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Alzheimer’s disease genetics and ABCA7 splicing

Jared B. Vasquez, James F. Simpson, Ryan Harpole, and Steven Estus*

Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. 
Limestone St., Rm. 330, Lexington, KY 40536

Abstract

Both common and rare polymorphisms within ABCA7 have been associated with Alzheimer’s 

disease (AD). In particular, the rare AD associated polymorphism rs200538373 was associated 

with altered ABCA7 exon 41 splicing and an AD risk odds ratio of ~1.9. To probe the role of this 

polymorphism in ABCA7 splicing, we used minigene studies and qPCR of human brain RNA. We 

report aberrant ABCA7 exon 41 splicing in the brain of a carrier of the rs200538373 minor C 

allele. Moreover, minigene studies show that rs200538373 acts as a robust functional variant in 
vitro. Lastly, although the ABCA7 isoform with an extended exon 41 is predicted to undergo 

nonsense mediated RNA decay, this was not supported by qPCR analyses, which showed 

relatively normal ABCA7 mRNA levels in the carrier of the rs200538373 minor C allele. In 

summary, rs200538373 is a functional polymorphism that alters ABCA7 exon 41 splicing without 

grossly altering the level of ABCA7 mRNA.
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Introduction

AD currently affects as many as 5.1 million people in the United States [1]. As ‘baby 

boomers’ age, AD prevalence is projected to triple by the year 2050 unless a treatment is 

found [1]. Since pharmacologic agents based on genetic mechanisms are more likely to 

successfully transition to drugs approved by the Food and Drug Administration [2], we seek 

to elucidate the actions underlying AD-associated SNPs.

Single nucleotide polymorphisms (SNP)s in ABCA7 were identified as AD risk factors in 

several studies [3–6]. These SNPs included several common SNPs that were associated with 

modest AD risk, including rs3764650, rs4147914, rs3752246, and rs4147929 [3–5]. These 

SNPs were also found to associate with ABCA7 expression, cortical and hippocampal 

atrophy, as well as β-secretase activity in cells expressing the amyloid-β protein precursor 

(AβPP)-Swedish mutation [3, 7–9]. In addition to these common ABCA7 SNPs, several rare 
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ABCA7 SNPs, including rs200538373, were associated with AD at odds ratios as high as 

1.9 [6].

The role of ABCA7 function itself in AD is unclear. Recent findings using human brain 

show ABCA7 is expressed at low levels in several cell types, including neurons and 

microglia [10]. ABCA7 has been implicated in lipid transport, phagocytosis and Aβ 
homeostasis [11–17].

Here, we sought to better understand the role of the rare SNP, rs200538373, which was 

associated with ABCA7 exon 41 splicing in blood [6]. We extend these prior findings by 

reporting an aberrant 14 bp extension of exon 41 in the brain of an individual that was 

heterozygous for this SNP. The hypothesis that this SNP is functional was supported by in 
silico modeling and by an ABCA7 minigene study, which demonstrated that rs200538373 

acts to alter exon 41 splicing. Lastly, ABCA7 expression in a carrier of the minor allele of 

rs200538373 was similar to that of other brain samples; this finding is inconsistent with 

hypothesized nonsense mediated RNA decay for this isoform, suggesting that the likely 

action for this SNP is altered splicing leading to a truncated ABCA7 protein.

Materials and Methods

Ethics statement

This work was conducted under the approval of the University of Kentucky Institutional 

Review Board.

Human brain tissue

RNA was purified from human anterior cingulate brain samples (supplied by the University 

of Kentucky AD Center Neuropathology Core) and converted to cDNA as previously 

described [18–20]. The AD status of the brain donors was determined by the AD Center 

Neuropathology and Clinical Cores by using guidelines that included evaluation of 

neurofibrillary tangles and neuritic senile plaques as well as cognitive status [21–23]. Age at 

death for the cognitively intact, i.e. non-AD donors, was 82.6 ± 1.6 (mean ± SE, n = 28) 

while AD donors were 81.7 ± 1.2 (mean ± SE, n = 28). The post-mortem interval (PMI) for 

non-AD and AD donors was 2.7 ± 0.2 (n = 28) hours and 3.4 ± 0.1 (n = 28), respectively.

Genotyping

DNA samples were genotyped for the indicated polymorphisms by using FAM and VIC dye-

labeled probes (Invitrogen, Carlsbad, CA) and TaqMan polymerase chain reaction (PCR) 

(Bio-Rad, Hercules, CA).

Splicing assay

ABCA7 exon 41 splicing was assessed by PCR coupled to polyacrylamide gel 

electrophoresis (PAGE). Reactions contained a sense primer corresponding to sequence 

within exon 40, i.e., 5′-CCGTGGGCAGAGGATG-3′ and an antisense primer 

corresponding to exon 42 sequence, i.e., 5′-TCGGATTGAGGGCAGTATC-3′. Each 20 μL 

reaction mixture contained ~20 ng of cDNA, 25 pmole of each primer, and Platinum Taq 
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(ThermoFisher) and was subjected to a PCR profile of 30 cycles at 95°C for 15 s, 59°C for 

30 s, and 72°C for 20 s. PCR products were separated on 10% polyacrylamide gels and 

detected by SYBR gold fluorescence (ThermoFisher) as per manufacturer’s protocol. Each 

sample was analyzed twice and reactions lacking cDNA template were analyzed in parallel 

to check for PCR product contamination.

Maximum entropy scores

The sequences of the ABCA7 exon 41 isoforms were scored for 5′ splice site favorability 

by using an online prediction tool ((http://genes.mit.edu/burgelab/maxent/

Xmaxentscan_scoreseq_acc.html [24]. Briefly, this algorithm was trained on large datasets 

of human splice sites to calculate a log odds ratio for a splicing score for input sequence 

[24]. A higher score correlates with a more favorable splice site [24, 25].

RNA splicing assay

ABCA7 minigenes for each rs200538373 allele were generated by PCR and contained exon 

41, intron 41, and exon 42 in their entirety, cloned into pcDNA3.1 (ThermoFisher). 

Minigene construction used a sense primer corresponding to sequence at the start of exon 

41, i.e., 5′-TGTTTTGGGCTGCTGG-3′ and an antisense primer corresponding to sequence 

at the end of exon 42, i.e., 5′-CTGGGCAACCTGGGC-3′. Sequencing confirmed inserts 

were accurate and complete for each allele and differed only for rs200538373 alleles. 

Human Be(2)-M17 neuroblastoma cells (ATCC, Manassas, VA) were maintained in Opti-

MEM I reduced-serum medium supplemented to 10% fetal bovine serum, 50 U/ml penicillin 

and 50 μg/ml streptomycin with humidified 5% carbon dioxide at 37°C. For transfections, 

cells (1×106) were plated in 350 μL media in a 24-well plate, allowed to grow 24 hrs and 

then transfected in triplicate by using 2 μg of allele-specific ABCA7 minigene vector and 

Lipofectamine 3000, as per manufacturer’s protocol (ThermoFisher). Forty-eight hours after 

transfection, RNA was prepared and reverse transcribed using random hexamers and 

Superscript III as described previously [26]. ABCA7 expression from each minigene was 

detected by PCR using a pcDNA3.1 vector-derived forward primer (5′-

ACTAGTCCAGTGTGGTGGAATTGCC-3′) and exon 42-derived reverse primer (5′-

TCGGATTGAGGGCAGTATC-3′).

Quantitative PCR assay

The quantification of ABCA7, synaptophysin, ITGAM and AIF1 expression in these 

samples has been described previously [7, 26, 27]. Briefly, 20 μL reactions contained 1μM 

of each primer, 1x PerfeCTa SYBR Green Super Mix (Quanta Biosciences), and 

approximately 20 ng cDNA generated from anterior cingulate RNA. PCR was conducted 

using an initial 2-minute incubation at 95°, followed by cycles of 10 seconds at 95°, 20 

seconds at 60°, and 20 seconds at 72°. Experimental samples were amplified in parallel with 

serially diluted standards that were generated by PCR of cDNA followed by purification and 

quantitation by UV absorbance. Results from samples were compared relative to the 

standard curve to calculate copy number in each sample. Real time assays were performed 

twice and the average copy number was used for further analyses.
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Statistical Analysis

ABCA7 expression was analyzed by linear regression (SPSS, version 23). Each model 

included AD status and rs3764650 genotype. In addition, since ABCA7 is expressed in both 

microglia and neurons [16, 17], we included expression of either (i) a neuronal gene 

(synaptophysin), (ii) microglial genes (geometric mean of ITGAM and AIF1), or (iii) both 

the neuronal and microglial genes (SPSS, v. 23). The geometric mean of ITGAM and AIF1 
was used, as opposed to the arithmetic mean, because AIF1 levels were markedly higher 

than ITGAM levels. To generate a normal distribution of the data, the square root of the 

copy number data was used for the linear regression analyses; the square root approach was 

validated by the Shapiro-Wilk test for normality. We also analyzed the expression results for 

variation in sample mRNA content by dividing mRNA copy number by the geometric mean 

of two constitutively expressed genes, i.e., RPL32 and EIF4H [26]. To generate a normal 

distribution as assessed by Shapiro-Wilk, regression analyses used the square root of these 

values. Since our cohort of samples had only one rs3764650 minor allele homozygous 

individual, we used a dominant model for this analysis, i.e., rs3764650 minor allele carriers 

were considered as a single group.

Results

Rs200538373 is a rare intronic ABCA7 variant that was associated with AD risk and with 

exon 41 splicing in blood [6]. To confirm and extend this finding, we determined 

rs200538373 genotypes in a set of 57 cDNA samples generated from AD and non-AD 

brains; this effort identified a single sample that was heterozygous for rs200538373 (G/C) 

while the remainder were major allele (G/G) homozygous. The frequency of the 

rs200538373 minor C allele in our cohort was 0.8%, similar to that reported previously in 

European datasets [6, 28].

To explore the effects of the C allele of rs200538373, we sought to confirm whether aberrant 

splicing occurs in the brain of an individual with this allele. To assess splicing, cDNA from 

the rs200538373 heterozygous sample as well as several rs200538373 major allele 

homozygous samples was subjected to RT-PCR with amplicons spanning exon 40 to exon 42 

(Figure 1A). We observed the expected product along with an additional longer amplicon for 

the sample that was heterozygous for rs200538373 (Figure 1B). Sanger sequencing of this 

longer amplicon found that exon 41 was extended 14 bp into the typical intron 41. 

Interestingly, the sequence electropherogram shows the rs200538373 minor C allele but not 

the major G allele (Figure 1C). Although not quantitative, this suggests that this abnormal 

splice form is largely produced from the minor allele of the ABCA7 pre-mRNA. The 14 bp 

inclusion would encode an in-frame UGA termination codon beginning at position 2 in the 

extension and is therefore predicted to produce a truncated ABCA7 protein.

To test directly whether rs200538373 modulates exon 41 splicing, we generated minigenes 

for each ABCA7 allele. The constructs included all of exon 41, intron 41, and exon 42 

(Figure 2A). Since ABCA7 is expressed in neurons, as well as other brain cell types [10, 29, 

30], we tested the minigene splicing in the human neural cell line Be(2)-M17. We found that 

the transcript from the minigene with the rs200538373 minor C allele was spliced to 

generate exon 41 with the 14 bp extension (Figure 2B). Conversely, the minigene with the 
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rs200538373 major G allele was spliced to generate exon 41 at the usual 5′ consensus splice 

site. The effect of the SNP in this assay was very robust, with minimal “normal” isoform 

generated by the minigene carrying the minor C allele and minimal extended isoform 

generated by the minigene carrying the major G allele.

To gain further insight into this finding, we used MaxEntScan::score5ss, a 5′ splice site 

prediction tool, to compare the normal 5′ consensus splice site in the presence of each 

rs200538373 allele and the aberrant splice site. We observe that the favorable score of the 

major G allele for rs200538373 at the normal splice site is reduced when the minor C allele 

of rs200538373 is present (Table 1). The aberrant splice site 14 bp further into the intron is 

unaffected by the SNP and has a splicing score that is competitive with the normal splice site 

when the G allele of rs200538373 is present. These results are consistent with rs200538373 

being a functional SNP resulting in the normal 5′ consensus splice site being used when the 

G allele of rs200538373 is present and the aberrant splice site 14 bp further into the intron 

being used when minor C allele of rs200538373 is present.

Lastly, we assessed indirectly whether the aberrant splicing and predicted premature 

termination codon observed with the minor C allele of rs200538373 may be associated with 

nonsense mediated RNA decay by comparing ABCA7 expression in rs200538373 major G 

allele homozygous individuals with that of the single rs200538373 heterozygous individual 

in our cohort of samples. For this effort, we established a quantitative model of ABCA7 
expression.. This model included ABCA7 expression as well as AD status and rs3764650, a 

common AD-associated ABCA7 SNP [3–5]. ABCA7 expression was assessed previously by 

qPCR using primers in the constitutively spliced exons 44 and 45 [7] and those data are re-

analyzed here. Since ABCA7 is expressed in neurons and microglia, we compared models 

that evaluated ABCA7 expression relative to expression of microglial and neuronal genes 

separately and together (Table 2). The ABCA7 expression model that used only the neuronal 

mRNA synaptophysin had slightly more explanatory power (Figure 3A, adjusted R2=0.700) 

than a model that included synapthophysin as well as microglial (ITGAM and AIF1) 

mRNAs (adjusted R2=0.697). A model that used only the microglial mRNAs had a lower 

goodness-of-fit (adjusted R2=0.323). Within each model, ABCA7 expression was increased 

significantly in AD individuals and decreased significantly in carriers of the minor 

rs3764650 allele (Table 2, Figure 3A). We also analyzed these data by normalizing mRNA 

copy numbers to two “housekeeping” mRNAs (Figure 3B). Although this model is less 

visually striking (adjusted R2 of 0.412), ABCA7 expression was significantly increased in 

AD (standardized β coefficient=0.559, p=3.0×10−6) and the minor allele of rs3764650 was 

associated with a significant decrease in ABCA7 expression (standardized β coefficient=

−0.383, p=0.001). ABCA7 expression in the individual that was heterozygous for 

rs200538373 was similar to that of other samples (Figure 3A–B, arrow). Hence, the 

individual with the minor C allele of rs200538373 did not have a large decrease in ABCA7 
expression, a finding we interpret as suggesting that nonsense mediated RNA decay does not 

grossly affect ABCA7 expression. In summary, this quantitative analysis of ABCA7 
expression suggests that (i) the minor AD-protective allele of rs3764650 is associated with 

decreased ABCA7 expression, (ii) AD itself is associated with increased ABCA7 
expression, and (iii) the rare AD-associated SNP rs200538373 acts through altered splicing 
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without grossly affecting ABCA7 expression levels, a finding supported by another quite 

recent study [31].

Discussion

The primary findings of this report are that abnormal ABCA7 exon 41 splicing is found in 

the brain of an individual carrying the minor C allele of rs200538373 and that rs200538373 

is a functional SNP. Additional findings include that rs200538373 does not appear 

associated with a gross decline in ABCA7 expression, suggesting that NMD does not 

grossly impact ABCA7 expression for this individual, and a confirmation that ABCA7 
expression is decreased with the minor allele of rs3764650 and increased in AD. As such, 

this report confirms and extends a report that rs200538373 was associated with ABCA7 
exon 41 splicing in blood [6] and our prior report that AD and rs3764650 was associated 

with expression per se [7].

The mechanisms underlying AD genetic risk factors are currently under intense 

investigation. Common ABCA7 SNPs such as rs3764650 have been associated with a 

modest increase in AD risk (odds ratio: 1.23) while rare SNPs that involve premature stop 

termination codons, such as rs200538373, are associated with increased AD risk (odds ratio: 

1.91) [4, 6, 32, 33]. In our original report examining rs3764650, we found that the minor 

allele of rs3764650 was associated with a decrease in ABCA7 expression with a 

standardized beta-coefficient of −0.375 [7]. Here, we re-analyzed these ABCA7 data by 

using a model that incorporated levels of mRNAs specific to microglia and neurons. This 

analysis produced a similar result, with the rs3764650 minor allele being associated with 

reduced ABCA7 expression. Hence, modestly reduced ABCA7 expression correlates with a 

modest increase in the AD odds ratio. In contrast, the rare rs200538373 was associated with 

aberrant exon 41 splicing that was predicted to produce a premature translation termination 

codon [6]. In pursuing the effect of this SNP, we observed a very robust SNP effect on exon 

41 splicing in vitro and that the extended exon 41 isoform was clearly present in the brain of 

the rs200538373 minor allele carrier. That noted, the in vivo finding was limited because we 

identified only a single sample with the SNP minor allele. An additional limitation of this 

study was that we were unable to identify isoform specific qPCR primers and hence were 

not able to quantify the extended exon 41 splice variant. Our semi-quantitative gel-based 

analysis suggested that this extended exon 41 isoform was present at a level approaching that 

of the normal ABCA7 isoform. Hence, the effect of the SNP may approach 50% of ABCA7 
mRNA containing a premature stop codon. This truncated ABCA7 protein would likely 

represent a loss of function because the encoded ABCA7 protein would lack its second 

ATPase domain. This effect could be greater if the truncated ABCA7 acts as a dominant 

negative; this possibility is supported by reports that similarly truncated ABCA1 proteins act 

as a dominant negative in dimer formation with full-length ABCA1 [34–36]. In summary, 

we interpret these results overall as showing that rs3764650, a common SNP associated with 

a modest reduction in ABCA7 expression, leads to a small increase in AD risk. The increase 

in ABCA7 observed in AD may represent a compensatory attempt to increase ABCA7 and 

thereby reduce AD risk or may reflect other inflammation related processes. In contrast, 

rs200538373, a rare SNP associated with a more robust reduction in ABCA7, leads to a 
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larger increase in AD risk. Overall, these results appear to essentially demonstrate a genetic 

dose response between functional impact and AD risk.

Considering the translational impact of these findings, agents that increase ABCA7 

expression would be expected to reduce AD risk, especially for those individuals with the 

minor allele of rs3764650. Since ABCA7 expression is increased in AD, we speculate that a 

pharmacologic intervention to reduce AD risk would likely have to begin well before disease 

onset. With regards to rs200538373 and ABCA7 splicing, we note that in this age of 

personalized medicine, several drugs that target splicing are in human trials or have been 

approved for human use. Some of these agents involve peripheral tissue, such as eteplirsen 

which targets splicing in a form of Duchene muscular dystrophy [37]. However, other agents 

target splicing in the central nervous system, with the drug nusinersen, which was recently 

FDA approved [38] for spinal muscular atrophy, being the most robust representative [39]. 

As science moves forward, agents that target aberrant splicing for AD may emerge.

In summary, our primary finding is an apparent dose response between the functional impact 

of AD-associated SNPs and AD risk. This finding is based upon (i) the observation that 

rs200538373, which is associated with robust AD risk, appears to have a robust effect on 

splicing in vitro with aberrant splicing found in the brain of a minor allele carrier and (ii) the 

observation that rs3764650, which is associated with modest AD risk, is associated with a 

modest reduction in ABCA7 expression.
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Figure 1. 
Aberrant ABCA7 exon 41 splicing in an rs200538373 heterozygous sample. A). RNA 

purified from the brains of a rs200538373G/C individual and several rs200538373G/G 

individuals was reverse transcribed and subjected to PCR with primers corresponding to 

sequences within exons 40 and 42. The amplicon size for normal splicing was 222 bp. B). 

The expected splice product as well as a longer ABCA7 isoform was consistently detected 

only in the rs200538373G/C individual (denoted by *). C). Sanger sequencing of the longer 

ABCA7 isoform found that exon 41 was extended by 14 bp relative to the expected isoform. 

This sequence from the rs200538373 heterozygous individual includes the last two bp of 

exon 41, the 14 bp extension of exon 41, and the first two bp of exon 42. Only the 

rs200538373 minor C allele is observed (marked by asterisk) (blue=C, black=G, green=A, 

red=T).
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Figure 2. 
Rs200538373 is a functional SNP that modulates ABCA7 exon 41 splicing. A). Cells were 

transfected in triplicate with constructs that expressed ABCA7 exon 41, intron 41, and exon 

42 and that carried with the rs200538373 major G or minor C allele. These transcripts also 

included vector-derived 5′ and 3′ sequence. B). RT-PCR analyses with a forward primer 

targeting vector sequence and a reverse primer targeting exon 42 detect normal splicing (192 

bp amplicon) from the major G allele minigene and aberrant splicing (206 bp amplicon) in 

the minor C allele minigene. Note that ‘C’ and ‘G’ labels indicate rs200538373 alleles while 

‘NC’ labels a negative control sample wherein cells were transfected in parallel with an 

irrelevant (GFP) gene. This result was replicated in three independent experiments.
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Figure 3. 
ABCA7 expression is associated with AD status and rs3764650 but appears unaffected by 

rs200538373. A). When ABCA7 expression was analyzed by comparing ABAC7 mRNA 

copy numbers relative to a neuronal mRNA, expression appeared to correlate with 

rs3764650 and AD status. For both A and B, the arrow points to the single sample that was 

heterozygous for rs200538373. Additionally, rs3764650T refers to rs3764650T/T 

homozygous samples while rs3764650G refers to rs3764650G/T heterozygous samples as 

well as a single rs3764650G/G homozygous sample. B). ABCA7 expression relative to AD 

status and rs3764650 when mRNA copy numbers were normalized to RPL32 and EIF4H 
housekeeping mRNAs. For both A and B, the square root of values was used to generate a 

normal distribution of the data.
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Table 1

Impact of rs200538373 on ABCA7 exon 41 splicing. This SNP is at position 5, in parenthesis, within intron 

41 and is predicted to weaken the splice site, i.e., the prototypic splice donor sequence is CAG/gtragt (exon in 

upper case, intron in lower case, r = purine).

Exon 41 Splicing Splice Site Sequence (splice site at ^) Splicing Score

Normal Splice Site
Major G allele

CAG^gtga(g)g 10.07

Normal Splice Site
Minor C allele

CAG^gtga(c)gggtgccaggtaggg 7.66

Aberrant Splice Site
Extended Exon 41

CAGgtga(g/c)gggtgccag^gtaggg 9.46
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