conditions across multiple dimensions of 

reinforcement relative to other commodities. The necessity for complex, relative models 

of reward also serves for a better representation of how drug users make drug-associated 

decisions in their natural environments. Substance users are not isolated to a box where 

the only available alternatives are to take drug or leisure activities (i.e., Be). Thus, 

providing another biologically relevant commodity (e.g., food, money) is necessary for a 

better theoretical understanding of reward value and to improve the face validity of the 

model as a representative measure of what occurs in a natural environment (i.e., beyond 

the laboratory). 

 The discussion of valuation as it relates to substance use disorders is also 

predicated on one important point: that substance use disorders can be characterized as 

disorders of choice. Indeed, there is growing consensuses that choice mechanisms affect 
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illicit substance use. For example, the propensity to choose drug rewards can be altered 

by the available dose, cost to obtain drug reward, and the presence of an alternative 

reinforcer (Banks & Negus, 2012; Bickel, Johnson, Koffarnus, MacKillop, & Murphy, 

2014; Davis et al., 2016; Lamb et al., 2016; Moeller & Stoops, 2015). Such results 

therefore suggest that drug-associated decision making is similarly economic as non-drug 

choices. 

 A competing hypothesis with drug taking as a disorder of choice is that of 

compulsion (Kalivas et al., 2005; Lubman, Yücel, & Pantelis, 2004; Vandaele & Janak, 

2018). For a compulsive drug user, drug use is poorly mediated (if at all) by value-based 

decision making. Ideas of compulsive drug use are typically predicated on the idea that 

continued drug use leads to brain changes (e.g., Everitt & Robbins, 2016; Volkow, Koob, 

& McLellan, 2016; Volkow, Wang, Fowler, & Tomasi, 2012) that lead to an insensitivity 

to behavioral consequences. However, multiple theoretical and empirical problems exist 

with the idea of compulsion, not the least of which is that the definition of compulsion 

changes over time (Heyman, 2003, 2013a; Hogarth, 2018). For example, the brain 

changes that compulsive use is predicated on involve post-hoc correlational evidence that 

lacks causal inference. Additionally, incidents of drug experimentation leading to regular 

use is low, contingency management programs offering incentives contingent on drug-

abstinence are highly effective at curbing long time use, and users often remit without 

treatment (Davis et al., 2016; Heyman, 2003, 2013b). Even rats given extended access to 

self-administer drugs of abuse often do not show potentiated drug preferences after they 

become labeled “compulsive users” (Caprioli et al., 2015; Lenoir et al., 2007; Schwartz et 

al., 2017). Thus, the suggestion is not that brain changes do not occur, but that the 

changes may not necessarily preclude an individual from making value-based economic 

decisions (Heyman, 2013b).  

 Although drug-associated brain changes may not be a useful determinant for 

describing drug preferences, they may serve as a useful testing ground for neuroeconomic 

hypotheses. At present, the idea of a cardinal utility scale in the brain is predicated on 

mesocorticolimbic activity scaling with different metrics of behaviorally derived reward 

value. However, drugs of abuse also directly alter mesocorticolimbic activity through 

their pharmacodynamics (Iversen, Iversen, Bloom, & Roth, 2008; Pierce & Kumaresan, 
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2006) and produce activity that may not necessarily be related to value. For instance, 

sensitization or tolerance to the pharmacodynamics of opioid μ receptor agonists (Fields 

& Margolis, 2015; Grecksch et al., 2006; Williams, Christie, & Manzoni, 2001) may 

produce signals within mesocorticolimbic areas that do not scale with behavioral reward 

value measures. Dissociation between brain and behavioral measures to reward delivery 

would subsequently require a careful reconsideration of neuroeconomic hypotheses. To 

date, (pre)clinical studies have shown that mesocorticolimbic areas, such as the striatum, 

are activated by cocaine and heroin reward in a similar manner to food rewards 

(Cameron, Wightman, & Carelli, 2014; D'Souza & Duvauchelle, 2008; Guillem, Brenot, 

Durand, & Ahmed, 2018; Phillips, Stuber, Heien, Wightman, & Carelli, 2003; Risinger et 

al., 2005; Saddoris, Wang, Sugam, & Carelli, 2016), but studies have not yet scaled brain 

activity with reward-value measures to test neuroeconomic hypotheses. 

 Invoking ideas of compulsion may also not be necessary to describe dysregulated 

drug use, as it is possible that such continued use actually stems from valuation 

mechanisms (Heyman, 2013b). Rather than drug use being a habit separate from value-

based decisions, a valuation mechanism would suggest substance abuse is a behavior 

allocation disorder (Lamb & Ginsburg, 2018), comprised of competing contingencies in 

what commodities produce greater local versus global utility (Herrnstein & Prelec, 1991; 

Rachlin, 1997, 2000). For instance, melioration theory suggests drug commodities offer 

relatively higher immediate utility than nondrug commodities. Nondrug commodities 

may offer more utility in the long term (such as hard work leading to career advancement 

or avoidance of job loss), but these consequences are discounted because they are 

delayed.  

 The above depiction of a drug user may appear similar to compulsion theories on 

the surface to some, but there are important differences in what mediates regular use. For 

a compulsive user, regular use stems from a lack of control where the user is not making 

economic decisions and is a static agent. However, the user under melioration theory is 

not compulsive and economic decisions are still being made on a local expected utility 

basis. The distinction of maintaining a user as an economic agent may seem trivial, but it 

has important implications, such as changing the prognosis of treatment from being 

necessarily pharmacological to potentially behavioral. Additionally, if drug users do 
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maintain economic agency, then understanding how users adapt to changing conditions 

may provide new therapeutic targets to adapt behavior away from drug preferences. 

 

Current Dissertation 
 

Dynamic Decisions Across Multiple Dimensions of Reward Value 
 In order to understand opioid-related decision making, research from behavioral 

economics and neuroeconomics has suggested that experiments need to account for the 

contextually dependent and relational nature of reward value. Furthermore, experiments 

using single-schedule measures common in substance abuse research often do not model 

decision making in these more complex environments. The current dissertation therefore 

characterized the degree to which opioid-related decision making operates according to a 

value-based mechanism through economic drug choice procedures. 

 Three experiments modeled value-based decision making in rodents based on a 

procedure previously used with humans (Rutledge et al., 2009). Experiment 1 validated 

the procedure with drug-naïve rats who chose between two probabilistically delivered 

food rewards. The reward probabilities of both choices changed in a dynamic, 

unpredictable manner, such that maximizing reward intake required constant updating of 

reward value based on trial-outcome feedback. Additionally, given that evidence that 

reward-associated cues can alter reward value (e.g., Barrus, Cherkasova, & Winstanley, 

2015; Zentall & Stagner, 2011), the rats were split between Signaled and Unsignaled 

groups. Upon making a choice for either alternative, the Unsignaled group received a 

choice-dependent cue that was uninformative of trial outcome; this group served as a 

control to represent more commonly used procedures where choices either result in food 

reward or food omission without any cues. Alternatively, the Signaled group received 

differential reward-associated cues (Smith, Hofford, Zentall, & Beckmann, 2018). Choice 

of one option resulted in an uninformative cue similar to the Unsignaled group. However, 

choice of the alternative option produced distinct win- and loss-paired cues that were 

always followed by reward or omission, respectively. Following sufficient learning of 

task contingencies, the reward magnitude was increased for one counterbalanced option 

in the Unsignaled group and the option with reward-associated cues in the Signaled 
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group. Choice data were then analyzed using molar matching and molecular RL models 

to assess economic parameters. 

 Experiment 2 trained a separate cohort of rats on a probabilistic allomorphic drug 

versus food choice by replacing the food reward for one counterbalanced option in the 

Unsignaled group and the option with reward-associated cues in the Signaled group with 

a self-administered, intravenous infusion of remifentanil (REMI). REMI is a potent μ 

opioid receptor agonist (Crespo, Sturm, Saria, & Zernig, 2005) similar to morphine and 

heroin (Fields & Margolis, 2015). Three reward magnitudes (i.e., doses) were tested 

similar to the three food reward magnitude manipulations in Experiment 1. Finally, 

Experiment 3 extended the REMI choice model by recording brain activity in the nucleus 

accumbens (NAc), a prominent mesocorticolimbic nucleus in the ventral striatum that is 

broadly associated with reward-associated decision making (Salgado & Kaplitt, 2015). 

NAc activity was recorded using oxygen-sensitive (O2) microelectrode arrays (MEAs) 

implanted into the NAc. The use of O2 increases translational fidelity with fMRI BOLD 

measures used in clinical research through a common measure of brain activity. 

However, O2 is recognized as a more general measure of activity than other available 

alternatives.  

Oxygen Measurement and its Relation to Neuron Activity 
 Oxygen as a measure of neuronal activation is based on cerebral metabolism of 

O2 by local cells as well as the cerebral blood flow/volume in the measured area. In fMRI 

BOLD signals, oxidative metabolism occurs in a local area that deoxygenizes 

hemoglobin. The loss of O2 from hemoglobin then causes co-localized iron to become 

paramagnetic and produces a measurable effect on the surrounding magnetic field of 

water molecules (Attwell & Iadecola, 2002). However, increases in cerebral blood 

flow/volume can exceed deoxygenation in activated areas that often leads to an increase 

in net O2 (Ekstrom, 2010).  

It has been estimated in primates and rodents that a large proportion of oxygen 

changes are related to neuronal activity (Attwell & Laughlin, 2001), but exact activity 

specification has not been determined. While spiking is related to cerebral oxygen 

responses, post-synaptic events and neurotransmitter release are also thought to 

contribute as O2 responses can exceed electrophysiological or local field potential 
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measures of neuronal spiking (Attwell & Iadecola, 2002; Buxton, 2012; Ekstrom, 2010; 

Sheth et al., 2004). Thus, the current paper will use the general term of “NAc activity.” 

Despite being somewhat vacuous, the term NAc activity avoids potential over-attribution 

of any one physiological mechanism, save those that are neuronally mediated. 

Measuring Oxygen with Microelectrode Arrays 
 Although rodent fMRI is possible, the necessary immobility of the animal 

precludes any ability for behavioral assessment. As an alternative, local oxygen dynamics 

can be captured using oxygen-sensitive electrodes in freely moving animals (Lowry et al., 

2010). Electrode amperometry measures of O2 work by applying a constant potential 

of -0.6 (vs. reference) that leads to O2 reduction at the surface of the MEA (Li, Schwarz, 

& Gilmour, 2015). The reduction occurs in two steps: 

O2 + 2H+ + 2e− → H2O2 

H2O2 + 2H+ + 2e− → 2H2O 

and the obtained measure is a change in current induced by electrons transferring from 

the MEA to oxygen. Amperometry measures of O2 have high spatial (µm) and temporal 

(100 Hz) resolution (Ledo et al., 2017) similar to electrophysiology or voltammetry 

measures used in preclinical research while also maintaining an O2-dependent measure 

akin to fMRI BOLD signals. Electrochemistry measures of O2 and BOLD are also highly 

correlated (Lowry et al., 2010). When compared to rodent fMRI, the time course of fMRI 

O2 changes correlates with 99% of variance accounted for by amperometry. Additionally, 

amperometry-derived O2 signals show similar functional responses to reward delivery in 

the NAc as fMRI studies (Francois, Conway, Lowry, Tricklebank, & Gilmour, 2012; 

Francois et al., 2014). Thus, the O2 sensitive electrode recordings can be regarded as a 

proxy of fMRI BOLD signals.  

An Improved Model of Drug-Associated Value 
 As previously described, models of substance abuse can be improved by 

accounting for the multidimensional and relative nature of a commodity’s reward value. 

As such, the current experiments sought to improve upon traditional measures of drug-

associated reward value in several ways. First, all measures of reward value were a 

relative choice measure. That is, two commodities were always concurrently available 

that allowed for a comparison of preference for one option (e.g., Option A) relative to an 
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objectively defined alternative (i.e., Option B).  Second, reward value was assessed in 

more complex, dynamic environments than have historically been used in substance 

abuse research. Finally, brain activity was recorded using an O2-sensitive measure that 

increased translational fidelity with clinical BOLD measures and was compared to 

multiple models of reward value. Together, the present improvements allowed for a more 

explicit assessment of whether REMI-associated choices are mediated by value-based or 

compulsive decision-making mechanisms. 
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CHAPTER 2: 
DYNAMIC DECISION-MAKING FOR ISOMORPHIC FOOD VERSUS FOOD 

REWARDS 
 

Experiment 1 
 

 In the current experiment, decision dynamics were characterized using ‘natural’ 

rewards (i.e., food) in a probabilistic choice procedure. In doing so, the results of 

subsequent experiments assessing drug-associated decision making can be compared 

back to the current experiment to avoid misattribution of any potential effects as being 

unique to drugs of abuse. 

Methods 
Subjects 
 Twelve adult male Sprague-Dawley Rats (Harlan Inc; Indianapolis, IN, USA) 

were used in the experiment. Rats were individually housed on a 12:12 hour light:dark 

cycle (lights on at 7:00 a.m.) and had free access to water but were food restricted to 15 g 

of standard lab chow per day (Harlan Inc.) post session. All research was approved by the 

University of Kentucky Institutional Animal Care and Use Committee (Protocol #2011-

0885). 

Apparatus 
 Experiments were conducted in Med Associates (St. Albans, VT) conditioning 

chambers (ENV-008) within a sound-attenuating box (ENV-018). On the front panel 

inside the chamber were two white jewel lights (ENV-221M) above two retractable 

response levers (ENV-122CM) flanking a magazine receptacle (ENV-200R2MA) 

equipped with a head entry detector (ENV-254-CB) that received 45-mg sucrose pellets 

(BioServ Precision Pellets, Flemington, NJ) from a pellet dispenser (ENV-203M-45). 

Directly opposite the levers on the back panel were two nosepoke response receptacles 

(ENV-114BM) and a house light (ENV-227M) centrally positioned at the top of the back 

panel. All chambers were connected to a personal computer running MED-PC IV 

(Tatham & Zurn, 1989). 
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Establishing operations 
 Prior to the experiment proper, rats were pre-trained on four consecutive 

procedures: magazine shaping, nosepoke training, nosepoke training with terminal link 

stimuli, and orienting responses. During magazine training, rats were placed in the 

chamber under a fixed-time (FT) 60-s procedure where a pellet was dropped into the 

magazine every 60 s concurrent with the illumination of the house-light for 5 s.  Sessions 

lasted for 1 hr but only 30 pellets were delivered into the chamber. After all rats ate all 

pellets for two consecutive days, the rats were trained to make nosepoke responses. 

Sessions began with the illumination of either the left or right nosepoke and was denoted 

the initial link of the eventually chained stimuli. A response to the nosepoke would then 

offset the receptacle and deliver a food pellet to the magazine. Nosepoke training 

consisted of 30 trials (15 left responses, 15 right responses) with the order of left versus 

right nosepoke presentation pseudorandomized across trials such that no nosepoke 

appeared more than two consecutive trials.  

Following two days of completing all trials during nosepoke training, terminal 

link stimuli were added to the procedure. During terminal link training, responding to a lit 

nosepoke (i.e., the initial link) resulted in the presentation of either the left or right lever 

on the front panel for 10 s (i.e., the terminal link), followed by lever retraction and the 

delivery of 1 food pellet to the magazine. The spatial counterbalancing of the nosepoke–

lever combinations was consistent to one side of the chamber from the animal’s 

perspective; for example, a response to the left nosepoke on the back panel produced the 

right lever on the front panel, and vice versa for the other alternative. Here, the lever is 

denoted as the terminal link because it is the final stimulus presented prior to reward 

delivery. After completing all trials for two sessions, orienting-response training began. 

During orienting-response training, illumination of the house-light signaled the beginning 

of a trial that required a head entry into the magazine to turn off the house-light. 

Following an orienting response (i.e., the head entry to turn off the house-light), either the 

left or right nosepoke illuminated in a pseudorandom order, and the procedure continued 

as previously described. Orienting-response training continued until all trials were 

completed for two days. 
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Isomorphic decision-making procedure 
 After all rats completed the establishing operations, training began on a dynamic 

probabilistic decision-making procedure illustrated in Figure 2.1 (Rutledge et al., 2009). 

Sessions consisted of four, 30-trial blocks (120 trials total). Each block was characterized 

by different relative reward probabilities. The possible relative reward rates, expressed as 

Option A:B, were 6:1, 2:1, 1:2, and 1:6 (see Figure 2.1c), and both Option A and B 

delivered 1 food pellet for a win trial. As an example, in the 6:1 block, Option A 

rewarded choices six times more often than Option B. The reward schedules were 

randomized such that the start of the session could begin with any one of the four reward 

schedules (i.e., 6:1, 2:1, 1:2, 1:6). After the first block, the determination of remaining 

blocks was pseudorandomly determined without repeat such that the choice alternative 

with the higher chance of reward (i.e., the “richer” option) switched to the opposite 

choice alternative. For instance, if the first block was the 6:1 condition, the second block 

was required to be either the 1:2 or 1:6 conditions. 

 The rats were also split into the Signaled and Unsignaled groups. As shown in 

Figure 2.1, the sequence of events following choice of either Option A or B was group 

dependent. For the Unsignaled group, choice of either option resulted in the presentation 

of an associated lever stimulus for 10 s followed by the probabilistic delivery of 1 food 

pellet according to the current reward schedule. For the Signaled group, choice of Option 

B was the same as the Unsignaled group. However, choice of Option A produced a lever 

stimulus only when a reward was to be delivered (i.e., a win); a white jewel light 

illuminated to signal an upcoming loss. The overall reward probabilities for the two 

groups were identical. Thus, the only difference between groups was that choices of 

Option A for the Signaled group produced a stimulus that was informative of the 

forthcoming trial outcome 10 s later, while Option B for the Signaled group and Options 

A and B for the Unsignaled group produced stimuli that were not informative of the 

upcoming trial outcome. After reward delivery or omission, trials were separated by a 10-

s intertrial interval (ITI) during which all stimuli were off. Training continued until all 

rats significantly decreased their choice of Option A as its relative reward rates declined 

for fifteen session. Training lasted for 70 sessions. 
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Reward magnitude manipulations 
 Following initial training, the reward magnitude associated with Option A was 

subsequently increased. For the duration of the reward magnitude manipulations, Option 

B continued to deliver one sucrose pellet on win trials. However, Option A increased in 

reward magnitude to two and three sucrose pellets in Phases 2 and 3, which each lasted 

for 10 sessions for both groups. 

Data Analysis 
Molar choice data 
 Molar choice data were calculated as the proportion of choices for Option A as a 

function of Option A’s relative reward rates averaged over the last five days of training 

for each reward magnitude condition. Molar data were then analyzed using three non-

linear derivations of the generalized concatenated matching equation (Equation 7) with 

nonlinear mixed effects (NLME; Smith et al., 2018; Young, Clark, Goffus, & Hoane, 

2009) models in the NLME package in R (Pinheiro, Bates, DebRoy, & Team, 2016). For 

the behavioral data where both options probabilistically rewarded one food pellet, 

Equation 14 was used and is referred to as the Generalized Matching equation: 
𝐵𝐵𝐴𝐴

𝐵𝐵𝐴𝐴 + 𝐵𝐵𝐵𝐵
=  

1

1 + �𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵
�
𝑆𝑆𝑅𝑅
∗ 𝑏𝑏

(14) 

In Equation 14, BA and BB represent choices for Option A and B, expressed as a function 

of the relative reward rates for Option A (RA) and B (RB) multiplied by a bias term (b). 

The bias term (b) captures preferences for Option A or B irrespective of the relative 

reward rates between the two options. Lower values of b reflect greater bias for Option 

A; values close to 1 reflect no bias. SR captures individuals’ sensitivities to changes in the 

relative reward rates between Options A and B. Perfect matching between behavior and 

relative reward rates would reduce the value of SR to 1. 

To account for the later magnitude manipulations, an additional term was added 

to the Generalized Matching equation (Equation 14) to capture changes in choice due to 

the changes in reward magnitude. Specifically, Equation 15, referred to as the 2-

Dimensional (2-D) Generalized Matching equation, concatenated the relative reward 

magnitudes of Options A and B. 
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𝐵𝐵𝐴𝐴
𝐵𝐵𝐴𝐴 + 𝐵𝐵𝐵𝐵

=  
1

1 + �𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵
�
𝑆𝑆𝑅𝑅
∗ �𝑀𝑀𝐴𝐴
𝑀𝑀𝐵𝐵

�
𝑆𝑆𝑀𝑀

(15) 

In Equation 15, the relative reward magnitudes for Option A (MA) and B (MB) are raised 

to a sensitivity term, SM, that scales how sensitive individuals are to changes in the 

relative reward magnitudes.  

 While Equation 15 does well to describe choice data across individuals choosing 

under similar conditions, the current experiment employed group-dependent use of 

reward-associated cues not necessarily associated with the dimensions of reward rate or 

magnitude. Therefore, should any cue-dependent effects emerge, it is empirically 

undetermined how to best quantitatively describe the effects. Some research has 

suggested potential cue effects are mediated by enhancing the perceived reward 

magnitude of choice alternatives with win-paired cues (i.e., Option A for the Signaled 

Group; Smith et al., 2017a; Smith et al., 2018), while others have suggested that choice 

alternatives with cues gain value via other dimensions not manipulated here 

(Cunningham & Shahan, 2019; Ojeda, Murphy, & Kacelnik, 2018; Trujano, López, 

Rojas-Leguizamón, & Orduña, 2016). If potential cue effects are mediated by changes in 

subjective reward magnitude, group differences should be captured by the relative reward 

magnitude scaling parameter, SM. However, in the case that changes in perceived reward 

magnitude are not mediating potential group effects, Equation 16 (2-D Exchange 

Matching) can scale reward value differences in terms of Option A and B’s relative 

substitutability (Rachlin et al., 1976). 
𝐵𝐵𝐴𝐴

𝐵𝐵𝐴𝐴 + 𝐵𝐵𝐵𝐵
=  

1

1 + �𝑅𝑅𝐴𝐴𝑅𝑅𝐵𝐵
�
𝑆𝑆𝑅𝑅
∗ �𝑀𝑀𝐴𝐴
𝐸𝐸𝑥𝑥�

𝑆𝑆𝑀𝑀
(16) 

In Equation 16, the previous term for Option B’s reward magnitude is replaced by the 

scaling constant, Ex. Ex acts an exchange rate for the subjective value of Option B 

relative to Option A in units of sucrose pellets. For instance, when the reward magnitude 

of Option A is 1, an Ex value of 1 suggests the two options have equivalent reward 

magnitudes and are equally substitutable for each other. Values of Ex less than 1 suggest 

that Option B is worth less than Option A.  
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 For all models, Subject was entered in as a nominal random factor, Group as a 

nominal, between-subject fixed factor using effects coding, and sensitivity parameters 

(i.e., SR and SM) were fit across their relevant dimensions (i.e., relative reward rates and 

magnitudes). In order to determine the best-fitting model, model comparisons were 

conducted using Akaike Information Criterion (AIC; Symonds & Moussalli, 2011; 

Wagenmakers & Farrell, 2004) where smaller values indicate better model fits. When 

comparing AIC values between a current and candidate model, changes in AIC values 

(∆AIC) ≥ 0 reflect evidence favoring the current model, while 0 ≥ ∆AIC ≥ -2 reflect weak 

evidence, -4 ≤ ∆AIC ≤ -7 reflect moderate evidence, and ∆AIC ≤ -10 reflect substantial 

evidence for the candidate model. For the current model comparisons, an absolute ∆AIC 

of at least 4 was required to select a more complicated candidate model over a simpler 

one with fewer free parameters. All parameter estimates, that are negative in the raw 

form, are shown as absolute values to aid interpretation. 

Reinforcement learning models 
 In order to test if the results from the molar matching models were applicable at 

the molecular level, RL models were fit to characterize the same data as the matching 

models at a trial-by-trial resolution. A basic RL model was previously described in 

Equations 11-13, but, as Equation 13 was modified to Equation 17 for the current 

experiment, the equations are repeated here for convenience: 

𝐸𝐸𝐴𝐴𝑡𝑡+1 = 𝐸𝐸𝐴𝐴𝑡𝑡 + 𝛿𝛿𝐴𝐴𝑡𝑡 (11) 

𝛿𝛿𝐴𝐴𝑡𝑡 = (𝜆𝜆𝐴𝐴𝑡𝑡 − 𝐸𝐸𝐴𝐴𝑡𝑡) (12) 

𝑝𝑝𝑝𝑝ℎ𝐴𝐴𝑡𝑡 =
1

1 + 𝑒𝑒𝑥𝑥𝑝𝑝(−[𝛽𝛽(𝐸𝐸𝐴𝐴𝑡𝑡 − 𝐸𝐸𝐵𝐵𝑡𝑡)] + 𝑐𝑐[𝑝𝑝ℎ𝐴𝐴𝑡𝑡−1 − 𝑝𝑝ℎ𝐵𝐵𝑡𝑡−1])
(17) 

In the valuation Equations 11 and 12, the value of Option A (VA), on a given trial, t, is 

determined by its current value plus the reward prediction error, δ, or the difference 

between the obtained (λA) and expected (VA) reward scaled by the learning rate 

parameter, α. Equation 17 then determines the probability of choosing Option A through 

a softmax decision rule by scaling the relative value difference of Options A and B 

according to the inverse temperature parameter, β. Equation 17 also has the free 

parameter c that weights an individual’s tendency to repeat the choice made (Ch) on the 
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previous trial (t-1) independently of reward value. ChA equals 1 when the previous choice 

was for Option A (i.e., ChB,t-1 = 0), and ChB equals 1 when the previous choice was for 

Option B (i.e., ChA,t-1 = 0). Model comparisons began by fitting the Base RL model as 

formulated in Equations 11, 12, and 17. The ability of RL models to parameterize rats’ 

choices was also compared to a Chance model that predicted random choices (i.e., 

probability of choosing A = 0.5). 

 In order to test if scaling reward magnitude in a similar way as the matching 

equations is warranted, the reward prediction error from Equation 12 in a subsequent 

Scaled Single-Learning model was modified to Equations 18 and 19: 

𝛿𝛿𝐴𝐴𝑡𝑡 = ((𝜆𝜆𝐴𝐴𝑡𝑡 /𝜆𝜆𝐵𝐵𝑡𝑡 )𝑆𝑆𝑀𝑀 − 𝐸𝐸𝐴𝐴𝑡𝑡) (18) 

𝛿𝛿𝐵𝐵𝑡𝑡 = ((𝜆𝜆𝐵𝐵𝑡𝑡 /𝜆𝜆𝐴𝐴𝑡𝑡 )𝑆𝑆𝑀𝑀 − 𝐸𝐸𝐵𝐵𝑡𝑡) (19) 

where the obtained reward (λ) for Option A or B is expressed as a ratio relative to the 

other option and then raised to the sensitivity to reward magnitude parameter, SM. 

Although RL models have traditionally assumed that choices are made by comparing 

relative values, valuation functions such as Equations 11 and 12 typically ascribe value to 

a commodity independently of others. In Equations 18 and 19, value is instead also said 

to be relative to and scaled with other available commodities. For the current experiment, 

λA represents the magnitude in units of sucrose pellets for Option A on win trials, while 

λB represents either the magnitude for Option B or the exchange rate, Ex, depending on 

the outcome of model comparisons from the molar matching models. Conversely, the 

ratio of λA and λB is recoded as zero on loss trials. 

Subsequent RL models were also assessed that included additional α parameters 

dependent on the choice made (Scaled Double-Learning (Option)), the choice’s outcome 

(Scaled Double-Learning (Outcome)), or the interaction between choice and outcome 

(Scaled Quad-Learning (Option×Outcome)). For instance, given that Option A and B 

represent two different signaling conditions for the Signaled group, the weighting of trial 

outcomes may not be uniform across choice options. Thus, the three previously 

mentioned models were evaluated using model comparison methods that allowed α 

values to vary as a function of Options A and B (i.e., αA, αB), choice outcome (i.e., wins 

vs. losses; αWin, αLoss ), and wins and losses dependent on the chosen option (αAWin, αALoss, 
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αBWin, αBLoss). The fmincon optimization algorithm in MATLAB was used to fit each RL 

model to individual rat’s trial-by-trial choice data using maximum likelihood estimation 

(Myung, 2003). Model fitting occurred by randomly selecting 100 uniformly distributed 

initial starting values constrained on the following intervals: α ∈[0, 1] , β ∈[0, 10], c ∈[-1, 

1], and SM ∈[0, 5]. To quantify potential differences among parameters, group effects 

were assessed using a series of Wilcoxon rank-sum tests (coded as Signaled-Unsignaled). 

In the case that the best fitting model included more than one α, statistical differences 

across α parameters were assessed using pairwise Wilcoxon signed-rank tests with 

Hochberg corrections for multiple comparisons (Hochberg, 1988). Finally, RPEs 

combining all α, group-dependent λ, and SM parameters were calculated when VA and VB 

equaled zero as a visual aid to illustrate potential RPE differences across groups. 

Results 
Molar analysis 
 Figure 2.2a shows the average proportion of choices for Option A as a function of 

Option A’s relative reward rates when the reward magnitude for both options was one 

food pellet. Overall, both groups tended to prefer the option providing greater reward 

odds (or the “‘richer” option), with preferences being stronger the more disparate the 

relative reward rates. In order to quantify the effects of dynamically changing reward 

probabilities on choice of Option A, a generalized matching nonlinear mixed-effects 

model (NLME; Equation 14) was fit to the data. The model captured the data well, and 

results showed that sensitivity to reward rates was significantly higher than zero [F(1, 33) 

= 82.18, p < .001]. Both the Signaled [SR = 0.31] and Unsignaled [SR = 0.29] groups 

showed comparable [p = .834] decreases in preference for Option A as its relative reward 

rate declined. However, as indicated by the parameter values being less than 1, both 

groups displayed somewhat shallow decreases in choices relative to the scheduled 

changes in relative reward rates. Additionally, the Signaled group [b = 0.65] showed 

significantly more bias for Option A than the Unsignaled group [b = 1.05], that showed 

very little bias for either option [F(1, 33) = 9.31, p = .005].  

 Subsequent increases in Option A’s reward magnitude also showed that choices 

tended to favor Option A’s increased magnitude (see Figure 2.2b-c). Model comparisons 

between different forms of the generalized matching equations are shown in Table 2.1. 
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Interestingly, the 2-D Matching Model showed relatively poor fits to the data (not shown) 

and was unable to effectively capture the subjects’ data. A global (i.e., equivalent across 

groups) exchange rate parameter (Ex) was then added to scale Option B’s reward 

magnitude in terms of Option A in the 2-D Global Exchange Matching model. The 

inclusion of Ex was beneficial as the AIC value of the 2-D Global Exchange Matching 

Model was -17.39 units lower, suggesting substantial evidence in favor of including an 

exchange parameter. Finally, when the exchange rate parameter was allowed to vary for 

both groups in the 2-D Exchange Matching model, model comparisons again 

substantially favored the group-dependent exchange parameter. Overall, the model 

comparison results strongly favored selection of the matching models that included a 

group-dependent exchange rate parameter. 

  The absolute value parameter estimates for the final model are shown in Figure 

2.3. Similar to initial training, sensitivity to reward rates (i.e., SR) was significantly 

greater than 0 [F(1, 127) = 213.26, p < .001] due to decreasing relative reward rates 

producing decreases in Option A preferences that were comparable across groups [p = 

.405]. Increasing the reward magnitude for Option A also revealed that sensitivity to 

reward magnitude (i.e., SM) was significantly greater than 0 [F(1, 127) = 194.10, p < 

.001] with a significant effect of Group [F1, 127) = 13.90, p < .001] due to the 

Unsignaled group [SM = 1.06)] showing significantly greater sensitivity to the changes in 

reward magnitude than the Signaled group [SM = 0.62]. Finally, there was a significant 

effect of Group on exchange rates [F(1, 127) = 10.13, p = .002] due to the Unsignaled 

group showing comparable exchange between Options A and B [Ex = 1.08], whereas an 

unsignaled pellet did not substitute as well for a signaled pellet in the Signaled group [Ex 

= 0.54]. Finally, as an example of the scaled differences in reward magnitude between 

groups, Figure 2.2d shows the Signaled groups proportion of choices for Option A when 

the reward magnitude equaled 1 pellet and the Unsignaled group’s proportion of choices 

for Option A when Option A’s reward magnitude equaled 2 pellets. By doubling the 

reward magnitude of Option A for the Unsignaled group, the Unsignaled group’s 

proportion of choices for Option A approximated the Signaled group’s choice function 

when Option A only rewarded 1 pellet. 
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Molecular analysis 
The molar analyses suggested that Option A’s reward-associated cues for the 

Signaled group produced significant alterations in both sensitivity to magnitude and the 

exchange rate parameter. If the scaling of the subjective reward magnitude between 

Option A and B was indeed a determinant of choice in the current experiment, then 

similar effects should appear in the molecular trial-by-trial RL model analysis. Consistent 

with the molar results, adding group-dependent exchange rates for Option B’s reward 

magnitude from the molar matching model as well as a sensitivity to magnitude 

parameter in the Scaled Single-Learning model substantially improved overall fits 

relative to the Base RL model (overall ΔAIC = -221.73; see Table 2.2). Adding 

additional α learning rate parameters also sufficiently improve model fits when they were 

Option-dependent or Outcome-dependent. But, including learning rate parameters that 

were both Outcome- and Option-dependent in the Scaled Quad-Learning model was the 

overall best fitting model for both groups (Table 2.2). 

 Figure 2.4a-c shows three example model fits that approximate the average AIC 

(± 1 standard deviation). Overall, the RL model successfully parameterized the subjects’ 

trial-by-trial choices [ΔAIC = -684.42 relative to a chance model] across four levels of 

relative reward rates, three levels of relative reward magnitudes, and two levels of 

reward-associated stimuli. The parameters from the Scaled Quad-Learning model are 

shown in Figure 2.5a. The Signaled group showed (1) significantly higher β values [Z = 

2.01, p = .028] indicating a greater tendency to exploit the Option with greater model-

derived reward value, and (2) significantly higher α values for Option A losses [Z = 2.20, 

p = .028]. However, both groups scaled the changes in reward magnitude in a similar way 

and perseverated on choices a similar amount. For within-group tests of the α parameters, 

no significant differences were present after correcting for multiple comparisons. Finally, 

Figure 2.5b illustrates the calculated RPEs from the Scaled Quad-Learning model. As 

suggested by the AIC-warranted group-dependent exchange parameter, the Signaled 

group ordinally showed greater updating of reward value for Option A relative to the 

Unsignaled group that showed ordinally greater updating of reward value for Option B. 
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Discussion 

 The present experiment sought to establish the dynamic decision-making model 

using natural rewards to allow for better interpretation when decisions are made between 

allomorphic drug vs. food choices. To that end, this experiment showed that rats 

engaging in a randomized probabilistic decision-making procedure could effectively 

track the changes in relative reward rates and allocate their decisions appropriately, 

similar to monkeys (Lau & Glimcher, 2005) and humans (Rutledge et al., 2009). As 

indicated by the significant sensitivity to relative reward rates parameter, rats in both 

groups favored Option A when the relative reward rates also favored Option A and then 

gradually shifted preferences concurrent with shifting reward rates favoring Option B. 

Sensitivity to relative reward rates also showed evident undermatching (i.e., values less 

than 1), suggesting possible difficulty in discriminating the randomized relative reward 

rates. Indeed, probabilistic decision-making procedures that use consistent ascending or 

descending changes in reward probability (e.g., Smith et al., 2018; Yates et al., 2016) 

have shown qualitatively sharper preference changes as a function of reward probability 

changes. However, both groups in the current experiment still showed a nearly 30% 

decrease in preference between the 6:1 and 1:6 relative reward rate conditions, suggesting 

the tracking of and appropriate behavioral allocation to relative reward rates. 

 In addition to changes in relative reward rates shifting choice preferences, 

changes in relative reward magnitudes also significantly altered choice patterns. 

Specifically, the increase of reward magnitude associated with Option A from 1 to 3 

pellets also resulted in an increased preference for Option A similar to previous 

experiments (Landon, Davison, & Elliffe, 2003; Marshall, Smith, & Kirkpatrick, 2014; 

Neuringer, 1967). Furthermore, the ability of Equation 16, which is an extension of the 

generalized concatenated matching equation (Baum, 1974; Rachlin, 1971), to effectively 

describe choices provides further evidence that relative reward rates and magnitude can 

produce independent effects on behavior (Kyonka, 2008; McLean & Blampied, 2001). 

That dimensions of reward value can produce independent effects on choice complicates 

the use of other unidimensional scales such as unit price (a ratio of magnitude divided by 

cost), as it suggests asymmetric effects when either side of the ratio is manipulated 

(Madden et al., 2000; Smith et al., 2016). 
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 While choices within groups was well characterized, model comparisons revealed 

that choice preferences across the Signaled and Unsignaled groups were not accounted 

for by sensitivity to changes in either relative reward rates or magnitudes. The inability of 

the SM parameter to capture group differences is particularly notable, as previous research 

has characterized the effect of reward-associated cues as altering a choice alternative’s 

perceived reward magnitude (e.g., Smith et al., 2017a; Smith et al., 2018). However, 

previous studies suggesting alterations in reward-magnitude sensitivities only used a 

single relative magnitude condition similar to Figure 2.2a. Under such conditions, the 

parallel shift in preferences for Option A by the Signaled group is suggestive of a scalar 

increase in reward value for that choice alternative such as through a reward magnitude 

mechanism. It was not until the current experiment where the assumption of altered 

reward magnitude sensitivities, tested through multiple relative reward magnitude 

conditions, was coupled with model comparisons so that the hypothesis could be 

thoroughly evaluated. The present experiment therefore serves as an exemplar for the 

previous statement that models can be “better than mere words” (Mazur, 2006, p. 276), as 

the conceptualization of reward-associated cues producing a scalar increase in reward 

value is warranted, albeit not via a sensitivity to reward value mechanism as ascribed in 

the generalized matching equations.  

Seemingly contrary to the model comparison results, the 2-D Exchange Matching 

model also showed a significant group effect on sensitivity to magnitude; this effect, 

which only appeared in the context of including an exchange rate parameter (Ex), was not 

expected and likely did not account for the group differences in other contexts. If 

differences in sensitivity to magnitude were the primary determinant of choice 

differences between the groups, the 2-D Generalized Matching equation would have 

produced better AIC values. Rather, the effect seems to reflect a threshold in how high 

rats’ absolute preferences for Option A in both groups can be, which was reached earlier 

in the Signaled group due to their starting at a higher preference for Option A at baseline 

(i.e., the 1 vs. 1 food pellet condition.). Additionally, the group effect on SM does not 

necessarily reflect a violation of matching. Matching assumes that the scaling of a 

dimension within a particular context is invariant relative to models which allow 

differential scaling parameters for each (e.g., Davison & McCarthy, 1988; Kyonka, 
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2008). Stated differently, matching assumes that only one SR value is necessary for all 

relative reward rate manipulations.  In the present experiment, a single SR and SM 

parameter was shown to provide excellent fits to the data, suggesting that the group effect 

on SM likely reflected that sensitivities to a reward dimension were context-dependent, 

but invariant within one context. 

 Other research groups have attempted to characterize similar cue effects to that 

seen here as being driven by mechanisms of either other reward value dimensions or 

cognitive mechanisms. For instance, the temporal information model suggests that the 

reason the Signaled group’s reward-associated cues produced preference bias for Option 

A was due to the value of having information about forthcoming rewards temporally 

sooner than those of choices of Option B (Cunningham & Shahan, 2019; Cunningham & 

Shahan, 2018). Alternatively, other models have suggested mechanisms less scalable in 

terms of reward dimensionality, such as the reward-associated cues producing a positive 

state change between uncertainty to certainty about reward (Case & Zentall, 2018; 

McDevitt, Dunn, Spetch, & Ludvig, 2016). Although the present experiment cannot 

discern these proposed mechanisms, the phenomenon of reward-associated cues biasing 

choice is robust and present across a number of species (Blanchard, Hayden, & 

Bromberg-Martin, 2015; Iigaya, Story, Kurth-Nelson, Dolan, & Dayan, 2016; Molet et 

al., 2012; Smith et al., 2018; Smith, Beran, & Young, 2017b; Vasconcelos, Monteiro, & 

Kacelnik, 2015; Zentall, 2016). 

 Equation 16 offers another way to quantitatively describe the effect of reward-

associated cues in terms of substitutability (Green & Freed, 1993) through the exchange 

rate parameter. Substitution is defined as the degree to which consumption of an 

alternative commodity changes as the cost or magnitude of the present commodity 

changes. For the present experiment, as the relative reward rates stopped favoring Option 

A, choices of Option B increased for both groups; this is substitutability. Conversely, 

some rewards, such as food and water, are less substitutable and increases in the price of 

one do not necessarily engender greater consumption of the other (Green & Rachlin, 

1991; Rachlin et al., 1976). In the present experiment, the exchange parameter revealed 

that Option B (an unsignaled and probabilistic food reward) was more substitutable for a 

similarly unsignaled and probabilistic food reward (Option A in the Unsignaled group). 
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However, Option B was less substitutable for Option A in the Signaled group, even 

though Option A offered the same reward commodity (food) but with an informative 

signal for reward. The results therefore suggest that a Pavlovian cue altered the 

substitutability between two otherwise equivalent operant rewards (Barrus et al., 2015) 

and confirm the earlier conceptualization that a signaled alternative produces a scalar 

increase in reward value, albeit not through a sensitivity to reward magnitude mechanism.  

 The results of the matching equations revealed many findings relevant to rats’ 

dynamic decision-making. However, the matching equations offer a molar view of the 

potential mechanisms at work. If a scalar difference in the substitutability between 

options A and B accounted for group differences, the effect should also be present at the 

molecular trial-by-trial level as assessed by an RL model. Indeed, as suggested by the 

model comparison results shown in Table 2.2, the addition of group-dependent exchange 

parameters and sensitivity to magnitude terms (Scaled Single-Learning model) 

substantially improved the fits relative to the Base RL model; this result suggests that a 

scalar difference in reward magnitude between options and across groups is present at 

both molar and molecular levels of decision making. Traditionally, RL models have 

assumed that the value updating of each commodity is scaled independently of one 

another (e.g., Groman et al., 2017; Marshall & Kirkpatrick, 2017; Rutledge et al., 2009) 

and that choices between commodities are only relative in the sense that values between 

commodities are compared in the decision rule. The present finding of improved model 

fits through altering the RL valuation equations by way of relative magnitude scaling 

suggests that the independence of value assignment is incorrect. One possible reason for 

the traditional use of independent value scaling may stem from many RL models being 

implemented to model behavior in isomorphic choice procedures. However, the finding 

that value updating is not independent of the other available commodities is congruent 

with the matching assumption that preference for a reward is at least partially driven by 

how that reward compares to other available commodities.  

 One of the further benefits of molecular analyses, such as those using RL, is that 

they can be more modular in terms of what proposed mechanisms can be incorporated. 

For the present experiment, it was hypothesized that wins and losses may be scaled 

differentially across options and groups in addition to the scalar differences in reward 
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magnitude. To test the hypothesis that wins and losses scaled differentially, additional α 

parameters were added into the model in three steps as dependent upon Option, Outcome, 

and their interaction. As evidenced by the change in AIC parameters across models, the 

inclusion of α parameters for the interaction between Option and Outcome was 

substantially warranted in both groups. The results of the best fitting model suggested 

that the Signaled group had significantly higher β parameters and scaling of loses for 

Option A. The increased β values suggest the Signaled group was more “on policy” and 

made choices more closely in line with the model-derived reward values (Gläscher et al., 

2010; Marshall & Kirkpatrick, 2017). Interpretation of the increased scaling of Option-A 

is not readily apparent in isolation, but the general finding that wins and losses were 

scaled differently has been shown previously (Estle, Green, Myerson, & Holt, 2006; 

Kahneman & Tversky, 1979; Marshall & Kirkpatrick, 2013) and reinforces the notion 

that decisions are contextually-dependent. That more group effects were not present may 

also have been due to the inclusion of group-dependent exchange parameters in the 

Scaled Quad-Learning model. Once included, the RL models for each group would then 

solve for the remaining parameters with a group effect already built into the model. Thus, 

one interpretation of the absence of group effects is that the group-dependent exchange 

rates largely captured the variance associated with group differences. 

Although no significant differences between α parameters were apparent within 

groups, the AIC values for the Scaled Quad-Learning model substantially favored their 

inclusion and the medians shown in Figure 2.5a do suggest variability in α scaling. The 

dissociation between model comparisons and traditional null hypothesis significance 

testing (NHST) also represents a crossroad in the field as the two types of analyses 

potentially ask fundamentally different questions (Symonds & Moussalli, 2011; 

Wagenmakers & Farrell, 2004). The present experiment combined both methods and, 

until the RL model, both analyses were concordant. The model comparison results 

suggest that inclusion of α values dependent on the interaction between Option and 

Outcome substantially improved the model’s ability to predict an individual rat’s choices. 

Alternatively, the non-parametric tests suggest that, at a group level, there was no 

systematic variation in how the α estimates were ranked across rats. While the “correct” 

analysis is likely not objectively able to be defined, model comparison approaches are 
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becoming the increasingly recommended analysis approach given their ability to answer 

research questions in a more flexible manner (Symonds & Moussalli, 2011; 

Wagenmakers & Farrell, 2004). The present study may also have been under powered to 

detect parameter differences using nonparametric methods. In order to analyze the 

remaining parameters via a model comparison method, each parameter would need to be 

fit at the group level similar to the molar analyses. However, the inclusion of group-level 

parameters in RL models is complicated by parameter fits being uniquely path-dependent 

for each subject (Daw, 2011). The exchange rate parameters were able to be fixed 

because they were informed from the molar matching models while no other parameter 

was similarly informed. As such, the necessity of performing second level analyses on 

RL parameters remains a limitation of the model (Marshall & Kirkpatrick, 2017; 

Rutledge et al., 2009). A final consideration when interpreting the parameters from RL 

models is that no single parameter in isolation is fully informative of how decisions are 

made in the context of an RL model; that is, Figure 2.5b illustrated how the different 

parameters come together to determine value and showed the expected ordinal directions 

of Option A having greater value updating for the Signaled group relative to the 

Unsignaled group.   

Overall, Experiment 1 suggests that rats behaved as if their decisions were value-

based when choosing between two food rewards that varied as a function of both relative 

reward rates and magnitudes. Additionally, the presence of reward-associated cues in the 

Signaled group biased choice towards Option A. Although the interpretation of RL 

parameters is limited by both the structure of the model and the current experiment’s 

statistical power, the molar matching analyses provided an excellent description of the 

data that was supported in the RL models. 
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Table 2.1. Experiment 1 molar models. 

 
Equation Model Name Parameter 

Count Parameters AIC ΔAIC 

15 2-D Matching 2 SR, SM -262.96 -- 

16 
2-D Global 
Exchange 
Matching 

3 SR, SM, Ex -280.35 -17.39 

 16 2-D Exchange 
Matching 4 SR, SM, Ex  -315.61  -35.26 

Note: Models are shown in descending order of AIC values. ΔAIC calculations are 
shown as the difference from the previously best fitting model. Bolded text indicates the 
best overall fitting model. 
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Table 2.2. Experiment 1 molecular models.  

 

 

 

 

 

 

 

 

Note: Models are shown in descending order of overall average AIC values. ΔAIC calculations are shown as the difference from the 
previously best fitting model. Bolded text indicates the best overall fitting model.

Model Parameter 
Count Parameters Signaled 

AIC 
Signaled 

ΔAIC 
Unsignaled 

AIC 
Unsignaled 

ΔAIC 
Base 3 α,β,c 2045.45 -- 2165.65 -- 

Scaled Single-Learning 4 α,β,c,SM 1698.46 -349.99 2072.18 -93.47 
Scaled Dual-Learning 

(Outcome) 5 αWin,αLoss,β,c,SM 1696.59 -1.87 2064.43 -7.75 

Scaled Dual-Learning 
(Option) 5 αA,αB,β,c,SM 1651.23 -45.36 2058.09 -6.34 

Scaled Quad-Learning 
(Option×Outcome) 7 αAWin,αALoss,αBWin,αBLoss,β,c,SM  1579.65 -71.58 2042.17   -15.92 
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Figure 2.1. Experiment 1 general methods. (a) Sequence of events during initial training 

for the Signaled group. (b) Sequence of events during initial training for the Unsignaled 

group. The reward magnitude manipulations subsequently increased the reward 

magnitude for Option A to two and then three pellets. * indicates that all stimuli offset 

following the event. (c) The probabilities of events and the relative reward rates (defined 

as the reward probability for Option A / Option B) for Option A and B.  
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Figure 2.2. Experiment 1 molar choice data. (a) Mean (± SEM) proportion of choices for 

Option A as a function of Option A’s relative reward rates for the Signaled and 

Unsignaled groups during initial training. Lines are the NLME-determined best fits of 

Equation 14. (b) Mean (± SEM) proportion of choices for Option A as a function of 

Option A’s relative reward rates for the Signaled group during the magnitude 

manipulations. 1-1, 2-1, and 3-1 refer to the scheduled reward magnitude for Options A 

and B, respectively. Lines are the NLME-determined best fits of Equation 16. (c) Mean 

(± SEM) proportion of choices for Option A as a function of Option A’s relative reward 

rates for the Unsignaled group during the magnitude manipulations. Lines are the NLME-

determined best fits of Equation 16. (d) Mean (± SEM) proportion of choices for Option 

A as a function of Option A’s relative reward rates for the Signaled group during the 1-1 

magnitude condition and the Unsignaled group during the 2-1 magnitude condition. Lines 

are the NLME-determined best fits of Equations 14 and 16 for the Signaled and 

Unsignaled group, respectively. Note: x-axes are logarithmic for visualization. 
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Figure 2.3. Experiment 1 molar parameter estimates.  Mean (± SEM) parameter 

estimates from the NLME model of Equation 16 to the molar choice data during the 

magnitude manipulations in Experiment 1. Abs = absolute value transform. Note: error 

bars represent the between-subject variability of the predicted parameters. A lack of error 

bars reflects no differential predictions across rats for the relevant parameter. 
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Figure 2.4. Experiment 1 RL model fits. Example Scaled Quad-Learning model fits to 

individual rat’s choices of Option A. Dashed vertical lines represent reward magnitude 

changes for Option A in order of 1, 2, and 3 food pellets. Panels show (a) a Signaled rat 

one SD below, (b) a Signaled rat at, and (c) an Unsignaled rat one SD above the average 

AIC. All data were smoothed with an 11-trial moving average.  
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Figure 2.5. Experiment 1 molecular parameters. (a) Median parameter estimates from the 

Scaled Quad-Learning model to the molecular choice data in Experiment 1. Medians are 

shown due to the use of nonparametric test statistics, and error bars represent the 

interquartile range. Note: β values are scaled according to the second y-axis at the right. 

(b) Mean (± SEM) predicted reward prediction errors (RPEs) from the Scaled Quad-

Learning model for Option A and B in the Signaled and Unsignaled groups as a function 

of Option A’s reward magnitude. The displayed RPEs are from equations 18-19 when VA 

and VB equaled zero.  
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CHAPTER 3: 
DYANMIC DECISION-MAKING FOR ALLOMORPHIC OPIOID VS. FOOD 

REWARDS 
 

 The results from Experiment 1 validated what to expect using the present dynamic 

decision-making model in drug-naïve rats responding for natural rewards. Namely, rats 

showed significant choice alterations between concurrently available commodities that 

were dependent upon the relative reward rates, relative reward magnitudes, and the 

presence versus absence of reward-associated cues. In the current experiment, the same 

isomorphic food versus food procedure was initially trained as in Experiment 1, but, after 

sufficient training, the food reward associated with Option A was replaced by different 

doses of an intravenous infusion of the opioid μ receptor agonist remifentanil (REMI). If 

choices for drug reward are indeed a reflection of a disorder of choice, then choices 

between REMI and food should show comparable effects to that of Experiment 1. 

However, if drugs of abuse instead transition an agent from making economic decisions 

to one of compulsive drug preference (e.g., Kalivas et al., 2005; Volkow et al., 2016; 

Wise & Koob, 2014), then repeated experience with REMI should result in inflexible 

choices for drug that do not vary systematically with the experimenter-manipulated 

variables. 

 

Experiment 2 
 

Methods 
Subjects 

Sixteen adult male Sprague-Dawley Rats (Harlan Inc; Indianapolis, IN, USA) 

were used in the experiment. Rats were individually housed on a 12:12 hour light:dark 

cycle (lights on at 7:00 a.m.) and had free access to water but were food restricted to 15 g 

of standard lab chow per day (Harlan Inc.) post session. All research was approved by the 

University of Kentucky Institutional Animal Care and Use Committee (Protocol # 2011-

0885). 
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Apparatus 
 The apparatus was the same as Experiment 1 with the addition of an infusion 

pump (PHM-100) attached to the outside of the sound-attenuating chamber. A syringe 

was loaded into the pump and delivered drug through tubing inside of a metallic leash 

(PHM-110-SAI) that was attached to a swivel above the operant chamber. The rate of 

infusion delivery was 0.1 mL / 5.9 s. 

Drugs 
 Remifentanil hydrochloride gifted from the National Institute on Drug Abuse 

(Bethesda, MD, USA) was mixed in sterile saline (0.9% NaCl). 

Establishing operations 
 All establishing operations were identical to Experiment 1.  

Isomorphic food versus food choice 
Following establishing operations, the rats were trained on the same isomorphic 

dynamic decision-making procedure described in Experiment 1 and were split into 

Signaled and Unsignaled groups prior to training.  The reward magnitudes for both 

Option A and B were 1 sucrose pellet and training continued for 70 sessions. 

Catheter surgery 
 Following training on the isomorphic procedure, rats underwent surgery for 

implantation of a chronic, indwelling jugular catheter. Rats were anesthetized with a 

mixture of ketamine (Schein, Dublin, OH), xylazine (Akorn, Inc. Decatur, IL), and 

acepromazine (Boehringer Ingelheim, St. Joseph, MO; 75/7.5/0.75 mg/kg) delivered at 

0.15 mL/100 g body weight (i.p.). The catheters were inserted into the jugular vein, 

extended under the skin, and exited the body via an incision on the back attached to a 

cannula. All animals were given 7 days to recover after surgery. 

Drug self-administration training 
 After recovery, the rats were trained to self-administer a 3 μg/kg infusion of 

REMI. For both groups, Option A became associated with the REMI reward and was 

counterbalanced between the left and right nosepoke across animals. At the beginning of 

a session, the drug-associated nosepoke on the back panel illuminated and, after one 

response, the nosepoke’s associated lever on the front panel extended into the chamber. 
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The lever remained extended for 10 s and the 3 μg/kg infusion began at 8.23 s into the 

interval and finished after 1.77 s concurrent with lever retraction. Trials were separated 

by a 10-s ITI. Sessions lasted for 1 hr, and training continued until all rats administered at 

least 10 infusions for two consecutive days. 

Food versus drug training 
 Following initial training, sessions began by the illumination of the house-light, 

that required an orienting response to the magazine. Once an orienting response was 

made, the house light was offset and either the drug-associated Option A nosepoke or the 

food-associated Option B nosepoke illuminated on the back panel of the chamber. After a 

single response, the associated lever extended into the chamber for 10 s and an infusion 

of REMI or delivery of a food pellet occurred as previously described. Training 

continued until all rats finished all trials for two consecutive sessions. 

Allomorphic drug versus food procedure 
 After training to self-administer both REMI and food, rats chose between a 

probabilistic REMI and probabilistic food reward in the same manner as described in 

Experiment 1. The only exception was that choice of Option A delivered a 3 μg/kg 

infusion of REMI rather than a sucrose pellet, such that the infusion completed 

concurrently with the offset of Option A’s associated terminal-link stimulus. All rats 

were trained for a maximum of 10 days on the 3 μg/kg dose but, if a subject’s average 

proportion of choices for Option A over five days significantly decreased as a function of 

Option A’s relative reward rates, could be moved on to other doses after 7 days. 

Reward magnitude manipulations 
 After training on the initial 3 μg/kg dose, the reward magnitude for Option A was 

changed to either 10 μg/kg or 1 μg/kg in a counterbalanced fashion. Half of the rats from 

each group first experienced the 1 μg/kg dose and then 10 μg/kg and half in the opposite 

order. Dose was manipulated by changing the pump delivery time. For the 10 μg/kg 

condition, the pump turned on 4.1 s into the 10 s terminal link interval while the pump 

turned on 9.41 s into the 10 s interval for the 1 μg/kg condition. All infusion times 

finished at the end of the 10 s interval concurrent with terminal link stimulus offset. Each 

dose was trained for a total of 10 sessions prior to moving on to the next dose. 
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Data Analysis 
Molar analysis 
 Data analysis for the present Experiment closely followed Experiment 1. Choice 

behavior was calculated as the five-session average proportion of choices for Option A as 

a function of Option A’s relative reward rates. The data were again analyzed using the 

NLME package in R and took the form of the same three derivations of the generalized 

matching equations (Equations 14-16) with the exception that the continuous factor of 

magnitude was replaced by the continuous factor of dose in μg/kg. For the initial 

isomorphic training, where both options offered food reward, the generalized matching 

equation was used (Equation 14), and model comparisons were conducted on the 

allomorphic drug vs. food procedure similar to Experiment 1. Namely, potential effects 

of Option A’s reward-associated cues were quantified as altering subjects’ sensitivity to 

changes in dose (SM; Equation 15) or through differences in exchange rates (Equation 

16). Here, the exchange rate parameter, Ex, scaled the reward magnitude of Option B in 

units of a μg/kg REMI infusion. For all analyses of drug self-administration, the data 

represent the average of the last five days of training for the condition. 

The same sessions were also used to calculate the average interchoice intervals 

(ICI), or the time between choices as a function of dose. ICIs as a function of increasing 

doses have been shown in the literature to monotonically increase for different drugs of 

abuse (Beckmann et al., 2019). The present analysis sought to confirm a monotonically 

increasing function of ICIs with dose. ICIs were analyzed for all trials and also for trials 

only following REMI-Wins (i.e., Option A) as a function of dose using a linear mixed 

effects (LME) model in JMP with Subject as a nominal random factor, Group as a 

nominal fixed factor, Trial Type as a nominal fixed factor, and Dose as a continuous 

fixed factor. All continuous variables were mean centered. 

Molecular analysis 
 Molecular analysis closely followed Experiment 1. However, for all models, λA 

represented the reward magnitude for Option A in REMI μg/kg units, while λB 

represented either the magnitude for Option B in food pellets in the Base RL model or the 

exchange rate parameter, Ex, scaled in REMI μg/kg units in subsequent models. 

Following analysis of the Base RL model, the reward prediction error term of Equations 
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18 and 19 were again expressed as a ratio of each option’s relative reward magnitude 

raised to the sensitivity to magnitude parameter (SM). On loss trials, the ratio was recoded 

as zero. Subsequent models were also assessed that included additional α parameters 

dependent on either Option (A vs. B), Outcome (win vs. loss), or the interaction between 

Option and Outcome. All models were again fit using the fmincon optimization algorithm 

in MATLAB using the same parameter constraints and log likelihood measures as 

Experiment 1. The overall best fitting model was determined according to the lowest AIC 

value. To quantify any potential differences between parameters, a series of Wilcoxon 

rank-sum tests were conducted across parameters. In the case that the best fitting model 

included more than one α, statistical differences across α parameters were assessed using 

pairwise Wilcoxon sum-rank tests with Hochberg corrections that included the relevant 

factors of Option, Outcome, and their interaction, depending on the best fitting model. 

Finally, as a visual aid to illustrate the differences in RL modeled reward magnitudes, 

RPEs were calculated for both options across groups. 

Results 
Molar analysis 
 Figure 3.1a shows the proportion of choices for Option A as a function of Option 

A’s relative reward rates during the isomorphic food versus food procedure. Similar to 

Experiment 1, both groups tended to prefer the option with higher overall reward rates. 

Using dummy coding for the Group factor (due to non-convergence with effects coding), 

the NLME generalized matching equation again fit the data well. Results from the NLME 

model showed significant sensitivity to relative reward rates [SR = 0.26; F(1, 45) = 65.75, 

p < .001] for the Unsignaled group, with significantly greater sensitivity in the Signaled 

group [SR = 0.44; F(1, 45) = 13.83, p = .001]. The Unsignaled group also showed 

relatively little bias for either alternative [b = 1.16], while the Signaled group showed 

significantly more bias for Option A [b = 0.59; F(1, 45) = 12.10, p = .001]. Overall, the 

results showed that rats in both groups were making choices based on relative reward 

rates prior to catheter surgery, and the Signaled group again showed a bias for Option A’s 

reward-associated cues. 

 For allomorphic REMI vs. food choice, Figure 3.1b-c shows the Signaled and 

Unsignaled group’s proportion of choices for Option A as a function of Option A’s 
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relative reward rates and REMI dose. Similar to the isomorphic procedure, allomorphic 

choices showed apparent control by both reward dimensions. That is, preferences shifted 

as both the relative reward rates and relative reward magnitudes changed. Additionally, 

the Signaled group showed an apparent bias for REMI reward at all doses.  

Three different models were compared with the results shown in Table 3.1. Similar to 

Experiment 1, the 2-D Matching Model showed relatively poor fits that were improved 

by adding a global exchange parameter. However, allowing the exchange parameter to 

vary as a function of group revealed that the 2-D Exchange Matching model was 

substantially favored as the best fitting model. The parameter estimates (Figure 3.2) from 

the best fitting model also corroborated the apparent trends in the data. Both the Signaled 

[SR = 0.29; SM = 1.12] and Unsignaled groups [SR = 0.21; SM = 1.10] showed comparable 

decreases in drug preferences as the reward rates began to favor food [F(1, 171) = 19.8, p 

< .001] and significantly altered their choices depending on drug doses [F(1, 171) = 

147.38, p < .001]. Results also showed a significant Group effect on the exchange 

parameter [F(1, 171) = 11.90, p = .001], indicating that Option B had greater relative 

worth in units of a REMI μg/kg infusion for the Unsignaled group [Ex = 5.86] than the 

Signaled group [Ex = 3.16]. 

 Figure 3.3 shows the average ICIs for all trials as well as only trials following 

REMI-Wins. Analysis revealed that ICIs significantly increased with dose [F(1, 14) = 

16.93, p < .001], ICIs following REMI-Wins were longer overall [F(1, 14) = 52.97, p < 

.001], ICIs following REMI-Wins increased as a function of dose more rapidly than 

overall ICIs [F(1, 14) = 17.14, p < .001], and that ICIs were comparable between groups.  

Molecular analysis 
 The molar analyses supported the use of a group-dependent exchange rate 

parameter and suggested that scaling the valuation term in RL models as relative reward 

magnitude ratios may also improve overall fits. Indeed, changing RL valuation equations 

to a scaled ratio of relative reward in the Scaled Single-Learning model showed 

overwhelming evidence of improved fits (overall ΔAIC = -348.73; Table 3.2). Including 

additional α parameters dependent on Option and Outcome also showed substantial 

improvements in model fit. However, as in Experiment 1, adding α values dependent on 
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the Option × Outcome interaction in the Scaled Quad-Learning model was the best fitting 

model. 

 Figure 3.4 shows three example model fits that approximate the average AIC (± 

one standard deviation). Overall, the RL model successfully parameterized the subjects’ 

trial-by-trial choices [ΔAIC -640.60 from a chance model] across all manipulated 

variables despite its foundation in conditioning principles for non-drug commodities. 

Parameters from the Scaled Quad-Learning model are shown in Figure 3.5a. There were 

no significant group effects on any parameter, but α values for wins were significantly 

higher than losses across both options for the Signaled [Z = 2.52, p = .012] and 

Unsignaled groups [Z = 2.52, p = .012]. Finally, Figure 3.5b shows the calculated RPEs 

for win trials when the current value for both options equaled 0. As in Experiment 1, the 

calculated RPEs showed the expected ordinal effects of the Signaled group showing 

greater value updating for Option A than the Unsignaled group that showed greater value 

updating for Option B.  

Discussion 

 The purpose of Experiment 2 was to assess the ability of rats to make value-based 

decisions when choosing between probabilistic drug and nondrug rewards. To that end, 

the results strongly support that rats in the present experiment were making decisions 

between REMI and food as if they were value-based. Rats in both groups showed 

significant sensitivity to relative reward rates as evidenced by decreasing choices for 

REMI when the reward rates favored food (i.e., Option B). Additionally, as the dose of 

REMI increased, so did choices for REMI. Finally, the Signaled group’s reward-

associated cues produced a significant bias for REMI across all reward rate and 

magnitude conditions but otherwise did not alter the effects of changes on those 

dimensions to allomorphic decision-making.   

 Prior to the allomorphic procedure, it was important to ensure that rats, during the 

isomorphic procedure, showed sensitivity to relative reward rate changes similar to 

Experiment 1. Without replicating the effects of Experiment 1, any potential deficits seen 

in allomorphic drug-associated decision making could be attributed to an overall lack of 

learning. However, rats in the current experiment’s isomorphic procedure showed 

significant sensitivities to relative reward rates. Interestingly, the present experiment also 
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showed that the Signaled group had heightened sensitivities to relative reward rates 

compared to the Unsignaled group. Although unexpected, the increased SR values may be 

interpreted in a manner similar to the group differences in sensitivity to reward 

magnitude from Experiment 1. That is, sensitivities to a given dimension are likely to be 

contextually dependent such that the two groups, through the differential use of reward-

associated cues, made decisions in different contexts. The increased SR values may also 

be interpreted from the perspective of differential outcomes research (Urcuioli, 2005),  

that has shown improved discrimination learning when two choices lead to either 

different stimuli or rewards. 

 After sufficient training on the isomorphic condition, the rats were moved on to 

the allomorphic drug versus food condition to assess if they could make value-based 

allomorphic decisions. Indeed, contrary to compulsion hypotheses of addiction (e.g., 

Kalivas et al., 2005; Wise & Koob, 2014), replacing Option A’s associated food reward 

with varying REMI doses revealed that choices for REMI were sensitive to both the 

relative reward rates and magnitudes of the concurrently available options. That rats were 

sensitive to reward magnitude (i.e., dose) corroborates previous research using REMI and 

other opioid μ receptor agonists (Freeman & Woolverton, 2011; Koffarnus & Woods, 

2008; Negus, 2006; Spiga, Maxwell, Meisch, & Grabowski, 2005), and the dose-

dependent increase in the average ICIs parallels previous procedures assessing cocaine 

choice (Beckmann et al., 2019). However, the present study is believed to be the first to 

show that choices of an opioid μ receptor agonist are sensitive to relative reward rates, 

thus corroborating findings with cocaine choice (Woolverton & Rowlett, 1998). 

Experiment 2 also showed that relative reward rates and magnitude produce independent 

effects on REMI choices in line with the predictions made by the matching literature 

(e.g., Kyonka, 2008) outlined in Experiment 1. Namely, a single sensitivity parameter for 

relative reward rates and magnitudes sufficiently described the data. Further, the average 

parameter estimates for sensitivity to relative reward rates were similar between the 

current experiemnt (mean SR = 0.25) and Experiment 1 (mean SR = 0.30), suggesting that 

the dimensional control exerted by the relative reward rates was comparable between 

isomorphic food-food and allomorphic drug-food decision-making conditions.   



 

59 
 

 Also similar to Experiment 1, the Unsignaled group made decisions as if Option 

B’s reward magnitude was larger (Ex = 5.86) than the Signaled group (Ex = 3.16) despite 

choice of Option B resulting in an identical reward magnitude (i.e., one food pellet). 

Scaled in units of a REMI μg/kg infusion, the group effect on the exchange rate 

parameter suggests a scalar difference in how substitutable (Green & Freed, 1993) an 

unsignaled food pellet is relative to an unsignaled REMI infusion (for the Unsignaled 

group) or a signaled REMI infusion (for the Signaled group). Thus, whether choosing 

between identical rewards (Experiment 1) or qualitatively different rewards (current 

experiment), the reward-associated cues produced a similar effect on how substitutable 

Options A and B are for one another. The present experiment is also believed the first to 

show that reward-associated cues as used here can bias choice for drug reward and 

corroborates previous research using food rewards (Zentall, 2016) as well as research 

showing that conditioned stimuli can alter the value of drug rewards (e.g., Beckmann et 

al., 2019; Tunstall & Kearns, 2014). 

 Given that the molar data were suggestive of a scalar difference in reward 

magnitude between REMI and food across the two groups, the molecular RL analysis 

sought to confirm the finding at a trial-by-trial level. As in Experiment 1, the RL model 

comparisons supported scaling the valuation equations as a ratio of relative reward 

magnitudes that included a group-dependent exchange term and sensitivity to reward 

magnitude parameter. As discussed in Experiment 1, the implications of altering the RL 

valuation equations from independent to relative reward magnitude represents an 

important difference from traditional RL models that only recognize the relative nature of 

choice preferences in the decision equation. The current experiment extends upon 

Experiment 1 by providing a replication of the effect in allomorphic choice conditions. 

Additionally, for the same reasons as Experiment 1, the lack of any group effects on RL 

parameters may not be without cause. That is, inclusion of group-dependent exchange 

terms in the Scaled Quad-Learning model effectively builds a group effect into the model 

around which the remaining parameters may optimize. Therefore, once the scalar 

differences in reward magnitude of the two options are accounted for, other decision 

parameters may have become somewhat consistent. 
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 The RL model also extends the results of the molar matching models through its 

ability to scale wins and losses with the α parameters. As in Experiment 1, the inclusion 

of additional α parameters was beneficial for model fits according to AIC differences, 

and the non-parametric tests showed that wins were weighted significantly more than 

losses for both alternatives in both groups. That wins and losses were differentially scaled 

suggests there was variance in how rats in the present experiment made decisions that 

went beyond what was captured by the reward magnitude differences across options  

(Kahneman & Tversky, 1979; Marshall & Kirkpatrick, 2017). Additionally, it is believed 

that the present experiment is the first to apply RL models to drug choices in any species 

and among a minority that do so for rodent choice data (e.g., Groman et al., 2017; 

Marshall & Kirkpatrick, 2017). The finding that an RL model can successfully 

parameterize drug choices is a significant finding, as RL models imply that an agent is 

calculating expected payoffs and adjusting future choices accordingly. Such value-based 

decision-making is certainly not something one would expect from a compulsive drug 

user. 

 In terms of the current result providing a satisfactory test of compulsive drug use 

hypotheses, two potential limitations were the choice of drug and whether or not the 

current rats represented “addicted” individuals. Indeed, although REMI is an opioid μ 

receptor agonist similar to other abused opioids (Glass et al., 1993; SAMHSA, 2017; 

Trescot, Datta, Lee, & Hansen, 2008), its relatively short half-life (Crespo et al., 2005; 

Glass et al., 1993; Haidar et al., 1997) is thought to contribute to a lower abuse liability 

(Baylon, Kaplan, Somer, Busto, & Sellers, 2000). However, as clearly evidenced by rats’ 

choices in the present experiment, REMI has reinforcing efficacy. Furthermore, at least 

one abuse case of REMI exists in humans (Levine & Bryson, 2010). Future research 

could therefore expand upon the current experiment through use of other opioid μ 

agonists. 

 As to whether the present rats represent “addicted” individuals, the allostatic 

theory of drug addiction (e.g., Wise & Koob, 2014) suggests that choices for a drug are 

initially driven by the positive reward value of such drugs of abuse. After repeated 

administrations, tolerance to the pharmacological effects develop that both diminish the 

drug’s positive rewarding value and alters the individual’s biological homeostatic set 
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point. During this later stage of addiction (i.e., tolerance), drug use is driven to maintain 

the new homeostasis point reliant on the drug’s presence and to avoid the associated 

withdrawal consequent upon failure to maintain drug use. Ultimately, the result is that the 

user transitions from voluntary to compulsive use where drug taking occurs 

independently of the drug being hedonically pleasing. In rats, the transition to compulsive 

use is ostensibly modeled using the previously described escalation procedures (Ahmed 

& Koob, 1998; Lenoir et al., 2013),  where rats who are given extended access to a drug 

show increased levels of drug consumption when offered in isolation. 

 That the present rats did not undergo an escalation of drug intake procedure prior 

to making allomorphic choices may suggest that the current rats simply do not meet the 

criteria for addiction. However, the suggestion that individuals are only compulsive when 

they are addicted is a cyclical mode of thinking that precludes hypothesis testing of 

addiction theories. Additionally, evidence that escalation of drug intake reflects 

dysregulated and compulsive drug use remains speculative. Choice preferences for 

stimulants after evidence of escalation remains unchanged (Caprioli et al., 2015; Lenoir 

et al., 2007), and there is only one report showing that preferences for heroin increases 

after escalation (Lenoir et al., 2013). Furthermore, although escalation commonly shows 

that drug intake during a short-access period (i.e., 1 hr) is regulated (i.e., does not 

escalate), rats who are first acclimated to a 10-min self-administration period have shown 

escalation during a subsequent 1-hr self-administration session (Beckmann, Gipson, 

Marusich, & Bardo, 2012). Rats have also shown evidence of escalating food 

consumption (Goeders, Murnane, Banks, & Fantegrossi, 2009; Venniro, Zhang, Shaham, 

& Caprioli, 2017), and training rats on an escalation procedure prior to an allomorphic 

decision-making procedure produces a strongly biased reward history that is often not 

acknowledged (Beckmann et al., 2019). Additionally, although there is mixed evidence 

indicating that animals experiencing opioid withdrawal (i.e., a marker of biological drug 

dependence) show increased drug preferences (Lenoir et al., 2013; Negus, 2006; Negus 

& Rice, 2009), rats who have been acutely deprived of food will also show increased 

food preference and hoarding (Beckmann et al., 2019; Morgan, Stellar, & Johnson, 

1943). Thus, the ostensible behavioral markers of dysregulated drug use may instead 
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reflect general learning and behavioral mechanisms that do not discredit rats’ value-based 

decision-making for a REMI food reward in the present experiment.  

 To summarize, the current experiment revealed several findings relevant to our 

understanding of drug abuse. First, choices for REMI were shown to be dependent upon 

both the relative reward rates and magnitudes of the concurrently available commodities. 

Second, the presence of conditioned stimuli associated with REMI reward significantly 

biased decision making towards REMI choices in a manner similar to stimuli being 

paired with food reward. Third, the allomorphic choice dynamics were able to be 

captured at both the molar level with matching models and the molecular level with RL 

models.  Finally, the present experiment (1) suggests that rats are indeed capable of 

making value-based decisions for drug commodities and (2) establishes a basic procedure 

from which to test further decision-making hypotheses in a more dynamic procedure than 

is typical in substance abuse research. 
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Table 3.1. Experiment 2 molar models. 

Equation Model Name Parameter 
Count Parameters AIC ΔAIC 

15 2-D Matching 2 SR, SM -148.71  

16 
2-D Global 
Exchange 
Matching 

3 SR, SM, Ex -231.40 -82.69 

 16 2-D Exchange 
Matching 4 SR, SM, Ex  -321.86  -90.46 

Note: Models are shown in descending order of AIC values. ΔAIC calculations are 

shown as the difference from the previously best fitting model. Bolded text indicates the 

best overall fitting model. 
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Table 3.2. Experiment 2 molecular models. 

 

 

 

 

 

 

Note: Models are shown in descending order of overall averaged AIC values. ΔAIC calculations are shown as the difference from the 
previously best fitting model. Bolded text indicates the best overall fitting model.  

 

Model Parameter 
Count Parameters Signaled 

AIC 
Signaled 
ΔAIC* 

Unsignaled 
AIC 

Unsignaled 
ΔAIC* 

Base 3 α,β,c 2246.41  2372.23  

Scaled Single-Learning 4 α,β,c,SM 1957.93 -288.48 1962.25 -408.98 
Scaled Dual-Learning 

(Outcome) 5 αWin,αLoss,β,c,SM 1936.68 -21.25 1923.14 -39.11 

Scaled Dual-Learning 
(Option) 5 αA,αB,β,c,SM 1932.58 -4.1 1924.25 1.11 

Scaled Quad-Learning 
(Option×Outcome) 7 αAWin,αALoss,αBWin,αBLoss,β,c,SM  1867.79 -64.79 1841.66  -82.59 
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Figure 3.1. Experiment 2 molar choice data. (a) Mean (± SEM) proportion of choices for 

Option A as a function of Option A’s relative reward rates for the Signaled and 

Unsignaled groups during the isomorphic food versus food procedure. Lines are the 

NLME-determined best fit of Equation 14. (b-c) Mean (± SEM) proportion of choices for 

Option A as a function of Option A’s relative reward rates and REMI dose for the 

Signaled (b) and Unsignaled (c) group during the allomorphic drug vs. food procedure. 

Lines are the NLME-determined best fit of Equation 16. Note: x-axes are logarithmic for 

visualization.  
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Figure 3.2. Experiment 2 molar parameters. Mean (± SEM) parameter estimates from the 

NLME-determined best fit of Equation 16 to the molar choice data during the 

allomorphic REMI vs. food procedure in Experiment 2. Abs = absolute value transform. 

Note: error bars represent the between-subject variability of the predicted parameters. 
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Figure 3.3. Experiment 2 interchoice intervals. (a) Mean (± SEM) interchoice intervals 

for all trials in the Signaled and Unsignaled group as a function of dose. (b)  Mean (± 

SEM) interchoice intervals for trials following a rewarded choice for Option A (i.e., a 

REMI-Win) in the Signaled and Unsignaled groups as a function of dose.   
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Figure 3.4. Experiment 2 RL model fits. Example fits from the Scaled Quad-Learning 

model to molecular choice data of Option A. Dashed vertical lines represent reward 

magnitude changes for Option A in order of 3, 1, and 10 μg/kg doses. Panels show (a) an 

Unsignaled rat one SD below, (b) a Signaled rat at, and (c) a Signaled rat one SD above 

average the AIC. All data were smoothed with an 11-trial moving average.  
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Figure 3.5. Experiment 2 molecular parameters. (a) Median parameter estimates from the 

Scaled Quad-Learning model fit to the molecular choice data in Experiment 2. Medians 

are shown due to the use of nonparametric test statistics, and error bars represent the 

interquartile range. Note: β values are scaled according to the right y-axis. (b) Mean (± 

SEM) predicted reward prediction errors (RPEs) from the Scaled Quad-Learning model 

for Options A and B in the Signaled and Unsignaled group as a function of Option A’s 

reward magnitude. The displayed RPEs are from equations 18-19 when VA and VB 

equaled zero.  



 

70 
 

CHAPTER 4 
NEUROECONOMIC ASSESSMENT OF REWARD VALUE DURING 

ALLOMORPHIC OPIOID VS. FOOD DECISION-MAKING 
 

The results of Experiment 2 suggest that rats made allomorphic drug versus food 

choices according to value-based decision-making mechanisms. As such, a logical 

extension of Experiment 2 is to ask whether such allomorphic decisions are mediated by 

the scaling of brain activity to the different dimensions modulating the propensity for 

drug choices (e.g., Glimcher et al., 2005). As such, oxygen-sensitive electrodes were 

implanted into the nucleus accumbens (NAc) of rats engaging in an allomorphic decision-

making procedure as a proxy for fMRI BOLD signals (Francois et al., 2012; Lowry et al., 

2010). However, in order to maximize the ability to detect NAc O2 scaling with relative 

reward rates, the signaling condition of Experiment 3 was changed to include distinct 

win- and loss-associated stimuli for both options; this was done due to the finding of 

improved sensitivity to relative reward rates in Experiment 2 for the Signaled group 

during the isomorphic procedure. If NAc activity encodes a putative reward value signal, 

then activity should scale with the modulators of drug choice such as relative reward rates 

and magnitudes. 

 

Experiment 3 
 

Methods 
Subjects 

Six adult male Sprague-Dawley Rats (Harlan Inc; Indianapolis, IN, USA) were 

used in the experiment. Rats were individually housed on a 12:12 hour light:dark cycle 

(lights on at 7:00 a.m.) and had free access to water but were food restricted to 15 g of 

standard lab chow per day (Harlan Inc.) post session. All research was approved by the 

University of Kentucky Institutional Animal Care and Use Committee (Protocol # 2011-

0885). 

Apparatus 
 The apparatus was the same as in Experiment 2. 
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Drugs 
 Remifentanil hydrochloride gifted from the National Institute on Drug Abuse 

(Bethesda, MD, USA) was mixed in sterile saline (0.9% NaCl). 

Oxygen biosensor 
 Microelectrode arrays (MEAs, S2 configuration; CenMeT, Univeristy of 

Kentucky) were built as previously described (Rutherford, Pomerleau, Huettl, Strömberg, 

& Gerhardt, 2007) and consisted of four platinum recording sites (15 μm × 333 μm) 

arranged in dual pairs. Once built, the MEAs were calibrated in vitro at 100 Hz using the 

FAST16 mkIII electrochemical recording system (Fast Analytical Sensing Technology, 

Quanteon, LLC, Nicholasville, KY). In vitro calibration was adapted from Ledo et al. 

(2017). Briefly, a 20 mL solution of 0.05 M, pH 7.4, phosphate-buffered saline was 

purged of O2 with nitrogen at 37°C. Three additions of 4.95 μM oxygen were then used 

to generate a calibration curve to determine MEA sensitivity (slope, nA/μM), limit of 

detection (in μM, signal-to-noise = 3), and linearity (R2 ≥ 0.9). 

Establishing operations 
 All establishing operations were the same as Experiment 1. 

Isomorphic food versus food choice 
 Rats were trained on the same isomorphic decision-making procedure as 

Experiment 1 with the exception that all rats were in a Double Signaled condition. 

Illustrated in Figure 4.1, Option A was equivalent to Option A for the Signaled groups in 

Experiments 1 and 2. However, here, choosing Option B produced a lever stimulus when 

a reward followed and a jewel light stimulus directly above the lever when a loss 

occurred for 10 s. Thus, there was no differential signaling across Option A and B. In 

order to reach a stable baseline, a training criterion was set such that subjects had to have 

SR values greater than or equal to -0.25 to show comparable values with Experiments 1 

and 2. However, equipment for subsequent training was not always available once 

training criterion was reached and resulted in less systematic training times. The average 

training time contingent on both SR values and equipment availability was 54 sessions 

(SEM = 11.29). 
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Catheter surgery 
 Once the training criterion had been met, rats underwent surgery for implantation 

of the jugular catheter as described in Experiment 2. 

Drug self-administration training 
 Drug self-administration training was as described in Experiment 2 with the 

exception that all rats were only trained on the 10 μg/kg REMI dose. Following choice of 

the drug-associated Option A, the infusion began 4.1 s into the 10-s terminal link interval 

and finished concurrent with terminal link offset. 

Food versus drug training 
 Following completion of drug self-administration training, all rats completed food 

versus drug training as described in Experiment 2. 

Preliminary allomorphic decision-making procedure 
 After food versus drug training, all rats completed approximately five days of 

training on the allomorphic decision-making procedure described in Experiment 2. 

Experiment 3 also included forced-choice trials, which were identical to free-choice trials 

except that, after orienting to the house-light, only one of the two nosepokes were 

available. Forced-choice trials were implemented in order to maintain adequate sampling 

of both choice options across all conditions of training and because previous research has 

shown dissociable effects between forced- and free-choice trials (e.g., Sugam, Day, 

Wightman, & Carelli, 2012). There were 12 forced choice trials per block (6 per option) 

for a total of 48, which reduced the total free-choice trial count (when both choice options 

were available) to 72 total trials. 

Electrode implantation 
 Following completion of preliminary allomorphic decision-making training, rats 

underwent a second surgery for the implantation of the O2-sensitive MEA. Prior to 

surgery, all rats were given a 10 mg/kg dose of carpofen (Rimadyl, Pfizer, NYC) and 1 

mL of 0.9% sterile saline subcutaneously. Rats were then anesthetized using 4% 

isoflurane (Isothesia, Henry Schein, Melville, NY), their head was shaved, and the rat 

was placed in a stereotaxic frame (David Kopf Instruments, Tujunga, CA) on top of a 

circulating water bath to maintain body temperature at 37°C. Rats were maintained at an 
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isoflurane level of 1-3%, artificial tears (Henry Shcein, Melville, NY) were applied to the 

rats’ eyes, and the shaved heads were disinfected with Hibiclens scrub (Mölnlycke Health 

Care, Norcross, GA) and 70% ethanol. An incision was made on the rat’s head to expose 

the skull, followed by a craniotomy exposing the right hemisphere of the NAc (AP: +1.8-

2.04; ML: ± 1.5; DV: -7.0 relative to bregma; Paxinos & Watson, 2006). Three screws 

(Amazon supply, part No. B00FN0K02) were then screwed into the skull and a small 

burr hole was made contralateral to the site of the craniotomy for implantation of the 

Ag/AgCl reference electrode. The MEA was then implanted into the NAc, the Ag/AgCl 

reference electrode into the burr hole, and the MEA was set in place using dental acrylic 

(Ortho Jet Powder and Jet Acrylic Liquid, Lang Dental Manufacturing Co., Wheeling 

IL). Rats were allowed to recover for three days prior to resuming behavioral training and 

were given repeated carpofen (10 mg/kg s.c.) daily. 

Electrochemical recordings 
 Oxygen measurements were performed with the FAST-16 mkIII recording system 

using a low noise 4-channel Rat Hat amplifier system (Quanteon, LLC, Nicholasville, 

KY) connected through a low-noise commutator (Plastics One, Inc., Roanoke, VA) at 

100 Hz. During behavioral training, the MEA was maintained at -0.6 V versus the 

Ag/AgCl reference electrode (Ledo et al., 2017). 

Reestablishing operations 
 Following electrode implantation, rats again underwent drug self-administration 

training followed by drug versus food training as described above. 

Allomorphic decision-making procedure 
 After reestablishing procedures, rats returned to the allomorphic decision-making 

procedure as previously described.  All rats were trained for a minimum of 10 sessions 

per REMI dose, first with Option A providing 10 μg/kg of REMI, then 3 μg/kg, and 

finally 1 μg/kg. For the first five days of each dose, voltage was not applied to the 

electrode and no electrochemical recordings were collected. For the remainder of training 

at each component, voltage was applied to the MEA and recordings collected. A 

minimum of five recording sessions were collected for each animal but sessions could be 

excluded due to problems with the delivery of REMI, poor quality of the electrical 
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recordings, or failure to complete the session. In the case of excluded sessions, further 

training was necessitated. After all data were collected, animals were euthanized, the 

brains were extracted and flash frozen, and 40 μm brain slices were prepared using a 

cryostat. The slices were stained using Cresyl Violet (Sigma-Aldrich, St. Louis, MO) and 

visualized to confirm MEA placements into the NAc (Figure 4.15). 

Data Analysis 
Molar analysis 
 Molar data analysis closely followed Experiment 2. Choice data were expressed 

as the proportion of choices for Option A as a function of Option A’s relative reward 

rates. To quantify the initial isomorphic food versus food data, a NLME model taking the 

form of Equation 14 was used in the NLME package in R. To quantify the allomorphic 

drug versus food data, a NLME model taking the form of the Global Exchange 2-D 

Matching Equation (Equation 16) was used. No model comparisons were conducted due 

to the absence of groups. All molar choice data reflect the average of five sessions, and 

no forced choice trials were included in molar choice data analysis. The same sessions 

used for the molar choice data analysis were used to analyze ICIs in the same manner as 

Experiment 2, except there was no Group factor in the LME model. 

Molecular analysis 
 Molecular analysis was the same as Experiment 2 except no group comparisons 

were conducted on the parameter estimations. Additionally, on forced choice trials, the 

value of both options was updated but no choice was predicted. Instead, the last predicted 

choice was retained for the forced choice trial and did not count towards log-likelihood 

estimations (Marshall & Kirkpatrick, 2017). Analysis of RL parameters was only 

conducted if the best fitting model included more than one α parameter; in this case, a 

series of pairwise Wilcoxon signed-rank tests were run with Hochberg corrections that 

included the relevant factors of Option, Outcome, and their interaction. Finally, RPEs for 

both options were calculated as a visual aid to illustrate the differences in model value 

updating. 

Oxygen analysis 
 Changes in oxygen dynamics were analyzed for each trial by first creating a 40-s 

trial window around the time of a choice. The trial window was then segmented into three 
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separate intervals: baseline, cue, and reward. Baseline intervals were defined as 4 s prior 

to a choice until 1 s prior to a choice (3 s total). Cue intervals were defined from the time 

a choice was made until the end of the 10-s terminal link stimulus (10 s total). Reward 

intervals were defined as 1.5 s prior to the offset of the terminal link stimulus (in order to 

capture large, convoluted signals between cue and reward intervals) until 5 s past the ITI 

(27.5 s total). However, in the case that the next trial was initiated prior to the end of the 

reward interval, the reward interval was truncated to 3 s before the initiation of the next 

trial (i.e., orienting response). All trial windows were smoothed with a 0.25 s moving 

average. 

 Trial windows were then analyzed using the findpeaks function in MATLAB, 

which identifies local maxima (i.e., peaks) in timeseries data separately for the cue and 

reward intervals. All local maxima were required to have a minimum duration of 0.75 s, 

and the largest returned value was recorded as the peak for a given trial’s cue or reward 

interval. Furthermore, given that RPEs can be both positive and negative (e.g., Schultz, 

2010), each trial window was analyzed again to search for local minimums (i.e., troughs) 

by multiplying the trial window by -1. However, early in the analysis it became apparent 

that REMI-Wins in the 10 μg/kg condition produced a very large O2 response that 

extended well beyond the reward interval previously described. As such, reward intervals 

for REMI-Wins in the 10 μg/kg condition were set to 190 s from the time of choice. 

Additionally, to aid the findpeaks function in capturing the response to REMI 10 μg/kg 

infusions, the trial window was filtered with an elliptic lowpass filter using the ellip 

function in MATLAB. The lowpass filter stopband was set to 0.09 Hz and was chosen 

through experimentation with exemplar trials due to its minimal alteration of the overall 

signal. In the case that the next trial was initiated prior to the end of the 190-s reward 

interval, the reward interval was truncated to 3 s prior to the trial’s initiation. 

 The dependent variables collected from each cue and reward interval of a given 

trial were the largest-amplitude peak and trough (i.e., maximum and minimum, 

respectively), expressed as a percent change from the mean of the baseline interval, the 

width of the largest-amplitude  peak and trough, and the proportion of trials in which a 

peak or trough was found. The dependent variables were then entered into a linear mixed-

effects (LME) model in MATLAB with Subject as a nominal random factor, Dose as a 
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continuous fixed factor, Block (i.e., relative reward rates) as a continuous fixed factor, 

Option as a nominal fixed factor, Trial Type (free vs. forced) as a nominal fixed factor, 

and Outcome as a nominal fixed factor. All nominal variables were effects coded and 

continuous variables mean centered. The primary interest of the current study was how 

any changes in the O2 signal scaled with either relative reward rates (i.e., Block) or dose 

manipulations of REMI. In the case of significant effects coupled with significant 

interactions, the highest order interaction was interpreted. For post hoc tests of 

interactions, coefficient tests were run using the coeftest function in MATLAB. Finally, 

in the case of apparent quadratic trends, quadratic trend analyses were conducted in JMP. 

To differentiate the two sets of analyses, reporting the post hoc testing in MATLAB 

herein involves the term slope for the testing of linear simple slopes, while those done in 

JMP herein involves the term dose and dose2. 

Important limitations with the MEA data collected warrant discussion. For 

instance, two out of six animals displayed repeated saturation of the MEA signal that 

precluded collection during select time periods, one animal displayed behavioral 

stereotypy during win trials that produced electrical disturbances, and one MEA changed 

its resting baseline values within session. For these reasons, the entire electrical signal for 

each session was first visualized prior to analysis. Upon detecting nonfaradaic current, 

any trials where the aforementioned electrical disturbances existed were manually 

excluded. The average percent of trials excluded across subjects was 13.21% (SEM = 

5.12%). 

Results 
Molar analysis 
 Figure 4.2a shows the proportion of choices for Option A as a function of Option 

A’s relative reward rates during the isomorphic food versus food procedure. Similar to 

previous experiments, the rats tended to favor the options with greater relative reward 

rates. Analysis with the general matching NLME model also confirmed the rats’ choices 

were sensitive to the changing relative reward rates [SR = 0.45, F(1, 17) = 106.08, p < 

.001]. Overall, choices of Option A decreased concurrent with decreases in its relative 

reward rates, with effectively no bias for either alternative [b = 0.99].  
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Figure 4.2b shows the proportion of choices for Option A as a function of Option 

A’s relative reward rates during the allomorphic drug versus food procedure. Drug 

preferences were again under apparent control of both relative reward rates and dose, but 

the sensitivity to rewards rates appeared less pronounced. Results derived from the 2-D 

Global Exchange Matching equation confirmed the apparent trends. There was 

significant sensitivity to changes in relative reward rates [SR = 0.26, F(1, 64) = 18.95, p < 

.001] and relative reward magnitude, [SM = 2.6, F(1, 64) = 251.85, p < .001], and the 

reward magnitude for Option equated to ~2 μg/kg dose of REMI [Ex = 2.06]. Finally, 

Figure 4.3 shows the average ICIs as a function of dose for all trials as well as only the 

trials following REMI-Wins. Although the function showed an apparent quadratic trend, 

a quadratic effect of dose was not significant. ICIs significantly increased as a function of 

dose [F(1, 5) = 11.4, p = .02], ICIs following REMI-Wins were longer overall [F(1, 5) = 

18.34, p = .008], and ICIs increased as a function of dose more rapidly following REMI-

Wins than the average of all trials [F(1, 5) = 37.43, p = .002]. 

Molecular analysis 
 Similar to previous experiments, the Scaled Single-Learning model tested if 

altering the Base RL model’s valuation equations with the exchange-rate (Ex) and 

sensitivity to magnitude parameters (SM) would improve overall model fits. Indeed, 

inclusion of the Ex and SM parameters resulted in overwhelming evidence in favor of 

relative magnitude scaling (see Table 4.1). However, unlike previous experiments, 

including additional α parameters in subsequent models did not result in overall 

improvements in model fits. According to each model’s AIC value, the Scaled Single-

Learning model was the best fitting model. But, upon assessing model fits it became 

apparent that the Scaled Single-Learning model was over fitting the 10 μg/kg and 3 μg/kg 

dose conditions and underfitting the 1 μg/kg condition. To assess whether the Scaled 

Single-Learning model was indeed underfitting the 1 μg/kg condition, each subject’s 

average residual for the three dose conditions were plotted and compared to the next best 

fitting Scaled Quad-Learning model. Shown in Figure 4.4, the average residuals showed 

an apparent increase in the 1 μg/kg condition in four out of six subjects that was not 

present in the Scaled Quad-Learning; for this reason, despite the Scaled Single-Learning 
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model having the lower AIC, the Scaled Quad-Learning model was selected as the best-

fitting model.   

 Figure 4.5 shows three example model fits that approximate the average AIC (± 

one standard deviation). Overall, the RL model tended to capture the choice dynamics of 

the current experiment less well than previous experiments, but still followed the general 

trends of the data [ΔAIC = -1190.50 relative to the chance model]. Parameters for the 

Scaled Quad-Learning model are shown in Figure 4.6a and are overall comparable with 

those from Experiment 2. However, no α values were significantly different after 

correcting for multiple comparisons. Finally, the calculated RPEs are illustrated in Figure 

4.6b and showed the ordinally expected patterns of Option A providing greater value 

updating on wins than Option B as a function of dose. 

Oxygen 

 Figures 4.7 and 4.8 show averaged oxygen traces across all animals for the most 

common result across measures: Dose × Option × Outcome. The average traces were 

concordant with ordinal predictions of RPEs. Namely, peaks tended to occur at the 

presentation of the win- and loss-associated stimuli while, during the reward interval, 

secondary or large convoluted peaks and troughs occurred for wins and losses, 

respectively. 

For the analysis of average peaks and troughs, there were no systematic effects on 

troughs during the cue interval related to either Block or Dose. The proportion of trials 

that showed a trough during the cue interval were relatively low compared to other 

measures discussed below (Mean = 0.61, SEM = 0.01) and, as suggested by the average 

traces (Figures 4.7-4.8), cue intervals were primarily associated with peaks rather than 

troughs. Additionally, systematic scaling to relative reward rates was also not apparent in 

the current dataset. Shown in Figure 4.9, cue and reward interval peaks appeared to be 

trending as a function of relative reward rates when collapsing across all other variables, 

but changes in O2 did not systematically scale with Block on any measure. 

 Oxygen peaks to the reward-associated cues were present on nearly all trials 

[Mean = 0.95, SEM < .01], and percent amplitude changes showed significant effects of 

Dose [F(1, 511) = 3.94, p = .048] and Outcome [F(1, 511) = 6.13, p = .014] and a 

significant Dose × Option interaction [F(1, 511) = 4.31, p = .038]. Shown in Figure 
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4.10a, the interaction had apparent quadratic trends in opposing directions for REMI and 

food, which were probed by assessing the significance of a quadratic fit. Indeed, both 

quadratic terms for REMI [dose = 0.10, p = .333; dose2 = -0.07; p = .048] and food [dose 

= -0.33, p < .001; dose2 = 0.07; p = .023] were significant but in opposite direction. 

Percent amplitude change to signals associated with food significantly decreased as a 

function of dose in a nonlinear fashion, while the percent amplitude changes to signals 

associated with REMI initially increased and then decreased as a function of dose. 

Additionally, the main effect of Outcome (Figure 4.9b) was due to peak amplitude 

changes being higher overall for cues signaling a win than those signaling a loss. Cue 

widths showed a significant effect of Dose [F(1, 511) = 9.71, p = .002] and significant 

Dose × Outcome [F(1, 511) = 10.92, p = .001] and Dose × Option × Outcome 

interactions [F(1, 511) = 9.29, p = .002]. Illustrated in Figure 4.10c, the interaction was 

driven by the average width of peaks to REMI-Win-associated cues significantly 

decreasing as a function of dose [slope = -0.07, p < .001], while the widths associated 

with REMI-Loss cues showed a non-monotonic increase and then decrease [dose = .06, p 

= .030; dose2 = -0.02, p = .046]. 

 O2 peaks [Mean = 0.77, SEM = 0.01] and troughs [Mean = 0.92, SEM = 0.01] 

during the reward interval were also prevalent across trial types. The percent amplitude 

changes for O2 peaks during the reward interval showed significant effects of Option 

[F(1, 502) = 8.90, p = .003] and Outcome [F(1, 502) = 12.79, p < .001] and significant 

Dose × Option [F(1, 502) = 15.99, p < .001], Option × Outcome [F(1, 502) = 26.67, p < 

.001], and Dose × Option × Outcome interactions [F(1, 502) = 26.90, p < .001]. Shown in 

Figure 4.11a, the three-way interaction was driven by Remi-Win peaks significantly 

increasing as a function of dose [slope = 0.83, p < .001] while no other trial outcomes 

showed slopes significantly different from zero. Reward-interval peak widths also 

corroborated the effects of amplitude. Reward-interval peak widths showed significant 

effects of Dose [F(1, 502) = 18.59, p < .001], Option, [F(1, 502) = 4.79, p = .030], 

Outcome [F(1, 502) = 4.07, p = .044], and significant Dose × Option [F(1, 502) = 176.07, 

p < .001], Option × Outcome [F(1, 502) = 15.77, p < .001], and Dose × Option × 

Outcome interactions [F(1, 502) = 165.94, p < .001]. The three-way interaction was 

driven by peak widths positively increasing as a function of dose [slope = 2.37, p < .001] 
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while no other trial outcomes showed slopes significantly different from zero (Figure 

4.11b). Reward interval widths as a function of dose during REMI-Wins also showed a 

significant quadratic trend [dose = 1.66, p < .001, dose2 = 0.32, p = .003], indicating 

widths increased nonlinearly as a function of dose. 

 The percent amplitude changes for O2 troughs during the reward interval showed 

significant interactions of Dose × Option [F(1, 289) = 26.82, p < .001] and Dose × 

Outcome [F(1, 289) = 7.68, p = .006]. Both interactions showed apparent quadratic 

effects as a function of dose (Figure 4.12a-b). For the Dose × Option interaction, the 

amplitude of troughs for choices of food rewards became less negative at 3 μg/kg and 

then appeared to level off at 10 μg/kg [dose = 0.18, p = .032; dose2 = -0.07, p = .032], 

while troughs associated with REMI choices became initially less negative at 3 μg/kg and 

then more negative at 10 μg/kg [dose = -0.53, p < .001]. For the Dose × Outcome 

interaction, troughs associated with losses became less negative at 3 μg/kg and then 

leveled off at 10 μg/kg [dose = 0.16, p = .050; dose2 = -0.07, p = .016], while troughs 

associated with wins were less negative at 3 μg/kg and then more negative at 10 μg/kg 

[dose = -0.26, p = .130; dose2 = -0.14, p = .021]. The widths of the reward-interval 

troughs showed significant effects of Dose [F(1, 289) = 9.98, p = .002] and Option [F(1, 

289) = 13.79, p < .001] and significant Dose × Option [F(1, 289) = 20.53, p < .001], Dose 

× Outcome [F(1, 289) = 31.14, p < .001], and Dose × Option × Outcome interactions 

[F(1, 289) = 10.61, p = .001]. The three-way interaction was driven by the trough widths 

for REMI-Wins significantly increasing as a function of dose [slope = 1.11, p < .001], 

while no other conditions had slopes significantly different from zero (Figure 4.12c).  

Oxygen-behavior relationships 
 A final set of analyses was run to assess how O2 scaling to REMI doses related to 

behavioral choices scaling with REMI doses in the matching and RL models. For molar 

data, the ratio of peak O2 (REMI / Food) during the reward interval was compared to the 

estimated reward magnitude of REMI (i.e., Remi / Ex) for all subjects; however, this 

analysis (see Figure 4.13) did not reach significance [r = 0.46, p = .053]. For molecular 

data, RPEs for all subjects on win trials were correlated with the percent amplitude O2 

change during the reward interval. RPEs and percent O2 change were significantly 

correlated [r = 0.24, p < .001], although considerable variability was present. Finally, the 
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relative reward magnitude terms in the Scaled Quad-Learning RL model (i.e., λA / λB), 

previously expressed as the REMI dose divided by the exchange rate parameter, was 

replaced with the ratio of average peak O2 (REMI / Food) obtained during the reward 

interval and refit to the behavioral data. Substituting peak O2 for the behaviorally derived 

reward magnitude values revealed that the RL model could still successfully parameterize 

trial-by-trial choices. Additionally, the average AIC of the model (AIC = 842.40) was 

comparable to the other models fit with the behaviorally derived reward magnitude 

values and suggests feasibility in peak O2 as scaling with relative reward magnitude 

similar to behavioral choices. 

Discussion 

 The purpose of the current experiment was to determine if changes in NAc O2 

activity during the allomorphic drug versus food procedure would scale with behavioral 

determinants of REMI’s relative reward value. Similar to Experiment 2, rats’ propensities 

to choose REMI was shown to be modulated by both the relative reward rates and 

magnitudes of the concurrently offered commodities. Changes in NAc O2 activity also 

showed some evidence of REMI and food being scaled on a common physiological 

utility signal, as the appearance of reward-associated cues or reward delivery tended to 

result in qualitatively similar peaks of NAc O2 activity. The present experiment is 

believed the first to show that decisions for REMI or food produce comparable effects on 

NAc O2 activity. Additionally, the data suggested that NAc O2 activity scaled with the 

relative reward magnitude of the reward-associated cues, while NAc O2 activity during 

the reward interval appeared to scale with the magnitude of REMI dose. However, NAc 

O2 activity did not scale with relative reward rates. 

 With respect to behavior, the signaling condition of the current experiment was 

notably different than Experiment 2 in that both REMI and food choices resulted in 

spatially distinct win- and loss-paired cues; this was done in an attempt to achieve greater 

behavioral sensitivity to relative reward rates that might then increase the likelihood of 

observing NAc O2 scaling. During the initial isomorphic training, the inclusion of 

outcome-dependent cues for food reward did indeed produce a qualitative increase in 

sensitivity to relative reward rates (SR = 0.45) over Experiments 1 and 2 (avg SR = 0.30 

and 0.35, respectively). Furthermore, signaling both choice alternatives effectively 
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removed bias to either option. Thus, prior to exposing the rats to allomorphic drug versus 

food choice conditions, the rats’ choices as a function of reward probability were 

relatively sensitive compared to previous conditions and showed very little bias for either 

alternative. 

 During the allomorphic drug vs. food procedure, the rats replicated the results of 

Experiment 2 by showing significant sensitivities to relative reward rates and 

magnitudes; these results suggest that rats making choices between REMI and food were 

doing so in a value-based manner. Additionally, ICIs showed a similar increase as a 

function of dose to those of Experiment 2 as well as another report assessing cocaine 

choices (Beckmann et al., 2019). However, while sensitivities to relative reward rates 

were significant, the qualitatively increased sensitivities seen in the isomorphic procedure 

returned to a comparable level as Experiment 2 during allomorphic choice. The exact 

reason for the decrease between conditions is unclear. One possibility could be that 

training rats on a descending order of REMI doses resulted in an increased REMI bias. 

For instance, the exchange-rate parameter (Ex = 2.06) for the present experiment was 

qualitatively lower than that of both groups in Experiment 2 (Ex = 3.16 and 5.86). 

Alternatively, it could be that the inclusion of forced-choice trials sufficiently changed 

the decision-making context, such that forcing rats to choose a less preferred alternative 

resulted in more absolute preferences. It is also interesting that there were no O2 

differences between trials of free versus forced choices, as previous work has found using 

voltammetry (e.g., Sugam et al., 2012). In either case, the overall results of the current 

experiment’s molar analyses replicate the findings from Experiment 2 showing evidence 

of value-based decision-making for drug reward as well as independent effects of relative 

reward rates and magnitude predicted by matching equations (Rachlin, 1971).   

 Also similar to Experiment 2, RL models (Table 4.1) were successfully able to 

parameterize rats’ allomorphic choices. Altering the valuation equations to account for 

relative reward magnitude scaling in the Scaled Single-Learning model again resulted in 

substantial improvements relative to the base RL model. Thus, for the third time, relative 

magnitude scaling is supported in the RL models. Additionally, the parameter estimates 

for the current experiment corroborated those from Experiment 2 with the exception of 

the perseveration parameter (c) being negative for the first time; this suggests that rats 
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had a tendency to alternate from their previous choice independently of the reward value 

between options, which may have been impacted by the inclusion of forced choice trials 

forcing rats to alternate. 

 For the O2 signals, the overall results suggest that NAc activity scaled with reward 

magnitude for REMI infusions and possibly relative reward magnitude for the reward-

associated cues. For instance, peak O2 changes to the food-associated cues showed a 

nonlinear decrease as a function of dose that could be interpreted as scaling with food’s 

relative reward magnitude. That is, food reward had the greatest preference at the 1 μg 

dose and then food preferences decreased as dose increased, similar to O2 peak changes. 

Furthermore, given that the reward-associated cues were perfectly correlated with trial 

outcome, the ordinal predictions of the RPE hypothesis would suggest that the cues 

should produce signal changes associated with the reward magnitude of the outcome 

(Abler et al., 2006; Fiorillo et al., 2003; Schultz, 2010) as opposed to the probability of 

reward. 

Alternatively, O2 activity to REMI-associated cues showed a quadratic function 

not unlike that of a dose-response curve. One possible interpretation is that, similar to 

single-schedule measures of reward value, O2 changes to REMI cues represent an 

interaction of value-based mechanisms and effects associated with REMI. For the 1 and 3 

μg/kg conditions, a linear increase in NAc O2 responses suggests possible scaling of the 

forthcoming REMI reward magnitude. However, at the 10 μg/kg condition, biological 

compensatory mechanisms may have overcome the otherwise value-based signal 

changes. Indeed, drug-associated cues have been shown able to produce both withdrawal 

symptoms and alter an individual’s tolerance to drug effects, as though the body is 

“preparing” for drug (Siegel, 2005). Given the relatively large effect administration of the 

10 μg/kg dose had on O2 activity (discussed below), it seems likely that compensatory 

effects may also have been present. The interpretation that O2 peaks to reward-associated 

cues scale with reward magnitude would also be consistent with work showing that 

individuals who are experienced with a particular drug show increased reactivity to drug-

associated cues compared to inexperienced controls (e.g., David et al., 2005; Li et al., 

2012). However, the interpretation is complicated in that Figure 4.10a represents O2 
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responses to both REMI-Wins and REMI-Losses, making a compensatory mechanism 

interpretation somewhat speculative. 

Win-paired cues across both options also had significantly higher peak O2 

changes. RPE hypotheses do not make specific predictions regarding win versus loss 

trials, but wins resulting in higher O2 amplitude changes may reflect general excitation, 

which has been shown previously (e.g., Sugam et al., 2012). Finally, the widths of peak 

O2 changes to reward-associated cues showed an interaction, in which REMI-Wins 

displayed dose-dependent decreases in widths while losses displayed an overall increase. 

An a priori reason for the dose effects on widths is not clear, but compensatory 

mechanisms may also be involved that resulted in a dissociation between REMI-Wins 

and losses. 

 Changes in O2 activity during the reward interval showed large dose-dependent 

effects for REMI while those for food rewards were dose independent. For O2 peaks, 

NAc activity for REMI-Wins during the reward interval dose-dependently increased 

along with increases in peak widths, but there were no changes for food delivery. These 

results suggest that O2 peaks during the reward interval scaled with reward magnitude but 

in a nonrelative manner. That changes in NAc activity, or the broader ventral striatum 

area, scaled with reward magnitude manipulations corroborates (1) a large body of fMRI 

work (Daniel & Pollmann, 2014; Levy & Glimcher, 2012) using primarily monetary 

rewards, (2) electrophysiological recordings in the striatum of nonhuman primates 

responding for food or liquid rewards (Schultz, 2010), and (3) electrophysiological and 

fast-scan voltammetry recordings in the NAc of rats  responding for food (e.g., Goldstein 

et al., 2012; Saddoris et al., 2015b). Additionally, that NAc O2 responded in a 

qualitatively similar way for food and REMI rewards adds to the growing list of different 

reward types that the brain responds to in a similar, value-suggestive manner (Levy & 

Glimcher, 2012) and corroborates fast-scan voltammetry work in rats responding for 

cocaine (e.g., Cameron et al., 2014). However, previous work assessing brain activity 

relative to a commodity’s reward value often do so under isomorphic conditions and, if 

reward magnitude is manipulated, only show the results for the commodity whose 

magnitude increases (e.g., Abler et al., 2006; Knutson et al., 2005). For example, the 

reward magnitude of food was not manipulated in the present experiment and, as such, 
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many studies may not have shown the activity changes in food as a function of dose; 

however, such changes are potentially important in determining whether brain region 

activity is scaling reward magnitude in a relative or independent manner. Further research 

is therefore necessary to corroborate the potential scaling of reward-associated cues to 

relative reward magnitude seen here. 

Trials associated with REMI, as well as wins, also separately engendered 

differential O2 trough activity. Although the three-way interaction between Option, 

Outcome, and Dose was not significant, O2 trough activity was likely driven by the 10-μg 

REMI-Wins producing large troughs (Figure 4.7a) that is further substantiated by the 

significant three-way interaction for trough widths (Figure 4.12c). These troughs suggest 

a temporary depletion of local O2 that then rebounded, which is consistent with rodent 

fMRI work that administered both REMI and morphine (Liu, Greve, Dai, Marota, & 

Mandeville, 2007). Furthermore, given the density of ventral striatal GABAergic medium 

spiny neurons that often express mu opioid receptors (Salgado & Kaplitt, 2015; Scofield 

et al., 2016), the 10 ug-associated troughs likely stemmed from inhibiting GABA 

interneurons that led to disinhibition of the NAc generally (Liu et al., 2007). While these 

effects of O2 troughs likely stemmed from the direct pharmacology of REMI, they were 

not commensurate with RPE hypotheses. That is, reward omission should be associated 

with either an increased proportion or amplitude change in decreased regional activity, 

yet neither effect was present in the current study. However, hypotheses surrounding 

decreases in activity have generally been less robust and consistent (Schultz, 2010; 

Yacubian et al., 2006), and some would likely argue that pharmacological agents are not 

fair tests of RPE hypothesis. Thus, the present O2 trough results do not present existential 

threats to RPE hypotheses. But, if the RPE signal ostensibly represents a common neural 

signal for all reward value, then all reinforcing outcomes of behavior are candidate to that 

pathway. It is therefore important to test the boundary conditions of our hypotheses to 

ensure studies do not simply repeat the same tests using small variants.  

 Changes in NAc activity were also assessed in relation to the observed changes in 

behavior at the molar and molecular level. For the molar data, the ratio of peak O2 for 

REMI and food during the reward intervals were correlated with the modeled REMI and 

food reward magnitude ratios; this analysis showed that relative O2 tended to covary with 
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the molar estimates of relative reward magnitude, but did not reach significance. For the 

molecular data, RL-modeled RPEs were significantly associated with peak O2 changes as 

shown previously with fMRI in humans (Gläscher et al., 2010) and fast-scan voltammetry 

in rats (Hart et al., 2014). Additionally, replacing the reward-magnitude terms for REMI 

and food in the Scaled Quad-Learning RL model with relative peak O2 ratios resulted in 

the RL model still able to parameterize trial-by-trial choices. Although there was 

considerable variability in the present measures, the correlation between peak O2 and 

RPEs suggests that value updating for qualitatively different commodities (i.e., food and 

REMI) happens in a similar RPE-like manner within the NAc. Furthermore, while the 

present study found no effects of O2 scaling with scheduled relative reward rates, the 

correlations between RPEs and peak O2 changes do suggest O2 activity was varying as a 

function of local rates of reward probability. Future research may therefore benefit by 

having increased statistical power to more effectively detect systemic effects of brain 

activity as a function of scheduled relative reward rates.   

One possible source of the high variability in the O2-behavior correlations may 

involve the use of a drug that is capable of producing direct pharmacological effects other 

than just the effects of reward value in the NAc. Although previous research has shown 

that brain measures in the striatum and prefrontal cortex for cocaine and heroin are 

related to behavior (e.g., Cameron et al., 2014; Guillem et al., 2018; Lenoir et al., 2007; 

Saddoris et al., 2016), these studies used different recording techniques and only 

measured one dose level relative to food without attempting to scale changes in reward 

magnitude with changes in brain measures. Given the ubiquity of ostensible prediction 

error signals found in the brain (Levy & Glimcher, 2012), future studies should scale 

brain and behavior changes in more dynamic procedures such as that here, which is more 

commonly done in the human and nonhuman primate literature.  

Another possible source of variance in the present experiment may have been that 

the rats were freely moving (Wallis, 2012). For instance, one human fMRI study had 

participants either respond to a button or use eye-movement saccades to select choices 

and found the magnitude of the underlying neurocircuitry results were significantly 

different. (Wunderlich, Rangel, & O'Doherty, 2009). However, for rodents to engage in 

autonomous decision-making, there is little choice but to allow for freedom of movement. 
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Future research should therefore take the response-modality of how choices are 

physically made into account. 

 Overall, the present experiment revealed several novel findings relevant to our 

understanding of decision making. As in Experiment 2, rats were shown to choose as if 

their decisions were value-based for allomorphic choices between food rewards and 

REMI rewards of varying doses. Also, oxygen within the NAc was shown to respond in a 

way commensurate with RPE hypotheses for both food and REMI reward in freely-

moving rats. Peak O2 responses to REMI infusions were also shown to be dose-dependent 

and were commensurate with reward magnitude scaling. Finally, RL-modeled RPEs were 

shown to correlate with the peak-O2 changes for both REMI and food rewards. The 

results therefore suggest that drugs may be valued on a common scale as nondrug reward, 

but further research is needed. Additionally, the present experiment serves as an example 

of how future research can increase procedural homology between preclinical studies 

using electrodes and human fMRI studies. Although specificity of the signal is lost as a 

trade-off, ever-advancing preclinical manipulations to target specific cell types such as 

designer drugs and receptors (Urban & Roth, 2015) or optogenetics (Fenno, Yizhar, & 

Deisseroth, 2011) could be coupled with future research to regain manipulative control of 

specific mechanisms of interest.
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Table 4.1. Experiment 3 molecular models.  

Model Parameter 
Count Parameters AIC ΔAIC 

Base 3 α,β,c 1510.60  

Scaled Dual-Learning 
(Outcome) 5 αWin,αLoss,β,c,SM 864.91 -645.69 

Scaled Dual-Learning 
(Option) 5 αA,αB,β,c,SM 853.96 -10.95 

Scaled Quad-Learning 
(Option×Outcome) 7 αAWin,αALoss,αBWin,αBLoss,β,c,SM  809.51 -44.45 

Scaled Single-Learning 4 α,β,c,SM 784.44 -25.07 
Note: Models are shown in descending order of AIC values. ΔAIC calculations are shown as the difference from the previously best 

fitting model. Bolded text indicates the chosen model. 
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Figure 4.1. Experiment 3 general methods. (a) Sequence of events during the behavioral 

procedures on free-choice trials in Experiment 3. The reward for both options on win 

trials during the isomorphic procedure was one food pellet. The reward for Option A 

during the allomorphic procedure was an infusion of REMI (10, 3, or 1 μg/kg) and one 

food pellet for Option B. * indicates that all stimuli offset following the event. (b) Table 

outlining the probabilities of events and the relative reward rates for Options A and B. 
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Figure 4.2. Experiment 3 molar choice data. (a) Mean (± SEM) proportion of choices for 

Option A as a function of Option A’s relative reward rates during the isomorphic food 

versus food procedure. Lines are the NLME-determined best fit of Equation 14. (b) Mean 

(± SEM) proportion of choices for Option A as a function of Option A’s relative reward 

rates and REMI dose during the allomorphic drug versus food procedure. Lines are the 

NLME-determined best fit of Equation 16. Note: x-axes are logarithmic for visualization.  
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Figure 4.3. Experiment 3 interchoice intervals. Mean (± SEM) interchoice intervals for 

all trials (All) or only trials following rewarded choices for Option A (i.e., REMI-Wins; 

Drug) as a function of dose in Experiment 3. 
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Figure 4.4. Experiment 3 RL residuals. Average RL residuals for the Scaled Single-

Learning and Scaled Quad-Learning models as a function of dose. Data points represent 

the average of one individual. Horizontal lines indicate the average across individuals.  
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Figure 4.5. Experiment 3 RL model fits. Example fits from the Scaled Quad-Learning 

model to molecular choice data of Option A. Dashed vertical lines represent reward 

magnitude changes for Option A in order of 10, 3, and 1 μg/kg doses from left to right. 

Panels show (a) a rat one SD below, (b) a rat at, and (c) a rat one SD above average the 

AIC. All data were smoothed with an 11-trial moving average.  
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Figure 4.6. Experiment 3 molecular parameters. (a) Median parameter estimates from the 

Scaled Quad-Learning model fit to the molecular choice data in Experiment 3. Medians 

are shown due to the use of nonparametric test statistics and error bars represent the 

interquartile range. Note: β values are scaled according to the right y-axis. (b) Mean (± 

SEM) predicted reward prediction errors (RPEs) from the Scaled Quad-Learning model 

for Options A and B as a function of the reward magnitude for Option A. The displayed 

RPEs are from equations 18-19 when VA and VB equaled zero.  
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Figure 4.7. Example O2 traces for REMI. Average O2 traces for Option A (REMI) 

collapsing over relative reward rates and rats. (a,c,e) Mean (± SEM) traces for rewarded 

REMI choices in the 10 (a), 3 (c), and 1 (e) μg/kg conditions. (b,d,f) Mean (± SEM) 

traces for reward-omitted REMI choices in the 10 (a), 3 (c), and 1 (e) μg/kg conditions. 

All data were smoothed with 0.25 s moving window prior to averaging. 
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Figure 4.8. Example O2 traces for food. Average O2 traces for Option B (food) 

collapsing over relative reward rates and rats. (a,c,e) Mean (± SEM) traces for rewarded 

food choices in the 10 (a), 3 (c), and 1 (e) μg/kg conditions. (b,d,f) Mean (± SEM) traces 

for reward omitted food choices in the 10 (a), 3 (c), and 1 (e) μg/kg conditions. All data 

were smoothed with 0.25 s moving window prior to averaging. 
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Figure 4.9. Effects of relative reward rates on NAc O2. Mean (± SEM) O2 percent 

amplitude changes for (a) peaks during the cue interval, (b) peaks during the reward 

interval, and (c) troughs during the reward interval collapsing over all other conditions. 

Note: x-axes are logarithmic for visualization.  
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Figure 4.10. Cue interval peak O2 effects. (a) Mean (± SEM) O2 percent amplitude 

changes for REMI and food as a function of dose. (b) Mean (± SEM) O2 percent 

amplitude changes as a function choice outcome. (c) Mean (± SEM) O2 peak widths for 

REMI-Wins, REMI-Losses, Food-Wins, and Food-Losses as a function of dose.  
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Figure 4.11. Reward interval Peak O2 effects. (a) Mean (± SEM) O2 percent amplitude 

changes for REMI-Wins, REMI-Losses, Food-Wins, and Food-Losses as a function of 

dose. (b) Mean (± SEM) O2 peak widths for REMI-Wins, REMI-Losses, Food-Wins, and 

Food-Losses as a function of dose.  
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Figure 4.12. Reward interval trough O2 effects. (a) Mean (± SEM) O2 percent amplitude 

change for REMI and food as a function of dose. (b) Mean (± SEM) O2 percent 

amplitude change for wins and losses as a function of dose. (c) Mean (± SEM) O2 trough 

widths as a function of REMI-Wins, REMI-Losses, Food-Wins, and Food-Losses as a 

function of dose.   
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Figure 4.13. Peak O2 correlation with modeled reward magnitudes. Correlation between 

REMI’s behaviorally derived reward magnitude using the exchange parameter from 

Equation 16 and the REMI to food ratio of peak O2 percent amplitude changes during the 

reward interval. 
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Figure 4.15. Peak O2 correlation with modeled reward prediction errors. Correlation 

between the Scaled Quad-Learning reward prediction errors and the percent amplitude 

peak O2 change during the reward interval for win trials. 
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Figure 4.14. Anatomical distribution of electrode placements. Circles represent the 
placement of the tip of the O2 -sensitive microelectrode arrays in the NAc (n = 6). 2.04 
mm indicates the anterior position relative to bregma. 

 

  

2.04 mm 
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CHAPTER 5: 
GENERAL DISCUSSION 

 

 The present set of experiments has benefitted our understanding of decision 

making in several ways. First, across all three experiments, concatenated generalized 

matching models (Baum, 1974; Rachlin, 1971) provided good descriptions of molar data 

using only one sensitivity parameter for the dimensions of relative reward rates and 

magnitudes. That the matching models were able capture rats’ choices for both the 

isomorphic and allomorphic procedures substantiates the model’s predictions that choices 

between alternatives are determined by the relative scaling of independent dimensions 

(Kyonka, 2008; McDowell, 2013). As such, the present experiments suggest that the use 

of either single schedules of reinforcement or unidimensional spaces of reward value, 

such as unit price, are not a complete description of choice preferences. Single schedules 

of reward value fail to incorporate the influence of competing commodities on reward 

value, while proposed unidimensional spaces do not incorporate psychophysical 

differences in how dimensions are scaled. Not accounting for the scaling of different 

reward dimensions (e.g., cost, probability, magnitude, etc.) is also a theoretically 

plausible reason why studies manipulating both the cost and magnitude of rewards show 

violations of demand theory at equivalent unit prices (e.g., Madden et al., 2000; Smith et 

al., 2016). 

 Another important finding across the current experiments was the replication of 

reward-associated cues biasing choice for Option A in the Signaled groups for both 

isomorphic food versus food and allomorphic drug versus food decision-making 

conditions. The use of reward-associated cues in the Signaled groups from Experiments 1 

and 2 stems research done primarily with pigeons (McDevitt et al., 2016; Zentall, 2016) 

that has shown that cues can produce an incredible degree of insensitivity to the relative 

reward rates between commodities. Stated differently, the reward-associated cues created 

very strong biases where pigeons would repeatedly make suboptimal choices to the 

detriment of losing out on as much as two and a half times the food had they chosen a 

noncued alternative (Stagner & Zentall, 2010). Although well established in pigeons, the 

translation of a suboptimal choice effect to rats was a debatable effect (Chow, Smith, 

Wilson, Zentall, & Beckmann, 2017; Cunningham & Shahan, 2019; Smith et al., 2018; 
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Trujano & Orduna, 2015). The current experiments add evidence suggesting that rats’ 

choices are indeed influenced by reward-associated cues and are also the first to show 

that choices for drug commodities can be influenced via the same mechanisms as choices 

for food rewards. 

 Although specifying the mechanism for why the reward-associated cues bias 

choice is beyond the current scope of this thesis, Experiments 1 and 2 did show that the 

mechanism is independent of an altered sensitivity to reward magnitude (i.e., SM). 

Additionally, use of the 2-D Exchange Matching model (Equation 16) presented a novel 

way to quantify the effects of biased choice in terms of a commodity’s relative 

substitutability (Green & Freed, 1993; Rachlin et al., 1976). Substitutability refers to how 

interchangeable two commodities are for each other. As the availability or cost of one 

commodity (Commodity A) changes, switching preference to another commodity (e.g., 

Commodity B) reflects that this latter commodity (Commodity B) acts as an economic 

substitute for the former (Commodity A). In the present experiments, decreases in the 

relative reward rates and magnitudes for Option A resulted in relative increased 

preferences for Option B across all experiments. As such, food was substituting for itself 

and serving as an economic substitute for REMI drug reward (Anderson, Velkey, & 

Woolverton, 2002; Beckmann et al., 2019; Koffarnus & Woods, 2008; Maguire, Gerak, 

& France, 2013; Negus, 2006; Schwartz et al., 2017). The use of reward-associated cues 

in the Signaled group also decreased the relative substitutability of Option B for Option 

A. That is, an unsignaled food pellet did not substitute as well for a signaled food pellet 

or REMI infusion relative to an unsignaled food pellet’s ability to substitute for an 

unsignaled food pellet or REMI infusion. Overall, the results across experiments suggest 

that reward-associated cues change the decision-making context in a qualitative way from 

procedures lacking such cues. 

 Choice data were also analyzed at the molecular level using RL models (Sutton & 

Barto, 1998), which make different assumptions from matching models. RL models 

traditionally assume that each commodity is assigned value independent of others and is 

updated according to a violation between expected and obtained reward (i.e., the RPE). In 

all cases, formulations of RL models were successfully able to parameterize rats’ 

decision making, including decisions for drug reward; these results suggest that rats may 
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choose alternatives through value-based decisions at a local, trial-by-trial level and 

corroborate previous uses of RL models with rodents (Groman et al., 2017; Marshall & 

Kirkpatrick, 2017). However, model-comparison results suggested that the assumption of 

independent value updating was not substantiated. Changing the reward magnitude terms 

into group-dependent ratios of scaled, relative reward value improved model fits to a 

substantial degree. Further model comparisons also revealed that the addition of 

parameters to allow for differential scaling of wins and losses was substantiated. That 

wins and losses were differentially scaled corroborates a large body of research showing 

the contextual-dependency of an individual’s decisions (Glimcher et al., 2013; Kahneman 

& Tversky, 1979; Marshall & Kirkpatrick, 2017) and provides evidence that future 

models may need to incorporate different weighting for wins versus losses. Together, the 

results suggest that value updating is a relative, rather than independent, process and 

highlights how the testing of model assumptions can aid understanding of decision-

making processes.  

 Finally, as shown in Experiment 3, recordings of NAc O2 activity were generally 

commensurate with the possibility of a common physiological utility signal in the brain 

(Levy & Glimcher, 2012). NAc O2 responded primarily as peaks to outcome-associated 

cues for both food and REMI, similar to previous research (e.g., Fiorillo et al., 2003; 

O'Doherty, Buchanan, Seymour, & Dolan, 2006). However, the present study is believed 

the first to use REMI as a reward commodity within a decision-making task while 

concurrently recording from the NAc. Experiment 3 therefore expands previous literature 

showing similar encoding of qualitatively different rewards (Levy & Glimcher, 2012) to 

also include opioid μ receptor agonist rewards. Additionally, changes in the magnitude of 

the peaks as a function of dose for food and REMI cues were of a manner suggestive of 

NAc O2 scaling with the relative reward magnitude of food and REMI. However, 

definitive conclusions regarding reward-signal scaling were complicated by potential 

compensatory effects of cues for REMI infusions at the 10 μg/kg dose, warranting further 

research. 

NAc O2 activity also generally responded as peaks for both food and REMI 

reward delivery, but only peaks to REMI-Wins dose-dependently scaled with reward 

magnitude manipulations. That O2 changes for food during the reward interval did not 
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vary as a function of dose may suggest that O2 changes to reward delivery reflect scaling 

of reward magnitude but not in relative terms. Indeed, striatal-activity scaling with the 

reward magnitude of a commodity on win trials is well established  (Fiallos et al., 2017; 

Levy & Glimcher, 2012), but methodological and/or analytical limitations often preclude 

determination of whether regional activity scaling of reward magnitude is relative. Future 

research is needed to confirm whether value in the NAc scales in relative or independent 

manner. Finally, peak O2 during the reward interval significantly correlated with RL-

model-derived RPEs for both food and REMI, consistent with previous research 

(Garrison et al., 2013). This result further corroborates the possibility that different 

commodity types update value according to an RPE-like rule and may guide future 

decisions. 

Overall, the three experiments showed a relatively high degree of consistency in 

the behavioral results and conclusions. The present experiments employed a dynamic, 

probabilistic decision-making task previously used in monkeys and humans (Lau & 

Glimcher, 2005; Rutledge et al., 2009) and showed evidence of rats making value-based 

decisions by tracking the option with greater relative reward rates. Rats’ preferences were 

also sensitive to increases in relative reward-magnitude changes, and NAc O2 activity 

showed apparent sensitivity to both food- and REMI-related events that scaled with 

increases in REMI dose. Together, the experiments suggest isomorphic food versus food 

and allomorphic drug versus food choices were similarly mediated by the same value-

based decision-making mechanisms. The results corroborate a large literature on 

economic choice theory (Davison & McCarthy, 1988; Glimcher, 2011) but also conflict 

with many theoretical conceptualizations of SUDs, as described next. 

Applications to Substance Use Disorders 

 The discussion of SUDs in the preclinical literature has been largely centered 

around the disease model of addiction (e.g., Heather, 2017; Volkow et al., 2016). As a 

broad description, drug use leads to biological changes (often in mesocorticolimbic nuclei 

such as the NAc) that, for a variety of reasons, change the propensity of an individual to 

make subsequent drug choices. Taken to an extreme, several theories of addiction posit 

that the predicated biological changes produce insensitivities to consequences (i.e., habit; 

Hogarth, 2018; Vandaele & Janak, 2018) or even a compulsion to continue to choose the 
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drug (e.g., Robinson & Berridge, 2008; Vandaele, Cantin, Serre, Vouillac-Mendoza, & 

Ahmed, 2016; Wise & Koob, 2014).  

The allostatic theory of addiction predicts that drug choices are initially driven by 

the positive reinforcement effects that drugs produce. After repeated use, the hedonic set 

point of an individual changes through tolerance mechanisms requiring increased drug 

use to both maintain positive rewarding effects of the drug and avoid withdrawal effects. 

Indeed, drugs can produce rewarding effects that lead to drug choices (see Experiments 2 

and 3), continued drug use can lead to biological tolerance (e.g., Grecksch et al., 2006; 

Hooman Khademi, Farin Kamangar, Paul Brennan, & Reza Malekzadeh, 2016), and 

being in a withdrawal state can increase the propensity to choose drug (Negus & Rice, 

2009). Thus, each of the component of the allostatic theory has evidence substantiating 

its claim.  

However, a growing literature suggests much of the evidence for theories of 

addiction can be accounted for by more general value-based mechanisms. For instance, 

rats acutely deprived of food show increased motivation for food reward and hoarding 

(Morgan et al., 1943), food deprivation can produce physiological brain alterations 

(Blumenthal & Gold, 2010), and many humans report having experienced subjective 

“cravings” for different foods (Mercer & Holder, 1997). Given the evidence of the effects 

of food deprivation, it seems difficult to argue that the aforementioned components of the 

allostatic theory of addiction are unique to drug rewards. Furthermore, the changes in the 

brain on which many theories of addiction are predicated are correlational results 

(Heyman, 2013a) that do not establish a causal link between drug-induced brain changes 

and addiction-like behavior. Consider also that experiments using recordings of brain-

region activity during decisions for food and drug (i.e., Experiment 3) increasingly show 

qualitatively similar functional forms of activity between the rewards (e.g., Cameron et 

al., 2014; Guillem et al., 2018; Levy & Glimcher, 2012). That changes in region activity 

are of a similar form between drug and nondrug reward is in line with the idea of a 

common physiological utility scale and further suggests that drug rewards may produce 

preferences through value-based mechanisms similar to other rewards. Indeed, the 

evidence from the current set of experiments supports the view that drug value was 

modulated in a qualitatively similar way as nondrug value.  
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 Whereas compulsion often focuses on the positive and negative reinforcing nature 

of drugs of abuse, habitual behavior often includes a learning component where behavior 

is initially flexible and goal-directed but, with continued drug use, becomes an inflexible 

and automatic response to reward- or drug-associated stimuli (Everitt & Robbins, 2005; 

Hogarth, 2018; Robinson & Berridge, 2008; Vandaele & Janak, 2018). Prominent 

examples of habitual control come from studies showing that prolonged drug use will 

result in drug-seeking behavior despite concurrent foot shocks or presentations of shock-

associated stimuli (Deroche-Gamonet, Belin, & Piazza, 2004; Vanderschuren & Everitt, 

2004) or that drug rewards are not devalued by pairing with illness as food rewards are 

(Dickinson, Wood, & Smith, 2002). However, similar to dysregulated drug use in the 

escalation model (Beckmann et al., 2012), the formation of drug-associated habits also 

appears to be dependent on the decision-making context, as choice procedures have 

shown that drug choices remain goal-directed even after chronic use (Halbout, Liu, & 

Ostlund, 2016; Negus, 2005; Pelloux, Murray, & Everitt, 2015).  

Experiments 1 and 2 also employed differential use of reward-associated cues 

between options in the Signaled and Unsignaled groups that could have produced 

inflexible habit behavior. To be in line with habit theory, rats in the Signaled group 

during the allomorphic choice procedure should have shown drug preferences that were 

insensitive to changes relative reward rates and relative doses. However, the reward-

associated cues for food in Experiment 1 and drug in Experiment 2 produced the same 

effect of biasing choice towards the cue-paired option. Additionally, drug choices even at 

the 10 μg/kg condition showed significant sensitivity to changes in the relative reward 

rates between choice options. Suboptimal choice research alluded to previously has also 

shown that cues associated with food can produce robust changes in choice behavior that 

violate standard economic models of maximizing expected reward value (Zentall, 2016). 

However, in all reports of suboptimal choice to date, interpreting the cue-effects has been 

through a value-based manner, and removal of the cue from the decision-making context 

resulted in a return of individuals making choices in line with economic choice theories 

(Smith et al., 2017a). Thus, conditioned stimuli can certainly affect behavior, but the 

reward-associated cues in the present experiments biased choice for food and drug in a 

qualitatively similar way that suggests a more general value-based mechanism. 
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The idea of habitual or compulsive drug use is also challenged in human research 

at the laboratory and population levels. For example, substance-using populations in 

laboratory decision-making procedures have been shown to make decisions sensitive to 

the relative reward magnitude, price, and delay of both nondrug (Moeller & Stoops, 

2015) and drug commodities (Griffiths, Rush, & Puhala, 1996; Jones & Comer, 2013; 

Moeller & Stoops, 2015). Results from the laboratory decision-making experiments are 

also corroborated by contingency management programs (Davis et al., 2016; Holtyn et 

al., 2014; Lussier, Heil, Mongeon, Badger, & Higgins, 2006) that typically offer gift or 

monetary vouchers contingent upon drug abstinence for a predetermined period of time. 

Contingency management programs are largely effective in curbing drug use, with better 

outcomes for programs that persist for longer or offered abstinence-contingent rewards of 

a larger reward magnitude. Furthermore, a number of substance users appear to remit on 

their own without treatment or “mature out” of dependence (Heyman, 2013a; 

Klingemann, Sobell, & Sobell, 2010). Indeed, perhaps the most prominent example of 

individuals remitting on their own for opioid use disorder comes from veterans returning 

from the Vietnam War (Robins, 1993). Heroin use during the Vietnam War was 

described as an epidemic with prevalence estimates for regular use between 20-30% of 

surveyed individuals. However, upon returning home, more than two thirds of the 

previously heroin-using veterans had no heroin use 8-10 months later. If addiction is 

caused by drug-induced brain changes leading to compulsive habits, it is difficult to 

reconcile the evidence of individuals abstaining on their own or that abstinence can be 

“bought” through contingency management programs (Heather, 2017; Heyman, 2013a).  

 The aforementioned lines of evidence conflicting with compulsive habit theories 

suggest a major factor when considering drug-choice propensity: the availability of 

alternative substitutes (Ahmed, 2005; Beckmann et al., 2019). When the only option 

available to an individual is to take drug as in single schedules, behavioral symptoms 

congruent with compulsive habits emerge. When another alternative commodity that can 

compete with drug reward is available, compulsive behavior is often absent and drug 

preferences depend upon the relative position of each reward along many dimensions of 

reward value (i.e., concatenated matching). 
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The importance of choice preferences being relative, while seemingly simple, 

cannot be understated. As just described, many papers have suggested that drug reward 

results in compulsive and habitual behavior due to drugs’ inherently superior reward 

value. The opposite end of the spectrum also exists. Some research groups have 

suggested that drug rewards are in fact inherently inferior (Ahmed, Lenoir, & Guillem, 

2013; Cantin et al., 2010; Lenoir et al., 2007; Venniro et al., 2018) due to being unable to 

show preference reversals as a function of increases in the drug dose offered during 

choice procedures. However, neither drug nor nondrug rewards are inherently better than 

the other. Preferences depend on the decision-making context, and the dose of the drug 

(i.e., reward magnitude) is only one of many operable dimensions that can modulate 

reward value. For instance, consider the allomorphic choice results of Experiment 2 

(Figure 3.1b-c). One would have a particularly hard time trying to describe whether 

REMI or food was the more rewarding commodity. If the REMI dose offered is 10 μg/kg, 

REMI is largely preferred, but if the REMI dose is 1 μg/kg, food is largely preferred. In a 

similar way, a 3-μg/kg infusion of REMI is weakly preferred to food when it is paired 

with a reward-associated stimulus with favorable reward rates but not when the reward 

rates favor food and never when the infusion is unsignaled. Although failure to produce 

dose-dependent drug preferences (as described above) was surprising, concluding a 

commodity-superiority hierarchy off the basis of so few dimensional manipulations may 

be inappropriate. Had Experiment 2 only tested the Unsignaled group using 1 and 3 

μg/kg infusions, a conclusion of drugs being inferior rewards might also have been 

satisfied. Instead, future research should test many points along many reward dimensions 

(e.g., delay, effort, probability, magnitude).  

Changing the Conversation About SUDs 

 The conceptualization of SUDs in the present thesis has largely been centered on 

conflicting hypotheses that SUDs are driven by a manifestation of biologically-mediated 

compulsion or by a disorder of choice. Drug choice in the present experiments showed no 

evidence of compulsion, and the present results corroborate a larger body of work 

advocating that SUDs may be well described as a disorder of choice. However, biological 

mechanisms mediating SUDs are still critical determinants of such behaviors. For 

example, physical dependence and withdrawal are important risk factors that can change 
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an individual’s propensity to make drug choices (Negus & Rice, 2009; Williams et al., 

2001). Additionally, pharmacotherapies, such as agonist replacement therapies, have 

shown efficacy in reducing drug choices (Kampman & Jarvis, 2015; Rush & Stoops, 

2012). Thus, SUDs should continue to be discussed as an interaction between decision-

making mechanisms and biological mechanisms. 

 Although biological variables are important and can influence drug choices, 

compulsive drug choice does not seem a useful description that will facilitate future 

research or treatment approaches (Heather, 2017; Heyman, 2013a; Hogarth, 2018). For 

instance, the meaning of “compulsive choice” is somewhat vacuous, as it is not used 

consistently within the field (Heather, 2017) and often appears to act as a synonym for 

“strong preference” (Heyman, 2003). Some may argue that the debate of word choice is 

merely semantics, but the idea of a strong preference has a place within choice and 

decision-making theories whereas compulsions currently do not. Indeed, reframing words 

like compulsion or craving into a state-dependent bias for a commodity has found success 

in studies attempting to quantify the effects of “craving” on choice preferences (Konova, 

Louie, & Glimcher, 2018). Using different terms does not change the complexity of 

SUDs, but it may facilitate future research by speaking on more common grounds that 

could be supported by mathematical choice models.  

 A final point to consider is what the characterization of SUDs as a disorder of 

choice might mean at a policy level. For instance, some may disagree with the idea of 

conceptualizing SUDs as a disorder of choice, not for scientific reasons, but because 

calling drug use a choice may implicate a social stigma such that individuals would not 

be deserving of help or treatment (Heather, 2017). Indeed, social stigmatization 

represents a pertinent issue for drug users (Lloyd, 2013), but it is also one that is already 

present in our society. Furthermore, although a disease model characterization of SUDs 

may exonerate the individual of blame to some degree, it may also remove the locus of 

control from the individual and generate a feeling of powerlessness to change (Heather, 

2017). 

 A choice model of SUDs also does not have to mean that drug choices are failures 

of self-control or volitional will power. Some posited choice theories are able to describe 

how an individual may behave as if they are compulsively choosing drug but are actually 
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maximizing utility (Heyman, 2013b; Rachlin, 1997). As previously described, these 

choice theories dissociate between maximizing local utility (i.e., at the present moment) 

versus global utility (i.e., longer term utility). If a drug of abuse is chosen, then one 

assumes that the drug produced greater local utility relative to other available substitutes 

at the time of choice. As such, an individual maximizing local utility will myopically 

continue to choose drug reward until a better alternative becomes available. However, 

with continued use, the repeated drug choices decrease its own subjective utility (due to 

tolerance) but may also decrease the utility of other potential substitutes. For instance, 

drug choices can preclude the availability of future substitutes through social isolation, 

job loss, incarceration, and declining health. Additionally, the benefits of choosing drug 

reward are immediate, while both drug-associated costs and many alternative rewards 

have delayed and uncertain outcomes that results in a decreased impact on behavior. 

Thus, although staying healthy, spending time with friends and family, or maintaining a 

job might produce overall greater utility, at the time of choice, drug reward produces 

greater local utility. As such, it is possible for an individual to choose as if they are 

compulsively seeking drug but may instead be maximizing utility without invoking ideas 

about compulsion or willpower. Alternatively, a compulsive individual should not show 

value-based decision making as in the present experiments and may suggest a value-

based conceptualization of SUDs offers a viable alternative. 

 Another main point from the above example is that the availability of economic 

substitutes for drug reward is one possible mechanism to decrease drug choice and is 

consistent with the results of the current experiments. Availability of substitutes may also 

be a moderating factor of drug use at a systemic level within society. For example, 

preclinical models that provide rats with an enriching environment full of toys, 

conspecifics, and access to running wheels can reduce drug choices (Alexander, Coambs, 

& Hadaway, 1978; Bardo, Klebaur, Valone, & Deaton, 2001; Hofford, Chow, Beckmann, 

& Bardo, 2017), while rats in impoverished conditions lacking the available substitutes 

choose drug more often. Although not a perfect metaphor, the effects of enrichment 

certainly seem to parallel the findings that individuals of lower socioeconomic status are 

more prone to drug use (Galea & Vlahov, 2002; Williams & Latkin, 2007) and may 

reflect a lack of available alternatives to drug rewards. Clearly, decisions on how to 
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conceptualize SUDs are complicated, but avoiding a choice model for fear of a societally 

placed stigma may also preclude discussion leading to potential treatments. 

Conclusions 

 The purpose of the present experiments was to assess whether predictions of 

economic choice theory were upheld in an allomorphic drug versus food choice 

procedure. Namely, the predictions were that choices for drug reward would be sensitive 

to changes in relative reward rates and magnitudes. In Experiment 1, the isomorphic food 

versus food procedure was shown to provide a valid preclinical model of probabilistic 

decision making in rats, in which choices were sensitive to the relative reward rates and 

magnitudes of concurrently available options. For allomorphic drug versus food decision 

making in Experiment 2, the results did not change. Rats’ choices between the opioid μ 

receptor agonist remifentanil and food still showed sensitivity to relative reward rates and 

magnitudes, suggesting that rats chose as if through value-based decision-making 

processes. Finally, Experiment 3 was generally commensurate the possibility of a 

common physiological reward signal between REMI and food within the NAc. Namely, 

both reward types showed similar peaks to reward-related events and Nac O2 dose-

dependently scaled with REMI infusions. The results have potentially broad implications 

for current conceptualizations of SUDs, including a potential need to change the way 

SUDs are discussed and modeled in preclinical experiments. Overall, the present set of 

experiments provides additional evidence that a choice model of SUDs may be a viable 

alternative to the disease model and could provide insight into novel treatments based on 

economic principles of reward value.  
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