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Abstract Nitric oxide (NO) is a gaseous free radical molecule
involved in several biological processes related to inflamma-
tion, tissue damage, and infections. Based on reports that NO
inhibits migration of granulocytes and monocytes, we became
interested in the role of inducible NO synthetase (iNOS) in
pharmacological mobilization of hematopoietic stem/
progenitor cells (HSPCs) from bone marrow (BM) into pe-
ripheral blood (PB). To address the role of NO in HSPC traf-
ficking, we upregulated or downregulated iNOS expression in
hematopoietic cell lines. Next, we performed mobilization
studies in iNOS−/− mice and evaluated engraftment of
iNOS−/− HSPCs in wild type (control) animals. Our results
indicate that iNOS is a novel negative regulator of hematopoi-
etic cell migration and prevents egress of HSPCs into PB
during mobilization. At the molecular level, downregulation
of iNOS resulted in downregulation of heme oxygenase 1
(HO-1), and, conversely, upregulation of iNOS enhanced
HO-1 activity. Since HO-1 is a negative regulator of cell mi-
gration, the inhibitory effects of iNOS identified by us can be

at least partially explained by its enhancing the HO-1 level in
BM cells.

Keywords iNOS . NO . Stem cell mobilization . Stem cell
homing . Complement cascade . HO-1

Introduction

Evidence has accumulated that mobilization of hematopoietic
stem/progenitor cells (HSPCs) from bone marrow (BM) into
peripheral blood (PB) is triggered by activation of the com-
plement cascade (ComC) [1–4]. In our previous work we
demonstrated that this process, which occurs in response to
certain pharmacological drugs, such as granulocyte colony
stimulating factor (G-CSF) or the CXCR4 antagonist
(AMD3100), is inhibited by heme oxygenase 1 (HO-1) activ-
ity [5, 6]. HO-1 metabolizes heme into biliverdin, CO, and
iron, and the first two metabolites have anti-inflammatory
properties, including inhibition of the ComC [7–9].
Consistent with an inhibitory effect of HO-1 on mobilization
of HSPCs, HO-1−/− mice are easy mobilizers [6], and down-
regulation of HO-1 activity in HSPCs enhances their homing
after transplantation [5].

Inducible nitric oxide synthase (iNOS, also known as
NOS2), like HO-1, is upregulated in response to inflamma-
tion, tissue injury, and infections and generates nitric oxide
(NO), which is a gaseous free radical molecule [10, 11].
Overall, NO is also synthesized by two other nitric oxide
synthase isoforms, neuronal NOS (nNOS, also known as
NOS1) and endothelial NOS (eNOS, also known as NOS3),
which are constitutively expressed and calcium dependent
[11–14]. In contrast to nNOS and eNOS, iNOS is calcium
independent and produces more NO than the other isoforms
[11, 14]. Interestingly, the ComC upregulates iNOS, while NO
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regulates blood flow by stimulating vascular relaxation. It is
also involved in neurotransmission and immune-response fa-
cilitation and exerts anti-thrombotic and anti-inflammatory
effects [10, 15–18].

Interestingly, iNOS activity is enhanced during ComC ac-
tivation [16], which is a crucial element of innate immunity,
and its cleavage fragments, C3 and C5 (giving rise to C3a and
C5a, respectively), orchestrate the egress of HSPCs from BM
into peripheral blood (PB) and their homing after transplanta-
tion [1–4, 19]. However, these pro-mobilization and pro-
homing effects of C3a and C5a are not related directly to the
chemoattraction of HSPCs but rather indirectly to i) the induc-
tion of a proteolytic and lipolytic microenvironment in BM, ii)
the chemoattraction of granulocytes and monocytes that pave
the way for HSPCs to cross the BM–sinusoid endothelium
barrier, and iii) increasing the level of chemotactic factors in
blood plasma, including sphigosine-1-phosphate (S1P) and
ceramide-1-phosphate (C1P) [2, 20–28]. In addition to the
ComC, iNOS is also induced in response to several inflamma-
tory cytokines (TNF-α, IL-1β, IFN-γ), lipopolysaccharide
(LPS) endotoxin, hypoxia, and oxidative stress [10, 29].

Mobilization studies in eNOS−/− mice revealed that eNOS
constitutively expressed in endothelium is required for opti-
mal vascular endothelial growth factor (VEGF)-induced mo-
bilization of endothelial progenitor cells (EPCs) and protec-
tion from mortality after myelosuppression [30]. However, no
mobilization studies have been performed so far to assess the
role of inducible hematopoietic cell-expressed iNOS in the
mobilization of HSPCs.

Based on the foregoing, we became interested in the poten-
tial role of iNOS in the mobilization of HSPCs. This interest
was further motivated by two considerations. First, it has been
reported that NO inhibits migration of granulocytes and
monocytes, which, as mentioned above, are crucial in facili-
tating egress of HSPCs across the BM–PB barrier [11, 15, 31,
32]. Second, NO, which promotes inflammation, has also
some anti-inflammatory activity limiting immune response
[11, 15], and inflammation is one of the driving forces of
HSPC mobilization.

To fill in this knowledge gap, we upregulated or down-
regulated iNOS expression in hematopoietic cells. Next,
we performed mobilization studies in iNOS−/− mice and,
in parallel, evaluated the engraftment of iNOS−/− HSPCs in
wild type control animals. Since activation of the ComC is
negatively regulated by heme oxygenase 1 (HO-1) [6, 33],
and the ComC downregulates HO-1 [33], we tested the
involvement of HO-1 in iNOS-mediated cell trafficking.

We report here for a first time that activation of iNOS
negatively regulates hematopoietic cell migration and pre-
vents egress of HSPCs into PB during mobilization.
Moreover, our studies in employing hematopoietic chimeras
revealed that this iNOS effect depends on its expression in
hematopoietic cells.

Materials and Methods

Animals In our experiments we employed female C57BL/6 J
wild-type (WT) and B6.129P2-Nos2tm1Lau/J (iNOS−/−) 6–8-
week-old mice purchased from The Jackson Laboratory (Bar
Harbor, ME, USA). Animal studies were approved by the
Animal Care and Use Committee of the University of
Louisville (Louisville, KY, USA).

Murine Bone Marrow-Derived Mononuclear Cells
BMMNCs were obtained by flushing femurs and tibias of
pathogen-free WT or iNOS−/− female mice. Cells were lysed
with BD Pharm Lyse buffer (BD Biosciences, San Jose, CA,
USA) to remove red blood cells (RBCs), washed, and resus-
pended in appropriate media for further experiments. When
necessary, murine Sca-1+ cells were isolated as described [21].

Cell LinesHEL andK562 cell lines were propagated in RPMI
1640 medium (Life Technologies), supplemented with 10 %
FBS (Seradigm), 1× GlutaMAX™ (Life Technologies), and
1× penicillin–streptomycin (Life Technologies). All cell lines
were passaged every 2–3 days to maintain concentrations in
the approximate range of 200,000–800,000 cells per ml.

Human NOS2 Overexpression and shRNA-Mediated
Knockdown Lentiviral particles utilized in the establishment
of NOS2-overexpressing or NOS2-knockdown cell lines were
derived using the ViraPower™Lentiviral Expression System
(Life Technologies) according to the manufacturer’s protocol.
Subsequently, HEL or K562 suspension cells were transduced
via spinoculation. Briefly, cells (2 × 105 in 2 ml of complete
medium) were mixed with 2 ml of viral supernatant and
polybrene (8 μg/ml final concentration). The cell–virus sus-
pension was then centrifuged at 800 x g for 2 h at 37 °C. At the
conclusion of spinoculation, the viral medium was aspirated,
and the cells were resuspended in complete medium and then
incubated in a 37 °C incubator (5 % CO2). Seventy-two hours
post viral transduction, the cells underwent antibiotic-
mediated selection using puromycin (1 μg/ml). All cell lines
were maintained under antibiotic selection pressure through-
out the duration of their expansion prior to experimentation. A
detailed list of the lentiviral vectors employed is found in
Table 1.

Mobilization Studies WT and iNOS−/− mice were injected
subcutaneously (s.c.) with 100 μg/kg G-CSF (Amgen,
Thousand Oaks, CA, USA) daily for 3 (short mobilization)
or 6 (long mobilization) days or one dose of AMD3100
(Sigma-Aldrich, 5 mg/kg, intraperitoneally). At 6 h after the
last G-CSF administration or at 1 h after AMD3100 injection,
the mice were bled from the retro-orbital plexus for hematol-
ogy analysis, and peripheral blood (PB) was obtained from the
vena cava with a 25-gauge needle and 1-ml syringe containing
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50 μl of 100 mM EDTA. Mononuclear cells (MNCs) were
obtained by hypotonic lysis of RBCs in BD PharmLyse buffer
(BD Biosciences).

Fluorescence-Activated Cell Sorting (FACS) Analysis The
following monoclonal antibodies were used to perform stain-
ing of Lin−/Sca-1+/c-Kit+ (SKL) cells and Lin−/Sca-1+/CD45+

(hematopoietic stem cells [HSCs]): FITC–anti-CD117 (also
known as c-Kit, clone 2B8; BioLegend, San Diego, CA,
USA) and PE–Cy5–anti-mouse Ly-6 A/E (also known as
Sca-1, clone D7; eBioscience, San Diego, CA, USA). All
anti-mouse lineage markers, (Lin) anti-CD45R/B220 (clone
RA3-6B2), anti-Ter-119 (clone TER-119), anti-CD11b (clone
M1/70), anti-T cell receptor β (clone H57–597), anti-Gr-1
(clone RB6-8C5), anti-TCRγδ (clone GL3), and anti-CD45
(clone 30-F11), were purchased from BD Biosciences and
conjugated with PE as described. Staining was performed in
RPMI 1640 medium containing 2 % FBS. All monoclonal
antibodies (mAbs) were added at saturating concentrations,
and the cells were incubated for 30 min on ice, washed twice,
and analyzed with an LSR II flow cytometer (BD
Biosciences).

Evaluation of HSPC Mobilization For evaluation of circu-
lating colony-forming unit-granulocyte/macrophage (CFU-
GM) and SKL cells the following formula was used: (number
of white blood cells [WBCs]) x number of CFU-GM colo-
nies)/number ofWBCs plated = number of CFU-GM per μl of
PB; and (number ofWBCs x number of SKL cells)/number of
gated WBCs = number of SKL cells per μl of PB.

Short-Term Homing Experiments Lethally irradiated WT
mice (γ-irradiation at 1000 cGy) 24 h after irradiation were
transplanted (by tail vein injection) with 3 × 106 BM cells
from WT or iNOS−/− mice labeled with the PKH67 green
fluorescent cell linker according to the manufacturer’s proto-
col (Sigma-Aldrich, St Louis, MO, USA). At 24 h after trans-
plant, BM cells from the femurs were isolated via Ficoll-
Paque and divided, and 30 % of the cells were analyzed by
FACS. The rest of the cells were plated in serum-free methyl-
cellulose cultures and stimulated to grow CFU-GM colonies
with mGM-CSF (25 ng/ml) and mIL-3 (10 ng/ml). After

7 days of incubation (37 °C, 95 % humidity, and 5 % CO2),
the number of colonies was scored under an inverted
microscope.

Evaluation of Engraftment For short-term engraftment ex-
periments, WT mice were irradiated with a 1000 cGy of γ-
irradiation. After 24 h, mice were transplanted by tail vein
injection with 1.5 × 105 BM cells from WT or iNOS−/− mice.
Femora of transplantedmice were flushed with PBS on day 12
post-transplant. Purified via Ficoll-Paque, BM cells were plat-
ed in serum-free methylcellulose cultures and stimulated to
grow CFU-GM colonies with mGM-CSF (25 ng/ml) and IL-
3 (10 ng/ml). After 7 days of incubation (37 °C, 95 % humid-
ity, and 5 % CO2) the number of colonies was scored under an
inverted microscope. Spleens were also removed, fixed in
Telesyniczky’s solution for CFU-S assays, and the colonies
on the surface of the spleen counted.

Recovery of Leukocytes and PlateletsWTmice were lethal-
ly irradiated, and after 24 h, the animals were transplanted by
tail vein injection with 2.5 × 105 BM cells fromWTor iNOS−/
− mice. Transplanted mice were bled at various intervals from
the retro-orbital plexus to obtain samples for white blood cell
and platelet counts. Fifty microliters of PB was taken from the
retro-orbital plexus of the mice into EDTA-coated Microvette
tubes (Sarstedt Inc., Newton, NC, USA) and run within 2 h of
collection on a HemaVet 950FS hematology analyzer (Drew
Scientific Inc., Oxford, CT, USA).

Western Blotting K562-pCMV6-hiNOS, HEL-pCMV6-
hiNOS, K562-shiNOS, HEL-shiNOS and their respective
control cells were harvested, centrifuged, and washed with
cold PBS. For protein extraction, the cells were treated with
cold RIPA lysis buffer, supplemented with protease and phos-
phatase inhibitors (Santa Cruz Biotech), for 30 min on ice and
centrifuged at 15,000 rpm at −4 °C for 15 min. The total
protein concentration per sample was measured using the
Pierce BCA Protein Assay Kit (Pierce, Rockford, IL) and
Multimode Analysis Software (Beckman Coulter). The
concentration-adjusted extracted proteins (50μg/each sample)
were then separated on a 4–12 % SDS-PAGE gel and trans-
ferred to a PVDF membrane (Bio-Rad). All membranes were

Table 1 NOS2 overexpression and shRNA-knockdown viral vectors

Human NOS2 overexpression Vector construct Company

Control vector (empty vector) pLenti6-MCS-GFP-2 A-Puro N/A

Human NOS2 vector (Accession BC130283) pLenti-GIII-CMV-Human NOS2-GFP-2 A-Puro abm® inc.

Human NOS2 shRNA knockdown Vector construct Company

Control shRNA (non-target control shRNA) pLenti6-U6-NT shRNA-GFP-2 A-Puro2 N/A

NOS2 Mission® TRC shRNA (shRNA 1) Mission shNOS2 (TRCN0000231570) Sigma-Aldrich®

NOS2 Mission® TRC shRNA (shRNA 2) Mission shNOS2 (TRCN0000231573) Sigma-Aldrich®
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blocked with 2.5 % nonfat dry milk in Tris-buffered saline
containing 0.1 % Tween (TBST) for 1 h at room temperature.
After washing with TBST, the membranes were incubated
with rabbit anti-HO-1 polyclonal antibody (Enzo Life
Sciences, NY, USA; diluted 1:1000) overnight at 4 °C. To
assure equal protein loading in each lane, the blots were then
reprobed with a rabbit anti-β-actin monoclonal antibody
(Novus Biologicals, USA; diluted 1:1000). All membranes
were then treated with enhanced chemiluminescence (ECL)
reagent (Amersham Life Sciences) and subsequently exposed
to film (Hyperfilm, Amersham Life Sciences). For protein
band visualization, an automatic film developer supplied with
fresh warm developer and fixer solutions was used. The in-
tensities of the blots obtained were quantified using ImageJ
software (National Institutes of Health, Bethesda, MD, USA).

Real-Time Quantitative Reverse-Transcription PCR of
Cell Lines Total RNA was isolated with the RNeasy Kit
(Qiagen, Valencia, CA, USA) from hematopoietic cells in
which iNOS was up- and downregulated and their respective
control cells. Expression of iNOS at the mRNA level was also
evaluated in hematopoietic cell lines in which HO-1 was up-
and downregulated in comparison with control cell lines. The
RNA was reverse-transcribed with MultiScribe reverse tran-
scriptase and oligo-dT primers (Applied Biosystems, Foster
City, CA, USA). Quantitative assessment of mRNA levels
was done by real-time RT-PCR using an ABI 7500 instrument
with Power SYBRGreen PCRMaster Mix reagent. PCR con-
ditions were as follows: 95 °C (15 s), 40 cycles at 95 °C (15 s),
and 60 °C (1 min). According to melting point analysis, only
one PCR product was amplified under these conditions. The
relative quantity of a target, normalized to the endogenousβ2-
microglobulin gene as control and relative to a calibrator, is
expressed as 2–DDCt (fold difference), where Ct is the thresh-
old cycle, DCt = (Ct of target genes) − (Ct of the endogenous
control gene, β2-microglobulin), and DDCt = (DCt of sam-
ples for the target gene) − (DCt of the calibrator for the target
gene). The following primer pairs were used for analysis of
iNOS expression: 5-CAG CGG GAT GAC TTT CCA A-3
(forward) and 5- AGG CAA GAT TTG GAC CTG CA-3
(reverse). For HO-1 expression: 5-GGG TGA TAG AAG
AGG CCA AGA CT-3 (forward) and 5-AGC TCC TGC
AAC TCC TCA AGA-3 (reverse).

Transwell Chemotaxis Assay To render the cells quiescent,
K562 and HEL cell lines were incubated overnight in RPMI
1640medium containing 0.5 % bovine serum albumin (BSA).
BMMNCs from WT and iNOS−/− mice were made quiescent
for 3 h in the same medium, and some were incubated for 1 h
with different doses of the iNOS inhibitor, N6-(1-Iminoethyl)-
L-lysine hydrochloride (L-NIL; Tocris Bioscience, Bristol,
UK). Subsequently, cells were washed and resuspended in
assay medium (RPMI 1640 with 0.5 % BSA). Cells were

aliquoted at a density of 1 × 105 cells in 100 μl with an
8-μm syringe (for human cell lines) and 1 × 106 cells in
100 μl with a 5-μm syringe (for murine BMMNCs) into poly-
carbonate membrane inserts in a Costar Transwell 24-well
plate (Costar Corning, Cambridge, MA, USA) and incubated
for 3 h of chemotaxis at 37 °C. medium with 0.5 % BSA
(650 μl/well) containing no chemoattractant (negative con-
trol), stromal-derived factor 1 (SDF-1, 50 ng/ml),
sphingosine-1-phosphate (S1P, 0.1 μM), ceramide-1-
phosphate (C1P, 100 μM), or adenosine triphosphate (ATP,
0.5 μg/ml) was added to the lower chambers of the plate.
After 3 h of incubation, the cells from the lower chambers
were collected. The number of human cell lines and murine
BM-derived cells were scored by FACS (Becton Dickinson,
Franklin Lakes, NJ, USA). Briefly, the cells were gated ac-
cording to their forward scatter (FSC) and side scatter (SSC)
parameters and counted during a 30-s acquisition at a high
flow rate. After chemotaxis from the lower chamber, the mu-
rine cells were resuspended in human methylcellulose base
medium provided by the manufacturer (R&D Systems,
Minneapolis, MN, USA), supplemented with murine and hu-
man granulocyte/macrophage colony stimulating factor (GM-
CSF, 25 ng/ml) and interleukin-3 (IL-3, 10 ng/ml) for deter-
mining the number of CFU-GM colonies. Cultures were in-
cubated for 7 days (37 °C, 95 % humidity, and 5 % CO2), at
which time they were scored under an inverted microscope for
the number of colonies.

Fibronectin Adhesion Assay Human cell lines and murine
BMMNCs at a density of 5 × 104/100 μl were made quiescent
overnight or for 3 h, respectively, and some were next incu-
bated with different doses of L-NIL for 1 h. Subsequently cells
were washed by centrifugation and resuspended in RPMI-
1640 medium. Cell suspensions were added directly to 96-
well plates that had been coated before the experiment with
fibronectin (10 μg/ml), incubated overnight at 4 °C, and then
blocked with medium containing 0.5 % BSA for 2 h. After
15 min at 37 °C, the non-adherent cells were then washed
from the wells, and all adherent cells were counted using an
inverted microscope.

Measurement of Intracellular Nitric Oxide (NO) K562-
pCMV6-hiNOS, HEL-pCMV6-hiNOS, K562-shiNOS,
HEL-shiNOS, RAJI-pCMV6-hHO-1, RAJI-shHO-1, and
their respective control cell lines were centrifuged and
suspended in their culture medium in poly-D-lysine-coated
wells (15 × 104 cells/well) of 96-well plates. Each cell line
was individually evaluated for NO levels using the Cell
Meter™ Orange Fluorimetric Intracellular Nitric Oxide
Assay Kit (AAT Bioquest, #16,350). The loaded plates were
centrifuged at 800 rpm for 2 min. Next, cells were incubated
with Nitrixyte™Orange probe working solution for 30 min at
37 °C to detect free NO in the cells. After assay buffer II was
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added, the orange fluorescence signals were then measured
using a microplate reader at an excitation wavelength of
540 nm and an emission wavelength of 590 nm (cut off at
570 nm) in bottom-read mode.

Statistical Analysis All results are presented as mean ± SD.
Statistical analysis of the data was done using Student’s t-test
for unpaired samples (Excel, Microsoft Corp., Redmond,WA,
USA) with a value of p ≤ 0.05 considered significant.

Results

Upregulation of iNOS in Established Hematopoietic Cell
Lines Impairs their Chemotactic Response to SDF-1
and S1P Gradients and Enhances Cell Adhesion

To address the effect of iNOS on migration and adhesion of
hematopoietic cells, we established two human hematopoietic
cell lines in which iNOS had been overexpressed after trans-
ducing cells with an iNOS-encoding vector. Figure 1A shows
real time RT-PCR results in which iNOS was upregulated in
HEL and K562 cell lines, and these cells expressed free NO at
higher levels (Fig. 1B). Moreover, in functional assays iNOS
overexpression was correlated with enhanced adhesion of
cells to fibronectin-coated plates (Fig. 1C) and, more impor-
tantly, had reduced migration in response to SDF-1 and S1P
gradients (Fig. 1D).

Downregulation of iNOS in Established Hematopoietic
Cell Lines Increases their Chemotactic Response to SDF-1
and S1P Gradients and Impairs Cell Adhesion

Next, we successfully downregulated iNOS expression in the
same HEL and K562 cells by employing a shRNA strategy.
Figure 2A shows real-time RT-PCR results for iNOS mRNA
expression, and Fig. 2B shows the level of free NO in these
cells. We found that downregulation of iNOS correlated with
decreased adhesion to fibronectin-coated plates (Fig. 2C) and
enhanced migration in response to SDF-1 and S1P gradients
(Fig. 2D).

iNOS-Deficient Mice Are easily Mobilized by G-CSF
and AMD3100

Based on the above observations that iNOS modulates cell
migration, we moved to a murine model of iNOS deficiency
and employed iNOS− /− animals for in vivo studies.
Supplementary Fig. 1 shows that the iNOS-deficient mice
employed in our studies have normal PB cell counts
(Supplementary Fig. 1A), red blood cell parameters
(Supplementary Fig. 1B), and numbers of bone marrow-
residing HSPCs (Supplementary Fig. 1C) and clonogenic

progenitors (Supplementary Fig. 1D) compared with WT an-
imals under steady-state conditions.

Next, we performed in vivo mobilization experiments.
Figure 3 shows that iNOS−/− mice display enhanced 3-day
(short) G-CSF-induced (Fig. 3A), 6-day (long) G-CSF-
induced (Fig. 3B), and AMD3100-induced mobilization
(Fig. 3C). This result indicates that these mice are easily mo-
bilized and that iNOS may exert negative effects on the egress
of HSPCs from BM into PB. These results correspond with an
enhanced responsiveness of BMMNCs (Fig. 4A) and
clonogeneic CFU-GMs (Fig. 4B) to HSPC chemoattractants,
including SDF-1, S1P, C1P, and ATP.

iNOS−/− BMMNCs Show Enhanced Homing
and Engraftment in WTAnimals

Next, we performed homing studies employing PKH67-
labeled iNOS−/− and WT control mouse-derived BMMNCs
transplanted into lethally irradiated WT animals. Twenty-
four hours after transplantation, we observed an increased
number of transplanted PKH67+ cells from iNOS-deficient
mice as well as an increased number of clonogenic progenitors
that were able to grow CFU-GM colonies after isolation from
BM and plating in methylcellulose cultures (Fig. 5A).

In parallel, we sacrificed some of the animals on day 12
after transplantation and evaluated the number of colony-
forming units in spleen (CFU-S) and the content of clonogenic
CFU-GM progenitors in BM (Fig. 5B). Again, we observed a
statistically significant beneficial effect of iNOS deficiency on
short-term engraftment. Thus, both statistically significant en-
hanced homing and short-term engraftment of iNOS-deficient
BM cells are correlated with enhanced migration of these cells
in response to hematopoietic chemoattractant gradients, as
shown in Fig. 4.

Finally, we evaluated the short term engraftment of BM-
MNCs from iNOS−/−mice by measuring the kinetics of leuko-
cyte (Fig. 6A) and platelet (Fig. 6B) recovery in these animals.
We found that mice transplanted with iNOS−/− BMMNCs had
a significantly accelerated recovery of leukocyte and platelet
counts in peripheral blood.

Downregulation of iNOS in Murine BMMNCs by L-NIL,
a Small-Molecule Inhibitor that Increases their Migration
in Response to SDF-1 and S1P Gradients

Based on encouraging results with iNOS-downregulated cell
lines and homing/engraftment studies with iNOS− /−

BMMNCs, we exposed murine BMMNCs to nontoxic doses
of the small-molecule iNOS inhibitor L-NIL (Supplementary
Fig. 2) and evaluated the responsiveness of these cells to SDF-
1 and S1P homing gradients. Again, inhibition of iNOS in
murine BMMNCs resulted in enhanced migration (Fig. 7A,
B) and decreased adhesion to fibronectin-coated plates
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(Fig. 7C). These results indicate that iNOS expression can be
successfully modulated by small-molecule inhibitors and po-
tentially employed to accelerate the homing of HSPCs. More
importantly, we found that exposure of murine Sca-1+ cells
and BMMNCs to L-NIL resulted in downregulation of HO-1
(Fig. 7D).

HO-1 Is Upregulated in Hematopoietic Cells with iNOS
Overexpression and Expressed at Lower Levels in Cell
Lines with iNOS Downregulation

We have previously reported that HO-1 is a negative regulator
of cell trafficking and an inhibitor of ComC activation [6, 33].
Therefore, we became interested in the potential relationship
between expression of iNOS and HO-1 activity. As shown in
Fig. 8, upregulation of iNOS in HEL and K-562 cells leads to
an increase in HO-1 expression at the protein (Fig. 8A) and
mRNA levels (Fig. 8B). By contrast, downregulation of iNOS

in these cells correlates with lower expression of HO-1 at the
protein (Fig. 8C) and mRNA levels (Fig. 8D).

Finally, to address whether, vice versa, HO-1 overexpres-
sion affects iNOS expression, we employed the RAJI cell line,
in which we overexpressed or downregulated HO-1 [5] and
evaluated the iNOS mRNA level by real-time PCR
(Supplementary Fig. 3A, C) and, in parallel, the NO levels
in these cells (Supplementary Fig. 3B, D). We observed a
positive correlation between HO-1 and iNOS expression.

Discussion

The most important observation of this report is that iNOS is a
novel negative regulator of the trafficking of HSPCs, and this
negative effect on cell migration is related to its effect on HO-
1 activity. Moreover, our results suggest that expression of
iNOS and HO-1 is regulated in hematopoietic cells in a similar
way. The inhibition of iNOS, as we reported for HO-1 [5, 6],
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may have practical applications in enhancing the homing of
HSPCs to BM after transplantation as well as enhancing the
mobilization of HSPCs from BM into PB in poor mobilizers.

In addition to hematopoietic cells, NO is also synthesized
by many other cell types in the body in response to cytokines
or stress situations, and its role is still not well understood.
Initially, NO was considered to be mainly an antimicrobial,
tumoricidal, and tissue-damaging effector molecule operating
as part of the innate immune system [34–37]. However, today
it is accepted that, in addition to innate immune responses, NO
also strongly affects adaptive immune responses and exerts
certain cytoprotective effects. It has been postulated that, in
addition to pro-inflammatory effects, iNOS, and to some ex-
tent also other NOS isoforms (nNOS and eNOS), limits im-
mune responses and has anti-inflammatory functions [11].
These include, for example, the eNOS-, iNOS-, or eNOS-
dependent inhibi t ion of leukocyte adhesion and
transendothelial migration [38, 39]. NO may also exert anti-
inflammatory effects by affecting polarization ofmacrophages

due to reduced proinflammatory M1 and increased anti-
inflammatory M2 phenotypic properties [15].

It is known that iNOS and HO-1 are upregulated in parallel
in response to infection and tissue or organ damage [36, 40,
41]. However, the mutual relationship between these stress-
induced enzymes is still not very well understood.While over-
expression of HO-1 or exposure of mouse or human cells to
HO-1 hemin metabolism products (CO or Fe2+) may suppress
cytokine- or LPS-induced iNOS expression [42], on the other
hand, depending on the cell system studied, NO may upregu-
late expression of HO-1 and its product CO [43].

We observed that in hematopoietic cells changes in expres-
sion of iNOS parallel changes in expression of HO-1. Thus, at
the molecular level, one of the most plausible explanations for
enhanced migration of HSPCs with downregulated iNOS
could be because of the decrease of a negative regulator of
cell migration, HO-1 [5, 6].

Our results also indicate that different isoforms of NOS
may have different effects on cell trafficking. While
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mobilization studies in eNOS-deficient mice revealed that
constitutive expression of eNOS in endothelium is required

for mobilization of endothelial progenitor cells in response to
VEGF stimulation [30], our results with hematopoietic cell-
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expressed iNOS indicate that this isoform has the opposite,
anti-mobilization, effect on HSPCs in response to G-CSF and
AMD3100. Since iNOS is also expressed in addition to con-
stitutively expressed eNOS in endothelial cells, further studies

are needed to determine whether these nitric oxide synthases
affect mobilization of endothelial progenitor cells in opposite
ways. Moreover, taking into consideration the broad tissue
expression of nNOS, it would be interesting to perform similar
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studies in nNOS−/− animals [44]. In justification of such stud-
ies, nestin-positive cells that regulate stem cell trafficking
have been described in BM [45, 46], and these cells could
be potential effector cells for the biological effects of nNOS.

While several factors that enhance mobilization of HSPCs
have been identified, very little is known about the physiolog-
ical inhibitors of this process. In this context, our results with

HO-1 [5, 6] and with iNOS that are reported here shed new
light on regulation of this process. Since excessive inflamma-
tionmediated by ComC activation contributes to various com-
plications (e,g., sepsis), it is important to identify molecules
that attenuate complement-mediated inflammation. Thus, fur-
ther studies are needed to better understand the reciprocal
relationship between activation of the ComC, which may
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initially promote expression of both of these stress-induced
enzymes, and the subsequent negative feedback that limits
activation of the ComC. In support of such a relationship, it
is know that biliverdin and bilirubin are potent inhibitors of
activation of the ComC by inhibiting its activation directly in
the classical pathway of ComC activation at the C1 level by
physically interacting with complement proteins [8, 47] and
by modulating expression of C5aR [7]. This modulation has
important implications for the mobilization process, as the
C5a–C5aR interaction is crucial for promoting egress of
HSPCs from BM into PB, and mice deficient in C5a or
C5aR are poor mobilizers [2].

In conclusion, we have demonstrated for the first time that
iNOS plays an important role in mobilization as well as en-
graftment of HSPCs. Further studies are needed to confirm
whether modulation of iNOS in human HSPCs, as in their
murine counterparts, could be employed as a novel strategy
to enhance homing and accelerate engraftment of HSPCs after
transplantation. This would be important, particularly in clin-
ical situations in which the number of HSPCs to be
transplanted is low (e.g., from poor-mobilizing donors or
UCB transplantations) or, on the other hand, in patients that
are poor mobilizers in response to classical pro-mobilizing
agents.
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