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ABSTRACT OF DISSERTATION 

 
 
 

EXPLORING THE ROLE OF INSULIN RECEPTOR SIGNALING IN 
HIPPOCAMPAL LEARNING AND MEMORY, NEURONAL CALCIUM 

DYSREGULATION, AND GLUCOSE METABOLISM 
 
 

In the late 90’s, emerging evidence revealed that the brain is insulin-sensitive, 
highlighted by broad expression of brain-specific insulin receptors and reports of 
circulating brain insulin. Contemporary literature robustly supports the role of insulin 
signaling in normal brain function and suggests that insulin-related processes diminish with 
aging, evidenced by decreased signaling markers, reduced insulin receptor density, and 
lower levels of insulin transport across the blood-brain barrier. In the context of 
pathological cognitive decline, clinical trials using intranasal insulin delivery have reported 
positive outcomes on memory and learning in patients with mild cognitive decline or early-
stage Alzheimer’s disease. However, while the importance of insulin and its related actions 
in the brain are robustly supported, the distinct mechanisms and pathways that mediate 
these effects remain unclear.  

To address this, I conducted a series of experiments exploring the impact of insulin 
on memory and learning in two models: primary hippocampal cell cultures and the Fisher 
344 animal model of aging. These studies attempted to identify relationships between 
insulin receptor signaling, neuronal gene expression, glucose metabolism, and calcium 
homeostasis in the hippocampus using either expression of a constitutively active human 
insulin receptor or administration of intranasal insulin. The following dissertation 
summarizes this work and provides valuable insights into the potential pathways mediating 
these relationships. Of note, intranasal studies reported that insulin is able to significantly 
alter gene expression patterns in the hippocampus of both young and aged rats following 
chronic, repeated exposure to the ligand. In cell culture, constitutive insulin signaling 
correlated with significantly elevated neuronal glucose uptake and utilization, as well as 
with significant alterations in the overall expression and localization of the neuron-specific 
glucose transporter 3. Interestingly, continued activity of the insulin receptor did not appear 
to alter voltage-gated calcium channels in hippocampal neurons despite prior evidence of 
the ligand’s role in other calcium-related processes.  

The results reported in this manuscript suggest that in the brain, insulin may be 
involved in a myriad of complex and dynamic events dependent on numerous variables, 



     
 

such as age, length of the exposure, and/or the insulin formulation used. Nevertheless, this 
work highlights the validity of using insulin to ameliorate age-related cognitive decline and 
supports the need for further studies exploring alternative approaches to enhance insulin 
receptor signaling in the brain. 

 
KEYWORDS: Insulin Receptor, Hippocampus, Aging, Calcium Dysregulation, Glucose 

Metabolism, Brain Insulin Resistance 
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CHAPTER 1. INTRODUCTION 

In 1921, Drs. Banting and Best made one of the most important discoveries of 

contemporary medicine: the discovery of the pancreatic hormone insulin [1]. The initial 

purification of this ligand from depancreatized dogs eventually led to the formulation of a 

life-saving therapy for individuals suffering from diabetes, thus saving hundreds of 

thousands of lives over the past 97 years. During this time, our knowledge of insulin’s 

physiological function has grown exponentially, and we now know that this peptide, along 

with its receptor, is an essential component of peripheral metabolism, mediating numerous 

processes including storage and synthesis of lipids, proteins, and carbohydrates, and the 

uptake of blood glucose from the circulation [2, 3]. Recently, the impact of this ligand has 

been expanded to also include important physiological functions in the brain, particularly 

those related to cognition.  

In the following dissertation, I will demonstrate the clinical impact and biological 

importance of this hormone in the context of aging, cognitive decline, and hippocampal 

learning and memory. The following chapter will introduce the concept of the insulin 

sensitive brain by first providing an overview of the insulin peptide, its receptor, and the 

canonical insulin signaling pathway. This will then be followed by a discussion of insulin’s 

relationship to hippocampal processes, as well as summary of therapeutic techniques 

designed to target impaired insulin signaling in the brain. In Chapters 2-6, I will discuss 

potential mechanisms mediating insulin’s actions on cognitive function and present a series 

of related experiments I conducted during my time in the lab of Dr. Olivier Thibault. 

Finally, in Chapter 7, I will summarize these findings and discuss their impact and 
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contributions to our current knowledge regarding pathological brain aging and AD while 

also speculating on novel ways to utilize these findings in the future.  

1.1 THE INSULIN PEPTIDE 

1.1.1 Pancreatic Synthesis and Secretion of Insulin 

Insulin is encoded by the INS gene on chromosome 11 [4, 5]. Production of the 

hormone occurs in the pancreas, specifically in the β cells of pancreatic islets. The process 

begins with transcription of INS, resulting in the production of pre-proinsulin mRNA, 

which is then synthesized into the insulin precursor protein pre-proinsulin [4]. This protein 

is a single polypeptide containing an α chain, β chain, a connecting peptide (C-peptide), 

and a signal peptide. The signal peptide directs pre-proinsulin to the rough endoplasmic 

reticulum (ER) of the β cell where it is then cleaved and subsequently converted into 

proinsulin. During its time in the ER, proinsulin is folded, acquiring its three-dimensional 

conformation through disulfide bonds which link the α and β chains together [4]. The 

folded proinsulin is then transported from the rough ER to the Golgi apparatus. Proinsulin 

is further converted to its physiologically functional form via cleavage of C-peptide by the 

prohormone convertases PC1 and PC2 and the exoprotease carboxypeptidase E inside 

granules located in the trans Golgi network [4, 6]. Mature insulin is comprised of 51 amino 

acids (21 in the α chain and 30 in the β chain), and has a molecular weight of 5.8 kDa [4]. 

Inside storage granules, mature insulin crystallizes into a hexameric conformation 

consisting of 6 insulin monomers surrounding a central zinc ion [6]. This conformation 

provides stability to the protein and allows it to be stored for long periods of time yet 
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renders it metabolically inactive. Upon secretion, the hexamer dissociates, resulting in 

kinetically active insulin monomers capable of binding their receptor.  

Insulin-containing granules are stored in one of two “pools:” the “rapidly 

releasable” pool, which remains docked and primed at the plasma membrane until signaled 

for release, and the “reserve” pool, which resides close by in the cytoplasm [6, 7]. Uptake 

of glucose into the pancreatic β-cells leads to closure of potassium channels and subsequent 

depolarization of the plasma membrane [7]. This depolarization opens calcium channels, 

allowing influx of Ca2+ ions into the cell. Secretion of insulin into the bloodstream is 

biphasic. The first phase is rapid (1-5 min) and occurs via calcium-mediated fusion of 

docked insulin-containing granules to the plasma membrane, while the second phase 

occurs more slowly (5-60 min) and involves reserve granules trafficking to this same 

docking site and becoming primed before fusing [6, 7]. In the periphery, secretion of insulin 

is primarily mediated by the level of circulating glucose, although other triggers, including 

amino and fatty acids, acetylcholine and pituitary hormones, and other less understood 

agonists, may also be involved in this process, either independently or concurrently with 

glucose binding [7]. Following exocytosis, insulin enters the bloodstream and eventually 

activates a variety of insulin-mediated physiological processes by binding to the insulin 

receptor (IR) in organs such as the liver and kidney. In some cases, bound insulin may 

dissociate from the IR after initial activation and re-enter the bloodstream, but generally, 

the bound ligand and its receptor are subsequently endocytosed for processing as a ligand-

receptor complex [8, 9]. 
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1.1.2 Endosomal Processing and Degradation of Insulin 

The acidic environment inside the endosome triggers dissociation of the ligand 

from the IR. The free insulin is then processed via proteolysis, primarily by insulin 

degrading enzyme (IDE) [10]. Interestingly, initial endosomal degradation is usually not a 

complete digestion, resulting in only partially-processed insulin that is then trafficked to 

lysosomes for additional metabolism [10, 11]. Circulating insulin that does not bind to the 

IR undergoes a process similar to that of the insulin-receptor complex, including initial 

uptake of the ligand into the cell; however, unbound ligand is pinocytosed rather than 

endocytosed [11]. Further, insulin protease activity has also been detected at the plasma 

membrane and in the cytosol [10], suggesting that partial-processing in the endosome may 

not always be a required step. Prior to ligand degradation, the binding of insulin to the 

peripheral IR triggers the activation of signaling pathways that induce uptake of circulating 

glucose into adipose and muscle tissue. In the next section, I will discuss these signaling 

pathways in more detail, as well as provide an overview of IR synthesis, structure, and 

regulation in the periphery. 

1.2 THE INSULIN RECEPTOR 

1.2.1 IR Morphology and Regulation 

The mature IR is a tetrameric tyrosine kinase receptor consisting of 2 extracellular 

α-subunits and 2 transmembrane β-subunits [2]. Production of the peripheral IR begins 

with transcription of INSR, a 22 exon gene located on chromosome 19 in humans [10]. 

Following transcription, IR mRNA undergoes alternative splicing to generate one of two 
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variants: the IR-B sequence that includes all 22 exons, or the IR-A sequence that does not 

possess exon 11 [12, 13]. Translation of these variants produces either IR-A or IR-B 

isometric monomer peptides comprised of 8 distinct domains which then self-associate via 

disulfide bonds to form a proreceptor [10]. During this process, monomers can either self-

associate with a monomer of the same type to produce a homodimer (IR-A/IR-A or  

IR-B/IR-B) or with a monomer of a different type to produce a heterodimer (IR-A/IR-B). 

The proreceptor dimers are then proteolytically cleaved and glycosylated, resulting in the 

final α and β subunits that comprise the mature IR. After synthesis, the majority of these 

receptors are then stored in intracellular vesicles until triggered to translocate for fusion 

into the plasma membrane. Both homodimers, as well as the heterodimer conformation, 

are capable of being successfully processed into functional IRs. However, the isoforms 

produced by each differ slightly in terms of their signaling properties, binding kinetics, and 

tissue expression, with the homodimer protein IR-B being the predominant IR in the 

periphery while IR-A is primarily localized to the central nervous system (CNS) [12]. As 

this dissertation focuses on insulin signaling in the context of peripheral metabolic 

dysfunction, cognitive decline and synaptic plasticity, and energy metabolism in the brain, 

the heterodimer isoform (IR-A/IR-B) will not be discussed here.  

In spite of their differences, the IR-A and IR-B isoforms are relatively homologous 

in their overall structure. The mature IR is a transmembrane protein that spans across the 

plasma membrane and is comprised of two of α subunits and two β subunits that are linked 

together by disulfide bonds to form a tetrameric protein (Figure 1.1A). The α-subunit of 

the IR consists of 723 amino acids and contains two binding sites for insulin [14]. The  
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Figure 1.1. Structure of the human IR. General structure of the endogenous human IR 

(isoform IR-B) imbedded within a plasma membrane. (A) The IR is a dimer comprised of 

two α subunits and two β subunits held together by disulfide bonds (dotted lines). The  

α-subunit contains a cysteine-rich domain and resides entirely on the extracellular side of 

the membrane where it serves as the binding site for the ligand. The β-subunit contains a 

membrane-spanning domain (shown in gray), a juxtamembrane region, a tyrosine kinase 
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domain, and a C-terminal tail. The tyrosine kinase domain is the catalytic site of the 

receptor and is phosphorylated upon ligand binding. Phosphorylation of the β-subunit then 

triggers downstream signaling. (B) Close-up of the insulin binding site of the α-subunit. 

The IR contains both high- and low-affinity binding sites (labeled H and L, respectively). 

A single insulin molecule is sufficient to trigger IR signaling and will bind at the high-

affinity binding site (see box 1). In situations of high ligand concentration, a second insulin 

molecule may then bind at the low-affinity binding site (see box 2). 
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catalytically active β-subunit is comprised of 620 amino acids with three distinct domains: 

the extracellular domain, the transmembrane domain, and the cytosolic domain [14]. The 

α-subunit is entirely extracellular and contains two binding sites, one high-affinity and one 

low-affinity (Fig. 1.1B), while the β-subunit is embedded in the lipid bilayer and protrudes 

into the interior of the cell where it can activate downstream signaling effectors. Catalytic 

activity of the IR occurs at the cytosolic domain of the β-subunit, which contains multiple 

tyrosine phosphorylation sites.  

1.2.2 The Canonical Insulin Signaling Pathway 

Transduction of the canonical insulin signaling pathway begins with the binding of insulin 

to the IR (Figure 1.2). Binding occurs relatively quickly in the periphery, with some 

investigators even suggesting that maximal binding is reached at ~10 min [15]. Upon 

binding, the IR undergoes a conformational change that induces rapid transphosphorylation 

of each β-subunit by the other at tyrosine residues 1158, 1162, 1163, 1328, and 1344 [16] 

in a process referred to as an “activation loop” [2]. Following this initial 

transphosphorylation event, the β-subunit also undergoes slower autophosphorylation of 

tyrosine residues on its upper region (juxtamembrane) and of serine residues on its 

intracellular C-terminus tail [2, 16]. Once active, the IR then phosphorylates tyrosine 

residues on a variety of intracellular targets [2, 3]. Of these, the insulin receptor substrate 

(IRS) family, particularly IRS-1, is likely the most well-characterized. 

Following its phosphorylation by the IR, IRS-1 interacts with p85, a regulatory 

subunit of the enzyme phosphatidylinositol 3-kinase (PI3K), and subsequently triggers its 

activation and translocation to the plasma membrane [2]. Enzymatic activity of PI3K leads  



9 
 

 

Figure 1.2. Signaling pathway of the human IR. (A) Canonical signaling pathway of the 

peripheral IR (isoform IR-B). Briefly, insulin binding triggers phosphorylation of the  

β-subunit of the IR which in turn phosphorylates IRS-1. Right pathway: IRS-1 interacts 

with the p85 subunit of PI3K, which triggers its translocation to the plasma membrane. 

Here, PI3K converts PIP2 to PIP3. PIP3 recruits PDK1 which then activates AKT and PKC. 

Both AKT and PKC are involved in mediating GSV trafficking and GLUT4 translocation 

to the membrane. Additionally, AKT may also phosphorylate GSK3β, subsequently 

inhibiting it. Left pathway: IRS-1 may also activate GRB2 and SOS, which then 

phosphorylate MEK/ERK. The MEK/ERK pathway is responsible for regulating mitogenic 

processes such as cell growth and proliferation, differentiation, and inflammation.  
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to synthesis of phosphatidylinositol 3,4,5-trisphosphate (PIP3), which can mediate the 

localization, trafficking, and catalytic activity of numerous intracellular proteins [17], as  

well as regulate the IR by inhibiting further PI3K activation [18]. PIP3 then triggers 

recruitment of phosphoinositide-dependent kinase 1 (PDK1), a master kinase that regulates 

multiple signaling effectors including protein kinase B (AKT) and protein kinase C (PKC), 

both of which are involved in insulin-mediated translocation of glucose transporter 

(GLUT) 4 to the plasma membrane [2]. 

Adjacent to IRS-1/PIP3/PI3K signaling is the mitogen-activated protein kinase 1 

(MEK)/extracellular signal–regulated kinase (ERK) pathway. Phosphorylation of IRS-1 

leads to recruitment of growth factor receptor-bound protein 2 (GRB2) which then 

associates with son-of-sevenless (SOS) and subsequently activates MEK (a member of the 

mitogen-activated protein kinase [MAPK] family) and ERK. Unlike the IRS-1/PIP3/PI3K 

pathway, the MEK/ERK signaling cascade is primarily associated with mitogenic activity 

(cellular growth, differentiation and proliferation, and inflammatory processes), although 

some studies have found that elevated MEK/ERK activation triggered by metabolic stress 

can inhibit IRS-1 activation and thus attenuate IR signaling [19].  

As stated in Section 1.1.2, activation and downstream signal transduction of the IR 

eventually triggers endocytosis-mediated internalization and processing of the ligand-

receptor complex [10]. Internalization of the IR is relatively quick, with some investigators 

suggesting that it can occur within 30-45 min after initial receptor activation [10, 15]. Once 

in the endosome, the IR can either be recycled back to the plasma membrane or degraded 

via proteolysis; of these two potential fates, receptor recycling appears to be the most 

common. The exact mechanisms governing this process are still unclear, but may rely, at 
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least in part, on dephosphorylation of the β-subunit [10], as the receptor would need to be 

devoid of phosphorylated tyrosine residues in order to be successfully activated during 

subsequent binding events.  

1.2.3 Peripheral Insulin Signaling in the Context of Obesity and Type-2 Diabetes 
Mellitus 

Insulin signaling is an integral component of energy metabolism in the periphery 

due to its ability to trigger uptake of glucose into adipose and muscle tissue [2]. This is 

primarily regulated by a combination of AKT-mediated recruitment of GLUT4 containing 

vesicles (GSVs) and elevated catalytic activity of TC10, another downstream target of IR 

signaling that plays a crucial role in the fusion of these vesicles to the plasma membrane 

[20]. Briefly, elevations in blood glucose levels, as occurs following consumption of a 

meal, triggers release of insulin from the pancreas into the circulation. Insulin then binds 

to IRs on peripheral tissues which then signal through the IRS/PIP3/PI3K pathway, leading 

to GLUT4 translocation and glucose uptake.  

In patients with metabolic dysfunction (e.g. Type-2 diabetes mellitus [T2DM]), 

glucose uptake is substantially reduced due to desensitization of the IR which renders it 

incapable of responding to circulating insulin at a level sufficient for clearance of glucose 

from the bloodstream [21, 22]. This desensitization can occur in two distinct ways: 1.) the 

loss of functional IRs at the plasma membrane following sustained, high levels of 

circulating insulin (hyperinsulinemia) which triggers IR internalization/degradation [16]; 

and 2.) decreased responsiveness caused by receptor and/or postreceptor defects that 

attenuate aspects of IR signaling, such as reducing tyrosine phosphorylation of the  

β-subunit [16, 23, 24], decreasing activation of IRS-1 through serine/threonine 
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phosphorylation [24-26] and subsequent uncoupling of the substrate from PI3K/AKT [27], 

and increasing activation of the MEK/ERK pathway which then inhibits further IR activity 

[28]. Both IR internalization and decreased receptor responsiveness result in an 

accumulation of circulating blood glucose, otherwise known as hyperglycemia. 

Hyperglycemia presents with a variety of pathological symptoms that are 

dependent on the severity and duration of the disease. Chronic, moderate (120-180 mg/dL) 

hyperglycemia occurring over many years can lead to diminished renal function, 

neurological impairments, damage to the extremities (diabetic neuropathy), cardiovascular 

dysfunction, and ketoacidosis. Acute, severe (>400 mg/dL) hyperglycemia is considered a 

medical emergency, and at levels of 600 mg/dL and above, diabetic coma is likely. The 

impact of insulin resistance on the periphery and the physiological mechanisms mediating 

these effects have been extensively characterized in the literature. However, it is only 

within the past ~30 years that hyperglycemia’s effect on the CNS has been explored. 

1.2.4 Impacts of Peripheral Metabolic Impairments on Cognitive Function 

Peripheral insulin resistance and T2DM have recently been identified as risk-

factors for cognitive impairment and dementia, particularly in older individuals [29-34]. 

Numerous well-powered clinical studies have indicated that elevated peripheral insulin is 

associated with poorer cognitive performance [35], even in patients that do not have 

diabetes [36]. Additionally, chronic, elevated peripheral insulin levels in combination with 

a prediabetic state was shown to correlate with a faster rate of cognitive decline in elderly 

subjects [37]. This peripheral dysfunction has also been shown to affect brain metabolism, 

with diabetic and prediabetic older adults having reduced cerebral glucose uptake and 

utilization in prefrontal, temporal, and cingulate regions compared to nondiabetic, age-
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matched controls [38]. Insulin resistance has also been shown to impact brain volume [39, 

40], evidenced by greater brain atrophy in T2DM patients compared to controls [41], 

particularly in the hippocampus and amygdala [42]. Further, it appears that the severity of 

brain atrophy in these patients may be positively correlated with the severity of their 

peripheral insulin resistance [42]. 

With respect to Alzheimer’s disease (AD), the Rotterdam Study, the first 

epidemiological investigation of the relationship between T2DM and AD, reported that the 

risk for developing dementia was doubled in diabetic patients compared to controls [43], 

suggesting that sustained dysregulation of insulin-related processes in the periphery may 

contribute to cognitive decline and pathological changes in the brain [44]. This study is 

supported by work from numerous other investigators who have also provided evidence 

that AD is associated with peripheral hyperinsulinemia [33, 45, 46]. Investigations into the 

relationship between T2DM and AD bio-markers have also highlighted potential 

synergistic pathways linking  apolipoprotein E (APOE) genotype, amyloid beta (Aβ) 

plaques, and neurofibrillary tangles [47, 48].  

Work performed in animal models of peripheral insulin resistance has echoed this 

clinical data [49, 50]. An early study in genetically obese Zucker rats reported reduced 

levels of brain insulin compared to lean controls [51]. One report performed in C57BL/6 

mice indicated that a high-fat diet (HFD) induced hepatic insulin resistance and correlated 

with significantly impaired synaptic plasticity [52]. Similarly, rats fed a high-fat-and-

fructose diet (HFFD) for 7 days presented with markers of peripheral insulin resistance and 

obesity along with lower hippocampal weight, reduced dendritic arborization, and 

decreased dendritic spine density compared to controls [53]. These HFFD rats also had 
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elevated tau hyperphosphorylation, further supporting the implication that metabolic 

dysfunction is associated with development of AD pathology. In Wistar rats, HFD and 

high-sugar foods were associated with altered levels of IR signaling markers, such as PI3K 

and AKT, in the hippocampus and hypothalamus [54]. Additionally, our lab has shown that 

HFD negatively impacts markers of age-dependent calcium dysregulation in rats compared 

to age-matched controls [55]. Another study, this time in C57BL/6 mice fed a HFD, 

showed that higher peripheral insulin resistance positively correlated with markers of AD, 

including Aβ deposits and neurofibrillary tangles [56]. A similar report in the same animal 

model highlighted elevated levels of AD biomarkers such as hyperphosphorylated tau, as 

well as decreases in proteins associated with synaptic plasticity [57].  

Use of streptozotocin (STZ) administration has also been used to measure the 

impact of peripheral insulin resistance on the development of AD-like pathology. Repeated 

administration of low-doses of STZ leads to peripheral IR desensitization and reduced IR 

signaling, mimicking clinical T2DM [58]. STZ animals rendered diabetic have been shown 

to perform poorly during hippocampal memory tasks [59-61], have reduced synaptic 

plasticity [59, 62, 63] and altered hippocampal gene expression [64], and show signs of 

elevated CNS oxidative stress, calcium dysregulation, and vascular dysfunction [59, 65]. 

Clearly, the current evidence strongly supports the hypothesis that peripheral 

insulin signaling not only mediates processes in local tissues, but also acts on pathways in 

the brain. However, while insulin-associated processes in peripheral tissues may be able to 

distantly regulate the CNS, studies within the past 30 years have suggested that the peptide 

can also modulate this region directly. The following section will discuss brain-specific 
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insulin actions, their impact on learning and memory, and the therapeutics specifically 

designed to target these processes in the clinic. 

1.3 INSULIN ACTIONS IN THE CNS 

1.3.1 The Brain is Insulin Sensitive 

For many years, the brain was considered to be an insulin-insensitive organ; that is, 

one that did not possess circulating insulin, IRs, or pathways that required direct action of 

the ligand at the CNS. We now know this is incorrect, and that in fact, insulin and IR 

signaling are integral parts of normal, healthy brain function. Some of the first evidence of 

insulin sensitivity in the brain was derived using intracisternal insulin administration, and 

indicated that insulin was capable of directly acting on the CNS to regulate glucose levels 

in the periphery and cerebrospinal fluid (CSF) [66, 67]. Another early study reported that 

administration of exogenous insulin to cortical brain slices caused a small, but significant, 

elevation in 2-deoxyglucose uptake compared to control slices [68]. In 1978, a group of 

investigators provided evidence of robust, region-specific expression of IR in multiple 

areas of the rat brain, with the highest levels found in the olfactory bulb, cerebral cortex, 

anterior hypothalamus, and hippocampus [69]. Further, IR density in the brain appears to 

be independent of peripheral insulin levels, suggesting that insulin’s actions in the CNS, 

while related to its peripheral counterpart in many ways, is a physiologically distinct 

process [70]. Work from this same lab also highlighted the presence of the insulin peptide 

in whole-brain preparations from male Sprague-Dawley rats; as with the IR, concentrations 

of the ligand were region-specific, with the highest levels detected in the olfactory bulb 

and hypothalamus [71]. Interestingly, the average, overall concentration of insulin in 
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whole-brain extracts was significantly higher (~25-fold) than the average plasma insulin 

level from these same animals, again implying that brain IR density and ligand levels are 

regulated independently from those in the periphery [71].   

This early data has since been corroborated by numerous other reports of robust IR 

expression and insulin peptide levels in multiple areas of the brain, particularly the 

olfactory bulb, hypothalamus, and pyramidal cell-layer of the hippocampus [72-79]. 

Within these brain  regions, subcellular localization of the IR appears to be largely neuronal 

[78], although some glial cells, such as astrocytes, may also express the receptor [80-82]. 

Interestingly, some data has indicated that astrocytic IRs are predominantly IR-B, the 

peripheral isoform of the receptor, suggesting the existence of cell-type specific IR 

expression and distinct signaling pathways [80, 81]. However, other labs have contradicted 

this finding, reporting that both neurons and astrocytes primarily express IR-A [83]. 

While initial studies revealed that the binding characteristics, general morphology, 

and kinetic profile of IRs in the brain were similar to those in the periphery [84], we now 

know that the brain-specific IR-A is structurally and functionally distinct from that of the 

peripheral isoform [12, 85]. Unlike the peripheral IR-B, IR-A does not appear to be 

downregulated in neurons following prolonged incubation with insulin [86]. While the  

β-subunit of both isoforms seem to be structurally and functionally identical, the α-subunit 

of IR-A is substantially smaller than IR-B (115 vs. 130 kDa, respectively) [22, 85]. IR-A 

also seems to have a 1.7-fold higher affinity for insulin, as well as a faster rate of ligand 

dissociation from the receptor [12, 13]. Although some studies have indicated that 

signaling my differ slightly between these two isoforms, in general, the pathways are 

relatively homologous, with binding of insulin triggering IRS-1 recruitment and 
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subsequent downstream activation of PIP3/PI3K/AKT in both IR-A and IR-B [12]. IR 

signaling in the brain has been implicated as a mediator of a variety of physiological 

processes, including regulation of CNS energy metabolism, neuronal survival and 

development, modulation of synaptic plasticity and cognitive functions such as 

hippocampal learning and memory, and the progression of neurodegenerative disease such 

as AD [33, 87-93]. Of the many different pathways potentially targeted by CNS IR 

signaling, this dissertation will primarily focus on 1.) learning and memory processes,  

2.) neuronal physiology and ion-channel activity, and 3.) hippocampal glucose metabolism, 

all of which will be discussed more extensively in the context of three highly relevant 

projects I recently completed throughout the course of my doctoral study ([94, 95]; see 

Chapters  2, 4, and 6). 

1.3.2 Origin of Insulin in the CNS: The Role of the Blood-Brain Barrier 

In order for insulin to exert direct action on the brain, it must first gain entry to the 

CNS. Initially, it was hypothesized that the ligand may be produced locally, as the blood-

brain barrier (BBB) was believed to be impermeable to peripheral insulin [70]. This theory 

has since been corroborated by evidence of insulin mRNA and C-peptide in neurons [96, 

97]. However, while local production of insulin in the brain may perhaps exist, the bulk of 

the literature strongly supports an alternative hypothesis: that the primary source of CNS 

insulin is transport of the ligand from the periphery across the BBB. 

The suggestion that insulin could cross the BBB first arose with the observation 

that peripheral insulin administration was could elevate ligand levels in the CSF [98]. A 

later study agreed with this early research, showing that radiolabeled human insulin can 

cross the BBB in mice [99]. Many other groups have since confirmed these results, and 
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most contemporary evidence now supports the hypothesis that the majority of insulin in 

the brain arrives via transport of the ligand from the periphery [100]. Investigations into 

the kinetics of BBB insulin transport have indicated that it is a saturable system [99], and 

binding studies using quantitative autoradiography suggest that the majority of transport 

occurs at the choroid plexus and capillary beds [100, 101]. However, other work in mice 

reported that the fastest rate of insulin crossing at the BBB actually occurred in the 

olfactory bulb [73], which also coincides with this region’s high density of IR expression 

[102, 103]. 

Unsurprisingly, alterations in BBB-mediated insulin transport have been correlated 

with metabolic dysregulation and obesity. In one study, dogs fed a HFD for 7-weeks and 

rendered peripherally insulin resistant had significantly decreased efficiency of insulin 

transport into the CNS [104]. Similarly, this same group also provided evidence of reduced 

transport across the BBB in dogs administered dexamethasone, a glucocorticoid known to 

impair IR signaling in the periphery [105]. These results are further supported by 

observations of reduced insulin transport following diet-induced [106] and genetically-

induced [107] obesity in the Wistar and Zucker diabetic fatty (ZDF) rat models, 

respectively.  

Interestingly, however, some studies contradict this, instead reporting increased 

CNS insulin transport in diabetes [108, 109] that may be caused by a loss of tight-junction 

integrity and elevated BBB permeability [110, 111]. Additionally, there also exists another 

gap in our current understanding of this process, as we have yet to determine exactly how 

BBB insulin transport is regulated or if it involves a specific, undiscovered insulin 

transporter protein [100]. While the precise cellular mechanism facilitating movement of 
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the ligand from periphery to brain requires further investigation, its impact on cognitive 

functions, particularly those mediated by the hippocampus, is indisputable. 

1.3.3 Insulin and the Hippocampus: Impact on Learning and Memory 

The hippocampus is a bilateral, curved formation located in the medial temporal 

lobe. It is part of the limbic system and is an integral component of cognitive processes 

such as learning and memory formation, consolidation of short and long term memory, 

memory acquisition and retention, and spatial navigation. Humans and rodents possess two 

hippocampi, one in each hemisphere of the brain. Each hippocampus can be separated into 

two specific regions, the dentate gyrus (DG), which is comprised of the molecular, 

granular, and polymorphic layers, and the hippocampus proper.  

The hippocampus proper is made up of a dense network of pyramidal neurons and 

is separated into 4 subfields: CA1, CA2, CA3, and CA4. The CA3 subfield, which can be 

further divided into layers stratum lacunosum-moleculare, stratum radiatium, stratum 

pyramidale, and stratum oriens, is considered to be the hippocampal region most involved 

in learning and memory processes. The majority of signals projected into the hippocampus 

arise from neurons of the entorhinal cortex (EC), which enter the DG via the perforant path 

and synapse onto granule neurons. Granule neurons then project specialized axons, known 

as mossy fibers, into the hippocampus proper to form excitatory synapses at CA3 

pyramidal neurons. From here, CA3 neurons project the signals down their Schaffer 

collaterals to CA1 neurons, which then loop back up to the EC, thus completing what is 

known as the trisynaptic circuit. In addition to EC neurons, the hippocampus also receives 

information from the medial septal nucleus, which regulates GABAergic synapses 

associated with hippocampal memory processes.  
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Impairments in hippocampal function have been detected in various disease states, 

such as AD and pathological brain aging, and appear to coincide with reduced hippocampal 

insulin signaling. As stated previously, the hippocampus is one of the primary locations of 

IR expression in the brain [76, 79], and markers of IR signaling have been detected in many 

areas of this structure, including the post-synaptic densities [112] and molecular layers of 

the DG and CA1 sub-field [75, 79]. Further, there is extensive evidence that IRs in the 

hippocampus can modulate AMPA and NMDA receptors [34, 113], improve neuronal 

survival [87] and synaptic plasticity [34, 93], activate key genes and signaling pathways 

required for long-term memory storage or short-term memory encoding [34, 114], and 

increase hippocampal metabolism [91, 115-118]. Two of these processes will be discussed 

more extensively in Chapters 3 and 5.   

Behavioral tests in animal models further support the role of insulin in 

hippocampally-mediated learning and memory. One study reported that rats had increased 

IR expression and markers of insulin signaling in the hippocampus after training on the 

Morris water maze (MWM) behavioral test, and that STZ administration reduced these 

measures and worsened memory performance [119]. Metabolic dysfunction has also been 

associated with deficits in IR activity and hippocampal cognitive processes. A study of 

adult male Wistar rats fed a high-sugar diet highlighted reductions in IR signaling markers, 

including PI3K and AKT [54]. Additionally, 12-weeks of HFD resulted in peripheral 

insulin resistance as well as inactivation of IRS-1, decreased expression of GLUTs at the 

plasma membrane, and diminished measures of synaptic plasticity in the hippocampus of 

C57BL/6 mice [52]. The current data strongly suggests that insulin and IR signaling are 

extremely important aspects of normal cognitive function in the hippocampus. In the 
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following sections, I will provide a brief review of this relationship in the context of 

pathological brain aging and AD-associated cognitive decline. 

1.3.4 Altered IR Signaling in the Context of Aging 

Impaired CNS insulin signaling has been implicated as a contributor to age-related 

cognitive decline in both humans and animal models. Early work using 125I-insulin binding 

assays indicated that aged rats had significantly reduced IR density in the olfactory bulb 

compared to young controls [120]. Another study also reported a 39% reduction in IR 

density in the brains of aged rats, as well as a 57% decrease in the dissociation rate of these 

receptors [121]. Numerous studies have since supported this initial work, providing robust 

evidence of reduced IR density, decreased markers of IR signaling, and lower levels of 

circulating brain insulin in the hippocampus, all of which have been extensively reviewed 

elsewhere [30, 122, 123].  

While there is no denying that the aged brain exhibits reduced IR activity, whether 

this is caused by an inability of the receptor to activate effector proteins downstream of its 

signaling pathway or if it instead stems from a lack of circulating insulin available for 

binding remains a point of contention [122]. Many investigators believe that the aged brain 

experiences a type of insulin resistance similar to that experienced in the periphery, 

particularly in individuals who have comorbid metabolic dysfunction. Yet some evidence 

does exist of preserved insulin sensitivity in these phenotypes. A study in the ZDF rat 

indicated that diabetic rats had normal memory function during a behavioral test and 

preserved synaptic plasticity [124]. While this particular study did not specifically look at 

aged animals, it does provide evidence that peripheral insulin resistance does not 

necessarily correlate with brain insulin resistance. More recent work, this time utilizing 
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young and aged APP/PS1 mice, showed that insulin could still elicit normal signaling 

activity, provided it was delivered directly to the brain [125]. Prior work from our own lab 

reported that hippocampal brain slices from aged rats rapidly responded when administered 

exogenous insulin, and in one case, actually responded more robustly on measures of 

calcium-dependent processes compared to slices from younger animals [55, 126]. These 

results were further supported by a later study in our lab that showed aged animals 

receiving acute insulin administration to the brain had significantly higher increases in 

cerebral blood flow (CBF) compared to young [127].  

A possible explanation for this phenomenon could be that aged animals simply have 

reduced transport of insulin across the BBB, thus decreasing IR signaling without 

impacting receptor sensitivity. This hypothesis is supported by recent evidence of aged 

mice having no changes in brain IR signaling following a peripheral subcutaneous injection 

of insulin, but responding robustly once the ligand was administered directly to the brain 

[128]. While the debate continues on the subject of age-related insulin insensitivity in the 

brain, the bulk of the literature still supports the hypothesis that IR signaling is reduced by 

aging and metabolic dysfunction. However, these are not the only pathologies that exhibit 

this phenomenon. Considerable evidence of impaired insulin activity has also been 

discovered in the brains of AD patients, leading to the development of a theory known as 

The Type-3 Diabetes Hypothesis. 

1.3.5 Brain Insulin Resistance and AD: The Type-3 Diabetes Hypothesis 

The first substantial data suggesting an association between brain insulin resistance 

and AD pathology was discovered in post-mortem tissue. This study showed that brains of 

AD patients had significantly lower levels of IR signaling and insulin concentrations 
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compared to age-matched, healthy controls [129]. Paradoxically, these investigators also 

reported that AD patients had elevated IR expression; this has since been hypothesized to 

be a compensatory mechanism to counteract the reduction in circulating insulin. These 

early results were in agreement with work from Craft and colleagues, which stated that AD 

patients had elevated plasma insulin and lower CSF insulin than healthy controls, and that 

these differences were positively correlated with AD severity and APOE genotype [130]. 

These observations lead to the formulation of the brain insulin resistance hypothesis of AD, 

which suggests that CNS insulin resistance contributes to the development of AD 

pathology [131]. In 2003, de la Monte and colleagues proposed the term “Type-3 diabetes” 

to reflect the similarity of this process to the development of T2DM in the periphery [132]. 

Numerous other contemporary studies have since support this hypothesis, citing evidence 

of aberrant insulin signaling, elevated markers of impaired IR responsiveness, lower IR 

density, and reduced concentration of the ligand in AD patients [49, 122, 133-138]. 

However, the exact mechanism by which reduced insulin activity affects the pathogenesis 

of this disease remains unclear. 

A substantial amount of work has proposed that impaired insulin signaling may 

contribute to AD development through its ability to regulate biomarkers of disease 

pathology. Recent studies have provided evidence of this link in neuronal cultures, 

highlighting that direct administration of insulin reduced the amount of Aβ accumulation 

these cells [133, 138]. IDE, which is mediated by IR activation and subsequent 

phosphorylation of PI3K [34], may also play a role in this process, as it has been shown to 

degrade Aβ [133, 135, 138]. Aβ oligomers have also been reported to reduce the number 
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of hippocampal IRs and worsen brain insulin resistance, further supporting the association 

between insulin-related processes and AD development [34].  

IR signaling has also been linked to the regulation of neurofibrillary tangles. These 

tangles are formed by hyperphosphorylation of tau, which causes aggregation of the protein 

in axons and synapses of neurons [133, 138]. It has been proposed that this excess 

phosphorylation is triggered by an overactivation of glycogen synthase kinase-3 beta 

(GSK-3β). Binding of insulin to the IR and downstream activation of AKT inhibits  

GSK-3β. Therefore, the reduction of IR signaling in the AD brain [134] may lead to 

elevated GSK-3β activity, thus increasing the level of tau hyperphosphorylation and 

associated neurofibrillary tangles [133]. This theory has been supported by work in animal 

models showing that STZ- or HFD-induced brain insulin resistance significantly decreases 

hippocampal IR signaling, downregulates synaptic and dendritic proteins, and significantly 

elevates both total and hyperphosphorylated levels of the tau protein [57, 139]. 

Impaired insulin signaling may also contribute to AD development by reducing 

CBF. AD patients have significantly decreased regional CBF compared to age-matched 

controls [133]. IR signaling has been shown to mediate CBF through activation of the 

PI3K/AKT pathway, which then triggers vasoconstriction or vasodilation in the CNS 

[133]. Further, reduced CBF can result in elevated oxidative stress and inflammation, both 

of which also contribute to neurodegeneration and cognitive decline associated with AD 

development [133].  

To combat these pathogenic processes, the use of exogenous insulin administration, 

either delivered peripherally or directly to the brain and CNS, has recently been explored 

as a clinical therapeutic. Studies performed in both human patients and animal models have 
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been optimistic, reporting improvements in cognitive function, elevated activation of 

insulin-related processes, and decreases in markers of pathogenic brain aging or AD after 

treatment [140, 141]. In this next section, I will present a summary of several important 

studies regarding this therapy and provide a brief overview of commonly used insulin-

delivery techniques.   

1.4 TARGETING ALZHEIMER’S DISEASE AND AGE-RELATED COGNITIVE DECLINE WITH 

EXOGENOUS INSULIN 

1.4.1 Periphery to Brain 

Evidence of reduced CNS insulin signaling and decreased insulin transport across 

the BBB in patients with T2DM and/or AD initially investigators to try to target brain IRs 

by raising peripheral insulin levels. An early study in men receiving intravenous (IV) 

infusion of insulin provided the first evidence that CSF insulin levels were elevated 

following peripheral treatment with the ligand [142]. In the clinic, Craft and colleagues 

showed that peripherally-induced hyperinsulinemia using IV insulin infusion in AD 

patients could improve declarative memory and selective attention compared to age-

matched controls, even in the absence of hyperglycemia [143, 144]. These same 

investigators also showed that elevated plasma insulin improved memory performance in 

both cognitively normal adults and in AD patients, and that the level of enhancement was 

dependent on dose, disease severity, and APOE genotype [145]. Another study from a 

different group reported that IV infusion of “high” levels of insulin (15 mU/kg per min) 

was associated with significant improvements on the word recall and Stroop selective 

attention tests compared to “low insulin” (1.5 mU/kg per min) [146]. These results were 
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further corroborated by evidence of memory improvement in adults following IV infusion 

of the ligand [147]. Interestingly, however, this study also reported that IV insulin 

increased the amount of CSF Aβ, and that improvements in memory performance were 

only detected in younger individuals who did not exhibit high levels of this protein, 

suggesting that physiological changes associated with AD pathology may alter the efficacy 

of insulin on learning and memory processes.   

In the STZ animal model of T2DM, preemptive subcutaneous insulin injection lead 

to an attenuation of STZ-associated behavioral deficits but was not able to restore 

behavioral performance if given after these deficits had already developed [60]. A later 

study in STZ rats also using subcutaneous insulin infusion showed that important 

components of memory and synaptic plasticity, such as neurotransmitter activity and 

synaptic potentials, were protected from STZ-associated impairments [148]. Another 

group, this time utilizing the ZDF rat model, provided evidence of a potential protective 

function of hyperinsulinemia, showing that ZDF animals had normal learning and memory 

on the MWM and preserved markers of hippocampal synaptic plasticity [124]. This work 

is supported by a similar study which reported no signs of neuroaxonal dystrophy, a 

common symptom of T2DM, in this same animal model [149]. Conversely, early work in 

obese ZFD rats highlighted a substantial decrease in peripheral to CSF insulin transport 

following hyperinsulinemia rather than an increase [107], and many others have reported 

a detrimental effect of elevated peripheral insulin levels on brain IR signaling and cognitive 

function [36, 125, 150], suggesting there may be multiple factors influencing the actions 

of peripheral insulin on the CNS. Regardless, these studies strongly imply that targeting 

the brain with exogenous insulin administration is a promising strategy to improve memory 
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and learning while reducing cognitive decline associated with brain insulin resistance. 

However, as IV or subcutaneous ligand administration requires transport across the BBB 

in order to exert actions on the CNS and is confounded by the detrimental symptoms it can 

cause in the periphery (e.g. hypoglycemia), other, more direct, techniques have since been 

explored. 

1.4.2 ICV Insulin Administration 

The method of intracerebroventricular (ICV) drug delivery allows investigators to 

bypass the BBB by injecting the ligand of interest directly into the CSF where it can then 

travel unimpeded to the brain. An early study of ICV insulin in Sprague-Dawley rats 

showed no changes in plasma insulin levels, body weight, or food intake, suggesting that 

it is a relatively safe method for increasing CNS insulin levels without affecting peripheral 

metabolism [151]. Another study in this same model showed that insulin delivery using 

ICV resulted in elevated hippocampal IR signaling and stimulated GLUT4 translocation in 

a PI3K-dependent manner [152]. Further, ICV insulin significantly improved memory 

retention on a step-through passive avoidance task compared to saline controls in male 

Long-Evans rats [153]. 

A study performed in the Fisher 344 (F344) animal model of aging reported that 

memory impairments and neuroinflammation associated with lipopolysaccharide (LPS) 

were attenuated by ICV insulin in younger, but not older, rats, highlighting the significance 

of age on insulin’s CNS effects [154]. More recent work echoed these results, with ICV 

insulin reversing LPS-induced elevations in inflammatory markers, oxidative stress, and 

cognitive impairments in male Wister rats [155]. Another study in Wistar rats showed that 
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ICV insulin could significantly improve spatial learning and memory compared to saline 

controls, but only at higher doses (16 and 32 mU) [156].  

While insulin’s beneficial impact on cognitive function is strongly supported, the 

use of ICV to administer the ligand is not a feasible therapeutic for most clinical situations. 

Due to this, many investigators recognized that a safe, effective, and relatively noninvasive 

method for introducing insulin directly into the brain was needed. Thus, a new protocol for 

targeted drug delivery was developed. 

1.4.3 Intranasal Insulin: A Superior Technique for Direct Delivery of Ligands into the 
Brain 

The use of intranasal drug delivery to bypass the BBB was first detailed by Frey 

and colleagues using wheat-germ agglutinin-horseradish peroxidase (WGA-HRP) in 

Sprague-Dawley rats. This initial study reported that WGA-HRP was highly concentrated 

in the olfactory bulb following administration, providing the first quantitative evidence of 

intraneuronal transport using the olfactory route [157]. In 2001, this same group showed 

successful transport of insulin-like growth factor 1 (IGF-1) into the brains of Sprague-

Dawley rats following intranasal delivery, also noting a positive impact of the drug on 

cognitive deficits associated with stroke [158].  

Three routes for entry of intranasally delivered peptides into the brain have been 

proposed: 1.) the intraneuronal route, in which the drug is directly internalized by the 

olfactory neurons, trafficked to the first order synapses of the olfactory bulb via axonal 

transport, and exocytosed for transsynaptic transfer to other cells along the route [157];  

2.) the extraneuronal route, in which the drug passes through intercellular clefts between 

tight junctions of the olfactory epithelium and subsequently diffuses into the subarachnoid 
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space [159]; and 3.) the trigeminal route, in which the drug migrates across the lamina 

propria through openings in the cribriform plate and enters the perivascular/perineural 

space of the trigeminal nerve, where it then travels to the CSF [160]. While evidence 

supporting the intraneuronal route for many peptides has been reported, this process would 

require a substantial amount of time (~24 h) to deliver the drug into the brain [159] and 

would also significantly increase the possibility of proteolysis of the peptide within the 

intracellular space [161]. Studies have indicated that intranasal administration of larger 

molecular weight drugs results in a relatively rapid elevation of drug concentrations in the 

CNS [161]; therefore, it is unlikely that the intraneuronal route is the primary route for 

peptides of this size to enter the CNS. With respect to insulin specifically, most evidence 

now supports the trigeminal route of intranasal delivery [162]. 

The relative ease of administering peptides intranasally has made it an attractive 

method for clinical therapies. However, the technique understandably raises concerns that 

the drugs may still manage to enter the bloodstream and cause dangerous peripheral effects. 

Fortunately, numerous studies have shown that upon administration to nasal mucosa, the 

peptides immediately bypass the BBB and do not subsequently re-enter the bloodstream or 

cause any notable deleterious effects on peripheral processes. This evidence has been 

reported in both animal models, as well as in the clinic, particularly with regard to 

intranasal insulin (INI), which has repeatedly shown no impact on blood glucose or plasma 

insulin levels in human subjects following delivery of the ligand [126, 127, 163-165]. Since 

these original studies, numerous investigators have explored the efficacy of INI as a 

reliable, rapid, and selective method for targeting insulin resistance and related pathogenic 

processes in aging and AD. 
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1.4.3.1 INI in the Clinic 

Over the past 20 years, numerous studies of INI in the clinic have highlighted a 

beneficial impact on peripheral metabolism and CNS process [163, 166-169]; however, it 

wasn’t until 2004 that the first substantial investigation of this therapy’s impact on 

cognitive function was reported. This study was the first to show that INI could 

significantly improve memory and learning [170]. Later work in patients with AD (early 

onset and amnestic MCI) echoed these results and highlighted the importance of APOE 

genotype on the efficacy of treatment, reporting that while INI improved verbal memory 

performance in both APOE-ε4+ and APOE-ε4- individuals as well as cognitively healthy 

adults, the beneficial effect was much greater in patients with the ε4- allele [164]. 

Additionally, ε4+ patients actually performed worse on a third memory test after treatment, 

suggesting that AD pathology plays a substantial role in how the brain responds to this 

particular therapy. Later results from a clinical pilot trial performed in younger patients 

with amnestic MCI and older patients with mild to moderate AD indicated that both 20 and 

40 IU of INI preserved general cognition (ADAS-cog scores) in the younger amnestic 

group and improved functional abilities (ADCS-ADL score) in older AD patients [171]. 

Both groups had enhanced performance on the delayed memory test, albeit only at a dose 

of 20 IU. Additionally, CSF analysis revealed that memory and function improvements 

were associated with changes in overall Aβ-42 levels and Aβ-42/tau ratios in these patients. 

INI also substantially improved glucose uptake, hinting at a potential mechanism of action 

of this therapy [171]. Similar results regarding INI’s impact on learning and memory in 

AD or MCI patients have since been reported by multiple investigators [172, 173], who 
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have also presented evidence of the potential modulatory impact of sex on INI’s efficacy 

[174, 175] as well as INI’s ability to improve cerebral blood flow (CBF) [176]. 

While clinical trials have primarily focused INI as a treatment for AD and related 

pathologies, the beneficial impact of this therapy is not limited to only these patients. An 

early study in cognitively healthy adults showed that INI of human regular insulin (40 IU, 

4 times a day for 8 weeks) had a small, but positive, impact on delayed word list recall, 

significantly boosted mood, and improved self-confidence compared to placebo controls 

[170]. Importantly, treatment with 40 IU of INI did not appear to alter components of 

peripheral metabolism, such as blood glucose or plasma insulin levels, bolstering previous 

evidence of INI’s safety in the clinic [161]. Another report, also performed in healthy adults 

using 40 IU of INI, indicated that insulin administration could improve delayed odor-cued 

reactivation of spatial memory and again highlighted no changes in blood glucose or insulin 

levels following treatment [177]. In study of peripheral metabolic dysregulation, INI 

enhanced vasoreactivity, visuospatial memory and verbal fluency in both healthy controls 

and patients with T2DM [178]. Similar to a previous study in AD patients [176], INI was 

also shown to increase CBF in younger, as well as older, cognitively healthy adults [179].  

Studies of INI in the clinic are currently ongoing, and the bulk of the literature 

strongly supports this therapy as being a reliable, rapid, and effective method for insulin 

administration in the brain. These results have been extensively reviewed [31, 141, 180-

186], yet the exact mechanisms involved in INI’s modulation of cognitive processes such 

as learning and memory cannot be thoroughly explored using only clinical trials and post-

mortem tissue. For this reason, many investigators have turned to animal models to better 

elucidate these pathways.  
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1.4.3.2 INI in Animal Models 

Work performed in AD animal models has yielded results that largely mirror those 

from the clinic. Seven days of consecutive INI administration in 3xTg-AD mice was shown 

to restore markers of insulin signaling (pIRβ, PI3K, and pAKT), elevate the expression of 

synaptic proteins (synapsin 1, PSD95, and synaptophysin), inhibited activation of 

astrogliosis, and reduced levels of Aβ-40 in the forebrain [187]. A similar study reported 

that INI enhanced cognitive performance on the MWM, improved markers of brain IR 

activation, and reduced oxidative stress, tau hyperphosphorylation and Aβ accumulation in 

the hippocampus and cortex of both adult and aged 3xTg-AD mice [188]. Banks and 

colleagues reported that in the SAMP8 mouse model of AD, INI significantly improved 

memory (both acquisition and retention) on the T-maze cognition assessment and object 

recognition compared to vehicle controls [189]. Another study in this same model reported 

that long-term INI (daily administration for 37 or 56 days) using recombinant human 

insulin slowed early-stage progression of AD-like memory loss but was not able to improve 

performance after greater levels of Aβ accumulation and cognitive dysfunction had 

occurred [190]. Work performed in 6-month old APP/PS1 AD mice indicated a positive 

impact of INI on anxiety-like behavior and spatial memory plasticity, as well an INI-

associated amelioration of aberrant brain insulin signaling, reductions of Aβ plaques and 

elevations in Aβ degradation, and enhanced neurogenesis [191]. Further, a study performed 

in a model of sporadic AD (low-dose STZ administration) showed that INI restored 

cerebral glucose metabolism, attenuated astroglia activation, and reduced neuronal loss 

[116]. 



33 
 

With regard to other animal models, INI was shown to improve cognitive 

performance on the radial arm water maze and increase PKCγII expression in the 

hippocampus of wild-type C57BL/6 mice [87]. Interestingly, another study of wild-type 

CB57BL/6 mice reported that chronic, long-term (30 or 60 days) INI did not improve odor-

discrimination or olfactory learning, suggesting that the duration of treatment may impact 

its efficacy [192]. Anesthesia-induced impairments in spatial learning and memory 

performance on the MWM were also reduced following INI in the C57BL/6 mouse model, 

as were markers of insulin resistance, impaired synaptic plasticity, and 

hyperphosphorylated tau levels [193]. Following traumatic brain injury, INI significantly 

improved MWM performance and brain glucose metabolism while also attenuating 

hippocampal lesion volume and glial activation in Sprague-Dawley rats [194]. INI was also 

shown to improve anxiety-like behavior and reduce glial activation and neuroinflammation 

in the hippocampus of methamphetamine-treated rats [195]. In a feline animal model, a 

study of HIV-associated neurodegeneration using FIV-infected cats reported that INI was 

able to reduce markers of inflammation and glial cell activation, preserve cortical neurons, 

and enhance behavioral performance [196].  

In rats rendered diabetic (STZ-induced T2DM), INI administration ameliorated 

diabetes-associated spatial memory deficits on the MWM task, resulting in a 3-fold 

decrease in latency in INI-treated rats compared to untreated diabetic animals [197]. 

Similarly, diabetic Sprague-Dawley rats receiving INI had improved performance on the 

MWM, elevations in IR signaling markers (pIRS-1, pAKT, pGSK3β), decreased glial cell 

activation, neuroinflammation, and Aβ-42 expression, and prevention of postsynaptic 

neurotoxicity [198]. This group also showed that INI could improve CBF, reduced 
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oxidative stress, and improve mitochondrial function in this same model [199]. Work from 

another group, also performed in STZ-induced diabetic rats, reported that INI using human 

recombinant insulin (5 IU/day for 6 days) significantly reduced levels of CSF Aβ in both 

diabetic and control animals [200], mimicking clinical results that highlighted INI’s ability 

to improve memory in healthy adults [170, 177]. In a STZ-induced Type-1 diabetes model, 

both 5-month old control and 5-month old treated (0.48 IU of INI per day for 15 weeks) 

male Wister rats had significantly improved spatial learning on the MWM [201]. 

Interestingly, 1.5-month old rats in this study, either diabetic or control, did not appear to 

respond to INI treatment, suggesting that age may influence INI’s efficacy. Another study 

in Wistar rats, this time rendered diabetic through a combination of diet and STZ treatment, 

showed that 4-weeks of INI significantly reduced the level of hyperphosphorylated tau in 

diabetic animals and completely reversed diabetes-associated markers of brain insulin 

resistance, particularly in the hippocampus [202].  

With respect to aging, our lab has performed a series of INI studies in the F344 rat 

model. In one, we highlighted the beneficial impact of two formulations of insulin: lispro 

and detemir. Following a low-dose INI treatment with either formulation, aged F344 

animals were indistinguishable from their younger counterparts on measures of MWM 

spatial learning and memory [126]. However, in similar study, this time using insulin 

glulisine, neither acute nor chronic INI treatment significantly improved memory or recall, 

although it did increase IR signaling and improve CBF in the aged animals [127]. While 

disappointing, these results align with prior work in wild-type mice that also showed no 

improvements in memory following long-term, chronic INI [192], again supporting the 

notion that treatment duration is an important component of INI’s efficacy.  
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The results from our initial studies in the F344 animals, though contradictory, were 

still encouraging, as it was clear that insulin was able to successfully bypass the BBB, 

elevate IR signaling in the aged brain, and, at least in some cases, improve cognitive 

function and CBF. Additionally, other work from our lab using ex vivo administration of 

insulin to hippocampal slices from young and aged animals, as well as in vitro delivery to 

primary hippocampal cultures, has also provided promising results that highlight insulin’s 

impact on calcium-dependent processes and glucose metabolism [55, 126, 203, 204]. 

Because of this, we chose to continue our work in the F344 animal model of aging and 

explore INI’s effect on cognitive function using another insulin analog: aspart. The 

following chapter presents a study on the impact of this formulation on aspects of 

hippocampal-mediated spatial learning and memory using the MWM, as well as its ability 

to modulate hippocampal IR expression and alter the gene transcriptome.  
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The following manuscript has been published in the Journal of Gerontology: Series A:  

J Gerontol A Biol Sci Med Sci. (2019). Epub 10 June 2019. doi.org/10.1093/gerona/glz105. 

I helped perform all INI administrations, animal behavioral assessments, perfusions, and 

whole-brain extractions. Authors K. L. Anderson and A. O. Ghoweri assisted with intranasal 

delivery, behavioral testing, and data analysis; E. Sudkamp and J. R. Pauly performed  

125I-insulin receptor autoradiography and data analysis; A. O. Ghoweri, E. S. Johnson, K. 

E. Hargis-Staggs, and E. M. Blalock performed RNA extraction and microarray data 

analysis. Authors K. L. Anderson, G. A. Fox, K. Vatthanaphone, M. Xia, and R.-L. Lin 

performed immunohistochemistry experiments and data analysis. In this study, I sought to 

explore the following hypotheses: 1) that insulin aspart, a clinically-relevant insulin 

formulation that has shown enhanced brain penetration, would ameliorate cognitive decline 

in aged F344 rats; 2) that long-term, repeated, daily INI across 3 consecutive months would 

alter IR expression and hippocampal function; and 3.) that downregulation of IRs in the 

hippocampus or elsewhere following chronic INI is more pronounced in aged animals 

compared to young. While prior studies have tested the effects of INI aspart and/or other 

insulin formulations on spatial memory and IR expression in animal models [126, 127, 187, 

193, 197, 201], the following work details novel and clinically-relevant findings regarding 

the effect of long-term insulin administration on hippocampal function, and provides the 

first comprehensive analysis of the hippocampal transcriptome in aging that is sensitive to 

INI aspart. 
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2.1 ABSTRACT 

Intranasal insulin is a safe and effective method for ameliorating memory deficits 

associated with pathological brain aging. However, the impact of different formulations 

and the duration of treatment on insulin’s efficacy and the cellular processes targeted by 

the treatment remain unclear. Here, we tested whether intranasal insulin aspart, a short-

acting insulin formulation, could alleviate memory decline associated with aging and 

whether long-term treatment affected regulation of insulin receptors and other potential 

targets. Outcome variables included measures of spatial learning and memory, 

autoradiography and immunohistochemistry of the insulin receptor, and hippocampal 

microarray analyses. Aged Fisher 344 rats receiving long-term (3 months) intranasal 

insulin displayed a trend towards improved recall on the Morris water maze task. 

Autoradiography results showed that long-term treatment reduced insulin binding in the 

thalamus but not the hippocampus. Results from hippocampal immunofluorescence 

revealed age-related decreases in insulin immunoreactivity that were partially offset by 

intranasal administration. Microarray analyses highlighted numerous insulin-sensitive 

genes, suggesting insulin aspart was able to enter the brain and alter hippocampal RNA 

expression patterns including those associated with tumor suppression. Our work provides 

insights into potential mechanisms of intranasal insulin and insulin resistance, and 

highlights the importance of treatment duration and the brain regions targeted. 
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2.2 INTRODUCTION 

Intranasal insulin (INI) has become a well-recognized method for addressing 

numerous neurodegenerative conditions. Several labs have provided evidence that it is a 

favorable and relatively noninvasive technique for selective delivery to the brain [157, 161, 

164, 184, 185, 194, 205-207]. Using methods developed by Frey and colleagues (Frey WH 

II, Method for administering insulin to the brain; Patent #6,313,093 B1, issued November 

6th, 2001), INI’s potential as a therapeutic for mild cognitive impairment (MCI)- or 

Alzheimer’s disease (AD)-associated memory decline has been investigated in both 

clinical and pre-clinical studies. Although differences in responses based on sex [167, 168, 

174, 175] and APOE genotype [164, 172, 173, 175] have been noted, clinical trials have 

been encouraging, citing both the safety of INI, as well as its positive impact on memory 

function [170, 177] and components of peripheral metabolism [208, 209]. Early work from 

Craft and colleagues highlighted INI’s impact on memory, reporting that individuals with 

early AD or amnestic MCI receiving 20 international units (IU) of INI for 21 days retained 

more verbal information than controls [210]. Recently, 21 days of INI detemir (40 IU), a 

long-lasting insulin analogue, improved memory performance [172]. However, the 

cognitive benefits of INI are not limited to only AD or MCI patients. In a study of  

38 healthy male subjects (aged 18-34 years), 8-week INI administration correlated with 

improved immediate and delayed word recall, attention, and mood [170]. This was 

corroborated by improved word-list recall in healthy male subjects following INI using the 

rapid-acting insulin analogue aspart [207]. Together, these studies highlight the important 

role of insulin in both declarative and spatial memory and suggest INI may target areas 

associated with these processes. Potential mechanisms suggested to underlie these actions 
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include alterations in glucose metabolism [116, 194, 211], reductions in inflammation and 

glial cell activation [154, 187, 194, 198], and a rapid and reliable increase of cerebral blood 

flow (CBF) [176, 178, 179, 212]. This latter mechanism is particularly interesting as 

healthy young subjects also respond favorably to INI. However, the nature of clinical 

studies limits their ability to identify mechanistic processes [213]; thus, further analyses in 

animal models are required.  

Following clinical studies, investigations of INI in animals have used models 

mimicking early-stage AD or MCI [214]. Critical work from Banks and colleagues 

reported transport of INI into the brain parenchyma, while relatively low [189], is 

nevertheless effective and long-lasting, as no efflux mechanisms for the peptide appear to 

exist [73, 215]. These same investigators recently reported that ligand transport did not 

differ between AD-like (older SAMP8) or AD-predisposed (younger SAMP8) mice 

compared to healthy controls [216], suggesting INI is a viable method for elevating insulin 

in the brain regardless of AD status or severity. Other work from the same group 

highlighted improvements in task acquisition in 12-month old male SAMP8 mice exposed 

to INI 24 h prior to T-maze testing, as well as 5 min or 24 h after training on a 7-day 

retention task [189]. Additionally, INI appears to slow the progression of memory loss in 

earlier stages of AD in younger (< 6-month old), but not older (> 6-month old), male 

SAMP8 mice [190]. In a study using the 3xTg mouse model, INI improved spatial memory 

recall and increased insulin signaling [188]. Another group showed that in female 3xTg 

mice, INI reduced amyloid beta levels and microglial activation [187], and improved 

cognitive performance, neurogenesis, and insulin signaling in female APPswe/PS1dE9 

mice [191]. With respect to aging, Apostolatos and colleagues have shown improved 
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spatial memory on the radial arm water maze following 4 weeks of daily INI with human 

recombinant insulin in aged (18-month old) male C57Bl6 mice [87]. Studies of older  

(16-18-month old) female mice showed that 7-day INI prevented anesthesia-induced 

reductions in spatial memory performance while reducing tau hyperphosphorylation [193]. 

Fadool and colleagues have provided evidence that short-term (5-day) INI human 

recombinant insulin increases novel object recognition and odor discrimination in 2-month 

old male C57Bl/6 mice [217]. However, this effect was not present when extended 

exposures (30-60 days) were used in 5-month old animals [192], suggesting that duration 

may impact efficacy. We have investigated the ability of INI lispro and detemir to offset 

age-related cognitive decline in the Fischer 344 (F344) rat model of aging. In these studies, 

INI improved memory recall of the platform location on the Morris water maze (MWM) 

test in aged animals [126]. Another study in the same animals using INI glulisine did not 

improve performance, but did facilitate mechanisms that could promote memory, including 

increasing CBF and insulin receptor (IR) signaling in aged animals [127]. Overall, the 

evidence appears to robustly support the hypothesis that insulin is involved in memory 

processes in both humans and animal models, and makes a strong case for INI as a 

clinically-relevant therapy to ameliorate age- and/or AD-associated cognitive decline. 

However, the impact of insulin formulation and treatment duration on the efficacy of INI, 

as well as the cellular mechanisms targeted by this approach, remain unclear. 

The premise of our work has been to address age- and AD-related reductions in 

insulin activity, represented by declining insulin concentrations and IR density [120, 129, 

218], with a restorative increase in brain insulin levels using INI. As recently highlighted, 

the elements responsible for brain insulin insensitivity include diminished IR signaling 
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through its canonical pathway (i.e. IRS1, GSK3β), a reduction of the ligand in the brain, 

and/or decreased insulin transport at the blood-brain barrier (BBB) [reviewed in 122]. 

Since these mechanisms are likely connected, alterations in any of these processes could 

lead to reduced insulin signaling or function. Here, we present a series of experiments 

designed to test: 1) whether insulin aspart, a clinically-relevant formulation that has shown 

enhanced brain penetration [207, 219], could alleviate cognitive decline in F344 animals, 

and 2) if repeated, daily INI across 3 consecutive months could cause changes in IR 

expression and modify insulin’s impact on hippocampal function. We also investigated the 

hypothesis that downregulation of IRs in the hippocampus or elsewhere following chronic 

INI is more pronounced in aged animals. The following outcome variables were obtained: 

spatial learning and memory and reversal learning, IR autoradiography and 

immunohistochemistry (IHC), and hippocampal microarray analysis. Results show a trend 

toward improved performance on the MWM reversal probe test in animals treated with INI 

aspart. The treatment significantly reduced 125I-insulin binding in the thalamus, but not in 

the hippocampus. Hippocampal immunofluorescence revealed a significant age-related 

decrease in IRs in stratum pyramidale and oriens with a trend of INI-mediated increases 

in stratum pyramidale. Hippocampal microarray analyses identified several pathways 

sensitive to INI, including novel genes associated with tumor suppression, neurogenesis, 

and synaptic stabilization. 
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2.3 MATERIALS AND METHODS 

2.3.1 Animal Models 

The work strictly adhered to the regulations of our institutional licensing committee 

for the care and use of animals (Institutional Animal Care and Use Committee). 22 young  

(2-month old) and 26 aged (18-month old) male F344 rats were obtained from the National 

Institute on Aging colony. One young and one aged animal died within a week of arrival. 

Animals were housed in pairs except for the two animals that lost their cage mates. Animals 

were tail marked for identification, maintained on a 12 h ON, 12 h OFF light schedule, and 

fed Teklad global 18% protein rodent diet ad libitum (2018; Harlan Laboratories, Madison, 

WI). As expected, young animals gained weight during the duration of the study. Aged 

animals neither gained nor lost weight. INI aspart did not affect animal weights (data not 

shown). Experimenters were blinded to the treatment groups and codes were only revealed 

after statistical analyses were performed. 

2.3.2 Intranasal Insulin Delivery 

Intranasal delivery of insulin aspart to the remaining 46 animals began 1 week after 

arrival and followed our previously published protocol [126, 127]. Animals were 

transiently held supine in a DecapiCone (Braintree Scientific, Braintree, MA) while two  

5 µL doses of either sterile saline or insulin aspart (NovoLog®), given 1 min apart, were 

delivered to the right naris using a P10 pipette. INI continued for 3 months (62-64 doses 

per animal: 5 days a week, once a day, for 12 weeks). Insulin aspart was made fresh weekly 

and diluted from a U-100 vial (Novo Nordisk Inc, Plainsboro, NJ) using sterile saline. We 
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chose a concentration of 0.0715 IU/10 µL as it mimics the approximate dosage used in 

numerous clinical trials. 

2.3.3 Spatial Behavior 

On the 12th week of INI, animals (aged 5 or 21 months) underwent a spatial learning 

and memory test using the MWM. The testing pool measured 190 cm in diameter. A  

15 cm escape platform was placed 1.5 cm below the water’s surface. Water was maintained 

between 25 and 26 °C and made opaque to hide the platform using black tempura paint. A 

semi-random drop location was used for each trial. Animals were allowed 60 s to find the 

platform, after which they were guided to its location by the investigator. A Videomex-V 

acquisition and Water Maze analysis software (v4.64, Columbus Instruments, Columbus, 

OH) was used to track and measure movement. Each animal remained on the platform for 

30 s before returning to a heated holding chamber for ~2 min. 

On the first day of MWM, a visual acuity test was performed with a white cup 

placed above the partially submerged platform for 3 consecutive trials. Three animals in 

the aged insulin aspart group failed to find the platform in all trials and were removed from 

the behavioral analysis. After a 2-day rest, animals were subjected to 3 training trials per 

day for 3 days (~2.5 min intertrial interval). Twenty-four h after the last training day, a 

probe trial was initiated with the platform removed (up to 60 s of max swim time). The 

following day, the platform was place in the opposite quadrant and animals were trained 

on its new location (reversal learning). After 72 h, a reversal probe trial was initiated with 

the platform removed. Following behavioral testing, brains from 20 animals were used for 

autoradiography measures. Brains from the remaining 26 animals were hemisected; left 
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tissues (hemispheres) were used for IR IHC and right tissues (whole hippocampi) were 

used for microarray analyses. 

We present behavioral data on path length measures and number of platform 

crossings on the 24-h memory recall (probe), as well as time in goal quadrant in the first 

30 s of the 72-h reversal probe, from 43 animals (young saline n = 11, young aspart n = 10, 

aged saline n = 13, aged aspart n = 9). Swim speed was averaged from the 3 trials on the 

3rd training day. As previously presented [126, 127] aged animals swam more slowly than 

young (F(1,39) = 24.9, p < 0.0001; data not shown) and INI did not have an impact on swim 

speed (F(1,39) = 0.4; p > 0.05). 

2.3.4 125I-Insulin Receptor Autoradiography 

Whole brains, including olfactory bulbs, were extracted from randomly selected 

animals (n = 5 per group) following anesthesia (5% isoflurane). Brains were placed on 

finely crushed dry ice, covered by the ice, and submerged in chilled 2-methylbutane. 

Tissues (16 µm sections) were mounted on slides and prepared for 125I-insulin receptor 

autoradiography using the assay described by Kar and colleagues [76]. Briefly, slides were 

incubated for 18 h in 10 mM HEPES buffer (pH 8.0) containing 0.5% BSA, 0.025% 

bacitracin, 0.0125% N-ethylmaleidimide and 100 kIU aprotinin (Sigma Aldrich, Saint 

Louis, MO), and 25 pM 125I-insulin (2000 Ci/mmol; PerkinElmer, Waltham, MA) at 4 °C, 

then washed twice (5 min each, 4 °C) with 10 mM HEPES buffer (pH 8.0). Slides were 

then washed once with a 10-fold dilution wash buffer and again with deionized water  

(10 s each, 4 °C), air dried, and stored in a vacuum-sealed desiccator. The next day, slides 

were incubated on tritium-sensitive film (Amersham™ Hyperfilm™ MP; GE Healthcare, 

Chicago, IL) and stored in X-ray cassettes for 2 months. Films were then processed in a 
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Kodak D-19 Developer for 5 min, run through a 30 s indicator stop bath, and exposed to 

Kodak rapid fixer for 5 min. Images were captured using a Northern Lights desktop 

illuminator (Model B95; Imaging Research, Ontario, Canada) and a Sony XC-77 CCD 

camera via Scion LG-3 frame grabber. ImageJ v1.59 (National Institutes of Health) was 

used for quantitative image analysis. Data are reported as uncalibrated optical density  

(n = 17-18 animals). Two animals from the aged insulin aspart group were removed from 

analysis: one for poor tissue quality, one for failing the visual acuity test. For binding 

measures in the olfactory bulb (internal plexiform layer), data from one aged saline animal 

was removed due to poor tissue quality. 

2.3.5 Immunohistochemistry 

The IHC groups were split as follows: young saline n = 6, young aspart n = 5, aged 

saline n = 8, aged aspart n = 7. Animals were anesthetized with Fatal-Plus® (390 mg/mL 

pentobarbital) and perfused with oxygenated saline (~10 min), after which brains were 

harvested and hemisected. The left hemisphere was placed in 4% PFA for 48 h, then 

transferred to 30% sucrose for ~24 h. Tissues were placed in an antifreeze solution at  

20 °C until sectioning. Tissue slices were cut on a cryostat (35 µm) and probed for IRα 

using a standard IHC protocol (1° antibodies: Abcam #5500 1:200, 2° antibody: Abcam 

#150077 1:200; Abcam, Cambridge, MA). Slices were placed on subbed glass slides, 

covered with DAPI-supplemented mounting medium (#P36966; Invitrogen, Carlsbad, 

CA), and cover-slipped. A Nikon fluorescent microscope using a spectral analysis camera 

and Nuance® software (Nuance Communications, Burlington, MA) together with ImageJ 

was used to quantify percent area of a region of interest (ROI) in the CA1 cell body region. 

Images were thresholded to identify individual cell bodies. Percent area positively labeled 
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was determined from the particle size algorithm. Percent areas are reported in hippocampal 

subsections (strata pyramidale, radiatum and oriens) obtained from 4-8 animals per group. 

The same size ROI was used for each subsection across slices. To control for cell density 

across age and hippocampal subfields, data were normalized to the immunopositive area 

for DAPI signal in each section. Data presented are derived from the average of two 

independent scorers. 

2.3.6 Hippocampal RNA Extraction and Microarray Analyses 

Right hippocampi from 26 animals (young saline n = 6, young aspart n = 5, aged 

saline n = 8, aged aspart n = 7) were isolated over ice and placed in a -80 °C freezer until 

processed for RNA extraction. To extract RNA, hippocampi were thawed on ice and 

homogenized in RiboZol™ Extraction Reagent (#97064-948; VWR®, Radnor, PA). RNA 

was precipitated with chloroform and isopropanol, then resuspended in a 75% ethanol 

solution. Following extraction, RNA integrity numbers (RIN) were obtained for each 

sample using standard protocols (University of Kentucky Genomics Core, Lexington, KY). 

Mean values for each group were as follows: young saline = 7.32 ± 0.14, young  

aspart = 7.34 ± 0.15, aged saline = 7.33 ± 0.12, aged aspart = 7.29 ± 0.13. No significant 

difference in RIN was noted between the groups (2-way ANOVA; p > 0.5). Samples were 

stored in a -80 °C freezer until thawed for microarray analysis (Affymetrix™ rat Clariom™ 

S Assay; Thermo Fisher Scientific). Gene signal intensities were calculated using the 

Robust Multiarray Average algorithm at the transcript level and data were associated with 

vendor-provided annotation information. 
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2.3.7 Statistical Analysis 

Spatial memory results are based on a total of 43 animals. Statistical outliers  

(> 2 standard deviations from the mean) were excluded from analysis. Immunofluorescent 

data were filtered using an interquartile range approach. Drug and aging effects on endpoint 

measures were determined using 2-way ANOVAs with Bonferroni post hoc tests. 

Significance for all comparisons was set at p < 0.05.  

2.4 RESULTS 

2.4.1 Spatial Learning and Memory 

Young and aged animals were able to learn the spatial task and escaped onto the 

platform with decreasing path lengths across the 3 days of training (young F(2,38) = 11.3,  

p = 0.0001; aged F(2,40) = 17.5, p < 0.0001; Figure 3.1A). INI did not alter learning rates in 

either age group (p > 0.05). These results align with our prior work showing that aged 

animals are capable of learning the task [126, 127, 220]. Insulin aspart, much like detemir, 

lispro, or glulisine [126, 127], does not show a measurable influence on the learning 

component. The memory component of the task was investigated with a 24 h probe and  

72 h reversal probe following learning for a new platform location. Path length to goal 

during the 24 h probe revealed significant memory effects from aging (F(1,39) = 12.5,  

p = 0.0011), but not from INI (p > 0.05, Fig. 3.1B). Similarly, the number of exact platform 

crossings highlighted a significant aging difference (F(1,39) = 16.3, p = 0.0002) without an 

observed INI difference (p > 0.05, Fig. 3.1C). We then trained the animals on a new 

platform location and waited 72 h before probing again. As expected, analysis of this more 
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Figure 2.1 Spatial learning and memory. Spatial learning and memory. (A) Path length 

to goal across 3 days of training showed improved learning over time, though no distinct 
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drug effect was noted. (B) Memory recall on the probe task (24h) shows young animals 

identifying the platform location more readily than aged animals. (C) During the full 60s 

probe task, young animals crossed the exact platform location more often. (D) The 72-h 

reversal probe showed that the young animals spent significantly more time in the new goal 

quadrant compared to the aged. Further, a trend for INI improving memory regardless of 

age was noted. Data represent means ± SEM. Asterisks (*) indicate significance at p < 

0.05. Pound sign (#) indicates a trend at p < 0.15. 
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demanding task revealed significant aging differences on time in goal quadrant during the 

first 30 s of the probe trial (F(1,39) = 7.9, p = 0.0076; Fig. 3.1D), but also provided evidence 

for a trend in improvement in INI-treated animals (p = 0.14). While the effect did not reach 

significance, aged animals showed a ~30% increase in time spent in the correct quadrant 

while young animals showed no such change. This is likely the reason for a lack of a main 

effect of INI on ANOVA testing. These results do not appear to depend on swim speed 

(F(1,39) = 0.4, p > 0.05, see Methods). 

Overall, this INI regimen does not appear to have a greater impact on learning and 

memory performance in aged animals compared to shorter exposures previously used [126, 

127]. While this could suggest that longer exposures are less protective, it could also reflect 

a short-lived impact of INI that may have been missed using the current protocol. Given 

that chronic peripheral hyperinsulinemia or insulin resistance can reduce insulin transport 

into the central nervous system (CNS) [106, 117, 134], we next tested whether 3-month 

INI could alter CNS IR expression similar to that seen at the BBB [reviewed in 88] or in 

the periphery. 

2.4.2 Quantitative Autoradiography 

We harvested brains from randomly selected animals (n = 5 per group) to 

characterize IR binding using autoradiography (Figure 3.2). While no significant 

differences with age or insulin treatment were found in field CA1 of the hippocampus  

(p > 0.05, Fig. 3.2B), a trend for an aging effect in the dorsal blade of the dentate gyrus 

was noted (F(1,14) = 3.1, p = 0.10; Fig. 3.2C). Binding of 125I-insulin in the thalamus 

decreased  
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Figure 2.2 125I-Insulin receptor binding. 125I-Insulin receptor binding. (A) Representative 

images of 125I-Insulin receptor binding on a young and aged control brain section. (B) No 
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significant differences with age or insulin treatment were found in field CA1 of the 

hippocampus. (C) A trend of insulin increasing binding with age in the dentate gyrus was 

noted. (D) Binding in the thalamus decreased significantly with long-term INI. (E) Binding 

in the internal plexiform layer of the olfactory bulb increased significantly with age. A 

significant interaction term was also noted, with INI decreasing 125I-insulin binding in 

young while increasing it in aged. Data represent means ± SEM. Asterisks (*) indicate 

significance at p < 0.05. Pound signs (#) indicate trends at p < 0.10. 
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significantly with long-term INI (F(1,14) = 4.7, p = 0.047; Fig. 3.2D), but no aging effects 

were observed. A significant main effect of age, evidenced by greater binding in the outer 

plexiform layer (F(1,13) = 7.9, p = 0.014; Fig. 3.2E) together with a significant interaction 

term in response to INI (F(1,13) = 5.7, p = 0.032; Fig. 3.2E), was noted in the olfactory bulb. 

These results are somewhat surprising given previous work highlighting decreased cortical 

IR numbers [218] and overall IR mRNA levels with age [34], but are well-aligned with 

several studies that did not find significant reductions in IR binding, except in the olfactory 

bulb of the aged rat [75, 120]. 

2.4.3 Immunohistochemistry 

Aligned with prior work showing decreases in IR mRNA with aging [34], we show 

a significant reduction in immunolabeled area for IR in field CA1 of the hippocampus in 

aged animals compared to young (Figure 3.3). DAPI signal (% area covered) did not 

change with age or treatment (Supplemental Figure 3.1). A significant reduction in 

FITC/DAPI was seen in stratum oriens (F(1,18) = 4.5, p = 0.047; Fig. 3.3B) and stratum 

pyramidale (F(1,19) = 6.4, p = 0.021; Fig. 3.3D) with age. Interestingly, a trend of increased 

immunopositive area in response to chronic INI was also observed in stratum pyramidale 

(2-way ANOVA, p = 0.1173; Fig. 3.3D). No significant difference was noted in stratum 

radiatum (Fig. 3.3C). Similar quantification in the dorsal blade of the dentate gyrus did not 

show a significant main effect of age or INI (p > 0.05; Supplemental Figure 3.2). 
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Figure 2.3 IR immunofluorescence. (A) DAPI fluorescence (left) was used to normalize 

all FITC fluorescence (right) for each hippocampal section quantified. Immunopositive 

signals representing the presence of the IR were quantified within each ROI (white boxes). 

Equally sized ROIs were used to quantify immunopositive areas across strata oriens (B), 

radiatum (C), and pyramidale (D) subfields. Strata oriens and pyramidale both showed a 

significant decrease in IR fluorescence with age. Stratum pyramidale also showed a trend 

of increased immunostaining with INI. Data represent means ± SEM. Asterisks (*) indicate 

significance at p < 0.05. Pound sign (#) indicates a trend at p < 0.12. 



56 
 

2.4.4 Microarray Analyses 

Microarray data are presented in Figure 3.4. Of the initial 11,160 filtered genes, 

significant main effects of age, insulin, and the interaction term identified 1541 genes  

(2-way ANOVA). We chose a significance level of 0.03 based on the p-value frequency 

distribution which indicated a large increase in significant genes below that value. As 

shown in Fig. 3.4A, a greater number of genes were modified by aging (~1100) than by 

INI (~400).  

Transcriptional targets of age and insulin are presented in Supplemental Table 3.1 

(GO Accession #pending). A large proportion of genes upregulated by age in the 

hippocampus combined into functional annotation clusters using the Database for 

Annotation, Visualization and Integrated Discovery (DAVID) hierarchical clustering 

analysis, including those involved in neutrophil activation, myelination, inflammation, and 

cell migration. We validated these changes by testing for alignment with 8 transcriptional 

profiles of aging published in prior work [221-226, reviewed in 227]. As seen in Fig. 3.4C, 

aging-significant genes identified here showed a strong correlation with those highlighted 

by prior profiles (192 genes; p = 1.09E-46; r2 = 0.661). The heatmap representation of the 

top 10 genes changed with aging or with insulin is shown in Fig. 3.4D. Genes at the 

intersection of both main effects (age- and insulin-sensitive) are displayed graphically as a 

function of log2 fold change (Fig. 3.4E). The nearly 140 genes representing the interaction 

term of the 2-way ANOVA are presented in Fig. 3.4F. 

A DAVID heuristic categorization analysis of non-redundant genes upregulated by 

INI in the hippocampus identified main biological processes that included  

anti-inflammation (Synj2bp), synaptic stabilization (Pak1, Stx1a), and tumor 
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Figure 2.4 Microarray analyses. (A) Total gene set filtered to remove low intensity 

signals yielded 11,160 genes. Two-way ANOVA identified ~1500 genes that were 

significant by main effects of age, insulin, and/or the interaction. (B) P-value frequency 

histogram shows the increase in the number of significant genes with α < 0.03. The 
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conventional line (gray) delineates a cutoff for significance near 112 as the first percentile 

(p < 0.01) of the 11,160 filtered genes. The orange line represents the p-values obtain when 

testing for significance across a set of 11,160 randomly generated numbers through a  

2-way ANOVA. The blue line highlights the p-values obtain from our dataset. (C) We 

validated the ~1000 age-sensitive genes across our prior studies and found a significant 

correlation with prior work. (D) Heat map of significant genes (top ten) separated across 

subject by aging or drug effects (lighter colors indicate less change; orange indicates an 

increase, blue indicates a decrease). (E) Genes significant by both main effects (63) fall 

into four categories: 2 in the same direction (quadrants 4 and 2), and 2 in the opposite 

direction (quadrants 1 and 3). (F) Genes within the significant interaction space (~130) are 

divided as those modified in young animals (top), in aged animals (middle), or in both 

(bottom). This result suggests insulin sensitivity in the brain may not differ across aging 

(39 genes changed in young, and 35 changed in aged). Data represent means ± SEM.  
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suppression/antiproliferative function (Cdh11) genes. RNA signatures downregulated by 

INI were associated with cancer development (Erbb2, Myt1) and glial and neuronal growth 

(Atl1, Fgf9, Numb, Acap2), perhaps providing a path for stabilizing established synaptic 

connections. Alternatively, the strong presence of Erbb2 in astrocytes and Myt1 in 

oligodendrocytic precursor cells [228] suggest non-neuronal cell types may also be targets 

of INI. Analysis of genes that responded to aging and insulin in opposite directions, and 

are therefore likely reparative, corresponded to reduced inflammation, DNA repair, cell 

growth, and translation stability processes (Fig. 3.4E). Genes increased with age and 

decreased by INI included two helicases (Chd1, Ddx24), a ligase (Xrcc4), and a programed 

cell death gene (Dnml1). Those decreased by age and increased by insulin included  

anti-inflammatory (Igfbp5), cellular repair (Nrep, H3f3c), vascular function (Nrep), tumor 

suppression (Nrbp1, Wbp1), and neuronal growth (Tuba1b, Nrbp1) genes. Surprisingly, 

very few, if any, genes targeted by chronic INI fell within the canonical insulin signaling 

pathway. It is also interesting that INI altered gene expression similarly in both young and 

aged animals (35 & 39 genes, respectively), suggesting that the aged hippocampus may 

remain sensitive to insulin provided the ligand is present. Overall, the profiling analysis 

presented here reveals that INI likely entered the hippocampus and significantly altered 

expression of important genes associated with tumor suppression, neurogenesis, and 

synaptic stabilization. 

2.5 DISCUSSION 

The present study was undertaken to determine whether INI using a higher-

penetrance insulin analogue could prevent aspects of brain aging. Aspart provided an 
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observable, albeit small, behavioral enhancement during a particularly challenging 

memory task in the aged animals. A significant reduction in IR autoradiography was seen 

in the thalamus in response to INI, but not in the hippocampus, although a modest increase 

in hippocampal IR immunofluorescence in stratum pyramidale was noted. Compared to a 

prior study from our group using fewer insulin exposures (~10), but conducted in young 

and aged F344 rats with similar doses and INI techniques [126], this much longer study 

(~63 exposures) did not provide greater improvement on memory recall of spatial 

information in the aged animals. Importantly, however, we detected significant changes in 

gene signatures in the hippocampus of INI-treated animals, many of which could represent 

new therapeutic targets.  

2.5.1 Why Insulin Aspart? 

The fast-acting insulin analogue aspart includes molecular modifications that 

increase absorption rates [229-231] and peak plasma concentrations [229] to almost twice 

that of human insulin. Despite these pharmacokinetic differences, profiles of IR affinity, 

dissociation and tyrosine kinase activation rates, IGF-I binding, metabolic potency, and 

ligand degradation rates have been comparable between insulin aspart and human insulin 

[229, 232]. In the context of INI, insulin aspart’s inability to form hexamers may increase 

its absorption in the brain. In fact, recent work indicated insulin aspart was absorbed more 

rapidly than longer-acting formulations following nasal delivery in rats [219]. 

Additionally, INI aspart significantly improved word list recall in healthy male subjects 

(aged 18-35 years) compared to human insulin [207].  

It is reasonable to assume that increasing the availability and absorption rate of 

insulin could enhance delivery to the brain. While no statistical comparisons between our 
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prior studies [126, 127] and the current results were performed, insulin aspart does not 

appear superior at offsetting memory decline in aged animals compared to insulin detemir 

(longer-acting) or lispro (rapid-acting) [126]. Given similar receptor affinities of the 

different insulin formulations, and assuming equivalent distribution in the brain, it is 

possible that the inconsistencies in memory performance in aged INI animals were due to 

different exposure frequencies. The greater number of exposures (~63 doses, one per day) 

did not yield larger improvements in memory recall compared to the fewer exposures  

(~10 doses) used in earlier studies [126]. Interestingly, we previously reported that repeated 

doses of insulin glulisine (~18, one per day), another rapid-acting insulin, also did not 

improve memory recall in aged animals, although it did increase hippocampal IR signaling 

and CBF [127].  

Others investigating long-term (30-60 days), repeated dosing of INI in C57BL6/J 

mice showed that longer exposures are not as beneficial on olfactory or object recognition 

memory compared to acute [192]. The authors speculated that longer exposures likely 

initiate a state of brain insulin resistance whereby continued IR signaling is not maintained. 

While we do not provide evidence of insulin-mediated decreases in IRs in the 

hippocampus, we do show significant reductions in the thalamus following repeated INI. 

This could represent evidence for insulin resistance in the thalamus, though it is not clear 

why this region would be more sensitive to chronic insulin. Whether a larger number of 

insulin exposures (> 10) weakens its impact or if the formulation used is responsible for 

this inconsistency remains to be determined. Alternatively, both of these factors could be 

relevant. Regardless, the evidence of region-specific downregulation of IR presented here 
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suggests that insulin resistance and/or decreases in signaling may not be a generalizable 

condition. 

Using the SAMP8 mouse model of dementia, 8 weeks of INI improved cognition 

in earlier stages of the disease (< 24 weeks) but could not ameliorate severe cognitive 

dysfunction at later stages (24-40 weeks) [190]. In another long-term study (~3 months of 

INI) conducted in Wistar rats tested at ~11 months of age, learning was improved; however, 

INI did not improve learning on the MWM task in younger adult animals [201]. This 

highlights the importance of age in these studies [122, 126, 127, 216, 217] and suggests a 

need for more analyses in mid-aged animals. Furthermore, current evidence indicates 

variability in results across labs and conditions may be due to the length of exposure [192], 

as long-term INI could potentially upregulate insulin degradation and cause a 

pharmacokinetic tolerance in the brain.  

2.5.2 Difference Between 125I-Insulin Receptor Autoradiography and 
Immunofluorescence Results 

Prior reports on IR binding in the brain of rodents indicated higher receptor density 

in the olfactory bulb and choroid plexus compared to other structures [103, 120, 233]. 

Additionally, a reduction in IR binding has been noted in the olfactory bulb in studies of 

aging [75, 120], while others have shown reduced binding in the cortices of elderly non-

demented subjects (> 65 years old) compared to younger adults [129]. Contrary to these 

studies, we do not show reduced IR binding with age in the internal plexiform layer of the 

olfactory bulb, and instead report greater binding in this area (Fig. 3.2E). Given that insulin 

levels in the olfactory bulb fluctuate with feeding state [234], it is possible this might have 

influenced IR autoradiography. It is also interesting to speculate that the exposure to an 
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enriched environment (e.g. MWM and repeated daily handling) in the current study might 

have increased IR mRNA levels [114], thereby offsetting the impact of aging on IR density. 

In a prior study of adult Sprague-Dawley rats, chronic intracerebroventricular 

insulin failed to alter IR binding [151]. However, as hypothesized, we show that chronic 

INI exposure does decrease binding, albeit only in the thalamus. Further, a significant 

interaction term (2-way ANOVA) showing an increase in aged and a decrease in young 

animals following INI was noted in the internal layer of the olfactory bulb. It appears 

distinct brain regions may respond differently to this particular dosing regimen, as areas 

associated with spatial memory processes (i.e. the hippocampus) were less affected than 

others. With respect to aging, our results align well with a prior study showing no 

difference in insulin binding in the cortex or hippocampal formation [120]. Further, data 

presented here should not reflect IGF-I receptor binding, as an insulin dose well below the 

binding affinity for IGF-I receptor [12] was used. Thus, our results are novel and given the 

paucity of binding studies in normal aging, continual investigations of insulin binding in 

aging and/or AD appear warranted. 

Additionally, the strong hippocampal immunofluorescence for the IRα subunit not 

only reflects the presence of IRs in neurons, but also shows substantial expression in 

stratum radiatum astrocytes and what are likely oligodendrocytes near the heavily 

myelinated fimbria above stratum oriens (Fig. 3.3). While surprising given evidence of 

stronger immunopositivity in primary neurons compared to other hippocampal cell types 

[81, 82], this result was corroborated using another IRα antibody from a different company 

(data not shown), suggesting that IRs in oligodendrocytes are perhaps relevant to 

observations of neuropathy in DM. Immunofluorescence in the primary neuronal cell layer 
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was mostly somatic, as no dendritic elements appeared to be immunoresponsive. This was 

unexpected given previous evidence of synapse-centric insulin effects on hippocampal 

neurons [reviewed in 90]. 

Overall, the results from hippocampal IR immunofluorescence do not align well 

with those from autoradiography. We show a reduction in immunopositive area in stratum 

oriens and stratum pyramidale with age that is not reflected in measures of 125I-insulin 

binding. This is surprising as both approaches report on plasma membrane proteins and 

should represent functional IRs. Our immunofluorescence protocol did require the use of a 

mild detergent during washing; thus, it is possible that the quantification reported here 

includes intracellularly labeled nascent proteins. Further, the area quantified for 

autoradiography encompassed most of the hippocampus while more defined strata were 

quantified in the immunofluorescence assays, which could have influenced our results. 

Nevertheless, these results still clearly emphasize the complexity and dynamic aspect of 

insulin’s actions in the brain. 

2.5.3 Analysis of Hippocampal Genes Altered by Aging and INI  

For the first time, our studies provide a comprehensive analysis of the hippocampal 

transcriptome in aging that is sensitive to INI aspart. Despite the observed trend towards 

improved memory in the aged INI group, these gene targets appear to be involved with 

processes other than those strictly aligned with learning and memory. A number of the 

genes identified, particularly those modified by aging, are similar to genes characterized in 

prior studies, including those associated with myelination, inflammation, and cell 

migration. With respect to genes upregulated by INI, many were also previously 

recognized in studies of cardiac and brain health, and are primarily involved in anti-
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inflammatory [reviewed in 235] and synaptic stabilization processes [reviewed in 90, 236]. 

Our results offer new evidence that insulin in the brain may have antiproliferative 

properties and could potentially act as a tumor suppressor. In fact, hippocampal RNA 

signatures downregulated by INI included Erbb2, one of the most well-documented cancer-

related genes [237]. Perhaps of greater interest were genes that responded to INI in the 

opposite direction from aging and are likely beneficial. Again, these centered on processes 

associated with reductions in inflammation, DNA and cellular repair, and tumor 

suppression.  

Insulin-mediated processes are thought to be reduced in both healthy and 

pathological aging and are often considered reflective of brain insulin resistance. However, 

we show that the number of genes altered by INI in the young and the aged brain are nearly 

identical. Given consistent evidence of maintained insulin sensitivity with age from our 

group, this is perhaps not surprising. Together, these results suggest that aging may not 

affect insulin sensitivity as much as previously thought [122]. 

2.5.4 Conclusion 

Aging is the major risk factor for AD. With the expected increase in life expectancy, 

the resultant growth of the aged population will increase AD incidence; therefore, it is 

important to consider novel therapies and perhaps earlier interventions for successful brain 

aging. We report that long-term INI aspart was well-tolerated and present evidence of mild 

improvements in memory recall in aged animals following repeated daily dosing. We also 

demonstrate the feasibility of using INI to offset changes associated with brain aging and 

provide new insights into potential mechanisms and physiological components that may 

contribute to its therapeutic efficacy. 



66 
 

2.6 FUNDING 

This work is supported by the National Institutes of Health ([R01AG033649] to 

O.T., [T32DK007778] to H.N.F., and [T32AG057461] to A.O.G.). 

2.7 ACKNOWLEDGEMENTS 

Authors H.N.F, A.O.G., and K.L.A. performed Morris water maze behavioral tests 

and analyses. Authors H.N.F., A.O.G., and K.L.A. performed animal perfusions and brain 

extractions. Authors E.S. and J.R.P. performed 125I-insulin receptor autoradiography and 

data analysis. Authors A.O.G., E.S.J., K.E.H.-S., H.N.F, O.T., and E.M.B. performed RNA 

preparation and microarray data analysis and interpretation. K.L.A., G.F., K.V., X.M., and 

L.R.-L. performed and analyzed immunofluorescence assays. Authors H.N.F., O.T., and 

N.M.P. wrote and compiled the manuscript text and figures. The authors are grateful for 

the invaluable help provided by Drs. Lawrence D. Brewer and John C. Gant during Morris 

water maze behavioral characterization. 

 

 

 

 

 

 

 

 

 

 



67 
 

CHAPTER 3. INSULIN SIGNALING, CALCIUM DYSREGULATION, AND BRAIN 
AGING 

As stated in Chapter 1, the importance of insulin and IR signaling in the brain is 

well documented, yet the specific mechanisms targeted by this system are still unclear. 

While our previous study touched on some potential targets of INI, such as hippocampal 

gene expression or IR binding, elucidating insulin’s impact on specific cellular processes 

is logistically difficult in vivo. In light of this, Chapters 4 and 6 will present two studies 

performed in vitro using primary hippocampal cultures, a system that allows for much more 

nuanced characterizations of IR signaling at the cellular and molecular level. These studies 

were conducted to investigate two potential mechanisms of action of IR signaling and INI 

in the hippocampus. The following chapter provides a brief overview of the first 

mechanism I tested using this culture system: calcium dysregulation. 

3.1 THE ROLE OF CALCIUM IN THE BRAIN 

Calcium enters the bloodstream following its release from bone, where it is then 

transported throughout the body as dissolved Ca2+ ions. A small portion of these ions are 

stored within cells in organelles such as the sarco-/endoplasmic reticulum and 

mitochondria [238]. However, in the brain, a significant amount of Ca2+ resides in the 

extracellular space, at concentrations ~10,000-fold higher than that inside the neuron. This 

large gradient allows for transient changes in intra- and extracellular ion concentrations 

during neuronal processes and is tightly regulated by ATP-activated ion pumps [238]. The 

ability of calcium to modulate these important processes relies on voltage-gated calcium 
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channels (VGCCs), transmembrane proteins responsible for regulating the influx of Ca2+ 

ions from the highly concentrated extracellular space into the interior of the cell.  

3.1.1 Voltage-Gated Calcium Channels 

VGCCs are transmembrane proteins comprised of polypeptide subunits 

surrounding a central pore that is primarily permeable to Ca2+ ions, although other ions, 

such as barium, may also pass through [239, 240]. The channels are voltage-gated, meaning 

that their conformational state (open or closed) depends on the voltage of the surrounding 

membrane. VGCCs are separated into two broad categories based on their conductance 

kinetics: high-voltage activated (HVA) and low-voltage activated (LVA). HVA VGCCs 

activate upon large depolarizations (above -40 mV) whereas LVAs are opened at lower 

voltages (above -60 mV). The structure of HVA VGCCs consists of 5 polypeptide subunits 

(α1, β, γ, and the α2δ dimer), while the LVA VGCCs consist only of α1 and β subunits [239]. 

HVA and LVA VGCCs can be further differentiated by their subtype, which appears to be 

determined solely by the α1 subunit, of which there are 3 major families: Cav1, Cav2, and 

Cav3.  

VGCC subtypes vary in their tissue localization, inactivation profiles, and ion 

sensitivities [241]. While both HVA and LVA VGCCS can mediate neuronal physiology, 

most VGCCs in the brain fall into the HVA category, with the predominant subtypes being 

L-type (“long-lasting” type, containing the α1 subunit Cav1.2, Cav1.3, or Cav1.4), N-type 

(“neural” type, containing the α1 subunit Cav2.2), and Q- and P-type (“Purkinje” type, 

containing the α1 subunit Cav2.1) [241, 242]. Additionally, these subtypes can also be 

further differentiated by their subcellular localizations, with N-, Q-, and P-type channels 

being abundantly presynaptic while L-type VGCCs are predominantly postsynaptic [241].  
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At resting membrane voltage (-70 mV), VGCCs remain closed, inhibiting 

extracellular Ca2+ from entering the cell. However, as an action potential travels to the 

terminal of the presynaptic neuron, the shift of the membrane to a more positive voltage 

triggers the channels to open, allowing Ca2+ from the extracellular space to move inside. 

The influx of Ca2+ into the intracellular space then activates numerous cellular processes 

including synaptic transmission and neurotransmitter release, alterations in gene 

expression, and hormone secretion. After Ca2+ influx, the VGCCs are inactivated, either 

through prolonged membrane depolarizations or by calcium-mediated processes such as 

calmodulin-VGCC binding [241, 243]. 

3.1.2 Neuronal Action Potentials and Synaptic Plasticity 

Calcium-mediated processes are an essential component of neuronal function. One 

such example is rapid, calcium-dependent signal transduction and action potential 

propagation. In neurons, binding of presynaptic neurotransmitters to receptors on the 

postsynaptic cell triggers the opening of ligand-gated channels and influx of positive ions 

(e.g. sodium) into the cytosol which then opens additional channels, resulting in localized, 

transient depolarizations known as excitatory post-synaptic potentials (EPSPs). EPSPs are 

graded, meaning that multiple EPSPs concentrated in a single area of a postsynaptic 

membrane will be additive . The combination of multiple EPSPs in a small region pushes 

the membrane towards an even more positive charge, thus increasing the likelihood that it 

will reach its threshold voltage (-55 mV) and fire an action potential. 

A presynaptic action potential travels along an axon toward the axon terminal, 

where it eventually triggers the release of neurotransmitters into the synaptic cleft. This 

process is regulated by the influx of Ca2+ ions from the extracellular space into the cell 
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interior via VGCCs. Here, the Ca2+ ions bind to calmodulin, which in turn activates 

calmodulin-dependent protein kinase II (CaMKII). CaMKII then phosphorylates synapsin, 

a neuron-specific protein involved with intracellular docking of neurotransmitter-

containing vesicles near the active zones of the synapse [244]. Phosphorylation of synapsin 

releases the vesicles, allowing them to enter the active zone for subsequent exocytosis and 

release into the synaptic cleft. The process then repeats as this new set of neurotransmitters 

binds to the next cell, thus propagating the initial signal from neuron to neuron. 

Calcium-dependent CaMKII has been shown to be highly important for synaptic 

plasticity, especially in the hippocampus [244-246]. Inhibition of CamKII results in 

diminished learning and memory and impaired long-term potentiation (LTP) [244, 247]. 

LTP, defined as the process of a particular synapse strengthening over time due to repeated, 

concurrent activity at both the pre- and postsynaptic neuron [244], is considered the basis 

for hippocampal memory formation and storage. The calcium-dependent CaMKII has been 

shown traffic AMPA receptors to the post-synaptic density (PSD) as well as phosphorylate 

them, which increases their sensitivity to ligand binding and strengthens the synapse, thus 

aiding in LTP initiation [244]. Additionally, changes in intracellular calcium 

concentrations also regulate synaptic plasticity by triggering calcium-induced calcium 

release (CICR) through binding to ryanodine receptors (RyR) at the sarcoplasmic reticulum 

[248]. The activation of RyR triggers release of calcium from intracellular stores into the 

cytosol, leading to an amplification of the already rising Ca2+ levels within the cell. This 

additional calcium release appears to be an integral component of calcium-mediated 

neuronal physiology, as alterations of RyR have been shown to contribute to deleterious 



71 
 

elevations in neuronal calcium levels, increased cell death, and impairments in learning 

and memory [249-252].  

In addition to being a regulator of intracellular processes such as neurotransmitter 

release and synaptic plasticity, calcium is also an integral component of maintaining and 

returning neurons to their membrane resting potential. This process involves the opening 

of calcium-dependent channels, such as potassium channels, which then allow passage of 

ions into the cell and trigger subsequent hyperpolarization of the membrane [238]. In 

certain situations, prolonged hyperpolarization may occur. This particular process, referred 

to as an afterhyperpolarization (AHP), contributes substantially to age- and AD-associated 

calcium dysregulation and appears to be solely dependent on Ca2+ ion-actions [253]. 

3.1.3 The Calcium-Dependent AHP  

As stated in the previous section, Ca2+ influx following membrane depolarization 

and VGCC opening repolarizes the cell to its resting membrane potential by triggering 

potassium channel activation and K+ influx, thus resetting it for future depolarizations. 

However, this process is not exact, and during ion influx, the cell undergoes 

hyperpolarization in which the membrane voltage “undershoots” the resting potential and 

falls to voltages below -70 mV. During this refractory period, the cell is unable to generate 

subsequent depolarizations. Sodium-potassium pumps then redistribute Na+ and K+ ions to 

bring the membrane back to its resting state. The AHP is a calcium-dependent 

hyperpolarizing event that maintains the hyperpolarization of the refractory period, thus 

inhibiting neuronal firing. Fast and medium AHPs can occur following a single action 

potential. However, in the hippocampus, repeated trains of action potentials may 

sometimes lead to increases in intracellular K+ that can remain for several seconds after 



72 
 

stimulation [254, 255]. These long K+ conductances can result in generation of the slow 

AHP (sAHP), which inhibits further neuronal firing for up to 1 second or more.  

Logically, the rate at which the cell is able to recover from the hyperpolarizing 

refractory period influences the speed at which neurons are able to fire multiple action 

potentials. Slower recovery from AHP events will naturally lengthen this time period, thus 

slowing neuronal activity. For this reason, the duration and amplitude of calcium transients 

in the brain, particularly in the hippocampus, are considered to be important mediators of 

learning, memory, and neuronal physiology. In fact, alterations in these calcium transients 

have been implicated in a variety of neurological pathologies. One study using 

hippocampal slices prepared from young and aged rats indicated the presence of 

significantly larger AHPs in aged animals compared to young [253]. This observation, 

along with other early evidence of alterations in calcium-mediated processes during aging 

and AD, lead to the formulation of a new theory: The Calcium Hypothesis of Alzheimer’s 

Disease and Brain Aging. 

3.2 THE CALCIUM HYPOTHESIS OF ALZHEIMER’S DISEASE AND BRAIN AGING 

The calcium hypothesis of AD and brain aging was developed in the late 80s and 

states that dysregulation in neuronal calcium levels leads to cognitive decline by elevating 

calcium transients, increasing VGCC activity, AHP amplitude, and AHP duration, and 

disrupting cellular ion homeostasis [256, 257]. Homeostasis of extra- and intracellular 

calcium levels is an integral part of healthy brain function. Fluctuations in this balance can 

disrupt the frequency and duration of neuronal activity, alter neurotransmitter release, and 

increase neuronal cell death [258, 259]. Evidence of age- and/or AD-associated alterations 
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in calcium homeostasis has been reported from numerous investigators using a variety of 

different models and techniques. Landfield and colleagues provided some of the earliest 

data regarding this topic, showing that aging increases VGCC activity, calcium currents, 

and the amplitude and duration of the calcium-dependent AHP [253, 260-262]. Later work 

from this same group tied these early observations to aspects of synaptic plasticity [263], 

suggesting that alterations in calcium-mediated processes may underlie impairments in 

learning and memory. 

 Another early study using the F344 animal model of aging showed that aged 

animals had impaired regulation of Ca2+ at nerve terminals, decreased ligand affinity in 

calcium transporters, and alterations in calcium-activated synaptic ATPase indicative of 

diminished synaptic transmission [264]. In mice, aging was associated with a decrease in 

calcium uptake in the brain, which could in turn reduce calmodulin activation and 

neurotransmitter release [265]. Aged rabbits given nimodipine, an L-type VGCC 

antagonist, had smaller AHPs, a reduction in the slow phase of the Ca2+ action potential, 

and improved learning [266], providing evidence that targeting calcium dyshomeostasis 

may be an effective method to ameliorate age-related cognitive decline. Unsurprisingly, 

early evidence of calcium dysregulation was also reported in AD [267, 268], further 

strengthening the proposal that it may be an important therapeutic target. More 

contemporary studies have since supported these initial findings [269-272], while also 

reporting that age- and/or AD-related calcium dysregulation is associated with alterations 

in intracellular calcium-related processes [249, 269] and synaptic plasticity [252, 273, 274], 

can contribute to cell death and excitotoxicity [250, 275], and that targeting this 

dysregulation can improve learning, memory, and synaptic function [276-278].  
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Interestingly, calcium dysregulation has also been linked to aspects of peripheral 

metabolism [271]. In fact, rats rendered severely or moderately diabetic through STZ-

administration have worsened performance on the MWM as well impaired LTP compared 

to controls [59]. STZ-induced diabetes has also been shown to increase resting intracellular 

calcium concentrations and reduce depolarization amplitudes in neurons [279], echoing 

prior findings in the aged and AD brain. Larger sAHPs and elevated spike broadening have 

also been detected in the CA1 region of STZ-induced diabetic rats [280]. Similarly, 

diabetes was shown to elevate resting calcium levels and reduce calcium mobilization and 

intracellular calcium release in the STZ rat model [251]. Recent work from our lab has 

provided some contradictory results regarding this relationship, as we reported that short-

lived diabetes in young-adult ZDF rats did not exacerbate markers of age-related calcium-

dysregulation [281]; however, the substantial evidence of calcium dysregulation in aging 

and AD, its reported connection to T2DM, and the impairment of brain IR signaling in 

these same disease states, strongly suggests that insulin may play a role in the regulation 

of calcium homeostasis. 

3.3 COMBATING NEURONAL CALCIUM DYSREGULATION 

3.3.1 Insulin and Calcium-Dependent Processes 

An early study in rat pinealocyes showed that insulin could reduce VGCC activity, 

providing the basis for its use as a therapeutic in targeting age-related calcium 

dysregulation [282]. Since then, additional evidence of insulin’s ability to impact calcium-

related processes in the brain have been reported. A study performed on retinal slices from 

salamanders also showed that insulin inhibited VGCC currents as well as decreased Ca2+ 
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influx following depolarization [283]. In primary rat hippocampal neurons, insulin 

inhibited spontaneous Ca2+ oscillations in a process driven by MAPK-activation [284]. 

Insulin has also been shown to induce long-term depression (the opposite of the memory-

forming LTP process) at hippocampal mossy fiber-CA3 and CA1 synapses by elevating 

intracellular calcium concentrations and L-type VGCC activity in postsynaptic neurons 

through the PI3K/PKC-dependent trafficking of AMPA receptors [92, 285].  

Prior work in our lab has also suggested that insulin can impact calcium-related 

processes. In a study using hippocampal slices obtained from young and mid-aged F344 

rats, we showed for the first time that acute exposure to exogenous insulin significantly 

reduced the calcium-mediated AHP, providing a direct link between IR signaling and 

calcium dysregulation [55]. Further, rats maintained on HFD for 4.5 months lost this 

insulin response, suggesting that peripheral metabolic dysfunction, such as diabetes, not 

only impacts insulin activity but also calcium-mediated processes, at least in the 

hippocampus. Interestingly, this study also showed that slices from mid-aged animals had 

a greater reduction in the AHP than their younger counterparts, again providing evidence 

that insulin resistance in the aged brain may not be due to receptor desensitization, but 

rather a lack of available ligand (see Chapter 1, section 1.3.4). In another study, we again 

presented evidence of insulin’s ability to reduce markers of calcium dysregulation by 

reporting that insulin administration to hippocampal slices significantly reduced the 

amplitude and duration of the sAHP in Sprague-Dawley rats (2-6 months old) and produced 

a trend for a reduction in the duration and amplitude of both the medium and sAHP in 

young and aged F344 rats [126]. Finally, our lab also showed that acute insulin 

administration to cultured, primary hippocampal neurons resulted in reduced VGCC 
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currents and Ca2+ transients [204]. Together, this evidence strongly supports the role for 

insulin and IR signaling in neuronal calcium processes.  

3.3.2 Targeting Calcium Dysregulation in Cultured Hippocampal Neurons Using a 
Molecular Approach 

While work from our lab, as well as from other groups, has investigated calcium-

related processes following administration of insulin [55, 126, 204] or similar ligands, such 

as IGF-I [286], the direct effects of elevated insulin signaling on VGCC activity remain 

unclear. As INI has been shown to have substantial positive effects on learning and memory 

in aging and AD, and because calcium dysregulation has also been identified as a 

contributor to these pathologies, we proposed the hypothesis that impaired insulin signaling 

in aging and AD increases hippocampal calcium dysregulation and that elevating IR 

signaling attenuates this dysregulation, thus providing a mechanism for INI’s beneficial 

effects.  

However, whether conducted in vivo, ex vivo, or in vitro, most studies of IR-

associated processes have been performed using exogenous insulin administration, which 

could introduce confounds such as the ligand binding to other receptors (i.e. IGF-I 

receptors), activation of IR-mediated metabolic pathways, or alterations in yet unknown 

cellular mechanisms that may be sensitive to rising insulin concentrations. In light of this, 

I performed a study directly investigating insulin’s ability to reduce VGCC activity in 

neurons by using a constitutively active form of the human IR to elevate signaling while 

bypassing potential variables associated with exogenous ligand administration. This 

modified receptor, known as IRβ, was produced by truncating a significant portion of the 

α subunit of the human IR, which then confers constitutive activity to the catalytic βsubunit 
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[287]. After expressing this receptor in primary hippocampal neurons, I then measured 

VGCC activity using whole-cell patch clamp electrophysiology. This work is one of the 

few measures of direct, IR-mediated VGCC activity in this cell type, and is presented in 

the following chapter. 
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The following manuscript has been published in Neurochemical Research: Neurochem Res. 

(2019). 44: 269. Epub 23 March 2018. doi.org/10.1007/s11064-018-2510-2. I performed all 

cell culture preparations, lentiviral infections of cell cultures in a BSL2 laboratory, protein 

harvest and Western immunoblot assays, immunocytochemistry and photomicroscopy, 

whole-cell patch-clamp electrophysiology experiments, and data analyses. Author(s) S. D. 

Kraner designed and oversaw production of the IRβ receptor; G. J. Popa and M. D. 

Mendenhall constructed all plasmids and lentiviruses used in these experiments as part of 

the University of Kentucky Genetic Technologies Core; K. L. Anderson assisted with 

Western immunoblots; K. K. Hampton performed confocal imaging during 

immunocytochemistry experiments. In this study, I sought to explore the hypothesis that 

elevated IR signaling could attenuate markers of age-related calcium dysregulation in 

cultured hippocampal neurons by reducing voltage-gated calcium channel currents. The 

constitutively active human IR, IRβ, was chosen to bypass potential confounds associated 

with use of the ligand (e.g. binding of insulin to other receptors, such as IGF-I) by conferring 

elevated receptor activity in the absence of exogenous insulin. While prior studies had tested 

the effects of elevated insulin signaling on calcium-related processes in vitro using 

administration of insulin, to our knowledge, no study had used a purely molecular method 

to directly observe the outcome of chronic, constitutive IR signaling on calcium channel 

activity.
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4.1 ABSTRACT 

Memory and cognitive decline are the product of numerous physiological changes 

within the aging brain. Multiple theories have focused on the oxidative, calcium, 

cholinergic, vascular, and inflammation hypotheses of brain aging, with recent evidence 

suggesting that reductions in insulin signaling may also contribute. Specifically, a 

reduction in insulin receptor density and mRNA levels has been implicated, however, 

overcoming these changes remains a challenge. While increasing insulin receptor 

occupation has been successful in offsetting cognitive decline, alternative molecular 

approaches should be considered as they could bypass the need for brain insulin delivery. 

Moreover, this approach may be favorable to test the impact of continued insulin receptor 

signaling on neuronal function. Here we used hippocampal cultures infected with lentivirus 

with or without IRβ, a constitutively active, truncated form of the human insulin receptor, 

to characterize the impact continued insulin receptor signaling on voltage-gated calcium 

channels. Infected cultures were harvested between DIV 13 and 17 (48 h after infection) 

for Western blot analysis on pAKT and AKT. These results were complemented with 

whole-cell patch-clamp recordings of individual pyramidal neurons starting 96 h post 

infection. Results indicate that while a significant increase in neuronal pAKT/AKT ratio 

was seen at the time point tested, effects on voltage-gated calcium channels were not 

detected. These results suggest that there is a significant difference between constitutively 

active insulin receptors and the actions of insulin on an intact receptor, highlighting 

potential alternate mechanisms of neuronal insulin resistance and mode of activation. 
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4.2 INTRODUCTION 

Insulin signaling in the brain is an integral physiological component of proper 

neurological function and has been shown to help maintain receptor trafficking (AMPA, 

NMDA, GABAA) [288-292], increase cerebral blood flow [127, 176, 178, 179, 199], 

stimulate glucose transporter translocation [152, 293], reduce voltage-gated calcium 

channel (VGCC) function [204, 282, 283], reduce neuroinflammation [154], and reduce 

ryanodine receptor function [204]. Studies on age-related alterations in insulin signaling 

have highlighted a reduction in insulin receptor (IR) density and IR mRNA in aged brains 

[34, 121, 129, 294]. Intranasal insulin (INI) administration has been shown to improve 

cognitive function in both young and aged individuals [164, 170, 171, 177, 182, 184, 210] 

with similar reports in animal models of Alzheimer’s disease (AD) and aging [87, 154, 

189, 281, 295]. While the mechanism by which insulin exerts these physiological effects 

is not fully understood, some evidence suggests that it may be related to calcium signaling.  

Both classic and contemporary evidence suggests that tight regulation of 

intracellular calcium levels is required for normal cellular function [270, 296-302]. In 

response to evidence of neuronal calcium dysregulation in aging, the calcium hypothesis 

of brain aging was developed [256, 257]. This hypothesis states that calcium dysregulation 

can lead to cognitive decline by increasing calcium transients, VGCCs, and calcium-

mediated afterhyperpolarization (AHP) [261, 263, 273, 303, 304]. Our lab has shown that 

insulin administration leads to a reduction in the slow-AHP in rat hippocampal neurons 

[55, 281, 295]. Together, this evidence highlights a possible connection between insulin 

signaling and calcium homeostasis with regards to age-related cognitive decline. These 

data also suggest that maintaining insulin signaling is a viable therapeutic approach to 
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address this decline [55, 126]. Indeed, others have used administration of a chemical 

supplement (oxaloacetate) to increase insulin signaling in the brain [305]. Based on these 

findings, we sought to explore the impact of molecular enhancement of IR signaling in the 

absence of exogenous insulin by expressing a truncated, constitutively active human IR 

(IRβ) in rat primary hippocampal neurons. 

IRβ is a modified human IR consisting almost solely of the catalytic β subunit of 

the human IR [287]. This truncation leads to insertion into the plasma membrane together 

with constitutive activity of the receptor in mouse fibroblasts. Here we tested the 

hypothesis that expressing a modified, constitutively active form of the IR in neurons 

would increase insulin signaling without the need for exogenous delivery of insulin, and 

would reduce VGCC currents in hippocampal neurons. We infected mixed primary 

hippocampal cultures with two lentiviral constructs: synapsin-IRβ-dTomato and synapsin-

IRβ-mCherry and their respective controls. Each construct consists of a neuronal specific 

promoter (synapsin) and a fluorescent reporter gene (dTomato or mCherry). Cells were 

either harvested for protein analysis or recorded using whole-cell patch-clamping methods 

to quantify VGCC currents 4-7 days following infection. Results show that while 

constitutive activity was obtained, there was no evidence of changes in VGCC current 

density. This result is surprising, given the acute and robust effects of exogenous insulin 

on VGCC and ryanodine receptor function in hippocampal neurons previously reported by 

our lab [204]. Ongoing studies are investigating the ability of hippocampal neurons to 

maintain insulin signaling across time to better define mechanisms of insulin insensitivity 

in the brain, i.e., down-regulation or desensitization of receptors, together with down-

stream signaling pathways. 
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4.3 METHODS 

4.3.1 Cell Culture 

Hippocampal mixed (neuron/glia) cultures were prepared as described previously 

[203, 275, 306] and established from E18 Sprague-Dawley rats. E18 fetuses and 

hippocampi were dissected under a microscope in ice-cold Hank’s balanced salt solution 

(Thermo Fisher Scientific Inc., Waltham, MA) supplemented with 4.2 mM NaHCO3 and 

12 mM HEPES (pH 7.3). Hippocampi were transferred to 0.25% trypsin EDTA solution at 

37 °C (Thermo Fisher Scientific) and left at room temperature (23 °C) for 11 min. Trypsin 

was removed and the hippocampi were washed three times with SMEM (Minimum 

Essential Medium supplemented with 200 mM L-glutamine (Thermo Fisher Scientific) and 

35 mM D-glucose). Hippocampi were then titrated and diluted with SMEM to the desired 

final concentration (100,000 neurons/mL) before being plated in 2 mL aliquots onto  

35 mm plastic dishes (Corning Inc., Corning, NY) that were previously coated with  

10 mg/mL poly-L-lysine (1 h) for a final cell density of 200,000 cells per dish. Cultured 

neurons were incubated (37 °C, 5% CO2, 95% O2) for 24 h before the first medium 

exchange, when half of the medium was replaced with 90% SMEM and 10% horse serum 

(Thermo Fisher Scientific). After 3 days in vitro (DIV), half of the media was replaced 

with SMEM containing horse serum, 5-fluoro-2-doxyuridine, and uridine to stop glial cell 

growth.  

All experiments were conducted following a 24 h exposure to a no serum, low 

glucose (5.5 mM) MEM to maintain normal glucose oxidation rates and insulin sensitivity 

[203]. Insulin time-course treatments were performed using 10 nM insulin glulisine diluted 
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in sterile saline (Apidra®, stock solution of 100 U; Sanofi-Aventis, Bridgewater, NJ). As 

a control for our insulin time course experiments, either a 5 or 30 min saline exposure was 

used to normalize the data. No significant difference we seen between 5 and 30 min control 

treatments. All data presented were obtained at room temperature (23 °C). 

4.3.2 Lentiviral Construction and Infection 

EcoRI sites and the human IRβ protein was ligated between the XbaI and BamHI 

sites using PCR and standard digestion protocols. The synapsin-IRβ-mCherry plasmid was 

constructed using an pHR-SFFV-KRAB-dCas9-P2A-mCherry vector (gift of Jonathan 

Weissman, Addgene plasmid #60954). The self-cleaving P2A site preceding the mCherry 

sequence produces mCherry expression at a 1:1 ratio with the IRβ protein, thus improving 

fluorescence. The synapsin promoter and human IRβ protein were ligated into the vector 

between the AscI and BamHI sites, replacing the Cas9 sequence via PCR and standard 

digestion protocols. All segments constructed using PCR were sequenced to verify fidelity. 

All plasmids were then converted into lentiviruses by co-transfecting HEK293 cells with 

the donor plasmid, PsPAX2, and pMD2.G (gifts from Dr. Didier Trono, Addgene plasmids 

#12260 and #12259) using a polyethyleneimine (80 µg/ml, nominal MW 40,000, pH 7) 

and NaCl (75 mM) mixture to induce uptake of the DNA. Culture supernatants were 

withdrawn over a 5-day period, clarified by centrifugation, and the virus precipitated with 

polyethylene glycol (1.4% w/v) and NaCl (50 mM). The viral pellet was resuspended in 

cold PBS. Lentiviruses were stored at -80 °C until needed. Viruses were then thawed on 

ice and immediately administered to culture dishes. mCherry expression was monitored 

using a Nuance spectral analysis camera with wavelengths above 510 nm (CRi, Inc., 
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Boston, MA). Phase and fluorescence photomicrographs were overlaid in Adobe 

Photoshop. 

4.3.3 Protein Harvest and Western Blots 

Mixed primary hippocampal cultures were lifted in RIPA buffer containing 

phosphatase and protease inhibitors. Cells were further lysed using polytron agitation. 

Protein levels were quantified using a BCA assay and a microplate reader. Western blots 

were used to quantify differences in protein expression. Samples were run in duplicate 

within and across gels and were averaged. Proteins were assessed with the following 

antibodies: AKT #4685S 1:1000 and pAKT #4051S 1:1000 (Cell Signaling Technology 

Inc., Danvers, MA). Blots were developed with chemiluminescence and digitally imaged 

on a scanner (G-Box; Syngene, Frederick, MD). Gray values were obtained using the 

ImageJ gel analysis tool (Version 1.46r; Wayne Rasband, National Institutes of Health, 

Bethesda, MD). For each blot, mean gray value of pAKT and AKT were normalized to a 

saline-treated sample, and pAKT was divided by AKT to generate ratios. 

4.3.4 Immunocytochemistry 

Primary hippocampal cultures, uninfected or infected with syn-IRβ-dTomato 

lentivirus, were fixed using 4% paraformaldehyde (PFA) in 1X PBS for 20 min. 

Immunocytochemistry was performed using a primary antibody targeted to the HA-tag 

present on our truncated IRβ protein (HA-Tag #3724S 1:1600, Cell Signaling Technology) 

in conjunction with a fluorescent secondary antibody (Alexa Fluor® 488 #A-11070 1:200, 

Thermo Fisher Scientific). Cultures were imaged using a spectral camera (Nuance FX, CRi, 

Inc.) and a FITC dichroic mirror equipped with a long-pass emission filter (>525 nm). A 
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series of images were acquired from 490 to 650 nm and were used to define the green signal 

and all other fluorescent signals (autofluorescence and background noise). The green 

channel was extracted from the total fluorescent signal using the Nuance algorithm 

(spectral library subtraction). 

4.3.5 VGCC Recording Solutions 

For whole-cell recordings of VGCC currents, the external solution was prepared as 

follows (in mM): 111 NaCl, 5 BaCl.H2O, 5 CsCl, 2 MgCl2, 10 glucose, 10 HEPES,  

20 TEACl.H2O. The solution was brought to pH 7.35 with NaOH and 500 nM tetrodotoxin 

(TTX) was added before recording to inhibit Na+ channels. The internal pipette solution 

was prepared as follows (in mM): 145 MsOH, 10 HEPES, 3 MgCl2, 11 EGTA, 1 CaCl2, 

13 TEACl.H2O, 14 phosphocreatine Tris-salt, 4 Tris-ATP, 0.3 Tris-GTP. The solution was 

brought to pH 7.3 with CsOH. All solutions were sterile filtered using a 0.22 µm vacuum 

filter (Corning). 

4.3.6 Whole-Cell Recording and Analysis 

All electrophysiological data were acquired between DIV 13 and 17, 4 to 7 days 

post-infection. 1.5 mm glass whole-cell patch-clamp electrodes (Drummond Scientific, 

Broomall, PA) were made using a P-87 micropipette puller (Sutter Instruments, Novato, 

CA). The culture dish was rinsed with recording solution three times, then filled with 3 mL 

of the extracellular solution supplemented with 500 nM TTX. To allow for currents to 

stabilize, all data were recorded 3 min after the whole-cell configuration was achieved. IV 

(current-voltage) relationships (-60 to +30 mV) were initially conducted to identify 

maximal current voltage. In Figures 2 and 3, an increase in current density is seen between 
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the IV data and the current density data presented in bar graph form. This is likely because 

IVs were conducted 3 to 5 min prior to peak VGCC current measures. Cells were held at 

-70 mV and currents were elicited (150 ms) at the maximal peak response derived from the 

IV. All currents were leak subtracted using 5-8 scaled hyperpolarizing sub-pulses. Because 

insulin may alter cell size, we report on measures of current densities (pA/pF) derived from 

dividing maximal current amplitude (average of 5 depolarizations taken 30 s apart) by 

membrane capacitance (measured in pCLAMP™) for each cell. All electrophysiological 

data were collected between 4 and 7 days post-lentiviral infection. All recordings were 

conducted on the stage of an E600FN microscope (Nikon Inc., Melville, NY) placed on an 

anti-vibration table. An Axopatch 1D (Molecular Devices, Sunnyvale, CA) in combination 

with a digidata 1200 AD board and pCLAMP™ 7 (Molecular Devices) were used for 

electrophysiology acquisition. Data were digitized at 5-10 KHz, low-pass filtered at  

2-5 KHz, and were quantified in Clampfit 7 (Molecular Devices). 

4.3.7 Statistical Analysis 

Electrophysiological results are based on a total of 76 hippocampal neurons 

obtained from the pups of 6 pregnant dams. Statistical outliers (>2 standard deviations from 

the mean) in each data set were excluded from further analysis. Transgene effects on 

endpoint measures were determined with unpaired t-tests and ANOVAs, and Bonferroni 

post hoc tests, when necessary. Significance for all comparisons was set at p < 0.05. 
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4.4 RESULTS 

4.4.1 Western Blot Analysis 

We used Western blot techniques to quantify the ratio of pAKT/AKT in mixed 

hippocampal cultures treated 5-30 min with 10 nM insulin (Figure 4.1A and B). By 

15 min of activation a trend for an increase in signaling was noted (n = 3; one-way ANOVA 

p = 0.06), and by 30 min, the pAKT/AKT signal was significantly elevated compared to 

30-min saline controls (n = 3; p < 0.05). Elevated levels of pAKT/AKT at 15 and 30 min 

confirm continued IR activity at these time points and suggest signaling in neurons 

increases with ligand exposure time.  

To test for constitutive activity of the truncated, human IRβ receptor in the absence 

of exogenous insulin, we infected hippocampal cultures (DIV 6-8) with EF1a or EF1a-IRβ 

lentiviruses. Cells were harvested for Western blot 48 h post-infection to allow adequate 

time for protein expression. Cells expressing IRβ showed significantly elevated 

pAKT/AKT compared to cells infected with the EF1a negative control (Fig. 4.1C and D; 

n = 3; t-test p < 0.005). Compared to the ligand-derived 30-minute time point (Fig. 4.1B), 

the increase in signaling was smaller, nearly reaching a 3-fold increase at 48 h. Thus, 

compared to control conditions, the IRβ receptor was expressed and yielded an increase in 

activity. The results also confirm that the infection protocol resulted in constitutive activity 

in the absence of added insulin. 
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Figure 4.1 Insulin signaling with and without exogenous insulin. (a.) Representative 

Western blots of mixed primary hippocampal cultures treated with saline or 10 nM 

Apidra® for 5, 15, or 30 min. Each sample was run in duplicate and probed separately 

across gels. Blots were probed with Cell Signaling Technology anti-phospho AKT 

(Ser473; #4051) 1:1000 and total AKT (pan #4685) 1:1000. (b.) Quantification reveals 

signaling increases after 15 and 30 min compared to timed saline controls (n = 3).  

(c.) Representative Western blots of mixed primary hippocampal cultures infected with 

Ef1a or EF1a-IRβ lentiviruses. Each sample was run in duplicate and probed separately 

across gels. Blots were probed as in b. (d.) Western blot quantification reports significant 

pAKT/AKT between EF1a and EF1a-IRβ, suggesting constitutive activity (n = 3).  

Pound sign (#) indicates p < 0.10. Asterisks (*) indicate p < 0.05. All data represent means 

± SEM. 
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4.4.2 Electrophysiological Analyses of the IRβ Construct Containing IRES and 
dTomato 

To test whether elevated insulin signaling altered VGCC currents, we performed 

whole-cell patch-clamp experiments on hippocampal neurons infected with either the 

negative control (syn-dTomato) or IRβ-containing lentiviruses (syn-IRβ-dTomato) 

(Figure 4.2A). Cultures were placed in a low glucose, no serum growth media for 24 h 

prior to electrophysiology recordings on days 4-7 post-infection. Prior to 

electrophysiological experiments, cultures infected with syn-IRβ-dTomato were fixed for 

immunocytochemistry staining to confirm IRβ expression using the HA reporter tag 

present on the IRβ protein. Anti-HA fluorescent antibody indicated successful expression 

of IRβ in approximately 80% of neurons (Fig. 4.2B). Live pyramidal neurons were patched 

and passive membrane properties were recorded from a holding potential of -70 mV. 

Neither cell capacitance, holding current at -70 mV, nor membrane resistance were found 

to be different (Table 4.1). For each cell recorded, we then determined the voltage 

necessary to elicit maximal current amplitude using an IV protocol (-60 to +30 mV). IV 

recordings (Fig. 4.2C and D) from negative control and IRβ-expressing neurons were 

averaged and compared between groups (n = 30 per group). No significant difference in 

VGCC current threshold or peak voltages were seen between groups (Fig. 4.2D; one-way 

ANOVA with Bonferroni post hoc p > 0.05).For each neuron, VGCC activity generated 

during the maximum activation voltage step was measured at three different time points: 

i.e., at peak activity (peak), during the last 10 ms of the voltage step (late), and 50 ms after 

the voltage step (tail) (Fig. 4.2E). Current activity at each time point was statistically 

comparable in neurons expressing IRβ or dTomato control (n = 30 per group; two-way  
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Table 4.1 Cellular and electrode parameters 
 synapsin-

dTomato 
synapsin-IRβ-

dTomato uninfected synapsin-IRβ-
mCherry 

Membrane 
Capacitance 

(pF) 
71.90 ± 3.60 66.10 ± 3.53 59.36 ± 3.95 67.46 ± 5.78 

Membrane 
Resistance 

(MΩ) 
450.30 ± 45.34 555.20 ± 42.48 528.90 ± 95.84 322.79 ± 39.11 

Access 
Resistance 

(MΩ) 
11.60 ± 0.86 11.10 ± 0.69 9.87 ± 1.20 9.13 ± 0.50 

Holding 
Current (pA) -131.00 ± 14.35 -98.29 ± 13.56 -86.77 ± 12.08 -147.94 ± 22.93 

 

Table 4.1 Cellular and electrode parameters. Data represents means ± SEM obtained from 

four different groups of cells (n = 78) studied under patch-clamping conditions to record 

VGCC currents. No significance was detected between the groups. 
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Figure 4.2 Constitutive activity of the human truncated IRβ subunit does not alter 

voltage sensitivity of VGCCs. (a.) Plasmid map of synapsin-dTomato construct. The IRβ 

sequence was inserted between XbaI and BamHI sites using PCR ligation for production 

of the synapsin-IRβ-dTomato plasmid. (b.) Photomicrograph of hippocampal neurons 
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probed for IRβ expression using a fluorescent HA-tag antibody. Cells in green indicate 

presence of IRβ. (c.) Representative inward currents obtained from a holding potential of  

-70 mV during determination of IV relationships (-60 to + 30 mV). (d.) Quantification of 

VGCC currents across groups showed no significant difference. (e.) Current density 

(pA/pF) of peak, late, and 50 ms tail currents were not altered by production of the 

constitutively active form of the human brain IR. All data represent means ± SEM. 
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ANOVA with Bonferroni post hoc p > 0.05). This indicates that neither maximal flux 

through VGCCs, nor the number of available channels, nor the inactivation or deactivation 

rates were affected by constitutive insulin signaling. Note that current recordings were 

performed 3-5 min after recording of the IV to allow the cell to stabilize. This is likely the 

reason for the small increase in currents reported between IVs (Fig. 4.2D) and maximal 

currents (Fig. 4.2E). To isolate L-type VGCC currents from currents arising from other 

VGCC subtypes, cells were held at -40 mV for 3 min to inactive N- and T-type channels. 

The membrane voltage (Vm) was then stepped to the voltage necessary to elicit maximal 

current amplitude (data not shown). Under these conditions, the presence of IRβ still had 

no statistically significant effects on peak, late, or tail current activity. 

4.4.3 Electrophysiological Analyses of the IRβ Construct Containing P2A and mCherry 

Because the IRES sequence does not always drive equal expression of the 

constitutive active IRβ subunit with the reporter gene (dTomato) [307, 308], we 

constructed another plasmid using an P2A site and mCherry as the reporter gene (Figure 

4.3A). This approach yielded more reliable expression of the red fluorescent protein and 

allowed us to test a second IRβ-expressing plasmid, therefore providing a more thorough 

characterization of the impact of sustained insulin signaling on VGCCs. For this series of 

experiments and because mCherry conferred a higher level of fluorescence compared to 

dTomato we compared IRβ-expressing neurons (red) to uninfected (dark) neurons in the 

same field-of-view (Fig. 4.3B). Pyramidal neurons were patched and peak currents were 

derived following the same IV protocol previously described (Fig. 4.3C). IV recordings 

from control (uninfected) and IRβ-expressing (syn-IRβ-mCherry) neurons were averaged 

and compared. No significant difference in IV trace recordings was seen between these two 
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Figure 4.3 A second constitutively active form of the human truncated IRβ subunit 

does not alter voltage sensitivity of VGCCs. (a.) Plasmid map of synapsin-mCherry IRβ 

subunit construct. Note replacement of the IRES sequence with the P2A site. The IRβ 
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sequence was inserted between XbaI and BamHI sites using PCR ligation for production 

of the synapsin-IRβ-mCherry plasmid. (b.) Photomicrograph of cultured neurons exposed 

48 h to the synapsin-IRβ-mCherry, we estimate ~70-80% infection efficacy. Uninfected 

cells (dark) where used as controls. Inset shows both fluorescent and non-fluorescent cells.  

(c.) Representative inward currents obtained from a holding potential of -70 mV during 

determination of IV relationships (-60 to + 30 mV). (d.) Quantification of VGCC currents 

across groups shows no significant difference. (e.) Current density (pA/pF) of peak, late, 

and 50 ms tail were not altered by production of this second constitutively active form of 

the human IR. All data represent means ± SEM. 
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groups of cells (Fig. 4.3D; n = 9 per group; one-way ANOVA with Bonferroni post hoc p 

> 0.05). Analysis of maximal currents at peak, late, and tail were then averaged for each 

cell type. Current recordings from primary hippocampal neurons expressing IRβ did not 

show a significant difference compared to uninfected controls at any time point (n = 9 per 

group; two-way ANOVA with Bonferroni post hoc p > 0.05). As in Fig. 2.2, VGCCs 

recorded from a holding potential of -40 mV to increase participation of L-type VGCC, 

also were not changed by treatment and no significant differences were detected between 

uninfected and IRβ-expressing neurons at any time point (data not shown). 

4.5 DISCUSSION 

The original intent of this study was to circumvent the need for the ligand at the IR 

by expressing a constitutively active form of the human IR in hippocampal neurons. The 

lack of protein quantification from cells infected with either synapsin-containing vectors 

(Fig. 4.2 and 4.3) prevents us from comparing VGCC effect size between these two 

conditions (synapsin-IRβ-dTomato versus synapsin-IRβ-mCherry). This is not a major 

concern given the lack of an overall effect on VGCC. Further, because IRES-dependent 

expression of the downstream gene (reporter gene) can be significantly lower than the 

protein of interest [307, 308], we switched to a P2A-dependent vector to confer comparable 

levels of expression of both gene products. Even with strong mCherry expression  

(Fig. 4.3B), red cells showed no significant differences when compared to dark cells on 

measures of VGCC properties. Nevertheless, we show here that viral delivery of a 

truncated, human IR (IRβ) increased signaling through pAKT/AKT in hippocampal 

neurons. Interpretation of these data highlights potential interplays between insulin 
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signaling and calcium homeostasis in neurons, and may also provide clues about 

intracellular markers used as reporters of insulin sensitivity in neurons. 

4.5.1 Why Study Long-Term Insulin Receptor Activation in Neurons? 

We and others have shown that acute applications of insulin can reduce VGCC 

function [204, 282, 283] as well as ryanodine receptor function within minutes [204]. 

Given that VGCCs and calcium-induced calcium release (CICR) participate in the 

generation of the AHP [252, 266, 309-311], and that larger calcium-dependent AHPs are 

seen in neurons from aged, cognitively impaired animals [253, 263, 278], our initial work 

used repeated daily applications of INI to restore calcium homeostasis and redress 

cognitive decline in aged animals [127, 281]. However, because neuronal IR signaling can 

last for extended periods of time, we used electrophysiological techniques to characterize 

VGCC function in hippocampal neurons following 3-7 days of constitutive IR activity. We 

sought to identify a novel therapeutic approach to maintain calcium homeostasis by 

providing constitutive insulin signaling. 

Results indicate that expressing three different IRβ-containing plasmid constructs 

and their controls in neurons raised downstream signaling from the IR for at least 72 h, yet 

VGCC currents were not affected, even 7 days post-infection. This result is surprising 

given our previous work showing that acute insulin administration in hippocampal neurons 

can reduce calcium-sensitive functions. Potential explanations for these results include, but 

are not limited to, the impact of insulin signaling duration and the activation of different 

downstream signaling pathways. 
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4.5.2 Is Time Important? 

In contrast to insulin signaling in the periphery where activation is quickly 

terminated by internalization of the IR in muscle and fat cells [15, 312-314], neuronal IRs 

can signal for long periods of time without evidence of down-regulation [86, 287]. While 

we present evidence of long-term (72 h) IR signaling via IRS/PIP3/AKT, these results 

suggest that continued activation of this pathways does not reduce VGCCs in neurons. 

Further, we recently showed that reductions in neuronal calcium levels and calcium-

mediated potentials were not seen in the ZDF rat even following a 7-week period of 

sustained peripheral hyperglycemia and hyperinsulinemia [281]. Additionally, activation 

of the PI3K/mTOR/AKT pathway was shown to rapidly increase synaptic protein levels 

within minutes [315], while other pathways, such as MEK/ERK, a pathway which has 

nuclear targets, have been implicated in modulating the expression of calcium-sensitive 

channels [316]. It follows that targeting nuclear factors would be slower and likely longer-

lasting compared to pathways involved with acute IR activation. Based on the evidence 

presented here, we propose that signaling pathways other than AKT must exist in neurons 

to alter long-term calcium homeostasis. 

An alternative interpretation is that the molecular approach was successful at 

reducing VGCCs but only transiently, and at an earlier time than tested here. Unfortunately, 

the acute impact of lentiviral delivery on VGCCs cannot be determined because of the time 

constraints associated with changes in protein expression. Standard lentiviral protocols 

require an incubation period of at least 24-48 h before adequate expression of the protein 

is reached. Thus, these experimental protocols did not allow us to test for VGCC changes 

within the same time frame as acute insulin exposures (i.e. 10 min). Given the long-lasting 
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nature of insulin signaling in neurons, it is clear that future studies are needed to investigate 

the impact of time on several IR pathways. 

4.5.3 What Is Neuronal Insulin Resistance? 

Evidence for insulin resistance in neurons has been derived from a multitude of 

molecular experiments showing reductions in signaling from the level of the IR and IRS1 

to GLUT4 [25, 137, 317-320]. While inhibition at any point in this cascade negatively 

impacts insulin signaling, it is not clear which single point best reflects the phenomenon 

described as insulin resistance; despite this, focus has historically been placed on AKT. 

Our evidence of maintained pAKT signaling in the absence of detectable changes in VGCC 

suggests that observation of AKT phosphorylation by itself may not be a representative 

indicator of insulin sensitivity in neurons. Additionally, because multiple proteins within 

the insulin signaling pathway are also sensitive to other agents and cross signaling, analysis 

of one single aspect of the IR signaling cascade does not specifically assess insulin 

resistance in the tissue. Therefore, alternative methods for quantifications of insulin 

sensitivity perhaps need to be considered. 

We have used direct insulin administration to test insulin sensitivity in hippocampal 

slices of young and aged animals. In these studies, the impact of exogenous insulin has 

repeatedly been greater in aged compared to young neurons [55, 281]. Further, using 

magnetic resonance spectroscopy (MRS) and cerebral blood-flow data, we also show a 

greater impact of insulin in aged compared to young brains [127]. Acute application of the 

anti-diabetic drug pioglitazone on hippocampal slices also provides evidence for greater 

sensitivity of the drug in aged animals compared to young [220]. Evidence from other 

groups shows reductions in blood-brain barrier insulin transport may be responsible for the 
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aged-dependent reduction in insulin sensitivity [128]. In this paper, the author presents 

evidence that phosphorylation of AKT in aged mice treated with intracerebroventricular 

injections of insulin is comparable to that seen in young mice. Finally, in animal models of 

AD, a greater increase in hippocampal IR signaling was seen in mid-age compared to 

young mice [125]. Together, these data suggest that the underlying insulin sensitivity and 

the definition of this sensitivity in neurons needs further clarification. 

4.5.4 Future Directions and Conclusions 

It is clear a more detailed characterization of insulin resistance in neurons is needed 

in order to better define new and targetable therapies. With respect to the potential impact 

of insulin and its neuroprotective role in neurons (i.e. reducing calcium influx), much 

remains unknown, and it is unclear whether the short-acting PI3K pathway or the likely 

longer pathway through ERK is involved. Also, attention to the subcellular 

compartmentalization of the modified insulin pathway with aging and AD should be 

considered. This is likely important, given the evidence that IRs concentrate at synaptic 

sites [112, 236, 321], and a greater focus on post-synaptic densities where crucial insulin-

sensitive ion targets are located should be considered [322]. 

Overall, it appears we have identified a neuronal model of insulin resistance in the 

presence of increased pAKT activation. While neuronal insulin insensitivity has been 

proposed as a contributor to age-related cognitive decline, the mechanisms behind this are 

not well understood. Specifically, further studies are needed to characterize downstream 

cellular targets of neuronal IR activation (e.g. glucose utilization, glucose transporters, 

calcium transporters, calcium buffers, ER calcium homeostasis and others), and to provide 
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a fuller picture of neuronal insulin resistance with age. Greater definition of IR 

desensitization, internalization and the mechanisms involved in down-regulation of IR 

signaling in neurons need investigation in animal models of aging. 
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CHAPTER 5. INSULIN AS A POTENTIAL REGULATOR OF NEURONAL 
GLUCOSE METABOLISM 

5.1 GLUCOSE METABOLISM IN THE BRAIN 

The results from our study of elevated IR signaling and VGCCs in hippocampal 

neurons was discouraging, as well as surprising, given our prior data of insulin’s impact on 

the AHP and calcium transients in similar models. However, attenuating calcium 

dysregulation associated with aging and AD is just one of many possible mechanisms 

behind insulin and INI’s beneficial effects on learning and memory in the clinic. Another 

hypothesis that is rapidly gaining traction in our field is that brain IR signaling, much like 

in the periphery, elevates energy metabolism by mediating the uptake and utilization of 

glucose, potentially by increasing GLUT activity. In this chapter, I will present evidence 

supporting this hypothesis and provide justification for our latest study investigating 

insulin’s impact on glucose metabolism in the hippocampus. 

5.1.1 Glucose Transport in the Brain 

The brain is a highly metabolically active organ and is heavily (perhaps even solely) 

reliant on glucose for energy, with some studies indicating that it accounts for up to 20% 

of total body O2 consumption in adults and up 50% of total body O2 consumption in 

children [323]. Unlike some cells that can undergo gluconeogenesis, such as hepatocytes 

in the liver, neurons cannot produce their own glucose and are therefore dependent on 

transport of the sugar from other areas of the body [324]. Glucose passes from the brain 

microvascular network to the interstitial fluid through the BBB, where it is then taken up 

by cells in the CNS. Due to being polar and hydrophobic, glucose molecules are incapable 

of passively moving across the lipid bilayer on their own; instead, their uptake relies on 
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facilitated diffusion by uniporter transmembrane proteins known as GLUTs [324]. Briefly, 

free glucose binds to the extracellular binding site of the protein, which then undergoes a 

conformational change of its C-terminal domain that deposits the sugar on the intracellular 

side of the membrane [325].  

Inside of cells, the sugar undergoes glycolysis, where it is converted into pyruvate 

following a series of phosphorylation and oxidation events. At this point, the metabolic 

pathway branches: in the presence of oxygen, pyruvate is completely oxidized through the 

cellular respiration pathway, producing NADH and CO2, whereas in anaerobic 

environments, it is as reduced through the process of fermentation, resulting in NAD+. 

While initial studies suggested that glucose metabolism in the brain was entirely aerobic, 

we now know that some cells, particularly astrocytes, can switch to anaerobic glycolysis 

during higher cognitive demand [326, 327]. 

5.1.2 Structure, Function, and Localization of Brain-Specific Glucose Transporters 

GLUTs are uniporter proteins comprised of 12 helical transmembrane segments 

[324, 328]. In humans, there are currently 14 known GLUT subtypes (10 of which have 

been identified in the CNS) that can be distinguished by their tissue localizations, binding 

kinetics, regulatory mechanisms, and activation/inactivation pathways [324]. It is believed 

that the majority of this variation arises from the NH2- and COOH- terminals and the 

intracellular loop of the proteins, all of which differ in length and sequence between 

subtypes [329, 330]. Unlike IR isoforms, which are encoded by the same gene and 

alternatively spliced to produce distinct functional proteins, GLUT isoforms are encoded 

by separate genes that are dispersed within and/or across different chromosomes [329]. As 

the genetic sequences and sizes of these subtypes differ (from the 8 kb GLUT4 to the  
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35 kb GLUT1), so too do their amino acid sequences, with the smallest (GLUT3) having 

496 amino acids and the largest (GLUT2) having 524 [329]. While the number of currently 

identified, distinct mammalian GLUTs is 14, there are 5 subtypes that could be considered 

the most well-characterized: GLUT1, GLUT2, GLUT3, GLUT4, and GLUT5. Of these 5, 

GLUTs 1 and 3 are the isoforms most commonly associated with the CNS; however, 

GLUTs 2, 4, and 5 have also been detected in various brain regions and cell-types, 

particularly in astrocytes and oligodendrocytes (GLUT2), microglia (GLUT5), and 

hippocampal neurons (GLUT4) [324, 331].  

GLUT1 is considered the primary BBB GLUT. It is widely expressed on both the 

luminal and abluminal membrane of the BBB endothelial cells, as well as throughout the 

brain microvasculature, and is responsible for glucose transport from the bloodstream into 

the CNS [324, 331]. Interestingly, GLUT1 has also been discovered in astrocytes; however, 

astrocytic GLUT1 is much smaller (45 kDa) than the heavily glycosylated BBB GLUT1 

(55 kDa), suggesting that their functional and kinetic properties are somewhat different. 

The regulation of GLUT1 is still not fully clear; however, it appears that trafficking and 

membrane insertion of GLUT1 may be dependent on the general metabolic state and level 

of circulating glucose [332, 333], the presence of cytokines and growth factors [332, 334-

337], and hypoxic stress [338, 339]. Additionally, some work has reported that GLUT1 

expression can also be stimulated by insulin [340], and that this mechanism may even rely 

on the same signaling molecules (e.g. AKT/GSK3β) that are involved with trafficking of 

the insulin-sensitive GLUT4 in the periphery [341]. 

While GLUT1 is the primary transporter responsible for initial uptake of glucose 

into at the BBB, GLUT3 is the isoform predominantly involved with uptake into individual 
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neurons [324, 328, 329, 331, 341]. Indeed, GLUT3 is often referred to as the “neuron-

specific” GLUT [342, 343], and is widely expressed throughout nearly all brain regions 

[344-347]. In neurons, GLUT3 appears to be localized to the synaptically-dense neuropil 

and dendritic processes [348-351], providing strong evidence that this particular GLUT is 

heavily involved with synaptic transmission. GLUT3 has also been shown to have a higher 

affinity for glucose than many other isoforms [344], which may be explained by the brain’s 

high metabolic demand. As with GLUT1, regulation of GLUT3 expression and trafficking 

to the plasma membrane appears to be based on glucose and oxygen availability [332, 338, 

352, 353], hormones and oxidative stress [354-357], and neuronal activation [358, 359]. In 

the 90s, several studies reported that GLUT3 expression was upregulated following insulin 

administration in myotubes and muscle cells [337, 340, 360], yet it is only recently that 

GLUT3 expression was reported to respond to insulin or insulin-related processes in 

neurons [52, 361-363]. Additionally, GLUT3 expression appears to be downregulated by 

aging, AD, and peripheral metabolic dysregulation [324, 364-366], phenotypes that also 

have reduced IR signaling.  

GLUT4 is considered the primary “insulin-sensitive” GLUT and is predominantly 

found in muscle and adipose tissue [329]. In the periphery, GLUT4 is responsible for 

initiating uptake of glucose into adipose and muscle cells following the binding of insulin 

to peripheral IRs. The specific signaling pathways and regulatory processes governing 

GLUT4 expression/trafficking in the periphery were discussed previously (see Section 

1.2.2 and 1.2.3) and will not be elaborated on here. Recently, however, it has become clear 

GLUT4 is not only expressed in these peripheral tissues, but also in the CNS, albeit at 

much lower levels [324, 331]. Specifically, these GLUTs appear to be localized to 
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hippocampal and cerebellar neurons. The expression of GLUT4 in the hippocampus is 

intriguing, as it suggests that this transporter may have a functional role in hippocampal 

learning and memory processes. Studies investigating this hypothesis have strengthened 

this theory, with one reporting that exogenous Aβ administration reduces neuronal GLUT4 

localization and impairs LTP [367], and another showing that hippocampal GLUT4 

expression is elevated after a learning task and that inhibiting GLUT4 impairs memory 

acquisition [368]. The impact of aging, metabolic dysfunction, and biomarkers of AD on 

GLUT3 and GLUT4 expression strongly supports a role for glucose transport and 

metabolism in cognitive decline associated with these phenotypes.  

5.2 INSULIN RESISTANCE AND IMPAIRED GLUCOSE METABOLISM IN THE BRAIN 

5.2.1 Impact of Aging and AD on Brain Metabolism 

As the CNS is heavily reliant on glucose for proper function, it is logical to assume 

that in situations of suboptimal brain function, such as age- and AD-related cognitive 

decline, impaired metabolism would also be occurring as well. Recent evidence suggests 

that this assumption is correct [369]. In the clinic, AD is associated with reduced glucose 

uptake and utilization [139, 211, 370] which appears to correlate with disease severity and 

APOE genotype [371-373]. Studies of post-mortem tissue from AD patients have indicated 

the presence of decreased glycolytic flux and GLUT3 expression that worsened with the 

severity of the disease [364]. Importantly, some work has also reported that AD-associated 

perturbations in brain glucose metabolism may occur before the onset of clinical 

symptoms, implying that metabolic impairment can actually impact the development and 

progression of the disease [364, 374, 375]. Animal models support these clinical findings, 



109 
 

with APP/PS1 transgenic mouse models having reduced glucose tolerance and early 

alterations in glucose metabolism [376, 377], similar to that of AD patients. 

In addition to AD-specific cognitive decline, alterations in glucose metabolism 

have also been associated with other forms of dementia and with traumatic brain injury  

[194, 378-382]. In aging, aerobic glycolysis is reduced, suggesting that the metabolic 

profile of the aging brain is different than that of the young [383]. Peripheral dysfunction 

is also associated with altered brain metabolism [380, 384, 385], as middle-aged T2DM 

patients have been reported to have reduced cerebral glucose usage compared to controls 

[386]. Additionally, prediabetic and diabetic patients with insulin resistance (based on 

HOMA-IR scores) presented with reduced cerebral glucose metabolic rate on measures of 

FDG-PET [38]. Once again, these clinical reports are supported by studies performed in 

animal models, as well as in cell culture, as diabetes reduces the expression of GLUT4 in 

the rodent brain [387] while chronic insulin administration in vitro decreases acute cellular 

glucose uptake [317]. 

5.2.2 IR Signaling as a Potential Target for Elevating Glucose Metabolism 

It has been suggested that impairments in CNS glucose metabolism could be 

mediated by a reduction of insulin and IR-associated processes [370], and indeed, models 

that have historically presented with impaired brain IR signaling, such as HFD animal 

models, have also been shown to have reduced GLUT3/4 expression, decreased glucose 

metabolism, and impaired synaptic plasticity [362]. Therefore, targeting reductions in 

glucose metabolism by elevating IR signaling may be of therapeutic interest. Recent studies 

have investigated this approach with promising results. In a rat model of TBI, INI increased 

glucose uptake, improved memory, and reduced neuroinflammation and hippocampal 
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lesion volume [194]. Two other studies performed in rats showed that INI ameliorated 

cerebral hypometabolism, astroglia activation, and neuronal loss in the hippocampus while 

also reducing Aβ levels [116, 187]. Intrahippocampal insulin administration improved 

memory and hippocampal glycolysis [293] while ICV insulin was reported to stimulate 

hippocampal GLUT4 translocation, likely through a PI3K-dependent pathway [152]. 

Clearly, the impact of impaired glucose metabolism on the aging- and AD-brain cannot be 

denied, nor can its relationship to IR signaling in the CNS. However, the specific cellular 

mechanisms used by insulin to influence these metabolic processes is still not fully 

understood. 

5.3 TESTING THE EFFECT OF SUSTAINED IR ACTIVATION ON NEURONAL GLUCOSE 

METABOLISM IN HIPPOCAMPAL CELL CULTURE 

As stated previously, most studies of insulin actions on hippocampal glucose 

metabolism were performed by delivering insulin directly into cell culture. While our prior 

study on the impact of constitutive insulin activity on VGCCs was disappointing, the 

molecular techniques employed proved to be a novel and effective approach for increasing 

IR signaling without the need for exogenous ligand administration. The successes in this 

previous study are highlighted by the high rate of neuron-specific IRβ expression, the lack 

of any observable neurotoxic effects following lentiviral infection or sustained receptor 

activation, and a clear, detectable increase in downstream signaling markers, such as 

pAKT, in the IRβ-expressing cells compared to controls. For this reason, we chose to 

continue using this system to test the hypothesis that increased IR signaling would enhance 

measures of glucose uptake and utilization while elevating the expression of GLUT3 and 
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GLUT4 in primary hippocampal neurons. This study, which provides robust evidence of 

insulin’s ability to impact hippocampal energy metabolism, marks the completion of my 

dissertation project and is presented in the following chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

  



112 
 

The following manuscript has been submitted for publication in the Journal of Biological 

Chemistry. I performed all cell culture preparations and lentiviral infections in our BSL2 

laboratory, all protein extractions and Western immunoblot assays, all 2-NBDG imaging 

recordings, and all data analyses associated with these experiments. Author R. J. Craven 

performed and analyzed all of the tritium-labeled glucose uptake assays in hippocampal cell 

cultures. Author(s) S. D. Kraner contributed to the design and production of the IRβ 

receptor; G. J. Popa and M. D. Mendenhall constructed all plasmids and lentiviruses used 

in these experiments as part of the University of Kentucky Genetic Technologies Core; L. 

P. Reagan kindly provided us with the GLUT4 antibody used during Western immunoblot 

assays; N. M Porter provided substantial help during the manuscript editing and revision 

process. In this study, I sought to explore the hypothesis that elevated IR signaling could 

improve neuronal glucose metabolism by increasing glucose uptake and rate of utilization 

in hippocampal neurons via the upregulation of GLUT3/4 expression and/or translocation 

to the plasma membrane. The constitutively active IRβ receptor was chosen to bypass 

potential confounds associated with exogenous insulin administration (e.g. binding of 

insulin to other receptors, such as IGF-I). While previous studies have tested the effects of 

elevated IR activity on cellular metabolism and related processes in vitro using direct 

delivery of insulin, to our knowledge, no prior study had utilized a purely molecular method 

to directly observe the outcome of chronic, constitutive IR signaling on glucose metabolism 

in cultured hippocampal neurons.
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6.1 ABSTRACT 

Insulin signaling is an integral component of healthy brain function, with evidence 

of positive insulin-mediated alterations in synaptic integrity, cerebral blood flow, 

inflammation, and memory. However, the specific pathways targeted by this peptide 

remain unclear. Previously, our lab used a molecular approach to characterize the impact 

of insulin signaling on voltage-gated calcium channels and has also shown that acute 

insulin administration reduces calcium-induced calcium release in primary hippocampal 

neurons. Here, we explore the relationship between insulin signaling and glucose 

metabolism using similar methods. Mixed, primary hippocampal cultures were infected 

with either a control lentivirus or one containing a constitutively active human insulin 

receptor (IRβ). 2-NBDG imaging was used to obtain indirect measures of glucose uptake 

and utilization. Other outcome measures include Western immunoblots of GLUT3 and 

GLUT4 on cytosol and total membrane subcellular fractions. Glucose imaging data 

indicate that neurons expressing IRβ show significant elevations in uptake and rates of 

utilization compared to controls. As expected, astrocytes did not respond to the IRβ 

treatment. Quantification of Western immunoblots show that IRβ is associated with 

significant elevations in GLUT3 expression, particularly in the total membrane subcellular 

fraction, but did not alter GLUT4 expression in either fraction. Our work suggests that 

insulin plays a significant role in mediating neuronal glucose metabolism, potentially 

through an upregulation in the expression of GLUT3. This provides further evidence for a 

potential therapeutic mechanism underlying the beneficial impact of intranasal insulin in 

the clinic. 
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6.2 INTRODUCTION 

The brain, once thought to possess no circulating insulin or functional insulin 

receptors (IRs), has now been identified as an insulin-sensitive, and perhaps even insulin-

dependent, organ. Indeed, insulin signaling in the brain is not only associated with normal 

healthy brain function and development [74, 88], but is also directly involved with 

important cognitive processes such as memory and learning [60, 114, 144, 154, 321]. 

Additionally, a reduction in insulin binding, receptor density, and IR signaling, particularly 

in the hippocampus, has been associated with aging, Alzheimer’s disease (AD), and mild 

cognitive impairment [31, 75, 120, 121, 129, 131, 134, 388]. Therapeutic approaches aimed 

at offsetting these impairments by increasing the amount of available insulin in the brain 

have recently been developed with great success. Of these, administration of intranasal 

insulin (INI) appears to be the most promising, as it provides a relatively non-invasive, 

safe, and effective method for bypassing the blood-brain barrier and delivering the ligand 

directly into the brain [88, 105, 106, 134, 181, 209, 389].  

While clinical studies of INI have reported positive impacts on learning and 

memory [163, 164, 170, 171, 183], it is still unclear which particular pathways mediate 

these effects. Several potential mechanisms have been suggested, including insulin’s 

impact on cerebral blood flow [179, 390], the ability of insulin to reduce 

neuroinflammation and oxidative stress [195, 196, 198, 370], insulin-mediated attenuation 

of age- or AD-related calcium dysregulation [55, 126, 204, 271, 282], and its ability to 

improve neuronal glucose metabolism [116, 122, 194, 203, 320, 362, 363]. However, 

although low nanomolar concentrations of insulin are often used to selectively bind the IR, 

the potential for non-specific activation of other known or unknown receptors (i.e. IGF-I) 
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still remains. To reduce this potential confound, we recently used a modified, constitutively 

active form of the human IR (IRβ) [287] to increase insulin signaling through its canonical 

pathway in the absence of exogenous insulin. While we reported that neuronal IRβ 

expression maintains elevated insulin signaling in primary hippocampal cultures through 

activation of the phosphoinositide 3-kinase (PI3K) pathway for at least 48 h, it did not 

attenuate voltage-gated calcium channel activity in these cells [94]. These results, 

combined with the complexity of IR signaling in the brain, suggest that other downstream 

processes should also be considered. In light of this, we focused our attention on neuronal 

glucose metabolism. 

In the periphery, IR signaling triggers activation of the PI3K pathway, which in 

turn promotes translocation of glucose transporter (GLUT) 4 to the plasma membrane [2, 

314, 391, 392] and facilitates the uptake of glucose into muscle and adipose tissue. While 

the brain and periphery express two distinct isoforms of the IR (IR-A and IR-B, 

respectively), the overall structures of these receptors are generally comparable. Indeed, 

while IR-A in the brain has a higher affinity for insulin [13] and is internalized at a much 

slower rate than the peripheral IR-B [393], evidence shows that both receptors signal 

through the PI3K pathway and activate many of the same downstream effectors. Thus, it 

is not unreasonable to assume that IR signaling may also induce GLUT4 activity in the 

brain. In fact, while the primary GLUT expressed in the brain is GLUT3 [329, 394], recent 

studies have reported a small, but detectable, amount of the insulin-sensitive GLUT4 in the 

cerebellum as well as in the hippocampus [387, 395]. As the hippocampus possesses high 

levels of IR [75, 76, 79], it is possible that insulin acts to increase GLUT4 translocation 

and glucose uptake in this structure [368], subsequently improving hippocampal processes. 
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Indeed, recent evidence showed that administration of intracerebroventricular insulin in 

rats increased GLUT4 translocation to the plasma membrane of hippocampal cells in a 

PI3K-dependant manner [152], a result that closely mirrors prior reports of increased 

hippocampal glucose uptake following a spatial learning task in this same animal model 

[396]. Similarly, other work in cell culture models also reported that acute administration 

of insulin to hippocampal neurons leads to elevated GLUT4 expression [317]. 

To test the hypothesis that insulin signaling can stimulate neuronal glucose 

metabolism, we devised a series of experiments to measure glucose uptake, rates of glucose 

utilization, and expression of GLUTs 3 and 4 following constitutive IR signaling in mixed, 

primary hippocampal cultures. We show that this approach increased uptake and indirect 

measures of utilization of the glucose analogue 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-

yl)amino]-2-deoxyglucose (2-NBDG) in neurons, but not astrocytes. These results were 

corroborated using radiolabeled glucose assays which also indicated elevated glucose 

uptake in IRβ-expressing cells compared to controls. Additionally, we report an IRβ-

associated increase in overall GLUT3 expression, as well as alterations in this transporter’s 

localization within the cell. Surprisingly, no differences in GLUT4 expression or 

localization were detected. Our results support the hypothesis that insulin signaling is tied 

to neuronal glucose metabolism in the hippocampus, potentially through the neuron-

specific GLUT3. Further, these results provide insight into potential mechanisms 

mediating the therapeutic benefits of INI administration in the clinic while highlighting the 

validity of using molecular techniques to study these effects. 
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6.3 METHODS 

6.3.1 Preparation of Mixed, Primary Hippocampal Cultures 

Mixed (neuron and glia) primary hippocampal cell cultures were established from 

Sprague-Dawley rat pups at embryonic day 18 or 19 as described previously [203, 275, 

306]. Briefly, hippocampi were first dissected in ice-cold Hank’s balanced salt solution 

(Thermo Fisher Scientific, Waltham, MA) supplemented with 4.2 mM NaHCO3 and  

12 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), then transferred to 

a 50 mL conical tube containing 0.25% trypsin-ethylenediaminetetraacetic acid (EDTA) 

and incubated at room temperature (23 °C) for 11 min. Hippocampi were subsequently 

washed three times with warm (37 °C) Minimum Essential Medium (Thermo Fisher 

Scientific) supplemented with 200 mM L-glutamine and 35 mM D-glucose (SMEM), then 

triturated in 10 mL of warm SMEM. Cells were diluted to the desired concentration and 

plated in 2 mL aliquots onto coated (0.5% poly-L-lysine) 35 mm plastic (Corning, Corning, 

NY) or glass (Matsunami Glass IND LTD, Osaka, Japan) dishes and incubated at 37 °C, 

5% CO2. Plating densities (200,000-500,000 cells per dish) were later used to normalize 

tritium (3H)-glucose uptake values for each experiment. Three days after plating, half of 

the media in each dish was replaced with 1 mL of a 5-fluoro-2-doxyuridine solution to stop 

glial cell growth. To return cells to normal glucose oxidation rates and insulin sensitivity 

levels, all experiments were conducted following a 24 h incubation in a no serum, low 

glucose (5.5 mM) solution [203]. All data presented were obtained at room temperature 

between days in vitro (DIV) 14-17. 
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6.3.2 Lentiviral Construction and Infection of Primary Hippocampal Cultures 

Using a lentiviral delivery system, mixed hippocampal cultures received one of two 

plasmids: a control plasmid containing a neuron-specific synapsin promoter and a 

fluorescent marker (mCherry), or an experimental plasmid containing the synapsin 

promoter, mCherry, and the constitutively active IRβ receptor. Both plasmids were 

constructed from a pHR-SFFV-KRABdCas9-P2A-Cherry backbone vector (gift from 

Jonathan Weissman, plasmid #60954, Addgene, Watertown, MA) as described previously 

[94]. Briefly, the synapsin promoter and IRβ sequence were ligated between the AscI and 

BamHI sites using PCR and standard digestion protocols. The plasmids were converted 

into lentiviruses by co-transfecting HEK293 cells with the donor plasmid, PsPAX2, and 

pMD2.G (gifts from Dr. Didier Trono, plasmid #12260 and #12259, Addgene). The viruses 

were then precipitated into a pellet using 1.4% w/v polyethylene glycol and 50 mM NaCl, 

resuspended in cold phosphate-buffered saline (PBS), and frozen (-80 °C) until needed.  

All dishes were infected on DIV 10 at a multiplicity of infection of 25. Dishes were 

then immediately returned to the incubator for 48 h to allow ample time for protein 

expression. Routine confirmation of mCherry fluorescence was performed on both control 

and IRβ dishes using a spectral analysis camera (Nuance, CRi Inc., Boston, MA). The 

expression rate of mCherry was ~80% of cells per dish, similar to that reported in our prior 

IRβ study [94]. Cell number was not directly affected by virus treatment. As expected, 

plasmid expression appeared to be limited to only neurons, as no detectable fluorescence 

was noted in astrocytes from IRβ-treated dishes (data not shown). 
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6.3.3 2-NBDG Imaging of Hippocampal Neurons and Astrocytes 

To encourage uptake of 2-NBDG, hippocampal cultures were incubated in 3 mL of 

a HEPES-based imaging solution (10 mM HEPES, 145 mM NaCl, 2.5 mM KCl, 2 mM 

CaCl2, 1 mM MgCl2; pH 7.3) that contained no D-glucose for 15 min at room temperature 

and air. Following this, dishes received 200 µM 2-NBDG (diluted in sterile ddH20 and 

added directly to the glucose-free solution in each dish) and were then incubated for an 

additional 5 min in darkness (to preserve fluorescence of the glucose analogue). Although 

dishes were incubated at room temperature and air for a total of 20 min, the cells appeared 

healthy and morphologically intact. Dishes were subsequently washed in supplemented  

(10 mM D-glucose) imaging solution 3 times then incubated in 3 mL of supplemented 

imaging solution at room temp and air on the microscope stage (E600FN; Nikon Inc., 

Melville, NY) for 3 min. During this time, a field of view (FOV) containing distinct, 

healthy cells was found (40x immersion objective; 1 FOV per dish). Immediately following 

the 3 min incubation, 2-NBDG imaging began (exciter centered at 475 ± 40 nm, emitter 

centered at 535 ± 45 nm, dichroic mirror with a high-pass at ~505 nm; no binning). 

Sequential images (500 ms exposure) were taken every 30 s for 5 min for a total of  

10 images. Phase images of each FOV were also captured and later used to ensure that only 

morphologically distinct neurons or astrocytes were included in the analysis. 

Fluorescent levels (arbitrary gray value) were quantified using Imaging Workbench 

5.0 (Indec BioSystems, Santa Clara, CA). Briefly, a hand-drawn region of interest (ROI) 

was placed around the somatic area of each cell measured using each FOV’s phase image 

as a reference. An ROI was also drawn in an area of the dish devoid of any cellular 

components in order to obtain the background signal, which was then subtracted from the 
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2-NBDG fluorescence value of each cell in that dish. 2-NBDG uptake measures were 

derived from the initial image taken (Figure 6.1B). Indirect measures of the rate of  

2-NBDG utilization were obtained by calculating the fluorescent signal decay over time 

(Fig. 6.1B, slope). We report 2-NBDG imaging results from a total of 89 dishes (226 cells,  

12 dams). Data are presented as means ± SEM.  

6.3.4 Subcellular Fractionation and Western Immunoblots 

For Western immunoblots, the cytosolic and total membrane fractions were isolated 

from hippocampal cultures using a modified subcellular fractionation protocol [26, 356]. 

Briefly, 8-10 dishes per treatment group were washed with 600 µl of room temperature 

PBS, lifted in 400-500 µL of a HEPES-based homogenizing buffer (320 mM sucrose,  

2 mM EDTA, 2 mM egtazic acid, 20 mM HEPES) that contained protease and phosphatase 

inhibitors (#P8340 and #P5726, respectively; Sigma-Aldrich, St. Louis, MO), transferred 

to a sterile 2 mL microcentrifuge tube, homogenized using a Dounce homogenizing pestle 

(30 strokes), and spun in an ultracentrifuge at 800 x g, 4 °C, for 10 min. The supernatant 

was removed and transferred to a fresh 1.5 mL tube, and the remaining pellet was then 

resuspended in 100 µl of homogenizing buffer and spun again at 800 x g, 4 °C, for 10 min. 

This second supernatant was then added to the first supernatant tube. A portion (~250 µl) 

of the combined supernatant described above was aliquoted into a separate sterile tube and 

labeled as the “total membrane fraction.” The rest of the supernatant was then spun at 

16,000 x g, 4 °C for 30 min. The supernatant from this final spin was removed, placed in a 

sterile tube, and labeled as the “cytosolic fraction.” Samples that were not used 

immediately were stored at -20 °C. Protein levels were determined using a bicinchoninic 

acid assay protein quantification kit (Thermo Fisher Scientific) and a microplate reader. To 
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assess the purity of our subcellular fractions, Western immunoblots for cytosolic or 

membrane bound protein markers (GAPDH and calnexin, respectively) were performed on 

fractionated hippocampal cultures. Robust expression of GAPDH along with no detectable 

calnexin was found in the cytosolic fraction, while the total membrane fraction showed 

abundant calnexin expression and no detectable GAPDH, indicating that the two cellular 

compartments were relatively pure (data not shown). 

Western immunoblots for GLUT3 and GLUT4 were performed on hippocampal 

cultures (n = 3 dams) in either duplicate or triplicate within and across gels. Target proteins 

were assessed using the following: 1° antibodies – GLUT3 #ab41525 1:1000 (Abcam, 

Cambridge, United Kingdom), and GLUT4 #SC18 1:1000 (gift from Dr. Lawrence 

Reagan, University of South Carolina); 2° antibody – anti-rabbit HRP-linked IgG #7074S 

1:5000 (Cell Signaling Technologies, Danvers, MA). Blots were developed with 

chemiluminescence and digitally imaged using a G:Box and GeneSys acquisition software 

(Syngene, Karnataka, India). Mean arbitrary gray values of the target bands were obtained 

with ImageJ using the gel analysis tool (Version 1.46r; Wayne Rasband, National Institutes 

of Health, Rockville, MD). To more accurately assess protein levels, target bands of each 

sample were normalized to the amount of total protein (derived from Ponceau S staining) 

in their sample lane. Gray values of the control and IRβ target bands were then averaged 

within groups. To calculate the relative change in protein level, each averaged IRβ gray 

value was then normalized to the averaged control gray value from the same experiment. 

Normalized control data are reported as means per experiment, while normalized IRβ data 

are reported as means ± SEM. 
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6.3.5 Tritium-Labeled Glucose Uptake Assays 

Radiolabeled glucose uptake assays using 3H-glucose were performed on control 

and IRβ-treated cultures between DIV14-15. Cells were first washed with PBS, then 

incubated in 1 ml PBS containing 0.1 mM 2-deoxyglucose and 1 mCi/ml 2-deoxy-D (3H) 

glucose (Perkin Elmer, Boston, MA) for 5 minutes at 37 °C. Cells were again washed with 

ice-cold PBS and subsequently solubilized in 0.4 mL of 1% sodium dodecyl sulfate for  

10 min at room temperature. Cells were counted for 1 min in 4 mL of Biosafe II Complete 

Counting Cocktail (Research Products International, Mount Prospect, IL) using a Beckman 

LS6500 scintillation counter (Beckman-Coulter Inc., Brea, CA). Dishes within each 

individual experiment were combined and averaged. We report 3H-glucose measures 

derived from a total of 42 dishes (n = 3 dams). Data are reported as group means ± SEM. 

6.3.6 Data Filtering and Statistical Analyses 

Prior to statistical analysis of 2-NBDG imaging data, any dish with a background 

slope more than two standard deviations from the mean background slope of its 

corresponding group was removed from the study. To ensure only cells that took up  

2-NBDG at a reliably detectable level were analyzed, both neurons and astrocytes were 

then further filtered to exclude any cell that did not have a background-subtracted uptake 

value of 5 or above. After filtering, cells within each dish were averaged, and any dish with 

a mean gray value more than two standard deviations away from the total group mean were 

deemed outliers and removed from the analysis. We report on 2-NBDG uptake measures 

of 169 neurons (97 control and 72 IRβ) from 67 dishes (control n = 37, IRβ n = 30) and  

57 astrocytes (31 control and 26 IRβ) from 22 dishes (control n = 11, IRβ n = 11). 
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For measures of 2-NBDG utilization rates, hippocampal neurons received an 

additional filter to exclude any neuron that did not have a negative utilization rate (slope) 

of -0.1 or less, as this was calculated to be more than 2 times steeper than the average 

background slope of either group (mCherry background slope = 0.1, IRβ background slope 

= 0.04). This neuronal utilization filter (defined here as the bleaching correction) was used 

to ensure that the reported signal decay was due to biological processes rather than a 

bleaching effect (i.e., the tendency of a glass-bottom dish to become darker over the course 

of imaging). Astrocytes did not receive a bleaching correction, as they presented with 

relatively flat or slightly positive slopes in our study. As with measures of uptake, cells 

within each dish were averaged and statistical outliers were removed from the analysis. We 

report on 2-NBDG utilization rates derived from 102 neurons (53 control and 49 IRβ) from 

38 dishes (control n = 18, IRβ n = 20) and 57 astrocytes (31 control and 26 IRβ) from  

21 dishes (control n = 11, IRβ n = 10). Virus effects on 2-NBDG imaging endpoint 

measures were calculated using student’s T-tests (unpaired, 2-tailed, Welch’s correction 

for unequal variances). 

For 3H-glucose measures, any dish that was two standard deviations away from the 

total group mean was deemed an outlier and removed from the analysis. Virus effects on 

3H-glucose uptake were determined using a student’s t-Test (unpaired, 2-tailed, equal 

variance). For GLUT3 and GLUT4 Western immunoblots, virus and subcellular fraction 

effects on endpoint measures were determined using 2-way ANOVAs (repeated measure, 

Bonferroni post hoc tests). Significance for all comparisons in this study was set at  

p < 0.05. 
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6.4 RESULTS 

6.4.1 2-NBDG Fluorescent Imaging of Primary Hippocampal Cultures 

To test if chronic, sustained elevations in IR signaling could influence glucose 

metabolism, we used 2-NBDG, a glucose analogue that indirectly reports on rates of 

glucose utilization through the loss of its fluorescence over time [203, 397]. Compared to 

our previously published rates of glycolysis in hippocampal neurons and astrocytes [203], 

the uptake and utilization rates measured here were reduced, likely because these 

experiments were conducted at room temperature. Nevertheless, it is doubtful this would 

alter measures in one cell-type compared to another. 2-NBDG was successfully taken up 

by both neurons and astrocytes. Analysis of initial 2-NBDG images revealed that uptake 

was significantly elevated in IRβ-expressing neurons compared to controls (p = 0.019; Fig. 

6.1B and 6.1C), with some IRβ dishes having more than twice the amount of 2-NBDG 

signal (Fig. 6.1B). Similarly, IRβ expression was associated with significantly faster rates 

of 2-NBDG utilization (p = 0.013), as indicated by a significantly steeper slope of signal 

decay in these same cells compared to controls (-2.066 vs. -0.548, respectively; Fig. 6.1B 

and 6.1D). Much like measures of 2-NBDG uptake, many of these slopes were more than 

two-times higher than the average control neuron (Fig. 6.1B). Visual observation of the 

cells during imaging mirrored our statistical analysis, with neurons from IRβ dishes 

showing robust and easily distinguishable fluorescent signal compared to the more subdued 

signal from the control dishes (Fig. 6.1A).  
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Figure 6.1 2-NBDG imaging of primary hippocampal neurons with or without 

expression of IRβ. (A) Representative phase and 2-NBDG fluorescent photomicrographs 

obtained from hippocampal cultures. Numbers 1-4 indicate distinct neurons. (B) Data 

obtained from a representative control and IRβ neuron following 2-NBDG imaging. 

Arbitrary units were derived from mean gray values. Boxed data at time point 0.0 indicate 

initial gray values used for 2-NBDG uptake analysis. Red lines indicate linear regressions 

used for Δ2-NBDG calculation. (C) Quantification of background-subtracted 2-NBDG 

uptake in hippocampal neurons with or without IRβ expression. Significant elevation in  

2-NBDG uptake was observed in IRβ-expressing neurons (n = 30) compared to controls  

(n = 37) (student’s T-test, p = 0.02). (D) Quantification of background-subtracted  

Δ2-NBDG used to infer indirect rates of glucose utilization. A significant increase in the 

rate of 2-NBDG utilization was observed in IRβ-expressing neurons (n = 20) compared to 

controls (n = 18) (student’s T-test, p = 0.01). All data represent means ± SEM. Asterisks 

(*) indicate significance at p < 0.05. 
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Imaging of astrocytes showed no statistically significant difference in 2-NBDG 

uptake in control dishes compared to dishes receiving the IRβ plasmid (p > 0.05; Figure 

6.2B and 6.2C). Similarly, utilization rates did not differ between the two groups  

(p > 0.05), and slope averages were relatively flat (control: 0.068, IRβ: 0.035). Visual 

observation showed a much lower level of fluorescent signal in astrocytes (Fig. 6.2A) 

compared to neurons (Fig. 6.1A). These results provide evidence for neuronal-selectivity 

of the synapsin promoter in our lentiviral constructs. Additionally, the low level of 

astrocytic 2-NBDG uptake may reflect their use of alternative energy sources, such as 

glycogen [398, 399]. 

6.4.2 3H-Glucose Uptake in Primary Hippocampal Cultures 

To further corroborate IRβ’s ability to elevate glucose metabolism, we performed 

an additional analysis using a radiolabeled glucose uptake assay. Scintillation counts 

reflective of 3H-glucose uptake highlighted a significant increase in IRβ-expressing cells 

(student’s t-Test; p = 0.04), which exhibited ~30% more uptake than controls (Figure 

6.3A). To control for cell density in these measures, we compared protein quantifications 

(Ponceau S staining of Western immunoblots; n = 3 dams, 25 dishes per dam) between 

control and IRβ dishes. A small, nonsignificant elevation in the number of control cells 

was seen compared to those expressing IRβ (data not shown). Even a small elevation in 

cell number in control dishes would underestimate the significance of greater 3H-glucose 

uptake in the IRβ dishes we report here. 
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Figure 6.2 2-NBDG imaging of primary hippocampal astrocytes from dishes with or 

without IRβ-expressing neurons. (A) Representative 2-NBDG fluorescent (top) and 

phase (bottom) photomicrographs obtained from a single IRβ-expressing hippocampal 

culture dish. The letter A indicates a distinct astrocyte. The letter N indicates a distinct 

neuron. Right panels provide greater detail of astrocyte morphology and highlight the 

visual reduction in 2-NBDG fluorescent signal in this cell compared to the neighboring 

neuron. (B) Data compiled from control (n = 11) and IRβ (n = 11) groups following  

2-NBDG imaging. Arbitrary units were derived from mean grey values. Boxed data at time 

point 0.0 indicate initial gray value used for 2-NBDG uptake analysis. Red lines represent 

examples of the linear regressions used for Δ2-NBDG calculation. (C) Quantification of 

background-subtracted 2-NBDG uptake in hippocampal astrocytes from dishes with  

(n = 10) or without (n = 11) IRβ expression. No significant changes in 2-NBDG uptake 

values were observed between control and IRβ dishes (student’s T-test, p > 0.05). (D) 

Quantification of background-subtracted Δ2-NBDG as indirect measures of 2-NBDG 
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utilization rates in astrocytes. No significant difference in rates of 2-NBDG utilization were 

noted between control and IRβ dishes (student’s T-test, p > 0.05). All data represent means 

± SEM.  
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Figure 6.3 Quantitative analysis of 3H-glucose uptake in primary hippocampal 

cultures. (A) Relative levels of 3H-glucose uptake in mixed, primary hippocampal cultures 

with or without IRβ expression. Data were derived from a total of 3 separate preps, each 

from a different dam (n = 3). A significant elevation in radiolabeled glucose uptake was 

observed in the IRβ-expressing dishes compared to control dishes (student’s T-test,  

p = 0.04). All data represent means ± SEM. Asterisks (*) indicate significance at p < 0.05. 
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6.4.3 Western Immunoblots of GLUT3 and GLUT4 

To test if elevations in glucose uptake and utilization rates were due to increased 

GLUT3 or GLUT4 expression, we performed Western immunoblot analysis across 

cytosolic and total membrane subcellular fractions. Results of GLUT3 immunoblots 

indicated a significant overall effect of IRβ (2-way ANOVA; F(1,8) = 5.84, p = 0.04) (2-way 

ANOVA, F(1,8) = 5.84, p = 0.04; Figure 6.4A and B), with IRβ-expressing cells showing 

elevated levels of GLUT3 compared to controls. This was particularly notable in the total 

membrane fraction, where IRβ correlated with a ~30% elevation in GLUT3 expression 

(Bonferroni post hoc; p < 0.05). Surprisingly, no significant differences in GLUT4 

expression were detected between control and IRβ-expressing cells in either subcellular 

fraction (2-way ANOVA; p > 0.05) (2-way ANOVA, p > 0.05; Fig. 6.4C and D). 

6.5 DISCUSSION 

The current study was conducted to test the hypothesis that sustained IR signaling 

could mediate aspects of glucose metabolism and/or alter expression of GLUT3 and 

GLUT4 in hippocampal cultures. We show that constitutive IR activation conferred from 

IRβ expression is able to significantly increase both glucose uptake and utilization rates, 

as well as upregulate the total membrane expression of the neuron-specific GLUT3. These 

results suggest that insulin signaling in the brain may target pathways associated with 

GLUT translocation, particularly in areas of the brain associated with memory and 

learning. Further, while not a direct measure of IRβ’s impact on neuronal survival, we do 

see here that sustained activity of the IR does not negatively interfere with cell health. 
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Figure 6.4 Western blot analysis of fractionated hippocampal cultures with or without 

expression of IRβ. (A) Representative Western immunoblots of cellular fractions derived 

from primary hippocampal cultures (cytosol fraction, left; total membrane fraction, right) 

probed for GLUT3. (B) Quantification of the relative change in GLUT3 expression 

between cytosol and total membrane fractions of hippocampal cells. A significant overall 

effect of virus was detected (2-way ANOVA; F(1,8) = 5.88, p = 0.04). Bonferroni post hoc 

tests revealed that IRβ-expressing cells have significantly higher levels of GLUT3 in the 

total membrane fraction compared to control cells (p < 0.05). A trend between the cytosol 

and total membrane fractions (2-way ANOVA; F(1,8) = 2.61, p = 0.15) and an interaction 

trend indicating a differential effect of virus between these two fractions (2-way ANOVA; 

F(1,8) = 2.61, p = 0.15) were also noted. (C) Representative Western immunoblots of cellular 

fractions probed for GLUT4. (D) Quantification of the relative change in GLUT4 

expression between cytosol and total membrane fractions of hippocampal cells. No effects 

of virus (2-way ANOVA; F(1,8) = 0.02, p > 0.05), cellular fraction (2-way ANOVA;  

F(1,8) = 0.08, p > 0.05), or the interaction (2-way ANOVA; F(1,8) = 0.08, p > 0.05) on GLUT4 

expression were detected between control and IRβ-expressing cells. All control data 

represent means. All IRβ data represent means ± SEM. Asterisks (*) indicate significance 

at p < 0.05.  
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6.5.1 Insulin Signaling May Mediate Glucose Metabolism in the Brain 

Data derived from IRβ-expressing neurons showed that constitutive IR activation 

was associated with increased uptake of the glucose analogue 2-NBDG as well as  

3H-glucose compared to controls (Fig. 6.1B and 1C, Fig. 6.3). In the periphery, insulin is a 

key regulator of glucose uptake in adipose and muscle tissue; therefore, it is not surprising 

that similar results are found in the CNS. Indeed, prior work using 2-(18F)fluoro-2-deoxy-

D-glucose positron emission tomography (FDG-PET) imaging to study brain glucose 

metabolism in animal models has shown that INI administration can increase glucose 

uptake following traumatic brain injury [194] and streptozotocin (STZ)-induced Type-2 

diabetes mellitus [116], two phenotypes known to present with varying degrees of CNS 

hypometabolism in the clinic [38, 378, 379, 381, 382, 386, 400]. Another FDG-PET study, 

this time in humans, reported that intravenous insulin infusion following somatostatin-

induced inhibition of basal insulin secretion was able to significantly elevate cerebral 

glucose uptake in healthy male subjects [401]. Reductions or alterations of glucose uptake 

and other markers of glucose metabolism have also been identified in AD patients [139, 

211, 370, 380, 401, 402], with some studies suggesting that these perturbations may begin 

long before the onset of clinical AD symptoms Similarly, in cognitively-normal aged 

individuals, glucose metabolism appears to be markedly reduced in multiple brain areas 

[383]. Clearly, these results provide a strong rationale for the use of INI or other therapeutic 

strategies to increase IR signaling in the brain, and also support further investigations in 

other animal models of neurodegeneration. 

Along with elevations in uptake, we also provide evidence of increased 2-NBDG 

utilization rates in IRβ-expressing neurons compared to controls (Fig. 6.1B and D). As the 
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rate of glycolysis is directly dependent on the amount of intracellular free glucose and/or 

previously phosphorylated glucose (glucose-6-phosphate), it is unsurprising that elevations 

in both measures were detected simultaneously within the same cells. Unlike neurons, 

astrocytes from IRβ-infected dishes did not show an increase in 2-NBDG metabolism, 

despite elevated 2-NBDG uptake and utilization occurring in IRβ-expressing neurons (Fig. 

6.2B, C, and D). It has been suggested that astrocytes are metabolically active and may 

also supply neighboring neurons with lactate produced during anaerobic glucose 

metabolism (i.e. the astrocyte-neuron lactate shuttle) [327, 403]. However, more recent 

reports have proposed that neurons are capable of independently, and perhaps even 

preferentially, converting glucose into lactate themselves [203, 404, 405]. If neurons 

primarily relied on lactate supplied by astrocytes, one would expect to see a parallel 

increase in astrocytic glucose uptake and utilization in response to increased metabolism 

in IRβ-expressing neurons. Thus, the results presented here support an alternative 

hypothesis: that neurons are capable of metabolizing glucose directly.  

6.5.2 IR Signaling May Regulate GLUT3 Expression in the Hippocampus 

Results from Western immunoblots highlighted an overall effect of IRβ on GLUT3 

expression, with a significant elevation noted in the total membrane fraction (Fig. 6.4A and 

B). GLUT3 is the primary neuronal GLUT  and is distributed within numerous areas of 

both the human and rodent brain, particularly the cerebral cortex, cerebellum, and 

hippocampus [342-344, 347]. The robust expression of GLUT3 in the hippocampus, along 

with evidence of reduced spatial memory in GLUT3-deficient mice [406] and the high 

subcellular localization of GLUT3 to synaptically-dense areas such as the neuropil and 

neuronal processes [348-351] suggests this transporter may serve a vital role in learning, 
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memory, and synaptic transmission. GLUT3’s regulation has been thought to depend on 

specific triggers such as hypoxia and glucose depravation [332, 338, 352, 353, 407], 

oxidative stress and fatty-acid availability [354, 357], brain development and aging [359, 

365, 408], and neuronal activation and synaptic transmission [358]. Thus, alterations in 

overall cellular metabolism might indirectly impact GLUT3 expression or translocation. 

However, recent evidence has also suggested that insulin and insulin-related processes may 

directly influence this transporter. An early study using cell fractionation techniques in 

muscle cells showed that both insulin and IGF-I stimulated a significant elevation in 

translocation of GLUT3 from the cytosol to the plasma membrane [360]. Others have 

shown that excess thyroid hormones can increase insulin-stimulated GLUT3 recruitment 

to the plasma membrane of monocytes [355]. Furthermore, recent evidence suggests that 

insulin-mediated modulation of GLUT3 may also occur in the brain. In fact, a study in 

primary hippocampal cultures indicated that in vitro administration of insulin could 

significantly increase translocation of GLUT3 vesicles to the plasma membrane, although 

fusion of the vesicles and the elevations in neuronal glucose uptake required a KCl 

membrane depolarization following initial treatment with the ligand [363].  

With respect to the insulin-sensitive GLUT4, we did not see changes in the overall 

expression level or subcellular localization of this transporter following IRβ expression 

(Fig. 6.4C and D). However, others have shown that insulin is indeed capable of 

modulating GLUT4 in the brain through the canonical IR signaling pathway (i.e. PI3K) 

[152], and that this process plays an important role in hippocampally-mediated spatial 

memory [115, 152, 317]. Compared to other studies that used acute insulin administration, 

we used a chronic activation of the IR signaling pathway, which could explain the lack of 
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effect on GLUT4 presented here. In fact, the brain IR isoform does not appear to be 

downregulated following sustained activation [22, 86]; therefore, constitutive IRβ activity 

may have triggered a compensatory mechanism that prevented elevation of GLUT4 at the 

plasma membrane. This theory is supported by recent work from our lab showing that long-

term, chronic INI administration (3 months) of insulin aspart did not alter spatial learning 

and memory on the Morris water maze task in either young or aged Fisher 344 rats [95], 

whereas more acute, shorter-term exposures (8-11 days) using INI detemir and lispro 

significantly improved behavioral performance in this same animal model [126]. Similarly, 

another study reported that long-term (30-60 days), repeated INI in mice does not 

significantly improve olfactory object-recognition memory compared to more acute 

exposures to the ligand [192]. Clearly, additional work investigating the particular 

pathways and mechanisms involved with insulin’s regulation of brain energy metabolism 

and its relationship to GLUTs is needed. 

The work presented here demonstrates that: 1.) expression of a modified, 

constitutively active human IR (IRβ) significantly elevates 2-NBDG uptake and rates of 

utilization in cultured hippocampal neurons; 2.) astrocytes may be less metabolically active 

compared to neighboring neurons within the network; and 3.) chronic IR signaling in 

hippocampal cultures is associated with increased GLUT3 expression, particularly in the 

total membrane subcellular fraction. Our results not only support the increasing evidence 

that IR signaling plays a vital role in brain metabolism by regulating glucose uptake and 

usage, but also suggests a potential mechanism (i.e. GLUT3) behind INI’s beneficial effect 

on memory and learning in the clinic. Additionally, the molecular techniques used here 
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highlight a new approach to study chronic IR signaling without the need for exogenous 

ligand delivery. 
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CHAPTER 7.  DISCUSSION AND FUTURE DIRECTIONS 

The studies I completed as part of this dissertation were designed to investigate the 

cognitive effects and cellular mechanisms involved with IR signaling in the brain. Over the 

past 3 decades, the field of neuroscience has made considerable strides regarding this topic, 

yet it is increasingly clear that insulin’s modulation of physiology in the brain cannot be 

explained through a single pathway or even a small series of events; instead, it appears that 

IR signaling is capable of regulating a wide range of processes, including, but certainly not 

limited to, calcium homeostasis, neuroinflammation, CNS metabolism, cerebral blood 

flow, and synaptic plasticity. The manuscripts I have presented here, as well as my review 

of over 30 years of literature, demonstrate the dynamic interplay of cellular mechanisms 

mediated by IR signaling well, and introduce novel findings regarding insulin’s 

relationship to gene expression and glucose metabolism in the hippocampus. 

7.1 DURATION, DOSE, AND FORMULATION: POTENTIAL FACTORS MEDIATING INI 

EFFICACY 

The use of INI to improve learning and memory is rapidly gaining traction as a 

beneficial therapeutic in the clinic. Like many others, we have investigated this technique 

in the past and reported positive results on the improvement of spatial learning and memory 

recall in F344 rats; yet, the INI study presented in this dissertation (see Chapter 2) does not 

align well with our prior studies, as neither young nor aged F344 rats receiving INI showed 

a statistically significant improvement on the MWM spatial memory test compared to 

controls. This was somewhat unexpected for us, as our investigations of two other insulin 

formulations (insulin lispro and detemir) using similar techniques, doses, and animals 
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substantially improved performance on these same measures [126]. However, during 

another recent study, we also did not detect a substantial improvement in behavioral 

performance in either young or aged F344 rats following INI administration of insulin 

glulisine [127], raising the question as to whether insulin formulation or treatment duration 

can perhaps influence the efficacy of this therapy. 

7.1.1 Fast-Acting Insulin Analogues 

Prior studies investigating INI in both humans and animal models have used a 

variety of different insulin formulations, including endogenous forms of the ligand (regular 

human insulin) as well as synthetic insulin analogues, such as insulin lispro, detemir, 

glulisine, and aspart. These synthetic formulations all exert overall effects in the periphery 

that are similar to those of the endogenous ligand, but they differ slightly from regular 

human insulin in terms of their chemical structure and kinetics [230]. The modifications 

added to synthetic insulin analogues were initially included to improve the drugs’ 

absorption rate and time course of action (fast-acting vs. slow-acting); however, the impact 

of these structural and kinetic changes on CNS physiology are still unclear. 

Of the 4 insulin analogues we have tested using INI in our lab, 3 have been “fast-

acting.” These 3 analogues (insulin lispro, glulisine, and aspart) differ from regular human 

insulin by 1 amino acid. This alteration reduces the likelihood that the insulin monomers 

will form hexameric complexes, thus speeding up the their absorption in the periphery 

[409]. In addition to this amino acid substitution, the synthetic analogue insulin glulisine 

also lacks zinc, the central ion involved with insulin hexamer formation. INI glulisine, 

while potentially a beneficial therapy with respect to aspects of memory and learning [164, 

173], has also led to mild detrimental side-effects in the clinic, including rhinitis and nose-
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bleeds. These side-effects eventually lead to temporary suspension of the SNIFF Trial, a 

clinical study using this particular formulation  [171], and are likely caused by the addition 

of stabilizing compounds (e.g. cresol and phenol) included to improve the shelf-life of the 

drug. In our work, insulin glulisine did not appear to detrimentally affect animals receiving 

the treatment, but the significant decrease in behavioral improvements between glulisine 

and other formulations (i.e. insulin lispro and detemir) imply that the chemical structure of 

different insulin analogues may influence their ability to ameliorate cognitive decline when 

administered intranasally. 

Due to the lack of a clear behavioral improvement following INI glulisine 

administration, we then chose to look at another insulin formulation: aspart. Insulin aspart, 

like glulisine, is considered a fast-acting analogue. This particular formulation not only 

significantly increases both the maximum level and rate of glucose infusion compared to 

regular human insulin but can also be absorbed up to twice as fast [231]. In addition to its 

improved peripheral kinetics, INI administration of aspart has also been shown to enhance 

declarative memory more so than INI using regular insulin [207], suggesting that its rate 

of absorption through the nasal mucosa may also be elevated. While the justification for 

using insulin aspart in our most recent animal INI study was strong, we again detected no 

observable, statistically significant drug effects on hippocampal spatial learning and 

memory performance [95]. As stated previously, these results were discouraging; if the 

insulin formulation is not the explanation for these contradictory results, what other aspects 

of INI treatment could potentially mediate these differences? It was then that we began to 

consider the impact of treatment duration. 



142 
 

7.1.2 Impact of Treatment Duration on INI Efficacy 

When discussing the effect of time on our outcome measures, we must first place 

our INI studies into one of 2 categories: studies of acute INI treatment or studies of chronic 

INI treatment. With respect to our prior work, acute INI treatment refers to dosing regimens 

that would either induce repeated, fluctuating elevations in brain IR signaling over a brief 

period of time (e.g. 1 dose of INI lispro or detemir per day for 8-11 days) or induce a single, 

short-lived elevation immediately prior to behavioral testing (e.g. 1 dose of INI lispro or 

detemir 1-3 h prior to behavioral testing) [126]. Chronic treatment, on the other hand, refers 

to the repeated, consecutive administration of INI over many months, thus leading to 

sustained, high levels of IR signaling over a long time-period (1 dose of INI aspart per day, 

5 days a week, for 12 weeks) [95].  

When comparing our studies, it is intriguing to note that those using acute, transient 

INI lispro or INI detemir resulted in improved memory and learning, whereas our study of 

chronic, long-term INI aspart did not show these same effects in spite of increasing IR 

signaling and altering gene expression. However, we are not the only investigators to report 

such findings. A study performed in adult C57BL6/J mice showed that unlike acute INI, 

long-term INI administration (twice per day for 30 or 60 days) did not enhance olfactory 

odorant discrimination, reversal learning, or object memory recognition, though it did 

significantly increase pIR levels [192]. These investigators proposed that long-term insulin 

may either induce brain insulin resistance or dampen behavioral effects by increasing CNS 

insulin concentrations to levels above those that are beneficial. Additionally, another group 

recently provided evidence of IR-mediated GLUT4 downregulation following sustained 
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receptor activity in adipose tissue [410], further supporting the theory that chronic INI or 

IR activation is functionally distinct from more acute, transient insulin events.  

Perhaps, in situations of chronic IR signaling, such as those induced by repeated, 

long-term INI administration, inhibitory pathways are triggered and subsequently activate 

compensatory mechanisms that attenuate IR-mediated processes. This may be especially 

true for IR-A in the brain, as this isoform appears to be internalized at a much slower rate 

and possesses a higher binding affinity for insulin than the peripheral IR [12, 13, 86]; in 

turn, these characteristics could produce significantly higher levels and longer durations of 

IR signaling compared to that of IR-B in the periphery. However, it is important to clarify 

that if these compensatory mechanisms do exist, they do not seem to impact all insulin-

related processes equally, as INI aspart was still able to significantly elevate IR signaling 

and alter gene expression in the hippocampus [95]. 

7.2 CHALLENGING THE THEORY OF INSULIN RESISTANCE IN THE AGED BRAIN 

As stated in Chapter 1, section 1.3.4, the discovery of reduced brain IR density and 

signaling markers led many researchers to suggest that cognitive decline associated with 

aging and AD may be a result of receptor desensitization, much like that seen in the 

periphery of T2DM patients. However, the work presented in my first manuscript (Chapter 

2) indicates that this may be an overly simplistic view of IR activity in the aged and AD 

brain. Indeed, while our study of aged animals receiving INI aspart did not appear to differ 

from aged controls on measures of spatial learning and memory, they did have significant 

alterations in their gene transcriptome [95]. Additionally, our previous work using other 
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formulations of INI in this animal model also showed changes in CBF, elevations in IR 

signaling markers, and improved spatial behavior in aged animals [126, 127]. 

In fact, one of our studies in particular actually reported that hippocampal brain 

slices from aged animals responded with a greater decrease in the calcium-dependent AHP 

than slices from younger animals [126]. These results, in combination with numerous 

studies of INI in the clinic and in animal models that also highlight cognitive improvements 

in older individuals or aged animals, imply that the aged brain is not unresponsive to 

insulin, and may, in fact, even be more sensitive than the young brain. While seemingly 

contradictory to early reports of reduced IR signaling and density in aged and AD brains 

[129], this theory of elevated receptor sensitivity during aging could be explained as the 

aged brain’s attempt to compensate for reduced insulin transport into the CNS by either 

overexpressing IR at the plasma membrane or by conferring modifications to IR structure 

that may allow it to function at a more efficient level. Still, it remains to be determined 

whether or not the aged and/or AD brain truly experiences the classical form of insulin 

resistance seen in the periphery. Future investigations regarding this particular topic are 

needed, as the level of brain IR sensitivity in these elderly patients could greatly impact the 

type of treatments needed to ameliorate these pathologies in the clinic. 

7.3 IMPLICATIONS FOR THE USE OF MOLECULAR TECHNIQUES TO ELEVATE IR 

SIGNALING 

In addition to providing novel evidence of insulin’s effect on hippocampal glucose 

metabolism and gene expression, the work completed during my dissertation also presented 

the successful implementation of a molecular approach for elevating IR signaling in the 
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absence of the ligand. This technique involved the use of a modified, constitutively active 

human IR that conferred sustained downstream signaling but lacked a functional insulin 

binding site [287]. This construct was created by truncating roughly 2680 bp from the  

α-subunit of the endogenous human IR-A isoform expressed, resulting in a 1430 bp 

receptor that we called IRβ. This receptor is substantially smaller than the normal human 

IR: ~50 kDa compared to ~150 kDa. Additionally, IRβ does not appear to be capable of 

internalizing for receptor degradation/recycling like the endogenous IR [287]. 

The sustained signaling and lack of downregulation initial raised concerns that the 

receptor may negatively impact neuronal health in our cell culture experiments; 

surprisingly, however, we have yet to detect a noticeable difference in cell density, survival 

rate, morphology, or growth in our IRβ-expressing cells compared to controls. 

Additionally, shortly after completion of my final dissertation project (see Chapter 6), we 

moved forward with our goal of studying this receptor in vivo and constructed a similar 

IRβ-containing adeno-associated virus (AAV) for stereotaxic injection into young and aged 

F344 rats. Much like our studies in culture, we have yet to observe any detrimental effects 

of the receptor on neurological health, food intake, weight, behavior, or any other easily 

measurable physical attributes (unpublished data).  

These most recent results are exciting, as they support our initial hypothesis that 

employing molecular methods to elevate signaling in the absence of insulin could be a 

useful way to study the direct effects of IR activity in the hippocampus without negatively 

impacting cell and/or whole-body health. To our knowledge, use of a purely molecular 

technique in this manner had yet to be explored prior to our investigations. Thus, we feel 

that demonstrating the effectiveness of this method will allow other researchers to consider 
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alternative options that may help reduce variability and confounding factors associated 

with delivering the ligand to cell culture or animals. 

7.4 STUDY LIMITATIONS 

Regardless of the stringency employed when designing experimental studies, there 

will always be limitations that arise, and the manuscripts I completed during my 

dissertation are no exceptions. The most prominent of these would undoubtably be the 

impact of time during both hippocampal cell culture studies (see Chapters 4 and 6). The 

use of lentivirus to express a protein of interest is a common molecular technique. While 

relatively safe, use of these viruses is still considered to be a BSL2-level laboratory 

protocol which requires specialized lab space and equipment. One safety measure in 

particular is the inability to remove cells that have come into contact with said virus for  

48 h after initial infection. Unfortunately, due to the physical distance between our BSL2 

certified lab space and other equipment used during my studies, such as microscopes, bench 

space reserved for protein assays, and shared centrifuges, this regulation meant that we 

were only able to measure the cellular effects of IRβ expression 2 days after viral treatment 

of the cells. As the IRβ receptor is constitutively active, this resulted in our hippocampal 

cells undergoing sustained IR signaling for at least 48 h prior to recordings or observations 

being undertaken. Unfortunately, this does introduce the potential confound of time. 

Sustained IR signaling, while not necessarily neurotoxic, may lead to a variety of 

yet unknown cellular effects that could influence the results obtained during our work. 

Interestingly, a recent study actually indicated that prolonged IR signaling lead to an 

increase in oxidative stress which in turn downregulated the expression of the insulin-
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sensitive GLUT4 in adipocytes [410]. The canonical IR signaling pathway in the periphery 

involves insulin-mediated upregulation of GLUT4 to the plasma membrane following 

receptor activation and downstream signaling (see Chapter 1, section 1.2.2). The 

observation that sustained IR signaling downregulates GLUT4 is intriguing, as it implies 

that the duration of IR signaling may drastically alter the pathways that subsequently are 

activated. If this is true, the effects measured as part of my studies may be different than 

detected after acute or transient exogenous insulin administration. In fact, this could also 

potentially explain the discrepancies between my results on insulin’s impact on VGCC 

currents (see Chapter 4) and those reported by a previous graduate student using exogenous 

insulin application to either hippocampal brain slices or to the same cell culture system 

used in my own work [126, 204].  

7.5 FUTURE DIRECTIONS 

7.5.1 Astrocyte-Specific IR Signaling 

While the existence of a direct connection between IR signaling and metabolism in 

the brain seems likely, the characterization of this relationship is still in its infancy. With 

respect to techniques similar to those used during my dissertation project, a number of new 

avenues could be explored that would help expand our knowledge regarding the impact of 

insulin on hippocampal glucose uptake and utilization.  

One particular topic that needs more focus is the involvement of hippocampal 

astrocytes in neuronal energy processes. It is only relatively recently that we discovered 

neurons were capable of independently metabolizing glucose into usable energy [404]. In 

fact, the prevailing theory was actually that astrocytes were the primary drivers of glucose 



148 
 

metabolism in the brain, converting nearly all available free glucose into CO2 before 

switching to anaerobic glycolysis and lactate production under heavy cognitive demand. 

At this point, the astrocytes would then transfer this lactate to nearby neurons in a process 

known as the “astrocyte-neuron lactate shuttle” [327, 403].  

Although this theory has now been contested, it does not necessarily preclude 

astrocytes from being key players in CNS metabolism. Indeed, the reported presence of the 

IR-B isoform in these cells [80, 81] further implies that they may possess metabolic 

pathways separate from those used by neurons, and that these pathways may respond to 

insulin in functionally distinct ways. Results derived from my study of constitutive IR 

activity and glucose metabolism in primary hippocampal neurons did not indicate that 

astrocytes were responding to the elevated metabolism that was occurring in neighboring 

IRβ neurons; however, we cannot discount the possibility that astrocytes are mediating 

neuronal physiology in ways other than the direct uptake or utilization of free glucose.  

Additionally, it is important to note that our lentiviral constructs contained 

synapsin, a neuron-specific promoter that inhibits expression of the IRβ receptor in 

astrocytes or glial cells. Perhaps my results would have been different had we also 

expressed this constitutive IR in both cell-types. The use of the GFAP promoter to confer 

astrocyte-specific expression of plasmids is a commonly employed technique in molecular 

labs, and we have also had significant experience utilizing this method in similar cell-types 

and under comparable conditions. Therefore, expressing IRβ in astrocytes only may be a 

useful and relatively simple experiment to further characterize the impact of cell-specific 

IR signaling on glucose metabolism in the hippocampus. 
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7.5.2 Elucidating the Kinetics of Hippocampal GLUTs 

Another avenue of interest involves the investigation of GLUT proteins 

specifically. As of today, there are 14 known GLUT subtypes, 10 of which have been 

detected in the CNS [324]. This number has risen significantly from the 4 or 5 originally 

characterized many years ago. As these GLUT sub-types are relatively homologous in 

terms of function and as many went undetected for a significant amount of time, it is not 

unreasonable to propose that we may have not yet discovered additional GLUTs that could 

mediate glucose metabolism under specific conditions. One potential way to explore this 

hypothesis involves an understanding of the kinetic properties of glucose transport. Of the 

three most predominant GLUTs in the brain, GLUT3 has the highest affinity, with  

Km = ~3 mM compared to GLUT1 (Km = ~20 mM) and GLUT4 (Km = ~6 mM) [411-413]. 

Our glucose imaging protocol only uses 200 µM of 2-NBDG, which is significantly lower 

than the Km for either GLUT3 or GLUT4. With such a low concentration of substrate in 

each dish during imaging, there is a small possibility that neither GLUT3 nor GLUT4 are 

activated under these conditions due to their much larger Km values. However, as we 

detected significant increases in both 2-NBDG uptake and rates of utilization that 

paralleled the elevation in GLUT3 expression measured on our Western immunoblot 

assays, it is likely that the activated GLUT mediating these effects were indeed the GLUT3 

subtype; yet, if there do exist yet uncharacterized GLUTs that are capable of binding in 

situations of low circulating glucose, such as during hypometabolism or hypoglycemia, or 

if these GLUTs were able to respond to much lower levels of IR signaling, as seen in the 

aged or AD brain, it could be that novel transporters are influencing glucose metabolism 

following sustained IR activity or INI administration.  
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Clearly, we still have a substantial way to go before fully elucidate the connection 

between brain IR activation and glucose metabolism. Harnessing these mechanisms as a 

therapeutic target would provide a significant advantage to our attempts at circumventing 

age- and/or AD-related cognitive decline. It is my hope that in the future, my work 

presented here will aid in these discoveries and advance our field in ways that impact not 

only the basic science community, but our partners in the clinic as well. 

7.6 CONCLUSIONS 

In conclusion, the work I completed during my dissertation substantially supports 

prior evidence of insulin’s beneficial impact on learning and memory processes and 

provides insight into novel mechanisms mediating these effects in hippocampal neurons. 

While the study of insulin actions in the brain may still be relatively new, I feel that the 

worked presented here contributes well to our current body of knowledge and will in turn 

help future investigators in their attempt at elucidating these complex processes. As the 

field moves forward, so too will the clinical application of these discoveries, leading to 

improved therapies targeting age- and AD-related cognitive decline and granting a better 

quality of life to those afflicted by these pathologies.  

 



 
 

APPENDICES 

APPENDIX 1. LIST OF ABBREVIATIONS 

2-NBDG 2-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl]amino)-2-deoxyglucose 

3H tritium 

3xTG-AD triple transgenic-AD (AD mouse model) 

AAV adeno-associated virus 

AD Alzheimer’s disease 

ADAS-cog Alzheimer’s Disease Assessment Scale-cognitive subscale 

ADCS-ADL Alzheimer’s Disease Cooperative Study – Activities of Daily Living 

AHP/sAHP afterhyperpolarization/slow afterhyperpolarization 

AKT protein kinase B 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

ANOVA analysis of variance 

APOE apolipoprotein E 

APP/PS1 amyloid-precursor protein/human presenilin 1 (AD mouse model) 

Aβ amyloid beta 

BBB blood-brain barrier 

BCA  bicinchoninic acid assay 

C57Bl/6 C57 black 6 (WT/control mouse model) 

CA1/2/3 Cornu Ammonis area 1/area 2/area 3 

CAMKII Ca2+/calmodulin-dependent protein kinase II 

CBF cerebral blood flow 
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CICR calcium-induced calcium release 

C-peptide connecting peptide 

CSF cerebrospinal fluid 

DAPI 4′,6-diamidino-2-phenylindole 

DAVID Database for Annotation, Visualization and Integrated Discovery 

DG dentate gyrus 

DIV days in vitro 

DNA deoxyribonucleic acid 

E18/19 embryonic day 18/19 

EC entorhinal cortex 

EDTA ethylenediaminetetraacetic acid 

EGTA egtazic acid 

EPSP excitatory postsynaptic potential 

ER endoplasmic reticulum 

ERK extracellular signal-regulated kinase 

F344 Fisher 344 

FDG-PET fluorodeoxyglucose-positron emission tomography 

FDUR 5-fluorodeoxyuridine/floxuridine 

FITC fluorescein isothiocyanate 

FOV field-of-view 

GABAA ionotropic γ-aminobutyric acid (GABA) receptor  

GLUT glucose transporter 

GRB2 growth factor receptor-bound protein 2 
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GSK3β glycogen synthase kinase 3 beta 

GSV GLUT4 storage vesicle 

HB homogenizing buffer 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HFD high-fat diet 

HFFD high-fat-high-fructose diet 

HOMA-IR Homeostatic Model Assessment for Insulin Resistance 

HVA high-voltage activated 

ICC immunocytochemistry 

ICV intracerebroventricular 

IDE insulin degrading enzyme 

IF immunofluorescence 

IGF-I insulin-like growth factor 1 

IHC immunohistochemistry 

INI intranasal insulin 

IR insulin receptor 

IRS-1 insulin receptor substrate 1 

IU international units 

IV intravenous 

LPS lipopolysaccharide 

LRP1 LDL receptor-related protein 1 

LTP long-term potentiation 

LVA  low-voltage activated 
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MAPK  mitogen-activated protein kinase 

MCI  mild-cognitive impairment 

MEK  mitogen-activated protein kinase 1  

MEM/SMEM minimum/supplemented minimum essential medium 

MRS  magnetic resonance spectroscopy 

mTOR  mammalian target of rapamycin 

MWM  Morris water maze 

MΩ  megaohms 

NMDA  N-methyl-D-aspartic acid 

pA   picoamps 

PDK1  pyruvate dehydrogenase kinase 1 

pF   picofarad 

PFA  paraformaldehyde 

PI3K  phosphoinositide 3-kinase 

PIP3  phosphatidylinositol-3,4,5-trisphosphate 

PKC  protein kinase C 

PSD  post-synaptic density 

PSD95  post-synaptic density protein 95 

RIN  RNA integrity number 

RIPA buffer radioimmunoprecipitation assay buffer 

rm   membrane resistance 

RNA  ribonucleic acid 

ROI  region-of-interest 



155 
 

RyR  ryanodine receptor 

SAMP8  Senescence Accelerated Mouse-Prone 8 

SOS  son-of-sevenless 

STZ  streptozotocin 

T2DM  Type-2 diabetes mellitus 

U   units 

VGCC  voltage-gated calcium channel 

Vm  membrane potential 

WGA-HRP wheat germ agglutinin-horseradish peroxidase 

WT  wild-type 

ZDF rat  Zucker diabetic fatty rat 
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APPENDIX 2. SUPPLEMENTAL FIGURES 

 

Supplemental Figure 2.1 IR immunofluorescence quantification for FITC and DAPI 

channels across hippocampal subfields. IR immunofluorescence quantification for FITC 

and DAPI channels across hippocampal subfields. Data are presented as percent area 

covered in the ROI (% covered). (A-C) Immunopositive FITC fluorescence. (D-F) 

Immunopositive DAPI fluorescence. FITC/DAPI was reduced with age (p < 0.05). DAPI 

signals were not different across groups (p > 0.05). Data represent mean ± SEM. Asterisks 

(*) represent significance at p < 0.05.  
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Supplemental Figure 2.2 IR immunofluorescence quantification for FITC and DAPI 

in the dentate gyrus. IR immunofluorescence quantification for FITC and DAPI channels 

in the dentate gyrus. Data are presented as percent area covered in the ROI (% covered). 

(A-C) Dorsal blade of the DG was used to quantify the FITC channel (top), the DAPI 

channel (middle), and the ratio of the two (bottom). (D-F) Ventral blade of the DG was 

used to quantify the FITC channel (top), the DAPI channel (middle), and the ratio of the 

two (bottom). Data are presented as means ± SEM. Asterisks (*) represent significance at 

p < 0.05. 
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