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ABSTRACT OF DISSERTATION 
 

EFFECTS OF A SYSTEMIC HIGH UREA CONCENTRATION ON THE 
ENDOMETRIAL AND EMBRYONIC TRANSCRIPTOMES OF THE MARE 

 
Pregnancy loss remains a major source of economic cost to the equine industry. Frequently, 
the exact causes of pregnancy loss remain unknown. It has been shown, in other species, 
that increased dietary protein leading to elevated blood urea nitrogen concentrations (BUN) 
can be a factor in decreased survival of the early embryo.  Our studies provided novel 
information regarding the effects of elevated BUN on endometrium and embryos from 
mares as well as insights on changes in their gene expression. Our first objective was to 
develop an experimental model to elevate BUN during diestrus using intravenous urea 
infusion. We analyzed the effects of an acute elevation in BUN on uterine and vaginal pH 
along with changes in the endometrial transcriptome of mares with RNA sequencing. There 
was a significant increase in BUN and a decrease in uterine pH in the urea group compared 
to the control group. A total of 193 genes were differentially expressed (DEG) between the 
urea and control groups. The DEG were predicted to be related to cell pH, ion homeostasis, 
changes in epithelial tissue, fatty acid metabolism, and solute carriers. Our second objective 
was to evaluate the effects of elevated BUN in the endometrium of mares using a chronic 
oral urea administration to elevate BUN in mares. Uterine and vaginal pH were evaluated 
and RNA sequencing of the endometrium was again performed. There was an increase in 
BUN in the urea-fed mares, but no significant change in uterine or vaginal pH between the 
groups. A total of 60 DEG were characterized, with prediction of transcriptomic changes 
in the endometrium of mares related to cell death (necrosis) and cellular movement 
(invasion of cells). Our third objective was to determine the effects of a high BUN on the 
transcriptome of day-14 embryos. There was a positive correlation between plasma BUN 
and blastocoele fluid urea nitrogen concentration. Changes in embryo transcriptome were 
related to survival of organism, angiogenesis, adhesion, and quantity of cells. Our final 
objective was to evaluate the correlation between BUN and follicular fluid urea nitrogen 
and evaluate the survival of embryos collected from donor mares with high BUN 



 

 

concentrations. Urea nitrogen concentration was positively correlated between the plasma 
and follicular fluid of mares. Additionally, there was a higher pregnancy rate when 
embryos were collected from mares with lower BUN. Overall, these results further 
elucidate the mechanisms through which urea affects endometrial and embryonic 
transcriptome of mares with high BUN, serving to identify effects of a high BUN in the 
reproductive tract of mares that might lead to decreased fertility. 

 
KEYWORDS: High protein diet, uterus, embryo, horse, RNA sequencing, fertility. 
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CHAPTER 1. Literature review 
 
1.1. Introduction 

In the United States, early embryonic (prior to 40 days) and early fetal (prior to 90 

days) losses remain important causes of infertility in mares, with approximately 8% of 

early embryos lost and a further 5% rate of early fetal loss. The rate of pregnancy loss can 

present considerable variation across season and year (B. A. Ball, 2011). Pregnancy loss 

remains a major source of economic cost to the equine industry. However, many times, 

the exact causes of pregnancy losses remain unknown. 

Composition of maternal diet, such as dietary polyunsaturated fatty acids, high 

caloric diets, and starch-rich diets may have negative impacts on oocyte, embryo, follicular 

fluid and uterine environment in mice, cows, and ewes (Coyne, Kenny, & Waters, 2011; 

Fouladi-Nashta et al., 2009; Hughes et al., 2011; Igosheva et al., 2010; Mattos, Staples, & 

Thatcher, 2000; van Knegsel et al., 2007; Zachut et al., 2010). More specifically, the role 

of forage and elevated crude protein (CP) intake leading to high BUN has been proposed 

as an important factor in oocyte and embryo quality and overall pregnancy failure in cows 

and ewes (Butler, 2000a; Elrod & Butler, 1993; C. Elrod, M. Van Amburgh, & W. Butler, 

1993; T. McEvoy, J. Robinson, R. Aitken, P. Findlay, & I. Robertson, 1997; Rhoads, 

Gilbert, Lucy, & Butler, 2004; Rhoads, Rhoads, Gilbert, Toole, & Butler, 2006). However, 

the effect of elevated BUN on fertility has never been reported in mares. Therefore, the 

research proposed here will provide novel information regarding the effects of high BUN 

on reproductive function in mares. Additionally, these projects will provide insights on 

alterations in gene expression in the endometrium and early embryos to elucidate possible 

mechanisms of action. 
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 This literature review will summarize crude protein digestion, urea cycle, and 

effects of high blood urea nitrogen in vitro and in vivo. Although the focus of this work is 

horses, protein digestion in ruminants was reviewed here because most studies done to 

identify the effects of high protein diet or BUN were performed with ruminants. 

Subsequently, this dissertation describes the first studies with mares evaluating the effects 

of elevated BUN on the endometrial and embryonic transcriptome as evaluated with RNA 

sequencing. 

 

1.2. Protein digestion in horses 

Horses are monogastric, more specifically, they are classified as non-ruminating 

roughage grazers. The horse is a hindgut fermenter, with a very well developed cecum and 

ascending colon adapted for fermentation of plant cellulose and hemicellulose by 

cellulolytic bacteria (Reece, Erickson, Goff, & Uemura, 2015). Consumed proteins are 

composed of hundreds of amino acids linked together by peptide bonds. To move across 

the intestinal absorptive cells, enterocytes, proteins need to be digested into dipeptides or 

tripeptides. The main sites of enzymatic protein digestion are the stomach and small 

intestine (NRC, 2007; Reece et al., 2015). Protein digestion starts in the stomach where 

hydrochloric acid (HCl) denatures dietary protein by hydrolyzing part of the peptide 

bonds. The gastric glands, chief cells located in the fundic stomach, secrete pepsinogen, a 

precursor of proteolytic enzymes, that is inactive so as to prevent autodigestion of gastric 

cells. Subsequently, pepsinogen will be cleaved and transformed into its active form- 

pepsin. Pepsin is responsible for cleaving peptide bonds from the molecule, which will 

then be composed of 25 to 100 amino acids and ready to enter the first portion of the small 
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intestine, the duodenum. These proteins activate receptors of the enteroendocrine cells in 

the duodenum making them secrete cholecystokinin, which enters systemic circulation and 

triggers the secretion of pancreatic proteolytic enzymes into the duodenum. The pancreatic 

enzymes including trypsin, chymotrypsin, elastase, and the carboxypeptidases cleave 

peptide bonds converting protein to peptides with six or less amino acid residues as well 

as free amino acids. Subsequently, these smaller compounds move to the brush border of 

the enterocytes, the microvilli-covered surface of the intestine, where peptidases will split 

oligopeptides (six or less amino acids in length) into di- and tripeptides. These are 

transported into the enterocyte by a H+-coupled transporter and hydrolyzed to free amino 

acids by peptidases or transported across the basolateral membrane (Krehbiel & Matthews, 

2003). Additionally, the free amino acids will be absorbed by transporters and will either 

be transformed into protein or transported across the basolateral membrane to systemic 

circulation (Krehbiel & Matthews, 2003; Reece et al., 2015). Single amino acids 

accumulate in a large concentration above the apical membrane of the villous cells in the 

duodenum and jejunum after ingestion of a meal. There are facilitated carriers in the apical 

membrane of the villous cells, such as amino acid transporters, that bind the amino acid 

and a sodium atom. When the amino acid moves down its concentration gradient and the 

sodium ion moves down its electrical and concentration gradient, it helps move the amino 

acid across the apical membrane. Dipeptides and tripeptides can be absorbed at the brush 

border by tertiary transporters, as they are large and need an ATP molecule and a 

transporter protein to pump them across the apical membrane. They then arrive in the 

cytosol of the villous enterocytes and are hydrolyzed to single amino acids by intracellular 

peptidases (Reece et al., 2015; Woodward et al., 2010). 
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Amino acids will either be used for protein synthesis in the body or undergo 

catabolism and excretion as carbon dioxide and urea, for example. In the latter case, amino 

acids enter the extracellular fluid and are transported in the portal circulation to the liver 

for deamination and urea formation (Reece et al., 2015; Reitnour, Baker, Mitchell, Little, 

& Kratzer, 1970; Woodward et al., 2010). A large amount of the urea that is produced in 

the liver is secreted into the ileum and moved to the large intestine for bacterial degradation 

to ammonia through the bacterial enzyme, urease. Intestinal bacteria are found in the 

duodenum, jejunum, ileum, cecum, and colon of mature horses. Different from ruminants, 

most of the equine microbial bacteria are found in the hindgut (Kern, Slyter, Leffel, 

Weaver, & Oltjen, 1974). The proteolytic bacteria reutilize most of the resulting ammonia 

or urea to synthetize protein and the remaining ammonia and urea diffuse into the blood 

(Frape, 2008; Mackie & Wilkins, 1988). Consequently, after the deamination of amino 

acids in the liver and synthesis to urea, the concentration of blood urea nitrogen (BUN) 

increases (Frape, 2008; Lewis, 1995). When there is an excess protein intake, there is an 

associated increase in BUN; consequently, BUN levels are used to assess whole-body 

metabolism, protein metabolism, and levels of systemic urea nitrogen in horses (Kohn, 

Dinneen, & Russek-Cohen, 2005; Latham, Wagner, & Urschel, 2019; Mok, Levesque, & 

Urschel, 2018). 

 

1.3. Protein digestion in ruminants 

 Although our experiments used horses, studies in ruminants are a major source of 

information for the following projects. Therefore, it is important to understand the basic 

physiology in protein digestion in ruminants and differences with equids. Firstly, 
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ruminants have forestomaches composed of the rumen, reticulum, and omasum. In this 

foregut, bacterial fermentation digests cellulose and hemicellulose that are not digestible 

by enzymes produced by the animals (Kern et al., 1974; Reece et al., 2015). 

Additionally, for ruminants, the ingested protein can be either rumen degradable or 

rumen undegradable. The rumen degradable protein is deaminated by proteolytic enzymes 

coming from rumen bacteria and protozoa to produce ammonia. The microbes will use this 

ammonia to synthetize microbial protein. When there is an excess ingestion of rumen 

degradable protein, it is degraded and forms ammonia in the rumen, which is transported 

out of the rumen into the portal circulation and travels to the liver to be converted into 

urea. Part of the rumen degradable protein is converted to microbial protein, as the 

microbes use nitrogen from ammonia or urea to form the amino acids that compose their 

structure. Subsequently, when these microbes die or go into the intestine, the proteins from 

their structures are digested by proteolytic enzymes and the ruminant utilizes the resulting 

amino acids. The resulting protein from the digestion of bacteria is very high quality and 

serves as a source of essential and nonessential amino acids. Conversely, the protein that 

is not degraded by the rumen microbes is known as rumen undegradable protein and passes 

through the rumen unchanged. An amount of rumen undegradable protein is digested in 

the small intestine of ruminants serving as another source of essential and nonessential 

amino acids. The rumen undegradable protein can also contain non-protein nitrogen 

(nitrogen that is not in the form of amino acids and protein). Urea is one of the most 

commonly used non-protein nitrogen source, as it supplies nitrogen to the microbes in the 

rumen (Reece et al., 2015; Tamminga, 2006). Urea is hydrolyzed into ammonia and carbon 

dioxide by bacterial urease, then it is available for rumen microbes to make microbial 
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protein. When ammonia is absorbed, it is converted to urea by the liver and can either be 

recycled back to the rumen or be excreted by the kidneys (Jin, Zhao, Zheng, Beckers, & 

Wang, 2018). 

 

1.4. Ammonia and urea metabolism and excretion in the horse 

Urea is a small-uncharged particle, with a molecular weight of 60 g/mol, it is very 

soluble and has low toxicity compared to other catabolic metabolites. There are also urea 

transporters, membrane transport proteins responsible for transporting urea molecules 

across membranes. The importance of transporters is that a large amount of urea molecules 

can be moved to different portions of the body in a timely fashion. Two main types of urea 

transporters genes are SLC14A1 and SLC14A2. These genes produce multiple protein 

isoforms, such as UT-A1 to -A5 and UT-B. These transporters were first cloned and 

isolated from erythrocytes and kidney. Currently, it is known that these urea transporters 

have a widespread distribution in tissues from mammals. These transporters are 

responsible for the rapid transport of urea across cell membranes which is important for 

urea equilibrium in tissues. This urea translocation is done by facilitated transport, 

independent of Na+ and Cl-. (Sands, 1999, 2003; Shayakul & Hediger, 2004). Additionally, 

there are aquaporins (AQPs), a family of membrane water channels, composed of diverse 

isoforms, including transporters that allow the passage of water, glycerol and urea (AQP3, 

7, 8 and 10). AQPs are distributed in multiple organs and tissues, forming pores across the 

membranes to facilitate the transport of water and other small molecules (Li & Wang, 

2014). Of interest, expression of AQPs was seen in the endometrium of mares and these 
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were predicted to be related to changes in the endometrium during the estrous cycle and 

pregnancy (C. Klein, Troedsson, & Rutllant, 2013). 

Urea is absorbed by the horse from the small intestine with subsequent excretion 

through the kidneys in the urine. It will be transported into the lumen of the large intestine, 

cecum, and colon, where it will be used by bacteria to produce ammonia, then incorporated 

into their protein (Reece et al., 2015). If an excess of protein is ingested, the amino group 

is removed from the amino acids and converted to urea in the liver, thus increasing the 

blood urea nitrogen (BUN) concentration (Frape, 2008; Lewis, 1995). 

An experiment to understand how horses utilize urea (Martin, McMeniman, 

Norton, & Dowsett, 1996) used isotope labeled urea intragastrically or intravenously. 

When a single intragastric dose was given, urea was rapidly absorbed into the blood, with 

an average of 90% of the dietary urea entering the plasma. Over a 5-day period, 26% of 

the dietary urea was retained. With a single intravenous injection of urea, there was a 

significant increase in BUN concentrations with a percentage of urea retained after 5 days 

varying between 15 to 38% depending on the diet the animals received. This study showed 

that urea is not an ideal supplement to substitute protein for horses in most situations, 

because most of it is absorbed from the small intestine and excreted in the urine before it 

can reach the large intestine and be used by bacteria for protein synthesis. A small amount 

of urea will reach the cecum and colon to be used for bacterial protein synthesis. Thus, 

supplementation with a nonprotein nitrogen source, such as urea, seems to be beneficial 

only when the horse is receiving a protein deficient diet. Urea-supplementation, in a dose 

of 0.14 g urea/kg of body weight to horses daily, resulted in elevated BUN concentrations, 
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probably because urea was rapidly absorbed from the small intestine by transporters (H. 

F. Hintz & Schryver, 1972; Reitnour, 1978). 

Furthermore, if urea is given in a large amount, it is converted to ammonia by 

bacterial urease in the large intestine, and can be toxic. Horses that ingest a large amount 

of urea will show incoordination, press their heads against objects, become comatose, 

convulse, and even die. A dose of 450 g of urea fed orally was fatal for ponies weighing 

125 to 136 kg, which would equal 1.65 kg of urea for a 500 kg horse (H. Hintz, Lowe, 

Clifford, & Visek, 1970; Lewis, 1995). 

 

1.5. Protein requirements in horses 

Crude protein (CP) is a nutrient required for growth and maintenance and is a major 

component of most tissues, enzymes, hormones, and antibodies in the body; it can also be 

used for energy (Lewis, 1995; NRC, 2007). The 22 amino acids that compose proteins 

have been classified as: nonessential (dispensable), those that can be synthesized de novo 

in animal cells, or essential (indispensable), which have to be supplied in feed. For the 

horse, there are 10 essential amino acids: arginine, histidine, isoleucine, leucine, lysine, 

methionine, phenylalanine, threonine, tryptophan, and valine. Proteins are composed of 

amino acids bonded together and contain nitrogen. The CP content of feed is estimated by 

calculating its nitrogen content and dividing this amount by 0.16 (because most protein 

contains 16 ± 2% of nitrogen), for example, a feed containing 1.6% of nitrogen would be 

equivalent to 10% CP (Lewis, 1995; NRC, 2007). 

Horses have different daily protein requirements according to their stage of 

development. The following formula is used to calculate daily protein requirements for a 
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mare during early pregnancy: body weight x 1.26 g CP/kg of body weight. A 500 kg mare 

from conception to early pregnancy needs approximately 630 g of CP daily (NRC, 2007). 

Similarly, pregnant mares from 9 months to 11 months of gestation require the same 

amount of CP as nonpregnant and sedentary horses, which is 656 g. Pregnant mares from 

9 to 11 months of gestation require a higher amount, 798 to 893 g of CP daily. Finally, 

mares that are in the first to sixth month of lactation require from 1535 to 1265 g of CP 

daily (Lewis, 1995; NRC, 2007). A more individualized daily requirement of CP was 

proposed, by suggesting three different levels of protein intake according to individual 

characteristics of the horse. Using a minimum, average or elevated daily nutritional 

requirement, depending on how easy it is for the horse to maintain their normal weight. A 

500 kg mare during early pregnancy should consume a minimum of 540g, an average of 

630 g or an elevated amount of 720 g CP/daily. A 500 kg pregnant mare during the last 

month of gestation, should consume a minimum of 803, an average of 893 or an elevated 

amount of 983 g of CP/daily (Lawrence, 2011). 

Even though high protein diets might have deleterious effects on reproduction in 

ruminants, diets supplying excessive amounts of CP to horses are common. Surveys 

conducted with horse owners helped to better elucidate feeding practices, more 

specifically, type of grain, hay and supplements that these animals received. Results 

showed that in 70% of cases the CP offered exceeded the NRC recommendations. 

Additionally, horses received diets with 157 ± 21.6% (range 79-263%) of the CP 

recommended by the NRC (Harper, Swinker, Staniar, & Welker, 2009; Honoré & 

Uhlinger, 1994). This excessive amount of CP will result in BUN concentrations above 

the normal range for horses that might result in negative consequences to the reproductive 
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tract and consequently to pregnancy rates. However, no reports to date have addressed the 

effects of a high protein diet on fertility in the mare. 

 

1.6. Effect of high blood urea nitrogen in vitro and in vivo 

Elevated CP consumption or urea-supplementation elevates BUN concentrations 

systemically, thus increasing the amount of urea in the body (NRC, 2007). In general, urea 

concentrations in the female reproductive tract of cows and ewes have been positively 

correlated with urea concentrations in plasma, thus elevations in BUN would be expected 

to result in elevated tissue concentrations. For example, studies showed a high correlation 

between follicular fluid and plasma concentrations of urea in women, cows, ewes, female 

buffaloes, and mares (Baki Acar, Birdane, Dogan, & Gurler, 2013; Collins et al., 1997; D. 

S. Hammon, Holyoak, & Dhiman, 2005; Jozwik, Teng, & Battaglia, 2006; Leroy et al., 

2004; Nandi, Kumar, Manjunatha, & Gupta, 2007). Follicular fluid is composed of water 

and solutes from plasma and metabolites from follicular cells, and its composition is an 

important factor because it is in direct contact with the oocyte-cumulus complexes before 

ovulation (Jozwik et al., 2006; Nandi et al., 2007). The follicular fluid composition 

changed as follicles grew (Leroy et al., 2004), possibly due to an increase in follicular 

vascularity (Acosta, Hayashi, Matsui, & Miyamoto, 2005; Gastal et al., 2007), dilutions 

caused by an increase in follicular fluid volume (Nandi et al., 2007), and an increase in the 

permeability of the blood-follicle barrier (Bagavandoss, Midgley, & Wicha, 1983). 

Similarly, an increase in BUN during the luteal phase caused an increase in urea 

nitrogen concentrations in the uterus of cows and ewes and a decrease in intrauterine pH 

(Elrod & Butler, 1993; C. Elrod et al., 1993; D. S. Hammon et al., 2005; Ellen R Jordan, 
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Thomas E Chapman, Donald W Holtan, & Lloyd V Swanson, 1983; T. McEvoy et al., 

1997; Slade, Robinson, & Casey, 1970). However, an absence of changes in the uterine 

pH related to an increase in BUN after a high protein diet was also reported (Amundson et 

al., 2016). These changes in the intrauterine environment will affect early embryos when 

they arrive to the uterus, as they are dependent on the uterine histotroph for nutrition (Allen 

& Wilsher, 2009; C Klein & Troedsson, 2011). On a molecular level, high urea 

concentrations changed the mRNA expression evaluated with targeted real-time PCR in 

vitro of bovine endometrial explants with an altered endometrial gene expression related 

to cell growth, proliferation, differentiation, and immune function (Gunaretnam, 

Pretheeban, & Rajamahendran, 2013).  

Ewes that received either urea or a diet with CP higher than daily recommendations 

that increased BUN, did not have a difference in the number of embryos recovered at days 

two, three, four or five (Berardinelli, Weng, Burfening, & Adair, 2001; Fahey, Boland, & 

O’Callaghan, 2001). Interestingly, the duration of urea-treatment influenced the number 

of embryos recovered at seven days after artificial insemination (AI) in cows. Cows that 

received urea-treatment for a short period (from the day of AI until the day of embryo 

collection) had a lower number of embryos recovered per cow, when compared to those 

that received a long urea-treatment (ten days before AI), or that received no urea (3.8 ± 

0.3, 6.7 ± 0.4, and  6.1 ± 0.3 embryos, respectively) (Dawuda et al., 2002). However, urea-

treatment reduced the mean number of cells per embryo recovered from ewes at day 4 

(10.27% ± 0.27 and 8.17% ± 0.29 for untreated and urea-treated donors, respectively) 

(Fahey et al., 2001), and also reduced the percentage of recovered day-4 embryos with 

more than 16 cells (33% and 86% for urea-treated and control ewes, respectively) (T. 
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McEvoy et al., 1997). Similarly, cows that received urea-treatment for a short time had a 

lower percentage of embryos (53.3%) morphologically graded as ‘very good’ and ‘good’ 

when compared to animals that received a control diet or urea-treatment for a longer time 

(67.4% and 67.5%, respectively) (Dawuda et al., 2002). These results suggest that although 

the total number of embryos is not affected, treatments that resulted in an increase of BUN 

did have negative effects on the early embryo development up to 4 days after estrus. 

Additionally, the negative effects of urea-treatment on the embryo development was 

influenced by the duration of treatment, with a shorter treatment having more negative 

effects, perhaps because the animal did not have time to adapt and create compensatory 

mechanisms. 

Furthermore, when embryos with good morphological quality and at least eight 

cells, collected at day 4 from control or urea-treated donor ewes, were transferred to 

recipients (in a donor to recipient combination of: [1] urea-treated donor to untreated or 

urea-treated recipient, or [2] untreated donor to untreated or urea-treated recipient), the 

pregnancy rate until days 34 - 36 after estrus was not reduced (70% for untreated and 75% 

for urea-treated recipients) (Fahey et al., 2001). Embryos were collected from ewes that 

received a urea-supplementation, at day 4 or day 11, and transferred to ewes also receiving 

treatment, with different pregnancy rates at day 18 (75% and 33%, respectively, for control 

and urea-treated animals) (T. McEvoy et al., 1997). Thus, the changes in uterine 

environment due to a BUN increase is not the only factor related to the reduction of embryo 

survival and pregnancy maintenance in ewes (Berardinelli et al., 2001). Conversely, 

embryos collected at day 3 or 7 from cows that received urea-treatment or diets with high 

CP had similar percentages of recovery, stage of development, and morphological quality 
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when compared to animals that received a control treatment (Amundson et al., 2016; Gath 

et al., 2012; Rhoads et al., 2006). Additionally, embryos from cows with high BUN, 

transferred to recipients, receiving diets resulting in low or high BUN, had lower 

pregnancy rates when compared with embryos collected from cows with low BUN. The 

recipient diets did not affect pregnancy rates (Rhoads et al., 2006). These results suggest 

detrimental effects caused by elevated urea and/or other metabolites in vivo to embryos 

during early development. 

In vitro maturation and fertilization were performed with cumulus oocyte 

complexes from animals with high or low BUN or with medium supplemented with 

different concentrations of urea. Embryos collected from ewes at day 4 after urea-

treatment, oocytes collected from cows with high BUN and cultured in vitro, and oocytes 

cultured in medium with high urea (from 0 to 10 mM urea concentration) had reduced 

fertilization rates, lower cleavage rates, higher total apoptotic cell rate, lower rate of 

blastocyst hatching, and a smaller proportion of embryos which developed into blastocysts 

(De Wit, Cesar, & Kruip, 2001; Ferreira et al., 2011; Kowsar et al., 2018; T. McEvoy et 

al., 1997; Ocon & Hansen, 2003; Santos et al., 2009). After maturation of bovine oocytes 

in the medium supplemented with urea (18.7 mg/dL) for 24 hours, oocytes had a shrunken 

morphology (Kowsar et al., 2018). Conversely, other studies found no difference between 

rates of recovery or quality of oocytes collected from cows that received a control or high 

CP diet, or cows that received urea-treatment after fertilization and culture in vitro 

(Amundson et al., 2016; Ferreira et al., 2011), and no difference in oocyte cleavage or 

blastocyst hatching (Amundson et al., 2016). Therefore, several in vitro studies show a 
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sensitivity of oocytes and embryos to urea with a number of adverse effects during their 

early stages related to their morphology as well as their developmental potential. 

Oocytes matured in vitro with different media pH containing acid dimethadione for 

8 days (resulting in media pH of 7.4, 7.1, 7.0, and 6.8 pH), resulted in a consequent lower 

cleavage rate and development to the blastocyst stage and higher oocyte degeneration 

(Ocon & Hansen, 2003). These detrimental effects of a low pH environment on the 

development of oocytes support the hypothesis that a lower uterine pH associated with 

higher BUN would have a negative effect on resulting pregnancy rates. 

Concentrations of BUN greater than 16 mg/dL or 19 mg/dL resulted in an 

approximate 20% reduction in pregnancy rates in heifers and lactating dairy cattle (W. R. 

Butler, J. J. Calaman, & S. W. Beam, 1996; Elrod & Butler, 1993; Ferguson, Galligan, 

Blanchard, & Reeves, 1993). Similarly, ewes with an elevated BUN had lower pregnancy 

rates at day 18 after embryo transfer, 33% and 75%, respectively, when compared to 

controls (T. McEvoy et al., 1997). Conversely, lactating cows and beef heifers with normal 

or high BUN had no differences in pregnancy rates evaluated 30 days after the period of 

natural breeding (cows were housed with bulls for a 21-day natural breeding period) (46 ± 

8.4% and 47 ± 8.5%, control and high protein diet groups, respectively) (Amundson et al., 

2016; Carroll, Barton, Anderson, & Smith, 1988). The differences in effects of BUN on 

pregnancy rates among these studies have not been explained; however, treatments used 

to increase BUN were different, the time of exposure to elevated BUN were different and 

the time of pregnancy diagnosis were different among these studies. 

Based on results from studies with cows and ewes, there was also a relationship 

between BUN and systemic progesterone concentrations, although the reported results 
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have been inconsistent. For instance, progesterone concentrations were lower when cows 

had a higher BUN concentration (Jordan & Swanson, 1979; Sonderman & Larson, 1989). 

However, other studies with cows reported no variation in the concentrations of 

progesterone according to BUN concentrations (Amundson et al., 2016; W. R. Butler et 

al., 1996; Elrod & Butler, 1993; Rhoads et al., 2004). Similarly, when ewes received 

different diets that resulted in high or low BUN concentrations, there was no difference in 

progesterone concentrations (Berardinelli et al., 2001; T. McEvoy et al., 1997). The 

differences in the pregnancy rates between these studies might be due to the different 

treatments used to elevate BUN, the different time of exposure to elevated BUN and the 

different time of pregnancy diagnosis. 

Although, high CP diets or urea-treatment in horses resulted in an increase in BUN, 

studies have focused on the relationship between BUN and exercise performance in horses 

and not on reproductive function, as was done with ruminants. For example, when horses 

trained for three-day-eventing received diets containing 7.5%, 9.0%, 11.0% or 13.0% CP 

during 140 days of training, there was an increase in BUN proportional to CP levels of 

34.2, 39.8, 46.8, and 51.2 mg/dL, respectively (Oliveira et al., 2014). Similarly, racing 

Standardbred geldings were fed a forage-only diet (timothy and meadow fescue fertilized 

with different levels of nitrogen) for 23 days, with high CP (16.6%) or recommended 

intake of CP (12.5%). The higher CP diet resulted in an elevated BUN when compared to 

the other diet, 17.65 mg/dL and 15.69, respectively (Connysson et al., 2006). Horses that 

received either a basal diet (5.9% CP) or a diet with fishmeal (12.7% CP) for 14 days had 

different BUN values, 9.5 mg/dL and 15.0 mg/dL (Reitnour & Treece, 1971). Horses that 

received a 13.5% CP content over 63 days of training had a significantly higher BUN when 
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compared to horses that received 7.6% CP content, 27.44±1.0 and 25.72±1.1, respectively 

(P. Graham-Thiers, Kronfeld, Kline, Sklan, & Harris, 2000). Additionally, sedentary 

horses that received a high protein diet (12% CP) compared to a low protein diet (7.5% 

CP) had lower venous blood pH (7.449 pH or 7.395 pH) which might be due to the 

oxidation of amino acids resulting in an acid load that lowered the blood pH(P. M. 

Graham-Thiers & Kronfeld, 2005). Overall, these studies show that BUN has a strong 

positive relationship with dietary CP and blood pH, providing evidence of the importance 

of CP levels in the diet of broodmares because of the possible impact on their reproductive 

tract and fertility. 

Even though high protein diets caused an increase in equine BUN, and an elevated 

BUN has deleterious effects on reproduction in cows and ewes, it is part of normal equine 

management practices to feed diets exceeding CP requirements (Harper et al., 2009; 

Honoré & Uhlinger, 1994). The effects of a high BUN on the reproductive tract urea 

concentrations and on embryonic development in mares are unknown. Thus, it is 

paramount that studies be done in order to fill the gaps in knowledge regarding the 

influence of elevated BUN on reproductive functions in mares.
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CHAPTER 2.  A systemic urea-infusion to model a high protein diet alters the 
endometrial transcriptome of mares 
 
2.1. Abstract 

Fertility of ruminants is decreased with high blood urea nitrogen (BUN); however, the 
mechanisms are unknown and have not been investigated in mares. We developed an 
experimental model to elevate BUN during diestrus. There were both urea and control 
treatments (7 mares/treatment), done in a crossover design. Urea-treatment consisted of a 
loading dose of urea (0.03 g/kg of BW) and urea injections over 6 hours (0.03 g/kg of 
BW/hr). Control mares received the same volume of saline solution. Blood samples were 
collected to measure BUN. Uterine and vaginal pH were evaluated after the last 
intravenous infusion, then endometrial biopsies were collected for RNA-sequencing done 
with a HiSeq 4000. Cuffdiff(2.2.1) was used to calculate differentially expressed genes 
(DEG) between urea and control groups (FDR-adjusted p-value < 0.1). There was a 
significant increase in BUN and a decrease of uterine pH in the urea group compared to 
the control group. A total of 193 genes were DEG between the urea and control groups, 
with five genes identified as upstream regulators (ETV4, EGF, EHF, IRS2 and SGK1). The 
DEG were predicted to be related to cell pH, ion homeostasis, changes in epithelial tissue, 
fatty acid metabolism, and solute carriers. Changes in gene expression reveal alterations 
in endometrial function that could be associated with adverse effects on fertility of mares. 

 
KEYWORDS: High protein diet, high blood urea nitrogen concentrations, uterus.
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2.2. Introduction 

Early embryonic and fetal losses affect reproductive efficiency and productivity in 

farm animals (B. A. Ball, 1988). Nutritional imbalance and/or disorders are some of the 

factors that could lead to these losses. Several studies have shown that a high protein diet 

results in an increase in blood urea nitrogen (BUN), associated with lower fertility in cows 

and ewes (Butler, 2000b; W. R. Butler et al., 1996; C. C. Elrod, M. Van Amburgh, & W. 

R. Butler, 1993; Ferguson et al., 1993; T. G. McEvoy, J. J. Robinson, R. P. Aitken, P. A. 

Findlay, & I. S. Robertson, 1997). 

Cows receiving a high protein diet exhibited an increase in systemic BUN and a 

decrease in uterine luminal pH at day 7 of the estrous cycle (diestrus) (C. Elrod et al., 1993; 

D. S. Hammon et al., 2005). This alteration in the uterine environment is critical, as by this 

time the embryo would have reached the uterus and the endometrium would be undergoing 

remodeling to prepare for the early conceptus (C. Klein, Scoggin, Ealy, & Troedsson, 

2010). When urea, a metabolite of protein digestion, was given intravenously or orally to 

cows and ewes during the luteal phase, conditions mimicked those of a high protein diet, 

including an acute elevation of BUN, an increase in uterine urea, and a decrease in uterine 

pH (Elrod & Butler, 1993; C. Elrod et al., 1993; C. C. Elrod et al., 1993; D. S. Hammon 

et al., 2005; E. R. Jordan, T. E. Chapman, D. W. Holtan, & L. V. Swanson, 1983; T. G. 

McEvoy et al., 1997; Rhoads et al., 2004; Smith et al., 2000). Additionally, the in vitro 

effects of high urea concentrations on bovine endometrial explant from diestrus resulted 

in altered endometrial gene expression related to cell growth, proliferation, and 

differentiation (Gunaretnam et al., 2013). It has been suggested that there might be 

deleterious effects of an altered endometrial tissue and uterine environment on early 
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embryonic development due to a high BUN in animals (De Wit et al., 2001; Gunaretnam 

et al., 2013). For instance, a lower media pH resulted in detrimental consequences to 

bovine embryos cultured in vitro (Ocon & Hansen, 2003). Overall, these studies showed 

that a high protein diet caused an increase in systemic BUN, an increase in intrauterine 

urea, and a decrease in uterine pH. 

Even though high protein diets might have deleterious effects on reproduction in 

cows and ewes, it is part of normal nutrient management practices to feed protein in excess 

of requirements to horses (Harper et al., 2009; Honoré & Uhlinger, 1994). This excessive 

amount of protein might result in BUN concentrations above the normal range for horses 

that may result in negative consequences to the uterine environment. However, no studies 

to date have addressed the effects of a high protein diet on fertility in the mare. 

It is important to study the effects of a high BUN in the endometrium of mares, as 

broodmares might be routinely receiving a high protein diet. To the best of our knowledge, 

there are no published studies regarding the influence of elevated BUN on the endometrial 

transcriptome of mares. Therefore, we hypothesized that an acute intravenous infusion of 

urea would elevate BUN with a concomitant decrease in uterine pH resulting in 

transcriptomic changes in the endometrium of mares. The objectives of the present study 

were to 1) develop a model to elevate BUN, 2) correlate changes in BUN to changes in 

uterine pH, and 3) evaluate how changes in circulating BUN affected the endometrial 

transcriptome of mares. 
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2.3. Material and methods 

All animal procedures were completed in accordance to the Institutional Animal 

Care and Use Committee of the University of Kentucky (Protocol #2011-0876). Clinically 

healthy mares of mixed breeds, ranging from 5 to 15 years of age were used in this study. 

All mares underwent a reproductive examination and transrectal ultrasonography for 

reproductive tract evaluation (vulva, cervix, uterus, and ovaries) before the experiment. 

The researchers only used mares with no detectable abnormalities of the reproductive 

system. 

Mares received a treatment or control infusion (n = 7 mares/group) in a crossover 

design. The intervening estrous cycle was skipped and served as a washout cycle. Mares 

received 2,500 IU of human chorionic gonadotropin (hCG) (Chorulon; Intervet, Millsboro, 

DE) intravenously when they had a follicle of at least 35 mm in diameter and pronounced 

uterine edema as determined by transrectal ultrasonography (ExaGo; ECM Co., 

Angouleme, France). Animals were scanned daily by ultrasound for ovulation detection 

(Day 0 = ovulation) and infusions were initiated at Day 7 of diestrus (D7). On the day of 

infusion, both jugular veins were catheterized using a 14Gx2” gauge indwelling catheter 

(NIPRO medical corporation, Miami, FL). One jugular catheter was used for blood 

collection, and the opposite jugular catheter was used for infusion of urea (treatment) or 

saline (control). Treatment consisted of a loading dose of 0.03 g/kg of body weight of urea 

(Sigma-Aldrich Company, St. Louis, MO) diluted in 100 mL of saline solution (Hospira, 

Inc, Lake Forest, IL) (15 g of urea for a 500 kg horse) to achieve a rapid increase in urea 

concentrations, and control mares received 100 mL of saline solution. Subsequently, mares 

received a bolus injection of urea (0.03 g/kg of body weight/hr) diluted in 15 mL of saline 
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solution every 30 minutes over 6 hours (90 g of urea over 6 hours for a 500 kg horse). The 

control group received the same amount of saline solution as the urea group, 100 mL of 

saline solution as a loading dose and 15 mL of saline solution every 30 minutes over 6 

hours. 

 

2.3.1. Blood urea nitrogen concentration 

Blood samples were collected hourly in 10 mL vacutainer tubes with sodium 

heparin (BD Vacutainer, Franklin Lakes, NJ). Blood samples were promptly centrifuged 

at 1500 x g for 10 minutes at 4°C, and plasma was stored at -20°C. BUN was measured 

with a colorimetric spectrophotometric assay following an adapted protocol previously 

described (Mok et al., 2018). All reagents were purchased from Sigma-Aldrich. The 

standard curve ranged from 5.6 mg/dL to 56.0 mg/dL. Urea was diluted (8M after 

constitution with 16 mL high purity water) to 5.6 mg/dL and 56.0 mg/dL to be used as low 

and high controls. The reaction consisted of analyzing urea by enzymatic hydrolysis to 

ammonia at room temperature. The reaction was done in microcentrifuge tubes (2 mL) 

with 10 μL of each plasma sample in duplicate and 125 μL urease buffer was added, and 

the samples were incubated for 20 minutes. The urease enzyme hydrolyzes urea to produce 

carbon dioxide and ammonia (CH4N2O + Urease buffer  CO2 + 2NH3). Then, 250 μL of 

phenol nitroprusside solution, 250 μL of alkaline hypochlorite solution (0.2%), and 1000 

μL of distilled water were added (NH3 + phenol nitroprusside + alkaline hypochlorite + 

H2O  Indophenol blue) (Tabacco & Meiattini, 1985). After a 25-minute incubation, a 

200 μL aliquot was transferred to a 96-well plate and read in an Epoch microplate 

spectrophotometer plate reader (Biotek, San Francisco, CA) at 570 nm. The intra- and 
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interassay coefficients of variation for BUN concentrations were 0.5% and 9.8%, 

respectively. The lower limit of detection of the assay was 0.11 mg/dL. 

 

2.3.2. Uterine and vaginal pH 

Immediately after the last intravenous infusion with urea or saline solution, uterine 

and vaginal pH were measured. The mares were restrained in palpation stocks, and their 

tails were wrapped and tied. Feces were removed from the rectum manually. The perineal 

region was washed three times with povidone-iodine scrub, rinsed with clean water, and 

dried with clean paper towels. An adapted epoxy pH probe (model number 911600, 

Thermo Fisher Scientific, Waltham, MA) attached to a portable pH meter (Accumet 

AP115, Thermo Fisher Scientific) was used for pH measurements. Immediately before pH 

measurements, the probe was calibrated with calibration solution buffers at pH 4, 7 and 10 

(Thermo Fisher Scientific). The pH probe was introduced into the vagina with the tip 

protected by a sterile gloved hand and passed through the cervix. The pH probe was 

advanced into the uterus until it reached the uterine body and was held in place by the 

examiner. The examiner introduced the other hand into the rectum to increase the contact 

surface between the uterine wall and the pH device. When the uterine pH measurement 

was completed, the pH probe was removed from the uterus and placed into the vagina, in 

contact with the vaginal mucosa next to the cervix. The pH meter probe was maintained 

in the same position until two stable reads were completed. This procedure was done two 

times, in the uterus and vagina, and the mean of the readings was calculated. 
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2.3.3. Endometrial biopsies 

After uterine pH measurements, the perineal region was washed again three times 

with povidone-iodine scrub, rinsed with clean water and dried with clean paper towels. A 

Jackson uterine biopsy forceps designed for horses (60‐cm length, 4 mm × 28 mm cut‐off 

area, Jorgensen Laboratories, Inc., Loveland, CO) was guarded in a sterile gloved hand 

and passed through the cervix into the uterus. A uterine biopsy was collected from the base 

of the uterine horn. The sample was removed from the instrument with a sterile needle 

(NIPRO medical corporation), and preserved in RNAlater (Thermo Fisher Scientific), kept 

at 4°C overnight and then kept at -80°C until RNA isolation (Herrera et al., 2018). Mares 

received dinoprost tromethamine (5 mg, im; Lutalyse; Pfizer, New York, NY) to help with 

uterine clearance after intrauterine procedures. 

 

2.3.4. RNA extraction 

Total cellular RNA was extracted from endometrial samples using TRIzol Reagent 

(Thermo Fisher Scientific) following the manufacturer’s recommendations. After 

extraction, RNA concentration and quality were analyzed using a NanoDrop DP-1000 

spectrophotometer (Agilent Technologies, Palo Alto, CA) and a Bioanalyzer® (Agilent, 

Santa Clara, CA). All samples had a 260/280 ratio > 2.0, a 28S:18S rRNA ratio > 2.0 and 

RNA integrity number (RIN) > 8 (8.95 ± 0.4, mean ± SEM). A total of 1 μg of RNA was 

treated with DNase I (Ambion Inc., Austin, TX) for 30 minutes at 37°C to remove genomic 

DNA according to the manufacturer’s instructions. The extracted RNA was kept at -20°C 

until further analyses.  
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2.3.5. mRNA library preparation and Next Generation Sequencing 

The extracted RNA (1µg), as described above, was sent to the University of Illinois 

at Urbana-Champaign for library preparation and RNA Sequencing. Paired-end reads with 

150 nucleotides in length were produced. The RNAseq libraries were prepared with 

Illumina's TruSeq Stranded mRNAseq Sample Prep kit (Illumina, San Diego, CA). Read 

1 aligns to the antisense strand and Read 2 aligns to the sense strand. The libraries were 

quantitated by qPCR and sequenced on one lane for 101 cycles from each end of the 

fragments on a HiSeq 4000 using a HiSeq 4000 sequencing kit version 1.  The lane 

produced a total of 700 million reads. Fastq files were generated and demultiplexed with 

the bcl2fastq v2.17.1.14 Conversion Software (Illumina). 

 

2.3.6. Next Generation Sequencing data analysis 

The Fastq files were evaluated for read quality using FastQC 0.11.4 (Andrews, 

2010b). Subsequently, Trim Galore 0.4.1 (Krueger, 2012) was used for adapter and read 

quality trimming (Phred score threshold of 30). Reads were mapped to the Equus caballus 

reference genome (EquCab 3.0) using the software STAR 2.5.3a (Dobin et al., 2013), then 

annotated with the equine reference annotation from NCBI using Cufflinks 2.2.1 (Trapnell 

et al., 2012). Fragments per kilobase per million (FPKM) were used to determine the 

expression level of genes. Lastly, we used Cuffdiff 2.2.1 (Trapnell et al., 2012) to calculate 

differentially expressed genes (DEG) between samples from the control and urea groups. 

Significance level was set at FDR-adjusted p-value of the test statistic < 0.1 using a 

Benjamini-Hochberg correction. 
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2.3.7. Functional annotation and pathway analysis 

The Database for Annotation, Visualization, and Integrated Discovery 

Bioinformatics Resources (DAVID, version 6.8, https://david.ncifcrf.gov/home.jsp) was 

used to annotate DEG in relation to biological process, molecular function, and cellular 

component (Huang da, Sherman, & Lempicki, 2009). A functional classification was 

performed based on the Official Gene Symbol of Equus caballus genes in DAVID. GOplot 

(http://wencke.github.io/) was used to illustrate the results. Additionally, PANTHER 

(version 13.1, http://www.pantherdb.org/) statistical overrepresentation test with a Fisher's 

Exact test with no correction was used to show protein class and pathways (Mi & Thomas, 

2009). GOplot was used to illustrate the results. DAVID and PANTHER were used to 

describe the functions of DEG based on public genomic resources through gene-set 

enrichment. 

A core analysis of the DEG was conducted using Ingenuity Pathway Analysis (IPA, 

QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-

analysis) as this commercial software package uses networks based on cause and effect 

relationships reported in previous studies. A diseases and biological function analysis was 

done to show networks of biological interest. Additionally, an upstream regulator analysis 

was conducted to identify molecules that are upstream of the genes in this study that affect 

and help to explain the changes in expression observed (Kramer, Green, Pollard, & 

Tugendreich, 2014).  

The R-based Weighted Correlation Network Analysis (WGCNA) package was 

used to evaluate the correlation patterns among the genes in this RNA-sequencing 

experiment (Langfelder & Horvath, 2008). The FPKM data was transformed to log2(x+1) 



 

 

26 

prior to the analysis to normalize the data. WGCNA was used to generate clusters of highly 

interconnected genes identified by different colors, called modules. A power of 10 was 

chosen because it was the lowest possible power term that topology fitted a scale free 

network. Additionally, genes that were highly connected in the modules were identified as 

hub genes. 

 

2.3.8. Protein-protein interactions 

 STRING consists of a protein network of genome-wide functional connectivity 

from published and predicted protein-protein interactions (PPI), allowing the prediction of 

the protein-protein interactions of the proteins coded by our DEG (Szklarczyk et al., 2017). 

The protein-protein interactions related to the DEG between the urea and control treated 

animals were predicted through a correlation analysis of expression level using the 

STRING database (version 10.5, http://www.string-db.org/). Additionally, a PPI analysis 

using the genes from each of the IPA disease and biological functions was done to further 

characterize the protein interactions between genes that have a similar function. 

 

2.3.9. Quantitative Real-Time PCR 

 Expression levels of a subset of DEG determined by RNA sequencing between the 

control and urea groups were confirmed with RT-qPCR. The extracted RNA was reverse 

transcribed using a high-capacity cDNA reverse transcription kit and random hexamers 

(Thermo Fisher Scientific). The cDNA was kept frozen at -20°C until quantitative real-

time PCR (RT-qPCR) was done. Primers for the selected transcripts were designed using 

the Primer-BLAST (National Center for Biotechnology Information, NCBI) function 
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(Table 2.1). The RT-qPCR was done using PowerUp™ SYBR™ Green Master Mix 

(Thermo Fisher Scientific) with the program: 95 °C for 10 min, 40 cycles of 95 °C for 15 

s and 60 °C for 1 min, and 55–95 °C for dissociation cycling conditions. Each reaction 

was done in duplicate. 

 

Table 2.1. Forward and reverse primers used for quantitative Real-Time PCR 
analysis. 

Gene symbol Forward primer 
sequence (5’-3’) 

Reverse primer 
sequence (5’-3’) 

Accession 
number 

Product 
size 

B2M GTGTTCCGAAGG
TTCAGGTT 

ATTTCAATCTCA
GGCGGATG NM_001082502.3 103 

EEF1A1 CAACATCGTCGT
CATTGGGC 

CAGCAGCCTCCT
TCTCGAAT NM_001081781.1 119 

ANGPTL4 GGCTCCGTGGAC
TTTAACCA 

GGTCCCCCATGA
TGAGATGC XM_023644667.1 107 

AQP5 CCTGCTCTTCCC
CAACTCG 

GGCTCATACGTG
CCCTTGAC AJ514427 66 

CA2 TACTGGACCTAC
CCAGGCTC 

TGCCCTCCGCGT
TGAAATTA XM_001488490.4 136 

EGF CCCCAGGCAAT
GGAGTGTAG 

AGCTCCATTTAG
AGCGGTGG XM_014737940.2 143 

ENPP1 GATCCAGACCA
GGCTCCCTC 

TCCGAGCTCTGT
GTAACCTCA XM_023651100.1 148 

ERRFI1 AAGACAGGCCT
CCGAAAGTG 

CAGGCTTTTAGG
ACTGGGGG XM_023635858.1 77 

ETV1 GGGGAAGTGCT
GGGCAATAA 

GCAATGGCGATC
AACGAGAC XM_005609238.3 122 

FADS1 CCACGTCTTCTT
CCTGCTGT 

CCCCCTGAACTG
TGCTGAG XM_023654188.1 134 

IGFBP3 GGAAACAGCAG
TGAGTCGGA 

CTTGGTGTGGAT
CGTGTGGA XM_023639032.1 111 

INSR GTGAGTACGAG
GAGTCTGCC 

GAGACGGTCTGG
GGACAAAA XM_023644608.1 141 

ITGB8 CATCGTGGTGCC
AAATGACG 

GGCCTAGTGAGG
GATGTTCC XM_001497221.5 86 

KCNA3 AGTTTGATGGAC
CCGTCAGC 

TTCCAGGAGGGG
AGTTTCCA XM_023641433.1 148 

LAMC2 CTGGAGAGCGC
TGTGATAGG 

GGTACAGCCCTG
AGGGTTTC NM_001081768.1 71 

PIGR GTTTTGGCAGCA
GCATCCAG 

ACTCCTTGCGAG
GGATGTTT XM_014739411.2 134 

PRLR GTCACTGCTCCC
GAAACAGA 

GTCACCTGGGAC
ACCTTAGC XM_001500104.4 96 

SERPINA14 CTGACAGATGC
AAAGAGCAGC 

AAAAGTCCGCAG
AGGGTGAG XM_014735597.1 131 
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Table 2.1(continued). Forward and reverse primers used for quantitative Real-Time 
PCR analysis. 

SGK1 GGGTGTGAAGT
GAAAGAGCCA 

AAAGTCGTTCAG
GCCCATCC XM_023651133.1 123 

SPINK7 TTTTCCCTCGTG
TTGGCTGA 

AGGGCACAACAA
CCTTCTCC XM_003362870.2 88 

Primers were generated using the National Center for Biotechnology Information (NCBI) primer-
BLAST tool. Key: beta-2-Microglobulin (B2M), eukaryotic Translation Elongation Factor 1 Alpha 1 
(EEF1A1), angiopoietin like 4 (ANGPTL4), aquaporin 5 (AQP5), carbonic anhydrase 2 (CA2), 
epidermal growth factor (EGF), ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), ERBB 
receptor feedback inhibitor 1 (ERRFI1), ETS variant 1 (ETV1), fatty acid desaturase 1 (FADS1), insulin 
like growth factor binding protein 3 (IGFBP3), insulin receptor (INSR), integrin subunit beta 8 
(ITGB8), potassium voltage-gated channel subfamily A member 3 (KCNA3), laminin subunit gamma 
2 (LAMC2), polymeric immunoglobulin receptor (PIGR), prolactin receptor (PRLR), serine peptidase 
inhibitor clade A (alpha-1 antiproteinase, antitrypsin) member 14 (SERPINA14), serum/glucocorticoid 
regulated kinase 1 (SGK1), serine peptidase inhibitor, Kazal type 7 (putative) (SPINK7). 

 

The RT-qPCR efficiency was determined using LinRegPCR (version 2012.0) to 

ensure that it was between 1.8 and 2.2 (Ruijter et al., 2009). Mean threshold cycles (CT) 

were used to show changes in the mRNA expression and then normalized to the 

housekeeping genes Beta-2-Microglobulin (B2M) and Eukaryotic Translation Elongation 

Factor 1 Alpha 1 (EEF1A1) to calculate delta CT values (ΔCT) (Livak & Schmittgen, 

2001). The two housekeeping genes were chosen with GeNORM (De Spiegelaere et al., 

2015) as the most stably expressed genes in the endometrial samples. 

 

2.3.10. Statistical analyses 

The BUN, uterine and vaginal pH and RT-qPCR were tested for normality with a 

Shapiro-Wilk test. The BUN concentration was not normally distributed and a normal 

quantile transformation was done. A Fit Least Squares model using hour, treatment and 

interaction between hour and treatment with mare as a random effect was used, followed 

by a Student’s t-test. The uterine and vaginal pH data had a normal distribution and were 

analyzed with a one-tailed paired t-test. Pearson’s correlation coefficients were done 
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between the BUN concentration at the end of the treatment (H6) and the uterine pH and 

also between the uterine and vaginal pH. 

A Pearson’s correlation coefficient was used to determine the correlation between 

the -ΔCT (negative delta CT) from RT-qPCR results and the FPKM from RNA-

sequencing results. Data was reported as mean ± SEM. Significance was set at P ≤ 0.05 

and trend at 0.1 > P > 0.05. JMP Pro (version 14; SAS Institute, Cary, NC, USA) was used 

for all statistical tests. 

 

2.4. Results 

2.4.1. Blood urea nitrogen concentrations 

There was an effect of time of sampling (P < 0.0001) and of the interaction between 

time of sampling and treatment (P = 0.0008). There was no treatment effect (P = 0.90). 

Immediately before the start of the treatment (H0), the urea and control groups had BUN 

concentrations of 14.26 ± 0.69 and 14.12 ± 0.99 mg/dL in the control and treated mares, 

respectively, with no statistical difference (P > 0.05). The BUN at H6 was 14.33 ± 0.66 

and 20.36 ± 0.75 mg/dL in the control and treated mares, respectively, showing a statistical 

difference (P < 0.05) (Figure 2.1). 
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Figure 2.1. Blood urea nitrogen (mg/dL) analyzed in diestrus mares receiving an intravenous control 
or urea treatment over 6 hours done in a crossover design. Results are presented as mean and SEM. The main 
effect of hour, treatment, and interaction are shown. * P ≤ 0.05. 

 

2.4.2. Uterine pH 

Based upon a one-tailed paired t-test there was a lower uterine pH in the urea group 

(P = 0.05). Uterine pH was 7.02 ± 0.06 and 6.83 ± 0.05 pH in the control and treated group 

at H6, respectively (Figure 2.2). There was a negative correlation (R = -0.56, P = 0.04) 

between the BUN at H6 and uterine pH (Figure 2.2). 
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Figure 2.2. Uterine pH (A) and vaginal pH (B) analyzed in diestrus mares receiving an intravenous 
control or urea treatment over 6 hours done in a crossover design, lines connect the values for each mare after 
respective treatment C) Correlation between blood urea nitrogen (BUN, mg/dL) concentrations at hour 6 and 
uterine pH D) Correlation between uterine and vaginal pH at hour 6. Results are shown as mean. 

 

2.4.3. Vaginal pH 

 Based upon a one-tailed paired t-test the vaginal pH was not different between the 

treated and control group (P = 0.15). Vaginal pH was 7.13 ± 0.05 and 6.99 ± 0.11 in the 

control and treated group at H6, respectively (Figure 2.2). The correlation between uterine 

and vaginal pH was not significant (R = 0.21, P = 0.46, Figure 2.2). 
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2.4.4. RNA sequencing 

 The RNA-sequencing analysis performed on 14 endometrial samples resulted in 

18,950 genes. The average of input reads per sample was 28,045,588; the input read length 

for paired end reads was 150 and 95.5% of uniquely mapped reads were obtained for the 

samples sequenced (Table 2.2). 

 

Table 2.2 Summary of RNA sequencing data for 14 endometrial samples. 

Number Group Number of 
input reads 

Input read length for 
paired end reads 

Uniquely 
mapped reads 

Uniquely mapped 
reads % 

1 CONTROL 21,609,396 150 20,577,813 95.23 
2 UREA 38,190,014 150 36,639,458 95.94 
3 CONTROL 29,143,588 150 27,860,949 95.6 
4 UREA 20,992,262 150 19,975,343 95.16 
5 CONTROL 40,534,917 150 38,931,171 96.04 
6 UREA 23,391,217 150 22,171,251 94.78 
7 CONTROL 34,523,977 150 33,077,984 95.81 
8 UREA 30,571,360 150 29,211,317 95.55 
9 CONTROL 20,954,527 150 19,920,283 95.06 
10 UREA 25,449,880 150 24,400,353 95.88 
11 CONTROL 33,555,929 150 32,008,513 95.39 
12 UREA 28,445,829 150 27,138,814 95.41 
13 CONTROL 21,115,137 150 20,130,465 95.34 
14 UREA 24,160,197 150 23,093,575 95.59 

 

2.4.5. Differentially expressed genes 

A total of 193 genes were differentially expressed between the urea and control 

groups. A total of 29 were upregulated and 162 were downregulated in the urea group in 

comparison to the control group (Figure 2.3, Appendix 1). Additionally, 2 DEG, aldo-keto 
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reductase family 1 member C23 (AKR1C23) and alpha-fetoprotein (AFP) were of 

particular interest, as they had no expression in the urea group, only in the control group. 

 

 

Figure 2.3.Volcano plot showing differentially expressed genes between mares from the urea 
treatment and control treatment using a FDR cutoff value < 0.1. Red dots show genes that were not 
differentially expressed, blue dots show genes that were up- or down-regulated. 

 

Genes that were uncharacterized in the NCBI database for Equus caballus had their 

nucleotide sequence (FASTA format) identified in the NCBI database 

(http://www.ncbi.nlm.nih.gov/), then the Basic Local Alignment Search Tool (BLAST, 

http://www.ncbi.nlm.nih.gov/BLAST) (Camacho et al., 2009) was used to identify their 

orthologs in other species (Canis lupus dingo, Equus asinus, Equus przewalskii, Homo 

sapiens). 

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/BLAST
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2.4.6. Functional analyses 

Functional characterization of the DEG between the urea and control treatments 

was done with GO analysis using the DAVID software for biological processes, cellular 

components and molecular functions (Figure 2.4). 
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Figure 2.4. Gene ontology of differentially expressed genes analyzed by DAVID and the GOplot 
package. A) GOBubble plot of differentially expressed genes analyzed by DAVID. The y-axis shows the –
log10(adjusted P-value) and the x-axis shows the z-score. The area of the circles is proportional to the number 
of genes related to the term. A threshold for the labeling is set based on the negative logarithm of the adjusted 
p-value. The Biological Process, Cellular Component and Molecular Function are represented by green, pink 
and blue, respectively. The identification (ID) and description of each term is given. B) GOCircle plot 
showing the number of genes in each GO term. The inside rings are a bar plot, with the height representing 
the significance of the term (-log10 adjusted P-value). Different colors of the inside rings represent the z-
score, with blue showing a decrease and red an increase. The outside rings show the expression levels (logFC) 
for each gene in the GO term. Each dot in the outside rings represents one gene from the GO term, red dots 
show upregulated genes and blue dots show downregulated genes. C) GOChord plot show genes linked by 
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ribbons to their respective GO terms and the logFC of each gene. The colored squares next to each gene 
represent the logFC, with red showing positive logFC, blue showing negative logFC and white showing no 
change. Each GO Term is assigned a color corresponding to the color of the ribbon indicating the relationship 
with the genes. 

 

The PANTHER pathway analysis showed nine pathways related to the urea-

treatment. Among them were EGF receptor signaling pathway, integrin signaling pathway, 

and gonadotropin-releasing hormone receptor pathway (Figure 2.5). The functional 

annotation analysis of differentially expressed genes done with PANTHER, based on 

protein class, showed a prevalence of serine protease inhibitor-enzyme modulator, 

signaling molecule, and transporters (Figure 2.5). 

 

Figure 2.5. Functional annotation analysis of the differentially expressed genes using PANTHER 
(version 13.1) statistical overrepresentation test with a Fisher's Exact test. A) Pathways overrepresented 
analysis shown in pie chart identified by the GO terms in different colors, B) Protein classes overrepresented 
analysis shown in pie chart identified by the GO terms in different colors. 
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The core analysis of the DEG using IPA showed 501 categories of diseases and 

biological functions. The categories that had biological interest for this study and a P < 

0.05 were ion homeostasis of cells (12 genes related, P = 0.007), fatty acid metabolism (13 

genes related, P = 0.000), pH of cells (3 genes related, P = 0.002), growth of epithelial 

tissue (11 genes related, P = 0.002), and development of epithelial tissue (8 genes related, 

P = 0.002) (Figure 2.6). 
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Figure 2.6. Ingenuity Pathway Analysis (IPA) of diseases and biological functions of the 
differentially expressed genes displayed as nodes (genes) and edges (biological relationship between nodes). 
The color intensity of each node represents fold change expression, red (upregulated) and green 
(downregulated). The edges connecting the genes to the respective functions represent the predicted 
relationships, blue representing inhibition and grey representing effect not predicted based on the IPA 
activation z-scores, combination of directional information encoded by the gene expression with information 
curated from the literature. 
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2.4.7. Upstream regulators 

 ETS variant 4 (ETV4), epidermal growth factor (EGF), ETS homologous factor 

(EHF), insulin receptor substrate 2 (IRS2), and serum/glucocorticoid regulated kinase 1 

(SGK1) were predicted as upstream regulators and differentially expressed in our dataset. 

Their respective target molecules in the dataset are shown in Table 2.3. 

 

Table 2.3 Upstream regulators from the IPA analysis when comparing the urea and 
control groups. 

Upstream 
Regulator 

Expr Log 
Ratio 

Molecule 
Type p-value of overlap Target molecules in dataset 

ETV4 -5.332 transcription 
regulator 

0.024 ETV4, MET 

EGF -3.834 growth factor 0.000 ACSL4, IDS, IGFBP3, LCN2, 
MAP3K5, PDK4, 

SLC37A1, SP4, SPHK1, SPRY2 

EHF -1.688 transcription 
regulator 

0.022 ANGPTL4, EHF, MET 

IRS2 -1.253 enzyme 0.028 PPARGC1A, THRSP 

SGK1 -0.939 kinase 0.000 KCNA3, LIF, SCNN1B, SCNN1G 
 

2.4.8. Weighted correlation network analysis (WGCNA) 

The WGCNA analysis identified hub genes, pointing out genes that have an 

important role in the genetic interaction network, by regulating other genes in their module 

showing that they might be markers for urea-treatment in the endometrium of mares. 

WGCNA identified 21 modules that were highly correlated to the traits of interest. The 

Brown Module is of interest, as it had genes with a high membership related to the IPA 

diseases and biological functions; it had a positive correlation with BUN and a negative 

correlation to uterine pH (Figure 2.7). 
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Figure 2.7. Gene expression modules with Weighted Correlation Network Analysis (WGCNA). A) 
Gene clustering tree (dendogram) obtained by hierarchical clustering. The co-expression modules defined by 
the WGCNA are indicated by the color row below the dendogram indicating module membership. Genes 
were assigned to each module using the static tree cutting method. B) Matrix with the module-trait 
relationships and corresponding p-values of the modules on the y-axis and selected traits related with 
treatment on the x-axis. The y-axis is colored according to the correlation, with red representing a strong 
positive correlation and green representing a strong negative correlation. Traits are: group (control and urea 
groups), BUN (blood urea nitrogen concentrations at hour 6 of treatment) and uterine pH (uterine pH 
measured at hour 6 of treatment). 

 

2.4.9. Protein-protein interactions (PPI) 

 The PPI analysis done with STRING, showed a significant PPI enrichment score 

(P = 0.002) with a total of 171 nodes and 59 edges. The average node degree was 0.69 and 

the average local clustering coefficient was of 0.297. The constructed PPI networks 

showed that the DEG encode a group of proteins with several interactions, and are 

biologically connected. This further characterizes the mechanisms of action of urea-

supplementation on the endometrium of mares (Figure 2.8). 
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Figure 2.8. Protein-protein interaction analysis with the STRING algorithm showing nodes 
(proteins) and edges (protein-protein association) of proteins in the differentially expressed genes. The 
functional interaction network represents how the proteins coded by the differentially expressed genes 
between the urea and control groups are related. Thicker edges indicate stronger protein-protein interactions, 
each node represents a protein produced by a single, protein-coding gene locus, node colors represent proteins 
that are first interactors, nodes that have shapes inside indicate that the protein has a known or predicted 3D 
structure. Protein-protein interaction of the Ingenuity Pathway Analysis (IPA) of diseases and biological 
functions: ion homeostasis of cells (A), fatty acid metabolism (B), pH of cells, (C) and growth and 
development of epithelial tissue (D). 

 

2.4.10. Quantitative Real-Time PCR 

 Analysis of the correlation between genes with RT-qPCR (-ΔCT) and the RNA 

sequencing results (FPKM) showed that 13 (72.23%) genes had a significant correlation 
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between the two methods. There was a similar pattern of regulation with a significant 

correlation between –ΔCT and FPKM (Table 2.4). 

 

Table 2.4 Pearson’s correlation of RNA Sequencing (FPKM) and Quantitative Real-Time 
PCR (-ΔCT) to confirm RNA Sequencing results. 

Gene Correlation (R) P-value 
ANGPTL4 0.538 0.047 

AQP5 0.840 0.000 
CA2 0.538 0.046 
EGF 0.611 0.020 

ENPP1 0.746 0.002 
ERRFI1 0.836 0.000 
ETV1 0.382 0.177 

FADS1 0.710 0.004 
IGFBP3 0.723 0.003 

INSR 0.419 0.136 
ITGB8 0.677 0.008 

KCNA3 0.393 0.165 
LAMC2 0.402 0.154 

PIGR 0.601 0.023 
PRLR 0.864 0.000 

SERPINA14 0.688 0.007 
SGK1 0.174 0.551 

SPINK7 0.858 0.000 
 

2.5. Discussion 

To the best of our knowledge, this is the first study to elucidate global changes in 

mRNA expression profile in the endometrium of mares with an elevated BUN. In this 

study, diestrus mares received an acute infusion of urea intravenously to elevate BUN and 

allow evaluation of changes in the endometrial transcriptome. The main findings of the 

current study were that intravenous infusion of urea resulted in an increase in blood urea 

nitrogen and a decrease in uterine pH. The functional analyses of changes in the 

transcriptome in the urea and control groups identified alterations in genes related to pH 

homeostasis; fatty acid metabolism; and sodium, potassium, and glucose channels. These 

results serve to illustrate possible effects of a high BUN on the endometrium of mares. 
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2.5.1. pH of cells 

As expected, the intravenous urea infusion resulted in a significant increase in BUN 

that was inversely related to uterine pH, similar to studies in cows and ewes (C. C. Elrod 

et al., 1993; D. S. Hammon et al., 2005; E. R. Jordan et al., 1983; T. G. McEvoy et al., 

1997; Rhoads et al., 2004; Smith et al., 2000). The IPA disease and functions network 

associated with the current study indicated that epidermal growth factor (EGF), 

downregulated in the urea group, was related to cell pH. The growth factor EGF has an 

important role in pH changes, inducing an elevation of cytoplasmic pH by modifying the 

pH sensitivity of the Na+/H+ exchanger (Moolenaar, Tsien, van der Saag, & de Laat, 

1983). Additionally, the exposure of renal medullary cells to urea stress was similar to 

EGF exposure, corroborating with results relative to urea supplementation changing EGF 

expression (Tian & Cohen, 2002). Interestingly, in our dataset EGF was identified as an 

upstream regulator for the DEG and a hub gene for the Brown Module (membership 0.77, 

P = 0.001). Additionally, the EGF receptor signaling pathway was identified by 

PANTHER as a significantly enriched term from the DEG list. 

It is worth noting that in vitro studies have shown that a decline in pH of culture 

media is associated with a decrease in embryo development rate in hamsters (Squirrell, 

Lane, & Bavister, 2001), mice (Edwards, Williams, & Gardner, 1998), and cows (De Wit 

et al., 2001; Ocon & Hansen, 2003). There was also a lower blastocyst quality in vitro 

when donor cows received 75 g of urea orally (Ferreira et al., 2011).  These changes could 

explain the decrease in pregnancy rate and embryo development, which have been reported 



 

 

45 

in other species receiving urea or a high protein diet (Butler, 2000b; W. R. Butler et al., 

1996; Fahey et al., 2001). 

 

2.5.2. Solute carriers and ion homeostasis of cells 

Among the DEG, there were five solute carriers: solute carrier family 25 member 

36 (SLC25A36), solute carrier family 37 member 1 (SLC37A1), solute carrier family 45 

member 3 (SLC45A3), solute carrier family 52 member 3 (SLC52A3), and solute carrier 

family 6 member 20 (SLC6A20). There were also two potassium voltage-gated channels: 

potassium voltage-gated channel subfamily A member 3 (KCNA3) and potassium voltage-

gated channel subfamily C member 4 (KCNC4). Solute carriers, such as the ones found in 

the present study, have been suggested to modify the uterine environment by altering the 

composition of the uterine fluid and receptivity in implantation (Groebner et al., 2011). 

Additionally, amino acid transporters have been shown to have an increased expression in 

the bovine endometrium during pregnancy (Groebner et al., 2011). 

Homeostasis of the uterine environment is crucial for uterine functionality; 

therefore, maintenance of the intracellular ionic environment and consequent regulation of 

fluid is essential and is achieved by water channels, ion channels, and transporters (Liu, 

Zhang, Wang, Sheng, & Huang, 2014; Ruan, Chen, & Chan, 2014; Samborski, Graf, 

Krebs, Kessler, & Bauersachs, 2013; Zhu et al., 2015). Previous studies have identified 

genes that control the uterine fluid environment; for instance, sodium channel epithelial 1 

beta subunit (SCNN1B) and sodium channel epithelial 1 gamma subunit (SCNN1G) encode 

the epithelial sodium channel (ENaC) which regulates sodium reabsorption in epithelial 

cells (Canessa et al., 1994). Both genes were downregulated in our dataset, similar to a 



 

 

46 

reduction in expression of ENaC channels reported in the endometrium of infertile women 

(Boggula, Hanukoglu, Sagiv, Enuka, & Hanukoglu, 2018). These two genes were also hub 

genes in the Brown Module, SCNN1B (membership= 0.76, P = 0.002) and SCNN1G 

(membership= 0.81, P = 0.000), suggesting that the urea-treatment might have altered the 

normal ion homeostasis in the endometrium. Additionally, the ion channel ENaC and 

sodium-potassium ATPases are stimulated by the serum and glucocorticoid regulated 

kinase 1 (SGK1), which regulates ion balance and extracellular fluid volume (Lang, 

Artunc, & Vallon, 2009). A lower expression of SGK1, as seen in our study, was reported 

to alter the local fluid environment leading to reproductive failure in women, possible by 

a dysregulation of uterine fluid and ion imbalance leading to failure in embryonic 

implantation (Salker et al., 2011). Interestingly, SGK1 is also an upstream regulator in our 

dataset. 

Water channels also maintain ion homeostasis, such as aquaporin channels which 

are permeable to water and ions, regulating reabsorption of endometrial glandular fluid to 

maintain the luminal fluid volume (Zhu et al., 2015). The expression of aquaporin 5 

(AQP5) is progesterone-dependent, showing higher concentrations during high 

endogenous progesterone stages of the estrous cycle in rats and mares. Additionally, AQP5 

had a high expression in cyclic mares at D8 of diestrus and was upregulated in the 

endometrium during the time of implantation in rats (C. Klein et al., 2013; Lindsay & 

Murphy, 2006, 2007). In our dataset, AQP5 was upregulated in the urea group and was a 

hub gene in the Brown Module (membership = -0.88, P = 0.000). Altogether, we suggest 

that the urea infusions disrupt the normal function of this channel, resulting in an alteration 

of the composition and volume of uterine luminal fluid. 
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Enzymes are another important mediator of ion homeostasis, as carbonic anhydrase 

2 (CA2) which was downregulated and also a hub gene in the Turquoise Module 

(membership= 0.95, P = 0.000) in our dataset. CA2 catalyzes the reversible conversion of 

carbon dioxide and water to bicarbonate, regulating the acid-base balance and transporting 

carbon dioxide (Supuran, Scozzafava, & Casini, 2003). The downregulation of CA2 by the 

urea-treatment is one of the mechanisms that resulted in an imbalanced uterine 

environment, supported also by the role that CA2 has on endometrial gland development 

in mice and sheep (Hu & Spencer, 2005). 

As shown in the preceding paragraphs, ion channels are crucial for ion homeostasis 

and can be regulated by hormones, including progesterone and estradiol (Ruan et al., 

2014). Aldo-keto reductase family 1 member C23 (AKR1C23), which is only expressed in 

the control animals, has a well-known activity of converting progesterone to 20α-hydroxy-

4-pregnen-3-one (20α-DHP) and 3α-dihydroprogesterone (3α-DHP) (Brown et al., 2006; 

El-Sheikh Ali et al., 2019; Kozai et al., 2014; Ogle & Beyer, 1982). Therefore, we 

postulate that the urea-treatment might disrupt the physiological progesterone metabolism 

that occurs in the endometrium. Consequently, progesterone is not converted into 20α-

DHP which in turn affects the hormonal regulation of ion channels in the endometrium 

and disrupts the normal ion and fluid balance in the uterus of mares. Further studies need 

to be done to verify this effect of the progesterone metabolism in the endometrium of 

nonpregnant mares. 
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2.5.3. Growth and development of epithelial tissue 

 The endometrium goes through morphological changes during the estrous cycle 

and early pregnancy (Stefan Bauersachs, Mitko, Ulbrich, Blum, & Wolf, 2008; C. Klein 

et al., 2010). The current urea-treatment was responsible for downregulating genes related 

to the growth and development of epithelial tissue: EGF, Serpin B5 (SERPINB5), dickkopf 

WNT signaling pathway inhibitor 1 (DKK1), MET proto-oncogene, receptor tyrosine 

kinase (MET), insulin receptor (INSR), leucine rich alpha-2-glycoprotein 1 (LRG1), and 

prolactin receptor (PRLR). The treatment also upregulated angiopoietin like 4 (ANGPTL4), 

keratin 4 (KRT4), and growth arrest and DNA damage inducible gamma (GADD45G). For 

example, EGF mediates endometrial proliferation (Haining et al., 1991), while DKK1 is 

responsible for initiating endometrial cellular proliferation and differentiation (Macdonald 

et al., 2011). Additionally, SERPINB5, also known as Maspin, plays an important role in 

embryonic implantation and had a higher expression in the endometrium of pregnant mice 

when compared to nonpregnant mice (Huang, Cai, & Yang, 2012). Of interest, ANGPTL4, 

a gene related to angiogenesis and rearrangement of blood vessels (Le Jan et al., 2003), 

had a higher mRNA expression in the endometrial tissue of multiparous pregnant sows 

when compared to nulliparous animals at day 15 and 25 of pregnancy (Lord et al., 2006; 

Merkl et al., 2010). In mares, there was an upregulation of ANGPTL4 in the endometrium 

of day 12 pregnant animals. In the same study, there was a downregulation in KRT4 in day 

12 pregnant mares compared to age-matched nonpregnant mares (Merkl et al., 2010), 

opposite of what we saw in our dataset with mares during diestrus. Overall, the urea-

treatment resulted in a change in expression of genes related to normal endometrial 

changes, which might result in a disruption of the physiological growth and development 
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of endometrial tissue at this stage of diestrus. However, this hypothesis needs to be tested 

with further studies. 

 

2.5.4. Fatty acid metabolism 

An interesting finding was a change in fatty acid metabolism, as was predicted by 

the disease and function analysis. Fatty acids function as precursors for steroid and 

eicosanoid synthesis, and are associated with phospholipids in cell membranes being able 

to affect uterine function and disturb pregnancy rates (Chapman & Quinn, 1976; Mattos et 

al., 2000). Mainly, a significant downregulation of EGF, caveolin 2 (CAV2), acyl-CoA 

synthetase long chain family member 4 (ACSL4), SLC45A3, prostaglandin reductase 1 

(PTGR1), fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2), and leukemia 

inhibitory factor (LIF) in the urea group reflected this after the current treatment. 

As eicosanoids are synthetized from fatty acids, the downregulation of the gene 

PTGR1, responsible for encoding catabolic enzymes that degrade eicosanoids, such as 

prostaglandins, might have a negative effect on the endometrium of animals (Erkenbrack 

et al., 2018), as an upregulation of it might be paramount for pregnancy, suggested by the 

upregulation of PTGR1 in the endometrium of pregnant sows (Samborski et al., 2013) and 

pregnant mares (Merkl et al., 2010). Also related to reproduction hormone production in 

the endometrium, SLC45A3 enhances long-chain fatty acids and neutral lipid accumulation 

with a consequent incorporation into cholesterol esters and phospholipids used for 

steroidogenesis and energy production (Shin, Howng, Ptacek, & Fu, 2012). 

Furthermore, working through a fatty acid metabolism route, the cytokine LIF 

inhibits lipoprotein lipase activity in vitro (Marshall, Doerrler, Feingold, & Grunfeld, 
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1994) which might be related to the fact that LIF knockout mice were infertile suggesting 

that LIF codes a protein essential for blastocyst implantation (Stewart et al., 1992). 

Additionally, LIF was a hub gene in the Brown Module (membership= 0.94, P = 0.000) in 

our dataset. 

 As previously mentioned, fatty acids are associated with phospholipids of cell 

membranes (Chapman & Quinn, 1976). For example, the CAV2 gene which encodes a 

protein that is present in the membrane of caveolin, invaginations of the plasma membrane, 

responsible for transport of glycolipids (Parton, 1994) and cholesterol across endothelial 

cells (Rothberg et al., 1992). The resulting downregulation of CAV2 after the urea-

treatment might be due to a deficit in the transport of macromolecules in the endometrium, 

disrupting the normal fatty acid metabolism in the tissue. Although this work sheds light 

into how urea-treatment might affect fatty acid metabolism, a clear mechanism of how 

urea-treatment can affect fatty acid metabolism in the endometrium has not been 

established and remains to be elucidated. 

 

2.6. Conclusion 

Our findings suggest that mares with a high BUN exhibit a decreased uterine pH 

and changes in gene expression in endometrial tissue are associated with pH regulation, 

ion channels, changes in epithelial tissue, and fatty acid metabolism. Specifically, effects 

on EGF could play a central role by driving the effects of urea on the endometrial 

transcriptome. Although this study did not address the effects of elevated BUN on fertility 

in mares, the changes in gene expression described herein reveal alterations in endometrial 

function that could have adverse effects on fertility. 
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Figure 2.9. Schematic representation of proposed mechanisms of action of intravenous infusion of 
urea at day 7 of estrous cycle on the endometrium of mares over 6 hours. BUN = blood urea nitrogen.
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CHAPTER 3. Effect of oral urea supplementation on the endometrial transcriptome of 
mares 
 
3.1. Abstract 

Elevated blood urea nitrogen (BUN) associated with increased crude protein consumption 
results in altered uterine environment, affecting early embryonic development in cows and 
in ewes. The objective of the present study was to evaluate the effects of increased BUN 
on the endometrium of mares. At ovulation detection (D0), oral treatment with urea was 
initiated and continued until D7. Mares received a treatment or control diet (n= 11 
mares/group) in a crossover design. The treated group received urea (0.4 g/kg body weight) 
mixed with sweet feed and molasses, the control group received sweet feed and molasses 
alone. Blood samples were collected daily, one hour after feeding, for BUN determination. 
Uterine and vaginal pH were evaluated with an epoxy pH probe. Endometrial biopsies 
were taken transcervically one hour after the last feeding on D7. RNA sequencing of the 
endometrium of a subset of mares (n=6/group) was conducted. Reads were mapped to 
EquCab 3.0. Cuffdiff(2.2.1) was used to calculate differentially expressed genes (DEG) 
between urea and control groups (FDR-adjusted p-value < 0.1). There was an increase in 
BUN in the urea-treated mares, with no differences in uterine and vaginal pH between the 
groups. A total of 60 DEG were characterized, those with largest fold change were SIK1, 
ATF3, SPINK7, NR4A1 and EGR3. Diseases and biological functions (Ingenuity Pathway 
Analysis, 2.2.1) resulted in processes related to cell death (necrosis) and cellular 
movement (invasion of cells). In conclusion, oral urea administration resulted in 
transcriptomic changes in the endometrium of mares related to necrosis, tissue remodeling 
and concentration of lipids. The observed changes in gene expression observed with an 
increased BUN might result in disruption to the endometrium that would influence the 
establishment of pregnancies and early embryo loss in mares. 

KEYWORDS: High protein diet, high blood urea nitrogen, uterus, urea-treatment. 
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3.2. Introduction 

 Equine embryos reach the uterus at approximately 6.25 days after ovulation 

(Battut, Colchen, Fieni, Tainturier, & Bruyas, 1997; Freeman, Weber, Geary, & Woods, 

1991) and are dependent on histotroph (uterine milk) to grow and develop (Allen & 

Wilsher, 2009). Therefore, an optimal intrauterine environment, to guarantee survival of 

the conceptus, is critical to pregnancy outcome. Consequently, physiological changes to 

the endometrium occur during diestrus to ensure that the uterine environment is prepared 

for a developing embryo (C. Klein et al., 2010; C. Klein et al., 2013; Sharp, 2000). 

Moreover, nutritional factors in the dam such as type and amount of polyunsaturated fatty 

acids (Coyne et al., 2011), have been implicated in causing changes in the uterine luminal 

milieu that might result in an unsuitable environment for embryonic development in cows 

and sheep. Additionally, high protein diets had detrimental effects on fertility of cows and 

sheep (Butler, 2000a; W R Butler, J J Calaman, & S W Beam, 1996; T. McEvoy et al., 

1997; Rhoads et al., 2006). No studies to date have addressed the relationship between 

high protein concentration in maternal diets and fertility in mares. 

A high protein diet or urea supplementation can elevate BUN in horses (Connysson 

et al., 2006; Martin et al., 1996), cows (Elrod & Butler, 1993; C. Elrod et al., 1993; Rhoads 

et al., 2006), and ewes (Fahey et al., 2001; T. McEvoy et al., 1997). A recent study from 

our lab used a short-term (six hours) intravenous infusion of urea as a model for high 

dietary protein in mares. This study revealed that urea affects endometrial transcripts 

related to cell pH, solute carriers, and ion homeostasis (Chapter 2). However, to better 

mimic the effects of a high protein diet, it is necessary to develop a diet model fed to mares 

over a longer period. 
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Currently, no studies elucidate the effects of an oral high protein diet model on the 

uterine transcriptome of mares; high throughput sequencing might be an excellent tool to 

clarify this process as it provides a global transcriptomic evaluation of tissues. As urea was 

shown to affect the endometrial environment, endometrial transcriptome, and pregnancy 

rates in cows, sheep and mares as previously stated, our hypothesis was that oral ingestion 

of urea would elevate blood urea nitrogen (BUN) and alter the endometrial transcriptome 

of mares. The objectives of the present study were: 1) to develop an oral supplementation 

model to elevate BUN, 2) to study the effects on the uterine and vaginal pH, and 3) to use 

RNA sequencing to characterize the endometrial transcriptome of mares fed oral urea 

compared to control mares at D7 of diestrus. 

 

3.3. Material and methods 

All animal procedures were completed in accordance with the Institutional Animal 

Care and Use Committee of the University of Kentucky (Protocol #2011-0876). Clinically 

healthy mares of different breeds, ranging from 5 to 15 years of age were used in this study. 

All mares underwent a reproductive examination and transrectal ultrasonography for 

reproductive tract evaluation. 

To induce ovulation, mares received 2,500 IU of human chorionic gonadotropin 

(hCG) (Chorulon; Intervet, Millsboro, DE) intravenously when they had a follicle of 

approximately 35-mm in diameter and evident uterine edema. The animals were examined 

by transrectal ultrasonography (ExaGo ultrasound; ECM Co., Angouleme, France) for 

ovulation detection (D0). At D0, oral treatment started and continued until D7. Mares 

received the treatment or control diet in a random order (n= 11 mares/group) in a crossover 
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design, and the intervening estrous cycle served as a washout cycle between two 

experimental cycles. The treatment group was fed 0.4 g of feed-grade urea (Hallway Feeds, 

Lexington, KY) per kg of body weight daily, mixed with 2.4 kg of sweet feed (Poize 10% 

crude protein, Hallway Feeds), molasses and mixed grass hay (8.4% crude protein). The 

control group received identical sweet feed, molasses and hay. More specifically, the oral 

treatment supplemented the mares with grain (90% dry matter) and hay (89% dry matter). 

Considering a daily 2% dry matter total feed intake of body weight for a 500 kg mare, each 

animal received 2.4 kg of grain and 8.8 kg of hay. The amount of nitrogen supplied by the 

grain was of 34.56 g and by hay was of 107 g (considering a 16% percentage of nitrogen 

in the crude protein). The feed grade urea supplied a total of 84 g of nitrogen (considering 

a 42% of nitrogen). Therefore, in the urea-treatment the mares received a total of 225.56 

g of nitrogen and in the control treatment received a total of 141.56 g of nitrogen. Daily 

meals were divided in two equal amounts given in the morning and afternoon using 

individual feeding pens. Mares had ad libitum access to water. 

Blood samples were collected daily, one hour after the afternoon feeding in 

heparinized vacutainer tubes (BD Vacutainer, Franklin Lakes, NJ). Blood samples were 

centrifuged at 1500 x g during 10 minutes at 4ºC, and plasma was stored at -20ºC. BUN 

was measured with a colorimetric spectrophotometric assay following an adapted protocol 

previously described (Mok et al., 2018). All reagents for this assay were purchased from 

Sigma-Aldrich (St. Louis, MO). The standard curve ranged from 5.6 mg/dL to 56.01 

mg/dL. The researcher diluted urea (8M after constitution with 16 mL high purity water) 

to 5.6 mg/dL and 56.01 mg/dL to be used as low and high controls. The reaction consisted 

of analyzing urea by enzymatic hydrolysis to ammonia at room temperature. The reaction 



 

 

56 

(in duplicate) was done in microcentrifuge tubes (2 mL) with 10 μL of each plasma sample, 

and 125 μL urease buffer was added with incubation of the samples for 20 minutes. The 

urease enzyme hydrolyzes urea to produce carbon dioxide and ammonia (CH4N2O + 

Urease buffer  CO2 + 2NH3). Then, 250 μL of phenol nitroprusside solution, 250 μL of 

alkaline hypochlorite solution (0.2%), and 1000 μL of distilled water were added (NH3 + 

phenol nitroprusside + alkaline hypochlorite + H2O  Indophenol blue) (Tabacco & 

Meiattini, 1985). After a 25-min incubation, a 200-μL aliquot was transferred to a 96-well 

plate and absorbance (570 nm) was determined with an Epoch microplate 

spectrophotometer (Biotek, San Francisco, CA). The intra- and interassay coefficients of 

variation for BUN concentrations were 0.5% and 9.8%, respectively. The lower limit of 

detection of the assay was 0.11 mg/dL. 

Uterine and vaginal pH were measured one hour after the last feeding at D7 in both 

groups. The mares were restrained in palpation stocks and their tails were wrapped and 

tied. Feces were removed from the rectum manually. The perineal region was washed three 

times with povidone-iodine scrub, rinsed with clean water, and dried with clean paper 

towels. An adapted epoxy pH probe (model number 911600, Thermo Fisher Scientific, 

Waltham, MA) attached to a portable pH meter (Accumet AP115, Thermo Fisher 

Scientific) were used for pH measurements. Immediately before pH measurements, the 

probe was calibrated with calibration solutions buffers at pH 4, 7 and 10 (Thermo Fisher 

Scientific). The pH probe was introduced into the vagina with the tip protected by a sterile 

gloved hand and passed through the cervix. The pH probe was advanced into the uterus 

until it reached the uterine body and was held in place by the examiner. The examiner 

introduced the other hand into the rectum to increase the contact between the uterine wall 
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and the pH probe. When the uterine pH measurements were completed, the pH device was 

removed from the uterus and placed into the vagina, in contact with the vaginal mucosa 

next to the cervix. The pH device was maintained in the same position until two stable 

measurements were completed. The pH measurements were done in duplicate, in the 

uterus and vagina, and the mean was calculated. 

After uterine pH measurements, the perineal region was washed again three times 

with povidone-iodine scrub, rinsed with clean water and dried with clean paper towels. A 

Jackson uterine biopsy forceps (60‐cm length, 4 mm × 28 mm basket, Jorgensen 

Laboratories, Inc.) was guarded in a sterile gloved hand and passed through the cervix into 

the uterus. A uterine biopsy was collected from the base of the uterine horn. The sample 

was removed from the instrument, with a sterile needle (NIPRO medical corporation) and 

preserved in RNAlater (Thermo Fisher Scientific) at 4ºC overnight and then at -80ºC until 

RNA isolation (Herrera et al., 2018). Mares received dinoprost tromethamine (5 mg, IM; 

Lutalyse; Pfizer, New York, NY) to help with uterine clearance after intrauterine 

procedures. 

Endometrial samples were processed for RNA extraction using a RNeasy Mini Kit 

(Qiagen, Gaithersburg, MD) following the manufacturer’s recommendations. After 

extraction, RNA concentration and quality were analyzed using a Nanodrop 2000 

spectrophotometer Thermo Fisher Scientific) and a Bioanalyzer® (Agilent, Santa Clara, 

CA). Samples had a 260/280 ratio > 2.0, 28S:18S rRNA ratios >1.8 and RNA integrity 

number (RIN) was 9.78 ± 0.06 (mean ± SEM). 
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3.3.1. mRNA library preparation and Next Generation Sequencing 

Total endometrial RNA was assessed from a subset of mares (n= 6 mares/group) 

by RNA sequencing at the University of Louisville Center for Genetics and Molecular 

Medicine. A TruSeq Stranded mRNA library prep kit (Illumina, San Diego, CA) was used 

to prepare libraries for mRNA sequencing. A Poly A purification and RNA fragmentation 

were performed on total RNA. Superscript II was used to generate cDNA and then the 

RNA template was removed. Second strand synthesis was performed with incorporation 

of dUTP to ensure stranded libraries, and double-stranded cDNA was purified with 

AMPure XP beads. The 3’ ends were adenylated, indexing adapters were ligated onto the 

ends, and libraries once again purified with AMPure beads. Fifteen cycles of PCR were 

used to enrich DNA fragments, followed by two AMPure bead clean-up steps. Libraries 

were loaded onto an Agilent DNA 1000 chip and validated on an Agilent 2100 Bioanalyzer 

(Agilent). Quantitation was performed with the Illumina Library Quantification Kit, ABI 

Prism qPCR Mix from Kapa Biosystems. Three dilutions were tested in triplicate. 

Libraries were diluted to 10nM, pooled, further diluted and denatured to single strand and 

run on a NextSeq 500 v2 (Illumina) 300cycles High Output kit in a 2x150 base pairs with 

paired-end reads. 

The Fastq files were evaluated for read quality using FastQC (0.11.4) (Andrews, 

2010a). Subsequently, TrimGalore (0.4.1) (Krueger, 2012) was used for adapter and read 

quality (Phred score threshold of 30) trimming. We mapped our reads to the equine 

genome EquCab 3.0 using the software STAR (2.5.3.a) (Dobin et al., 2013) then used the 

equine reference annotation from NCBI with Cufflinks (2.2.1) (Trapnell et al., 2012), 

using fragments per kilobase per million (FPKM) to determine the expression level of 
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genes. Lastly, we used Cuffdiff (2.2.1) (Trapnell et al., 2012) to calculate differentially 

expressed genes (DEG) between samples from the control and urea groups. Significance 

level was set at FDR-adjusted p-value of the test statistic < 0.1 using a Benjamini-

Hochberg correction. 

 

3.3.2. Functional genomics 

The Database for Annotation, Visualization, and Integrated Discovery (DAVID, 

version 6.8) (https://david.ncifcrf.gov/home.jsp) was used to annotate DEG in relation to 

biological process and molecular function (Huang da et al., 2009). A functional 

classification was performed based on the Official Gene Symbol of Equus caballus genes 

in DAVID. The R package GOplot (http://wencke.github.io/) was used to illustrate the 

results. DAVID uses information about gene functions based on public genomic resources 

through gene-set enrichment, helping to elucidate characteristics and biological relevance 

of the DEG. 

A core analysis of the DEG was conducted using Ingenuity Pathway Analysis (IPA, 

QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-

analysis). Diseases and biological functions analyses were done to show networks of 

biological interest. Additionally, an upstream regulator analysis and molecule type were 

conducted. This software uses networks based on cause and effect relationships that have 

been previously published (Kramer et al., 2014) and served to give additional information 

regarding the mechanisms of action of the DEG. 

Protein-protein interactions related to the DEG between the urea-treated and control 

animals were analyzed through a correlation prediction of expression level using the 
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STRING database (http://www.string-db.org/, version 10.5) to characterize the 

interactions between the proteins coded by the DEG  (Szklarczyk et al., 2017) as we 

expected that the proteins coded by the DEG would have a high interaction. 

The FANTOM5 (http://fantom.gsc.riken.jp) curated database consists of 2,558 

unique ligand-receptor interactions (Kawaji, Kasukawa, Forrest, Carninci, & Hayashizaki, 

2017). A ligand-receptor interaction analysis was done by identifying ligands that were 

DEG between the urea and control groups, which will help characterize the connected 

signaling network in the endometrium of mares that was altered by urea supplementation. 

 

3.3.3. Quantitative Real-Time PCR 

 Expression levels of seven DEG were evaluated with quantitative real-time PCR 

(RT-qPCR) using the same RNA samples that were analyzed by RNA Sequencing (n=6 

mares per group). Genes were chosen based on known functional importance to the 

research question and based on DEG identified in a previous study in our lab (Chapter 2). 

The extracted RNA was reverse transcribed using a high-capacity cDNA reverse 

transcription kit and random hexamers (Invitrogen, Carlsbad, CA). The cDNA was kept 

frozen at -20°C until quantitative real-time PCR (RT-qPCR) was performed. Primers for 

the selected transcripts were designed using the Primer-BLAST (National Center for 

Biotechnology Information, NCBI) function (Table 3.1). The RT-qPCR was conducted 

using PowerUp™ SYBR™ Green Master Mix (Applied Biosystems™, Foster City, CA) 

with the program: 95°C for 10 min, 40 cycles of 95°C for 15 s and 60°C for 1 min, and 

55–95°C for dissociation cycling conditions. Each reaction was performed in duplicate. 

http://fantom.gsc.riken.jp/
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Efficiency of RT-qPCR was determined using LinRegPCR (version 2012.0) to 

ensure that it was between 1.8 and 2.2 (Ruijter et al., 2009). Mean threshold cycle (CT) 

was used to show changes in the mRNA expression and then normalized for the 

housekeeping genes (Livak & Schmittgen, 2001) Beta-2-Microglobulin (B2M) and 

Eukaryotic Translation Elongation Factor 1 Alpha 1 (EEF1A1) to calculate delta CT values 

(ΔCT). The two housekeeping genes were chosen with GeNORM as the most stably 

expressed genes in the endometrial samples (De Spiegelaere et al., 2015). 

 

Table 3.1 Forward (F) and reverse (R) primers used for Quantitative Real-Time PCR 
analysis. 

Gene symbol Forward primer 
sequence 

Reverse primer 
sequence 

Acession number Product size 

B2M GTGTTCCGAAGG
TTCAGGTT 

ATTTCAATCTCAG
GCGGATG 

NM_001082502.3 103 

EEF1A1 CAACATCGTCGT
CATTGGGC 

CAGCAGCCTCCTT
CTCGAAT 

NM_001081781.1 119 

INHBA GAGGATGACAT
CGGCAGGAG 

CGACAGGTCACTG
CCTTCTT 

NM_001081909.1 135 

LAMC2 CTGGAGAGCGC
TGTGATAGG 

GGTACAGCCCTGA
GGGTTTC 

NM_001081768.1 71 

MUC6 TGCCGTACAAG
ACTCGCAAT 

TGTACACCTGGAA
CACAGGC 

XM_014729569.1 117 

PIGR GTTTTGGCAGCA
GCATCCAG 

ACTCCTTGCGAGG
GATGTTT 

XM_014739411.2 134 

SERPINA14 CTGACAGATGC
AAAGAGCAGC 

AAAAGTCCGCAGA
GGGTGAG 

XM_014735597.1 131 

SIK1 GACTTCCAACGG
GCACCTAA 

CAGCAACAGGTTC
TCGGTCT 

XM_023630253.1 127 

SPINK7 TTTTCCCTCGTG
TTGGCTGA 

AGGGCACAACAAC
CTTCTCC 

XM_003362870.2 88 

Primers were generated using the National Center for Biotechnology Information (NCBI) primer-BLAST 
tool. Key: beta-2-Microglobulin (B2M), eukaryotic Translation Elongation Factor 1 Alpha 1 (EEF1A1), 
Inhibin Subunit Beta A (INHBA), laminin subunit gamma 2 (LAMC2), Mucin 6 (MUC6), polymeric 
immunoglobulin receptor (PIGR), serine peptidase inhibitor clade A (alpha-1 antiproteinase, antitrypsin) 
member 14 (SERPINA14), serum/glucocorticoid regulated kinase 1 (SGK1), serine peptidase inhibitor, 
Kazal type 7 (SPINK7). 
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3.3.4. Statistical analyses 

BUN, uterine and vaginal pH were tested for normality with a Shapiro-Wilk test. 

The data were normally distributed. The BUN was tested using the Fit Least Squares model 

with fixed factors as day, treatment and interaction between day and treatment, and mare 

as a random effect. The Tukey post-hoc test was used for pairwise comparisons. Uterine 

and vaginal pH were tested using a one-tailed paired t-test. A Pearson’s correlation 

coefficient was used to determine the correlation between the -ΔCT (negative delta CT) 

from RT-qPCR results and the FPKM from RNA sequencing results.  

A probability of P ≤ 0.05 indicated significant difference, and a probability of P > 

0.05 to ≤ 0.10 indicated a trend toward significance. Data are reported as mean ± SEM. 

All statistical analyses were carried out using JMP Pro 14 (SAS Institute Inc., Cary, NC). 

 

3.4. Results 

3.4.1. Blood urea nitrogen 

The effect of group was not significant (P = 0.57); there was a trend for the effect 

of day (P = 0.10), and the interaction between group and day was significant (P < 0.0001).  

On the first day of treatment (day of ovulation, D0), the two groups did not show a 

statistical difference in BUN (P > 0.05). There was a significant increase in BUN on D1 

through D7. On the last day of treatment, D7, the mean BUN was of 12.75 ± 0.99 and 

28.57 ± 2.25 mg/dL in the control and urea-fed mares, respectively (P < 0.05) (Figure 3.1). 

 



 

 

63 

 

Figure 3.1. Blood urea nitrogen (mg/dL) analyzed in diestrus mares receiving an oral control or urea 
diet over 7 days. Results are shown as mean ± SEM, D= day, * = P < 0.05. 

 

3.4.2. Uterine and vaginal pH 

There was no significant difference in uterine pH in the treated and control groups 

(P = 0.69). Uterine pH was 6.86 ± 0.03 and 6.89 ± 0.09 pH in the control and treated group, 

respectively (Figure 3.2). Similarly, there was no significant difference in vaginal pH in 

the treated and control groups (P = 0.43) with a 7.12 ± 0.07 and 7.12 ± 0.05 pH in the 

control and treated group, respectively (Figure 3.2). 

 



 

 

64 

 

Figure 3.2. A) Uterine and B) vaginal pH analyzed in diestrus mares receiving an oral control or urea 
diet over 7 days. Results are shown as mean (n=11 mares/group), lines connect the values for each mare after 
respective treatment. 

 

3.4.3. RNA sequencing 

The RNA sequencing analysis performed on 12 endometrial samples (n=6 

mares/group) resulted in 22,659 genes analyzed. The average of input reads was 

6,152,866, the average input read length was 150, and 5,199,472.5 (84.45%) uniquely 

mapped reads were obtained for the samples sequenced (Table 3.2). 
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Table 3.2 Summary of RNA sequencing data for 12 endometrial samples. 
Sample Group Number of input 

reads 
Average input read 

length 
Uniquely mapped 

read number 
Uniquely mapped 

reads % 

1 Control 5,757,633 150 4,855,414 84.33 
2 Urea 7,826,472 150 6,633,286 84.75 
3 Control 6,341,747 150 5,351,409 84.38 
4 Urea 6,740,392 150 5,711,795 84.74 
5 Control 5,388,562 150 4,567,111 84.76 
6 Urea 6,892,700 150 5,860,698 85.03 
7 Control 7,272,455 150 6,166,986 84.8 
8 Urea 6,260,867 150 5,353,307 85.5 
9 Control 4,750,575 150 3,935,409 82.84 
10 Urea 5,770,651 150 4,852,787 84.09 
11 Control 5,584,354 150 4,666,585 83.57 
12 Urea 5,247,984 150 4,438,883 84.58 

 

3.4.4. Differentially expressed genes (DEG) 

A total of 60 genes were differentially expressed between the urea and control 

groups (FDR<0.1). A total of 25 genes were upregulated and 35 genes were downregulated 

in the urea group in comparison to the control group (Table 3.3). The gene LOC100066131 

was uncharacterized in the NCBI database for Equus caballus and had its nucleotide 

sequence (FASTA format) identified in the NCBI database 

(http://www.ncbi.nlm.nih.gov/), then the Basic Local Alignment Search Tool (BLAST, 

http://www.ncbi.nlm.nih.gov/BLAST) (Camacho et al., 2009) was used to identify its 

ortholog in the Equus przewalskii as proline rich 4 (lacrimal) (PRR4). 

 

 

 

 

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/BLAST
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Table 3.3. List of differentially expressed genes between the control and urea-fed mares. 
Gene name Gene symbol Chromosome location Log2(Fold 

Change) 
FDR 

ADAM metallopeptidase with 
thrombospondin type 1 motif 

6 

ADAMTS6 Chr 21:8724863-9083230 -1.181 0.065 

apolipoprotein L domain 
containing 1 

APOLD1 Chr 6:41698890-41704045 1.398 0.015 

Rho guanine nucleotide 
exchange factor 19 

ARHGEF19 Chr 2:37069152-37087346 -1.801 0.015 

ADP ribosylation factor like 
GTPase 4C 

ARL4C Chr 6:21037228-21041190 -1.295 0.015 

activating transcription factor 
3 

ATF3 Chr 5:23305133-23358402 1.956 0.015 

BTG anti-proliferation factor 2 BTG2 Chr 5:73328-75820 1.239 0.040 
divergent protein kinase 

domain 2A 
DIPK2A Chr 16:79271667-79305319 -1.445 0.095 

chromosome 1 C14orf28 
homolog 

C1H14orf28 Chr 1:182248886-182258585 0.996 0.015 

C1q and TNF related 6 C1QTNF6 Chr 28:35552205-35559679 -1.821 0.015 
claudin 10 CLDN10 Chr 17:65282708-65303020 -1.618 0.015 

collagen type XXI alpha 1 
chain 

COL21A1 Chr 20:54291646-54465931 -1.887 0.015 

cysteine and serine rich 
nuclear protein 1 

CSRNP1 Chr 16:47804552-47816648 1.141 0.090 

connective tissue growth 
factor 

CTGF Chr 10:79323385-79435012 0.969 0.015 

catenin alpha 3 CTNNA3 Chr 1:55166715-56671260 -1.940 0.028 
cysteine rich angiogenic 

inducer 61 
CYR61 Chr 5:75205288-75208196 1.297 0.015 

dishevelled binding antagonist 
of beta catenin 2 

DACT2 Chr 31:2139337-2150951 -1.409 0.060 

iodothyronine deiodinase 2 DIO2 Chr 24:25068789-25083162 -1.539 0.065 
dihydropyrimidinase like 5 DPYSL5 Chr 15:70266697-70358386 0.756 0.090 

early growth response 3 EGR3 Chr 2:51783523-51788806 1.428 0.015 
fragile histidine triad FHIT Chr 16:29154068-30541103 -2.330 0.015 

FXYD domain containing ion 
transport regulator 4 

FXYD4 Chr 1:71353201-71357540 1.125 0.015 

glutaredoxin and cysteine rich 
domain containing 2 

GRXCR2 Chr 14:31114370-31131400 1.103 0.015 

H19, imprinted maternally 
expressed transcript 

H19 Chr 12:34334438-34336980 -2.445 0.015 

insulin like growth factor 
binding protein 3 

IGFBP3 Chr 4:16218772-16226910 -1.537 0.015 

inhibin subunit beta A INHBA Chr 4:12793421-12811345 1.038 0.065 
kinesin family member 5C KIF5C Chr 18:31398786-31545685 -1.641 0.065 
laminin subunit gamma 2 LAMC2 Chr 5:17461883-17513382 -2.305 0.015 

olfactory receptor 51G2-like LOC10005386
5 

Chr 7:75162813-75163755 0.879 0.028 
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Table 3.4 (continued). List of differentially expressed genes between the control and urea-fed 
mares. 

myelin and lymphocyte 
protein 

MAL Chr 15:13416153-13439781 -1.974 0.074 

proline rich 4 (lacrimal) LOC10006613
1 (PRR4) 

Chr 6:40554454-40598891 -1.520 0.015 

gasdermin-C GSDMC Chr 9:73048799-73107940 -2.600 0.015 
lecithin retinol acyltransferase LRAT Chr 2:79363321-79371844 1.046 0.028 

lactotransferrin LTF Chr 16:41879029-41907637 -1.852 0.015 
monocyte to macrophage 
differentiation associated 

MMD Chr 11:30310267-30336756 -1.617 0.015 

mucin 6, oligomeric 
mucus/gel-forming 

MUC6 Chr 12:35968104-35990415 -4.972 0.015 

matrix remodeling associated 
5 

MXRA5 Chr X:1511212-1541902 -2.441 0.015 

neutral cholesterol ester 
hydrolase 1 

NCEH1 Chr 19:15089707-15155042 -1.996 0.015 

nephroblastoma overexpressed NOV Chr 9:64549295-64570362 -1.626 0.015 
nuclear receptor subfamily 4 

group A member 1 
NR4A1 Chr 6:70094775-70111308 1.561 0.015 

nuclear receptor subfamily 4 
group A member 2 

NR4A2 Chr 18:37574464-37592463 1.528 0.015 

peptidyl arginine deiminase 2 PADI2 Chr 2:36681246-36722159 0.935 0.015 
pappalysin 1 PAPPA Chr 25:21035848-21279423 0.905 0.015 

procollagen C-endopeptidase 
enhancer 2 

PCOLCE2 Chr 16:78287175-78353319 -1.486 0.095 

phosphodiesterase 11A PDE11A Chr 18:55973758-56365248 -1.108 0.060 
polymeric immunoglobulin 

receptor 
PIGR Chr 5:3143483-3161575 -2.349 0.015 

phospholipase A1 member A PLA1A Chr 19:41761268-41786327 -1.125 0.060 
pleckstrin and Sec7 domain 

containing 3 
PSD3 Chr 27:1222175-1862961 -1.059 0.028 

retinol dehydrogenase 10 RDH10 Chr 9:13539334-13565466 -1.098 0.040 
RP1 like 1 RP1L1 Chr 2:59021135-59144653 -1.270 0.060 

serine peptidase inhibitor 
clade A (alpha-1 

antiproteinase, antitrypsin) 
member 14 

SERPINA14 Chr 24:37509403-37519502 1.238 0.065 

secreted frizzled related 
protein 1 

SFRP1 Chr 27:4059691-4105413 -1.434 0.015 

serum/glucocorticoid 
regulated kinase 1 

SGK1 Chr 10:81297093-81405022 1.025 0.015 

salt inducible kinase 1 SIK1 Chr 26:40014586-40026987 2.161 0.015 
serine peptidase inhibitor, 

Kazal type 7 (putative) 
SPINK7 Chr 14:28699405-28702860 1.698 0.015 

transcriptional and immune 
response regulator 

TCIM Chr 27:5024674-5025975 0.757 0.083 

thrombospondin 1 THBS1 Chr 1:150310064-150326658 1.402 0.015 
transmembrane protein 86A TMEM86A Chr 7:89063186-89070145 0.889 0.015 
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Table 3.5 (continued). List of differentially expressed genes between the control and urea-fed 
mares. 

two pore channel 3 TPC3 Chr 15:14142046-14199717 -1.508 0.052 
tubulin tyrosine ligase like 6 TTLL6 Chr 11:24838293-24886582 -1.512 0.015 
UDP glycosyltransferase 8 UGT8 Chr 2:112387729-112467843 -1.332 0.095 

 

3.4.5. Functional genomics analyses 

 Gene ontology analysis using DAVID indicated overrepresentation of the 

biological processes of cell adhesion, negative regulation of cell death, skeletal muscle cell 

differentiation, and cellular response to corticotropin-releasing hormone stimulus were 

overrepresented after treatment. The overrepresented molecular functions included 

heparin and integrin binding. The cellular components included extracellular space, 

proteinaceous extracellular matrix, and intracellular membrane-bounded organelle (Figure 

3.3). The IPA diseases and biological functions analysis with the DEG showed categories 

of biological interest, such as necrosis, lipid concentration, and invasion of cells (P < 0.05, 

Figure 3.4). 
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Figure 3.3. Gene ontology of differentially expressed genes analyzed by DAVID and the GOplot 
package. The y-axis represents the –log of the adjusted p-value and the x-axis represents the gene ontology 
results indicating the z-score in the color of the bars, blue indicates an increase and yellow indicates a 
decrease. BP= biological process, CC= cellular component, MF= molecular function. 
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Figure 3.4. Ingenuity Pathway Analysis (IPA) of diseases and biological functions of the 
differentially expressed genes displayed as nodes (genes) and edges (biological relationship between nodes). 
The color intensity of each node represents fold change expression, red (upregulated) and green 
(downregulated). The edges connecting the genes to the respective functions represent the predicted 
relationships, blue representing inhibition and grey effect not predicted based on the IPA activation z-scores, 
combination of directional information encoded by the gene expression with information curated from the 
literature. 

 

3.4.6. Upstream regulators 

 The IPA upstream regulator analysis indicated a total of 459 genes as upstream 

regulators. From these, retinol dehydrogenase 10 (RDH10), connective tissue growth 
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factor (CTGF), inhibin subunit beta A (INHBA), cysteine rich angiogenic inducer 61 

(CYR61) and thrombospondin 1 (THBS1) were differentially expressed in our dataset. 

Their respective target molecules in our dataset are shown in Table 3.4. 

 

Table 3.6 Upstream regulators from the IPA analysis when comparing the urea and 
control groups. 

Upstream 
Regulator 

Expr Log 
Ratio 

Molecule Type p-value of 
overlap 

Target molecules in dataset 

RDH10 -1.098 Enzyme 0.016 SFRP1 
CTGF 0.969 Growth Factor 0.015 CTGF,NOV 

INHBA 1.038 Growth Factor 0.009 CTGF,INHBA,NR4A2 
CYR61 1.297 Other 0.000 CYR61,NR4A1,SFRP1 
THBS1 1.402 Other 0.003 CTGF,THBS1 

 

3.4.7. Protein-protein interactions 

The protein-protein interaction (PPI) analysis showed a significant PPI enrichment 

score (P < 1.0e-16) with a total of 53 nodes (genes) and 34 edges (interactions). The average 

node degree; how many interactions a protein has on average in the network; was 1.28 and 

the average local clustering coefficient; how connected the nodes in the network are; was 

of 0.33. The resulting network is shown in Figure 3.5. 
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Figure 3.5. Protein-protein interaction analysis with the STRING algorithm showing nodes 
(proteins) and edges (protein-protein association) of proteins in the differentially expressed genes. The 
functional interaction network represents how the proteins coded by the differentially expressed genes 
between the urea and control groups are related. Thicker edges indicate stronger protein-protein interactions, 
each node represents a protein produced by a single, protein-coding gene locus, node colors represent proteins 
that are first interactors, nodes that have shapes inside indicate that the protein has a known or predicted 3D 
structure. 

 

3.4.8. Ligand-receptor interactions 

 The expression of ligands was decreased in the urea group, such as laminin subunit 

gamma 2 (LAMC2), lactotransferrin (LFT), nephroblastoma overexpressed (NOV), 

secreted frizzled related protein 1 (SFRP1). Additionally, the following ligands had an 
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increased expression in the urea group: connective tissue growth factor (CTGF), inhibin 

subunit beta A (INHBA), cysteine rich angiogenic inducer 61 (CYR61) and 

thrombospondin 1 (THBS1) (Table 3.5). 

 

Table 3.7 List of ligand-receptor pairs in which ligands were differentially expressed 
between the urea and control groups. 

Downregulated ligands 
Ligands Receptors 
LAMC2 CD151, COL17A1, ITGA2, ITGA3, ITGA6, ITGB1, ITGB4 

LTF GP9, LRP1, LRP11, TFRC 
NOV NOTCH1, PLXNA1 

SFRP1 FZD2, FZD6 
Upregulated ligands 

Ligands Receptors 
CTGF ITGA5, ITGAM, ITGB2, LRP1, LRP6, NTRK1, ERBB4 

INHBA ACVR1, ACVR1B, ACVR2A, ACVR2B, BAMBI, ENG, TGFBR3 
CYR61 CAV1, ITGA5, ITGAM, ITGAV, ITGB2, ITGB3, ITGB5 
THBS1 CD36, CD47, ITGA2B, ITGA3, ITGA4, ITGA6, ITGB1, ITGB3, 

LRP1, LRP5, SCARB1, SDC1, SDC4, TNFRSF11B 
 

3.4.9. Quantitative Real-Time PCR 

Analysis of the correlation between genes with RT-qPCR (-ΔCT) and the RNA 

sequencing results (FPKM) showed significant correlation between the two methods 

(Table 3.6). 

 

Table 3.6 Pearson’s correlation of RNA Sequencing (FPKM) and Quantitative Real-Time 
PCR (-ΔCT). 

Gene Correlation P-value 
PIGR 0.92 0.000 
SIK1 0.92 0.000 

MUC6 0.91 0.000 
INHBA 0.89 0.000 
LAMC2 0.87 0.001 
SPINK7 0.87 0.001 

SERPINA14 0.77 0.009 
 



 

 

74 

3.5. Discussion 

 This is the first study to show that an oral supplementation with urea changes the 

endometrial transcriptome of mares during diestrus. The results revealed alterations of the 

expression of genes associated with necrosis, invasion of cells and concentration of lipids. 

The DEG genes identified after urea treatment in this dataset serve to formulate possible 

molecular effects of this metabolite in the endometrium of animals that might be related 

to fertility. 

 The oral supplementation of urea developed for this study was an effective model 

to increase BUN in mares, as BUN increased at the first day after the start of the urea-

treatment and remained high. The higher BUN concentration in the urea-treated mares did 

not result in changes in the uterine pH. This outcome is different from mares that received 

urea intravenously over 6 hours, which resulted in a decrease in uterine pH (Chapter 2). In 

the current study, the oral urea treatment was fed during a longer period when compared 

to the previous study. Possibly, with this chronic model of urea-treatment, there was time 

for the intrauterine environment to regain its homeostasis, hence returning to a 

physiological uterine pH. 

 Genes that were identified as differentially expressed after the urea treatment have 

been previously reported to be important for pregnancy. For example, lactotransferrin 

(LTF), also known as lactoferrin, has been shown to modulate the inflammatory response 

when infused after mares were bred (Fedorka et al., 2018). Furthermore, there was mRNA 

expression of LTF in uterine epithelial cells in mice during early pregnancy suggesting 

that LTF might have a role in the preimplantation uterus (McMaster, Teng, Dey, & 

Andrews, 1992). In our dataset, the urea-treatment decreased the expression of LTF 



 

 

75 

causing a disruption in the uterine environment. The potassium ion channel FXYD domain 

containing ion transport regulator 4 (FXYD4) was downregulated in the endometrium of 

pregnant mares (Gebhardt et al., 2012). In contrast, FXYD4 was upregulated in our data. 

It has been suggested that Claudin 10 (CLDN10) prepares the endometrium of cows for 

embryo implantation by regulating the endometrial structure, and was upregulated in early 

pregnant heifers (S. Bauersachs et al., 2006). Our current treatment caused a decrease in 

CLDN10 in the endometrium of mares. Additionally, the uterine epithelium is an important 

source of CTGF, which regulates physiological uterine functions during early pregnancy 

in pigs (Moussad, Rageh, Wilson, Geisert, & Brigstock, 2002) and cows (Forde & 

Lonergan, 2012). Also, the mRNA expression of CTGF was lower during early pregnancy 

in mares (C. Klein et al., 2010); and the IPA analysis identified CTGF as an upstream 

regulator in our dataset. Overall, the change in the expression of genes involved with 

pregnancy establishment might indicate that urea treatment alters the ability of the equine 

endometrium to maintain pregnancies, but this hypothesis requires further investigation. 

 Ligand-receptor interactions mediate cell-cell communication, thus the expression 

of the ligands and receptors is an important aspect for the physiological functioning of a 

tissue (Zhou, Taramelli, Pedrini, Knijnenburg, & Huang, 2017). The DEG that were 

identified as ligands in the interaction analysis; CTGF, CYR61, NOV, INHBA and THBS1; 

were also seen identified as ligands in the endometrium and embryo of cows, signaling 

that the interaction between these ligands and receptors is possibly related to maternal 

recognition of pregnancy (Mamo, Mehta, Forde, McGettigan, & Lonergan, 2012). 

Furthermore, CTGF, related to cell adhesion (D. Ball, Rachfal, Kemper, & Brigstock, 

2003); NOV, an angiogenic regulator (Lin et al., 2003); CYR61, an angiogenic protein 
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related to cell adhesion, migration and proliferation (Mo et al., 2002) are all members of 

the CCN family of secreted matricellular proteins related to reorganization and 

transformation of tissues during reproductive events through interaction with their ligands 

(Mo et al., 2002; Winterhager & Gellhaus, 2014). Additionally, diabetic CTGF 

heterozygous mice had a lower BUN when compared to diabetic wild-type mice (James, 

Le, Doherty, Kim, & Maeda, 2013), although the reasons for this difference in BUN are 

unclear, it shows that a relationship between diminished expression of CTGF and BUN. 

Although the expression of these ligands in the endometrium does not necessarily 

guarantee that they will secrete proteins to compose the uterine histotroph (Mamo et al., 

2012), proteomics evaluation of the uterine luminal fluid of mares (M. Hayes et al., 2012) 

and cows (Muñoz et al., 2017) showed the presence of CTGF, PIGR and serine peptidase 

inhibitor clade A member 14 (SERPINA14), for example, in uterine fluid during early 

pregnancy. 

 Urea caused oxidative stress to murine renal medullary collecting duct cells in 

culture (Z. Zhang, Yang, & Cohen, 1999); as necrosis is associated with oxidative stress, 

it is not surprising that necrosis is identified in the IPA diseases and biological functions 

analysis. Necrosis involves intracellular events such as production of reactive oxygen 

species, swelling of mitochondria, disruption of calcium ion homeostasis, and plasma 

membrane rupture (Golstein & Kroemer, 2007). Several DEG related to necrosis had an 

increased expression, such as INHBA, nuclear receptor subfamily 4 group A member 1 and 

2 (NR4A1 and 2), serum and glucocorticoid-regulated kinase 1 (SGK1), transcriptional and 

immune response regulator (TCIM), BTG anti-proliferation factor 2 (BTG2), and early 

growth response 3 (EGR3). SGK1, for instance, is of interest as it is an early response gene 
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that is induced in response to cellular stressors. SGK1 is an important cell survival signal 

as it attenuates necrotic cell death induced by calcium ions (Brickley et al., 2013). The 

members of the NR4A nuclear receptor family, NR4A1 (also known as Nur77) and NR4A2 

(also known as Nurr1), upregulated in our dataset, act as necrosis promoters. NR4A1 has 

been reported as upregulated in other abnormal endometrial states, such as in thin 

endometrium from women, which is associated with implantation failure (Maekawa et al., 

2017). NR4A2 is necessary for necrosis after its translocation from the nucleus to the 

cytoplasm in vitro (Watanabe, Sekine, Naguro, Sekine, & Ichijo, 2015).  A transcription 

regulator, EGR-1, was shown to be upregulated in murine renal medullary cells in culture 

after urea treatment (Z. Zhang et al., 1999), similarly we saw that a transcription regulator 

of the EGR family, EGR-3, was upregulated in the endometrium of mares after oral urea 

supplementation. Additionally, BTG2 had an increased expression in cardiomyoblasts 

after oxidative damage, resulting in necrosis (Choi, Park, Kim, & Lim, 2013). Overall, the 

urea-treatment altered the expression of genes related to necrosis, which might serve as 

evidence of the oxidative stress caused by urea in the endometrium. 

 Invasion of epithelial cells by macromolecules is a process that occurs in normal 

and pathological conditions through the basement membrane, an extracellular-matrix 

membrane that separates tissue compartments (Caceres et al., 2018). Urea-

supplementation changed the expression of genes related to invasion of cells; SFRP1, LTF, 

FHIT (decreased expression) and NR4A1, INHBA, CYR61, ATF3 (increased expression). 

Supporting the current finding that an increase of ATF3 in the endometrium of mares 

would allow for a more pronounced invasion of epithelial cells by macromolecules, the 

overexpression of ATF3 in colon cancer and esophageal epithelial cells in vitro and in vivo 
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showed an increase in cell migration and invasive ability (Wu, Wei, Sun, Yuan, & Jiao, 

2014; Xie et al., 2014). Similarly, lower expression of secreted frizzled related protein 1 

(SFRP1) were associated with cell proliferation, migration, and invasion of human 

immortalized nasopharyngeal epithelial cell lines in vitro (Ren et al., 2015). Although not 

evaluated in this study, the changes in these genes related to invasion of cells might be due 

to a disruption in the basement membrane of the endometrium. 

 Urea addition in cultures of mouse kidney tissue caused an increase in osmolality, 

with a decrease of the synthesis of fatty acids from glucose via acetylCoA (Bojesen, 1980). 

The oral urea treatment altered the expression of certain genes related to concentration of 

lipids: increased the expression of NR4A1, SGK1, and salt inducible kinase 1 (SIK1) while 

it decreased the expression of iodothyronine deiodinase 2 (DIO2), phospholipase A1 

member A (PLA1A), and UDP glycosyltransferase 8 (UGT8). An overexpression of SIK1 

was accompanied by a reduction of lipogenic gene expression; furthermore, in hepatic 

knockdown of SIK1 there was an alteration in lipogenic genes transcription, thus 

disrupting lipid homeostasis. Overall, SIK1 regulates endogenous fatty acid synthetic gene 

expression (Yoon, Seo, Lee, Kim, & Koo, 2009). The expression of DIO2 in adipose tissue 

was inversely related to markers of fatty acid oxidation and synthesis, which could be an 

attempt, even if inadequate, from the adipocyte to minimize lipid accumulation (Bradley 

et al., 2018). The gene PLA1A is responsible for producing free fatty acids (Sonoda et al., 

2002), additionally it was a DEG in the endometrium of cattle fed with a n-3 

polyunsaturated fatty acid supplement, showing that it is related to lipid metabolism 

(Waters, Coyne, Kenny, MacHugh, & Morris, 2012). 
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 Moreover, there were nine DEG in common between the current study 

characterized by a chronic oral urea supplementation and our previous study characterized 

by an acute intravenous urea infusion (Chapter 2). The genes IGFBP3, kinesin family 

member 5C (KIF5C), LAMC2, proline rich 4 (lacrimal) (PRR4), PIGR, and tubulin 

tyrosine ligase like 6 (TTLL6) were decreased, whilst serine peptidase inhibitor Kazal type 

7 (SPINK7) was increased in both datasets. The genes SERPINA14 and SGK1 had an 

inverse change in mRNA expression, increasing in the oral urea study and decreasing in 

the intravenous urea experiment. With the diseases and biological functions analysis 

(IPA), we observed that treatment with urea through both routes of administration elevated 

BUN of mares, leading to an alteration in endometrial transcriptome with genes related to 

abnormal growth in endometrium and migration of cells. We believe that the difference in 

the list of DEG seen in the two studies is mainly due to the acute versus chronic exposure 

to urea and increased BUN. Possibly, the acute increase in BUN obtained with the first 

experimental design, had a more pronounced change in the endometrial transcriptome, 

resulting in a larger number of DEG, because the mares did not have time to adjust to such 

changes and regain homeostasis. As these studies did not test fertility in mares, subsequent 

studies need to be done to determine if an acute or chronic increase in BUN is more 

detrimental to pregnancy rate and early pregnancy loss in mares. 

 In conclusion, most of the DEG from this dataset are associated with necrosis, cell 

movement, tissue remodeling and lipid concentration. These results are a starting point to 

elucidate novel mechanisms through which a high systemic BUN, after oral urea 

supplementation, might alter the endometrial transcriptome in mares. Additional studies 
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need to be done to evaluate how the changes in endometrial transcriptome seen in the 

present study will influence physiological and reproductive function in mares. 

 

 

 

 

 

Figure 3.6. Representation of proposed mechanism of action of oral supplementation of urea on the 
endometrium of mares. 



 

 

81 

CHAPTER 4. Effect of oral urea administration on the transcriptome of the equine 
embryo  

 

4.1. Abstract 

Maternal diet has an important effect on the development of embryos. High blood urea 
nitrogen (BUN) in cows and ewes has been reported to have negative impacts on embryo 
development; however, no studies on this relationship have been published in mares. 
Therefore, this study evaluated the effects of a high BUN on blastocoele fluid urea 
concentrations and analyzed the transcriptome of day-14 equine embryos based upon RNA 
sequencing. When a 25 ± 3 mm follicle was detected, mares were randomly allocated to a 
urea (n=9) or control treatment (n=10). The urea treatment consisted of an oral 
supplementation of urea (0.4 g/kg of body weight), mixed with sweet feed and molasses. 
The control treatment was sweet feed and molasses alone. Blood samples were collected 
every other day for BUN analysis, one hour after feeding. Mares were artificially 
inseminated in the presence of a 35-mm follicle and ovulation was detected (D0). 
Ultrasonographic exams for pregnancy detection started at D11, and embryo collection 
was done at D14 (n=5 urea-treated embryos; n=7 control embryos). Blastocoele fluid was 
collected and stored separately for urea nitrogen concentration analysis. RNA was 
extracted from embryos for RNA sequencing. Cuffdiff(2.2.1) was used to calculate 
differentially expressed genes (DEG) between urea and control groups. There was an 
increase in BUN in the urea treatment group. DEG genes involved in neurological 
development, cell proliferation, vascular remodeling, and adhesion were identified in 
embryos from urea-treated mares. In summary, oral urea treatment in mares caused 
transcriptomic changes on D14 equine embryos that might have deleterious effects to their 
development. 
KEYWORDS: High protein diet, blood urea nitrogen, horse, embryo development, 
blastocoele fluid urea nitrogen. 
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4.2. Introduction 

Maternal diet has been shown to influence embryonic development, pregnancy 

outcomes, and change gene expression in bovine and human embryos (Chmurzynska, 

2010; Fahey et al., 2001; D. S. Hammon et al., 2005; Penagaricano et al., 2013). A balance 

between a suitable uterine environment and a properly programmed embryo is paramount 

to a successful pregnancy (Khatib & Gross, 2019). More specifically, high protein diets or 

urea-treatment, a metabolite of protein metabolism, have been used to increase BUN and 

evaluate effects on reproductive function (W. R. Butler et al., 1996; C. Elrod et al., 1993; 

Ferguson et al., 1993). Hence, studies show a positive correlation between systemic BUN 

and urea nitrogen concentrations in follicular fluid and uterine fluid in cows and ewes (C. 

Elrod et al., 1993; Fahey et al., 2001; D. S. Hammon et al., 2005; Ellen R Jordan et al., 

1983; T. McEvoy et al., 1997). Embryos collected from cows with high BUN (≥19 mg/dL) 

resulted in lower pregnancy rates when compared to embryos collected from donor cows 

with moderate BUN (<19 mg/dL) (Rhoads, Rhoads et al. 2006). Similarly, when ewes 

received urea orally, resulting in increased BUN, fewer and less well-developed embryos 

were collected four days after ovulation. Additionally, embryos cultured in vitro from ewes 

with high BUN had lower embryonic cell proliferation and survival rates (McEvoy, 

Robinson et al. 1997), and there was a lower rate of blastocyst hatching in vitro collected 

from cows fed diets resulting in high BUN (Ferreira, Gomez et al. 2011). Overall, these 

results indicate detrimental effects of a high BUN on the follicular fluid and uterine 

environments that would lead to a dysregulation in oocyte and embryo development and 

consequently lower pregnancy rates in cows and ewes. However, the effects of a high BUN 



 

 

83 

on equine embryos are unknown and studies need to be done in order to fill the gaps in 

knowledge regarding these possible effects. 

Previously, we have shown that there was an increase in BUN and a decrease in 

uterine pH as well as significant changes to the endometrial transcriptome after urea 

treatment in mares (Chapter 2 and 3). We revealed the effects of a high BUN on the 

endometrium of mares; however, the effects of high urea nitrogen concentrations on equine 

embryos remain unknown. 

Therefore, we hypothesize that oral ingestion of urea will elevate BUN and change 

gene expression of embryos. Our objectives were to determine the effects of a high BUN 

on embryonic growth rate, blastocoele fluid urea concentrations, and perform RNA 

sequencing on day-14 equine embryos collected from urea-fed mares and control mares. 

 

4.3. Material and methods 

All animal procedures were completed in accordance with the Institutional Animal 

Care and Use Committee of the University of Kentucky (Protocol #2011-0876). Clinically 

healthy mares of different breeds, ranging from 5 to 15 years of age were used in this study. 

All mares underwent a reproductive examination and transrectal ultrasonography for 

reproductive tract evaluation. 

When a 25 ± 3 mm follicle was detected, mares were randomly allocated to a urea 

(n=9) or control treatment (n=10). The treatment group was fed 0.4 g of feed-grade urea 

(Hallway Feeds, Lexington, KY) per kg of body weight, mixed with 2.4 kg of sweet feed 

(Poize 10% crude protein, Hallway Feeds), molasses and mixed grass hay (8.4% crude 

protein). The control group received identical sweet feed, molasses and hay. More 
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specifically, the oral treatment supplemented the mares with grain (90% dry matter) and 

hay (89% dry matter). Considering a daily 2% dry matter total feed intake of body weight 

for a 500 kg mare, each animal received 2.4 kg of grain and 8.8 kg of hay. The amount of 

nitrogen supplied by the grain was of 34.56 g and by hay was of 107 g (considering a 16% 

percentage of nitrogen in the crude protein). The feed grade urea supplied a total of 84 g 

of nitrogen (considering a 42% of nitrogen). Therefore, in the urea-treatment the mares 

received a total of 225.56 g of nitrogen and in the control treatment received a total of 

141.56 g of nitrogen. Daily meals were divided in two equal amounts given in the morning 

and afternoon using individual feeding pens. Mares had ad libitum access to water. 

When a 35-mm follicle and pronounced uterine edema were determined by 

transrectal ultrasonography (ExaGo ultrasound; ECM Co., Angouleme, France), the mares 

were artificially inseminated with 500-million progressively motile sperm pooled together 

from two fertile stallions. Human chorionic gonadotropin (hCG) 2,500 IU (Chorulon; 

Intervet, Millsboro, DE) was administered intravenously at the time of insemination to 

induce ovulation. Daily ultrasound examinations were performed until ovulation detection 

(Day 0). The mares continued to receive their respective treatment until D14, over a total 

of 18.63 ± 0.23 (mean ± SEM) days. 

 

4.3.1. Embryo collection and analyses 

Ultrasonographic exams for pregnancy detection started at D11. Non-pregnant 

mares were evaluated daily for embryo detection until D14. Embryos were evaluated daily 

by measuring the vesicle height and width from an ultrasonic image at its maximum size 
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obtaining the average diameter until D14. Embryo area as an ellipse was calculated with 

the following formula: 

 

[(Embryo width / 2) * (Embryo height / 2)] * 3.1416 

 

Mares were restrained in palpation stocks, and their tails were wrapped and tied. 

Feces were removed from the rectum manually, and the perineal region was washed three 

times with povidone-iodine scrub, rinsed with clean water and dried with clean paper 

towels. Conceptus recovery was performed on day 14 by transcervical uterine lavage with 

Hartman’s solution and a sterile endotracheal tube of 24-mm diameter (Jorgensen 

Laboratories, Loveland, CO). Mares were sedated with xylazine hydrochloride (0.1-0.2 

mg/kg of body weight, IV; AnaSed; Lloyd, Shenandoah, IA). The cervix was dilated 

manually in order to fit the endotracheal tube until it reached the uterine body. Fluid 

collected in a sterile palpation sleeve was infused until it filled the uterus to recover the 

embryo. 

The embryo was rinsed with Hartman’s solution three times. The capsule was 

ruptured using a sterile needle (NIPRO medical corporation, Miami, FL), and the 

blastocoele fluid was retrieved with a syringe and needle (NIPRO medical corporation). 

Fluid was frozen at -20ºC for later analyses. After the blastocoele fluid was removed, 

embryos were preserved in RNAlater (Thermo Fisher Scientific, Waltham, MA) at 4ºC 

overnight and then kept at -80ºC until RNA isolation. 
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4.3.2. Blood collection 

Blood samples were collected every other day, one hour after the mares finished 

eating in the afternoon, with vacutainer tubes with sodium heparin (BD Vacutainer, 

Franklin Lakes, NJ). Blood samples were promptly centrifuged at 1500 x g for 10 minutes 

at 4ºC, and plasma was stored at -20ºC. 

 

4.3.3. Urea nitrogen analyses 

Concentrations of urea nitrogen in the plasma and blastocoele fluid were measured 

with a spectrophotometric assay following an adapted protocol previously described (Mok 

et al., 2018). All reagents were purchased from Sigma-Aldrich. The standard curve ranged 

from 5.6 mg/dL to 56.0 mg/dL. The researcher diluted urea (8M after constitution with 16 

mL high purity water) to 5.6 mg/dL and 56.0 mg/dL to be used as low and high controls. 

The reaction consisted of analyzing urea by enzymatic hydrolysis to ammonia at room 

temperature. The reaction (in duplicate) was done in microcentrifuge tubes (2 mL) with 

10 μL of each plasma sample, and 125 μL urease buffer was added with incubation of the 

samples for 20 min. The urease enzyme hydrolyzes urea to produce carbon dioxide and 

ammonia (CH4N2O + Urease buffer  CO2 + 2NH3). Then, 250 μL of phenol nitroprusside 

solution, 250 μL of alkaline hypochlorite solution (0.2%), and 1000 μL of distilled water 

were added (NH3 + phenol nitroprusside + alkaline hypochlorite + H2O  Indophenol 

blue) (Tabacco & Meiattini, 1985). After a 25-min incubation, a 200-μL aliquot was 

transferred to a 96-well plate and absorbance (570 nm) was determined with an Epoch 

microplate spectrophotometer (Biotek, San Francisco, CA) at 570 nm. The intra- and 
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interassay coefficients of variation for BUN concentrations were 0.5% and 9.8%, 

respectively. The lower limit of detection of the assay was 0.11 mg/dL. 

 

4.3.4. Progesterone analysis 

Progesterone concentrations were determined for D4, D10, and D14 (D0 = day of 

ovulation) in duplicates with an Immulite 2000 Analyzer (Siemens Healthcare Diagnostic 

Products, Ltd., Malvern, PA) using the Progesterone Test L2KPW2, a solid phase 

competitive chemiluminescent enzyme immunoassay. Low and high progesterone 

adjustors were used, with concentrations of 1.54 and 5.48 ng/mL, respectively. The lower 

limit of detection of the assay is 0.1 ng/mL. Intra- and inter-assay coefficients of variation 

(% CVs) were 7% and 3.78%, respectively. 

 

4.3.5. Blastocoele fluid pH and osmolality 

The blastocoele fluid pH was measured using an adapted epoxy pH probe (model 

number 911600, Thermo Fisher Scientific, Waltham, MA) attached to a portable pH meter 

(Accumet AP115, Thermo Fisher Scientific). Immediately before pH measurements, the 

probe was calibrated with calibration solutions at pH 4, 7 and 10 (Thermo Fisher 

Scientific). The pH readings were done in duplicate, and an average was calculated. The 

blastocoele fluid osmolality was determined by freezing point osmometry (Model 5004: 

Precision System Inc., Natick, MA) as recommended by the manufacturer. Calibration of 

the osmometer was done with osmometry standards 100 and 500 mOsm (Precision System 

Inc.). 
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4.3.6. RNA extraction 

Total cellular RNA was extracted from embryos using TRIzol Reagent (Thermo 

Fisher Scientific) following the manufacturer’s recommendations. After extraction, RNA 

concentration and quality were analyzed using a NanoDrop DP-1000 spectrophotometer 

(Agilent Technologies, Palo Alto, CA) and a Bioanalyzer® (Agilent, Santa Clara, CA). 

All samples had a 260/280 ratio > 2.0, a 28S:18S rRNA ratios >1.8, and RNA integrity 

number (RIN) > 8 (8.95 ± 0.4, mean ± SEM). A total of 1 μg of RNA was treated with 

DNase I (Ambion Inc., Austin, TX) for 30 minutes at 37ºC to remove genomic DNA 

according to manufacturer’s instructions. The extracted RNA was kept at -20ºC until 

further analyses. 

  

4.3.7. RNA sequencing 

The total extracted RNA from embryos, as described above, was used for RNA 

sequencing. Samples from five embryos from the urea group and seven embryos from the 

control group were used. Total RNA sample quality was evaluated with agarose gel 

electrophoresis to test the RNA degradation and potential contamination before library 

construction. The mRNA was enriched using oligo(dT) beads. The mRNA was fragmented 

randomly in fragmentation buffer, followed by first strand cDNA synthesis using random 

hexamers and reverse transcriptase. After first-strand synthesis, a custom second-strand 

synthesis buffer (Illumina, San Diego, CA) was added with dNTPs, RNase H and 

Escherichia coli polymerase I to generate the second strand by nick-translation. Double-

stranded cDNA was purified using AMPure XP beads (Beckman Coulter, Beverly, CA). 

In order to select cDNA fragments of 150 base pairs in length, the library fragments were 
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purified with AMPure XP system (Beckman Coulter). The final library was obtained by 

PCR amplification and purification of PCR products by AMPure XP beads (Beckman 

Coulter, Beverly, USA). The library concentration was first quantified using a Qubit 2.0 

fluorometer (Life Technologies), and then diluted to 1 ng/µl before checking insert size on 

an Agilent 2100 and quantifying to greater accuracy by quantitative PCR, to ensure the 

library quality. Sequencing was done with a NovaSeq 6000 instrument (Illumina) in 2x150 

base pairs with paired-end reads. A total of 592 million reads were produced. Raw image 

data file from the high-throughput sequencing was transformed to Raw Reads by 

CASAVA (1.8 Illumina) base recognition. 

 

4.3.8. RNA Sequencing data analysis 

The Fastq files were evaluated for read quality using FastQC 0.11.4 (Andrews, 

2010a). Subsequently, Trim Galore 0.4.1 (Krueger 2012) was used for adapter and read 

quality trimming (Phred score threshold of 30). Reads were mapped to the Equus caballus 

reference genome (EquCab 3.0) using the software STAR 2.5.3a (Dobin et al., 2013), then 

annotated with the equine reference annotation from NCBI using Cufflinks 2.2.1 (Trapnell 

et al., 2012). Fragments per kilobase per million (FPKM) were used to determine the 

expression level of genes. Lastly, we used Cuffdiff 2.2.1 (Trapnell et al., 2012) to calculate 

differentially expressed genes (DEG) between samples from the control and urea groups. 

Significance level was set at FDR-adjusted p-value of the test statistic < 0.1 using a 

Benjamini-Hochberg correction. 
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4.3.9. Functional annotation and pathway analysis 

PANTHER (version 13.1, http://www.pantherdb.org/) annotated DEG in relation 

to biological process, molecular function, cellular component, and pathways (Huang da et 

al., 2009). As PANTHER describes the functions of DEG based on public genomic 

resources through gene-set enrichment, it provided a better understand and described the 

transcriptomic changes on embryos after urea supplementation. 

 

4.3.10. Quantitative Real-Time PCR 

 Expression levels of a subset of DEG determined by RNA sequencing between the 

control and urea groups were confirmed with RT-qPCR. The extracted RNA was reverse 

transcribed using a high-capacity cDNA reverse transcription kit and random hexamers 

(Thermo Fisher Scientific). The cDNA was kept frozen at -20°C until quantitative real-

time PCR (RT-qPCR) was done. Primers for the selected transcripts were designed using 

the Primer-BLAST (National Center for Biotechnology Information, NCBI) function 

(Table 4.1). The RT-qPCR was done using PowerUp™ SYBR™ Green Master Mix 

(Thermo Fisher Scientific) with the program: 95 °C for 10 min, 40 cycles of 95 °C for 15 

s and 60 °C for 1 min, and 55–95 °C for dissociation cycling conditions. Each reaction 

was done in duplicate. 
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Table 4.1 Forward and reverse primers used for quantitative Real-Time PCR analysis. 

Gene symbol 
Forward primer sequence 

(5’-3’) 
Reverse primer sequence (5’-

3’) 
Accession 

number 
Product 

size 

GAPDH 
AGAAGGAGAAAGGCCC

TCAG 
GGAAACTGTGGAGGTCA

GGA 
NM_0011

63856 
87 

APLNR 
GATCCGAGAGAAGCCT

GGTG 
GAAGGTGCCCTCACACTA

CC 
XM_0055
98133.3 

84 

GSTA1 
CCATTCGCAACTACATC

GCC 
TTTCATCACGTGGGGTCA

TGG 
NM_0012
84532.1 141 

LOC102149
479 

CGGCCTTCTCTGTTTCA
GACT 

TGGTGCCGTTCCTGGTGA
TA 

XM_0055
99320.3 127 

NFASC 
TTCAGAACGAGCTGTCC

CAG 
CCCTTCGCCTCACACTCA

AT 
XM_0236
40364.1 103 

PCSK1 
TGCTGGATGGCATTGTG

ACT 
AAGCCTTCTGGGCTAATC

GG 
XM_0015
04608.5 144 

PSCA 
GGCGTGTAAGATCCCAG

GAG 
GCTAAGCCAGTGGGCCTT

TA 
XM_0015
05016.4 126 

Primers were generated using the National Center for Biotechnology Information (NCBI) primer-BLAST 
tool. Key: GAPDH: glyceraldehyde 3-phosphate dehydrogenase, APLNR: apelin receptor, GSTA1: 
glutathione S-transferase alpha 1, LOC102149479: sperm-associated acrosin inhibitor, NFASC: 
neurofascin, PCSK1: proprotein convertase, PSCA: prostate stem cell antigen. 

 

The RT-qPCR efficiency was determined using LinRegPCR (version 2012.0) to 

ensure that it was between 1.8 and 2.2 (Ruijter et al., 2009). Mean threshold cycles (CT) 

were used to show changes in the mRNA expression and then normalized to the 

housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (C. Klein, 

Rutllant, & Troedsson, 2011) to calculate delta CT values (ΔCT) (Livak & Schmittgen, 

2001). 

 

4.3.11. Statistical analyses 

Data were tested for normality with a Shapiro-Wilk test. The BUN concentration, 

progesterone concentration, embryo area as an ellipse, and blastocoele fluid osmolality 

were not normally distributed and a normal quantile transformation was done. The 

blastocoele fluid urea concentration and pH data were normally distributed. A Standard 

Least Squares with fixed factor as treatment and day and random effect as horse was 
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performed for: BUN, progesterone, and embryo area as an ellipse. A Standard Least 

Squares with fixed factor as treatment and random effect as horse was performed for: 

blastocoele fluid osmolality, blastocoele fluid urea concentration and pH. A Student’s t 

test was used for pairwise comparison. Significance of difference between embryo 

recovery in the control and urea groups was assessed applying the Chi-Square test. 

A Pearson’s correlation was done to determine the relationship between BUN and 

blastocoele fluid urea nitrogen concentrations and for BUN and progesterone. 

Data are reported as median (range) when not normally distributed and mean ± 

SEM when normally distributed. Significance was set at P < 0.05 and trend at 0.1 ≥ P > 

0.05. JMP Pro (version 14; SAS Institute, Cary, NC, USA) was used for all statistical tests. 

 

4.4. Results 

4.4.1. Blood urea nitrogen concentrations 

There was an effect of treatment day (P = 0.013) and group (P < 0.001) for BUN 

(Figure 4.1). Immediately before treatment (FEEDD0), the BUN of the control and urea 

groups were 13.35 (9.73-17.28) and 12.56 (10.11-17.77) mg/dL, respectively. At the day 

of ovulation (OVD0) the BUN of the control group was 12.27 (8.52-16.06) compared to 

the BUN of the urea group of 19.80 (13.94-24.02) mg/dL (P < 0.05). At 14 days after 

ovulation (OVD14) the BUN of the urea group was also higher than that of the control 

group, 24.56 (15.47-28.48) and 12.31 (9.10-16.80) mg/dL, respectively (P < 0.05). 
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Figure 4.1. Blood urea nitrogen (mg/dL) analyzed in mares receiving a control or urea diet over a 
total of 18.63 ± 0.23 (mean ± SEM) days. Results are shown as mean and SEM, * P < 0.05. 

 

4.4.2. Progesterone concentrations 

A total of five mares (56%) from the urea and six mares (60%) from the control 

group produced an embryo, with one of the control mares having a twin pregnancy. There 

was no effect of day (P = 0.41) or interaction between group*day (P = 0.56), but there was 

a group effect (P = 0.03), with lower progesterone concentrations in the urea-treated mares 

(Figure 4.2). Although the progesterone values from the mare with twin embryos (at D4, 

D10 and D14) were not identified as outliers (values 3 times the interquantile range past 

the lower and upper quantiles), if we exclude this animal from the statistical analyses, as 

mares with twin pregnancies have a higher progesterone concentration, there were no 

differences in the progesterone concentrations between the groups (Day: P = 0.47; Group: 
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P = 0.47; Group*Day: P = 0.63). The Pearson’s correlation between progesterone and 

BUN of all the mares were not significant (D4: R = -0.20, P = 0.57; D10: R = 0.43, P = 

0.21; D14: R = 0.08, P = 0.82). 

 

Figure 4.2. A) Blastocoele fluid urea nitrogen concentrations analyzed in mares receiving a control 
or urea diet. Results are shown as mean and SEM. B) Relationship between plasma BUN and blastocoele 
fluid urea nitrogen concentration in control and urea mares after oral urea treatment. Results are shown as 
mean. C) Progesterone concentrations of mares with recovered embryos receiving a control or urea diet, with 
the exception of the control mare that had twin embryos. Results are shown as median and range. D) Embryo 
area calculated as an ellipse from Day 11-14. Results are shown as median and range. 

 

4.4.3. Embryo parameters 

There was no difference between the recovery or not of an embryo in the control 

and urea treated groups (P = 0.71). There was an effect of day (P < 0.001) but no effect of 

group (P = 0.14) or group by day interaction (P = 0.99) for the embryo area as an ellipse 

calculated from D11-D14 (Figure 4.2). There was no difference between the urea and 
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control group for: osmolality (P = 0.73) with 132 mOsm (117-171) and 139 mOsm (118-

196), for control and urea, respectively or pH (P = 0.56) with 8.46 pH (7.82-8.81) and 8.54 

pH (7.89-8.88), for control and urea, respectively of the blastocoele fluid on D14.  

Blastocoele fluid urea nitrogen concentration showed a tendency to be higher in 

embryos from the urea group when compared to the control group, 22.84 ± 2.97 and 16.81 

± 1.65 mg/dL, respectively (P = 0.10). The Pearson’s correlation analysis showed a strong 

positive relationship between plasma BUN and blastocoele fluid urea nitrogen 

concentration across all samples (R = 0.68, P = 0.01) (Figure 4.2). 

 

4.4.4. RNA sequencing 

Characteristics of the RNA sequencing analysis of the data are summarized in Table 

4.2. The average of input reads was 52,169,145; the input read length for paired end reads 

was 150, and 87% of uniquely mapped reads were obtained for the samples sequenced. 

 

Table 4.2 Summary of RNA sequencing data for 12 embryo samples. 
Sample Group Number of input 

reads 
Uniquely mapped 

read number 
Uniquely mapped 

reads 

1 Urea 55,301,214 48,678,110 88.02% 
2 Urea 58,619,132 50,633,657 86.38% 
3 Urea 48,519,308 41,477,499 85.49% 
4 Urea 51,559,296 44,983,757 87.25% 
5 Urea 52,999,962 46,225,781 87.22% 
6 Control 49,692,326 44,014,661 88.57% 
7 Control 51,049,824 44,759,739 87.68% 
8 Control 51,136,796 44,991,192 87.98% 
9 Control 46,088,700 40,275,043 87.39% 

10 Control 56,581,538 48,557,995 85.82% 
11 Control 55,379,410 47,879,277 86.46% 
12 Control 49,102,238 41,994,083 85.52% 
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4.4.5. Differentially expressed genes 

 A total of fourteen genes were differentially expressed in the embryos from the 

urea and control groups. Ten genes were upregulated and four genes were downregulated 

in the urea group in comparison to the control group. The genes that were uncharacterized 

for Equus caballus in the NCBI database had their nucleotide sequence (FASTA format) 

identified in the NCBI database (http://www.ncbi.nlm.nih.gov/), then Basic Local 

Alignment Search Tool (BLAST, http://www.ncbi.nlm.nih.gov/BLAST) (Camacho, 

Coulouris et al. 2009) identified their orthologs in other species (Bos taurus, Equus 

przewalskii) (Table 4.3). 

 

Table 4.3. List of differentially expressed genes of embryos between the urea and control-
treated mares. 

Gene name Gene 
symbol 

Orthologous 
gene (Species) 

Accession 
number 

Log2 (Fold 
Change) 

P-value FDR-
adjusted 
p-value 

proline rich 35 PRR35  XM_02361
6733.1 

1.028 0.000 0.048 

glutathione S-transferase 
alpha 1 

GSTA1  XM_00150
3029.4 

1.108 0.000 0.048 

keratin 4 KRT4  NM_00134
6204.2 

1.185 0.000 0.048 

JPX transcript JPX Bos taurus XR_00280
5540.1 

1.873 0.000 0.048 

prostate stem cell antigen PSCA  XM_00150
5016.4 

2.045 0.000 0.048 

sperm-associated acrosin 
inhibitor 

LOC1021
49479 

 XM_00559
9320.3 

2.056 0.000 0.048 

neurofascin NFASC  XM_02364
0364.1 

-1.505 0.000 0.048 

carbohydrate 
sulfotransferase 1 

CHST1  XM_02365
3932.1 

-1.477 0.000 0.048 

serpin family G member 1 SERPING
1 

 XM_00149
8338.6 

-0.750 0.000 0.048 

G protein-coupled receptor 
155 

GPR155  XM_00191
7170.4  

0.619 0.000 0.048 

fibrinogen gamma chain FGG  XM_00191
4798.5 

0.820 0.000 0.048 

https://www.ncbi.nlm.nih.gov/nuccore/XM_023616733.1
https://www.ncbi.nlm.nih.gov/nuccore/XM_023616733.1
https://www.ncbi.nlm.nih.gov/nuccore/XM_001503029.4
https://www.ncbi.nlm.nih.gov/nuccore/XM_001503029.4
https://www.ncbi.nlm.nih.gov/nuccore/NM_001346204.2
https://www.ncbi.nlm.nih.gov/nuccore/NM_001346204.2
https://www.ncbi.nlm.nih.gov/nuccore/XM_001505016.4
https://www.ncbi.nlm.nih.gov/nuccore/XM_001505016.4
https://www.ncbi.nlm.nih.gov/nuccore/XM_005599320.3
https://www.ncbi.nlm.nih.gov/nuccore/XM_005599320.3
https://www.ncbi.nlm.nih.gov/nuccore/XM_023640364.1
https://www.ncbi.nlm.nih.gov/nuccore/XM_023640364.1
https://www.ncbi.nlm.nih.gov/nuccore/XM_023653932.1
https://www.ncbi.nlm.nih.gov/nuccore/XM_023653932.1
https://www.ncbi.nlm.nih.gov/nuccore/XM_001498338.6
https://www.ncbi.nlm.nih.gov/nuccore/XM_001498338.6
https://www.ncbi.nlm.nih.gov/nuccore/XM_001917170.4
https://www.ncbi.nlm.nih.gov/nuccore/XM_001917170.4
https://www.ncbi.nlm.nih.gov/nuccore/XM_001914798.5
https://www.ncbi.nlm.nih.gov/nuccore/XM_001914798.5
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Table 4.3 (continued). List of differentially expressed genes of embryos between the urea and 
control-treated mares. 

       
G elongation factor, 

mitochondrial 1 
GFM1 Equus 

przewalskii 
XR_00280

5905.1 
0.824 0.000 0.048 

proprotein convertase 
subtilisin/kexin type 1 

PCSK1  XM_00150
4608.5 

2.281 0.000 0.083 

apelin receptor APLNR  XM_00559
8133.3 

-1.048 0.000 0.083 

 

4.4.6. Functional analyses 

To better understand the effects of a high urea concentration on the embryonic 

transcriptome a GO analysis with PANTHER was done. The GO terms significantly 

enriched in the molecular functions by DEG in the ontology were binding, catalytic 

activity, molecular function regulator, and molecular transducer activity. In the biological 

processes, the categories that were enriched were biological adhesion and regulation, 

cellular and metabolic process, and multicellular organismal process. Enriched pathways 

were related to Alzheimer disease, blood coagulation, endothelin signaling pathway, and 

plasminogen activating cascade (Figure 4.3). 

 

https://www.ncbi.nlm.nih.gov/nuccore/XR_002805905.1
https://www.ncbi.nlm.nih.gov/nuccore/XR_002805905.1
https://www.ncbi.nlm.nih.gov/nuccore/XM_001504608.5
https://www.ncbi.nlm.nih.gov/nuccore/XM_001504608.5
https://www.ncbi.nlm.nih.gov/nuccore/XM_005598133.3
https://www.ncbi.nlm.nih.gov/nuccore/XM_005598133.3
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Figure 4.3. Functional annotation analysis of the differentially expressed genes using PANTHER 
(version 13.1) statistical overrepresentation test. Molecular function, biological process, cellular component, 
and pathway shown in pie charts identified by the GO terms in different colors. 

 

4.4.7. Quantitative Real-Time PCR 

Analysis of the correlation between genes with RT-qPCR (-ΔCT) and the RNA 

sequencing results (FPKM) showed that three genes had a significant correlation and two 

had a trend between the two methods (Table 4.4). 
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Table 4.4 Pearson’s correlation of RNA Sequencing (FPKM) and Quantitative Real-
Time PCR (-ΔCT) to confirm RNA Sequencing results. 

Gene Correlation (R) P-value 
APLNR 0.560 0.058 
GSTA1 0.613 0.034 

LOC102149479 0.780 0.003 
NFASC 0.350 0.264 
PCSK1 0.547 0.066 
PSCA 0.490 0.106 

 

4.5. Discussion 

Effects of high BUN on D14 equine embryos were identified for the first time. 

Embryos from urea-treated mares tended to have higher blastocoele fluid urea nitrogen 

concentration. Genes and pathways related to nervous system development, cell 

proliferation, endothelial remodeling, detoxification, and adhesion from the treated 

embryos were changed. The gene ontology analysis of the DEG revealed that blood 

coagulation and endothelin signaling pathways were enriched. Thus, suggesting for the 

first time that high concentrations of urea in maternal circulation will have an impact on 

early equine embryos (D14). Overall, there was a similar pattern of regulation with a 

significant correlation between –ΔCT and FPKM, showing concordance between RNA 

Sequence and qPCR results. 

Urea is a small molecule that can diffuse through circulation into the maternal 

reproductive tract; thus elevated BUN in cows and ewes resulted in an increase in 

intrauterine urea concentration (Fahey et al., 2001; Ellen R Jordan et al., 1983; T. McEvoy 

et al., 1997). Although the intrauterine urea concentration was not measured in this study, 

based on the previously mentioned study in ruminants, we can hypothesize that the urea 

in circulation diffused to the uterus and then to the blastocoele fluid of the early embryo, 
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leading to a higher blastocoele fluid urea concentration in embryos recovered from urea-

treated mares. 

The reported relationship between progesterone values and BUN in cows differs 

between studies. In some investigations, cows with a high BUN had higher progesterone 

concentrations (Jordan & Swanson, 1979), while other reports showed no difference in 

progesterone concentrations in relation to BUN (Rhoads et al., 2004). Although the 

relationship between progesterone and BUN has not been reported in mares, in the current 

study, an increase in BUN did not result in significant changes in serum progesterone 

values. What was seen in the present study was a higher progesterone concentration in the 

mare with a twin pregnancy, as was expected (Urwin & Allen, 1983). Additionally, there 

was no correlation between BUN and progesterone. Our results on relationship of BUN 

and progesterone values, indicate that in mares, an increase in BUN was not associated 

with an increase in peripheral progesterone. 

 In the current study, urea-treatment altered expression of genes related to 

neurological and brain development on D14 embryos. For example, the G protein-coupled 

receptor 155 (GPR155) has an important role in the brain, possibly by acting in the limbic 

system (Nishimura et al., 2007). Also, neurofascin (NFASC) was observed in the 

embryonic mouse hindbrain, being responsible for clustering voltage-gated sodium 

channels to form the node of Ranvier, an axonal domain in myelinated nerves that allow 

for rapid nerve conduction (A. Zhang et al., 2015). On the other hand, the oral urea 

treatment altered the expression of serpin family G member 1 (SERPING1). The 

SERPING1 binds and inhibits the three activation arms of the complement system: the 

classical pathway, the lectin pathway, and the alternative pathway (Gorelik, Sapir, 
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Woodruff, & Reiner, 2017). Additionally, SERPING1 is important for the proliferation of 

neuronal stem cells in mice during cerebral cortex development (Gorelik et al., 2017), the 

current urea-treatment resulted in a downregulation of this gene related to neurological 

embryo development which might lead to developmental impairment of the D14 embryos. 

The change in expression of these genes, involved in neurological processes, after urea-

treatment on D14 embryos, will likely result in an abnormal development of the nervous 

system, which starts at day 20 in equine embryos (Franciolli et al., 2011). 

 As the early embryo is in a stage of intense and precise cell division and 

proliferation, changes to genes related to cell division can have serious consequences. For 

instance, prostate stem cell antigen (PSCA) is used as a molecular marker for abnormal 

cell proliferation and differentiation in cancers (Raff, Gray, & Kast, 2009). PSCA was 

upregulated in embryos from urea-treated mares, indicating an alteration in the normal cell 

division process that happens in D14 embryos. 

The apelin receptor gene (APLNR) is a G-protein-coupled receptor highly 

expressed in vasculature. APLNR modulates the polarization and vascular remodeling of 

endothelial cells in zebrafish and humans during development (Kwon et al., 2016). More 

specifically, APLNR was required for proper cardiac development in zebrafish (Deshwar, 

Chng, Ho, Reversade, & Scott, 2016). Thus, the identification of APLNR as a 

downregulated gene in the urea-treated embryos, might have negative effects in the cardiac 

development, which is physiologically observed in equine embryos at 16 days (Franciolli 

et al., 2011). 

 Three polypeptide chains (Aα/Bβ/Gγ) form fibrinogen, which is the precursor of 

fibrin, essential for the hemostatic process (Kant et al., 1985). Thus, the identification of 
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fibrinogen gamma chain (FGG) as an upregulated DEG in our dataset, as well as the 

enrichment of the blood coagulation and plasminogen activating cascade pathways, 

indicate that the oral urea treatment resulted in a disruption in the coagulation properties 

of the early equine embryo. Additionally, the embryo derived FGG is involved in the 

adhesion of the conceptus to the endometrium in mares (C. Klein, 2016; C. Klein et al., 

2010); the change in the expression of FGG associated with the high BUN might indicate 

that it will interfere with normal fixation of the urea-treated embryos to the endometrium. 

Glutathione S-transferase A1 (GSTA1) was upregulated in our dataset, and it 

encodes enzymes responsible for adding glutathione to products of oxidative stress, thus 

detoxifying these compounds and protecting cells from reactive oxygen species and the 

products of peroxidation (J. D. Hayes & McLellan, 1999; Raza, 2011). In preimplantation 

development of in vitro-matured/in vitro-fertilized bovine embryos, the intracytoplasmic 

concentration of glutathione increased during development, showing that it plays an 

important intracellular role at specific stages for bovine embryos (Lim, Liou, & Hansel, 

1996). Additionally, in mice glutathione increased the antioxidant ability of embryos 

(Nasr-Esfahani, Aitken, & Johnson, 1990). The upregulation of GSTA1 in the embryos 

from urea-treated mares might be due to the increase in urea concentrations in the 

blastocoele fluid, which would lead to oxidative stress; therefore, the antioxidant effects 

of glutathione could be an important attempt of the embryo to compensate for changes 

caused by the urea treatment. 

 Our results have characterized the effects of systemic high BUN on equine 

embryos at D14. A trend for higher urea nitrogen concentrations in the blastocoele fluid 

of embryos from mares with a high BUN was seen, along with transcriptomic changes 
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related to neurological development, cell proliferation, vascular remodeling, embryo 

adhesion, and detoxification in the D14 embryos. These findings will improve knowledge 

regarding the effects of high BUN in equine embryonic development. However, whether 

similar changes to embryos will occur and result in lower pregnancy rates when mares 

receive a high protein diet needs to be investigated. 

 

 

 
 
Figure 4.4. Schematic overview of the main findings on equine embryonic transcriptome after oral 

urea treatment in mares. BUN- blood urea nitrogen. 



 

 

104 

CHAPTER 5. Relationship of urea nitrogen concentrations on follicular fluid and 
embryos from mares 

 

5.1. Abstract 

High blood urea nitrogen values (BUN) have been related to adverse effects in embryos 
from cows and ewes; however, this phenomenon has never been reported in mares. The 
current study aimed to investigate the relationship between peripheral BUN and oocyte 
environment (follicular fluid) during follicle growth and to study the impact of BUN on 
pregnancy outcome of equine embryos. In experiment one, we collected follicular fluid 
and blood samples from mares with growing follicles (15-20 mm) and pre-ovulatory 
follicles (35 mm) to investigate the relationship between BUN and follicular fluid urea 
nitrogen (FUN). In a second experiment, blood urea nitrogen concentrations of embryo 
donor mares were evaluated to determine the relationship between BUN and pregnancy 
rates after embryos were transferred to recipient mares. In experiment one, there was a 
strong positive correlation between BUN and FUN (R=0.83; P<0.0001), with a higher 
BUN from mares with growing compared to preovulatory follicles (P=0.004) and higher 
FUN in growing compared to preovulatory follicles (P=0.031). In experiment two, there 
was an effect of BUN (P=0.02) and of age (P=0.01) for pregnancy outcome. Additionally, 
there was a high area under the curve (0.74) calculated with a receiver operating 
characteristic analysis. Therefore, these experiments showed that BUN had an effect on 
the follicular fluid environment and on pregnancy rates of embryos collected from mares 
with high BUN. 

KEYWORDS: High protein diet, horses, pregnancy rates, embryonic development.  
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5.2. Introduction 

 Maternal diet may have an important effect on embryo development and pregnancy 

establishment. For example, a high protein diet is associated with high blood urea nitrogen 

(BUN) concentrations in cows and ewes that has detrimental effects to early oocytes, 

embryos, and pregnancy rates (Butler, 2000b; C. Elrod et al., 1993; Ferguson et al., 1993; 

T. McEvoy et al., 1997). A high urea concentration during in vitro oocyte maturation 

resulted in more bovine degenerated ova and a decreased number of oocytes that developed 

into blastocysts after in vitro fertilization (D. Hammon, Wang, & Holyoak, 2000; Ocon & 

Hansen, 2003). Additionally, high BUN in vivo in cows and ewes resulted in a reduction 

of oocyte cleavage and blastocyst development and an overall 20% reduction in pregnancy 

rates at 40-50 days after breeding (W. R. Butler et al., 1996; D. Hammon et al., 2000; 

Sinclair, Kuran, Gebbie, Webb, & McEvoy, 2000). 

The effects of a high BUN on embryos is not fully understood, but as urea is a small 

molecule that can move between cellular compartments through diffusion (Jozwik et al., 

2006), a high BUN is believed to elevate tissue concentrations of urea nitrogen in the 

reproductive tract (Collins et al., 1997; D. S. Hammon et al., 2005; Jozwik et al., 2006; 

Nandi et al., 2007). Follicular fluid urea nitrogen (FUN) concentrations are correlated with 

BUN in women (Jozwik et al., 2006), cows (D. S. Hammon et al., 2005), ewes (Nandi et 

al., 2007), and mares (Collins et al., 1997). Follicular fluid is composed of secretions from 

theca and granulosa cells, and from plasma transudate; including electrolytes, proteins, 

hormones, and water (Rodgers & Irving-Rodgers, 2010). This composition is an important 

factor, as it is in direct contact with the oocyte-cumulus complex before ovulation (Jozwik 
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et al., 2006; Nandi et al., 2007). Follicular fluid composition changes as follicles grow 

(Leroy et al., 2004), possibly due to an increase in follicular vascularity (Acosta et al., 

2005; Gastal et al., 2007), a dilution caused by an increase in follicular fluid volume (Nandi 

et al., 2007), and an increase in the blood-follicle barrier permeability (Bagavandoss et al., 

1983). 

Moreover, an increase in BUN caused a decrease in uterine pH and an increase in 

urea nitrogen concentrations in the uterus of cows (C. Elrod et al., 1993; D. S. Hammon et 

al., 2005). Additionally, a high BUN caused changes in the endometrial transcriptome of 

mares (Chapter 2 and 3). These changes in the intrauterine environment could also affect 

early embryos when they enter the uterus, as they are dependent upon the uterine histotroph 

for nutrition (C Klein & Troedsson, 2011). Although high urea nitrogen concentrations 

will cause changes in the follicular fluid, in the uterine environment, and on endometrial 

transcriptome, no studies have investigated the effects of elevated BUN on developing 

oocytes and embryos in mares. 

 Our hypothesis was that there would be a positive linear relationship between the 

BUN and FUN and that high BUN concentrations in embryo donor mares would be 

associated with a decreased pregnancy rate after embryo transfer to recipient mares. The 

objectives of this study were to: 1) evaluate the relationship between BUN and follicular 

fluid urea nitrogen, 2) investigate the follicular fluid urea nitrogen concentrations in 

growing and dominant follicles, and 3) evaluate the relationship between BUN in embryo 

donor mares at the day of ovulation and subsequent embryo survival after transfer to 

recipient mares. 
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5.3. Material and methods 

5.3.1. Experiment 1: Relationship between plasma and follicular fluid urea nitrogen 

concentrations 

The current experiment aimed to study the relationship between concentrations of 

urea nitrogen in peripheral blood and in follicular fluid. All animal procedures in this 

experiment were performed in compliance with the animal use protocol approved by the 

Institutional Animal Care and Use Committee at the University of Kentucky (#2010-067). 

Clinically healthy mares of mixed breeds, with mean age of 15.08 ± 1.55 years were used 

in this study. All mares underwent a reproductive evaluation and transrectal 

ultrasonography for reproductive tract evaluation (vulva, cervix, uterus and ovaries) before 

the experiment. Researchers only used mares with no detectable abnormalities of the 

reproductive system. Mares were kept at the University of Kentucky's Farm on grass 

pasture with grain supplementation and access to water and trace mineralized salt ad 

libitum. 

Experimental procedures were previously reported (Claes et al., 2016). In brief, 

animals were examined by transrectal ultrasonography (Sonoscape S8, Universal Medical 

Systems Inc., Bedford Hills, New York). Beginning at ovulation, two dimensions (width 

and height) of the six largest follicles were recorded on an ovarian map every other day to 

track follicular waves. When follicular growth was identified, ultrasonographic 

examinations were performed daily until ovaries were collected for subsequent follicle 

isolation. 
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A blood sample was collected in heparinized tubes (BD Vacutainer, Franklin Lakes, 

NJ) by venipuncture at the day of tissue collection and kept on ice until centrifugation at 

1200x g for 10 min and storage at -20°C until analysis for BUN. 

Mares were euthanized either before follicle deviation (n = 16 mares) when 

follicular growth was identified and the largest growing follicle reached a diameter of 15–

20mm or during estrus (n = 10 mares) when endometrial edema was present and the 

dominant follicle reached a diameter of 35-mm. Ovaries were removed after euthanasia 

and kept on ice. Follicular fluid was aspirated without blood contamination, snap frozen, 

and stored at -80°C until further analysis (Claes et al., 2016). 

 

5.3.1.1. Urea nitrogen concentrations 

Urea nitrogen concentrations in plasma (BUN) and follicular fluid (FUN) were 

measured with a colorimetric spectrophotometric assay following an adapted protocol 

described previously (Mok et al., 2018). The standard curve ranged from 5.6 mg/dL to 

56.01 mg/dL. All reagents for this assay were purchased from Sigma-Aldrich (St. Louis, 

MO). Urea was diluted (8M after reconstitution with 16 mL high purity water) to 5.6 

mg/dL and 56.01 mg/dL to be used as low and high controls. The reaction consisted of 

analyzing urea by enzymatic hydrolysis to ammonia at room temperature. The reaction (in 

duplicate) was done in microcentrifuge tubes (2 mL) with 10 μL of each plasma sample, 

and 125 μL urease buffer was added with incubation of the samples for 20 minutes. The 

urease enzyme hydrolyzes urea to produce carbon dioxide and ammonia (CH4N2O + 

Urease buffer  CO2 + 2NH3). Then, 250 μL of phenol nitroprusside solution, 250 μL of 

alkaline hypochlorite solution (0.2%), and 1000 μL of distilled water were added (NH3 + 
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phenol nitroprusside + alkaline hypochlorite + H2O  Indophenol blue) (Tabacco & 

Meiattini, 1985). After a 25-min incubation, a 200-μL aliquot was transferred to a 96-well 

plate and absorbance (570 nm) was determined with an Epoch microplate 

spectrophotometer (Biotek, San Francisco, CA). The intra- and interassay coefficients of 

variation for BUN concentrations were 0.5% and 9.8%, respectively. The lower limit of 

detection of the assay was 0.11 mg/dL. 

 

5.3.2. Experiment 2: Pregnancy rates from embryos collected from donor mares with 

an elevated BUN 

 The main aim of this experiment was to evaluate the relationship of BUN in 

embryo donor mares at the day of embryo recovery (D7 or D8) with subsequent embryo 

survival after transfer to synchronized recipient mares. Clinically healthy mares (median 

age: 14 years; age range: 3-25 years) from an embryo collection breeding program were 

used in this study. All mares were visually examined, palpated and transrectal 

ultrasonography was done for reproductive tract evaluation before the experiment. Donor 

mares (n=170 mares) were kept at different private farms, on grass pasture with grain 

supplementation, and access to water, and trace mineralized salt ad libitum. A total of 20 

donor mares were lactating at the time of sample collection. Mares were presented to an 

equine hospital for embryo collection. Recipient mares were all kept at the equine hospital 

(with the exception of three animals kept at private farms) and received grass pasture with 

grain supplementation and access to water and trace mineralized salt ad libitum. 

 Embryo donor mares were examined by transrectal ultrasonography (Sonosite M-

Turbo; SonoSite, Inc., Bothell, WA) and when a preovulatory follicle and uterine edema 
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were observed, mares were artificially inseminated. Ultrasound examinations were 

performed until ovulation detection (D0). Embryo recovery was performed by nonsurgical 

uterine lavage at D7 or D8, as previously described (Jacob et al., 2012). Blood samples 

were collected from donor mares immediately before embryo recovery, and blood samples 

were centrifuged at 1200 x g for 10 min and stored at -20°C until analysis for BUN 

 Recipient mares (n=88 mares) had their estrous cycles monitored by transrectal 

ultrasonography to synchronize ovulation with donor mares, such that recipient mares 

ovulated between one day before and two days after the donor mare. Mares were selected 

as recipients according to their uterine echodensity and uterine and cervical tone at the day 

of embryo transfer (Jacob et al., 2012). Embryos were transferred using a nonsurgical 

embryo transfer technique. Ultrasonographic exams on recipient mares for pregnancy 

checks were done at D14, and pregnancy status was recorded. 

 

5.3.2.1. Statistical analyses 

 The BUN and FUN were tested for normality with a Shapiro-Wilk test and were 

normally distributed. Standard Least Squares with FUN and BUN for follicle type and 

mare as random effects were done. The relationship between BUN and FUN values was 

examined with a Pearson’s correlation analysis. 

 The BUN values for donor mares were also tested for normality with a Shapiro-

Wilk test and were normally distributed. A nominal logistic fit for pregnancy outcome was 

used considering the effects of BUN, age, lactational status and the interaction between 

lactation and age. A receiver operating characteristic (ROC) analysis was done to evaluate 

the accuracy of the BUN values in predicting the pregnancy outcome through the area 
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under the curve (AUC). Additionally, a Standard Least Squares model of the donor mares 

BUN was done, with age, lactational status, pregnancy outcome and interaction between 

lactation and age and between pregnancy and age as effects. A reduced model with 

lactation and pregnancy outcome was used, as there were no effects for age or the 

interactions. 

Data was reported as mean ± SEM. Significance was set at P < 0.05 and trend at 

0.1 > P > 0.05. JMP Pro (version 14; SAS Institute, Cary, NC, USA) was used for all 

statistical tests. 

 

5.4. Results 

5.4.1. Experiment 1: Relationship between plasma and follicular fluid urea nitrogen 

concentrations 

BUN concentrations from mares with growing follicles were higher when 

compared to mares with preovulatory follicles (17.42 ± 0.60 and 14.35 ± 0.78 mg/dL, P = 

0.0045). Similarly, FUN concentrations from growing follicles were higher compared to 

FUN concentrations in preovulatory follicles (17.36 ± 0.54 and 15.13 ± 0.88 mg/dL, P = 

0.031). BUN was significantly and positively correlated with FUN (R = 0.83; P < 0.0001) 

(Figure 5.1). 
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Figure 5.1. A) Blood urea nitrogen concentrations (mg/dL) from mares with growing follicles (15–
20 mm) or pre-ovulatory follicles (35 mm). B) Follicular fluid urea nitrogen concentrations (mg/dL) in mares 
with growing follicles (15–20 mm) or pre-ovulatory follicles (35 mm). C) Correlation between the follicular 
fluid and plasma urea nitrogen concentrations (mg/dL) from mares. Middle horizontal lines represent mean 
and error bars represent standard error of the mean. * P < 0.05. 

 

5.4.2. Experiment 2: Pregnancy rates from embryos collected from donor mares with 

an elevated BUN 

There was a 52% embryo recovery rate, with 88 embryos recovered from donor 

mares and subsequently transferred to synchronized recipient mares. There were 71 (81%) 

recipient mares that became pregnant after embryo transfer, compared to 17 (19%) 

recipient mares that were not pregnant at D14. 

With the nominal logistic fit for pregnancy outcome there was a significant effect 

of BUN (P= 0.02), age (P = 0.01) and interaction between lactation and age (P = 0.009). 
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The effect of lactation was not significant (P = 0.50). The ROC analysis showed an AUC 

of 0.74. 

Eight donor mares had double ovulations and had two embryos recovered. Each 

embryo was transferred to a different recipient mare. Twin embryos from six donor mares 

had the same pregnancy outcome, embryo transfer to two of the donor mares resulted in 

one pregnant recipient and one non-pregnant recipient. Therefore, we designed the 

Standard Least Squares model of donor mares BUN using each embryo as an experimental 

unit. There was a trend for lactation (P = 0.05) and a significant effect of pregnancy 

outcome (0.03). Donor mares that were lactating had a higher BUN mean concentration 

than those that were not lactating, 19.71 ± 0.64 mg/dL and 17.53 ± 0.31 mg/dL, 

respectively (Figure 5.2). Also, the mean BUN from donor mares that had embryos which 

resulted in positive pregnancies in the recipient mares was lower when compared to those 

that had embryos that did not result in pregnancies at D14, 17.16 ± 0.43 mg/dL and 19.46 

± 0.83 mg/dL (Figure 5.2). 
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Figure 5.2. A) Blood urea nitrogen concentrations (mg/dL) from embryo donor mares that were not 
lactating and from mares that were lactating. B) Blood urea nitrogen concentrations (mg/dL) from embryo 
donor mares that underwent embryo flushing related to pregnancy outcome in recipient mares (non pregnant 
or pregnant). Horizontal lines represent mean, whiskers represent minimum and maximum values * P < 0.05. 

 

5.5. Discussion 

 There was a strong positive relationship between urea nitrogen concentrations in 

follicular fluid and plasma from cyclic mares. Moreover, it showed that FUN had a higher 

concentration in growing follicles when compared to preovulatory follicles. In experiment 

two, embryos recovered from donor mares with higher BUN resulted in lower pregnancy 

rates after transfer to recipient mares. Together, the current findings might suggest an 

influence of elevated systemic urea nitrogen concentrations on follicular fluid and 

pregnancy outcome in mares. 

 The higher concentrations of BUN when mares had a growing follicle compared 

to mares with a pre-ovulatory follicle might be related to changes in BUN during the 

estrous cycle. Both ovarian steroids, progesterone and estradiol, fluctuate during the 

estrous cycle thus affecting liver metabolism (Kuhl, 1990; Kushwaha, Guntupalli, Jackson, 

& McGill, 1996; O'Donohue & Williams, 1997). As the liver also metabolizes protein and 

urea (Reitnour, 1978; Reitnour et al., 1970), the changing concentrations of ovarian 

steroids during the estrous cycle might affect BUN concentrations. In ewes, the BUN 

values were higher during diestrus when compared to estrus, 28.5 ± 0.76 mg/dL and 22.0 

± 0.97 mg/dL, respectively (Singh & Dutt, 1974). There was a similar result in the current 

study, with higher BUN when there were follicles with 15-20-mm diameter when 

compared to 35-mm diameter follicles in mares. In female water buffaloes, there was no 

difference between BUN during the estrous cycle (Baki Acar et al., 2013), indicating that 
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there might be differences in BUN during the estrous cycle between species that need 

further investigation. 

 Values of FUN were also higher in growing follicles than in the pre-ovulatory 

follicles from the mares observed. In agreement to our study, there was a tendency for the 

FUN to decrease as follicles from mares grew (Collins et al., 1997). Studies with cows and 

ewes also presented a decrease in FUN as the follicles grew (Leroy et al., 2004; Nandi et 

al., 2007). However, there was no difference in FUN during the estrous cycle in buffaloes 

(Baki Acar et al., 2013; Tabatabaei & Mamoei, 2011). This decrease in FUN as follicles 

grow in most species, might be due to the negative effects of higher concentrations of urea 

in follicular fluid to the development of oocytes (D. Hammon et al., 2000; Ocon & Hansen, 

2003; Sinclair et al., 2000), so that as follicles approach ovulation there would be a 

decrease in FUN. One of the mechanisms responsible for this decrease in urea nitrogen 

concentrations can be the increase in vascularity as follicle grows (Acosta et al., 2005; 

Gastal et al., 2007) by increasing the elimination of urea through the follicle wall to the 

exterior environment. Other ways that the FUN can change, might be through a dilution 

of the follicular fluid as it increases in volume during follicular growth and/or a higher 

permeability of the blood-follicle barrier in larger follicles (Bagavandoss et al., 1983; 

Nandi et al., 2007). 

 Not surprisingly, there was a strong positive correlation between the FUN and 

BUN, as has been shown in mares (Collins et al., 1997), women (Jozwik et al., 2006), 

cows (D. S. Hammon et al., 2005; Leroy et al., 2004), ewes (Nandi et al., 2007) and female 

buffaloes (Baki Acar et al., 2013). Because urea is a small molecule, it diffuses across 
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tissues (Jozwik et al., 2006), resulting in this high correlation between the urea 

concentrations in follicular fluid and systemic circulation. 

Our study found a difference in the mean age of donor mares with embryos that 

resulted in pregnancy. This is similar to what has been previously shown, with older mares 

having embryos with a lower morphological quality that resulted in lower pregnancy rates, 

when compared to younger mares (Carnevale, Griffin, & Ginther, 1993). Also, lactating 

mares had a higher BUN concentration, possible because recommendations of crude 

protein for mares during lactation are higher when compared to non-lactating mares (NRC, 

2007). The early exposure of the oocyte and embryo to higher urea concentrations did have 

deleterious effects on embryonic development, with lower pregnancy rates observed with 

embryos collected from donors with high BUN. Similar deleterious effects of high urea 

concentrations on embryo development have been reported in ewes, such as a reduction in 

mean number of cells per embryo recovered at day 4 from animals with elevated BUN 

(Fahey et al., 2001; T. McEvoy et al., 1997). Cows with high BUN also had a lower 

percentage of recovered embryos with good morphological quality (Dawuda et al., 2002). 

An interesting finding in this experiment was the high area under the curve value (0.74), 

indicating that the increase of donor mares BUN is related to the decrease of pregnancy 

rates in recipient mares. Overall, these findings indicate that BUN from donor mares at the 

day of embryo collection was associated with subsequent embryo survival with a lower 

pregnancy rate in recipient animals at D14. 

 In conclusion, these experiments show for the first time that there is a negative 

effect of high BUN on early embryos from mares. Higher systemic urea nitrogen 

concentrations and follicular fluid urea concentrations are positively related, and embryos 
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collected from donor mares with a higher systemic urea nitrogen concentration resulted in 

a lower pregnancy rate in recipient mares. 
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CHAPTER 6. General conclusions 
 

 The studies presented in this dissertation evaluated the effects and relationship of 

high blood urea nitrogen (BUN) concentrations on follicular fluid, uterine environment, 

endometrium, and embryos in mares. We used a clinical approach and molecular 

techniques to identify how elevated BUN can affect reproductive functions in mares. More 

specifically, transcriptomic analyses identified genes of interest in the endometrium and 

embryos from mares with elevated BUN concentrations compared to controls. The 

observed disruption in the mRNA expression of these genes, might help elucidate 

mechanisms through which urea changes reproductive functions in mares. Additionally, 

clinical studies showed alterations in follicular fluid urea concentrations during follicular 

growth, identifying higher concentrations in smaller follicles and a strong relationship 

between follicular fluid urea concentration and BUN in mares. Finally, BUN was higher 

in donor mares whose embryos failed to establish pregnancies subsequent to embryo 

transfer to recipient mares. 

We developed two experimental methods to serve as a high protein diet model. The 

first was an intravenous acute urea-treatment over 6 hours, and the other was an oral 

chronic urea-treatment over several days. As these methodologies resulted in a significant 

increase in BUN, they appear to be effective methodologies to study the effects of elevated 

BUN on reproductive functions in mares. 

It is important to remember that using urea-treatments as model for a high protein 

diet does have limitations. As urea is only one of the metabolites of protein digestion, these 

treatments do not completely identify the effects that a high ingestion of protein might 

have on the reproductive tract function and reproductive functions in mares. However, 
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urea-treatment has the advantage of elevating BUN while providing the same energy 

content, which can be difficult to achieve with diets that contain different concentrations 

of dietary crude protein. Another limitation of this dissertation is that other conditions can 

be responsible for elevation of systemic BUN values other than a high protein diet or urea-

treatment. For instance, renal disease results in an elevation of BUN due to an impaired 

capacity of the kidney to eliminate urea from circulation through urine. Also, when animals 

are dehydrated an elevation of BUN can occur, as there will be a reduction of fluid volume 

to eliminate urea and other waste products. Additionally, when animals are in a negative 

energy state and start losing weight going into a catabolic state, with skeletal muscle 

breakdown, there is an elevation of BUN. Therefore, the current findings are the first to 

elucidate the effects of an elevation of BUN on reproductive function of mares; however, 

additional studies with larger number of mares done in a field study setting would be 

beneficial. 

Although both urea-treatments elevated BUN, results were considerably different. 

The acute increase of BUN resulted in a larger number of differentially expressed genes 

from the endometrium between the urea and control groups when compared to the chronic 

model. Furthermore, only mares treated with an intravenous administration of urea had a 

detectable decrease in uterine pH. However, there were a group of genes differentially 

expressed in both studies, mainly related to abnormal cell growth and cell migration. We 

believe that the more chronic BUN increase allowed the endometrium to compensate and 

reestablish a more normal physiological environment. 

 More specifically, when mares had an acute BUN increase, changes involved 

alterations in genes related to pH of cells. After this urea-treatment, the expression of 
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solute carriers, sodium channels, ion channels, and enzymes were changed leading to 

modifications of the normal uterine environment. There was also a change in the 

expression of genes involved in fatty acid synthesis, which are important in the 

composition of cell membranes and are precursors of steroid and eicosanoid synthesis. 

Although not tested in this study, such changes will likely result in a less suitable 

environment for pregnancy development; thus, resulting in lower pregnancy rates and/or 

early embryonic losses in broodmares that have sudden diet changes resulting in an 

elevated BUN. 

Furthermore, the oral urea-treatment resulted in changes to genes related to 

necrosis, due to the oxidative stress properties of urea, and genes that disrupt the basement 

membrane of cells, allowing the transport of macromolecules between cellular 

components. Additionally, there were changes in genes involved with fatty acids synthesis, 

possibly indicating a different concentration of fatty acids in the endometrium of the 

treated mares. This chronic treatment would be more similar to animals receiving a high 

protein diet over a longer period of time, which probably would allow the endometrium of 

the mare to regain homeostasis.  

 Moreover, high BUN also resulted in transcriptomic changes in day-14 embryos. 

The developing embryos had variations in a gene related to adhesion of the embryo to the 

endometrium, therefore having a significant importance at this early stage of development. 

There were also alterations in genes associated with cell division, angiogenesis, and 

cardiac development. We hypothesize that these changes in embryonic transcriptome, due 

to high BUN, would result in developmental complications leading to early pregnancy 

loss. 
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 As previously mentioned, our first studies consisted of molecular changes in 

response to experimental increases in BUN. Hence, we designed the following studies to 

elucidate clinical aspects of BUN on reproductive functions. We identified a strong 

relationship between follicular fluid urea nitrogen and BUN in mares. In addition, 

follicular fluid urea nitrogen was lower in preovulatory follicles than in growing follicles. 

In another study, embryos collected from donor mares with higher BUN resulted in lower 

pregnancy rates in recipient mares. We believe that there are detrimental effects to embryo 

viability when the reproductive tract of mares is exposed to higher urea nitrogen 

concentrations. These clinical data suggest that different diets and management protocols 

that mares receive routinely result in a wide range of BUN values, affecting the 

preovulatory follicular environment as well as the uterine environment as evidenced in the 

studies presented here; thus, these effects might influence oocytes and developing 

embryos. 

 These are the first studies that reported effects of elevated BUN on the reproductive 

tract in mares. These elevated BUN concentrations caused changes in the mRNA 

expression in the endometrium and embryos from mares. Additionally, BUN was higher 

in donor mares whose embryos failed to establish pregnancies subsequent to embryo 

transfer to recipient mares. Overall, these results show that the effects of a urea-treatment, 

which will result in high BUN, might have adverse consequences to pregnancy rates in 

mares.  
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APPENDIX 1. 
Chapter 2- List of the differentially expressed genes in the endometrium of mares from 
the urea compared to the control group in a crossover design. 

 

Gene name Gene symbol Orthologous 
gene (Species) 

Log2(fold_change) P-
value 

Adjusted 
p-value  

arylacetamide deacetylase AADAC 
 

-2.476 0.00
0 

0.010 

abhydrolase domain containing 
15 

ABHD15 
 

-0.966 0.00
1 

0.056 

abhydrolase domain containing 
17C 

ABHD17C 
 

-1.424 0.00
0 

0.031 

actin binding LIM protein family 
member 3 

ABLIM3 
 

-1.995 0.00
0 

0.031 

acyl-CoA dehydrogenase 
short/branched chain 

ACADSB 
 

0.978 0.00
1 

0.064 

acyl-CoA synthetase long chain 
family member 4 

ACSL4 
 

-1.102 0.00
0 

0.018 

actin, gamma 2, smooth muscle, 
enteric 

ACTG2 
 

3.964 0.00
0 

0.010 

ADAMTS like 2 ADAMTSL2 
 

-2.262 0.00
1 

0.100 

alpha-fetoprotein AFP 
 

INFINITE 0.00
1 

0.067 

1-acylglycerol-3-phosphate O-
acyltransferase 5 

AGPAT5 
 

-0.873 0.00
1 

0.086 

aldo-keto reductase family 1 
member C23 

AKR1C23 
 

INFINITE 0.00
0 

0.010 

aldolase, fructose-bisphosphate 
B 

ALDOB 
 

-4.479 0.00
0 

0.010 

angiopoietin like 4 ANGPTL4 
 

-1.510 0.00
0 

0.036 

aquaporin 5 AQP5 
 

1.075 0.00
0 

0.018 

ADP ribosylation factor guanine 
nucleotide exchange factor 1 

ARFGEF1 
 

-0.758 0.00
1 

0.089 

Rho GTPase activating protein 5 ARHGAP5 
 

-0.837 0.00
1 

0.067 

Cdc42 guanine nucleotide 
exchange factor 9 

ARHGEF9 
 

-0.963 0.00
1 

0.073 

AT-rich interaction domain 5B ARID5B 
 

-1.062 0.00
1 

0.070 

antioxidant 1 copper chaperone ATOX1 
 

0.872 0.00
1 

0.094 

ATPase 13A3 ATP13A3 
 

-0.923 0.00
0 

0.018 

ATPase H+ transporting V0 
subunit a4 

ATP6V0A4 
 

-2.171 0.00
0 

0.018 

BMP and activin membrane 
bound inhibitor 

BAMBI 
 

-1.972 0.00
0 

0.010 

BRCA1 associated RING 
domain 1 

BARD1 
 

-1.103 0.00
1 

0.100 

https://www.ncbi.nlm.nih.gov/gene/100056411
https://www.ncbi.nlm.nih.gov/gene/100146271
https://www.ncbi.nlm.nih.gov/gene/100070570
https://www.ncbi.nlm.nih.gov/gene/100070570
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B double prime 1, subunit of 
RNA polymerase III 
transcription initiation factor 
IIIB 

BDP1 
 

-0.775 0.00
1 

0.086 

baculoviral IAP repeat 
containing 3 

BIRC3 
 

-0.959 0.00
1 

0.056 

BRCA1 interacting protein C-
terminal helicase 1 

BRIP1 
 

-2.145 0.00
0 

0.010 

complement C3-like C3 
 

-1.274 0.00
0 

0.049 

complement component 4 
binding protein alpha 

C4BPA 
 

-1.833 0.00
0 

0.041 

carbonic anhydrase 2 CA2 
 

-2.977 0.00
0 

0.010 

Cdk5 and Abl enzyme substrate 
1 

CABLES1 
 

-2.137 0.00
0 

0.010 

calcium/calmodulin dependent 
protein kinase II beta 

CAMK2B Homo 
sapiens  

-2.487 0.00
0 

0.010 

caveolin 2 CAV2 
 

-1.125 0.00
0 

0.018 

cadherin 16 CDH16 
 

-1.610 0.00
1 

0.060 

cilia and flagella associated 
protein 74 

CFAP74 
 

-1.041 0.00
0 

0.052 

C-type lectin domain containing 
11A 

CLEC11A 
 

1.067 0.00
1 

0.067 

C-type lectin domain containing 
20A 

CLEC20A 
 

-3.145 0.00
0 

0.010 

cytokine dependent 
hematopoietic cell linker 

CLNK 
 

-4.270 0.00
0 

0.010 

CKLF like MARVEL 
transmembrane domain 
containing 4 

CMTM4 
 

-1.000 0.00
1 

0.094 

contactin 1 CNTN1 
 

-2.026 0.00
0 

0.024 

cordon-bleu WH2 repeat protein COBL 
 

-1.157 0.00
0 

0.052 

cytoplasmic polyadenylation 
element binding protein 4 

CPEB4 
 

-1.056 0.00
0 

0.010 

calcium release activated 
channel regulator 2B 

CRACR2B 
 

0.927 0.00
1 

0.067 

CREB3 regulatory factor CREBRF 
 

-0.814 0.00
1 

0.087 

cysteine rich transmembrane 
BMP regulator 1 

CRIM1 
 

-1.143 0.00
0 

0.024 

colony stimulating factor 3 
receptor 

CSF3R 
 

-1.768 0.00
1 

0.098 

cytochrome b-245 alpha chain CYBA 
 

0.892 0.00
1 

0.087 

doublecortin domain containing 
2 

DCDC2 
 

-1.078 0.00
0 

0.010 

integrator complex subunit 6-
like 

DDX26B 
 

-0.921 0.00
1 

0.056 

https://www.ncbi.nlm.nih.gov/gene/100060505
https://www.ncbi.nlm.nih.gov/gene/100057188
https://www.ncbi.nlm.nih.gov/gene/100057188
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DENN domain containing 4A DENND4A 
 

-2.420 0.00
0 

0.036 

dickkopf WNT signaling 
pathway inhibitor 1 

DKK1 
 

-0.941 0.00
1 

0.087 

dihydropyrimidine 
dehydrogenase 

DPYD 
 

-0.975 0.00
1 

0.060 

dual specificity phosphatase 9 DUSP9 
 

-3.352 0.00
0 

0.010 

EF-hand domain containing 2 EFHC2 
 

-2.092 0.00
0 

0.018 

epidermal growth factor EGF 
 

-3.834 0.00
0 

0.010 

ETS homologous factor EHF 
 

-1.688 0.00
0 

0.010 

elongation factor for RNA 
polymerase II 2 

ELL2 
 

-1.000 0.00
0 

0.044 

endonuclease domain containing 
1 

ENDOD1 
 

-1.969 0.00
0 

0.010 

ectonucleotide 
pyrophosphatase/phosphodiester
ase 1 

ENPP1 
 

-0.913 0.00
0 

0.031 

ectonucleotide 
pyrophosphatase/phosphodiester
ase 4 

ENPP4 
 

-0.848 0.00
0 

0.052 

EPM2A interacting protein 1 EPM2AIP1 
 

-1.276 0.00
0 

0.010 

endoplasmic reticulum to 
nucleus signaling 1 

ERN1 
 

-1.157 0.00
0 

0.018 

ERBB receptor feedback 
inhibitor 1 

ERRFI1 
 

-0.871 0.00
0 

0.041 

ETS variant 1 ETV1 
 

-2.041 0.00
0 

0.044 

ETS variant 4 ETV4 
 

-5.332 0.00
0 

0.010 

ETS variant 5 ETV5 
 

-1.441 0.00
0 

0.010 

fatty acid desaturase 1 FADS1 
 

-1.602 0.00
0 

0.036 

fatty acid desaturase 2 FADS2 
 

-0.998 0.00
1 

0.056 

family with sequence similarity 
81 member A 

FAM81A 
 

-2.252 0.00
0 

0.010 

FCH domain only 2 FCHO2 
 

-0.877 0.00
0 

0.044 

free fatty acid receptor 4 FFAR4 
 

-3.122 0.00
0 

0.041 

focadhesin FOCAD 
 

1.035 0.00
1 

0.087 

growth arrest and DNA damage 
inducible gamma 

GADD45G 
 

0.827 0.00
1 

0.073 

polypeptide N-
acetylgalactosaminyltransferase 
15 

GALNT15 
 

-2.339 0.00
0 

0.010 
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polypeptide N-
acetylgalactosaminyltransferase 
4 

GALNT4 
 

-1.353 0.00
1 

0.084 

GLIS family zinc finger 3 GLIS3 
 

-1.070 0.00
1 

0.060 

geminin coiled-coil domain 
containing 

GMNC 
 

-1.401 0.00
0 

0.018 

granulysin GNLY 
 

-1.136 0.00
0 

0.031 

G protein-coupled receptor 152 GPR152 
 

-1.554 0.00
0 

0.010 

G protein-coupled receptor 176 GPR176 
 

-2.491 0.00
0 

0.010 

homeodomain interacting 
protein kinase 3 

HIPK3 
 

-0.913 0.00
1 

0.084 

heparan sulfate-glucosamine 3-
sulfotransferase 1 

HS3ST1 
 

-1.317 0.00
0 

0.044 

heparan sulfate 3-O-
sulfotransferase-4  

HS3ST4 Homo 
sapiens  

-0.952 0.00
0 

0.052 

iduronate 2-sulfatase IDS 
 

-0.816 0.00
1 

0.086 

insulin like growth factor 
binding protein 3 

IGFBP3 
 

-1.206 0.00
0 

0.010 

insulin receptor INSR 
 

-1.154 0.00
0 

0.010 

insulin receptor substrate 2 IRS2 
 

-1.253 0.00
0 

0.010 

integrin subunit beta 8 ITGB8 
 

-2.041 0.00
0 

0.010 

inositol 1,4,5-trisphosphate 
receptor type 1 

ITPR1 
 

-0.974 0.00
0 

0.044 

joining chain of multimeric IgA 
and IgM 

JCHAIN 
 

-0.945 0.00
1 

0.084 

KN motif and ankyrin repeat 
domains 4 

KANK4 
 

-1.838 0.00
1 

0.070 

potassium voltage-gated channel 
subfamily A member 3 

KCNA3 
 

-1.854 0.00
1 

0.080 

potassium voltage-gated channel 
subfamily C member 4 

KCNC4 
 

-2.445 0.00
0 

0.010 

KIAA1217 KIAA1217 
 

-0.956 0.00
1 

0.094 

kinesin family member 12 KIF12 
 

-2.167 0.00
0 

0.010 

kinesin family member 5C KIF5C 
 

-1.011 0.00
0 

0.036 

keratin 4 KRT4 
 

1.564 0.00
0 

0.010 

keratin 78 KRT78 
 

1.066 0.00
0 

0.010 

laminin subunit beta 3 LAMB3 
 

-1.178 0.00
0 

0.036 

laminin subunit gamma 2 LAMC2 
 

-1.496 0.00
0 

0.024 
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lipocalin 2 LCN2 
 

-2.985 0.00
0 

0.049 

LIF, interleukin 6 family 
cytokine 

LIF 
 

-4.828 0.00
0 

0.010 

MHC class I antigen pseudogene LOC10005453
6 

 
0.964 0.00

0 
0.024 

xanthine dehydrogenase/oxidase LOC10005468
8 

 
-0.980 0.00

0 
0.041 

proline rich 4 (lacrimal)- PRR4 LOC10006613
1 

Equus 
przewalskii 

-1.684 0.00
0 

0.010 

gasdermin-C LOC10006840
6 

 
-2.597 0.00

0 
0.010 

homeobox protein MSX-3-like LOC10014661
9 

 
0.973 0.00

0 
0.041 

metallothionein-1A-like LOC10063079
4 

 
0.914 0.00

1 
0.073 

T-lymphocyte surface antigen 
Ly-9 

LOC10214739
0 

 
-0.850 0.00

0 
0.041 

short/branched chain specific 
acyl-CoA dehydrogenase, 
mitochondrial pseudogene 

LOC10214900
5 

 
0.998 0.00

1 
0.067 

leucine rich alpha-2-
glycoprotein 1 

LRG1 
 

-3.278 0.00
0 

0.010 

leucine rich repeat containing 26 LRRC26 
 

1.467 0.00
0 

0.010 

mannosidase alpha class 1C 
member 1 

MAN1C1 
 

-1.631 0.00
0 

0.010 

mannosidase alpha class 2A 
member 1 

MAN2A1 
 

-1.206 0.00
0 

0.024 

mitogen-activated protein kinase 
kinase kinase 5 

MAP3K5 
 

-1.087 0.00
1 

0.070 

mediator complex subunit 13 
like 

MED13L 
 

-0.998 0.00
0 

0.018 

MET proto-oncogene, receptor 
tyrosine kinase 

MET 
 

-1.074 0.00
0 

0.010 

methyltransferase like 17 METTL17 
 

0.807 0.00
1 

0.070 

membrane metalloendopeptidase 
like 1 

MMEL1 
 

1.111 0.00
1 

0.100 

N-acetyltransferase 8B NAT8B 
 

-2.576 0.00
1 

0.056 

N-myc downstream regulated 1 NDRG1 
 

-1.082 0.00
1 

0.073 

nuclear receptor subfamily 1 
group D member 2 

NR1D2 
 

-1.048 0.00
0 

0.010 

oxidation resistance 1 OXR1 
 

-0.856 0.00
1 

0.064 

pantothenate kinase 3 PANK3 
 

-1.333 0.00
0 

0.010 

papilin, proteoglycan like 
sulfated glycoprotein 

PAPLN 
 

-1.107 0.00
0 

0.010 

https://www.ncbi.nlm.nih.gov/gene/100054688
https://www.ncbi.nlm.nih.gov/gene/100068406
https://www.ncbi.nlm.nih.gov/gene/100146619
https://www.ncbi.nlm.nih.gov/gene/100630794
https://www.ncbi.nlm.nih.gov/gene/102147390
https://www.ncbi.nlm.nih.gov/gene/102147390
https://www.ncbi.nlm.nih.gov/gene/102149005
https://www.ncbi.nlm.nih.gov/gene/102149005
https://www.ncbi.nlm.nih.gov/gene/102149005
https://www.ncbi.nlm.nih.gov/gene/100058847
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progestin and adipoQ receptor 
family member 5 

PAQR5 
 

-3.706 0.00
0 

0.010 

pyruvate dehydrogenase kinase 
4 

PDK4 
 

-1.401 0.00
0 

0.010 

PDZ and LIM domain 3 PDLIM3 
 

-2.099 0.00
0 

0.010 

paternally expressed 10 PEG10 
 

-1.028 0.00
1 

0.077 

progastricsin PGC Canis lupus 
dingo 

0.942 0.00
0 

0.049 

polyhomeotic homolog 3 PHC3 
 

-0.829 0.00
1 

0.089 

pleckstrin homology like domain 
family B member 2 

PHLDB2 
 

-2.082 0.00
0 

0.010 

polymeric immunoglobulin 
receptor 

PIGR 
 

-1.328 0.00
0 

0.010 

phosphatidylinositol transfer 
protein cytoplasmic 1 

PITPNC1 
 

-1.725 0.00
0 

0.044 

phospholipase C beta 1 PLCB1 
 

-1.283 0.00
0 

0.010 

phosphatidylinositol specific 
phospholipase C X domain 
containing 3 

PLCXD3 
 

-1.396 0.00
1 

0.086 

PPARG coactivator 1 alpha PPARGC1A 
 

-2.211 0.00
0 

0.010 

protein phosphatase 4 regulatory 
subunit 4 

PPP4R4 
 

-2.053 0.00
0 

0.010 

phosphatidylinositol-3,4,5-
trisphosphate dependent Rac 
exchange factor 2 

PREX2 
 

-1.656 0.00
0 

0.010 

prolactin receptor PRLR 
 

-0.995 0.00
1 

0.080 

prostaglandin reductase 1 PTGR1 
 

-1.176 0.00
0 

0.024 

RAP1 GTPase activating protein 
2 

RAP1GAP2 
 

-1.474 0.00
0 

0.024 

RAS and EF-hand domain 
containing 

RASEF 
 

-1.939 0.00
0 

0.010 

RAS guanyl releasing protein 1 RASGRP1 
 

-1.877 0.00
0 

0.010 

retinol binding protein 1 RBP1 
 

1.113 0.00
0 

0.031 

ring finger protein 208 RNF208 
 

0.848 0.00
1 

0.092 

 RAR related orphan receptor A RORA Homo 
sapiens  

-1.585 0.00
0 

0.010 

RP11-401A10 RP11-401A10 Homo 
sapiens 

-1.212 0.00
1 

0.100 

relaxin family peptide receptor 1 RXFP1 
 

-1.518 0.00
0 

0.010 

scinderin SCIN 
 

-1.674 0.00
0 

0.010 

sodium channel epithelial 1 beta 
subunit 

SCNN1B 
 

-1.543 0.00
0 

0.010 
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sodium channel epithelial 1 
gamma subunit 

SCNN1G 
 

-1.738 0.00
0 

0.010 

short chain 
dehydrogenase/reductase family 
16C member 5 

SDR16C5 
 

-1.462 0.00
1 

0.089 

short chain 
dehydrogenase/reductase family 
42E, member 1 

SDR42E1 
 

-1.054 0.00
0 

0.044 

semaphorin 4G SEMA4G 
 

-1.286 0.00
1 

0.080 

serine peptidase inhibitor clade 
A (alpha-1 antiproteinase, 
antitrypsin) member 14  

SERPINA14 
 

-2.851 0.00
0 

0.010 

serpin family B member 5 SERPINB5 
 

-2.064 0.00
0 

0.036 

serpin family I member 1 SERPINI1 
 

-4.225 0.00
0 

0.010 

serum/glucocorticoid regulated 
kinase 1 

SGK1 
 

-0.939 0.00
0 

0.052 

serum/glucocorticoid regulated 
kinase family member 3 

SGK3 Homo 
sapiens 

-7.348 0.00
0 

0.010 

solute carrier family 25 member 
36 

SLC25A36 
 

-0.862 0.00
1 

0.067 

solute carrier family 37 member 
1 

SLC37A1 
 

-1.079 0.00
0 

0.018 

solute carrier family 45 member 
3 

SLC45A3 
 

-2.007 0.00
0 

0.010 

solute carrier family 52 member 
3 

SLC52A3 
 

-3.983 0.00
0 

0.018 

solute carrier family 6 member 
20 

SLC6A20 
 

-4.538 0.00
0 

0.010 

SLIT and NTRK like family 
member 4 

SLITRK4 
 

-3.646 0.00
0 

0.010 

antileukoproteinase SLPI 
 

-2.955 0.00
1 

0.092 

Sp4 transcription factor SP4 
 

-1.394 0.00
0 

0.018 

sphingosine kinase 1 SPHK1 
 

1.107 0.00
0 

0.018 

alpha-1-antiproteinase 2-like Spi2-1 
 

-4.304 0.00
0 

0.010 

serine peptidase inhibitor, Kazal 
type 7 (putative) 

SPINK7 
 

2.035 0.00
0 

0.010 

SPARC (osteonectin), cwcv and 
kazal like domains proteoglycan 
2 

SPOCK2 
 

-0.990 0.00
1 

0.094 

spondin 2 SPON2 
 

0.882 0.00
1 

0.089 

signal peptide peptidase like 2A SPPL2A 
 

-1.115 0.00
0 

0.010 

sprouty RTK signaling 
antagonist 2 

SPRY2 
 

-1.776 0.00
0 

0.010 

https://www.ncbi.nlm.nih.gov/gene/100067801
https://www.ncbi.nlm.nih.gov/gene/100067801
https://www.ncbi.nlm.nih.gov/gene/100067801
https://www.ncbi.nlm.nih.gov/gene/100070893
https://www.ncbi.nlm.nih.gov/gene/100065068
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sperm specific antigen 2 SSFA2 
 

-0.910 0.00
1 

0.087 

ST6 N-acetylgalactosaminide 
alpha-2,6-sialyltransferase 1 

ST6GALNAC
1 

 
-1.499 0.00

1 
0.086 

STEAP family member 1 STEAP1 
 

-1.573 0.00
0 

0.024 

sulfotransferase 1C4 SULT1C4 
 

0.949 0.00
1 

0.087 

synaptotagmin like 5  SYTL5 Equus asinus -1.649 0.00
0 

0.052 

transcription factor EB TFEB 
 

0.894 0.00
1 

0.056 

thyroid hormone responsive THRSP 
 

1.018 0.00
1 

0.077 

transducin like enhancer of split 
6 

TLE6 
 

1.309 0.00
0 

0.049 

transmembrane protein 154 TMEM154 
 

-1.045 0.00
0 

0.044 

transmembrane serine protease 2 TMPRSS2 
 

-3.022 0.00
0 

0.010 

transmembrane serine protease 4 TMPRSS4 
 

-3.654 0.00
0 

0.010 

transient receptor potential 
cation channel subfamily M 
member 5 

TRPM5 
 

1.846 0.00
0 

0.044 

tetraspanin 7 TSPAN7 
 

-1.317 0.00
0 

0.010 

tubulin tyrosine ligase like 6 TTLL6 
 

-1.879 0.00
0 

0.010 

ubiquitin specific peptidase 53 USP53 
 

-0.984 0.00
0 

0.052 

villin like VILL 
 

-1.049 0.00
1 

0.089 

V-set and transmembrane 
domain containing 5 

VSTM5 
 

-1.264 0.00
0 

0.018 

XK related 5 XKR5 
 

-1.819 0.00
0 

0.010 

XK-related protein 5-like XKR5-like Equus 
przewalskii 

-6.294 0.00
0 

0.010 

https://www.ncbi.nlm.nih.gov/gene/100061179
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