
University of Kentucky
UKnowledge

Biology Faculty Publications Biology

8-2017

Ion Channel Signaling Influences Cellular
Proliferation and Phagocyte Activity During
Axolotl Tail Regeneration
Brandon M. Franklin
University of Kentucky, brandon.franklin57@gmail.com

S. Randal Voss
University of Kentucky, srvoss@uky.edu

Jeffrey L. Osborn
University of Kentucky, jlosbo3@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/biology_facpub

Part of the Biology Commons, Cell and Developmental Biology Commons, and the Genetics
Commons

This Article is brought to you for free and open access by the Biology at UKnowledge. It has been accepted for inclusion in Biology Faculty Publications
by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Repository Citation
Franklin, Brandon M.; Voss, S. Randal; and Osborn, Jeffrey L., "Ion Channel Signaling Influences Cellular Proliferation and Phagocyte
Activity During Axolotl Tail Regeneration" (2017). Biology Faculty Publications. 170.
https://uknowledge.uky.edu/biology_facpub/170

http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/biology_facpub?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/biology?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/biology_facpub?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/8?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/biology_facpub/170?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Ion Channel Signaling Influences Cellular Proliferation and Phagocyte Activity During Axolotl Tail Regeneration

Notes/Citation Information
Published in Mechanisms of Development, v. 146, p. 42-54.

© 2017 Elsevier B.V.

This manuscript version is made available under the CC‐BY‐NC‐ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/.

The document available for download is the author's post-peer-review final draft of the article.

Digital Object Identifier (DOI)
https://doi.org/10.1016/j.mod.2017.06.001

This article is available at UKnowledge: https://uknowledge.uky.edu/biology_facpub/170

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://uknowledge.uky.edu/biology_facpub/170?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages


Ion channel signaling influences cellular proliferation and 
phagocyte activity during axolotl tail regeneration

Brandon M. Franklin, S. Randal Voss, and Jeffrey L. Osborn*

Department of Biology, University of Kentucky, Lexington, KY 40506, United States

Abstract

Little is known about the potential for ion channels to regulate cellular behaviors during tissue 

regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical 

genetic screen to identify ion channel antagonists that altered critical cellular processes during 

regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, 

anoctamin2/Tmem16b, KV2.1, KV2.2, L-type CaV channels and H/K ATPases) or completely 

(GlyR, GABAAR, KV1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail 

regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated 

with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of 

anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK 

signaling pathway genes, including decreased expression of erk1/erk2. We also found that 

complete inhibition via voltage gated K+ channel blockade was associated with diminished 

phagocyte recruitment to the amputation site. The identification of H+ pumps as required for 

axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, 

the conservation of ion channels as regulators of tissue regeneration. This study provides a 

preliminary framework for an in-depth investigation of the mechanistic role of ion channels and 

their potential involvement in regulating cellular proliferation and other processes essential to 

wound healing, appendage regeneration, and tissue repair.

1. Introduction

Ion channels are known for traditional physiological functions, including muscle 

contraction, nerve conduction, and maintenance of ionic homeostasis. However, ion 

channels modulate membrane ion conductance across all cells and tissues, establishing 

electrical fields (EF) that affect cellular behaviors under normal conditions, during critical 

periods of development, and in response to tissue injury. Understanding how ion channels 

function within different biological contexts is central to identifying the molecular basis of 

channelopathies and for exploiting ion channels for wound healing and tissue repair. 

Bioelectric signaling via ion channels and control of cellular membrane potentials in 

planarian and Xenopus regeneration have significantly contributed to our understanding of 

ionic influences on regenerative processes (Levin, 2007; Levin, 2009; Tseng et al., 2010; 
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Levin, 2014). Despite these advances, little is known about the individual channels that are 

important during regeneration and the specific cellular functions that they influence.

Amphibians and fish provide powerful models to investigate the role of EF and ion channels 

on cellular processes that are activated during appendage regeneration. Typically in these 

vertebrates, amputated body parts are flawlessly repaired via the activation, proliferation, 

and patterning of progenitor cells (McCusker and Gardiner, 2014; Tanaka, 2016). Wound-

induced EFs likely affect the behavior of immune and progenitor cells because they are 

enacted during the early wound-healing response, and interruption or reversal of an EF is 

detrimental to regeneration (Borgens et al., 1979; Borgens et al., 1977; Jenkins et al., 1996). 

However, exactly how cells detect and translate EF information to elicit specific cell 

behaviors is not well understood. One possibility is that information from an EF is 

modulated and transduced by ion channels. Consistent with this idea, Özkucur et al. (2010)) 

showed that ion concentrations are modulated in cells near the amputation site during axolotl 

(Ambystoma mexicanum) tail regeneration. This observation suggests that ion channels 

affect cellular behaviors by regulating ion concentration-dependent signaling cascades 

during regeneration (Wei et al., 2011; Mao et al., 2009; Wondergem et al., 2001; Wang et al., 

2002; Tao et al., 2008).

In this study, we performed a chemical genetic screen to identify ion channels whose 

functions are required for normal axolotl tail regeneration. We administered tail amputations 

to axolotl embryos and treated groups with ion channel antagonists. This type of hierarchical 

drug screen has been previously described, and chemical genetics approaches have proven to 

be robust for identifying bioelectric mechanisms that affect regeneration (Adams and Levin, 

2006; Sengupta et al., 2015). Multiple channels were identified from several ion channel 

families that either delayed the regenerative process or inhibited the initiation of 

regeneration. Two of these channels, anoctamin 1 and voltage-gated K+ channels, were 

investigated further to determine their effects on cellular proliferation and the activity of 

phagocytic cells.

2. Methods

2.1. Anesthesia

Experiments were conducted using pre-feeding, hatchling stage axolotl embryos 

(RRID:AGSC_100H, 9–11 mm in length) obtained from the Ambystoma Genetic Stock 

Center (RRID:SCR_006372), Department of Biology, University of Kentucky. These nearly 

mature embryos were removed from chorions immediately before the onset of the 

experimental protocol. Ethical animal procedures performed in this study were approved by 

the University of Kentucky IACUC committee (protocol 00907L2005). The skeletal muscle-

specific myosin inhibitor N-benzylp-toluene sulfonamide (BTS) was used to anesthetize 

embryos before all amputations and imaging procedures. This was chosen over benzocaine, 

a voltage gated Na+ channel inhibitor, as to not confound the results of the ion channel 

antagonist being investigated. Embryos were placed in modified Holtfreter’s solution (59 

mM NaCl, 0.67 mM KCl, 0.76 mM CaCl2, 2.4 mM NaHCO3) with 10 μM BTS at least 15 

min before conducting any procedures.
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2.2. Regeneration assay

Axolotl tails were imaged under a dissecting microscope and amputated approximately 

halfway between the tail tip and cloaca (~2 mm). Embryos were then placed in individual 

wells of a 24-well tissue culture plate with 3 mL of Holtfreter’s solution containing various 

ion channel antagonists or a modified Cl− free Holtfreter’s solution (15 mM NaC6H11O7, 

0.2 mM KC6H11O7, 0.2 mM Ca(C6H11O7)2, 0.2 mM MgSO4·7H20, 0.6 mM NaHCO3). The 

drug screen consisted of three tiers of ion channel antagonist ranging from broad scale 

general ion conductance inhibitors (tier 1), to antagonists of ion channel sub families (tier 2), 

and finally, specific ion channel blockers (tier 3, Table 1). All drugs were initially evaluated 

at four concentrations (10−4, 10−5, 10−6 and 10−7 M) with 6 biological replicates for each 

concentration; some concentrations were lethal and this resulted in n < 6 for some drug 

treatments. Subsequently, ranges of drug concentrations were evaluated on a case-by-case 

basis and conclusions regarding a drug’s impact on regeneration were only drawn from 

nontoxic concentrations of drugs. Drugs that exhibited systemic toxicity (identified by 

general atrophy, lethargy and/or tissue degeneration) or lethality at all concentrations were 

excluded from the study. Lethal or toxic drug concentrations are emphasized in bold in Table 

1. At 7 days post-amputation (dpa), embryos were anesthetized, imaged, and tail length was 

measured. To assess the extent of regeneration, tail length at day 0 (Fig. S1A) was subtracted 

from tail length at day 7 (Fig. S1B). Following a positive result, drugs were assayed for their 

impact on normal development in unamputated axolotl embryos and drugs found to 

adversely affect normal developmental growth were excluded from the study. Results for 

each pharmacological agent were analyzed in Sigma Plot Statistical Software (SPSS) using a 

one-way ANOVA with Dunnett’s test for post hoc analysis. Significant results were 

qualitatively assigned as either delayed/reduced regeneration, inhibited regeneration, or 

toxic/lethal (Fig. S1B–E).

2.3. Phagocyte imaging

Live imaging of phagocytes was accomplished by staining with the non-toxic dye, neutral 

red. Neutral red stains lysosomes which are present in many cell types but are especially rich 

in phagocytes such as macrophages. Also, neutral red has been confirmed as an effective and 

specific stain for macrophages in zebrafish and axolotl using the protocol described below 

(Herbomel et al., 2001; Davis and Ramakrishnan, 2009; Godwin et al., 2013). Prior to 

imaging, embryos were placed in Holtfreter’s solution containing 5 μg/mL of neutral red dye 

for 6 h and then de-stained in normal Holtfreter’s solution for 24 h. Following this 

staining/de-staining procedure, embryos were anesthetized and imaged under bright-field 

(Herbomel et al., 2001; Godwin et al., 2013; Carradice and Lieschke, 2008). Images were 

quantified by counting all labeled cells within 500 μm of the amputation plane and these 

values were normalized by tissue section area. Results were analyzed in SPSS using a one-

way ANOVA with Dunnett’s test for post hoc analysis (control was t = 0).

2.4. Proliferation assay

Axolotl embryos were amputated and placed in 24 well plates as outlined above. At 3 dpa, 

embryos were incubated for 16 h in 10 μM 5-ethynyl-2′-deoxyuridine (EdU), a BrdU 

analog. After this incubation period, embryos were euthanized and tails were amputated at 
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the cloaca, immediately fixed in 4% paraformaldehyde, and stored in 70% EtOH. Tissues 

were then embedded in paraffin wax and cut into 5-micron sagittal sections. The Click-iT® 

EdU Alexa Fluor® 488 Imaging Kit (C10337, invitrogen) was used to visualize EdU 

incorporation into the DNA of proliferating cells per the prescribed protocol. Hoechst was 

used to counter stain the sections. All cells staining positive for EdU incorporation within 

500 μm of the amputation plane were counted as well as all cells staining positive for 

Hoechst within the same anatomical area. Proliferative index was determined by dividing the 

number of EdU+ cells by the number of Hoechst + cells in each tissue section. Results were 

analyzed in SPSS using either a one-way ANOVA with Dunnett’s test for post hoc analysis 

or, in the case of tissue specificity analysis, a two-way ANOVA (factors were tissue type and 

drug treatment) with Student-Newman-Keuls (SNK) test used for post hoc analysis.

2.5. Apoptosis assay

Axolotl embryos were administered tail amputations and placed in 24 well plates and 

allowed to regenerate for 3 days. Embryos were euthanized and tails were amputated at the 

cloaca, immediately fixed in 4% paraformaldehyde, and stored in 70% EtOH. Tissues were 

then embedded in paraffin wax and cut into 5-micron transverse sections. The Click-iT® 

TUNEL Alexa Fluor® 594 Imaging Kit (C10246, invitrogen) was used to assay for 

fragmented DNA, a measure of apoptosis (Gavrieli et al., 1992). Tissue sections were 

grouped as either 0–100 μm or 150–250 μm from the tail tip. TUNEL positive cells in each 

group were counted and divided by the total number of cells in each group (Hoechst) to give 

a measure of apoptotic index. Results were analyzed in SPSS using one-way ANOVA and 

SNK test for post hoc analysis.

2.6. RNA extraction and quantitative real-time PCR

Embryos were administered amputations and placed in 24-well plates as before and allowed 

to regenerate for 3 days in either modified Holtfreter’s or modified Holtfreter’s 

supplemented with the anoctamin 1 inhibitor, T16A(inh)-A01 (10 μM). The distal 1 mm of 

the tail was re-amputated and collected in ice-cold RNAlater (25 mM C6H7NaO7, 10 mM 

EDTA, 5.3 M (NH4)2SO4 and pH 5.2) and stored at −20°C. To isolate mRNA, 2 tails were 

placed in 100 μL of Trizol, homogenized via sonication, and purified via Zymo Direct-zol™ 

RNA MiniPrep (R2050) kit and treated with DNase 1. RNA concentration and purity were 

determined via Nanodrop ND-1000 spectrophotometry (Nanodrop Technologies). cDNA 

was generated using qScript™ cDNA Supermix (Quanta Biosciences 95,048) and used for 

PCR. PCR primers were designed using sequence data available on Sal-Site and are listed in 

Table 2 (Baddar et al., 2015). Quantitative real-time PCR was performed using the 

StepOnePlus™ Real-Time PCR system (Applied Biosystems®). Samples were loaded into 

96-well plates in triplicate with probes and Power SYBR® Green PCR Master Mix 

(4367659) to detect PCR products. Relative gene expression was calculated using the 

comparative CT method (2−ΔΔCT) in StepOne software v2.3 per the manufacturer’s 

instructions (Schmittgen and Livak, 2008). Relative quantifications were compared in SPSS 

using a one-way ANOVA and Student–Newman–Keuls (SNK) method for post hoc analysis.
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3. Results

3.1. Pharmacological screen of ion channel groups

3.1.1. Chloride—Nonspecific chloride conductance was examined with the broad-scale 

Cl− channel blockers 4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), 4,4′-

dinitrostilbene-2,2′-disulfonic acid (DNDS), and niflumic acid (NFA). Embryos treated with 

any of these broad scale Cl− channel antagonists exhibited decreased tail regeneration at all 

concentrations tested, with the exception of DNDS at 1 μM. For example, embryos exposed 

to 10 μM DIDS, DNDS, or NFA regenerated 0.71 ± 0.31 mm, 1.11 ± 0.32 mm, and 0.63 

± 0.24 mm respectively, significantly less than untreated embryos (Fig. 1A). Calcium-

activated Cl− channels (CaCC) were evaluated with the family-specific inhibitor CaCCinh-

A01. CaCCinh-A01 was lethal at concentrations N2 μM but reduced regeneration at 0.1 μM 

(1.01 ± 0.24 mm) and 1 μM (1.09 ± 0.17 mm, Fig. 1B) without observable toxic effects. 

Anoctamins 1&2 (aka Tmem16A/B, Ano1, Ano2) were inhibited with benzbromarone 

(BBM) or T16a(inh)-A01 (A01). Embryos treated with either BBM or A01 had decreased 

regenerative capacity at 100 nM (0.56 ± 0.18 mm) and 10 μM (0.88 ± 0.21 mm, Fig. 

1C&D). The ligand gated Cl− channels, GABAA receptors (GABAAR) and glycine receptors 

(GlyR), were inhibited with picrotoxin (PTx) and bicuculline methiodide (BCU, GABAAR 

only) and both compounds caused reduced regenerative capacity at all concentrations tested. 

Both PTx (0.645 ± 0.27 mm) and BCU (0.618 ± 0.32 mm) elicited complete inhibition of 

regeneration at a concentration of 100 μM (Figs. 1E&F). All other Cl− channel blockers 

were either toxic or did not affect regeneration (Fig. S2).

3.1.2. Potassium—General potassium conductance was initially examined with the 

broad-scale K+ channel blocker tetraethylammonium (TEA). Compared to control embryos 

(1.83 ± 0.38 mm), TEA treated embryos at a concentration of 1 μM or higher decreased 

regenerative growth (0.96 ± 0.29 mm, Fig. 2A). The voltage-gated K+ channel (KV) blocker 

4-aminopyridine (4-AP) reduced regenerative outgrowth at 4 μM (1.05 ± 0.03 mm) and 

completely inhibited regeneration at 10 μM (0.50 ± 0.24 mm) and 100 μM (0.59 ± 0.27 mm, 

Fig. 2B). KV2.1/2.2 blockade with Guangxitoxin-1E (GTx-1E) slightly reduced regeneration 

at 1 μM (1.11 ± 0.46, Fig. 4C). KV1.5 blockade with cytochalasin B (CytB) had no effect on 

regeneration when embryos were incubated at 0.1 or 1 μM, but tail outgrowth was inhibited 

at 10 μM (0.16 ± 0.11 mm, Fig. 2D). All other K+ channel blockers used were either toxic or 

did not affect regeneration (Fig. S3).

3.1.3. Sodium—Sodium was assessed using only tier 2 antagonists as no tier 1 drugs 

were available (Table 1). The epithelial sodium channel (ENaC) blocker amiloride did not 

affect regeneration at any concentration tested. The voltage-gated sodium channel (NaV) 

antagonists, tetrodotoxin (TTx) and lidocaine, also did not affect regeneration at any 

concentration tested, although the highest concentration of TTx (100 μM) was lethal in 

100% of embryos (Fig. S4).

3.1.4. Calcium—Calcium conductance was examined with the broad-scale Ca2+ channel 

blocker bepridil (BPD). BPD was 100% lethal at every concentration tested. The L, N & T-

type calcium channel inhibitor, benidipine HCl (BNP), completely inhibited regeneration at 
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100 nM (0.60 ± 0.35 mm) and all other concentrations were lethal. L-type channel blockers 

amlodipine (CaV1.3) and diltiazem (CaV1.1/1.2/1.4) diminished the regenerative response, 

with a maximal effect observed 10 μM (1.03 ± 0.38 mm) and 1 μM (1.04 ± 0.50 mm), 

respectively. The P & Q-type blocker, ω-conotoxin MVIIC, completely inhibited 

regeneration with a maximal effect at 10 nM (0.57 ± 0.19 mm). P-type specific inhibitor, ω-

agatoxin IVA, had no effect on the regenerative response at any concentration, thus 

eliminating Q-type channels as affecting regeneration (Fig. S5).

3.2. Pumps/transporters

The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) was examined with 2,5-di-(tert-

butyl)-1,4-benzohydroquinone (tBuBHQ), which completely inhibited regeneration with 

maximal inhibition at 2 μM (0.41 ± 0.15 mm). Incubation with the H+/K+-ATPase inhibitor, 

pantoprazole, resulted in a slight reduction of regenerative growth at 100 μM (1.14 ± 0.05 

mm). All other transporter inhibitors used were either toxic or did not affect regeneration 

(Fig. S6).

3.3. Phagocyte activation is dependent on KV channel signaling

Macrophage activation is required for regeneration to proceed normally and KV channels are 

known to influence many functions of macrophages in vitro (Godwin et al., 2013; Kotecha 

and Schlichter, 1999; Moreno et al., 2013; Qiu et al., 2002; Vicente et al., 2005; Li et al., 

2016). This suggests that KV’s may influence tail regeneration through modulation of the 

macrophage response. To test this hypothesis, it was first necessary to characterize the 

normal response of phagocytic cells during tail regeneration. Using neutral red (NR) to label 

phagocytic cells, a significant accumulation of phagocytes was observed at the wound site 

beginning 24 hours post amputation (hpa, 90.1 ± 20.8 NR+ cells/mm2 tissue) and initially 

peaking at 48 hpa (189.2 ± 53.7 NR+ cells/mm2 tissue). This was followed by a decline 

concurrent with tissue outgrowth and then a second peak at 144 hpa (200.6 ± 34.4 NR+ 

cells/mm2 tissue, Fig. 3). NR stained cells were confirmed to be phagocytic by repeating the 

NR staining procedure on embryos that had been previously injected with liposome 

encapsulated clodronate. In comparison to control embryos, clodronate treated embryos 

exhibited a significant reduction of NR+ cells (Fig. S7).

While CytB is a potent inhibitor of KV1.5 channel activity, it has off target effects, such as 

disruption of actin polymerization that could also influence regeneration. To further assess 

the role of KV channels on phagocyte activity we used an alternate KV channel blocker, 4-

AP. Embryos were incubated at 2 concentrations of 4-AP (5 μM and 25 μM) beginning at 12 

hpa and harvested at either 3 or 6 days post amputation (dpa). At 3 dpa, embryos incubated 

in either 5 μM (45.88 ± 12.35 NR+ cells) or 25 μM (46.63 ± 10.07 NR+ cells) exhibited a 

marked reduction in phagocyte recruitment to the wound site compared to control embryos 

(123.33 ± 15.67 NR+ cells) but there was no difference between the two concentrations 

tested. At 6 dpa, the reduction of phagocyte recruitment persisted compared to control 

(190.29 ± 43.02 NR+ cells) and there was a concentration dependent response between the 5 

μM group (102.38 ± 9.89 NR+ cells) and 25 μM group (52.71 ± 14.74 NR+ cells, Fig. 4). To 

confirm this result, embryos were subjected to one of three treatments: (1) Encapsome®/

Fluorosome®-DiI 50:50 mixture IP injection 24 h before amputation (24hba), (2) 

Franklin et al. Page 6

Mech Dev. Author manuscript; available in PMC 2019 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clodrosome®/Fluorosome®-DiI 50:50 mixture IP injection 24hba or (3) Encapsome®/

Fluorosome®-DiI 50:50 mixture IP injection 24hba and incubation in 25 μM 4-AP 

beginning at 12 hpa. Embryos were then harvested at 3 dpa and whole mount imaged under 

fluorescent and bright field conditions. Embryos subjected to both the phagocyte depletion 

protocol (17.045 ± 17.30 DiI+ cells/mm2) and KV channel inhibition (31.80 ± 19.35 DiI+ 

cells/mm2) exhibited reduced phagocyte recruitment following amputation compared to 

control conditions (145.20 ± 77.17 DiI+ cells/mm2, Fig. 5). Notably, the number of 

phagocytes at the amputation site at 3 dpa under control conditions identified by 

Fluorosome®-DiI incorporation was consistent with the number identified by NR staining at 

the same time point.

3.4. Anoctamin 1 blockade delays regeneration via inhibition of proliferation

Cell proliferative responses to amputation were assessed by measuring EdU incorporation at 

3 dpa under several experimental interventions. EdU incorporation was observed in 34.00 

± 6.44% of cells within 500 μm of the amputation plane under control conditions (n = 4, Fig. 

6 A–A″ & C). In contrast, broad-scale Cl− channel blockade (DIDS: n = 4, 18.13 ± 5.52%& 

DNDS: n = 5, 19.65 ± 9.29%, Fig. 6C) or specific inhibition of anoctamin 1 (A01: n = 5, 

19.65 ± 4.54%, Fig. 6 B–B″ & C) significantly reduced the percentage of cells proliferating 

within this same anatomical area. Embryos incubated in Cl− free Holtfreter’s exhibited a 

trend towards reduced proliferation (24.80 ± 9.74%, n = 5, Fig. 6C) but the difference was 

not statistically significant relative to controls. We note that apoptosis was assessed using a 

TUNEL assay; no differences were observed between embryos subjected to anoctamin 1 

blockade and controls (Fig. 7).

To more finely examine proliferation spatially, cell counts were obtained for epidermal 

(ED), spinal cord (SC), and mesenchymal & muscle (MM) regions of the tail. Neither broad-

scale Cl− channel blockade (DIDS & DNDS) nor anoctamin 1 inhibition (A01) treatments 

affected proliferation rates within the ED and SC tissues; the reduced proliferation response 

was only observed in MM tissues. These results suggest that functional chloride flux 

mediated by Ano1 is critical for regulating the proliferative response in the mesenchyme but 

not in other tissues (Fig. 6 D&E).

3.5. Anoctamin 1 blockade diminishes activation of p44/42 MAPK signaling pathway

To investigate gene expression changes associated with anoctamin 1 inhibition of tail 

regeneration, quantitative real-time PCR was used to measure mRNA expression of p44/42 

MAPK signaling pathway genes, a pathway activated during cellular proliferation. After 

amputation, pkcγ, mek1, mek2, erk1 and erk2 showed a higher percent increase in 

transcription in control embryos vs anoctamin 1 treated embryos at 3 dpa. In contrast, 

expression was downregulated more strongly in control embryos than embryos subjected to 

anoctamin 1 inhibition by A01 at 3 dpa for early p44/42 pathway genes (pkcα, pkcβ, rras 
and raf1) (Fig. 8). These results show that anoctamin 1 affects the transcription of p44/42 

MAPK pathway genes that regulate cellular proliferation.
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4. Discussion

In this study, we identified ion channel antagonists that partially (anoctamin1/Tmem16a, 

anoctamin2/Tmem16b, KV2.1, KV2.2, L-type CaV channels and H/K ATPases) or 

completely (GlyR, GABAAR, KV1.5 and SERCA pumps) inhibited axolotl tail regeneration. 

Below we separately discuss the affected ion channels from each of these categories (Fig. 9).

4.1. Partially inhibiting channels & transporters

4.1.1. Anoctamins 1/2 (Tmem16A/B)—Our results suggest a role for CaCCs in the 

tail regeneration process. Regeneration was delayed when embryos were subjected to either 

broad-scale Cl− channel blockade (DIDS, DNDS & niflumic acid) or CaCC inhibition 

(CaCCinh-A01, T16a(inh)-A01 & Benzbromarone). CaCC currents were described over 25 

years ago but their molecular basis was only recently discovered (Hartzell et al., 2005). In 

2008, three independent researchers identified anoctamin 1 and anoctamin 2 channels as 

mediators of CaCC currents (Caputo et al., 2008; Schroeder et al., 2008; Yang et al., 2008). 

Anoctamin 1 was first discovered as an overexpression marker for gastrointestinal stromal 

tumors (then known as DOG1) and has since been shown to promote other forms of cancer 

(Britschgi et al., 2013; West et al., 2004). Blockade of anoctamin 1 suppresses tumor growth 

and invasion in multiple human cancer lines (Jia et al., 2015; Liu et al., 2012). There is 

evidence that anoctamin 1 manifested these effects through regulation of both cell migration 

and proliferation (Qu et al., 2014; Ruiz et al., 2012). Our results support this idea because 

inhibition of anoctamin 1 significantly decreased the number of proliferating cells in the 

regenerating tail. This suggests that anoctamin 1 channel function is directly or indirectly 

required to sustain cell proliferation at a level that is typical of normal tail regeneration.

Our results further suggest that anoctamin 1 affected tail regeneration by modulating the 

p44/42 MAPK pathway, which is a well-known regulator of cell proliferation (Zhang and 

Liu, 2002). Following tail amputation, Erk1/2 signaling pathway genes were 

transcriptionally upregulated to a higher degree in control embryos than embryos treated 

with anoctamin 1 antagonist. Thus, the magnitude of erk1/erk2 transcription correlated on 

one hand with anoctamin 1 function, and conversely, with the magnitude of cell 

proliferation. We propose the following model: anoctamin 1, activated by an initial calcium 

surge, acts as a countercurrent ion channel to amplify calcium signaling. This amplified 

surge subsequently activates the Erk1/2 pathway leading to increased cellular proliferation. 

This model assumes there is a burst in intracellular [Ca2+] following tail amputation and a 

dependence of intracellular Ca2+ flux on chloride conductance. Özkucur et al. (2010) 

downplayed the role of Ca2+ in their model of axolotl tail regeneration. However, they 

reported significant increases in Ca2+ fluorescence at 48 hpa, preceding the time when the 

tail shows measureable regenerative outgrowth. This Ca2+ flux at 48 hpa supports our 

proposed model (Özkucur et al., 2010; Barro-Soria et al., 2010; Wang and van Breemen, 

1999).

4.1.2. KV2.1/2.2—KV2 channel blockade with TEA or GTx-1E also reduced 

regeneration. KV2 channels traditionally act as the primary delayed rectifier involved in 

regulating the excitability of neurons and facilitating exocytosis in neurons and 
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neuroendocrine cells (Feinshreiber et al., 2009; Misonou et al., 2005). These functions of 

KV2 channels could be associated with the release of neurotrophic factors that are required 

for regeneration, the so-called neurotrophic requirement for regeneration (Kumar and 

Brockes, 2012; Singer, 1974). However, it is also important to consider the direct influence 

of KV2 channels on the cellular dynamics of non-excitable cells (Kumar and Brockes, 2012). 

KV2 acts as a promoter of cell migration in cultured HEK293, CHO, and bone derived 

mesenchymal stem cells (MSC) via phosphorylation of focal adhesion kinase (Hu et al., 

2011; Wei et al., 2008). MSCs also require functioning KV2 channels for proper progression 

through the cell cycle by facilitating plasma membrane-endoplasmic reticulum contact sites 

(Cobb et al., 2015; Deng et al., 2007). These MSC specific characteristics of KV2 channels 

are particularly interesting considering their resemblance to progenitor cells of the blastema, 

but more research is required to determine the specific role of KV2 channels within the 

context of appendage regeneration.

4.2. L-type Ca2+ channels (CaV1.1–1.4)

The L-type channel blockers, amlodipine and diltiazem, partially inhibited tail regeneration. 

These channels are mostly known for their roles in excitable cells, where they couple plasma 

membrane depolarization with increases in Ca2+ conductance across the membrane. Recent 

evidence also suggests that they are important physiological components of many non-

excitable cell types (Davenport et al., 2015; Wen et al., 2012). Ca2+ is a ubiquitous second 

messenger in all cell types and can influence many different cellular processes (Berridge, 

1995; Berridge et al., 2000; Clapham, 2007; Zayzafoon, 2006; Zheng and Poo, 2007). 

Because of the widespread nature of L-type Ca2+ channel expression and the complicated 

features of intracellular Ca2+ signaling, these channels may not present the best targets for 

future investigations. But, if the model we proposed above is correct, the anoctamin 1/2 Cl− 

channels may provide an indirect path to modulate intracellular calcium flux in a specific 

cell population.

4.2.1. H+/K+ ATPases—Our study found that H+ pump inhibition with pantoprazole 

sodium reduced regenerative outgrowth. Proton pumps have been classically associated with 

their roles in gastric and renal function. However, over the past several decades they have 

been identified as critical mediators of wound healing and regeneration (Adams et al., 2007; 

Walan et al., 1989; Balestrini et al., 2017). Most of this influence has been attributed to the 

proton pump’s involvement in establishing and maintaining trans-epithelial electrical 

potentials that drive wound-induced electrical fields (Nuccitelli, 2003). A recent chemical 

genetic screen performed using planarian head regeneration also identified H+/K+ ATPase as 

important for initiating the regenerative process through control of cellular membrane 

potentials (Vmem) (Beane et al., 2011). H+ pump driven changes in Vmem are required for 

regeneration to proceed normally in the Xenopus model of regeneration (Adams et al., 

2007). Our findings further validate the requirement of H+ pumps in organisms capable of 

appendage regeneration.

4.3. Inhibiting channels & transporters

4.3.1. KV1.5—Blockade of KV1.5 with 4-AP or CytB resulted in a robust and 

concentration dependent total inhibition of regeneration. These channels are widely 
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expressed in a large number of tissues and are involved in regulating Vmem and 

electrophysiological properties of a variety of cell types (Archer et al., 1998; Olson et al., 

2006; Tabarean, 2014). In addition to these electrophysiological functions, KV1.5 channels 

have been implicated in regulating cell cycle progression and migration (Kotecha and 

Schlichter, 1999; Vallejo-Gracia et al., 2013; Villalonga et al., 2008). Of particular interest is 

their role in regulating immune cell dynamics. Macrophages are required for amphibian 

regeneration and the invertebrate homologue of macrophages (hemocytes) respond to 

exogenously applied electrical fields in vivo in a KV dependent manner (Godwin et al., 

2013; Franklin et al., 2016). Consistent with this line of reasoning, phagocyte activation was 

severely diminished during tail regeneration after KV channel blockade with 4-AP. This 

suggests that KV channels may be critical regulators of macrophage/monocyte populations 

during regeneration. However, further studies are necessary to further clarify the role for Kv 

channels in macrophage activation during tissue regeneration and whether or not this 

mechanism is a cell autonomous.

4.3.2. GlyR/GABAAR—GlyR and GABAAR blockade with picrotoxin or bicuculline 

resulted in strong inhibition of regeneration at relatively low concentrations. These ligand-

gated chloride channels act primarily as receptors for inhibitory neurotransmitters in the 

CNS, with GABAAR acting mostly in the brain and GlyR functioning primarily in the 

brainstem and spinal cord (Lynch, 2004; Sigel and Steinmann, 2012). This immediately 

implicates nerves and their required neurotrophic factors for appendage regeneration since 

modulation of either of these receptors would disrupt normal neuronal activity during 

regeneration. There is evidence that these receptors influence neural progenitor cells during 

early development and regulate many critical cellular processes in multiple cell types, 

mostly via modulation of intracellular Ca2+ concentrations (Nguyen et al., 2001; Van Den 

Eynden et al., 2009). Importantly, misexpression of GlyR has recently been shown to disrupt 

patterning and development in neural, muscle and vascular tissues via physiological 

modulation of membrane potentials (Lobikin et al., 2012; Lobikin et al., 2014; Pai et al., 

2015). It will be interesting to examine the expression patterns of these receptors in cells of 

regenerating axolotl tissues to see if they are altered following tissue injury. More research 

will be necessary to assess the exact role of GlyR/GABAAR during axolotl regeneration.

4.3.3. SERCA pump—SERCA inhibition with tBuBHQ completely inhibited 

regeneration at low concentrations, although higher concentrations of this drug were lethal. 

The sacroplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) is expressed in virtually all 

cell types and distributes Ca2+ ions against their concentration gradient into sarcoplasmic 

and endoplasmic reticula. This allows for quick sequestration of cytoplasmic free Ca2+ 

following a Ca2+ signaling event and for the generation of intracellular calcium stores that 

allow for a more rapid and robust Ca2+ surge upon cellular stimulation (Wuytack et al., 

2002). As discussed above, Ca2+ signaling is associated with many cytosolic signaling 

pathways and physiological functions, all of which require precise control of intracellular 

Ca2+ concentration pulses in terms of both magnitude and duration, and these Ca2+ 

dependent pathways are operative in models of epimorphic regeneration (Berridge et al., 

2000; Rao et al., 2014). The ubiquitous nature of SERCA expression may explain why 

inhibition of this ion channel completely inhibited regeneration, while incomplete 

Franklin et al. Page 10

Mech Dev. Author manuscript; available in PMC 2019 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regeneration was observed for L-type Cav channel inhibition. Based on the extensive 

network of pathways influenced by Ca2+ signaling and the pervasive nature of SERCA 

pumps, SERCA pumps will present challenging targets to investigate mechanisms of tissue 

regeneration.

5. Summary

A chemical genetic screen was performed to identify ion channel antagonists that inhibit 

axolotl tail regeneration. Then, experiments were performed to determine how select 

antagonists affected cellular behaviors (cell proliferation and phagocyte activation) that are 

required for successful tail regeneration. The antagonists that were identified from the screen 

targeted the following ion channels: anoctamins 1/2 (Tmem16a/b), GlyR, GABAAR, KV1.5, 

KV2.1, KV2.2, L-type CaV channels, H/K ATPases and SERCA pumps. An association was 

established between KV channel blockade and phagocyte activation, and thus a possible 

mechanism for KV channel mediated inhibition of axolotl tail regeneration. Also, blockade 

of the anoctamins reduced cellular proliferation, and this was associated with modulated 

transcription of Erk1/2 signaling pathway genes. It has been shown previously that the 

transcriptional response to bioelectric signaling is conserved among axolotl regeneration, 

Xenopus development and human progenitor cells (Pai et al., 2015). This speaks to the broad 

relevance of the data presented in this report and lends credence to the idea that the 

antagonists and ion channels prioritized from our study will provide useful tools and targets 

for investigating mechanisms of tissue regeneration.
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Fig. 1. 
(A) All broad scale inhibitors of chloride channels (DNDS, DIDS and NFA) robustly 

reduced tail regeneration at concentrations of 100 nM and above. (B–D) Inhibitors of 

calcium activated chloride currents with CaCCinh-A01, T16a(inh)-A01 and Benzbromarone 

all reduced regenerative growth in a concentration dependent manner with maximal 

responses at 2, 100 and 0.33 μM respectively. (E & F) PTx and BCU were used to 

investigate the role of ligand-gated chloride channels and both exhibited robust inhibition of 

regeneration at all concentrations tested (* indicates p < 0.05 compare to control or 

concentration = 0; error bars are standard deviations, n values depicted on bar graphs 

represent biological replicates).
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Fig. 2. 
(A) While the broad scale potassium channel inhibitor TEA only reduced regenerative 

growth (B) the voltage-gated K+ channel blocker 4-AP exhibited concentration dependent 

inhibition. (C) KV2.1/2.2 channels that were inhibited with GTx-1E exhibited a slight 

reduction of regenerative growth at 1 and 5 μM but was lethal at all concentrations above 5 

μM and (D) CB exhibited complete inhibition at 10 μM (* indicates p < 0.05 compare to 

control or concentration = 0; error bars are standard deviations, n values depicted on bar 

graphs represent biological replicates).
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Fig. 3. 
Phagocytes were stained in live regenerating axolotl embryos with neutral red at 6, 18, 24, 

36, 48 (2 days), 72 (3 days), 120 (5 days), 144 (6 days) & 168 (7 days) hpa. Panel (A) 

depicts representative micrographs of each time point (amputation plane indicated by black 

dashed line) with enlarged photos in panels (B & B′) showing individual phagocytes. 

Representative (but not all) NR+ cells are indicated by yellow arrowheads. (C) Phagocytes 

were counted from 500 μM proximal of the amputation plane to the tip of the tail and 

normalized by tissue cross-sectional area. Phagocyte density steadily increased over the first 

few days following amputation peaking between days 2 and 3. This was followed by a 

trough in phagocyte density between days 3 and 5 that corresponded to increased tissue 

outgrowth, and then a second phagocyte density peak at day 6 (* indicates p < 0.05 

compared to phagocyte density immediately following amputation; scale bars represent 1 

mm; error bars are standard deviations). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Phagocytes were stained in live animals with neutral red at 3 and 6 dpa. Panel (A) depicts 

representative micrographs of all time points and treatments (amputation plane indicated by 

black dashed line). (B) 4AP inhibits phagocyte activation and recruitment to the wound site 

at concentrations of either 5 or 25 μM. This response is concentration dependent at 6dpa but 

not 3dpa (* indicates p < 0.05 compared to control and ^ indicates p < 0.05 compared 

animals treated with 5 μM 4AP; scale bars represent 1 mm; error bars are standard 

deviations).
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Fig. 5. 
Phagocytes were labeled by IP injection of Fluorosome®-DiI 24 h prior to amputation and 

co-injected with either Encapsome® as a vehicle control (B-B″; n = 10), Clodrosome® for 

macrophage depletion (C-C″, n = 15) and a final group co-injected with Encapsome® and 

then incubated with 25 μM 4-AP following amputation for KV channel blockade (D-D”; n = 

14). (* indicates p < 0.05 compared to control; error bars are standard deviations) Both 

macrophage depletion prior to amputation (C-C″) and KV channel blockade following 

amputation (D-D″) reduced the number of DiI+ cells at the wound site.
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Fig. 6. 
Compared to controls (n = 4) (A-A″), the proliferative response to amputation was reduced 

by broad scale chloride channel blockade with either DIDS (n = 4) or DNDS (n = 5) (C) as 

well as anoctamin-1 channel blockade with T16a(inh)-A01 (n = 5) (B-B″)) but not when 

animals were incubated in chloride free medium (n = 5) (C) (amputation plane indicated by 

white dashed line). Taken together these data suggest that chloride channel signaling is a 

critical step in the mechanism(s) driving proliferation in response to amputation. (* indicates 

p < 0.05 compared to control; error bars are standard deviations) (D&E) Neither DIDS nor 

T16a(inh)-A01 had an effect on proliferation in spinal cord (SC) or epidermal (ED) tissues. 

In mesenchymal tissues (MM) directly underlying the wound epidermis and within 500 μm 

of the amputation plane, proliferation was reduced from 46.6 ± 0.7% in control animals to 

either 20.0 ± 3.5% (DIDS) or 23.0 ± 2.9% (T16a(inh)-A01) in treated animals (* indicates p 
< 0.05 compared to control of same tissue type; error bars are standard deviations).

Franklin et al. Page 21

Mech Dev. Author manuscript; available in PMC 2019 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Apoptosis was assessed following amputation in 3 dpa animals and compared to apoptotic 

rates in tissue from un-amputated axolotl tails. Tissues were cut into transverse sections and 

then divided into groups consisting of sections of either from the tail tip to 100 μM distal of 

the amputation plane and a second group consisting of tissue from 150 to 250 μM distal of 

the amputation plane. No differenced were observed in the latter group but the former 

exhibited similar increases in apoptotic cells in both the control 3 dpa animals and 3 dpa 

animals treated with the Ano1 inhibitor (* indicates p < 0.05 compared to un-amputated tail 

tissue).
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Fig. 8. 
Quantitative Real-Time PCR was used to assess the mRNA expression of genes associated 

with the p44/42 MAPK (Erk 1/2) signaling pathway at 72 h post amputation (hpa) in 

regenerating axolotl tails and at the same time point in animals treated with 20 μM T16Ainh-

A01. Expression in tail tissues from un-amputated animals was used as control/baseline. All 

genes other than PKCγ exhibit modulated expression at 3 dpa, which was attenuated by 

Ano1 blockade (* indicates p < 0.05 compared to control and ^ indicates p < 0.05 compared 

to normal 72 hpa animals; error bars are standard deviations).
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Fig. 9. 
A comprehensive screen of ion channel blockers was used to identify specific channels 

involved in critical cellular processes of growth and regeneration such as proliferation, 

migration and differentiation. Drugs that did not affect regeneration are depicted in green, 

drugs that resulted in partial regeneration are depicted in yellow, drugs that completely 

inhibited regeneration (for any of the concentrations tested) are depicted in red and drugs 

that were lethal at all concentrations or caused systemic toxicity (identified by general 

atrophy, lethargy and/or tissue degeneration) are depicted in black. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Table 2

This table summarizes the primers used to measure gene transcription by quantitative real-time PCR.

Gene Forward primer Reverse primer

GAPDH ACGTCTCTGTGGTTGACTTG TTCCCTTCATTGGTCCATCAG

PKC-γ GGCAGTCGTGAGATGAGTTT ACCGATACAAGCTGAGTGAAG

PKC-α CGTAGAATGCACGATGGTAGAA TCCTCAGTTTGGAAGCAAGAA

PKC-β CGCATGAAGCTATCCGACTT CATAGAGCTCGTCAGTACCTTTC

RRAS GTCCACATTAAGCCGGATCT CCTACATAGACAGGTGCCAAA

RAF1 AGGAGACCAAGTTTCAGATGTT GTCCCTGTGGATGATGTTCTT

MAPKK1 AGCTCCTGTGAAGCGTATTC CCTAGATCTGCCCTGCATTT

MAPKK2 GAGGAAGGGAAACCGAACATAA CTTAGCTCGTCTACAGCCAATC

MAPK1/ERK2 CGGGCACCAGAGATAATGTT GGAAGATGGGTCTGTTAGATAGC

MAPK3/ERK1 CGCATTGGATCTGCTGGATAA GGTCGTAGTACTGTTCCAGGTA
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