

Internal Medicine Faculty Publications

Internal Medicine

5-12-2019

Disparities in Prostate Cancer Survival in Appalachian Kentucky: A Population-Based Study

Zin W. Myint University of Kentucky, zin.myint@uky.edu

Richard O'Neal University of Kentucky, RONeal@uky.edu

Quan Chen University of Kentucky, quan.chen@uky.edu

Bin Huang University of Kentucky, bhuan0@uky.edu

Robin C. Vanderpool *University of Kentucky*, robin@kcr.uky.edu

See next page for additional authors

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/internalmedicine_facpub Part of the <u>Biostatistics Commons</u>, and the <u>Oncology Commons</u>

Repository Citation

Myint, Zin W.; O'Neal, Richard; Chen, Quan; Huang, Bin; Vanderpool, Robin C.; and Wang, Peng, "Disparities in Prostate Cancer Survival in Appalachian Kentucky: A Population-Based Study" (2019). *Internal Medicine Faculty Publications*. 185. https://uknowledge.uky.edu/internalmedicine_facpub/185

This Article is brought to you for free and open access by the Internal Medicine at UKnowledge. It has been accepted for inclusion in Internal Medicine Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Authors Zin W. Myint, Richard O'Neal, Quan Chen, Bin Huang, Robin C. Vanderpool, and Peng Wang

Disparities in Prostate Cancer Survival in Appalachian Kentucky: A Population-Based Study

Notes/Citation Information Published in *Rural Remote Health*, v. 19, issue 2.

Except where otherwise noted, this work is licensed under a Creative Commons Attribution 4.0 International Licence.

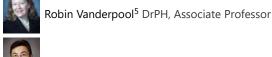
Digital Object Identifier (DOI) https://doi.org/10.22605/RRH4989

ORIGINAL RESEARCH

Disparities in prostate cancer survival in Appalachian Kentucky: a populationbased study

AUTHORS

Zin W Myint¹ MD, Hematology/Oncology Fellow


Richard O'Neal² MD, Hematology/Oncology Fellow

Quan Chen³ DrPH, Statistician

Bin Huang⁴ DrPH, Associate Professor

Peng Wang⁶ MD, Ph.D, Assistant Professor *

CORRESPONDENCE

*Dr Peng Wang p.wang@uky.edu

AFFILIATIONS

^{1, 2, 6} Department of Internal Medicine, Division of Medical Oncology, University of Kentucky Medical Center, Lexington, Kentucky, USA

^{3, 4, 5} Biostatistics Shared Resource Facility, Markey Cancer Center, Lexington, Kentucky; and Department of Biostatistics, College of Public Health, Lexington, Kentucky, USA

PUBLISHED

12 May 2019 Volume 19 Issue 2

HISTORY RECEIVED: 2 July 2018

REVISED: 18 December 2018

ACCEPTED: 13 February 2019

CITATION

Myint ZW, O'Neal R, Chen Q, Huang B, Vanderpool R, Wang P. Disparities in prostate cancer survival in Appalachian Kentucky: a population-based study. Rural and Remote Health 2019; 19: 4989. https://doi.org/10.22605/RRH4989

ETHICS APPROVAL: The study was approved by local IRB at University of Kentucky. The approval number is 17-0533-P1G.

Except where otherwise noted, this work is licensed under a Creative Commons Attribution 4.0 International Licence

ABSTRACT:

Introduction: Prostate cancer (PC) is the most common male cancer in the USA. When comparing the incidence and mortality rates of PC, the Surveillance Epidemiology and End Results data of 2005–2014 show that Appalachian Kentucky had a lower incidence (113/100 000 v 137/100 000) but a higher mortality rate (23.8% v 21.8%) when compared to non-Appalachian Kentucky. The aim of this study was to further characterize the survival disparities of PC between Appalachian and non-Appalachian Kentucky.

Methods: All stages of PC patients diagnosed between 2007 and 2011 were collected through the Kentucky Cancer Registry. Baseline characteristics and survival outcomes were compared between Appalachian Kentucky and non-Appalachian Kentucky, using Pearson χ^2 and Cox regression analyses in this population-based analysis.

Results: Of 12 871 patients studied, 3482 (26.8%) were from Appalachian Kentucky whereas 8489 (73.2%) were from non-Appalachian Kentucky. Caucasians predominated in both groups. Most Appalachian Kentucky patients were aged 65–74 years. Appalachian Kentucky patients had a higher Gleason score, higher prostate specific antigen (PSA), more aggressive histologic grade, more distant disease, higher comorbidity score, lower education, and higher poverty compared to patients from non-Appalachian Kentucky. There was a 5-year survival difference between Appalachian Kentucky and non-Appalachian Kentucky in unadjusted analysis (p<0.001) that disappeared after adjusting with Cox regression analysis (p=0.4). However, worsened survival was still seen with higher Gleason score, higher PSA, distant stage disease, higher Charlson comorbidity index, and very low high school education (p<0.001).

Conclusion: In this population-based analysis, this study shows a significant difference in PC survival between Appalachian and non-Appalachian Kentucky. The difference was not related to geographic location, but rather to high comorbidity score, high poverty rate, and low education. Additional research is needed to understand the healthcare restraints for Appalachian Kentucky.

Keywords:

prostate cancer, Appalachian Kentucky, Kentucky Cancer Registry, non-Appalachian Kentucky, survival disparities, USA.

FULL ARTICLE:

Introduction

Cancer continues to be one of the top five leading causes of death globally, and specifically ranks second as the leading cause of mortality in the USA¹. In particular, individuals living in nonmetropolitan (rural) regions of the USA have higher cancer mortality rates than persons living in metropolitan (urban) regions even though nationwide cancer mortality rates are 20% lower². Yao et al found that cancer mortality rates were 36% higher in rural Appalachian Kentucky compared to West Virginia, the only state wholly designated as Appalachian³.

As of July 2016, approximately 25.6 million or 8% of the US population live in the 13-state Appalachian region of the USA⁴. Of those individuals residing in Appalachia, 16 million live in metropolitan areas compared to 7 million who live in non-metropolitan areas. The Appalachian region is divided into five subregions: Northern, North Central, Central, South Central, and Southern⁴. The region follows the spine of the Appalachian Mountains, from New York to Mississippi, and comprises 420 counties in 13 states. The 54 primarily rural counties designated as Appalachian in the state of Kentucky are considered part of Central Appalachia⁴.

Over 1.1 million people live in Appalachian Kentucky and 3.2 million live in non-Appalachian Kentucky⁴. As of July 2016, Caucasians were the predominant racial group in both Appalachian (94.7%) and non-Appalachian (81.5%) Kentucky. Individuals residing in non-Appalachian Kentucky are more likely to have higher levels of education than their Appalachian counterparts. For example, approximately 26% of non-Appalachians versus 14.3% of Appalachians have a bachelor's degree. From 2012 to 2016, the median per capita income for Appalachian Kentucky residents was \$19,212 and 11% of the population were below 50% of the federal poverty level; this is in comparison to a median per capita income of \$26,835 in non-Appalachia, and only 7% of residents below 50% of the poverty level⁴.

Cancer incidence varies among the different regions of Appalachia. For example, Wingo et al investigated the cancer incidence in Appalachia from 2001 to 2003 and found that the incidence of prostate cancer (PC) was higher in Northern Appalachia compared to Central Appalachia and that this difference was related to socioeconomic conditions⁵. In contrast to these findings, a study by Wilson et al from 2004 to 2011 showed that Southern Appalachia had a higher incidence of PC than Northern or Central Appalachia⁶. The authors hypothesized that the findings might be related to the demographics of the population: approximately 30% of the Appalachian African American population lived in the Southern region compared to 15% in Central Appalachia and 17% in the Northern region⁶. Antwi et al. demonstrated that PC-specific mortality was significant in the Appalachian region compared to the non-Appalachian area of the USA⁷.

Despite being the most commonly diagnosed malignancy in men in the USA¹, and differing findings from across the Appalachian region, PC in Appalachian Kentucky has not been well studied. Therefore, the purpose of this study was to conduct a populationbased survival analysis of PC focused on comparisons between Appalachian Kentucky and non-Appalachian Kentucky.

Methods

Data sources

This retrospective population-based study extracted records of all PC patients residing in Kentucky from the Kentucky Cancer Registry (KCR) from 2007 to 2011. The KCR is a population-based registry, awarded the highest level of certification by the North American Association of Central Cancer Registries for objective evaluation of completeness, accuracy, and timeliness every year since 1997 and is also part of the National Cancer Institute's Surveillance, Epidemiology and End Results (SEER) program. The KCR also links its database to 2011 health administrative claims for additional comorbidity and treatment information. The linked data includes claims from Medicare, Medicaid, and private insurance companies (eg Humana, Blue Cross), thereby providing a more complete review of treatment procedures, medical comorbidities, and insurance-related variables across all age groups.

Study population and variables

The study included all PC patients residing in Kentucky between 2007 and 2011 and included in the linked KCR data. To limit biases, only first primary cancer cases with a minimum age of 20 years were included. To minimize selection bias, cases extracted through death certificate and autopsy cases were excluded. A total of 12 971 out of 14 680 PC cases met selection criteria and were used for data analysis. If a patient had treatment-related claims, such as radiation, chemotherapy, and hormone treatment, captured 1 month prior to their cancer diagnosis up to 1 year after diagnosis, this claims information was used to augment KCR treatment data.

Prostate-specific antigen (PSA) level at diagnosis was defined based on the patient's laboratory value and recategorized as 1–10, 10–20 or >20. Gleason score at diagnosis was grouped as <6, 6–8, >8–10 and unknown. The Charlson comorbidity index (CCI) was calculated based on the KCR-linked claims data and represented the 1–12-month time period prior to cancer diagnosis⁸. The CCI variable was categorized as 0, 1, 2 and ≥3; it was treated as unknown if a case did not have 12 months of continuous insurance coverage prior to the cancer diagnosis.

Urban/rural status was based on the US Department of Agriculture's 2003 Urban–Rural Continuum Codes, with 1–3 defined as 'urban' and 4–9 as 'rural'⁹. The county-level Appalachian status was based on definitions from the Appalachia Regional Commission¹⁰. Percentage below poverty was defined based on quantiles of census tract level, with less than 6.51% as 'low', >6.51–12.31% as 'moderate', >12.31–20.17% as 'high', and >20.17 as 'very high'. Ascertainment of a high school education was also defined based on quantiles of census tract level, with less than 66.12% as 'very low', >66.12–75.54% as 'low', >75.54–85.38% as 'moderate', and >85.38% as 'high'. Other study demographic and clinical variables included age at diagnosis, year at diagnosis, race, smoking history, insurance status, survival status, stage at diagnosis, number of lymph nodes examined, tumor size, tumor histology, and treatment type.

Statistical analysis

Descriptive analysis of demographic and clinical factors was performed. Bivariate analyses with χ^2 tests were performed to examine the association between Appalachian status and other covariates. Kaplan–Meier plots and log-rank tests were conducted for survival analysis. Stepwise Cox regression analyses were performed to estimate the effect of Appalachian status and other clinical and demographic variables for both observed survival and cause-specific survival. All analyses were performed using Statistical Analysis Software v9.4 (SAS Institute, Inc., http://www.sas.com). All statistical tests were two-sided with p<0.05 used to identify statistical significance.

Ethics approval

The study was approved by the Institutional Review Board at the University of Kentucky (17-0533-P1G).

Results

A total of 12 971 individuals diagnosed with PC between January 2007 and December 2011 were identified. As presented in Table 1, 73.2% of these cases were from non-Appalachian Kentucky counties and 26.8% were from Appalachian counties. The most common age group in non-Appalachia was 50-64 years and in Appalachia 65–74 years. Caucasian was the predominant race in both geographic regions. Compared to their non-Appalachian Kentucky counterparts, more PC patients in Appalachia were uninsured (1.8%), lived in rural areas (87.8%), were rated with an ascertainment of 'very low' high school education (65.9%), and associated with 'very high' poverty (68%) (Table 2). Clinically, PC patients from Appalachia were more likely to present with a Gleason score of 8-10 (16.8%) and with a PSA level >20 (12.3%), be diagnosed with stage 4 disease (6.9%), have poorly differentiated histology (53.5%), and have a CCI>3 (5.4%) compared to non-Appalachian patients. Appalachian PC patients had higher rates of no treatment, radiation therapy only, hormone treatment only, and combined radiation/hormone treatment.

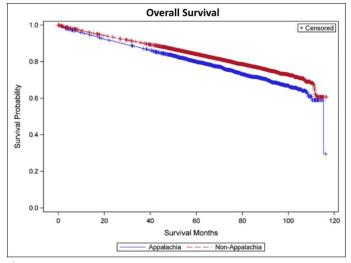
In an unadjusted survival analysis, there was a 5-year overall survival difference between Appalachian Kentucky and non-Appalachian Kentucky PC cases (p<0.001) (Fig1). After controlling for demographic and clinical variables in a Cox regression model, no survival difference was seen between Appalachian Kentucky and non-Appalachian Kentucky PC cases (p=0.4) (Table 2). However, statistical significance in survival was observed among other variables such as age at diagnosis, insurance, smoking status, Gleason score, PSA, CCI, treatment, and education (Table 2).

Despite a 5-year lower incidence of PC in Appalachia as compared to non-Appalachian Kentucky, Kentucky, and the USA, the authors observed a significantly higher 5-year PC mortality rate in Appalachian Kentucky compared to non-Appalachian Kentucky as well as the USA as a whole (Table 3).

Table 1: Demographic and cancer attributes for patients diagnosed with prostate cancer in Kentucky from 2007 to 2011: comparison between Appalachian and non-Appalachian Kentucky

Variable	Non-Appala Kentuck (n=9489, 73	y	Appalachian K (n=3482, 20	<i>p</i> - value†	
	n 0400, 10	%	n	%	
Age at diagnosis (years)		1.5.5			<0.00
20-49 50-64	<u>308</u> 4111	<u>3.2</u> 43.3	82 1330	2.4	-
65–74	3386	35.7	1374	39.5	1
≥75	1684	17.7	696	20.0	1
Race			0		< 0.00
White and other	8298	87.4	3368	96.7	
Black	976	10.3	70	2.0	
Unknown	189	2.0	40	1.1	
Insurance type	100	1.4	61	1.8	<0.00
Uninsured Private	<u>136</u> 3807	40.1	959	27.5	1
Medicare	4150	40.1	1919	55.1	1
Medicaid	126	1.3	99	2.8	1
Other public	373	3.9	112	3.2	
Unknown	897	9.5	332	9.5	20
Rural–urban status					<0.00
Rural	2521	26.6	3056	87.8	а -
Urban	6968	73.4	426	12.2	0.00
High school education ascerta		10.0	2295	CE C	<0.00
Very low Low	950 2499	26.3	764	65.9 21.9	1
Moderate	2912	30.7	333	9.6	1
High	3128	33.0	90	2.6	
% below poverty					<0.00
Low	3189	33.6	68	2.0	
Moderate	3015	31.8	224	6.4	
High	2260	23.8	995	28.6	
Very high	1025	10.8	2195	63.0	0.007
Smoking status No	2350	24.8	770	22.1	0.007
Yes	3565	37.6	1345	38.6	1
Unknown	3574	37.7	1343	39.3	1
Charlson comorbidity index	0071	01.1	1007	00.0	< 0.00
0	5439	57.3	1886	54.2	
1	1291	13.6	628	18.0	
2	446	4.7	221	6.3	
≥3	343	3.6	189	5.4	-
Unknown	1970	20.8	558	16.0	.0.00
Gleason score 6	3791	40.0	1218	35.0	<0.00
7	3457	36.4	1302	37.4	1
8–10	1296	13.7	584	16.8	1
Unknown	945	10.0	378	10.9	
Prostate-specific antigen					< 0.00
1–10	5850	61.7	2097	60.2	
>10-20	925	9.7	474	13.6	
>20	880	9.3	427	12.3	
Unknown	1834	19.3	484	13.9	0.000
Stage group	3	0.0	E.	0.1	0.002
Stage I Stage II	7506	0.0	5 2732	0.1	1
Stage III	824	8.7	2732	8.2	1
Stage IV	515	5.4	241	6.9	
Unknown	641	6.8	220	6.3	
Nodes examined					<0.00
0	7058	74.4	2662	76.5	
1-11	1734	18.3	575	16.5	4
≥12	173	1.8	96	2.8	1
Unknown	524	5.5	149	4.3	<0.00
Grade Well differentiated	66	0.7	52	1.5	~U.UU
Moderately	00	0.1	52	1.0	1
differentiated	4210	44.4	1368	39.3	
Poorly			2010 Aug 114 Aug		
differentiated	4764	50.2	1862	53.5	4
Undifferentiated	27	0.3	17	0.5	1
Unknown	422	4.4	183	5.3	-0.00
Size	1209	12.7	350	10.1	<0.00
<5 cm 5-10 cm	48	0.5	23	0.7	1
>10 cm	71	0.5	14	0.7	1
Not available	8161	86.0	3095	88.9	1
Treatment type	5101	1 00.0		00.0	< 0.00
	1388	14.6	532	15.3	5.00
No therapy			1184	34.0	
	4044	42.6			
No therapy	4044 1539	16.2	661	19.0	1
No therapy Surgery only Radiation only Hormone only	1539 590	16.2 6.2	661 264	7.6]
No therapy Surgery only Radiation only	1539	16.2	661		

Table 2: Estimates of Appalachian status and other covariates in a Cox-regression model


Variable†	Hazard	95% confidence interval	p-value	
Age at diagnosis (years)			< 0.00	
20-49	Ref			
50-64	1.89	1.24-2.87		
65-74	2.46	1.61-3.75		
≥75	5.02	3.29-7.68		
Race			0.00	
White	Ref			
Black	0.96	0.83-1.10		
Other	0.61	0.23-1.64		
Unknown	0.21	0.09-0.50		
Insurance type			< 0.00	
Private	Ref			
Medicaid	1.71	1.34-2.19		
Medicare	1.32	1.16-1.50		
Uninsured	2.15	1.61-2.89		
Other public	1.48	1.17-1.86		
Unknown	1.41	1.20-1.66		
Smoking status			< 0.00	
No	Ref			
Yes	1.40	1.26-1.56		
Unknown	1.10	0.98-1.23		
Appalachian status			0.38	
Non-Appalachian	Ref			
Appalachian	0.96	0.87-1.06		
Gleason score			< 0.00	
6	Ref			
7	1.12	1.00-1.24		
8-10	1.93	1.72-2.18		
Unknown	1.66	1.47-1.89		
Prostate-specific antigen		-	< 0.00	
1–10	Ref			
>10-20	1.37	1.21-1.54		
>20	1.64	1.45-1.84		
Unknown	1.51	1.36-1.69		
Charlson comorbidity index			< 0.00	
0	Ref			
1	1.59	1.44-1.75		
2	2.02	1.77-2.30		
≥3	3.10	2.73-3.51		
Unknown	0.97	0.83-1.08		
Treatment group			< 0.00	
Surgery only	Ref			
No therapy	2.16	1.88-2.48		
Hormone only	2.16	1.86-2.51		
Radiation only	1.25	1.08-1.44		
Other treatments only	1.56	1.19-2.04		
Radiation/hormone	1.34	1.17-1.54	-	
Combination therapy	2.17	1.84-2.55		
High school education ascertainment			0.00	
High	Ref			
Low	1.25	1.12-1.40		
Moderate	1.18	1.05-1.32		
Very low	1.27	1.11-1.45		

[†] Only variables of interests and significant variables were included using the backward selection approach. Ref, reference value.

Table 3: Age-adjusted incidence and mortality rates of prostate cancer in Appalachian Kentucky, non-Appalachian Kentucky and USA, 2010–2014

Measure	USA		Kentucky		Appalachian Kentucky		Non-Appalachian Kentucky	
	Rate/%	95%CI	Rate/%	95%CI	Rate/%	95%CI	Rate/%	95%CI
Incidence rate per 100 000†	136.7	136.4-137.1	125.4	123.9-126.9	113.0	110.7-116.0	130.5	128.7-132.3
Mortality rate per 100 000	21.8	21.7-21.9	22.3	21.5-23.0	23.1	21.2-24.5	21.6	20.8-22.5
Observed 5-year survival*	85.0%	84.9-85.2%	82.2%	81.6-82.7%	79.6%	78.5-80.7%	83.1%	82.5-83.7%
Cause-specific 5- year survival*	94.0%	93.9-94.0%	93.1%	92.8-93.5%	92.0%	91.2-92.7%	93.5%	93.1-93.9%

† Calculated based on Surveillance, Epidemiology and End Results 18 of CI, confidence interval.

[†] Only three cases had survival information greater than 115 months in the Appalachian group. One patient died at month 115, which led to a pronounced drop at the end of the curve.

Figure 1: Kaplan–Meier plots by Appalachian status.⁺

Discussion

PC is the most common malignancy among men in the USA. Interestingly, when comparing the PC incidence and mortality rates using SEER data from 2005 to 2014, findings suggest that Appalachian Kentucky had a lower incidence but a higher mortality rate compared to non-Appalachian Kentucky and the USA. This population-based study based on PC data from the KCR from 2007 to 2011 showed that men in Appalachian Kentucky have a significantly higher mortality rate of PC compared to their counterparts in non-Appalachian Kentucky. This disparity in PC mortality may be primarily attributed to lower socioeconomic status, lower levels of education, increased risk behaviors and presence of comorbidities, and fewer available health resources in rural Appalachian Kentucky¹¹. However, the disparity can't be explained by geography alone. Interestingly, Appalachian PC patients were also more likely to present with advanced clinical cases, including higher Gleason scores, higher PSA values, stage 4 disease, and poorly differentiated tumor histology, which may have impacted overall survival.

Uninsured patients had worse outcomes compared to individuals covered by Medicaid, and Medicaid patients fared worse compare to men covered by Medicare. Uninsured and low-income PC patients with Medicaid may have inadequate access to primary, secondary, and tertiary-related health care services and experience variations in treatments^{12,13}. Additionally, these PC patients may face other barriers to care such as limited transportation and financial distress related to their diagnosis. PC patients who did not finish high school had an increased risk of dying compared to those who had a bachelor's degree or more. Blackley et al suggested that education and income status are associated with higher cancer mortality and suggested that improving education levels could result in decreased cancer mortality rate in Appalachia¹⁴.

As expected, this study demonstrates that men aged over 75 years, those with higher Gleason scores and PSA values, smokers, and

those with a higher number of comorbidities experienced lower survival as all these factors are associated with poorer overall health and negative cancer-related outcomes.

In order to improve PC outcomes in Appalachian Kentucky, more research and educational programming are needed at multiple levels, including the patient and their family. Schoenberg et al conducted a community survey to address cancer disparities in Appalachian Kentucky and identified three challenges: (1) inadequate awareness of the need for cancer prevention and screening, (2) insufficient access to services across the cancer continuum and (3) concern for lack of privacy¹⁵. Barriers related to the lack of privacy comprise personal attitudes such as fear or discomfort, personal (negative) beliefs about cancer, and misperceptions about health care and limited patient-centered communication¹⁵. Coyne et al conducted a study that explored cultural norms in rural Appalachia about health and concluded that rural Appalachian residents have a sense of place, strong family ties, and a strong spiritual belief¹⁶. Increased awareness of family cancer history, adopting a healthy lifestyle, securing social and familial support, and engaging in informed and shared decision making between PC patients and providers - along with alleviating fear and correcting misperceptions - can empower men to take control of their health.

Not only should there be efforts to educate Appalachian Kentuckians at the individual patient and family levels, but interventions are also needed to train and empower healthcare systems, clinicians, and support teams to deliver quality PC care. For example, the University of Kentucky Markey Cancer Center (MCC) is the only National Cancer Institute-designated cancer center in Kentucky¹⁷. MCC provides high quality clinical and psychosocial cancer care, along with the opportunity for patients to participate in clinical trials. The MCC also supports an Affiliate Network, a collaborative of 26 community hospitals across Kentucky¹⁸, including Appalachia, focused on increasing access to oncology education, training, clinical trials, and screening services, all with the mission of providing evidence-based, quality cancer care close to home.

Improvements in PC screening could contribute to improvements in PC survival in Appalachian Kentucky as this population is more likely to have more advanced disease at the time of diagnosis. Similarly, improvements in access to insurance, primary care providers, urology and oncology providers, and supportive care services are needed in the region. More research is also needed to understand the advanced clinical presentation of PC in Appalachia, including related behavioral, environmental, genetic, and cultural factors.

A limitation to the current study is its design as a retrospective population-based data analysis; in addition, the data is dependent on accurate coding in the KCR database. For example, data for some of the variables such as race, smoking status, PSA level and Gleason score are missing. Despite these limitations, this study presents a novel and comprehensive population-based analysis of PC survival disparities between Appalachian and non-Appalachian Kentucky and contributes to a related gap in the literature.

Conclusion

In this population-based analysis, there was a significant difference in PC survival between men from Appalachian Kentucky and that of men from non-Appalachian Kentucky. This study supports the concept that patients from Appalachia generally present with later stage, more aggressive disease. This is likely most impacted by the differences in socioeconomic and educational backgrounds of the Appalachian and non-Appalachian population that may delay diagnosis and care. Long-term efforts to improve cancer care in this population must focus on barriers to early diagnosis and treatment. Improvements in socioeconomic status and education levels, which are independent predictors of poor outcomes in this population, must be achieved in order to see a decrease in PC mortality rates in Appalachian Kentucky.

REFERENCES:

1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. *CA: A Cancer Journal for Clinicians* 2018; **68(1):** 7-30. https://doi.org /10.3322/caac.21442

2 Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. *CA: A Cancer Journal for Clinicians* 2014; **64:** 9-29. https://doi.org /10.3322/caac.21208

3 Yao N, Alcala' HE, Anderson R, Balkrishnan R. Cancer disparities in rural Appalachia: Incidence, early detection, and survivorship. *Journal of Rural Health* 2017; **33(4):** 375-381. https://doi.org /10.1111/jrh.12213 PMid:27602545

4 Appalachian Regional Commission. *The Appalachian region*. Available: https://www.arc.gov/assets/research_reports /DataOverviewfrom2012to2016ACS.pdf (Accessed March 2018).

5 Wingo PA, Tucker TC, Jamison PM, Martin H, McLaughlin C, Bayakly R. Cancer in Appalachia, 2001-2003. *Cancer* 2008; **112(1)**: 181-192. https://doi.org/10.1002/cncr.23132 PMid:18000806

6 Wilson RJ, Ryerson AB, Singh SD, King JB. Cancer incidence in Appalachia, 2004-2011. *Cancer Epidemiology, Biomarkers & Prevention* 2016; **25(2):** 250-258. https://doi.org/10.1158 /1055-9965.EPI-15-0946 PMid:26819264

7 Antwi S, Tucker TC, Coker Al, Fleming ST. Racial disparities in survival after diagnosis of prostate cancer in Kentucky, 2001-2010. *American Journal of Men's Health* 2013; **7(4):** 306-316. https://doi.org/10.1177/1557988312473774 PMid:23339130

8 Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. *Journal of Clinical Epidemiology* 1994; **47(11):** 1245-1251. https://doi.org/10.1016 /0895-4356(94)90129-5

9 National Cancer Institute Surveillance, Epidemiology, and End Results Program. *Rural– Urban Continuum Codes*. Available: https://seer.cancer.gov/seerstat/variables/countyattribs /ruralurban.html (Accessed 15 April 2014). **10** Appalachian Regional Commission. *Kentucky*. Available: https://www.arc.gov/appalachian_region/Kentucky.asp (Accessed March 2018).

11 Rodriguez SD, Vanderford NL, Huang B, Vanderpool RC. A social-ecological review of cancer disparities in Kentucky. *Southern Medical Journal* 2018; **111(4):** 213-219. https://doi.org/10.14423 /SMJ.000000000000794 PMid:29719033

12 Burt LM, Shrieve DC, Tward JD. Factors influencing prostate cancer patterns of care: an analysis of treatment variation using the SEER database. *Advances in Radiation Oncology* 2013; **3(2)**: 170-180. https://doi.org/10.1016/j.adro.2017.12.008 PMid:29904742

13 Bledsoe TJ, Park HS, Rutter CE, Aneja S, Nguyen PL, Yu BJ. Impact of health insurance status on prostate cancer treatment modality selection in the United States. *Journal of Community Health* 2012; **37(4):** 804-813. https://doi.org/10.1007 /s10900-011-9514-z PMid:22101638

14 Blackley D, Behringer B, Zheng S. Cancer mortality rates in Appalachia: descriptive epidemiology and an approach to explaining differences in outcomes. *Journal of Community Health* 2012; **37(4):** 804-813. https://doi.org/10.1007/s10900-011-9514-z PMid:22101638

15 Schoenberg NE, Bardach SH, Manchikanti KN, Goodenow AC. Appalachian residents' experiences with and management of multiple morbidity. *Qualitative Health Research* 2011; **21(5)**: 601-611. https://doi.org/10.1177/1049732310395779 PMid:21263063

16 Coyne CA, Demian-Popescu C, Friend D. Social and cultural factors influencing health in southern West Virginia: a qualitative study. *Preventing Chronic Disease* 2006; **3(4):** A124. PMid:16978499

17 University of Kentucky. *Markey earns renewal for prestigious 5-year National Cancer Institute designation*. Available:

https://uknow.uky.edu/uk-healthcare/markey-earns-renewalprestigious-5-year-national-cancer-institute-designation (Accessed 13 August 2018).

18 University of Kentucky Markey Cancer Center. *Markey Network*. Available: https://ukhealthcare.uky.edu/markey/network (Accessed 4 October 2017).

This PDF has been produced for your convenience. Always refer to the live site https://www.rrh.org.au/journal/article/4989 for the Version of Record.