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ABSTRACT OF DISSERTATION 

 
 
 

MECHANICAL PROPERTIES AND DEGRADATION OF HIGH CAPACITY 

BATTERY ELECTRODES: FUNDAMENTAL UNDERSTANDING AND COPING 

STRATEGIES 

 

Rechargeable lithium ion and lithium (Li) metal batteries with high energy density 

and stability are in high demand for the development of electric vehicles and smart grids. 

Intensive efforts have been devoted to developing high capacity battery electrodes. 

However, the known high capacity electrode materials experience fast capacity fading and 

have limited cycle life due to electromechanical degradations, such as fracture of Si-based 

electrodes and dendrite growth in Li metal electrodes. A fundamental understanding of 

electromechanical degradation mechanisms of high capacity electrodes will provide 

insights into strategies for improving their electrochemical performance. Thus, this 

dissertation focuses on mechanical properties, microstructure changes, and degradation 

mechanisms of Si composite electrodes and Li metal electrodes. Based on these findings, 

possible coping strategies are proposed to improve the cycling stability of both electrodes. 

 

The poor cycling life of Si-based electrodes is caused by the repeated 

lithiation/delithiation-induced huge volumetric change in Si particles, which leads to the 

fracture of particles, excessive formation of solid electrolyte interphase on the newly 

exposed surface, as well as the loss of electronic conductivity between Si particles and the 

conductive matrix. The expansion/contraction of Si particles during cycling also causes the 

changes in the mechanical properties, microstructure, and porosity of Si composite 

electrodes. Understanding the relationship between mechanical property evolution, 

microstructure degradation, and capacity fading is essential for the design of Si composite 

electrodes. Using an environmental nanoindentation system, in situ microscope cell, and 

electrochemical impedance spectroscopy, I investigated the mechanical properties, 

cracking behavior, and lithiation/delithiation kinetics of Si composite electrodes made with 

different polymeric binders, including polyvinylidene fluoride, Nafion, sodium-

carboxymethyl cellulose, and sodium-alginate, in their realistic working environment. The 

mechanical property evolution is determined by the state-of-charge, porosity, irreversible 

volume change, and mechanical behavior of binders. Periodical crack opening and closing 

happens in Si composite electrodes prepared with binders that have strong adhesion with 

Si. Mechanical degradations, e.g., irreversible volume change, cracking, and debonding 

between binders and Si particles, are correlated with the evolution of lithiation/delithiation 

kinetics and the capacity fading of Si composite electrodes. Based on these findings, a 

partial charging approach is proposed and confirmed experimentally to improve the cycling 

stability of Si composite electrodes. 

 



 

 

Li metal electrodes suffer from the low Coulombic efficiency, high electrochemical 

reactivity with the electrolytes, and the safety hazards caused by the uncontrollable dendrite 

growth during cycling. Mechanical suppression by using solid electrolytes and artificial 

SEI is a promising strategy to inhibit the formation of Li dendrites. Mechanical properties 

of bulk and mossy Li are required for designing mechanical inhibitors and improving the 

stability of the Li | inhibitor interface. Using an environmental nanoindentation system, I 

studied the mechanical behavior, especially the time-dependent behavior, of bulk Li and 

porous mossy Li at ambient temperature. By combining finite element (FE) modeling with 

experiments, a constitutive law was determined for the viscoplastic deformation of Li 

metal. FE modeling also demonstrates that the elasticity has a negligible influence on the 

indentation deformation of bulk Li. Flat punch indentation measurements showed that 

mossy Li has significantly higher deformation and creep resistance than bulk Li despite of 

its porous microstructure. The mechanical parameters of bulk and mossy Li may be helpful 

to develop of dendrite-free Li metal electrodes. 

 

 

 

KEYWORDS: Silicon Electrodes, Lithium Metal Electrode, Polymeric Binders, 

Degradation, Mechanical Properties, Indentation 
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CHAPTER 1.  INTRODUCTION 

Lithium ion batteries (LIBs) and lithium metal-based (Li-air and Li-sulfur) batteries 

have higher energy density and power density than other battery systems, hence are 

promising in various applications, especially electric vehicles (EVs) and grid-scale energy 

storages. Motivated by the energy storage market, Si electrodes and Li metal electrodes are 

favorable choices for next-generation batteries due to their ultrahigh capacity. However, 

both of them suffer electrochemical-mechanical degradation, which lead to safety issues, 

fast capacity fading, and short cycle life of batteries. 

1.1 Lithium Ion Batteries (LIBs) 

 

Figure 1.1. A schematic diagram of a typical LIB cell based on a graphite negative 

electrode and a LiCoO2 positive electrodes [1]. 

 

Typically, a lithium ion battery cell consists of a positive electrode, a negative 

electrode, a separator, and liquid organic electrolyte, as shown in Figure 1.1. Typical 

positive electrode materials are transition metallic oxides, including layer structure LiCoO2 

and LiNiO2, spinel structure LiMn2O4, olivine structure LiFePO4 and their derivatives 

(such as LiNixCoyMnzO2, NCM). Negative electrode materials include graphite, graphene, 

Si, SiOx, and Sn. The separator (mesoporous polypropylene membrane) is to prevent short 

circuit by separating the negative and positive electrodes apart. The electrolyte is composed 

of lithium salt (e.g., LiPF6 or LiTFSI) and organic solvent, such as diethyl carbonate (DEC) 

and ethylene carbonate (EC). The electrolyte is required to be ionically conductive and 

electronically insulative [2, 3]. 
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The working mechanism of LIBs is the reversible Li ion intercalation and 

deintercalation of either the positive electrode or the negative electrode. Meanwhile, 

electrons transfer between the positive and the negative electrodes through the external 

circuit. The voltage of a LIB cell is determined by the chemical potential difference 

between the positive and the negative electrodes. 

1.2 Lithium Metal-Based Rechargeable Batteries 

Li metal-based rechargeable batteries use Li metal as the negative electrode. Li-

sulfur (Li-S) batteries and Li-air (or Li-O2) batteries are two major categories of Li metal-

based rechargeable batteries.  

Li-sulfur (Li-S) batteries 

As shown in Figure. 1.2 (a), a typical Li-S cell consists of a Li metal negative 

electrode, a porous separator, organic electrolyte, and a sulfur-based positive electrode. Its 

working mechanism is based on the electrochemical reaction between Li and sulfur. Major 

challenges of Li-S batteries are (1) poor electronic conductivity of S, Li-S compounds, 

especially insulating nature of Li2S, (2) the solubility of polysulfides (Li2Six, 3 < x < 8) in 

to the electrolyte, and (3) the growth of Li dendrites [4-6]. 

 

Figure 1.2. Schematics of (a) a typical Li-S cell [4] and (b) a typical aqueous Li-air cell 

[7]. 

Li-air batteries 

Figure 1.2 (b) shows a typical configuration of a Li-air cell. It consists of a Li metal 

electrode, a separator, electrolyte, and an oxygen positive electrode. Based on the 

electrolyte, Li-air batteries can be categorized into 4 types: aqueous, non-aqueous, hybrid, 

and solid-state batteries [8, 9]. The specific electrochemistry of Li-air batteries depends on 

the electrolyte. In general, during discharging, the Li metal negative electrode is oxidized; 
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O2 is reduced in the porous positive electrode. Primary difficulties in the application of Li-

air batteries are the poor stability and rate capability as well as the safety hazard from Li 

dendrites. 

1.3 High Capacity Battery Electrodes 

1.3.1 Si Composite Electrodes 

Silicon is a promising candidate as negative electrode materials due to (1) its high 

gravimetric capacity (3579 mAh g-1, based on Li15Si4) and volumetric capacity (9786 mAh 

cm-3, based on the initial volume of Si) [10, 11]; (2) low delithiation potential (~ ca. 0.4 V 

vs. Li/Li+); (3) low voltage hysteresis and high energy efficiency [12]; and (4) abundance 

in earth. The main challenge for the commercialization of Si-based electrodes is the drastic 

volume change (~ 300 %) during lithiation/delithiation [13, 14], which causes pulverization 

and fractures of Si [13-15], and continuous formation of SEI on the fractured Si surfaces 

[16, 17]. These mechanical and chemical degradation lead to capacity loss and low 

Coulombic efficiency of Si electrodes. Recently, approaches based on nanotechnology 

have been proposed to tackle the mechanical degradation of Si particles and thin films. 

Significant improvements in capacity retention and charging rate performance have been 

achieved with 0D (nanoparticles) [18, 19], 1D (nanowires and nanotubes) [20, 21], and 2D 

(thin films) [22, 23] sSi materials. Key factors contributing to the enhanced cycling 

performance of nanostructured Si are (1) dramatically improved damage tolerance due to 

high surface energy [24] and (2) rapid Li ion transport rate due to shortened Li diffusion 

and electron transport paths. 

Composite electrodes, consisting of Si particles, polymeric binders, and conductive 

additives, are the most likely commercial Si electrodes for future LIBs from cost and 

energy density considerations. However, mechanical degradation, such as irreversible 

volume change, destruction of the conductive network, cracks, and the delamination, is still 

a major barrier to commercializing Si composite electrodes [25, 26], even these made of 

nanostructured Si. To improve the mechanical and microstructure integrity of composite 

electrodes, various strategies have been developed.  

• Polymeric binders play a critical role in accommodating the volume change of Si 

particles. Preferred characteristics of effective binders for Si electrodes are suggested as 
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(1) inert to the electrolyte; (2) robust adhesion with Si particles and the current collector; 

(3) recoverable but with enough mechanical stiffness; and (4) ionically conductive [26-28]. 

Si composite electrodes made with the conventional polyvinylidene fluoride (PVDF) as a 

binder have severe polarization issues during lithiation/delithiation and suffer fast capacity 

degradation. By replacing PVDF with Nafion [25, 29], sodium carboxymethyl cellulose 

(Na-CMC) [28], and Na-alginate [30], the capacity of Si composite electrodes can be 

improved to be over 1500 mAh g-1
 for 100 cycles. As shown in Chapter 2 and 3, mechanical 

degradation still exists in Si composite electrodes with existing state-of-the-art binders. 

Mechanical integrity and cycling stability of Si-based electrodes need further 

improvements. 

• Surface modifications with stretchable and conformal films, such as polymeric 

aluminum glycerol (AlGL) [31, 32] and self-healing elastic polymer [33], can strengthen 

the composite matrix, reduce the irreversible volume change of composite electrodes, 

prevent the insulation of Si particles, and, therefore, improve the electrochemical 

performance of Si composite electrodes. For example, the capacity of Si/PVDF electrodes 

with a molecular layer deposition (MLD) coating remains 1500 mAh g-1 after 500 cycles 

[32]. 

1.3.2 Lithium Metal Electrodes 

Due to the highest theoretical capacity (3862 mAh g-1), low density (0.534 g cm-3), 

and the lowest redox potential (-3.04 V vs. standard hydrogen electrode) [34, 35], Li metal 

is considered an ideal negative electrode for rechargeable Li-S and Li-air batteries. 

Different from the intercalation/deintercalation of Li into host materials, Li metal is directly 

plated on /stripped off the negative electrode during charging and discharging, respectively. 

The heterogeneous distribution of the current can cause the formation of Li dendrites 

during repeated plating/stripping [36, 37]. Li dendrites can penetrate through the polymer 

separator leading to the short circuit of cells. As the cycle number increases, bulk Li metal 

electrodes inevitably become porous mossy Li with a loose conductive network [34, 38]. 

In addition, the continuous formation of the solid electrolyte interphase (SEI) in fresh Li 

dendrite surfaces leads to the decomposing of the electrolyte and decreases Coulombic 

efficiency [34, 36]. Excessive Li dendrites and the low Coulombic efficiency during Li 

plating/stripping have impeded the application of Li metal electrodes since 1970s. 
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Various approaches have been developed to suppress Li dendrites and to improve 

the Coulombic efficiency of Li metal electrodes.  

• Electrolyte additives. Electrolyte additives facilitate the formation of stable and 

compact SEI layers on Li surface and thus prevent the formation of Li dendrites. Effective 

additives include LiNO3 [39] and alkali-metal ion additives (e.g., Rb+ and Cs+  [40, 41]). 

• Micro/nanostructured frameworks for Li plating. Increasing the surface area of the 

Li plating host framework will decrease the current density, uniform local current density 

and Li ion distribution, and delay the formation of Li dendrites [37, 42]. Micro-needle pre-

treatment of Li metal [37], metal-based and carbon-based conductive nanostructured 

frameworks [43, 44], and non-conductive micro/nanostructured frameworks [45] have 

been demonstrated as effective methods to stabilize Li metal electrodes. 

• Mechanical suppression by artificial SEI and solid electrolytes. Mechanical 

suppression is a promising and economic approach to inhibit Li dendrites. To prevent the 

penetration of Li dendrites, the elastic modulus of artificial SEI or solid electrolytes is 

believed to be at least twice of that of Li metal [46]. In addition, artificial SEI and solid 

electrolytes are expected to have high Li ion conductivity, electrochemical stability in a 

wide voltage window, and be interface compatible with Li metal [47-49]. 

1.4 Mechanical Characterization Techniques for Electrodes 

At the electrode level, researchers are interested in the adhesion strength between 

the active layer and the current collector, the cohesion of the active layer, and the overall 

mechanical properties of electrodes. Mechanical characterization techniques to measure 

the above mechanical properties include peel tests, scratch tests, nanoindentation, and 

conventional tensile and compression tests. 

1.4.1 Peel Tests 

A good adhesion between the electrode and the current collector can promote the 

transfer of electrons and prevent the loss of “dead” active materials. Peel tests are one of 

the standard methods to study the adhesion strength between the electrode active layer and 

the current collector. There are different types of peel tests, such as 90°peel test, 180°

peel test, and T peel test [50, 51]. The 180°peel test is commonly used for composite 
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electrodes due to its simple configuration geometry. To prepare samples for the 180°peel 

test, the current corrector is fixed to a vertical metallic plate, which is fixed to the 

instrument. As shown in Figure 1.3(a), a piece of tape (usually 3M Scotch tape) is firmly 

pressed on the surface of the electrode to ensure uniform strong adhesion between the tape 

and the electrode. During the peel test, the free end of the tape is pulled at a constant speed 

by the moveable end of the instrument at an angle of 180°regarding to the electrode 

surface. The force required to peel the tape is recorded by the load cell. If the electrode 

active layer is peeled off from the current collector, the adhesion strength can be 

determined by dividing the force by the peeled length (with a unit of N/cm).  

The adhesion strength determined from peel tests is regarded as an important factor 

to optimize the electrode formulation, especially for flexible batteries [52, 53]. A positive 

correlation between the adhesion and the electrochemical performance has been found in 

graphite negative electrodes and LiCoO2 (LCO) positive electrodes [52, 53]. 

 

Figure 1.3. Typical schematic diagrams of (a) 180° peel tests [52] and (b) nano/micro 

scratch tests [54]. 

1.4.2 Scratch Tests 

Scratch tests are an alternative method to characterize the adhesion strength 

between the electrode and the current collector and the cohesion of composite electrodes. 

Compared with peel tests, the scratch test has several advantages: (1) the dimension of 
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samples can be much smaller; and (2) it can reveal various failure mechanisms in 

coating/substrate systems and monitor the scratch damage recovery over time. 

A schematic diagram of a scratch test is shown in Figure 1.3(b). During a scratch 

test, a tip or stylus (usually diamond conical tip) will penetrate into the coating/film with a 

linearly increasing normal load at a constant speed. The scratch system will record the 

normal force, the tangential force, and the friction coefficient. When the failure occurs in 

the film/substrate system, the magnitude of the friction coefficient will change abruptly. 

The failure points, failure mechanisms, and the critical failure load can be correlated with 

each other. The scratch adhesion of a coating/substrate system can be evaluated by the 

critical load of adhesive failures.  

The application of the scratch test in electrodes is mainly to qualitatively assess 

whether a functional coating or film will strengthen the cohesion of the matrix and improve 

the adhesion strength between the electrode layer and the current collector [52, 55].  

1.4.3 Nanoindentation 

Nanoindentation is a powerful technique to measure mechanical properties of a 

wide range of materials. During nanoindentation measurements, the indenter will be forced 

into the sample, making an indent, and then be removed from the sample. The indentation 

system records the load, penetration depth, and time information during the whole test 

procedure. Based on the Oliver-Pharr method [56], the following mechanical properties 

can be determined from the load-displacement curve (Figure 1.4).  
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Figure 1.4. A schematic diagram of a typical load-displacement curve obtained by 

nanoindentation [56]. 

 

The reduced modulus is determined by, 

𝐸𝑟 = 𝑆 ∙
√𝜋

2𝛽√𝐴
          (1.1) 

where S is the initial slope (dP/dh) of the unloading curve, β is a geometry constant (𝛽 =

1.034 for a Berkovich indenter), and A is the projected contact area of the indent.  

The Young’s modulus, Es, of the sample is calculated by, 

𝐸𝑠 =
1−𝑣𝑠

2

1

𝐸𝑟
−

1−𝑣𝑖
2

𝐸𝑖

          (1.2) 

where υs is Poisson’s ratio of the sample, υi and Ei are Poisson’s ratio and elastic modulus 

of the indenter, respectively. For a diamond indenter, Ei = 1141 GPa and υi = 0.07.  

The hardness of the sample is determined by, 

𝐻 =
𝑃𝑚𝑎𝑥

𝐴
          (1.3) 

where Pmax  is the maximum load.  

Besides Young’s modulus and hardness, other mechanical properties, such as the 

viscoelastic parameters [57, 58] and the strain-rate sensitivity [59], can also be investigated 

using different nanoindentation modes. In addition, constitutive equations for the 
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deformation behavior of materials can be derived by combining nanoindentation data with 

finite element (FE) modeling [60, 61]. 

Since the dimension of indents can be at nano or micro meter level, nanoindentation 

is a unique and increasingly popular tool to characterize mechanical behavior of various 

composite electrodes, including Si composite electrodes [33] and NCM composite 

electrodes [62, 63]. Nanoindentation results of composite electrodes depend on the ratio of 

the maximum indentation depth (hmax) to the particle size in composite electrodes. If hmax 

is more than tens of times larger than the particle size, the measured E and H are an 

averaged or an overall mechanical property of the composite. If hmax is on the same order 

or smaller than the particle size, the mechanical property of individual particles will 

dominate indentation measurements. 
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CHAPTER 2. ENVIRONMENTAL NANOINDENTATION: A POWERFUL TOOL FOR MEASURING 

MECHANICAL PROPERTIES OF SILICON COMPOSITE ELECTRODES DURING 

ELECTROCHEMICAL CYCLING1 

2.1 Summary 

Mechanical degradation is largely responsible for the short cycle life of silicon (Si)-

based electrodes for future lithium-ion batteries. An improved fundamental understanding 

of the mechanical behavior of Si electrodes, which evolves, as demonstrated in this 

Chapter, with the state-of-charge (SOC) and the cycle number, is a prerequisite for 

overcoming mechanical degradation and designing high capacity and durable Si-based 

electrodes. In this study, Young’s modulus (E) and hardness (H) of Si composite electrodes 

at different SOCs and after different cycle numbers are measured by nanoindentation under 

both dry and wet (liquid electrolyte) conditions. Unlike electrodes made of Si alone, E and 

H values of Si composite electrodes increase with increasing Li concentration. The 

composite electrodes under wet conditions are softer than that under dry conditions. Both 

E and H decrease with the cycle number. These findings highlight the effects of porosity, 

liquid environment, and degradation on the mechanical behavior of composite electrodes. 

The methods and results of this study on the mechanical property evolution of 

Si/polyvinylidene fluoride (PVDF) electrodes form a basis for exploring more effective 

binders for Si-based electrodes. Furthermore, the evolving nature of the mechanical 

behavior of composite electrodes should be taken into consideration in future modeling 

efforts of porous composite electrodes. 

2.2 Introduction 

Rechargeable lithium-ion batteries (LIBs) with high energy density are attractive 

choices for grid energy storage and electric vehicles (EVs). Intensive efforts have been 

devoted to developing electrode materials with high capacity and long cycle life. Si is 

considered as one of the most promising negative electrode materials not only because of 

its high gravimetric capacity (3579 mAh g-1, based on Li15Si4) [10, 64], high volumetric 

                                                 
1  Reproduced from Wang, Yikai, Qinglin Zhang, Dawei Li, Jiazhi Hu, Jiagang Xu, Dingying Dang, 

Xingcheng Xiao, and Yang‐Tse Cheng. "Mechanical property evolution of silicon composite electrodes 

studied by environmental nanoindentation." Advanced Energy Materials, 8, no. 10 (2018): 1702578. 
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capacity (9786 mAh cm-3, based on the initial volume of Si) [11], but also because of its 

low delithiation potential (~ca. 0.4 V vs. Li/Li+), low voltage hysteresis [12], and thus high 

energy efficiency. However, the huge volume change (~300%) of Si during the 

lithiation/delithiation process leads to high mechanical stress, pulverization and fracture of 

Si particles [13, 14]. The continuous formation of the solid electrolyte interphase (SEI) on 

the fractured Si surfaces consumes lithium, and, consequently, leads to capacity fading [17, 

65]. Although the fracture of individual Si particles can be mitigated by reducing the 

particle size down to 150 nm [13], the mechanical degradation of composite electrodes (the 

typical form for commercial LIBs), such as fracture, irreversible volume change, 

delamination and the breaking of the conductive network, remains a major challenge that 

impedes the commercialization of Si composite electrodes [25, 26, 31]. 

There has been an increasing number of theoretical modeling and experimental 

studies on the mechanical behavior, including deformation, internal stress, and fractures, 

of high capacity electrode materials during the lithiation/delithiation process [14, 15, 66-

69]. Mechanical properties of electrodes are indispensable in developing and testing 

models for LIBs. First-principles calculations showed that the Young’s modulus of LixSi 

compounds decreases from 95 GPa (x = 0, amorphous Si) to 38 GPa (x = 3.75, Li15Si4) as 

the Li concentration increases [70, 71], which is confirmed by in situ and ex situ 

nanoindentation measurements [72, 73]. However, future commercial Si electrodes for 

high energy applications are most likely to be composite electrodes instead of Si thin film 

electrodes from energy density and economic considerations. The mechanical properties 

of Si composite electrodes and Si film electrodes cannot be assumed the same because of 

the complex porous microstructure of Si composite electrodes, consisting of Si particles, 

polymeric binders, and conductive additives. During the lithiation/delithiation process, the 

porosity of Si composite electrodes changes along with the expansion/contraction of Si 

particles [26, 31, 74]. The rule of mixture may also be inapplicable to porous composite 

electrodes [75, 76]. 

Mechanical measurements of electrodes after electrochemical tests are challenging 

because, (1) some SEI components, such as LiOH and RCHOLi, are highly reactive with 

oxygen and water vapor [77, 78] and (2) LixSi compounds in the electrode are 

thermodynamically metastable [79] - oxidation is likely to happen after exposing 
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electrodes (after cycling) to the air. Therefore, sample preparation and mechanical property 

measurements of Si composite electrodes after electrochemical cycling must be conducted 

in an inert environment. On the other hand, LIBs electrodes operate under wet conditions 

(in liquid electrolyte, such as ethylene carbonate (EC) and diethyl carbonate (DEC) organic 

solvent-based electrolytes). Polymeric binders, such as polyvinylidene fluoride (PVDF), 

can swell and soften in the electrolyte [28, 30]. The swelling of binders may also change 

the porosity of composite electrodes. Thus, mechanical properties of composite electrodes 

under wet conditions may be significantly different from that under dry conditions. 

Furthermore, the phase transformation and the expansion/contraction of active particles 

make the mechanical behavior of composite electrodes more complex. Presently, there are 

only a few studies of mechanical properties of as-made composite electrodes under dry 

conditions [80, 81]. Fewer data are available for the mechanical properties of Si composite 

electrodes at different SOCs in electrolytes. The lack of mechanical property data of 

electrodes during lithiation/delithiation also makes theoretical electro-mechanical analyses 

and predications difficult. 

In this study, we conducted nanoindentation measurements of Si composite 

electrodes under both dry and wet conditions. The environmental nanoindentation system 

is installed inside an argon-filled glovebox to prevent the contamination of oxygen and 

moisture. In our previous study, this nanoindentation system was successfully used to 

characterize the viscoplastic properties of Li metal [60]. A typical composite electrode 

made of Si particles, PVDF, and carbon black (CB) was selected because the Si/PVDF/CB 

composite electrode has been widely used as a baseline system for improving the 

performance and durability of Si composite electrodes, though mechanisms responsible for 

its relatively poor performance are not well-understood [25, 28, 82]. Recently, significant 

improvements in the electrochemical performance of Si/PVDF electrodes have been made 

by using an alucone coating (by molecular-layer deposition, MLD) [31, 32]. 
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2.3 Experimental 

2.3.1 Electrode Preparation 

Si composite electrodes were prepared by 50 wt% silicon powder (d = 30-50 nm, 

Nanostructured & Amorphous Materials), 25 wt% PVDF (Alfa Aesar), and 25 wt% 

conductive carbon black (CB, Super C65, TIMCAL). The N-methyl-2-pyrrolidone (NMP, 

99.5%, Alfa Aesar) solvent was used to dissolve PVDF. A planetary mixer (Mazerustar, 

KK-250S) was used to prepare uniform slurry. The slurry was casted on a battery grade Cu 

foil (thickness, 24 μm) with a blade (gap, 127 μm). The electrode was dried in a vacuum 

oven at 120℃ for 12h and calendered to a final thickness of 42 μm. Electrode discs with a 

diameter of 12 mm were used for electrochemical tests. The average mass loading of the 

as-made electrode is 0.86 ± 0.04 mg cm-2. 

2.3.2 Swagelok Cells 

Swagelok cells, as shown in Figure 2.1(a) were used to obtain composite electrodes 

with different SOCs and to avoid deformation and external stress in the electrode during 

the cell disassembling process. The applied stress can be controlled through the 

deformation of the spring. In this study, the compression stress after assembling is 

determined to be about 0.1 MPa . As shown in Figure 2.1(b), the electrochemical 

performance of the Si/PVDF composite electrode in the Swagelok cell is comparable with 

that in the coin cell [29]. 

 

Figure 2.1. (a) The schematic diagram of the Swagelok cell and (b) the voltage-capacity 

profiles of the Si/PVDF composite electrode cycled with a Swagelok cell. 
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2.3.3 Electrochemical Tests 

All Swagelok cells were assembled and cycled in an argon-filled glovebox (H2O < 

0.1 ppm, O2 < 0.1 ppm, MBRAUN) using lithium foil (0.75mm, Alfa Aesar) as the counter 

electrode. Celgard 2400 separator was used in this study. The electrolyte was 1M LiPF6 in 

a mixture solution of ethylene carbonate and diethyl carbonate (EC: DEC = 1:1 wt%, 

BASF) with 10 wt% fluoroethylene carbonate (FEC, BASF) additive. A galvanostatic-

potentiostatic mode was used to cycle Swagelok cells by using a Bio-Logic potentiostat 

(VMP-3). All the electrodes were cycled at C/40 between 1.0 and 0.01 V. In the 2nd cycle, 

the galvanostatic mode was changed to the potentiostatic mode (with a current density limit 

of 1.5 μA cm-2) when the charge/discharge capacity is 300 mAh g-1 less than the pre-

determined SOCs. To prepare electrodes after long-term cycling, electrodes were cycled at 

C/40 for the first and the last cycles, and C/10 for the rest cycles. The potentiostatic mode 

(with a current density limit of 1.5 μA cm-2) was used for the last cycle. Post-cycled 

electrodes were obtained by disassembling the Swagelok cell. The electrodes were 

immersed in 25 mL dimethyl carbonate (DMC, BASF) for 5 min, and then rinsed with 2mL 

fresh DMC with a dropper to remove the residual LiFP6 and EC. 

2.3.4 Microstructure Characterizations 

The mass and thickness of composite electrodes before and after electrochemical 

cycling were measured by a balance (XS205 Dual Range Analytical Balance) and a 

micrometer (Mitutoyo), respectively. The microstructure of composite electrodes before 

and after electrochemical cycling was investigated by a field emission scanning electron 

microscope (SEM, FEI Quanta 250). The cross-section of indents along the median were 

prepared by using a focused ion beam (FIB, FEI Helios Nanolab 660). The regional 

porosity was analyzed using ImageJ. Ex situ X-ray diffraction (XRD) analyses were 

conducted by using Siemens D5000 (Cu Kα radiation, λ= 0.154 nm, 40 kV, 30 mA, 

0.02°/step, 0.5°/min). The post-cycled electrodes were sealed with Kapton tapes (KPTLS-

1, www. Kaptontape.com) in the glovebox to insulate the sample from the air. This Kapton 

tape has been used for in situ XRD cells due to its reliable leak-proof [83].  
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2.3.5 Environmental Nanoindentation 

As shown in Figure 2.2, the environmental nanoindentation system consists of a 

Nanoindenter G200 (Agilent) inside an argon-filled glovebox and a cell made of J-B weld 

epoxy glue, which enables us to conduct nanoindentation measurements in the liquid 

electrolyte. We confirmed the reliability of the liquid cell by comparing the indentation 

results of a stainless steel disc (mounted with the same epoxy glue) under dry and wet 

conditions. As shown in Figure 2.3, the load-displacement (L-D) curves under wet 

conditions match well with that under dry conditions. Reproducible and consistent 

indentation results were obtained for the stainless steel under dry and wet conditions, as 

shown in Table 2.1. 

 

Figure 2.2. (a) The G200 nanoindentation system inside an argon-filled glovebox and (b) 

the schematic of the liquid cell used for indentation measurements under wet conditions. 

 

 

Figure 2.3. Nanoindentation L-D curves of the stainless steel mounted by J-B weld glue 

measured under dry and wet conditions. 
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Table 2.1. Nanoindentation results of the stainless steel measured under dry and wet 

conditions.  

Test # 
Dry condition Wet condition 

E/GPa H/GPa E/GPa H/GPa 

1 240.95 3.16 254.88 3.08 

2 253.57 3.09 250.46 3.43 

3 262.10 3.42 238.82 4.03 

4 235.00 3.35 241.38 3.24 

5 264.36 3.82 243.68 2.95 

6 259.23 3.54 262.00 3.53 

Average value 252.54 3.40 248.54 3.38 

Standard deviation 10.95 0.24 8.11 0.35 

 

A depth-controlled mode was adopted with an indentation strain rate of 0.05 s-1
 and 

the maximum depth of 1500 nm. The indenter was held for 10 seconds at the maximum 

load. Thermal drift calibration (100 seconds) were conducted after unloading. The substrate 

effect can be neglected since the maximum depth is less than 1/10 of the thickness of the 

electrode. The elastic modulus and hardness were determined based on the Oliver-Pharr’s 

method [56]. Environmental nanoindentation tests under wet conditions were carried out 

with the liquid cell. The electrolyte was changed every 40 min to avoid the influence of 

precipitated EC and LiPF6 (due to the evaporation of DEC) on nanoindentation 

measurements. The weight reduction rate of the electrolyte is 4.19 ± 0.65% /cm2 in the 

glovebox during the 40 min. This minor composition change will not influence the 

nanoindentation measurements under wet conditions. During the test, the indenter was 

immersed into the electrolyte. Therefore, the surface tension of the electrolyte will not 

influence the nanoindentation result. 100 and 50 nanoindentation tests were conducted in 

each sample under dry and wet conditions, respectively. Indentation results were analyzed 

by Gaussian function, 

𝑓(𝑥) = 𝑓0 + 𝐴𝑒
−

(𝑥−𝜇)2

2𝜎2        Eq. (2.1) 

where μ is the expectation at the center position of the bell curve, σ is the standard 

deviation, and 𝜎2 is the variance. 

2.3.6 Porosity Measurements of the Electrodes 

The porosity of composite electrodes was determined by, 
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Porosity(%) = (1 −
𝜌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝜌𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
) × 100     Eq. (2.2) 

where 𝜌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the measured density of the electrodes, 

𝜌𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =
𝑚𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒−𝑚𝐶𝑢

𝑡𝐴
       Eq. (2.3) 

where t is the thickness of the active layer in the electrode and A is the area of the electrode 

disc. 𝜌𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 is the theoretical density of the electrodes with a porosity of zero.  

𝜌𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =
1

𝑤𝐿𝑖𝑥𝑆𝑖
𝜌𝐿𝑖𝑥𝑆𝑖

+
0.5(1−𝑤𝐿𝑖𝑥𝑆𝑖)

𝜌𝑃𝑉𝐷𝐹
+

0.5(1−𝑤𝐿𝑖𝑥𝑆𝑖)

𝜌𝐶𝐵

     Eq. (2.4) 

where 𝑤𝐿𝑖𝑥𝑆𝑖  is the weight ratio of LixSi of the electrode. It is 50% for the as-made 

electrode. At certain SOCs, 𝑤𝐿𝑖𝑥𝑆𝑖 is determined based on the mass of Si in the electrode, 

𝑤𝐿𝑖𝑥𝑆𝑖 =

𝑚𝑆𝑖
𝑀𝑆𝑖

×(𝑀𝑆𝑖+𝑥𝑀𝐿𝑖)

𝑚𝑆𝑖
𝑀𝑆𝑖

×(𝑀𝑆𝑖+𝑥𝑀𝐿𝑖)+𝑚𝑃𝑉𝐷𝐹+𝑚𝐶𝐵

      Eq. (2.5) 

where 𝑀𝑆𝑖 and 𝑀𝐿𝑖 are the atomic mass of Si and Li, respectively. x could be determined 

by, 

𝑥 =
𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

3579
∗ 3.75  (during lithiation)     Eq. (2.6) 

𝑥 =
(3579−𝑄𝑐ℎ𝑎𝑟𝑔𝑒+697)

3579
∗ 3.75  (during delithiation)    Eq. (2.7) 

where 𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  is the discharge capacity corresponding to SOCs during the lithiation 

process, 𝑄𝑐ℎ𝑎𝑟𝑔𝑒  is the charge capacity corresponding to SOCs during the delithiation 

process. The average capacity difference between the fully delithiated state and 3579 mAh 

g-1 (theoretical capacity) of four Swagelok cells is 697±73 mAh g-1. Therefore, x of 

electrodes at SOCs in the delithiation process is normalized by 697 mAh g-1
 in Eq. (2.7). 

We assume 𝑥 = 0  and 𝑥 = 3.75  for electrodes after full delithiation and lithiation, 

respectively. The densities of LixSi components used for the above calculations are from 

Kim’s work [70]. 
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2.4 Results and Discussion 

The Si composite electrodes were electrochemically lithiated/delithiated to various 

SOCs. Then, nanoindentation measurements were carried out in those electrodes under dry 

and wet conditions.  

 
 

Figure 2.4. (a) Voltage-SOC profiles of Si/PVDF electrodes during the 2nd cycle and (b) 

XRD patterns of composite electrodes with different SOCs. 

 

Due to the phase transformation from crystalline Si to amorphous LixSi and the 

formation of a large amount of SEI in the 1st cycle, electrodes with different SOCs were 

obtained in the 2nd cycle, as shown in Figure 2.4(a). The X-ray diffraction (XRD) patterns 

of composite electrodes are shown in Figure 2.4(b). The Si (220) peak is clearly observed 

in the as-made electrode since crystalline Si particles are used to make the electrode. After 

the 1st cycle, the Si peaks disappear as the crystalline Si transforms to amorphous LixSi 

[84-86]. There is no peak of LixSi compounds in the XRD patterns of electrodes at other 

SOCs, except that three peaks of Li15Si4 are found in the fully lithiated electrode. These 

findings confirm the phase transformation of Si during the lithiation/delithiation process 

reported in the literature: crystalline Si starts to transform to amorphous LixSi compounds 

upon lithiation, and amorphous LixSi transforms to crystalline Li15Si4 when the potential is 

below a critical value (ranging from 70 mV to 30 mV, depending on the size and the 

morphology of Si) [84-86]. During delithiation, Li15Si4 gradually transforms to amorphous 

LixSi compounds and amorphous Si remains after Li is completely extracted from LixSi. 

Depth-controlled nanoindentation measurements were conducted to obtain E and 

H of electrodes at different SOCs. The indentation depth was set at 1500 nm to reduce the 
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influence of the surface roughness and tiny cracks. Effects of the substrate on 

nanoindentation are negligible because the maximum indentation depth is less than 1/10 

the thickness of the electrode. Since the indentation depth is much larger than the diameter 

of Si particles (𝑑 = 30 to 50 nm) in the electrode, the mechanical properties determined 

from nanoindentation tests are the overall or average mechanical properties of the 

composite electrode.  

 

Figure 2.5. (a) A typical indentation array in the Si/PVDF electrode at the 1st full 

delithiation sate and (b) the distribution histograms of Young’s modulus and hardness of 

the Si/PVDF electrode after the 1st full delithiation under dry conditions. 

 

A typical indentation array under dry conditions is shown in Figure 2.5(a). Due to 

the random nature of the porous composite electrodes, the measured E and H values at each 

SOC have a distribution. For example, E and H of the 1st fully delithiated electrodes range 

from 0.59 to 7.76 GPa and from 0.01 to 0.29 GPa, respectively, as shown in Figure 2.5(b). 

A similar situation has also been found in the mechanical characterizations of SEI by 

atomic force microscope (AFM) and porous ceramics by nanoindentation [87-89]. Here, 

we use Gaussian function to describe the distribution of E and H. The expectation values 

of Gaussian function are plotted against the Li concentration (x in LixSi) in Figure 2.6 (a) 

and (b). Under both dry and wet conditions, both E and H change with the Li concentration 

as a hysteresis loop, that is, E and H increase with increasing Li concentration in the 

lithiation process, reach the peak value at the fully lithiated state, and then decrease with 

decreasing Li concentration in the delithiation process. This trend is opposite to that of 

lithiated Si films, that is, E and H decrease as the Li concentration increases [70-73]. 
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Figure 2.6. The change of (a) Young’s modulus and (b) hardness of the Si/PVDF 

composite electrode with Li concentration (x in LixSi) during the 2nd 

lithiation/delithiation process. Since the expectation values of E and H under both dry and 

wet conditions were plotted against x, there is no error bar in (a) and (b). (c) The change 

of the porosity of composite electrodes with Li concentration (x in LixSi) under dry 

conditions. The influence of SEI on the porosity is neglected here. 

 

Different from the compact structure of Si films, the composite electrode has a 

complex porous structure composed of Si particles, PVDF and CB. The porosity of the 

electrode can be determined based on the relationship between density, mass, thickness 

and area of the electrode (Eq. (2.2)-(2.7)). The porosity of the as-made electrode and the 

1st fully delithiated electrode are as high as 49±2.3% under dry conditions. During 

lithiation, the expansion of active particles will effectively reduce the porosity of the 

electrode, which is a densification process. The porosity gradually decreases to 18% during 

the 2nd lithiation and gradually increases, along a hysteresis loop, to 49% (close to that 

after the 1st full delithiation), as shown in Figure 2.6(c), during delithiation due to the 

contraction of active particles. This trend matches with the cross-sectional microstructure 

of electrodes in different SOCs. As shown in Figure 2.7(a), (b) and (d), many voids are 

visible in the as-made and fully delithiated electrodes; while smaller and fewer voids can 

be found in the fully lithiated electrode (Figure 2.7(c)). Because of these voids in all SOCs, 

nanoindentation would densify the porous composite electrode. As indicated by the dashed 
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lines in Figure 2.7 (b)-(d), there is a porosity gradient underneath the indents – the porosity 

increases with increasing distance from the apex of the indenter. 

 

Figure 2.7 (a) A typical cross-sectional SEM image of an indent in the as-made electrode. 

The cross section was prepared by a focused ion beam (FIB) along the median of each 

triangular indent, as shown in the inserted schematic diagram. High magnification cross-

sectional SEM images of (b) the as-made electrode; (c) the electrode after the 2nd full 

lithiation and (d) the electrode after the 2nd full delithiation. The regional porosity 

(analyzed by ImageJ, P1, P2 and P3) underneath the indent increases with increasing 

distance from the apex of the indent. 

 

Figure 2.8(a) and (e) show that most Si particles in the electrode remain 

undeformed after nanoindentation. Many Si particles in the electrodes after the 1st and 2nd 

full delithiation are also undeformed by indentation, as shown in Figure 2.8(b), (d), (f) and 

(h). Therefore, the PVDF scaffold, instead of active particles, dominates the indentation-

induced deformation in the highly porous composite electrodes, as shown in Figure 2.8(i) 

and (j). Si particles may rotate, move, and rearrange to accommodate the indentation-

induced deformation. As shown in Figure 2.6(a) and (b), the E and H values of the PVDF 

film measured by nanoindentation (under dry conditions) are 1.53 GPa and 0.072 GPa, 

respectively. Both are much smaller than that of crystalline Si [70], amorphous Si, and 

LixSi compounds [70-72]. Since the PVDF framework has even smaller E and H 

considering of its highly porous structure, the E and H values of the as-made and fully 
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delithiated electrodes are expected to be much smaller than that of crystalline and 

amorphous Si. 

 

Figure 2.8. Typical indent morphologies in (a) the as-made electrode; and composite 

electrodes after (b) the 1st delithiation; (c) the 2nd lithiation and (d) the 2nd delithiation. 

(e)-(h) are enlarged microstructure in indents corresponding to (a)-(d), respectively. At 

the fully delithiated state, nanoindentation induces the densification of the porous 

structure, and the Si particles underneath the indenter remain undeformed. In fully 

lithiated composite electrodes with low porosity, active particles deform after localized 

densification under the indenter is accomplished. (i) and (j) are schematic diagrams of the 

indentation deformation of highly porous electrodes at the fully delithiated state. (k) and 

(l) are schematic diagrams of the indentation deformation of electrodes with low porosity 

at the lithiation state. 

 

During the lithiation process, active particles (LixSi) soften and the porosity of 

composite electrodes decreases, as shown in Figure 2.6(c). The deformation of active 

particles contribute gradually to the indentation-induced deformation as the local 

densification under the indenter continues in the composite electrode. In particular, the 

local porosity right underneath the indent in the fully lithiated electrode is only 9±2% 

(Figure 2.7(c)). Most active particles underneath the indenter are severely deformed, as 

shown in Figure 2.8(c) and (g). In the fully lithiated state, the mechanical behavior of active 

particles plays an important role in the nanoindentation responses of composite electrodes. 
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The coupling effect of the reduced porosity, the softening of active particles, and the 

increasing deformation ratio of active particles to the PVDF scaffold results in increasing 

E and H values of the composite electrode during lithiation. Due to the same coupling 

effect, the composite electrode softens (with smaller E and H) during the delithiation 

process despite the increasing modulus of the active particles [72]. After the 2nd full 

delithiation, E and H decrease to 1.24 GPa and 0.026 GPa under wet conditions, 

respectively, both of which are close to that of the 1st fully delithiated electrode. The 

expansion/contraction of the active particles leads to a periodic porosity change of 

composite electrodes during the repeated lithiation/delithiation cycling, as shown in Figure 

2.6(c). Consequently, the mechanical property evolution of the composite electrode in 

subsequent cycles is likely to follow the same trend as the 2nd cycle, that is, both E and H 

increase with increasing Li concentration. 

Figure 2.6(a) and (b) show that E and H values under wet conditions are always 

smaller than that under dry conditions, which can be attributed to the softening of PVDF 

in the electrolyte [28, 30]. E and H of the PVDF film under wet conditions are 35.7% and 

43.4% of that under dry conditions, respectively, as shown in Figure 2.6(a) and (b). The 

difference in E between dry and wet conditions decreases with x in both lithiation and 

delithiation processes. At the 2nd fully lithiated state, the difference in E is negligible, even 

though the difference in H is larger than that under other SOCs. Since mechanical property 

measurements under dry conditions may overestimate 𝐸 and 𝐻 [81], cautions should be 

taken when using mechanical data obtained under dry conditions for electro-mechanical 

models of composite electrodes. 

As discussed previously, nanoindentation measurements reflect the overall 

mechanical response of composite electrodes, including the influence of SEI. SEI may 

strengthen the porous structure of composite electrodes, since both E and H of the 

electrodes after the 1st and 2nd full delithiation are larger than the as-made electrode in 

spite of similar porosity. The mechanical properties and the components of SEI depend on 

the charging/discharging potential in the 1st lithiation of Si [89, 90]. Yet, the interaction 

between SEI and binders and the adhesion between SEI and active particles are unknown. 
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It is, therefore, difficult to separate and quantify the effect of SEI on the mechanical 

properties of composite electrodes. 

 
 

Figure 2.9. Electrochemical performance of Si/PVDF electrodes. The high discharging 

capacity in the last cycle is due to the low C-rate (C/40) and the potentiostatic holding at 

the cutoff voltage. The discharging capacity degrades slowly compared with reference 

[29] since the electrodes were cycled at a lower C-rate (C/10) and the electrolyte amount 

was abundant. 

 

 

Figure 2.10. The surface morphology of Si/PVDF electrodes at (a) and (c) the full 

lithiation state, (b) and (d) the full delithiation state after 100 cycles. 

 

In order to determine how mechanical properties would change during long-term 

cycling, we measured E and H of composite electrodes at the full lithiation and delithiation 

states up to 100 cycles (Figure 2.9) under dry and wet conditions. The surfaces of the 

electrodes are still smooth enough for nanoindentation measurements even after 100 cycles 
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(Figure 2.10). As shown in Figure 2.11(a) and (b), E and H at the fully lithiated state are 

always larger than that at the fully delithiated state, which, again, results from the coupling 

effect of mechanical properties of LixSi, the porosity change and the deformation 

mechanisms of electrodes. Again, E and H under wet conditions are smaller than that under 

dry conditions due to the softening of PVDF in the electrolyte. E and H values are stable 

within 15 cycles. After 15 cycles, E and H under both dry and wet conditions decrease as 

the cycle number increases. To the best of our knowledge, this is the first experimental 

observation of the mechanical property degradation of composite electrodes during 

electrochemical cycling. 

 
Figure 2.11. The evolution of Young’s modulus and hardness of the composite electrodes 

as the cycle number increases: (a) at the fully lithiated state and (b) at the fully delithiated 

state. Since the expectation values of E and H under both dry and wet conditions were 

plotted against x, there is no error bar in (a) and (b). (c) The change of the porosity (under 

dry conditions) with the cycle number. 

 

The mechanical property degradation of composite electrodes is likely caused by 

the irreversible volume change of the electrode. The potentiostatic mode of cycling was 

not used for each lithiation/delithiation process during the long-term cycling. Due to 

polarization, some Li atoms are still left in the Si particles at the cutoff voltage of 

delithiation. There is residual expansion of the Si particles after each cycle. Thus, the 

electrode gradually thickens during electrochemical cycles and cannot recover even after 
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full delithiation. The increasing irreversible volume change of the composite electrode is 

associated with increasing porosity as shown in Figure 2.11(c). After 100 cycles, the 

porosity reaches 70% and 32% at the fully delithiated and lithiated states, respectively. The 

increasingly high porosity has a negative influence on the mechanical integrity and the 

load-bearing capability of the composite electrode. Consequently, both E and H at the 

lithiation and delithiation states decrease as the cycle number increases (after 15 cycles). 

The increasing irreversible volume change of the composite electrode not only 

affects its mechanical integrity, but also breaks down the conductive network, leading to 

particle isolation and hence capacity fading. It is essential to develop mechanically robust 

Si composite electrodes for future LIBs. Three main approaches have been proposed for 

this purpose in the literature: 1) using stiff but recoverable polymeric binders, such as 

sodium alginate [25, 30], to enhance the mechanical integrity and reduce the irreversible 

volumetric change of composite electrodes; 2) coating active particles with compliant 

materials, including Al2O3, HfO2, and LiF, to accommodate the continuous 

expansion/shrinkage of Si particles [65, 91, 92]; 3) modifying the surface of composite 

electrodes with stretchable, conformal films, such as polymeric aluminum glycerol (AlGL) 

or self-healing elastic polymers [31, 33, 82], to maintain mechanical integrity and 

electronic conductivity. The environmental nanoindentation approach developed in this 

Chapter can be used to evaluate these proposed approaches. 

The Si particle size (𝑑) can affect nanoindentation measurements. If the indentation 

depth is too small compared to the Si particle size, e.g., d/hmax > 50, indentation results will 

be dominated by the mechanical properties of individual Si or LixSi particles. In this case, 

the modulus, 𝐸, values are expected to decrease with increasing lithium concentration 

according to density-functional theory calculations and ex situ nanoindentation results [70-

72]. In order to measure the average or the overall mechanical property of the composite 

electrode, nanoindentation measurements should be conducted with a large maximum 

indentation depth, e.g., hmax/d > 30, as in this study.  

The porosity can strongly affect the mechanical property of the composite 

electrode. The porosity of the composite electrode was found to decrease from 65±5% to 

49±3% after calendering. The porosity of electrodes without calendering also decreased 
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with increasing Li concentration. As a result, E and H values increase with increasing Li 

concentration. At each SOC, the calendered electrodes have larger E and H values than the 

un-calendered electrodes because the calendered electrodes have lower porosity. If the 

porosity of the electrode after calendering is very low (< 20%), the porosity could be 

reduced to near zero after full lithiation. Thus, E and H of the electrodes are likely to first 

increase (because of the reduced porosity) and then decrease (due to the softening of LixSi 

with increasing x) with increasing lithium concentration. The relationship between active 

particle size, initial porosity, mechanical properties, and the electrochemical performance 

of composite electrodes will be further investigated in the future. 

2.5 Conclusions 

Young’s modulus and hardness of Si/PVDF composite electrodes at various SOCs 

and after different cycle numbers have been measured by environmental nanoindentation 

in an argon-filled glove box under both dry and wet conditions. In contrast to Si films, E 

and H values of Si composite electrodes, under both dry and wet conditions, increase with 

increasing Li concentration due to mainly porosity changes. The values of E, H, and the 

porosity change with the Li concentration along a hysteresis loop within a cycle. Both E 

and H under wet conditions are smaller than that under dry conditions as the binder, i.e. 

PVDF in this study, softens in the organic electrolyte. E and H at the fully lithiated and 

delithiated states decrease as the cycle number increases. The mechanical property 

degradation results from the increasing irreversible volume change of the composite 

electrode during cycling. The results show that mechanical integrity is essential to improve 

the electrochemical performance of composite electrodes. The measured E and H of 

composite electrodes at different SOCs and after cycling under wet conditions are useful 

input parameters for electro-mechanical models and pave the way for developing durable 

Si electrodes for the next generation LIBs. The environmental nanoindentation method 

developed in this study can be readily extended to the investigation of Si-composite 

electrodes using various polymeric binders, including better performing ones such as Na-

carboxymethylcellulose (Na-CMC) and Na-alginate. Furthermore, the environmental 

nanoindentation method can be applied to the mechanical characterization of a wide range 
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of electrochemical energy storage materials, including but not limited to lithium-ion battery 

applications. 
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CHAPTER 3. INFLUENCE OF POLYMERIC BINDERS ON MECHANICAL PROPERTIES AND 

MICROSTRUCTURE EVOLUTION OF SILICON COMPOSITE ELECTRODES DURING 

ELECTROCHEMICAL CYCLING2 

3.1 Summary 

Polymeric binders are a critical component to enhance mechanical integrity, 

maintain electronic conductivity, and achieve long durability of silicon (Si)-based 

electrodes. A fundamental understanding of the relationship between binder properties and 

mechanical degradation of Si electrodes is indispensable to developing durable Si-based 

electrodes. Using an environmental nanoindentation system, we measured the mechanical 

properties of Si composite electrodes made with different binders, including 

polyvinylidene fluoride (PVDF), Nafion, sodium-carboxymethyl cellulose (Na-CMC), and 

sodium-alginate (SA), as a function of the state-of-charge and cycle numbers under both 

dry and wet conditions. In contrast to electrodes made of Si alone, both the elastic modulus 

(E) and hardness (H) of Si composite electrodes increase with lithium concentration within 

each cycle. E and H continuously decrease during long-term cycling. The mechanical 

property evolution of Si composite electrodes can be correlated with the porosity and 

irreversible thickness changes, which are largely determined by the mechanical properties 

of binders, instead of the adhesion strength between binders and Si. Electrodes under wet 

conditions have smaller E and H values than those under dry conditions because binders 

soften in the electrolyte. These findings not only provide useful mechanical parameters for 

battery modeling, but also may help design high performance and durable Si-based 

electrodes. 

3.2 Introduction 

Silicon (Si) has been considered one of the most promising negative electrode 

materials for the next generation high energy density lithium ion batteries (LIBs) because 

it can deliver a high theoretical specific capacity of 3579 mAh g-1 [12, 93, 94]. However, 

electromechanical degradation resulting from the substantial volume change (≈300 %) of 

                                                 
2  Reproduced from Wang, Yikai, Dang, Dingying, Dawei Li, Jiazhi Hu, and Yang-Tse Cheng. " Influence of 

Polymeric Binders on Mechanical Properties and Microstructure Evolution of Silicon Composite Electrodes 

during Electrochemical Cycling." Journal of Power Sources, 425 (2019): 170-178. 
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Si during repeated lithiation/delithiation remains an obstacle to commercializing Si-based 

electrodes. Specifically, the repeated huge volume change of Si causes severe cracking and 

pulverization of Si particles and mechanical disintegration of electrodes [26, 95, 96]. Solid 

electrolyte interphase (SEI) continuously forms on the newly exposed surface of Si, 

consuming electrolytes and lithium ions, insulating Si particles, and leading to low 

Coulombic efficiency and fast capacity fading of Si electrodes [13, 25, 90]. Extensive 

efforts have been devoted to overcoming these challenges and improving the performance 

of Si-based electrodes, including nanostructured Si (e.g., Si nanoparticles [13, 97] and Si 

nanowires [14, 98]), innovative coating technologies (e.g., atomic layer deposition [65, 99] 

and molecular layer deposition [31, 32, 82]), and Si/graphite composite electrodes [100, 

101]. 

Alternatively, using effective polymeric binders has been recognized as a facile, 

economical, and scalable method to significantly improve the electrochemical performance 

of Si composite electrodes [27, 30, 102], which consist of Si particles, carbon black (CB), 

binders, and pores. Binders are used to bind Si particles and CB together and adhere them 

to the current collector. Polyvinylidene fluoride (PVDF), the commonly used binder in the 

LIBs industry, is ineffective in maintaining the mechanical integrity of Si composite 

electrodes due to its weak van der Waals interaction with Si [28, 103, 104]. Instead, a wide 

range of natural polymeric binders, including sodium carboxymethyl cellulose (Na-CMC) 

[84, 105], sodium alginate (SA) [25, 30], poly(acrylic acid) (PAA) [28, 106, 107], and 

karaya gum (KG) [108], and synthetic binders, including Nafion [25, 29] and polyrotaxane-

PAA [27], can form strong hydrogen and covalent bonds with the native SiO2 layer on Si 

particles with their polar functional groups, such as –OH, –COO-R, and -SO2O-R (R can 

be H, Na, or Li), maintain the microstructure integrity and electronic conductivity of the 

porous network, and, therefore, improve stability and durability of Si composite electrodes. 

Nevertheless, Si composite electrodes made of the state-of-the-art binders still inevitably 

experience irreversible volume change, cracking, and delamination during cycling [26, 95, 

109]. But the relationship between binder properties and electromechanical degradation of 

Si composite electrodes is still unclear. 

Furthermore, the mechanical properties of electrodes during cycling in realistic 

organic electrolyte environment are lacking for intensive experimental and theoretical 
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modeling efforts in understanding and overcoming electromechanical degradation of Si 

composite electrodes [110, 111]. Different from Si thin films and single crystal Si wafer 

electrodes [70-73], Si composite electrodes have porous microstructure. During 

electrochemical cycling, the phase transformation between Si and LixSi causes the 

expansion/contraction of Si particles and porosity changes. The formation of SEI may 

influence the adhesion between Si (or LixSi) particles and polymeric binders. Polymeric 

binders may also swell and soften in the organic electrolyte [28, 30]. These factors make 

mechanical properties and microstructure changes of Si composite electrodes very complex 

and theoretically unpredictable. Moreover, mechanical property measurements of Si 

composite electrodes are challenging because SEI components (such as LiOH), LixSi 

compounds, and electrolytes are sensitive to air and moisture [78, 79, 112]. We have 

recently developed an environmental nanoindentation system inside an argon-filled 

glovebox to overcome the challenges for mechanical property measurements of Si 

composite electrodes in the liquid electrolyte environment [113]. Our previous study 

showed that the elastic modulus (E) and hardness (H) of the Si/PVDF/CB composite 

electrodes increase with increasing lithium concentration although LixSi softens with 

increasing lithium concentration [78, 79, 112]. Since binders have different mechanical 

properties [25, 28, 30], adhesion strength with Si [103, 104], and swelling/softening 

behavior in the electrolyte [28, 30], it is necessary to investigate (1) whether a general trend 

in mechanical behavior exists in Si composite electrodes made of different binders and (2) 

the influence of binder properties on mechanical properties and microstructure changes of 

Si composite electrodes. 

In this study, we selected four typical binders, polyvinylidene fluoride (PVDF), 

Nafion, sodium-carboxymethyl cellulose (Na-CMC), and sodium-alginate (SA), to study 

the influence of binders on the mechanical properties of Si composite electrodes at different 

states of charge (SOCs) and after different numbers of cycles under both dry and wet 

conditions using our environmental nanoindentation system. Porosity and irreversible 

thickness changes3 during cycling were measured and compared by postmortem analysis. 

Mechanical properties of binders and the adhesion between binders and Si were correlated 

                                                 
3 The irreversible thickness change is the thickness difference between the n-th delithiated electrode and the 

as-made electrode (after calendering).  
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with the mechanical property evolution and microstructure degradation of Si composite 

electrodes. 

3.3 Experimental 

3.3.1 Electrode Preparation 

Si composite electrodes were prepared by 50 wt% Si powder (d = 30-50 nm, 

Nanostructured & Amorphous Materials), 25 wt% carbon black (CB, Super C65, 

TIMCAL), and 25 wt% binders, including PVDF (Alfa Aesar), Nafion dispersion liquid 

(D-520, Alfa Aesar), Na-CMC (Alfa Aesar), and SA (Sigma-Aldrich). Deionized water 

was used to dilute Nafion dispersion solution and dissolve Na-CMC and SA. PVDF was 

dissolved in N-methyl-2-pyrrolidone (NMP, 99.5 wt%, Alfa Asear). A planetary mixer 

(Mazerustar, KK-250S) was used to prepare uniform slurry, which was then casted on a 

battery grade Cu foil (thickness, 24 μm) using a doctor blade with a gap of 127 μm. After 

drying at room temperature for 12 h, the electrodes were dried in a vacuum oven at 100 ℃ 

for 12 h. Then, the electrodes were calendered multiple times until the porosity reaches 

50±5 % using a rolling machine (MSK-HRP-MR100, MIT Co., Ltd.). The porosity (p) of 

the as-made electrodes was calculated based on Eq. (2.2) and (2.3). The densities of carbon 

black, binders, and Si are list in Table 3.1. The average thickness and mass loading of all 

electrodes are 41-43 μm and 0.85-0.95 mg cm-2, respectively. Electrode discs with a 

diameter of 12 mm were used for electrochemical tests. 

Table 3.1 Densities of Si, carbon black, and binders. 

Materials Density / g cm-3 

Silicon 2.33 

Carbon black 1.60 

PVDF 1.76 

Na-CMC 1.59 

Na-alginate (SA) 1.60 

Nafion 1.97 

 

3.3.2 Electrochemical Measurements 

Swagelok cells were used for electrochemical tests to avoid introducing 

deformation and external stress in the cycled electrodes during the disassembling process 

[113]. All cells were assembled and cycled in an argon-filled glovebox (H2O < 0.1 ppm, 
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O2 < 0.1 ppm, MBRAUN) using lithium foil (0.75mm, Alfa Aesar) as the counter and 

reference electrodes and Celgard 2400 separator. The electrolyte was 1M LiPF6 in a 

mixture solution of ethylene carbonate and diethyl carbonate (EC: DEC = 1:1 wt%, Gotion) 

with 10 wt% fluoroethylene carbonate (FEC, Gotion) as the additive. 500 µL electrolyte 

was used in each Swagelok cell. A galvanostatic-potentiostatic mode was used to cycle 

Swagelok cells with a Bio-Logic potentiostat (VMP-3). Si/Na-CMC, Si/SA, and Si/Nafion 

electrodes were cycled at C/20 between 1.00 and 0.01 V. Electrodes at different SOCs were 

obtained by changing the galvanostatic mode to the potentiostatic mode (with a current 

density limit of C/400 µA cm-2) when the charge/discharge capacity is 300 mAh g-1 less 

than the pre-determined SOCs in the 2nd cycle. Figure 3.1(a) shows the voltage vs. lithium 

concentration (x in LixSi) profiles of Si/Na-CMC electrodes at different SOCs (we 

converted the lithiation/delithiation capacity to x in LixSi [113]). For long-term cycling, the 

electrodes were cycled at C/20 for the first 2 cycles and a galvanostatic-potentiostatic mode 

(with a current density limit of C/400 cm-2) was used for the last lithiation/delithiation 

cycle. The cycling protocol of Si/PVDF electrodes can be found in our previous study 

[113]. The lithium concentration, x in LixSi, at different SOCs is determined based on the 

charging/discharging capacity. Post-cycled electrodes were obtained by disassembling 

Swagelok cells inside an argon-filled glovebox. Electrodes were immersed in 25 mL 

dimethyl carbonate (DMC, Gotion) for 5 min, and then rinsed with 2 mL fresh DMC with 

a dropper to remove the residual LiFP6 and EC. 

3.3.3 Microstructure Characterization 

The mass and thickness of composite electrodes before and after electrochemical 

cycling were measured by a balance (XS205 Dual Range Analytical Balance) and a 

micrometer (Mitutoyo), respectively. The microstructure of composite electrodes was 

characterized by a field emission scanning electron microscope (SEM, FEI Quanta 250). 

X-ray diffraction analysis of as-made and cycled electrodes was conducted using Siemens 

D5000 (Cu Kα radiation, λ= 0.154 nm, 40 kV, 30 mA, 0.02°/step, 0.5°/min). The cycled 

electrodes were sealed with Kapton tapes (KPTLS-1, www. Kaptontape.com) in the 

glovebox to avoid air exposure. The X-ray diffraction patterns are shown in Figure 3.1(b). 
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3.3.4 Environmental Nanoindentation 

Environmental nanoindentation measurements were conducted using the same 

method introduced in Chapter 2. The maximum depth for electrodes at different SOCs in 

the 2nd cycle and after long-term cycling was set as 1500 nm and 2500 nm, respectively. 

100 and 50 nanoindentation tests were conducted in each sample under dry and wet 

conditions, respectively. Indentation results were statistically analyzed using Gaussian 

function, as shown in Figure 3.1(c) and (d). 

  

  

Figure 3.1 (a) Voltage profiles and (b) XRD patterns of Si/Na-CMC electrodes at 

different SOCs during the 2nd cycle. The 1st and 2nd fully delithiated Si electrodes were 

denoted as a-Si. Distribution histograms of the (c) elastic modulus and (d) hardness of 

Si/Na-CMC electrodes at the 2nd delithiation state. 
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Binder thin films (with thickness greater than 40 μm) were prepared by coating 

their solutions on Si wafers followed by drying on a hot stage (50 ℃ for overnight) for 

nanoindentation measurements. The elastic modulus and hardness of binder films under 

dry and wet conditions were measured by nanoindentation using the same procedure and 

parameters as that for the Si composite electrodes.  

3.3.5 Adhesive Lap Joint Shear Tests 

Lap joint samples were prepared by putting 100 μL binder solution (10 wt%) 

between two Si wafers (5 𝑚𝑚 × 50 𝑚𝑚 × 0.35 𝑚𝑚, P-type Si (100) wafer, Wafer World, 

as shown in Figure 3.2) followed by drying on a hot stage (50 ℃ in a hood) for overnight. 

Shear tests were conducted using a universal mechanical test machine (Instron 3345). The 

speed was set at 10 mm/min. The engineering shear strength (τ) was calculated by 𝜏 =

𝐹𝑐𝑓 𝐴⁄ , where 𝐹𝑐𝑓 is the critical fracture load and A is the area of the joint. 

 

Figure 3.2 The schematic diagram of Si/binder/Si lap joint samples for shear tests. 

 

3.4 Results and Discussion 

As shown in Figure 3.1(b), X-ray diffraction (XRD) patterns show that crystalline 

Si particles in the as-made electrodes transform to amorphous Si after the 1st cycle. LixSi 

particles remain amorphous during the repeated lithiation/delithiation process, except that 

crystalline Li3.75Si forms at the full lithiation state. Similar phenomenon has been found in 

Si/PVDF electrodes [113]. Considering the phase transformation from pristine crystalline 

Si to amorphous LixSi and the excessive SEI formation in the 1st cycle, electrodes at 

different SOCs for nanoindentation measurements were obtained in the 2nd cycle. Due to 
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the random nature of porous composite electrodes, the measured E and H under both dry 

and wet conditions distribute in a range. We use Gaussian function (Eq. (2.1)) to analyze 

the distribution of E and H. Typical histograms of 𝐸 and 𝐻 are shown in Figure 3.1(c) and 

(d). 

  

 
Figure 3.3 The evolution of the expectation values of (a) the elastic modulus and (b) 

hardness of Si composite electrodes measured under both dry and wet conditions. The 

values of Eexp and Hexp are listed in Table 3.2. (c) The evolution of the porosity of Si 

composite electrodes during the 2nd cycle. The porosity was determined using Eq. (2.2)-

(2.5) with the mass and thickness of the cycled electrodes measured under dry conditions. 

 

Figure 3.3(a), (b) and Table 3.2 show the expectation values of elastic modulus, 

𝐸𝑒𝑥𝑝, and hardness, 𝐻𝑒𝑥𝑝, vs. the lithium concentration (x in LixSi), respectively. Both 

𝐸𝑒𝑥𝑝, and 𝐻𝑒𝑥𝑝 of the 1st and 2nd fully delithiated electrodes are higher than that of the as-

prepared ones. In contrast to lithiation induced softening of electrodes made of Si alone 

(e.g., Si individual particle, thin films, and Si wafer electrodes) [70-73], 𝐸𝑒𝑥𝑝 and 𝐻𝑒𝑥𝑝 of 

Si composite electrodes increase with increasing lithium concentration during lithiation 
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and decrease as lithium concentration decreases during delithiation. Electrodes at the full 

lithiation state have the largest 𝐸𝑒𝑥𝑝 and 𝐻𝑒𝑥𝑝. For example, 𝐸𝑒𝑥𝑝 of Si/SA is 5.74 GPa at 

the 1st full delithiation state. It increases almost linearly to the peak value of 21.40 GPa at 

the 2nd full lithiation state and then decreases to 6.04 GPa during the 2nd delithiation 

process, as shown in Table 3.2. The magnitudes of 𝐸𝑒𝑥𝑝 and 𝐻𝑒𝑥𝑝 of electrodes at the same 

SOC follow the sequence of Si/Nafion < Si/PVDF < Si/Na-CMC < Si/SA. In addition, 

𝐸𝑒𝑥𝑝 and 𝐻𝑒𝑥𝑝 measured under wet conditions are smaller than that under dry conditions. 

In the following sections, we propose the mechanisms responsible for (1) the increasing 

trend of E and H of Si composite electrodes with increasing lithium concentration, (2) 

binder-dependent E and H of Si composite electrodes, and (3) the softening behavior of Si 

composite electrodes in the electrolyte. 

Table 3.2 Expectation values of the elastic modulus (E) and hardness (H) of Si composite 

electrodes at different SOCs 

SOCs 

(x in 

LixSi) 

Si/Na-CMC 

SOCs 

(x in 

LixSi) 

Si/SA 

SOCs 

(x in 

LixSi) 

Si/Nafion 

Under dry 

conditions 

Under wet 

conditions 

Under dry 

conditions 

Under wet 

conditions 

Under dry 

conditions 

Under wet 

conditions 

Eexp / 

GPa 

Hexp 

/GPa 

Eexp / 

GPa 

Hexp 

/GPa 

Eexp / 

GPa 

Hexp 

/GPa 

Eexp / 

GPa 

Hexp 

/GPa 

Eexp / 

GPa 

Hexp 

/GPa 

Eexp / 

GPa 

Hexp 

/GPa 

As-

made 
2.93 0.08 1.32 0.04 

As-

made 
3.35 0.09 2.89 0.06 

As-

made 
0.47 0.02 0.42 0.01 

0 

(1st 

delith.) 
4.97 0.13 4.52 0.12 

0 

(1st 

delith.) 
5.74 0.21 4.75 0.19 

0 

(1st 

delith.) 
2.51 0.12 1.66 0.07 

0.72 8.98 0.23 6.37 0.16 0.89 11.11 0.38 10.26 0.36 1.56 5.30 0.17 3.65 0.16 

1.52 10.82 0.31 10.54 0.29 1.78 13.77 0.45 12.05 0.40 2.2 7.22 0.20 6.14 0.16 

2.22 15.07 0.39 14.46 0.38 3.00 18.53 0.73 17.37 0.71 3.75 11.89 0.38 10.19 0.32 

3.75 17.58 0.52 17.22 0.46 3.75 21.40 0.79 21.22 0.75      

               

2.68 16.02 0.44 15.47 0.40 2.55 15.48 0.63 15.51 0.52 2.60 10.38 0.36 9.12 0.26 

1.94 13.22 0.36 12.52 0.33 1.92 13.03 0.46 11.41 0.37 1.36 6.22 0.20 4.06 0.13 

0.87 9.32 0.24 7.16 0.17 0.90 10.71 0.34 9.09 0.26 0 3.44 0.16 3.35 0.08 

0 6.80 0.16 4.84 0.14 0 6.04 0.22 5.76 0.22      

 

The mechanical properties of porous composites highly depend on their porosity. 

We determined the porosity of Si composite electrodes under dry conditions based on the 

relationship between mass, volume, density of each component, and crack spacing in the 

electrodes. As shown in Figure 3.3(c), the porosity of composite electrodes decreases 

continuously during lithiation due to the volume expansion of LixSi particles. It reaches the 

lowest value after full lithiation and then gradually increases to a level close to that at the 

1st delithiation state as LixSi particles contract during the 2nd delithiation process. 
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Figure 3.4 Typical indents in (a) the as-made, (b) the 1st delithiated, (c) the 2nd lithiated, 

and (d) the 2nd delithiated Si/Na-CMC electrodes. (e)-(h) are high magnification SEM 

images of indents corresponding to (a)-(d), respectively. (i) and (j) are schematic 

diagrams of the as-made and fully delithiated electrodes before and after indentation 

measurements, respectively. (k) and (l) are schematic diagrams of the fully lithiated 

electrodes before and after indentation measurements, respectively. 

 

The deformation mechanism is strongly affected by the porosity of the composite 

electrodes. As shown in Figure 3.4(a)-(h), similar to Si/PVDF electrodes [113], most Si 

particles in the indents in the highly porous as-made, the 1st delithiated, and 2nd delithiated 

Si/Na-CMC electrodes remain undeformed. In contrast, LixSi particles in the 2nd lithiated 

electrode are clearly deformed by the indenter. Similar phenomenon has also been found 

in Si/SA and Si/PVDF electrodes. Based on these observations, we propose a porosity-

dependent deformation mechanism as follows: since the as-made and fully delithiated 

electrodes have high porosity, nanoindentation would induce the densification of the highly 

porous composites instead of deforming the small and stiff Si particles, shown in Figure 

3.4(i) and (j). Compared with crystalline and amorphous Si, the highly porous binder/CB 

matrix has much smaller E and H values. As a result, the measured E and H of the as-made 

and fully delithiated composite electrodes are small. As the lithium concentration increases, 

active particles expand and the porosity of electrodes decreases. Densification completes 
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at a shallow indentation depth, shown in Figure 3.4(k) and (l). The deformation of LixSi 

particles increasingly contributes to nanoindentation responses, resulting in higher E and 

H values although LixSi particles soften as the lithium concentration increases. The net 

effect of the porosity-dependent deformation mechanism (densification vs. deformation of 

LixSi particles) and the softening of LixSi particles is an increase in E and H of Si composite 

electrodes as the lithium concentration increases. 

As shown in Figure 3.3(a) and (b), E and H of Si electrodes at the same SOC depend on 

the types of binders. Their values are, generally, in the sequence of Si/Nafion < Si/PVDF 

< Si/Na-CMC < Si/SA under both dry and wet conditions. The influence of binders on the 

mechanical properties of Si composite electrodes may be attributed to three major factors: 

(1) mechanical properties of binders, (2) porosity changes, and (3) the adhesion between 

binders and Si. 

Nanoindentation measurements (Figure 3.5(a)-(c)) show that the magnitudes of E and H of 

binders under dry and wet conditions follow the sequence: SA > Na-CMC > PVDF > 

Nafion, which is consistent with the magnitudes of E and H of Si composite electrodes 

made of different binders. In our unpublished work, the magnitude of the instantaneous 

modulus of these binders follows the same trend. Lap joint shear tests (Figure 3.5(d)) show 

that the adhesion strength of the Nafion/Si interface is more than 80 times higher than that 

of the PVDF/Si interface and 4 times higher than that of the SA/Si and Na-CMC/Si 

interfaces. Nevertheless, the porosity of Si electrodes at different SOCs follows: Si/Nafion > 

Si/PVDF > Si/Na-CMC > Si/SA (as shown in Figure 3.3(c)), although Si/SA and Si/Na-

CMC electrodes have very similar porosity when 𝑥 ≥ 1.8). Therefore, the mechanical 

properties of binders, instead of the adhesion between binders and Si, strongly affect the 

porosity change and the magnitude of E and H of Si composite electrodes during cycling. 

Compared with soft binders (Nafion and PVDF), stiff binders (Na-CMC and SA) can 

effectively bind and constrain active particles, suppressing the irreversible volume change, 

and strengthening the composite electrodes. 
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Figure 3.5. (a) Load-displacement curves of PVDF, Nafion, Na-CMC, and SA thin films. 

(b) The elastic modulus and (c) hardness of binder films measured under dry and wet 

conditions. (d) The shear stress-displacement profiles of Si/binder/Si lap joints. 

 

To quantify the relationship between E, porosity, and binders of Si composite electrodes, 

we consider pores as a component in the composite electrodes. Based on the rule of mixture 

[114], theoretical modulus of Si composite electrodes is, 

𝐸𝑡ℎ𝑒𝑜 = ∑ 𝐸𝑖𝑉𝑖
𝑖
1          (3.1) 

where 𝐸𝑖 is the elastic modulus and 𝑉𝑖 is the volume ratio of the i component. E of pores is 

zero. E values of binders are measured by depth-controlled nanoindentation with the same 

measurement parameters as that used for measuring the Si composite electrodes. As shown 

in Figure 3.6(a), Etheo is different from Eexp measured by nanoindentation. The Eexp/Etheo vs. 

porosity profiles of Si/PVDF, Si/Na-CMC, and Si/SA electrodes follow the same trend, as 

shown in Figure 3.6(b). Because nanoindentation is unlikely to cause the interface 

separation between particles and binders in the cycled electrodes, we assume that the 

adhesion strength between particles and the matrix is strong and has negligible influence 

on E of Si composite electrodes. Analogous to Gibson and Ashby’s model for cellular 
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solids [115], a polynomial relationship is proposed to describe the relationship between 

Etheo/Eexp and porosity (p), 

𝐸𝑒𝑥𝑝 𝐸𝑡ℎ𝑒𝑜⁄ = 2.98𝑝2 − 2.72𝑝 + 1        (3.2) 

  

Figure 3.6. (a) A comparison between the elastic modulus measured by nanoindentation 

(under dry conditions) and calculated using the rule of mixture. (b) The relationship 

between the elastic modulus and porosity of Si composite electrodes in the 2nd cycle. 

As shown in Figure 3.6(b), Eq. (3.2) fits well with the Eexp/Etheo vs. porosity profiles 

of Si/PVDF, Si/Na-CMC, and Si/SA electrodes. Conversely, E of these three composite 

electrodes after initial cycles may be obtained from Eq. (3.2) if the porosity and SOC of 

these electrodes are known. However, the relationship between E and porosity of Si/Nafion 

electrodes does not follow Eq. (3.2). We speculate that some –SO2OH in Nafion becomes 

–SO2OLi during electrochemical cycling, which is similar to the transformation of –COOH 

to –COOLi in the Si/PAA electrode during cycling [116]. Since the mechanical properties 

of Nafion-Li are different from Nafion [117], Eq. (3.1) and (3.2) cannot correctly predict 

Etheo of cycled Si/Nafion electrodes using the elastic modulus of Nafion. 

As shown in Figure 3.3(a) and (b), E and H of electrodes measured under wet 

conditions are smaller than those measured under dry conditions as binders soften in the 

organic electrolyte. Binders also influence the softening behavior of Si composite 

electrodes under wet conditions. As shown in Figure 3.5(b) and (c), PVDF and Nafion 

films significantly soften in the electrolyte. For example, E and H of the Nafion film under 

wet conditions are 16 % and 26 % of that under dry conditions, respectively, while, E and 

H of Na-CMC and SA films under wet conditions are very close to that under dry 

conditions. The softening behavior of binders in the electrolyte effects the mechanical 
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properties of Si composite electrodes under wet conditions. As shown in Figure 3.3(a) and 

(b), Si/PVDF and Si/Nafion electrodes soften more than Si/Na-CMC and Si/SA electrodes 

in the electrolyte. Besides softening, swelling is another characteristic of Si composite 

electrodes and binders under wet conditions. Swelling ellipsometry measurements 

indicated that the thickness of a PVDF thin film increased by 18 % after immersed in the 

DEC vapor for 1000 s, while Na-CMC and SA films swelled only 0.5 % and negligibly, 

respectively [28, 30]. Therefore, the swelling of Si composite electrodes made with 

different binders is expected to be different. Since organic electrolytes cause softening and 

swelling of binders and composite electrodes, cautions should be taken when selecting 

mechanical properties and geometry dimensions of composite electrodes for 

electromechanical modeling.s 

To better understand mechanical degradation, the irreversible thickness change and 

mechanical properties of Si composite electrodes during long-term cycling, up to 100 

cycles, have also been investigated. Because Si/Nafion electrodes became very loose and 

disintegrated during the washing process in DMC after 10 cycles (see Figure 3.7), we 

focused on the mechanical degradation of Si/PVDF, Si/Na-CMC, and Si/SA electrodes. 

 

Figure 3.7 A photo of a Si/Nafion electrode (after 10 cycles) rinsed with DMC. Most part 

of the electrode disintegrated and dispersed in DMC. 

 

As shown in Figure 3.8(a), the thickness of electrodes, at full lithiation and 

delithiation states, increases with the cycle number. Due to the volume expansion of active 

particles, the thickness increment at the full lithiation state is larger than that at the full 

delithiation state. The irreversible thickness change of Si composite electrodes depends on 

the binders: (1) Si/SA and Si/Na-CMC electrodes have much smaller irreversible thickness 

change than the Si/PVDF electrode because Na-CMC and SA are much stiffer than PVDF 

and can restrict some expansion of the composite electrodes during lithiation and (2) the 
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strong interfaces in Si/Na-CMC and Si/SA, along with high stiffness, enable more volume 

contraction than Si/PVDF electrodes during delithiation. 

The accumulated irreversible thickness change can lead to mechanical degradation 

of the Si composite electrodes during long-term cycling. As shown in Figure 3.8(b) and 

(c), E and H of Si electrodes at both fully lithiated and delithiated states decrease 

continuously during cycling. Due to the expansion of Si particles, the porosity of the fully 

lithiated electrode is smaller than that of the fully delithiation one. Porosity-dependent 

indentation deformation mechanisms (e.g., densification vs. deformation of particles) result 

in larger E and H at the lithiation state than those at the delithiation state. During long-term 

cycling, Si composite electrodes under wet conditions have smaller E and H than those 

under dry conditions, which, again, can be attributed to the softening of binders in the 

electrolyte. 

 

  

Figure 3.8. The thickness evolution of Si composite electrodes at the lithiation and 

delithiation states during long-term cycling. The evolution of E and H of Si composite 

electrodes at (b) the lithiation state and (c) the delithiation state during long-term cycling. 

 

As the cycle number increases, the influence of binders on the values of E and H of 

Si composite electrode diminishes. For example, E of Si/SA electrodes at the 2nd lithiation 
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state is 9.8 GPa larger than that of Si/PVDF electrodes, while this difference reduces to 2.1 

GPa after 100 cycles. As shown in Figure 3.5(a) and (b), the magnitudes of E and H of Si 

electrodes within 10 cycles are distinct, that is, Si/SA > Si/Na-CMC > Si/PVDF. After 

additional cycling, E and H of these three electrodes, especially at the full lithiation state, 

are quite close although they have different thickness changes and their binders have 

distinctly different mechanical properties. This diminishing effect of binders on 

mechanical properties of Si composite electrodes may be attributed to microstructure 

degradation.  

 

 

Figure 3.9 (a) The surface morphology change of the Si/Na-CMC electrodes during long-

term cycling. High magnification SEM images of Si/Na-CMC electrodes after 

electrochemical cycling: (b) 100 cycles, at the full delithiation state, and (c) 100 cycles, at 

the full lithiation state. 

 

As shown in Figure 3.9(a), an increasing number of LixSi particles agglomerate on 

the electrode surface as the cycle number increases. Recent X-ray tomography studies also 

observed similar phenomenon inside Si composite electrodes [26, 118]. The agglomerated 

particles on the surface remain the same size at the lithiation and delithiation states because 

they have, most likely, detached from the electrode (Figure 3.9(c) and (d)) and become 

inactive (due to poor electronic connection with the matrix). The spatial distribution of 

binders and CB also changes as particles agglomerate. In addition, pores in composite 
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electrodes may be filled with side reaction products, as confirmed by Radvanyi et al. [119] 

and Oumellal et al. [120]. These factors highlight the importance of measuring the 

mechanical properties of Si composite electrodes as a function of SOC and the cycle 

number since they may be too complex to be predicted theoretically. 

Figure 3.10 shows the electrochemical performance of Si composite electrodes in 

half cells. The discharging capacity of Si/PVDF electrodes degrades quickly to 372 mAh 

g-1 after only 75 cycles at 0.2 C (1 C = 3579 mAh g-1). In contrast, Si/Nafion, Si/Na-CMC, 

and Si/SA electrodes retain, after 100 cycles, a high capacity of 1295, 1680, and 1984 mAh 

g-1, respectively. The better electrochemical performance of Si/Nafion, Si/Na-CMC, and 

Si/SA electrodes than the Si/PVDF electrode is consistent with previous studies [25, 28-

30, 103]. 

 
Figure 3.10. Electrochemical performance of Si composite electrodes made with different 

polymeric binders. 

 

It has been recognized that the capacity fading of Si composite electrodes may be 

mainly attributed to electromechanical degradation, which includes irreversible volume 

change, delamination, fracture of LixSi particles, and loss of mechanical contacts, which 

reduced electronic conductivity between binders and Si particles [28, 30, 93, 94]. Although 

PVDF has fairly high E and H, the weak adhesion between PVDF and Si causes the faster 

degradation of Si/PVDF electrodes than Si/Nafion electrodes [103, 104]. Despite that Na-

CMC and SA have lower adhesion strength with Si than Nafion, their high stiffness could 

well interlock Si particles and render Si composite electrodes better capacity retention. Our 
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comparative studies indicate that effective binders for Si composite electrodes can either 

have high E and H with sufficient adhesion with Si particles or have very strong adhesion 

with Si but low E and H. A balance between the binder/Si adhesion and mechanical 

properties may exist for effective binders, the quantifying and optimization of which need 

further investigations. 

3.5 Conclusions 

We measured mechanical properties of Si composite electrodes made of different 

binders at different SOCs and after different cycle numbers under both dry and wet 

conditions using an environmental nanoindentation system. Although lithiation induces 

softening of Si particles and thin films, the values of E and H of Si composite electrodes 

within each cycle increase with the lithium concentration due to the porosity change and 

porosity-dependent deformation mechanisms (densification vs. deformation of individual 

particles). We proposed an empirical model for predicating E of Si/PVDF, Si/Na-CMC, 

and Si/SA electrodes for short-term cycles, i.e., first two cycles. The values of E and H of 

Si composite electrodes at the lithiation and delithiation states decrease as the cycle number 

increases. Mechanical property degradation is caused by the accumulated irreversible 

volume change during cycling. Si composite electrodes under wet conditions have smaller 

E and H than those under dry conditions because binders soften in the organic electrolyte. 

The softening behavior of Si composite electrodes depends on the softening of binders in 

the electrolyte. Although the adhesion strength between binders and Si is important for the 

electrochemical performance of Si composite electrodes, mechanical properties of binders 

largely determine the porosity, irreversible thickness changes, and magnitudes of E and H 

of Si composite electrodes at the same SOC during cycling. These results show that it is 

crucial to include the binder-, SOC-, and environment-dependent mechanical properties 

and microstructure in electromechanical modeling and analysis of Si composite electrodes 

and cell design. To fully understand the mechanical behavior of Si composite electrodes, 

one should further study the effects of particle size, initial porosity, ratio of components, 

external pressure, and electrolytes. Advanced electrochemical characterization techniques 

and our environmental nanoindentation provide a good opportunity to systemically study 

the influence of these factors on the electromechanical degradation of Si composite 

electrodes. Moreover, the environmental nanoindentation method, as shown in this study, 
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can measure mechanical properties of a wide range of electrochemical energy storage 

materials and electrodes in their realistic working environment, providing often unknown 

mechanical parameters for electromechanical analysis. 
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CHAPTER 4. CRACKING BEHAVIOR OF SI COMPOSITE ELECTRODES DURING 

ELECTROCHEMICAL CYCLING 

4.1 Summary 

Mechanical degradation caused by lithiation/delithiation-induced stress and large 

volume change is the primary cause of fast capacity fading of silicon (Si)-based electrodes. 

Although intensive efforts have been devoted to understanding electromechanically 

induced fractures of electrodes made of Si alone (e.g., Si particles, Si thin films, and Si 

wafers), the cracking behavior of Si/polymeric binders/carbon black composite electrodes 

is unclear and poorly understood. Here, we investigate, by in situ and ex situ techniques, 

the cracking behavior of Si composite electrodes made with different binders, including 

polyvinylidene fluoride (PVDF), sodium-alginate (SA), sodium-carboxymethyl cellulose 

(Na-CMC), and Nafion. It is found that cracks form during the 1st delithiation process, 

periodically open and close during subsequent lithiation/delithiation cycles at the same 

locations in the Si composite electrodes made with SA, Na-CMC, and Nafion. In contrast, 

no crack forms in Si/PVDF electrodes. A possible mechanism is proposed to help 

understand the effects of binders on the cracking behavior (e.g., crack spacing and island 

size) of Si composite electrodes. We also suggest possible approaches, including reducing 

the electrode thickness, patterning electrodes, and using highly recoverable binders, to 

inhibit cracks and improve the mechanical integrity of Si composite electrodes. 

4.2 Introduction 

Lithium ion batteries (LIBs) with high energy density and long cycle life play an 

essential role in the development of electric vehicles (EVs) and grid energy storage 

technology [121, 122]. To improve the energy density of LIBs, intensive efforts have been 

devoted to developing high capacity silicon (Si) negative electrodes because Si can deliver 

a high capacity of 3579 mAh g-1, which is about ten times of that of commercial graphite 

electrodes [93, 123, 124]. However, it is still challenging to achieve satisfactory capacity 

retention and cycling stability of Si electrodes since the massive volume change (≈300 %) 

of Si during repeated lithiation/delithiation causes fracture and electrical isolation of Si 

particles and continuous formation of solid electrolyte interphase (SEI) [13, 15, 125, 126]. 

One effective strategy to mitigate the electromechanical degradation of Si electrodes is to 
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use nanostructured Si [127], which are less likely to fracture during lithiation/delithiation 

due to the large constraint from their high surface energy [24]. For example, Li et al. found 

that a Si thin film could keep intact during electrochemical cycling if its thickness is less 

than 100 nm [15]. Using an in situ transmission electron microscopy, Liu et al. observed 

that the fracture of individual Si particles is inhibited by reducing the particle size down to 

150 nm [13]. On this account, Si nanoparticles have been extensively used in composite 

electrodes, which are the most likely form of Si electrodes for LIBs from the consideration 

of energy density and cost. Typical Si composite electrodes are porous composites 

consisting of Si particles, carbon black (CB), and polymeric binders. Binders can bind Si 

particles and CB, maintain electronic network, and are, therefore, crucial to the 

performance of Si composite electrodes. It is known that polyvinylidene fluoride (PVDF) 

cannot accommodate the large volume change of Si particles due to its weak van der Waals 

interaction with Si [28, 30, 103, 104]. In contrast, binders with –OH, –COO-R, and -SO2O-

R (R can be H, Na, and Li) functional groups, such as sodium carboxymethyl cellulose 

(Na-CMC) [28, 84], sodium alginate (SA) [25, 30], poly(acrylic acid) (PAA) [27, 28], and 

Nafion [25, 29], can form strong hydrogen bonds with Si, maintain the electronic 

connection between Si and the binder/CB matrix, and improve the performance of Si 

electrodes. 

During lithiation/delithiation, the volumetric expansion/contraction of Si particles 

causes structural changes of Si composite electrodes. Recent research has found that Si 

composite electrodes, even made with Si nanoparticles, can crack at the micrometer length 

scale during electrochemical cycling [109, 116, 128, 129]. Moreover, binders influence the 

cracking features, such as crack density and crack spacing, of Si composite electrodes [109, 

116, 130]. These cracks may facilitate the degradation of Si composite electrodes and 

should, therefore, be considered in the design of Si composite electrodes and LIBs. 

However, it is still unclear (1) why and how cracks form, (2) how cracks evolve during 

electrochemical cycling, (3) what is the relationship between the cracking behavior and 

properties of binders, and (4) how to inhibit cracks in Si composite electrodes. 

To understand the above questions, we investigate the cracking behavior of Si 

composite electrodes made with different binders, including SA, Na-CMC, Nafion, and 

PVDF. The evolution of cracks during electrochemical cycling is captured by both in situ 
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and ex situ techniques. Mechanical properties, including the elastic modulus and hardness, 

of binders and Si composite electrodes and the adhesion between Si and binders, were 

compared to explore the mechanism on how binders influence the cracking behavior of Si 

composite electrodes. A model was proposed for the formation and evolution of cracks in 

Si composite electrodes. Furthermore, we suggest several methods to inhibit cracks in Si 

composite electrodes during cycling. 

4.3 Experimental 

4.3.1 Electrode Preparation  

A detailed procedure for preparing Si composite electrodes with different binders 

can be found in Chapter 2 and 3. All electrodes were calendered to a porosity of 50±5 % 

with average thickness and mass loading of 41-43 μm and 0.85-0.95 mg cm-2, respectively. 

4.3.2 Electrochemical Tests  

Half-cell tests were conducted using a Bio-Logic potentiostat (VMP-3) with a 

lithium foil (0.75 mm, Alfa Aesar) as the counter and reference electrodes. Swagelok cells 

were used to avoid deformation and cracking of electrodes during the disassembling 

process [113]. The electrolyte is 1M LiPF6 in ethylene carbonate and diethyl carbonate 

solution (EC: DEC = 1:1 wt%, Gotion) with 10 wt% fluoroethylene carbonate (FEC, 

Gotion) as the additive. A galvanostatic-potentiostatic mode with a voltage window of 0.01 

to 1.00 V was used to homogenize the distribution of lithium in Si composite electrodes. 

The discharging/charging rate of the galvanostatic mode and the current limit of the 

potentiostatic mode are C/20 and C/400, respectively. 

4.3.3 Microstructure Characterizations 

The microstructure of Si composite electrodes at different states of charge (SOCs) 

was characterized by a scanning electron microscope (SEM, FEI Quanta 250). Cross-

sections of electrodes at the 2nd delithiation state were prepared with ion milling (Hitachi 

IM 4000 Plus). In situ observations of the crack evolution were conducted using a digital 

microscope (Dino-Lite Pro AM4113T) and a homemade optical cell, as shown in Figure 

4.1. Many bubbles were generated during the 1st lithiation, which obscured the in situ 
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observation. We tilted the optical cell to remove the bubbles after the 1st cycle. Both Video 

1 and 2 start from the 2nd cycle. 

 

Figure 4.1. A schematic diagram of the optical cell for in situ observations the cracking 

behavior of Si composite electrodes. 

 

4.4 Results and Discussion 

 

Figure 4.2. (a) Ex situ observations of the crack evolution in Si/SA electrodes during the 

2nd cycle. (b) Voltage profiles of Si/SA electrodes at different SOCs in the 2nd cycle. (c) 

Ex situ observations of cracks in Si/SA electrodes at the same locations during multiple 

cycles. 

 

As shown in Figure 4.2(a) and Figure 4.3, cracking happened in the as-made Si 

electrodes with SA, Na-CMC, and Nafion as binders due to the in-plane tensile stress 
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induced by the fast evaporation of their solvent (i.e., H2O), while cracks were not found in 

the as-made Si/PVDF electrode, as shown in Figure 4.3(m), probably because of the slow 

evaporation rate of NMP, which renders particles enough time to rearrange their positions 

to relax the drying-induced tensile stress [131, 132]. 

 

Figure 4.3 The microstructure evolution of Si composite electrodes during initial cycles. 

 

Figure 4.4 High magnification SEM images of cracks in (a) Si/SA and (b) Si/Na-CMC 

electrodes. 

 

As shown in Figure 4.3, cracks in the as-made electrodes close after the 1st 

lithiation, while extensive random channel cracks form in the Si/SA, Si/Na-CMC, and 
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Si/Nafion electrodes after the 1st delithiation. For example, the Si/SA electrode is separated 

into many irregular shaped islands separated by wide and deep primary cracks. Some 

narrow secondary cracks form within individual islands. Since the dimension of primary 

cracks is much larger than that of Si nanoparticles (Figure 4.4), the fracture of the 

binder/CB matrix, instead of individual Si particles, is the likely cause of the cracks. In the 

2nd cycle, cracks formed after the 1st full delithiation gradually close during lithiation and 

reopen during the subsequent delithiation (see Figure 4.2(a)). At the 2nd delithiation state, 

the island size and the spacing of primary cracks are similar to those at the 1st delithiation 

state. As shown in Figure 4.2(c), ex situ SEM observations show that cracks in the as-made 

Si/SA electrode reappear with larger crack spacing after the 1st delithation. Although 

additional secondary cracks form during subsequently cycling, all primary cracks at the 

1st, 3rd, and 10th full delithiation states occur at the same locations. In situ digital 

microscope observations (Video 1) also show that cracks open and close periodically at the 

same locations during cycling. Remarkably, few delamination (i.e., separation at the 

interface between the electrode and the copper conductor) events were observed despite of 

the large number of channel cracks. The periodic opening and closing of channel cracks 

suggest that the individual islands are electronically connected to the copper foil, allowing 

for the transport of electrons in and out of the islands during lithiation and delithiation. 

 

Figure 4.5 Surface morphology of (a) Si/Na-CMC, (b) Si/Nafion, and (c) Si/PVDF 

electrodes after the 1st delithiation. Cross sectional microstructure of (d) Si/SA, (e) 

Si/Nafion, (f) Si/Na-CMC, and (g) Si/PVDF electrodes at the 2nd delithiation state 

prepared by focused ion beam. 
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Channel cracks with distinct characteristics were also observed in Si/Na-CMC and 

Si/Nafion electrodes, as shown in Figure 4.5(a) and (b). For example, primary cracks in 

Si/Na-CMC electrodes are not always connected. At the delithiation state, islands in the 

Si/Na-CMC electrode are smaller than those in Si/SA and Si/Nafion electrodes. Si/Nafion 

electrodes have larger crack gap than Si/SA and Si/Nafion electrodes. As shown in Figure 

4.6, cracks also periodically open and close at the same locations in Si/Na-CMC electrodes 

during cycling. Similarly, periodical cracking also happens in Si/Nafion electrodes. Cross-

sectional SEM images show that primary cracks in Si/SA, Si/Na-CMC, and Si/Nafion 

electrodes reach the electrode/Cu current collector interface, deflect laterally, propagate 

along the interface, and lead to cracks at the electrode/Cu interfaces, as shown in Figure 

4.5(d)-(f). In contrast, only several small cracks form on the surface and the cross-section 

of the Si/PVDF electrode after the 1st delithiation, as shown in Figure 4.5(c) and (g). After 

lithiation, the Si/PVDF electrode is also intact, as shown in Figure 4.3(n) and (p). Therefore, 

Si/PVDF electrodes do not crack, at least during initial cycles. Thus, the 

lithiation/delithiation-induced fracture and cracking behavior of Si composite electrodes 

depend on polymeric binders. 

 

Figure 4.6 Microstructure of the Si/Na-CMC electrode at the delithiation state after 

different numbers of cycles. The large circle is a marker for locating cracks. 

 

Channel cracking in elastic bilayer film/substrate systems depends on the energy release 

rate [133], 

𝐺 =
𝜋(1−𝜇𝑓

2)𝜎𝑓
2ℎ

2𝐸𝑓
𝑔(𝛼, 𝛽)        (4.1) 
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where 𝜇𝑓is the Poisson’s ratio of the film, h is the thickness of the film, 𝐸𝑓 is the elastic 

modulus of the film, 𝜎𝑓  is the stress in the film normal to cracks before cracking, and 

𝑔(𝛼, 𝛽)  is a function of the Dundurs parameters related to the elastic modulus and 

Poisson’s ratio of the film and substrate. This model has been applied to analyze 

electrochemical-induced fractures of Si thin film electrodes [134-136]. Eq. (4.1) suggests 

that binder’s role in the cracking behavior of Si composite electrodes originates from their 

influence on the thickness, elastic modulus, Poisson’s ratio of Si composite electrodes, and 

lithiation/delithiation-induced stress, all of which are closely related to the mechanical 

properties of binders and the adhesion between binders and Si. 

Table 4.1 Mechanical properties of binders and the shear strength of the binder@Si 

interface. 

 

 SA Na-CMC Nafion PVDF 

E in the electrolyte / GPa 

[113] 
16.26±0.96 12.01±0.64 0.099±0.034 0.58±0.19 

H in the electrolyte / GPa 

[113] 
0.85±0.090 0.49±0.040 0.0097±0.0043 0.035±0.018 

𝜎𝑡 of binders / MPa 

close to that 

of Na-CMC 

[129] 

54.5 [137] ~15 [117] 19.4 [137] 

Maximum tensile strain / 

% 

close to that 

of Na-CMC 

[129] 

9.8 [137] > 50 [117] 22.5 [137] 

Thickness of electrodes 

(with Cu) after the 1st 

delithiation / µm 

45 44 55 50 

Shear strength of the 

binder@Si interface / 

MPa [138] 

1.03±0.08 0.71±0.18 4.00±1.19 0.12±0.01 

 

Environmental nanoindentation measurements (Table 4.1) show that PVDF and 

Nafion immersed in the electrolyte have quite small elastic modulus (E, < 0.8 GPa) and 

hardness (H, < 0.05 GPa), while E and H of SA and Na-CMC are larger than 12 GPa and 

0.4 GPa, respectively. Nafion has the smallest E and H among these binders. Tensile tests 

by Garsuch and Kawano show that the values of engineering tensile strength (𝜎𝑡) of binders 

decreases in the following sequence, SA > Na-CMC > PVDF > Nafion [117, 137]. The 

maximum tensile strain of binders shows the opposite trend (see Table 4.1). Binders can 
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influence the mechanical property evolution and thickness change of Si composite 

electrodes during lithiation and delithiation. Environmental nanoindentation measurements 

show that the expectation values of E and H of Si composite electrodes at the 2nd 

delithiation state also decrease as that of the binders: Si/SA > Si/Na-CMC > Si/PVDF > 

Si/Nafion (Figure 4.7). Our previous study found that the E and H of Si composite 

electrodes with different binders at the same SOCs, in general, also follow the same trend 

[138]. After the 1st cycle, electrodes made with stiffer binders (SA and Na-CMC) have 

significantly smaller thickness increments than those made with softer binders (Nafion and 

PVDF), as shown in Table 1. Since the E and H values of Si/PVDF are in between that of 

electrodes with stiff binders (Si/SA and Si/Na-CMC) and soft binders (Si/Nafion) and since 

Si/PVDF electrodes do not crack, the E and H values of binders and Si composite electrodes 

do not seem to dictate the cracking behavior of Si composite electrodes. 

  

Figure 4.7 Distribution histograms of the (a) elastic modulus and (b) hardness of Si 

composite electrodes in the electrolyte at the 1st delithiation state. 

 

The cracking behavior of Si composite electrodes is expected to be affected by the 

lithiation/delithiation-induced stress. In situ stress measurements have shown that binders 

can indeed influence the stress evolution of Si composite electrodes during cycling [69, 

139, 140]. For example, Si/PVDF electrodes experience significantly smaller compressive 
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stress than Si/Na-CMC, Si/Nafion, and Si/SA electrodes during lithiation [139]. Although 

tensile stress has been measured in Si thin film and Si wafer electrodes during delithiation 

[135, 136, 141], no tensile stress has been detected in Si composite electrodes by substrate 

curvature measurements during delithiation in literature, probably because the tensile stress 

is local and it relaxes upon electrode cracking during delithiation. Thus, the cracking of Si 

composite electrodes cannot be quantified by Eq. (4.1). 

Since binders transfer the mechanical interactions between Si particles and the 

binder/CB matrix, the adhesion strength between binders and Si may be a major factor 

responsible for the cracking behavior because it determines localized tensile stress in the 

composite induced by the volumetric contraction of Si during delithiation. Lap joint shear 

tests showed that the averaged adhesion strength of the Nafion@Si interface is about 4 

times of the SA@Si and Na-CMC@Si interfaces and about 40 times of the PVDF@Si 

interface [138], as shown in Table 1. Qualitatively, the adhesion strength measured by lap 

joint shear tests is consistent with the peeling tests [103]. The strong adhesion of the 

SA@Si, Na-CMC@Si, and Nafion@Si interfaces results from the hydrogen bond between 

Si and these binders, while the weak adhesion of the PVDF@Si interface can be attributed 

to the weak van der Waals interaction between PVDF and Si [30, 103, 104]. Since PVDF 

has large electrolyte up-take capability, excessive SEI forms between PVDF and Si 

particles, which weakens the bonding between Si and PVDF, as confirmed by the large SEI 

and charge transfer resistance after delithiation later in Chapter 5. As a result, small 

localized tensile stress is generated in the Si/PVDF electrode as LixSi particles contract, 

which makes the cracking of the flexible Si/PVDF electrode unlikely. Despite that Nafion 

is more flexible than PVDF and that Si/Nafion electrodes have lower E and H than 

Si/PVDF electrodes, the strong adhesion between Si and Nafion enables the contraction of 

Si particles to induce large localized tensile stress to crack the Si/Nafion electrode. 

Based on the above discussion, we propose the following the cracking mechanism 

for Si/SA, Si/Na-CMC, and Si/Nafion electrodes. During the 1st lithiation, the expansion 

of Si particles drives the expansion of electrode islands and fills crack spacing in the as-

made electrodes, as shown in Figure 4.8(a) and (b). Cracks close by physical contact, 

instead of chemical bonding, between particles. Due to the constraint of the Cu current 

collector, compressive stress is generated in the Si composite electrodes during lithiation. 
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During the 1st delithiation, the progressive contraction of LixSi particles causes the 

shrinkage of the composite electrodes through the interaction between binders and LixSi 

particles. The localized stress state gradually transforms from compressive stress to tensile 

stress, leading to the separation of electrode islands along the original cracks (cracks in the 

as-made electrodes) due to the weak physical contact between the islands. As delithiation 

proceeds, cracks gradually widen, grow deeper, connect with each other, and separate the 

electrodes into islands, as shown in Figure 4.8(c). When the energy release rate in 

individual islands exceeds the fracture toughness of the composite electrode, secondary 

cracks propagate within individual islands. Once extensive cracks form during the 1st 

delithiation, cracks periodically close and open at the same locations synchronously with 

the expansion and contraction of LixSi particles during cycling. 

 

Figure 4.8. Schematic diagrams of the structural change of Si composite electrodes 

during cycling. (a) As-made Si composite electrodes, (b) electrodes after the 1st 

lithiation, (c) Si electrodes made with SA, Na-CMC, and Nafion after the 1st delithiation, 

and (d) Si/PVDF electrodes after the 1st delithiation. 

 

The binder-dependent crack spacing and island size of Si composite electrodes is 

influenced by the adhesion of the electrode@Cu interface. If we assume that the Si 

composite electrodes are elastic-plastic solids that only undergo elastic deformation before 

the interfacial stress reaches its yield strength (𝜎𝑌
𝑐𝑜𝑚𝑝

) and neglect the delamination at the 

electrode@Cu interface, a shear-lag model can be used to model the cracking behavior of 

Si electrodes (Figure 4.9(a)) [15, 126]. By assuming that additional cracks form by plastic 
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deformation between two adjacent primary cracks, the force equilibrium at the critical state 

is [15, 126], 

𝜏𝑐𝑟
𝑖𝑛𝑡𝐿𝑐𝑟/2 = 𝜎𝑌

𝑐𝑜𝑚𝑝ℎ        (4.2) 

where 𝜏𝑐𝑟
𝑖𝑛𝑡  is the adhesion strength of the electrode@Cu interface (considering that the 

shear flow stress of Cu, 𝜏𝑌
𝐶𝑢 = ~40 MPa [142], is much higher than the adhesion between 

electrodes and Cu), 𝐿𝑐𝑟 is the minimum crack space, and h is the thickness of the electrode. 

Eq. (4.2) suggests that the adhesion between the electrode and Cu influences the crack 

spacing in Si composite electrodes. Although the adhesion strength of the electrode@Cu 

interface in as-made electrodes has been measured by peel tests [103, 104, 143], the 

adhesion of the electrode@Cu interface after cycling, especially in the electrolyte, is 

unknown. If we further assume that the yield strength of the composite electrode is 

proportional to the nanoindentation hardness, 𝜎𝑌
𝑐𝑜𝑚𝑝 = 𝑐𝐻 (where c is a constant) [58], the 

adhesion strength of the electrode@Cu interface can be qualitatively determined by, 

𝜏𝑐𝑟
𝑖𝑛𝑡 = 2𝑐𝐻ℎ 𝐿𝑐𝑟⁄          (4.3) 

 

Figure 4.9. (a) A schematic diagram of the shear-lag model for cracks in Si electrodes. (b) 

The shear strength of the electrode/Cu interface normalized by Si/Nafion electrodes at the 

1st delithiation state derived from Eq. (4.3). 

 

As shown in Figure 4.9(b), the shear strength of the Si/Na-CMC@Cu and 

Si/SA@Cu interfaces is over 250% of that of the Si/Nafion@Cu interface after the 1st 

cycle. Although binders bridge between the electrode and Cu, the adhesion of the 

electrode@Cu interface cannot be judged by the bonding strength between binders and Cu. 

For example, our previous peel tests showed that the peel strength of the PVDF@Cu 
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interface is about four times larger than that of the SA@Cu interface. However, the peel 

strength of the Si/PVDF@Cu is only about 1/8 of that of the Si/SA@Cu interface [103]. 

 

Figure 4.10 Discharging capacity-cycle number profiles of Si composite electrodes made 

with different binders. 

 

Although Si/Nafion, Si/Na-CMC, and Si/SA electrodes experience severe cracking 

during cycling, they all have much better capacity retention than the seemingly integrate 

Si/PVDF electrode, as shown in Figure 4.10. The discharging capacity of the Si/PVDF 

electrode degrades quickly below 800 mAh g-1 after only 77 cycles. In contrast, Si/SA, 

Si/Na-CMC, and Si/Nafion electrodes retain a high capacity of 2205, 1716, and 1298 mAh 

g-1, respectively, after 100 cycles. The better electrochemical performance of Si/SA, Si/Na-

CMC, and Si/Nafions electrodes than the Si/PVDF electrode is consistent with previous 

studies [25, 28-30, 103]. The fast degradation of Si/PVDF electrodes is caused by the loss 

of electronic conductivity between Si particles and the PVDF/CB matrix (Figure 4.8(d), 

which can be attributed to the weak adhesion between PVDF and Si particles. Despite that 

channel cracks occur in Si/SA, Si/Na-CMC, and Si/Nafion electrodes, particles in 

individual islands still have good electronic connectivity with the binder/CB matrix due to 

the robust adhesion between Si particles and binders. Under external compressive pressures 

in coin cells and Swagelok cells, electrode islands may still be well connected with the 
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current collector, remain active, and retain capacity. Nevertheless, channel cracks and the 

incidental interfacial cracks are detrimental to microstructure integrity and increase the 

contact resistance of the electrode@Cu interface during long-term cycling, especially in 

large-format batteries (such as pouch cells) under low pressure. From this perspective, 

periodical channel cracks should be considered in the design of safe Si-based electrodes 

and batteries. 

Based on Eq. (4.1) and (4.2), channel cracks in Si composite electrodes depend on 

the electrode thickness, the stress evolution during delithiation, the adhesion of the 

electrode@Cu interface, and the mechanical properties of electrodes. Considering these 

controlling factors, several strategies to inhibit cracks in Si composite electrodes emerge: 

(1) Reducing the electrode thickness. Based on Eq. (4.1), there is a critical thickness (hc) 

for bilayer film/substrate systems, under which the film will not crack. For example, Si thin 

film electrodes with a thickness below 100 nm does not crack during electrochemical 

cycling [15]. Thin electrodes suppress the crack formation because small stress is generated 

during lithiation/delithiation due to their low mass loading. Composite electrodes also have 

a critical thickness. Take Si/SA electrodes as an example. As shown in Figure 4.11, the 

crack gap and area decrease as the electrode thickness decreases. There are no large and 

wide cracks in the Si/SA electrode with a thickness of 25 µm (mass loading of 0.11 mg cm-

2) although small cracks can still be found in the high magnification SEM image (Figure 

4.11(e)). (2) Patterning composite electrodes. Based on Eq. (4.2), cracked films have a 

critical island size. Xiao et al. have shown that patterned Si thin film electrodes below the 

critical size could inhibit the formation of lithiation/delithiation-induced cracks in 

individual islands and improve electrochemical performance [126]. A similar patterning 

method may also be applicable to Si composite electrodes. (3) Using highly recoverable 

binders. We have shown, in this study, that the strong adhesion strength between binders 

and Si is essential to maintain the electronic conductivity of the composite electrodes but 

would induce large localized tensile stress and cracks during delithiation. If binders can be 

reversibly deformed to relax the localized tensile stress, cracks can be suppressed or 

“healed” spontaneously. One group of such binders is self-healing polymers, which have 

been shown to be effective in mitigating cracking of Si composite electrodes during cycling 

[102, 128, 129]. Among the above methods, reducing the electrode thickness and 
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patterning electrodes may not be practical from the consideration of energy density and 

manufacturing cost. Developing low cost, highly recoverable binders with robust adhesion 

with Si is a promising and scalable method to inhibit cracking and overcome the 

mechanical degradation of Si composite electrodes. 

 

Figure 4.11 Surface morphology of Si/SA electrodes (consisting of 60 wt% Si, 20 wt% 

CB, and 20 wt% binder) with different thickness and mass loadings after the 2nd 

delithiation. The thickness (with 24 µm Cu foil) and mass loading of the as-made 

electrodes are (a) 49 µm, 0.92 mg cm-2, (b) 38 µm, 0.58 mg cm-2, (c) 34 µm, 0.50 mg cm-

2, (d) 27 µm, 0.27 mg cm-2, and (e) 25 µm, 0.11 mg cm-2. (f) is the high magnification 

SEM image of the selected area in (e). 

 

4.5 Conclusions 

We investigated the cracking behavior of Si composite electrodes using in situ and 

ex situ techniques. Channel cracks form in Si electrodes made with SA, Na-CMC, and 

Nafion during the 1st delithiation because the strong adhesion of these binders with Si 

enables the contraction of composite electrodes and causes large localized tensile stresses. 

Cracks periodically open and close at the same locations as Si particles contract and expand 

repeatedly during cycling. In contrast, no cracks form in Si/PVDF electrodes since the 

weak adhesion between PVDF and Si particles is unable to generate localized tensile stress 

large enough to trigger cracks. The influence of binders on the cracking behavior of Si 

composite electrodes originates from their distinct adhesion strength with Si and 

mechanical properties, which determine the localized tensile stresses and mechanical 
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properties of electrodes. To fully understand the cracking behavior of Si composite 

electrodes, future work may focus on the effects of particle size, ratio of electrode 

components, external pressure, and electrolytes. Although there seems no clear relationship 

between binder-dependent performance and binder-dependent cracking behavior of Si 

composite electrodes, cracks lead to microstructure destruction and should be considered 

in designing Si composite electrodes. Based on the proposed cracking mechanism, we 

suggested three approaches, i.e., reducing the electrode thickness, patterning the electrodes 

(below the critical island size), and using highly recoverable binders, to suppress cracking 

of Si composite electrodes during cycling.  
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CHAPTER 5. ELECTROCHEMICAL DEGRADATION OF SI COMPOSITE ELECTRODES AND A 

PARTIAL DELITHIATION STRATEGY 

5.1 Summary 

Our previous studies have shown that periodic cracking occurs in Si composite 

electrodes during cycling. The micro cracks and microstructure change may affect the 

electronic connectivity between Si particles and the matrix, thus causing the 

electrochemical degradation of Si composite electrodes. In this Chapter, electrochemical 

impedance spectroscopy (EIS) was used to study the evolution of lithiation/delithiaiton 

kinetics during lithiation and delithiation over long-term cycling. We found that the both 

SEI resistance (RSEI) and charge transfer resistance (Rct) increase during long-term cycling, 

indicating electrochemical degradation of Si composite electrodes. Electrodes at the 

lithiation state have slightly different RSEI from the delithiation state, while Rct at the 

delithiation state is significantly larger than that at the lithiation state during long-term 

cycling. The influence of the state of charge (SOC) on Rct is correlated with the periodic 

cracking behavior, porosity, and electronic conductivity changes of Si composite 

electrodes within each cycle. Based on these findings, we proposed a partial delithiation 

approach to reduce Rct and mitigate the electromechanical degradation of Si composite 

electrodes. Electrochemical measurements show that the partial delithiation protocol 

enables Si/SA composite electrodes to stabilize at 1200 mA g-1 (at C/3) for over 560 cycles, 

surpassing the partial lithiation protocol (1200 mA g-1, C/3 for about 375 cycles). 

5.2 Introduction 

Fracture of Si particles and the consequent excessive SEI formation are caused by 

the large volume change (≈300%) of Si during electrochemical cycling [13, 14, 26, 144]. 

It is known that the electrochemically induced pulverization is inevitable for Si 

microparticles [128, 145], while Si nanoparticles could maintain their mechanical integrity 

during lithiation/delithiation due to their high specific surface energy [13, 24]. Nevertheless, 

the repeatedly volume change of Si nanoparticle continuously leads to the mechanical 

degradation of Si composite electrodes, such as the periodic cracking and irreversible 

volume change on the electrode level, as shown in Chapter 2, 3, and 4. Recently, X-ray 
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tomography techniques have confirmed that structural degradation could change the spatial 

distribution of Si particles in the electrodes [26, 95, 146], reducing the electronic 

conductivity between Si particles and the conductive matrix, and, consequently, slowing 

down lithiation/delithaition kinetics of Si composite electrodes. Although the mechanical 

degradation is closely related to the electrochemical degradation, structural changes on the 

electrode level may not fully reveal the capacity fading of Si composite electrodes, which 

is evidenced by our recent finding that the cracked Si/SA and Si/Na-CMC electrodes have 

remarkably better electrochemical performance than the uncracked Si/PVDF electrodes. 

Therefore, the degradation and the poor cycling stability of Si composite electrodes need 

to be further understood from a systematic study of the evolution of lithiation/delithiation 

kinetics. In particular, finding out the controlling kinetics is crucial to develop strategies to 

improve the electrochemical performance of Si composite electrodes. 

Electrochemical impedance spectroscopy (EIS) is a powerful technique to study the 

lithiation/delithiation kinetics of LIB electrodes [147-149]. The impedance caused by each 

kinetic step can be quantified from the EIS data using proper equivalent circuits. EIS has 

been extensively used to investigate the electrochemical activity, kinetics, and degradation 

of a wide range of electrode materials and electrodes for LIBs [150-152]. Previous EIS 

studies on Si-based electrodes focus on the impedance evolution at different SOCs within 

one cycle or during long-term cycling, very often, at the delithiation state [153-155]. Since 

the microstructure change substantially from the delithiation state to the lithiation state and 

vice verse, the degradation of lithiation/delithiation kinetics may also be influenced by 

SOCs. Correlating the degradation of kinetics with the structural change at different SOCs 

during long-term cycling is critical for understanding the governing degradation kinetic 

step as well as optimizing the cycling protocol to improve the stability of Si composite 

electrodes. 

In this study, we conducted a comparative study of the evolution of EIS at both 

lithiation and delithiation states during long-term cycling. The evolution of impedances 

from SEI and charge transfer are quantified and compared. We established a correlation 

between impedance and mechanical degradation of Si composite electrodes. Based on 
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these findings, we proposed and experimentally confirmed a partial delithiation approach 

to improve the cycling stability of Si composite electrodes. 

5.3 Experimental 

The electrode preparation method can be found in the Experimental part in Chapter 

2.  

5.3.1 Electrochemical Impedance Spectroscopy (EIS) Measurements 

CR 2025 half coin cells were assembled with Si/PVDF, Si/Na-CMC or Si/SA 

electrodes as the work electrode and Li metal as the counter electrode. The electrolyte is 

1M LiPF6 in ethylene carbonate and diethyl carbonate solution (EC: DEC = 1:1 wt%, 

Gotion) with 10 wt% fluoroethylene carbonate (FEC, Gotion) as the additive. Potentio EIS 

tests were conducted in cells after 2nd, 10th, 50th, and 100th delithiation and 3rd, 11th, 

51th, and 101th lithiation using a Bio-Logic potentiostat. Before EIS tests, each cell was 

held at the lithiation (0.01 V) or delithiation (1.00 V) cutoff voltage until the current density 

decreased to a limit of C/400 µA/cm2 and then rested for 6 hours. The frequency range of 

EIS measurements is from 10 mHz to 100 KHz. 

5.3.2 Electrochemical Measurements 

The partial delithiation cycling protocol was conducted by cycling the CR 2025 half 

cells at C/10 between 0.01 V and 1.00 V for the first 2 cycles, then fully lithiating the cell 

to 0.01 V at C/3 and partially delithiating the cells to a capacity limit of 1200 mAh g-1 at 

C/3 for the rest cycles. A partial lithiation cycling protocol was also used to cycle half cells 

for comparison. The partial lithiation cycling was conducted by cycling cells at C/10 

between 0.01 V and 1.00 V for the first 2 cycles, then partially lithiating the cell to a 

capacity limit of 1200 mAh g-1 at C/3 and fully delithiating the cells to 1.00 V at C/3 for 

the rest cycles. The voltage-time profiles under both cycling protocols are shown in Figure 

5.1. 

5.3.3 X-ray Photoelectron Spectroscopy (XPS) 

XPS (K-Alpha XPS System, Thermo Scientific) was used to study the surface 

chemistry of Si electrodes, including the as-made and cycled electrodes (after 2 cycles and 
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100 cycles). To avoid air exposure of cycled electrodes, a Vacuum Transfer Module 

(Thermo Scientific) was used to transfer the cycled electrodes from the glovebox to the 

XPS analysis chamber. 

 

Figure 5.1 Voltage-time profiles of Si composite electrodes cycled under the partial 

delithiation and partial lithiation protocols. 

 

5.4 Results and Discussion 

The Nyquist plots of cells with Si/PVDF, Si/Na-CMC, and Si/SA electrodes at the 

lithiation and delithiation states after different cycle numbers are show in Figure 5.2. All 

the Nyquist plots consist of two depressed semicircles in the high and intermediate 

frequency regions, which can be attributed to the SEI and the charge transfer impedance 

[150], respectively. Based on this interpretation, an equivalent circuit is proposed for the 

Nyquist plots, as shown in Figure 5.3(a). The resistor, 𝑅𝑒𝑙𝑒, is the ohmic resistance of the 

electrolyte. RSEI in parallel with a constant phase element, QSEI, represent the SEI 

impedance, while Rct and Qct represent charge transfer impedance. Ws1 is the Warburg 

element for diffusion. The fitting results of RSEI and Rct are plotted against the cycle number 

in Figure 5.3(b) and (c). As shown in Figure 5.3(b), RSEI of Si/PVDF is high over the first 

50 cycles, while RSEI of Si/Na-CMC and Si/SA electrodes increases gradually. For 

example, RSEI of Si/Na-CMC at the full delithiation state increases from 18 Ω (the 2nd 

delithiation) to 116 Ω (the 100th delithiation).  
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Figure 5.2 Electrochemical impedance spectroscopy of Si composite electrodes at the full 

lithiation and delithiation states during long-term cycling. 
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Figure 5.3 (a) A comparison of electrochemical impedance spectroscope of Si composite 

electrodes at the 2nd full delithiation state. Evolution of RSEI (b) and Rct (c) at the 

lithiation and delithiation states during long-term cycling. 

 

RSEI is closely related to the formation and growth of the SEI layer in electrodes. As 

seen from the XPS spectra in Figure 5.4, the SEI layer covered the Si surface after the 2nd 

cycle since all Si2p peaks disappeared. From the XPS spectra, the major SEI components 

of Si composite electrodes include Li2O, LiF, Li2CO3, LixPOyFz, R-COOLi, and LixPFy. 

Electrodes after 100 cycles have more LixPOyFz compared with these after 2 cycles, as 

shown in Figure 5.4 (d). Our results suggest that binders in this study have little influence 

on the composition of the SEI layer, while several other studies showed that binders could 

influence the surface oxide of Si during the electrode preparation process (through pH and 

wettability), the reduction of carbonate solvent (EC), FEC and LiPF6, the amount of SEI, 

and the ratio of SEI components [116, 156, 157]. The large RSEI of Si/PVDF electrodes at 

2nd lithiation and 3rd lithiation states is likely to be caused by the excessive formation of 

SEI during the formation cycles, which is evident from the low initial Coulombic 
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efficiency. The decrease of RSEI of Si/PVDF electrodes after 100 cycles may result from 

the delamination of SEI from LixSi particles. The high initial Coulombic efficiency of 

Si/Na-CMC and Si/SA electrodes indicates that a relative small amount of SEI forms 

during formation cycles. As a result, Si/Na-CMC and Si/SA electrodes have low initial 

RSEI. The increasing RSEI of Si/Nafion, Si/Na-CMC, and SA electrodes during long-term 

cycling may be explained by the continuous formation of SEI. 

  

  
Figure 5.4 XPS spectra of Si composite electrodes: (a) Si 2p, (b) C 1s, (c) F1s, and (d) P 

2p. 

 

After the same number of cycles, Rct of Si/PVDF electrodes at both lithiation and 

delithiation states is significantly higher than that of Si electrodes made with other binders, 

as shown in Figure 5.3(c). Based on our understanding of the microstructure, adhesion 

strength, and the SEI characterizations, the large Rct at the delithiation state can be 

attributed to (1) the stress and repeated volume change of Si particles can damage the 
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electronic connectivity between Si particles and the PVDF/CB matrix considering the poor 

adhesion between Si and PVDF and (2) the excessive SEI and insulating side reaction 

products retard the electron transfer. The high Rct and RSEI account for the fast capacity 

fading of Si/PVDF electrodes. 

As shown in Figure 5.3(c), Rct of all composite Si electrodes at the full delithiation 

state increases with cycling. For example, Rct of Si/Na-CMC electrodes increases from 14 

Ω (after the 2nd delithiation) to 269 Ω after the 100th delithition. Rct accounts for the 

lithiation/delithiation kinetics of active particles, which is influenced by the electronic 

contact between Si and the binder/CB matrix, electronic conductivity of the active 

materials, activity of the electrolyte, and ion transport in the electrodes. During cycling, the 

repeated volume change of Si particles and the accumulated SEI layer may weaken the 

adhesion between active particles and the binder/CB matrix. The accumulating irreversible 

volume change reduces the electronic conductivity between Si particles and the binder/CB 

matrix. Both factors increase the electronic resistance between Si particles and the matrix 

and, thus, Rct. Accumulated side reaction products and irreversible volume changes also 

increase the tortuosity and decrease the porosity of Si electrodes [158, 159]. As a result, 

the limited lithium ion transport rate also contributes to the increase of Rct. Moreover, the 

decomposition of LiPF6, FEC, and EC during long-term cycling reduces the activity of the 

electrolyte.  

However, Rct of Si/SA, Si/Na-CMC, and Si/Nafion electrodes at the lithiation state 

increases only slightly during long-term cycling. The microstructure difference between 

the lithiation and delithiation states include (1) the phase transformation between a-Si and 

a-LixSi; (2) the volume of LixSi particles at the lithiation state is larger than that of a-Si at 

the delithiation state; (3) channel cracks in electrodes close at the lithiation state but open 

at the delithiation state; (4) electrodes at the lithiation state have a lower porosity and is 

thicker than that at the delithiation state. Evidently, the expanded LixSi particles in the 

lithiation state have better physical contact and thus improve electronic connectivity with 

the matrix, while the low porous and thick electrodes at the lithiation state have inferior 

lithium ion transport property than that at the delithiation state. In addition, the SEI 

composition and the activity of the electrolyte between the lithiation and delithiation states 
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are not likely to change a lot in the same cycle. Therefore, it is the electronic conductivity, 

instead of the transport of lithium ions, and electrolyte activity, that lead to the increase of 

the charge transfer kinetics of Si/Na-CMC and SA electrodes, especially at the full 

delithiation state. 

 

Figure 5.5. Discharging capacity-cycle number profiles of Si composite electrodes cycled 

under the partial delithiation and partial lithiation protocols. 

 

Recently, several researchers proposed partial lithiation strategies to improve the 

cycling stability of Si thick film electrodes and Si composite electrodes. For example, Xu 

et al. [25] and Li et al.[160] showed that by controlling the lithiation capacity (but still 

fully charge the cell to the cutoff voltage of 1.0 V or 1.2 V) can improve the cycling stability 

of Si composite electrodes. Since the average Rct of Si composite electrodes during cycling 

can be reduced by decreasing the degree of delithiation, as shown in this study, the degree 

of delithiation state should be restricted to improve the average electrochemical kinetics. 

Indeed, Verbrugge et al. [161] found that Si films cycled within a low cutoff voltage range 

(between 0.4093 V and 0.05 V) have significantly better efficiency retention than those 

cycled at a higher voltage range (between 1.2 V and 0.2317 V). Hence, we propose a partial 

delithiation approach, that is, fully lithiating the Si electrodes to the cutoff voltage of 0.01V 

but partially delithiating to 1200 mAh g-1 (at C/3) in each cycle, to improve the cycle 

stability of Si composite electrodes. A partial lithiation protocol, that is, partially lithiating 
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the Si electrodes to 1200 mAh g-1 (at C/3) and fully charging to the cutoff voltage of 1.00 

V in each cycle, is also used to cycle the electrodes for comparison. Figure 5.5 shows the 

discharging capacity-cycle number profiles of Si/PVDF, Si/Na-CMC, and Si/SA electrodes 

under the partial delithiation and partial lithiation protocols. All three electrodes cycled 

under the partial delithiation protocol can be stabilized at 1200 mAh g-1 for more cycles 

than that cycled under the partial lithiation protocol. For example, the Si/SA electrode 

maintains a discharging capacity of 1200 mAh g-1 for 560 cycles under the partial 

delithiation protocol, while it can maintain a discharging capacity of 1200 mAh g-1 for 375 

cycles under the partial lithiation protocol. The improved cycling stability by the partial 

delithiation protocol can be attributed to reduced average Rct and the enhanced electronic 

connections between LixSi particles with the matrix, both of which are rendered by the 

increased physical contract between the expanded particles and the dense matrix. In 

contrast, the average expansion of Si particles is small under the partial lithiation protocol. 

As a result, the matrix is highly porous and small a-Si particles are likely to detach from 

the matrix and become electronically isolated, which leads to a large Rct and an inferior 

cycling stability. We believe that this partial delithiation strategy can also be adopted to 

improve the cycling stability of other negative composite electrodes. 

5.5 Conclusions 

We investigated the electrochemical degradation of Si composite electrodes by the 

evolution of lithiation/delithiation kinetics at the lithiation and delithiation states during 

long-term cycling. RSEI and Rct of Si composite electrodes at lithiation state increases during 

long-term cycling. A small difference exists in RSEI between the lithiation and delithiation 

states, while Rct at the delithiation state is significantly higher than that at the lithiation state 

after 50 cycles, probably because of expanded LixSi particles at the lithiation state have 

improved electronic connection with the conductive matrix. Based on the SOC-dependent 

Rct, porosity, and cracking behavior of Si composite electrodes, we proposed a partial 

delithiation cycling protocol to improve the mechanical integrity as well as the cycling 

stability of Si composite electrodes. Electrochemical measurements showed that this partial 

delithiation approach can well mitigate the electromechanical degradation and effectively 
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extend the cycling life of Si composite electrodes compared with the partial lithiation 

cycling protocol. 
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CHAPTER 6. MECHANICAL BEHAVIOR OF BULK LITHIUM METAL STUDIED BY 

NANOINDENTATION4 

6.1 Summary 

Applying mechanical stresses is a possible approach to suppress dendrite and mossy 

lithium (Li) in Li metal electrodes. We conducted, in this work, nanoindentation tests on 

pure Li metal in an argon-filled glove box to study its viscoplastic behavior at room 

temperature. Both load-controlled and strain rate-controlled nanoindentations showed clear 

viscoplastic characteristics of Li. Based on an iterative finite element (FE) modeling 

approach, we determined a viscoplastic constitutive law for Li. In addition, we 

demonstrated by FE modeling that the elastic modulus, on the order of GPas, has a 

negligible influence on the nanoindentation response of Li at ambient temperature.  

6.2 Introduction 

With its high theoretical specific capacity (3862 mAh g-1), lowest negative 

reduction potential (-3.04 V vs. the standard hydrogen electrode) and low density, Li metal 

has been considered a desirable negative electrode material; thus triggered worldwide 

interest in the rechargeable Li metal-based batteries, such as Li-O2 and Li-S batteries [162, 

163]. However, uncontrollable Li dendrites could penetrate through the separator, leading 

to short-circuit of batteries. Mechanical suppression through polymer or solid state 

electrolytes (SSE) [46, 164] and artificial stiffer solid electrolyte interphase (SEI) [165] has 

been proposed as an economical and promising solution for this problem. Based on the 

elastic deformation assumption, the theoretical work by Monroe et al. [46] indicated that 

SSE with a shear modulus twice of Li could inhibit Li dendrites. However, since the yield 

strength of Li is low, the stress generated at the separator/Li interface could cause plastic 

deformation of Li at a yield strength fraction of the modulus value [166, 167]. Continued 

plastic deformation during repeated charging/discharging may cause Li redistribution, 

leading to shape change of Li at the anode/separator interface, and hence posing a threat to 

                                                 
4 Reproduced from Wang, Yikai, and Yang-Tse Cheng. "A nanoindentation study of the viscoplastic 

behavior of pure lithium." Scripta Materialia 130 (2017): 191-195. 
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the safety and stability of Li metal batteries [167, 168]. A comprehensive understanding of 

the mechanical properties, especially the plastic flow behavior, of Li is necessary. 

The mechanical test of Li metal is challenging because Li is extremely reactive with 

oxygen, nitrogen, water vapor, and carbon dioxide. Sample preparation and mechanical 

tests must be conducted in a protective environment. However, the few early reported 

tensile [169], compression [170], and resonance tests [171] were not carried out in a 

protective atmosphere. Thus, it is unsurprising that the reported elastic modulus (E) ranges 

from 1.84 to 7.8 GPa, and the yield strength from from 0.48 to 1.10 MPa [169-171]. Similar 

to other soft metals and alloys, such as Sn-alloys [172, 173], indium [174], and lead [175], 

the deformation behavior of Li exhibits low yield strength and viscoplasticity. Because of 

the importance of viscoplastic behavior, we report, in this chapter, nanoindentation 

measurements of Li performed in an argon-fill glove box. Combining FE modeling with 

nanoindentation measurements, we determined a constitutive law for viscoplastic 

deformation of bulk Li during indentation loading. The influence of E on the viscoplastic 

deformation of Li metal was also studied. 

6.3 Experimental 

 

Figure 6.1 A typical SEM image of an indent in the Li foil. 

 

High purity polycrystalline Li foils (99.9%, with thickness of 750 μm, Alfa Aesar) 

were used for nanoindentation measurements. Nanoindentation tests were conducted using 

the Nanoindenter G200 (Agilent) inside an argon-filled glove box (both oxygen and 

moisture < 0.1 ppm, MBRAUN) at 2.1 mbar, as shown in Figure 2.2(a). Load-controlled 

tests were carried out using a diamond Berkovich indenter (tip radius 200 nm) with loading 
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rates, �̇� , ranging from 0.196 to 3.92 mN/s to the maximum load, 𝐹 , of 5.88 mN. The 

holding periods were set to be 1s. Constant strain rate-controlled tests were conducted with 

constant �̇� 𝐹⁄  values ranging from 0.1 to 1.0 s-1. After nanoindentation measurements, the 

indents were examined by scanning electron microscope (SEM, FEI Quanta 250). A typical 

indent is shown in Figure 6.1. Since the maximum depth in each test was larger than 4500 

nm, reproducible nanoindentation data were obtained despite of the slight surface 

roughness. 

 

Figure 6.2 (a) The FE model for nanoindentation and (b) the influence of tip radius on the 

L-D curves obtained from FE modeling. The L-D curves with tip radius in the range 

between 50 and 400 nm overlap with each other. 

 

6.4 Finite Element (FE) Modeling 

FE modeling was conducted by using the commercial software ABAQUS. As 

illustrated in Figure 6.2(a), an axisymmetric isotropic model with 26244 elements was used 

with the mesh size finer around the contact area and gradually coarser away from the 

indent. The Berkovich indenter was represented by a rigid cone with a half apex angle of 

70.3° because this conical indenter has the same depth-contact area relationship as the 

Berkovich indenter [176]. The tip radius was set to be 200 nm, which is the same as the tip 

radius of the Berkovich indenter in experiments. FEM modeling results show that the tip 

radius has negligible on the indentation load-displacement (L-D) curves, as shown in 

Figure 6.2(b). The friction coefficient between the indenter and Li foil was set to be 0.1, 

which is a typical value for nanoindentation analysis [177].The independent parameters in 
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the FE modeling are the loading rate and the maximum load, both of which were set to be 

the same values as those in the indentation measurements. For FEM input, the elastic 

modulus was assumed to be 3.5 GPa (in the reported range of 1.84 to 7.8 GPa) and 

Poisson’s ratio was taken as 0.3. Later in this Chapter, we show that E, on the order of 

GPas, and Poisson’s ratio, in a reasonable range between 0.05 and 0.45, have little 

influence on the load-displacement curves. 

6.5 Results and Discussion 

As shown in Figure 6.3(a) and (b), the L-D curves of Li exhibit obvious rate-

dependent characteristics, i.e., the higher the loading rates, �̇�, the larger the load, 𝐹, is 

needed to reach the same indentation depth. For constant strain rate-controlled 

nanoindentation tests, the load corresponding to the same depth increases with the value 

of �̇� 𝐹⁄ . The creep penetration depth during the holding period increases with increasing 

loading rate. Similar to viscoelastic materials [178], “noses” appeared at the initial part of 

the unloading curves. The elastic recovery during the unloading is only few tens of 

nanometers. Therefore, the indentation deformation is mainly plastic. In the following 

analysis, we focus on the loading part as our interest is the constitutive law of 

viscoplasticity. 

  

Figure 6.3 (a) Typical L-D curves with different values of �̇� 𝐹⁄  and (b) typical L-D 

curves with different loading rates (dF/dt). 

 

The rate-dependent plasticity, or viscoplasticity, of Li during the indentation 

loading may originate from two mechanisms. First, the thermally activated diffusion and 



 

79 

viscous flow [179], such as Nabarro-Herring creep, Coble creep and dislocation climb, are 

expected to occur since the homologous temperature, 𝑇𝑟𝑚 𝑇𝑚𝑒𝑙𝑡⁄ , is 0.66 at room 

temperature for Li. Second, the stable crystal structure of Li is body centered cubic (BCC) 

at room temperature [180]. The plastic deformation of BCC metals and alloys is governed 

by the motion of screw dislocations via kink pairs, which require thermal activation [179, 

180]. Therefore, the viscoplasticity of Li is likely the result of those multiple physical 

mechanisms. Although a mechanism-based model would have been more reliable in 

describing the viscoplastic behavior of Li, such a model would require detailed information 

at the atomic scale (e.g., dislocation structure and diffusion coefficient) that is generally 

unavailable. Instead, several empirical or phenomenological constitutive models, such as 

Anand model [181], Johnson-Cook model [182], and Perzyna model [183, 184], have been 

developed based on different assumptions to describe viscoplastic deformation of soft 

metals and alloys [173, 174, 185]. Anand model does not have an explicit yield condition 

or loading/unloading criterion, such that plastic strain can take place under any nonzero 

stress. This model is preferred for the steady-state creep under constant load or stress [173, 

174]. Johnson-Cook model has been widely used for various materials over a wide range 

of temperature and strain rates, especially for high strain rate deformation. But our 

preliminary trial found that consistent parameters could not be obtained for Li with 

Johnson-Cook model. The one-dimension Perzyna model and Cowper-Symonds model 

[186] have the equivalent functional form. Cowper-Symonds model was derived for high 

rate impact tests of cantilever beams, and thus suitable for high strain rate deformation; 

while Perzyna model was derived for general elastic-viscoplastic solids under general 

stress states [183, 184]. It has a yield surface with a strain rate-hardening mechanism 

activated only after yielding. Perzyna model has been successfully used to describe the 

rate-dependent flow behavior of many soft metallic materials (such as Sn-based solder 

alloys [185, 187]). Considering both the elasticity and viscoplasticity, we assume Li as a 

Perzyna elastic-viscoplastic solid with work hardening. The flow stress after yielding 

follows a constitutive law in the form of, 

𝜎𝑓 = 𝑘𝜀𝑝
𝑛[1 + (

�̇�𝑝

𝛾
)𝑚]         (6.1) 
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where 𝜎𝑓 is the flow stress, k is the strength coefficient, 𝜀𝑝 is the plastic strain, n is the work 

hardening exponent, 𝜀�̇� is the plastic strain rate, 𝛾 is the material viscosity parameter, and 

m is the stain rate sensitivity. This overstress constitutive law was assumed for the 

indentation loading part. It is not likely to be applicable to the holding and unloading parts 

because the deformation mechanisms of overstress yielding and creep (under static stress) 

may be different [188, 189]. 

There exists a representative strain, 𝜀𝑟 (physically uniaxial or equi-biaxial plastic 

strain [190, 191]), for self-similar Berkovich indenter [177, 190-192]. For power law work 

hardening materials, 𝜀𝑟 only relates to the half apex angle (α) of the indenter (α = 70.3° for 

Berkovich indenter), and does not depend on the work hardening exponent [177, 190-192]. 

If the rate-dependent part of Eq. (5.1) is treated as a constant (i.e., constant strain-rate 

indentation tests), the constitutive law can be rewritten as the power law work hardening 

for a representative strain (𝜀𝑟) of nanoindentation. A representative stress is then given by, 

𝜎𝑟 = 𝑘𝜀𝑟
𝑛            (6.2) 

Then, Eq. (5.1) is readily reduced to the power law creep model as, 

𝜎𝑒𝑓 = 𝜎𝑓 − 𝜎𝑟 = 𝜎𝑟(
�̇�𝑝

𝛾
)𝑚        (6.3) 

where 𝜎𝑒𝑓 is here defined as the effective flow stress. There is an effective indentation 

strain rate, 𝜀�̇�𝑓, for power-law creep materials [193, 194], 

𝜀�̇�𝑓 = 0.12
ℎ̇

ℎ
           (6.4) 

where ℎ̇  is the penetration rate, ℎ  is the indentation depth. Since the nanoindentation 

deformation of Li is mainly plastic, 𝜀�̇�  is assumed to be the same as 𝜀�̇�𝑓 . From the 

dimensional analysis [58], the flow stress during the nanoindentation by an ideally sharp 

self-similar cone indenter is proportional to the ratio of the indentation load to the square 

of indentation depth, 

𝜎𝑓 = 𝐶
𝐹

ℎ2
           (6.5) 

where 𝐶  is a constant for a given indenter geometry and a material subject to the 

indentation test (i.e., Li in the present case). Under the above assumptions, Eq. (6.1) can 

be rewritten as, 
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𝐹

ℎ2 =
𝑘𝜀𝑝

𝑛

𝐶
[1 + (

�̇�𝑒𝑓

𝛾
)𝑚]         (6.6) 

Both 𝛾 and m can be obtained from the 𝐹 ℎ2⁄ 𝑣𝑠. 𝜀�̇�𝑓  curves. Constant effective 

strain rate �̇� 𝐹⁄  nanoindentation result was obtained only after 3500 nm, as shown in Figure 

6.4(a). Three sets of 𝐹 ℎ2⁄ 𝑣𝑠. 𝜀�̇�𝑓  corresponding to 4000, 5000, and 6000 nm were 

extracted. Both averaged 𝐹 ℎ2⁄  and 𝜀�̇�𝑓 were used here, as indicated by the error bars in 

Figure 6.4(b). Fitted with Eq. (6.6), the obtained values of 𝛾 and m are quite consistent, as 

shown in Figure 6.4 (b) and Table 6.1. The average values of 𝛾 and m are taken for the 

constitutive law. 

 

Figure 6.4 The variation of the effective indentation strain rate(0.12 ℎ̇ ℎ⁄ ) and �̇� 𝐹⁄  with 

indentation depth (�̇� 𝐹 ⁄  is 0.75𝑠−1 in the experiment). Prior to 3500 nm, the distribution 

of strain rate is scattering. The effective strain rate trends to be a constant value only after 

3500 nm. (b) The 𝐹 ℎ2⁄ 𝑣𝑠. 𝜀�̇�𝑓 relationship corresponding to different indentation depths. 

The average values of 𝐹 ℎ2⁄  and the effective strain rate (0.12 ℎ̇ ℎ⁄ ) were used here. 

 

Table 6.1 Fitting results of the 𝐹 ℎ2⁄ 𝑣𝑠. 𝜀�̇�𝑓 curves with Eq. (6.6). 

Depth(nm) 
Fitting results 

𝑘𝜀𝑝
𝑛/𝐶 𝛾 m R2 

4000 249.98 0.31 0.59 0.96 

5000 220.76 0.29 0.42 1.00 

6000 233.87 0.30 0.60 0.99 

Average value 0.30 0.54  

 

FE modeling was conducted to determine k and n. Since the effective strain rate 

before 3500 nm indentation depth is scattered to some extent, as shown in Figure 6.4(a), 
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FE modeling was conducted with load-controlled mode. As shown in Figure 6.5(a) and (b), 

the indentation load increases with increasing k and n. A larger k means higher flow stress, 

leading to larger indentation loads. The parameter n (usually n<1) reflects the non-linearity 

of flow stress.  

 

Figure 6.5 The effect of n (a) and k (b) on the loading curves from FE modeling; and (c) 

the flow chart for determining k and n using an iterative FE modeling. 

 

To determine k and n, an iterative FEM procedure, shown in Figure 6.5 (c), was 

performed. The main idea is to iteratively compare the L-D curves from FEM and 

experimental, then refine the values of k and n until satisfactory match between the two 

was achieved. The averaged experimental L-D curves are used for this comparison. With 

this iterative method, k and n are determined to be 0.0042 and 0.23, respectively. Figure 

6.6(a) and (b) show the good agreement between the averaged experimental L-D curves 

and FEM L-D curves with different loading rates. Therefore, it is reasonable to conclude 

that the viscoplastic behavior of Li can be described by the following constitutive equation, 

𝜎𝑓 = 0.0042𝜀𝑝
0.23[1 + (

�̇�𝑝

0.30
)0.54]       (6.7) 

Cheng and Cheng [61] showed that multiple stress-strain relationships of power 

law work hardening materials could lead to nearly identical L-D curves. In this study, the 

iterative FEM approach with 4 different loading rates would reduce the choices of k and n. 

Although the uniqueness of k and n is not proven mathematically, alternative sets of k and 

n were not found by our iterative FEM approach. 
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Figure 6.6 Comparisons of averaged experimental loading curves with FE modeling 

results with different loading rates. (a) 3.92mN/s and 0.49mN/s; and (b) 1.96mN/s and 

0.196mN/s. 

 

In the above FEM analysis, E=3.5 GPa was assumed. The reported value of E 

ranges from 1.84 to 7.8 GPa [169-171, 195]. While one might expect a clear influence of 

E on the viscoplastic deformation behavior, our FE result shows that E within this range 

has a negligible influence on the indentation response, as shown in Figure 6.7(a). This can 

be explained by the very low yield strength (𝜎𝑦) of Li. For the continuity of the constitutive 

law, 𝜎𝑦 = √𝑘/𝐸𝑛1/ (1−𝑛)⁄
≈ 0.56 MPa for static deformation. The ratio of 𝜎𝑦 𝐸⁄   is about 

1.6 × 10−4, which is on the same order of magnitude as indium (0.8 × 10−4) [196], tin 

(2.4 × 10−4) [197, 198] and many tin-based solder alloys [199]. Since the homologous 

temperature, 𝑇𝑟𝑚 𝑇𝑚𝑒𝑙𝑡⁄ = 0.66, of Li is relative high at room temperature, the thermal 

diffusion activated creep would make significant contributions to the total deformation 

[179]. As a result, the elastic deformation is much less than the viscoplastic deformation. 

The variation of elastic modulus on the order of GPas only causes relatively small change 

of the overall deformation. In addition, by assuming Poisson’s ratio in a reasonable range 

from 0.05 to 0.45 in FE modeling, the load-displacement curves exhibit little influence of 

the Poisson’s ratio value on the indentation response, see Figure 6.7(b). Therefore, the 

elastic deformation may not be as important as the viscoplastic deformation of Li in the 

mechanical design of Li metal electrodes. 
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Figure 6.7 The effect of the elastic modulus (a) and Poisson’s ratio (b) on the L-D curves. 

The L-D curves with 𝐸 ≥ 3.5 GPa almost overlap with each other. 

 

6.6 Conclusions 

The nanoindentation response of Li metal is dominated by viscoplastic deformation 

at room temperature. Combining nanoindentation measurements with an iterative FE 

modeling approach, we determined a constitutive law for the viscoplasticity of Li during 

nanoindentation. The FE modeling results show that the elastic modulus (on the order of 

GPas) and Poisson’s ratio (in the range from 0.05 to 0.45) have a negligible influence on 

the indentation response of Li. Attention should therefore be paid to the viscoplastic 

deformation rather than the elastic deformation in designing Li metal electrodes operating 

at or near room temperature. The method used in this study to determine the viscoplastic 

constitutive law may also be applied to other viscoplastic metallic electrodes, such as 

sodium (Na) and potassium (K) metal electrodes. 
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CHAPTER 7. A COMPARATIVE STUDY OF THE MECHANICAL BEHAVIOR OF BULK AND 

POROUS MOSSY LITHIUM 

7.1 Summary 

Li dendrites, excessively grown by consuming the organic electrolyte, can penetrate 

through the separator and pose safety hazards, is a major obstacle for the application of Li 

metal electrodes in liquid electrolyte-based batteries. Despite intensive efforts on 

developing new electrolytes and artificial SEIs to mitigate or even eliminate the dendrite 

growth, significant roughening of the Li surface and the uncontrollable formation of mossy 

Li still occur after a number of lithium plating and stripping cycles (usually a few hundreds). 

Recently, mechanical suppression, by applying proper external pressure, ceramic coated 

separators, and surface coatings, is emerging as an effective approach to improve the 

cycling stability of Li electrodes (even with mossy Li) in liquid electrolyte-based batteries. 

To develop a better mechanical suppression method, it is indispensable to gain a better 

understanding of the electrochemical-mechanical interactions at the Li | inhibitor interface 

based on the mechanical properties of bulk Li as well as mossy Li. Although mechanical 

properties of bulk Li have been quantified by several groups, little is known about the 

mechanical behavior of porous mossy Li. In this study, we performed nanoindentation 

measurements on electroplated mossy Li using a flat punch indenter in an environmental 

nanoindentation system installed in a glovebox. Surprisingly, mossy Li deforms and creeps 

far less than bulk Li under the same pressure. We propose several possibile mechanisms  

to understand the significantly high resistance to indentation deformation and creep of 

mossy Li. The measured mechanical properties of mossy Li are useful parameters for 

electrochemical-mechanical modeling and designing mechanical inhibitors to improve the 

cycle stability of Li metal electrodes in liquid electrolyte-based batteries. 

7.2 Introduction 

Lithium metal has been considered a high capacity negative electrode material to 

replace the conventional graphite electrodes for next generation batteries (LIBs and beyond) 

due to its high theoretical capacity (3862 mA g-1). The application of Li metal electrodes 

has been impeded by the excessive formation of Li dendrites during electrochemical 
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cycling [34, 36, 41]. In liquid electrolyte-based batteries5, the continuous formation of Li 

dendrites is accompanied with the formation of SEI and consumption of electrolytes. In 

addition, the loose microstructure of mossy Li can hardly maintain electronic conductivity, 

become inactive, and decrease the Coulombic efficiency [34]. Of equal importance, Li 

dendrites may penetrate through porous separators and cause short-circuit of batteries, 

which generates massive heat, may ignite flammable electrolyte solvents, and cause safety 

hazards. Numerous attempts have been made to develop new electrolytes (both solid and 

liquid formats) and additives to mitigate or eliminate the formation of Li dendrites. 

However, Li dendrites and mossy Li inevitably form in Li electrodes after extended cycle 

life (usually hundreds of cycles) [200, 201]. Recent research found that the cycling stability 

of Li electrodes (even with mossy Li) can be significantly improved by mechanical 

suppression, such as applying proper external pressure [202, 203], stiff separator [204], 

artificial SEIs [205, 206], and functional coatings [207]. Rational design of mechanical 

suppression requires fundamental understanding of the electrochemical-mechanical 

interactions of the interface between bulk Li, mossy Li, and inhibitors (separators or 

coatings), for which the mechanical properties of bulk and mossy Li are required. 

Early efforts in mechanical property measurements of Li focused on the elasticity 

and yielding strength of bulk Li [169-171]. Recently, several groups enriched the 

understanding of the mechanical behavior of bulk Li, including viscoplasticity [60, 208], 

creep [195, 209], and the size effect [210]. These studies provide valuable mechanical 

parameters for modeling the interface interactions associated with bulk Li. However, the 

mechanical behavior of mossy Li is unknown for analyzing the interface of bulk Li | mossy 

Li | inhibitors and the deformation of mossy Li under external pressure. 

To fill the knowledge gap of the mechanical behavior of mossy Li, we conduct, in 

this study, flat punch indentation measurements of mossy Li using an environmental 

nanoindentation system inside an argon-filled glovebox. Mossy Li with various 

morphology and porosity were obtained by electroplating using different current densities. 

Our flat punch, with an equivalent diameter of 41.62 µm, can deform a large area (≈1360 

μm2) of mossy Li and thus measure the average mechanical behavior of mossy Li. Flat 

                                                 
5  This study focuses on mossy Li formed in liquid electrolyte-based batteries since the microstructure and 

surface chemistry of Li dendrites in solid state batteries are different. 
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punch indentation measurements are also conducted in bulk Li for comparison. The 

influence of SEI, morphology, and porosity on the mechanical behavior of mossy Li is 

discussed.  

7.3 Experimental 

7.3.1 Electrochemical Method 

Mossy Li samples with different microstructures were prepared by electroplating of 

Li | Li symmetric cells using different current densities, i.e., 0.25, 1.00, 4.00, and 10.00 

mA cm-2. To avoid damage to mossy Li during the cell disassembling process, a Swagelok 

cell (Figure 2.1(a)) was used for the electroplating. The external pressure of the Swagelok 

cells is controlled be about 0.113±0.05 MPa. The areal capacity of electroplating is 40 

mAh cm-2 which renders the thickness of mossy Li larger than 200 μm cm-2. Since the 

maximum depth of our indentation measurements is smaller than 1/10 of the thickness of 

mossy Li, the substrate effect will not influence the indentation results. The electrolyte is 

1M LiPF6 in EC:DEC = 1:1 wt% with 10 wt% FEC (Gotion).  

7.3.2 Microstructure Characterizations 

The surface and the cross-sectional microstructure of mossy Li were characterized 

by a field emission scanning electron microscope (SEM, FEI Quanta 250). The cross 

sections of moss Li were prepared by pulling the mossy Li layer apart using a tweezer and 

observed by SEM. XPS (K-Alpha XPS System, Thermo Scientific) was used to study the 

surface chemistry of mossy Li.  

7.3.3 Flat Punch Indentation Measurements 

Flat punch indentation measurements were conducted using our environmental 

nanoindentation system (G200, Keysight) inside an argon-filled glovebox. The cross 

sectional area of the flat punch is about ≈1360 μm2. The maximum indentation load ranges 

from 6.86 mN to 19.8 mN. The loading/unloading rate is 0.0196 mN/s. A 600 s holding 

period was conducted at the maximum load to monitor the creep behavior of mossy Li. As 

a comparative study, flat punch indentation measurements with the maximum load ranging 

from 5.39 mN to 8.82 mN were conducted in bulk Li (99.9%, thickness 750 μm, Alfa 
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Aesar). The loading/unloading rate and the holding period of flat punch indentation 

measurements in bulk Li are the same with mossy Li.  

7.4 Results and Discussion 

 
 

Figure 7.1 (a) Load-displacement curves of a flat punch indentation measurement in bulk 

Li using depth-controlled mode and (b) the corresponding indent in bulk Li. 

 

Since a large misalignment between the flat punch and samples can result in 

significant errors in flat punch indentation measurements [211, 212], we measured the 

angular misalignment by performing shallow indents in bulk Li. As shown in Figure 7.1, 

the full contract between the flat punch and Li is established with a maximum indentation 

depth of 594 nm. Since the maximum depth of all flat punch indentation measurements is 

larger than 3000 nm, full contact between the punch and the samples is established prior to 

indentation creep measurements. Therefore, the influence of the misalignment on flat 

punch indentation measurements can be neglected in this study. 

Figure 7.2(a) shows that the flat punch indentation load-displacement curves of bulk 

Li are reproducible. A typical indent is shown in Figure 7.2(b). Bulk Li shows clearly creep 

behavior during the holding period. The fast increase of the creep displacement even 

transfers the force from the sample to the springs in the load-controlling system of the 

Nanoindenter, which results in a continuous drop of the maximum load during the holding 

period.6 As shown in Figure 7.2(c), the creep displacement increases quickly during the 

                                                 
6 Here, the load drop occurs because the current to the actuator’s electromagnetic coil was held constant 

rather than utilizing a feedback loop to change the current with time to maintain a constant load on the sample. 
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initial holding stage. Then the creep rate gradually decreases over the subsequent holding 

period. The total creep displacement increases almost linearly with the mean indentation 

pressure (pmean), as shown in Figure 7.2(d).  

 
 

  

 

Figure 7.2 (a) Typical load-displacement curves of flat punch indentation measurements 

in bulk Li. (b) A typical indent in bulk Li. (c) The creep depth-time profiles during the 

600 s holding period, and (d) the creep depth - mean pressure profile of bulk Li. 

 

To better understand the creep behavior of bulk Li, it is necessary to derive the 

relationship between stress and creep strain rate at the steady-state creep stage. The creep 

strain rate is proportional to strain rate term (𝜀�̇�𝑝) of flat punch indentation measurements 

[213, 214], 

𝜀̇ = 𝐶1𝜀�̇�𝑝 = 𝐶1
𝑑ℎ

𝐷

1

𝑑𝑡
         (7.1) 
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where C1 is a constant and D is the equivalent diameter of the flat punch. D = 41.62 µm 

for our flat punch. As shown in Figure 7.3(a), 𝜀�̇�𝑝 shows a decreasing trend at the initial 

holding period and then reaches to a constant value range after 400 s, which implies the 

stead-state creep. The expectation value of the steady-state creep strain rate during 400 – 

600 s holding is determined by using Gaussian distribution, 

𝑓 =  
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2          (7.2) 

where µ is the mean value or the expectation value and σ is the standard deviation. Figure 

7.3(b) shows a typical Gaussian distribution histogram of 𝜀�̇�𝑝 during the holding period 

from 400 s to 600 s. The creep stress of flat punch indentation measurements is proportional 

to the mean pressure [213, 214], 

𝜎 = 𝐶2𝑝𝑚𝑒𝑎𝑛 = 𝐶2
𝐹𝑚𝑎𝑥

𝐴
𝑝𝑢𝑛𝑐ℎ

        (7.3) 

where C2 is a constant, 𝐹𝑚𝑎𝑥 is the maximum load, and 𝐴𝑝𝑢𝑛𝑐ℎ is the project area of the flat 

punch. 𝐴𝑝𝑢𝑛𝑐ℎ ≈ 1360 µm2 in this study. The average mean pressure between 400 s and 

600s holding is used for creep analysis. Here we neglect the lateral friction between the flat 

punch and Li because it has little influence on the flat punch indentation measurements at 

the maximum depth (< 20 µm) in this study [215]. If we assume that bulk Li follows the 

power-law creep [216], 

𝜀̇ = 𝐴𝜎𝑛𝑑−𝑝exp (− 𝑄𝑐 𝑅𝑇⁄ )        (7.4) 

where A is a constant, n is the stress exponent, d is the grain size, and p is the grain size 

exponent, Qc is the activation energy for creep, T is absolute temperature and R is the gas 

constant. Combing Eq. (7.1)-(7.4), the stress exponent can be determined from the slope of 

the logarithmic relationship of 𝜀�̇�𝑝 − 𝑝𝑚𝑒𝑎𝑛. 
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Figure 7.3 (a) A typical 𝜀�̇�𝑝 - time profile of bulk Li during the 600 s holding period. The 

maximum load is 7.84 mN. (b) The corresponding distribution histogram of 𝜀�̇�𝑝 during 

the holding period from 400 s to 600 s. 

 

Figure 7.4(a) shows the 𝜀�̇�𝑝 − 𝑝𝑚𝑒𝑎𝑛  profile of bulk Li. The creep strain rate 

increases with increasing nominal stress. The logarithm of the expectation values of 𝜀�̇�𝑝 as 

a function of the logarithm of the 𝑝𝑚𝑒𝑎𝑛 is plotted in Figure 7.4(b). In the stress range 

between 3.49 MPa and 4.5 MPa, the logarithm of 𝜀�̇�𝑝 increases linearly with the logarithm 

of 𝑝𝑚𝑒𝑎𝑛, while it becomes constant under larger mean pressure. If we assume a power law 

creep mechanism for the linear region, the stress exponent is determined to be 5.75, which 

is close to those obtained by compression and tensile tests of Li metal at room temperature 

[195, 209, 216]. The stress exponent suggests that the creep of bulk Li is dominated by 

dislocation climb at room temperature [216]. 

  

Figure 7.4 (a) The relationship between 𝜀�̇�𝑝 and 𝑝𝑚𝑒𝑎𝑛 and (b) The logarithm relationship 

between 𝜀�̇�𝑝 and 𝑝𝑚𝑒𝑎𝑛 of bulk Li. 
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Figure 7.5 Microstructure of mossy Li obtained under different current densities: (a) 0.25 

mA cm-2, (b) 1.00 mA cm-2, (b) 4.00 mA cm-2, (b) 10.00 mA cm-2. (e) A high 

magnification SEM image of the mossy Li plated under the current density of 10 mA cm-

2. (f) A typical indent in the mossy Li plated under the current density of 10 mA cm-2. 

 

As shown in Figure 7.5, electroplated mossy Li has porous microstructure. The 

morphology of Li dendrites depends on the current density. Under a high current density 

of 10 mA cm-2, needle-like dendrites dominate the mossy Li, as shown in Figure 7.5(e). As 

the current density increases, the dimensions of dendrites increase, especially large Li 

chunks are generated under a low current density of 0.25 mA cm-2, as shown in Figure 

7.5(a). 

Cross-sectional SEM images, as shown in Figure 7.6, show that the dendrite aligned 

perpendicularly to the bulk Li surface and there are numerous pore spaces in the mossy Li. 

Cross sectional observations also show that the dendrite morphology in the mossy layer 

also depends on the current density, that is, a low current density generate more needle-

like dendrite, while large Li chunks are generated under low current density. The average 

porosity of mossy Li is determined from the thickness of the mossy layer and listed in 
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Table 7.1. Both the thickness and the porosity does not show a clear dependence on the 

current density.  

 

Figure 7.6 (a), (c), (e), and (f) are cross sectional SEM images of mossy Li obtained from 

electroplating under the current densities of 10.00 mA cm-2, 4.00 mA cm-2, 1.00 mA cm-2, 

and 0.25 mA cm-2, respectively. (b), (d), (f), and (g) are high magnification images 

corresponding to (a), (c), (e), and (f), respectively. 
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Table 7.1 The thickness and porosity of mossy Li obtained from electroplating under 

different current densities. 

 

Current density (mA cm-2) Thickness (µm) Porosity (%) 

0.25 356 ± 28.3 45 ± 4.5 

1.00 502 ± 10.1 61 ± 0.76 

4.00 441 ± 4.1 56 ± 0.4 

10.00 360 ± 4.4 46 ± 0.7 

 

Figure 7.7(a) shows that the flat punch indentation load-displacement curves of 

mossy Li are not ideally consistent, probably because of the random nature of the 

distribution of pores and surface roughness. Overall, the indentation depth corresponding 

to the maximum load and the creep displacement during the holding period of mossy Li 

are remarkably smaller than those of bulk Li. Although densification also contributes to 

the deformation of mossy Li, flat punch indentation indeed induces the deformation of Li 

dendrites, as shown in Figure 7.5(f). 

  

Figure 7.7 (a) Typical load-displacement curves of flat punch indentation measurements 

of mossy Li plated under a current density of 1 mA cm-2 with the maximum load of 12.74 

mN. (b) The logarithmic relationship between 𝜀�̇�𝑝 and 𝑝𝑚𝑒𝑎𝑛. 

 

Statistically, the steady-state creep strain rate (𝜀�̇�𝑝) of mossy is much smaller than 

that of bulk Li under the same stress level, as shown in Figure 7.7(b). Therefore, mossy Li 

has significantly higher deformation and creep resistance than bulk Li. In addition, the 

creep strain rate of mossy Li plated under the current densities of 0.25 mA cm-2 and 1.0 

mA cm-2 show slightly dependence on the average indentation stress, while the strain rate 
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of mossy Li plated under the current densities of 4.0 mA cm-2 and 10.0 mA cm-2 keeps 

almost constant over the mean pressure range between 5.04 MPa and 14.41 MPa.  

 

Figure 7.8 XPS spectra of the mossy Li: (a) C 1s, (b) F 1s, and (c) Li 1s. 

 

Since the homologous temperature of Li metal is 0.66 at room temperature, both 

diffusion- and dislocation-mediated plasticity may dominate the indentation deformation 

and creep of bulk Li, which has a BCC crystalline structure. Different from bulk Li, mossy 

Li consists of numerous Li dendrites. The surface of Li dendrites is “coated” with a SEI 

layer consisting of LiF, Li2CO3, LiOH, Li2O, and LixFPy, as shown in the XPS spectra 

(Figure 7.8). Knowing the microstructure of mossy Li, we suggest that the enhanced 

deformation and creep resistance of mossy Li may be attributed to the following reasons. 

(a) Dislocation starvation. Dislocations escape easily in Li dendrites because of their small 

size, leaving dendrites in a ‘‘dislocation-starved’’ state. Plastic deformation thus requires 

a continuous supply of fresh dislocations by nucleation from the surface, to sustain the 

strain rate, which requires a high stress [217-219]. (b) Strengthening effect of the SEI layer. 

Inorganic components of the SEI layer, such as LiF and Li2CO3, have much high modulus 

and strength than Li metal [90]. The deformation of SEI layer itself can increase the 

deformation resistance of mossy Li. (3) Suppressed diffusion of Li at the Li/SEI interface. 

Although SEI components synergistically promote the Li ion conductivity of SEI [144], 

SEI cannot conduct Li atoms on the surface. Therefore, surface diffusion-assisted creep is 

inhibited although Li dendrites have high specific surface area. To clarify the effect of SEI 

on the mechanical behavior of mossy Li, future study should focus on the influence of the 

surface chemistry on the mechanical behavior of mossy Li. Overall, the limited dislocation 

sources, high strength of SEI, and suppressed surface diffusion lead to the enhanced 
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deformation and creep resistance of mossy Li. Further efforts are needed to quantify the 

contribution of each factor. 

7.5 Conclusions 

We investigated the mechanical behavior of bulk and mossy Li using flat punch 

indentation measurements. Both bulk Li and mossy Li show clearly indentation creep 

behavior. The steady-state creep of bulk Li is dominated by dislocation climb over the 

mean pressure range between 3.49 MPa and 4.50 MPa. The steady-state creep strain rate 

of bulk Li trend to be constant under mean pressures larger than 4.50 MPa. Compared with 

bulk Li, mossy Li has significantly enhanced deformation and creep resistance. Therefore, 

cautions should be taken when using the mechanical properties of bulk Li to model the 

electrochemical-mechanical interactions associated with mossy Li. We proposed possible 

mechanisms, including the limited sources of dislocations in Li dendrites, SEI, and 

suppressed surface diffusion for the distinct mechanical behavior of mossy Li from bulk 

Li. To fully understand the mechanical behavior of mossy Li, future study may focus on 

the influence of porosity, surface chemistry, dendrite morphology, and mechanical 

properties of individual electroplated Li dendrites. 
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

8.1  Conclusions 

Electromechanical degradation caused by the huge volume changes of Si particles 

during lithiation/delithiation cycling remains a major challenge for high capacity Si 

composite electrodes. To help understand and mitigate the degradation of Si-based 

electrodes, I have studied the evolution of mechanical properties, microstructure change, 

and associated lithiation/delithiation kinetics of Si composite electrodes made with 

different polymeric binders. Important insights into the correlation between mechanical 

properties and structural degradation of Si composite electrodes are as follows.  

(1) During lithiation, the expansion of Si particles reduces the porosity but increase 

the thickness of Si composite electrodes, while the contraction of Si particles during 

delithiation increases the porosity but causes the decrease of the thickness of Si composite 

electrodes. The overall irreversible thickness change of Si composite electrodes show an 

increase trend during long-term cycling because an increasing amount of Si particles lose 

electronic conductivity and electrochemical activity during cycling. 

(2) Unlike the lithiation-induced softening of Si thin film and Si wafer electrodes, 

the elastic modulus and hardness of Si composite electrodes increase with increasing 

lithium concentration within one cycle mainly due to the porosity change and the porosity-

dependent deformation mechanisms (i.e., densification vs. deformation of individual 

particles). The elastic modulus and hardness of Si composite electrodes decreases as the 

cycling number increases due to the accumulated porosity and irreversible volume changes. 

(3) The mechanical properties of Si composite electrodes are highly influenced by 

the electrolyte. Both the elastic modulus and hardness of Si composite electrodes measured 

under wet conditions are smaller than those measured under dry conditions because 

polymeric binders soften in the liquid organic electrolyte. 

Polymeric binders are an essential component of Si composite electrodes to enhance 

mechanical integrity, maintain electronic conductivity, and improve the cycle life and 

stability of Si composite electrodes. Understanding the binder-dependent 

electromechanical degradation of Si composite electrodes is indispensable to guiding the 
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design of polymeric binders for Si-based electrodes. My comparative study on the 

influence of polymeric binders on the mechanical degradation of Si composite electrodes 

revealed that, 

(1) Binders influence the porosity and irreversible thickness change of Si composite 

electrodes. Stiff binders, such as Na-CMC and SA, can well constrain the volume changes 

and help maintain the electronic conductivity of Si composite electrodes during cycling. In 

contrast, soft binders (such as PVDF and Nafion) are not strong enough to accommodate 

the repeated volume change and lead to large irreversible thickness change of Si composite 

electrodes during cycling. 

(2) Mechanical properties of polymeric binders, instead of the adhesion between 

binders and Si, largely determine the magnitudes of the elastic modulus and hardness of Si 

composite electrodes. In addition, the softening behavior of binders in the electrolyte 

influences the mechanical properties of Si composite electrodes measured under wet 

conditions. But binders do not change the increasing trend of the elastic modulus and 

hardness of Si composite electrodes with increasing lithium concentration during cycling.  

(3) Although strong adhesion between binders and Si benefits the connection 

between Si particle and the binder/carbon black matrix, it induces large localized tensile 

stress and leads to extensive cracks of Si composite electrodes during delithiation. Cracks 

periodically open and close at the same locations in Si/SA, Si/Na-CMC, and Si/Nafion 

electrodes as Si particles contract and expand repeatedly during cycling. In contrast, no 

cracks form in Si/PVDF electrodes since the weak adhesion between PVDF and Si particles 

is unable to generate localized tensile stress large enough to trigger cracking. 

(4) The capacity fading of Si composite electrodes has a positive correlation with the 

evolution of the increasing SEI and charge transfer resistance during long-term cycling. 

The loss of electronic connection of Si particles from the matrix caused by the weak 

Si/binder adhesion or the irreversible volume change is one of the major factors for the 

degradation of Si composite electrodes. 

(5) Neither the adhesion strength between binders and Si nor the mechanical 

properties of binders themselves can solely determine the electrochemical performance of 

Si composite electrodes. Effective binders for Si composite electrodes may require a certain 
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balance between their adhesion with Si and the mechanical properties of themselves, which 

require future efforts. 

Based on the above understanding of the mechanical and electrochemical 

degradation of Si composite electrodes, a facile approach, that is, partial delithiation, was 

proposed to improve the mechanical integrity as well as cycling stability of Si composite 

electrodes. Experimental results confirmed the feasibility and effectiveness of this 

approach. 

Mechanical behavior of Li is indispensable to gain a fundamental understanding of 

the electrochemical-mechanical interactions associated with Li electrodes. Considering the 

high sensitivity of Li metal to oxygen and water vapor, I adopted an environmental 

nanoindentation system to measure the mechanical behavior of bulk and mossy Li using a 

Berkovich indenter and a flat punch indenter. The knowledge gap of mechanical properties 

of bulk Li metal and mossy Li is partially filled with the following conclusions. 

(1) Indentation responses of bulk Li showed clearly time-dependent deformation 

behavior. Using an iterative finite element modeling approach, I determined the 

viscoplastic constitutive law for bulk Li as Eq. (6.7). In addition, finite element modeling 

show that the elastic modulus, on the order of GPas, and the Poisson’s ratio, over the range 

between 0.05 to 0.45 has little influence on the indentation deformation of bulk Li.  

(2) Flat punch indentation measurements showed that the creep behavior of bulk Li 

over the mean pressure between 3.49 MPa and 4.50 MPa follows the power law creep. The 

stress exponent of 5.75 indicates that dislocation climb-controlled creep dominates the 

steady-state creep of bulk Li. The steady-state creep strain rate under higher mean pressure 

keeps constant. 

(3) Statistical analysis of the flat punch indentation measurements shows that the 

porous mossy Li has significantly higher deformation and creep resistance than bulk Li, 

which can be attributed to the limited dislocation source in Li dendrites and SEI. 

8.2 Future Work 

Based on the understanding of the binder-dependent electromechanical degradation 

of Si composite electrodes in this dissertation, future efforts to overcome the 
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electromechanical degradation and improving the stability of Si composite electrodes are 

suggested as, 

(1) Novel polymeric binders. Other than electrochemical stability, the mechanical 

properties of binders together with the adhesion between binders and Si can strongly affect 

the performance of Si composite electrodes based on the comparative studies between 

PVDF, Nafion, Na-CMC, and SA. An effective binder should, therefore, have a balance 

between adhesion strength (with Si and CB), strength, and elasticity. Modeling efforts are 

needed to quantify such a balance and guide the synthesis of new binders or chemical 

modifications of conventional binders for Si-based electrodes.  

(2) Designing heterostructure of Si composite electrodes. Irreversible volume 

changes, micro channel cracks, and the delamination of Si particles from the conductive 

matrix are three major factors for the mechanical degradation of Si composite electrodes 

made of existing “effective” binders, such as Na-CMC and SA. Porous heterostructure 

which can accommodate the volume change of Si particles as well as form strong adhesion 

between Si and the matrix would effectively alleviate these mechanical degradations and 

stabilize the electrochemical performance of Si-based electrodes. 

 

The mechanical characterization of mossy Li in this dissertation is limited to the 

average mechanical response of mossy Li. Future mechanical measurements can be 

conducted on individual Li dendrites by using atomic force microscopy (AFM) and in situ 

micropillar indentation in a SEM or transmission electron microscopy (TEM). After 

knowing the mechanical behavior of Li dendrites, localized electrochemical-mechanical 

interactions between Li dendrites and mechanical inhibitors (e.g., coatings, separators, and 

SEIs) can be better understood, which, in return, help design mechanical inhibitors and 

improve the safety and cycling performance of Li metal electrodes. 
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