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ABSTRACT OF DISSERTATION 

 
 
 

UTILIZING LARGE SCALE DATASETS TO EVALUATE ASPECTS OF A 

SUSTAINABLE BIOECONOMY 

 

This dissertation combines large scale datasets to evaluate crop prediction, land 

values, and consumption of a crop being considered to advance a sustainable bioeconomy. 

In chapter 2, we propose a novel application of the multinomial logit (MNL) model to 

estimate the conditional transition probabilities of crop choice for the state of Kentucky. 

Utilizing the recovered transition probabilities the forecast distributions of total acreages 

for alfalfa, corn, soybeans, tobacco, and wheat produced in the state from 2010 to 2015 can 

be recovered. The Cropland Data Layer is merged with the Common Land Unit dataset to 

allow for the identification of crop choice at the field level. Our findings show there are 

higher probabilities of planting soybeans or wheat after corn relative to corn after corn, 

tobacco, or alfalfa. In addition, the transition probability of the crop rotation demonstrates 

that corn will be planted after soybean, and vice versa and that alfalfa has a lower 

probability of being rotated with other crops from year to year. These findings are expected 

with traditional crop rotation in the U.S., and a characteristic of a perennial crop, especially 

for alfalfa. Finally, forecasting results indicate that there are significantly wider 

distributions in corn and soybean, whereas there is a little variation in the tobacco, wheat 

and alfalfa acres in the simulation. 

 

In chapter 3, we identify critical consumer-demographic characteristics that are 

associated with the consumption of products containing hemp and investigate their effect 

on total expenditure in the U.S. To estimate the likelihood of market participation and 

consumption level, the Heckman selection model, is employed using the maximum 

likelihood estimation procedure utilizing Nielsen consumer panel data from 2008 to 2015. 

Results indicate marketing strategies targeting consumers with higher education and 

income levels can attract new customers and increase sales from current consumers for this 

burgeoning market. Head-of-household age in different regions shows mixed effects on 

decisions to purchase hemp products and consumption levels. Findings will provide a basic 

understanding of a consumer profile and overall hemp market that has had double-digit 

growth over the last six years. As the industry continues to move forward, policymakers 

are going to need a deeper understanding of the factors driving the industry if they are 

going to create regulations that support the development of the industry. 

 

In chapter 4, we investigate the factors that affect agricultural land values by 

proposing a new rich dataset, Zillow Transaction and Assessment Data (ZTRAX) provided 

by Zillow from 2009 to 2014. we also examine whether National Commodity Crop 

Productivity Index (NCCPI) could be a good indicator of land values or not by comparing 

two different regression models between county-level cash rent and parcel-level NCCPI. 

Finally, this study incorporates flexible functional forms of the parcel size to test the parcel 

size and land values relations. Findings show that factors influencing agricultural land 

values in states with heterogeneous agricultural lands such as Kentucky are not different 



     

 

from other states with relatively homogeneous agricultural lands. This study also provides 

suggestive evidence that there is a non-linear relationship between parcel size and land 

values. Furthermore, we find that a disaggregated NCCPI at parcel-level could be 

considered an acceptable indicator to estimate agricultural values compared to an 

aggregated cash rent at county-level. 

 

KEYWORDS: Cropland Data Layer, Common Land Unit, Nielsen Consumer Panel, 

Industrial Hemp, Zillow Transaction and Assessment Data, Kentucky  
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CHAPTER 1. INTRODUCTION 

The international shift toward green manufacturing and renewable products from 

biomass has resulted in the concept of the Bioeconomy, which links to energy, agriculture, 

manufacturing, environmental, and health sectors. Based on the National Bioeconomy 

Blueprint issued by the White House in April 2012, the bioeconomy is large and rapidly 

growing segment of the world economy.1 Based on Oborne (2010), the bioeconomy is 

defined as economic activities that are associated with the invention, development, 

production, and use of biological products and processes. The major benefits of the 

bioeconomy make socioeconomic contributions in both Organization Economics 

Cooperation Development (OECD) and non-OECD countries. These contributions include 

improving health outcomes, boosting the productivity of agriculture and industrial 

processes, and enhancing environmental sustainability. 

According to the United State Department of Agriculture (USDA, 2013) and 

Golden et al. (2013), the bioeconomy contributes to both the overall economy, and our 

community.2 From the economic point of view, it contributes approximately $369 billion 

to the U.S. economy in a single year. This includes 4 million jobs to bio-based industries 

and $126 billion in sales of bio-based products in 2013. In addition to the economic 

impacts, the bioeconomy also provide the following benefits to the community: replaced 

300 million gallons of petroleum per year, reduced greenhouse gas emission, and 2,250 

USDA certified products on the market (Golden et al., 2013).  

                                                 
1 See 

https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/national_bioeconomy_blueprint_e

xec_sum_april_2012.pdf 
2 See https://www.biopreferred.gov/BPResources/files/BP_InfoGraphic.pdf 

https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/national_bioeconomy_blueprint_exec_sum_april_2012.pdf
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/national_bioeconomy_blueprint_exec_sum_april_2012.pdf
https://www.biopreferred.gov/BPResources/files/BP_InfoGraphic.pdf
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In the U.S., seven major sectors of the biobased product industries that contribute 

to the U.S. economy are as follows: Agriculture and Forestry, Biorefining, Bio-based 

Chemicals, Enzymes, Bioplastic bottles and packaging, Forest Products, and Textiles 

(Golden et al., 2013). Bio-based products, which are generally derived from many different 

biomass feedstocks, can be categorized by two different products as the first generation (if 

edible) and second generation (if not edible). The bio-based products such as corn, 

soybean, and wheat are considered as the first generation of the primary agricultural 

feedstocks whereas products such as corn stover, miscanthus, and switchgrass are 

represented as the second generation feedstocks. From an agricultural standpoint, the 

identification of viable feedstocks and locations that these feedstocks can be produced is 

one of the first steps in the development of the bioeconomy. 

Kentucky, for example, has long been known for its ability to produce forages for 

the livestock industry. Furthermore, its climate makes it an ideal location for a wide variety 

of potential feedstocks include but are not limited to switchgrass, miscanthus, sweet 

sorghum, hemp, kenaf, and corn stover. Many of those biomass feedstocks in development 

around the nation are not grown or have not been adopted as major crops, and crop 

producers are unfamiliar with practices and markets associated with them. Considering 

falling commodity prices in recent years, alternative biomass feedstocks provide producers 

with at least the same profit per acre as the current commodities being produced. The first 

essay (Chapter 2) entitled “Recovering forecast distributions of Crop Composition: 

Method and Application to Kentucky Agriculture” estimates the transition probabilities for 

the five primary row crops produced in Kentucky by employing Crop Data Layer (CDL). 

In addition, using transition probability from the first Markov chain and simulation 
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technique, we generate probability distributions for each crop and forecast the acreage 

distribution of each crop to be planted. Findings will contribute to developing strategies to 

help with the development of the bioeconomy in Kentucky. 

Industrial Hemp (also known as hemp) is one of the biomass crops, and there are 

many different hemp-based products in the U.S. According to Hemp Industries Association 

and Vote Hemp, total sales in hemp-based products are $573 million in 2015 and $688 

million in 2016.3 In addition, the hemp-based products in the U.S. are categorized by food, 

Hemp CBD, supplements, personal care, consumer textiles, industrial applications, and 

other consumer products. Especially for the food sector, the hemp-based food is considered 

as “Super Food” in that it provides several health benefits. All hemp foods are essentially 

made from hemp seeds, which are known as a nutritionally complete food source in the 

world due to the perfect balance of omega 3 to omega 6, plus iron, vitamin E, and the 

essential amino acids.4 Furthermore, hemp seeds contribute to weight loss, normalize blood 

sugar levels, improved immune health, improved cholesterol levels, and high protein.5  

Although demand for hemp-based products and its sales are increasing in the U.S., 

there is no large-scale commercial production in the U.S. All hemp-based products rely on 

imports largely from Canada and China. The second essay (Chapter 3) entitled “Hemp, 

Hemp, Consumption in the U.S.” investigates the important socioeconomic and 

demographic characteristics associated with hemp-based food consumption and their 

impacts on expenditures in the U.S. by utilizing Nielsen’s consumer panel data from 2008 

                                                 
3 See https://www.thehia.org/HIAhemppressreleases/4010402 and http://www.votehemp.com/PR/PDF/4-

14-17%20VH%20Hemp%20Market%20Data%202016%20-%20FINAL.pdf 
4 See https://www.leafly.com/news/food-travel-sex/why-are-hemp-seeds-considered-a-superfood 
5 See https://www.nateralife.com/blog/lifestyle/why-is-hemp-a-superfood/ 

https://www.thehia.org/HIAhemppressreleases/4010402
http://www.votehemp.com/PR/PDF/4-14-17%20VH%20Hemp%20Market%20Data%202016%20-%20FINAL.pdf
http://www.votehemp.com/PR/PDF/4-14-17%20VH%20Hemp%20Market%20Data%202016%20-%20FINAL.pdf
https://www.leafly.com/news/food-travel-sex/why-are-hemp-seeds-considered-a-superfood
https://www.nateralife.com/blog/lifestyle/why-is-hemp-a-superfood/
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to 2015.6 Findings in this study will begin to fill the knowledge gap on a crop that is 

increasing consumption and production in the U.S. As the industry continues to move 

forward, findings in this study may also open the door to develop a business and marketing 

plan that creates goals and strategies for marketers, retailers, and other stakeholders. In 

addition, the findings will provide potential market opportunities by not only understanding 

consumers but also segmenting groups of consumers to increase the market share of the 

hemp products.  

In the U.S., the average farm real estate value in both nominal and real terms is 

increasing over time (USDA, 2016). The farmland value is measured based on the 

productivity (and the returns) of its lands from agricultural activity (Featherstone and 

Baker, 1987). According to Barnard (2000) and Flanders et al. (2004), the market value of 

farmland is higher than its use value in agricultural production across the U.S. The portion 

of the market value, especially from the agricultural production, can be referred as its 

agricultural use value (Borchers et al., 2014). U.S. agriculture is experiencing fundamental 

change due to the development of the bioeconomy. The bioeconomy is not only closely 

related but also significantly affected by agricultural land use and value due to increasing 

demand and supply of the biomass crop production. Since agricultural land is limited, 

farmers must compete for land to produce biomass crops. Therefore, it is important to 

consider agricultural land values and their influence on investment in biomass crops 

                                                 
6 The author(s) would like to thank the Marketing Data Center at the University of Chicago Booth School 

of Business. Information on accessing this data can be found at http://research.chicagobooth.edu/nielsen/. 

Results are calculated (or Derived) based on data from The Nielsen Company (US), LLC and marketing 

databases provided by the Kilts Center for Marketing Data Center at The University of Chicago Booth 

School of Business. The conclusions drawn from the Nielsen data are those of the researchers and do not 

reflect the views of Nielsen. Nielsen is not responsible for, had no role in, and was not involved in 

analyzing and preparing the results reported herein. 

http://research.chicagobooth.edu/nielsen/
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productions. The third essay entitled “Factors affecting Heterogeneous Agricultural Land: 

The Case of Kentucky” investigates the factors that affect agricultural land values using a 

new rich dataset, Zillow Transaction and Assessment Data (ZTRAX) provided by Zillow 

from 2009 to 2014.7 This study focuses only on Kentucky by hypothesizing that the factors 

influencing the farmland values may not be consistent with the findings in the previous 

studies on farmland values. We then incorporate the flexible, functional forms of the parcel 

size into the Hedonic framework to calculate specific threshold points where the direction 

and effect of parcel sizes change. This study strives to make three contributions. First, our 

study is the first to employ a new rich dataset, ZTRAX, to investigate agricultural land 

values in a relatively heterogeneous agricultural state. Second, this study will provide 

suggestive evidence on whether National Commodity Crop Productivity Index (NCCPI) 

can be used a good indicator of land values rather than cash rent. If NCCPI is the good 

indicator and substitutable for the cash rent, then this finding will imply that price 

information should not necessary to be accounted for analyzing the agricultural values. 

Finally, our results will help land-owners make decisions managing land more efficiently 

by providing an advanced understanding of the size-effect on land values.  

Chapter 5 summarizes the collective findings and provides some discussion of the 

implications of each chapter of the dissertation. 

  

                                                 
7 Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More 

information on accessing the data can be found at http://www/zillow.com/ztraz. The results and opinions 

are those of the author(s) and do not reflect the position of Zillow Group 

http://www/zillow.com/ztraz
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CHAPTER 2.  RECOVERING FORECASTING DISTRIBUTIONS OF CROP 

COMPOSITION: METHOD AND APPLICATION TO KENTUCKY 

AGRICULTURE 

2.1  Abstract 

This paper proposes a novel application of the multinomial logit (MNL) model to estimate 

the conditional transition probabilities and generate the forecast distributions of total 

acreages for the five largest crops produced in the state of Kentucky. The transition 

probability of the crop rotation demonstrates that corn will be planted after soybean (and 

vice versa) and that alfalfa has a lower probability of being rotated with other crops from 

year to year. Forecasting results indicate that there are significantly wider distributions in 

corn and soybean, whereas there is little variation in the tobacco, wheat and alfalfa acres 

in the simulation. 

 

2.2 Introduction 

Improvements in crop production forecasts, yield forecasts, and forecasting 

methods have been a focus of agricultural economics research for decades. It is due to that 

fact that crops are traded and priced on commodity exchanges that operates every day. 

Traders need up-to-date information to make decisions on buying and selling. According 

to Hayes and Decker (1996), crop production assessments also provide important 

implications for agribusiness and food management, implying crop production and yield 

predictions directly influence year-to-year local, state, regional, national and international 

economies. On a macro level, understanding the determinants of crop acreage and yield 

forecast helps with the identification and management of the demand and supply of crop 

production (de Barros Dias, 2017). For example, merchandizers rely on crop supply and 

demand estimates prepared by both public and private organizations (Vogel and Bange, 

1999). Also, estimates and forecasts of acreage and yield can have a significant impact on 

the futures prices and market volatility (Good and Irwin, 2011), as well as market 

participants (Egelkraut, et al., 2003). Thus impacting farm income and investment in 
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agriculture, so they are highly anticipated market events (de Barros Dias, 2017, Good and 

Irwin, 2011).    

The National Agricultural Statistics Service (NASS) of the U.S. Department of 

Agriculture (USDA) is the primary provider of public information on potential crop size 

and forecast of the average yield and production (Good and Irwin, 2011).8 In addition to 

NASS, private companies such as Conrad Leslie and Informa Economics (previously 

Sparks Companies) develop and use crop forecasts, especially for corn, soybeans, and 

wheat. (Egelkraut, et al., 2003). The crop production forecasts, as well as the acreage 

estimation of the NASS, are based on survey data. To be specific, the acreage estimation 

is reported based on the March and June Agricultural Surveys. In the March Agricultural 

Survey in 2015, for example, approximately 84,000 farm operators were contacted by mail, 

internet, telephone, or personal interview, whereas approximately 70,000 farm operators 

were surveyed in the June Agricultural Survey (Good and Irwin, 2015).  Since the survey 

used to estimate acreage is based on a random sample of farm operators instead of all 

operators, Good and Irwin (2011) argue that the estimated acreage is subject to sampling 

error; therefore, it may produce different results with a different sample and inaccurately 

reflect the population of farm operators.   

Even though NASS provides a detailed description of the crop estimating and 

forecasting, market participants still lack understanding of how acreage, yield, and 

production forecasts are conducted. This lack of understanding results in a lack of trust in 

                                                 
8 According to Adjemian and Smith (2012), the USDA also releases the World Agricultural Supply and 

Demand Estimates (WASDE) at the beginning of May in each year, and it provides forecasts for several 

crops of annual U.S. production. Thereafter, USDA releases a new WASDE report each month by adding 

detailed farm surveys, whether forecasts, and expected market development from the NASS and 

Interagency Commodity Estimates Committees (ICEC). 
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the objectives of the forecasts (Good and Irwin, 2011). In addition to the sampling error 

issue with NASS forecasts, the NASS forecasts of acreage only provide mean values of 

acreage forecasts by county. Therefore, it does not reflect uncertainty in the forecasts 

related to the risk of decision makers. By shifting to forecasting acreage distributions 

instead of mean acreage, uncertainty in the forecast values, such as minimum and 

maximum forecasted acreages, are incorporated. Forecasted distributions can then be used 

to assess crop sales and total acreage. Savage (2011), for example, utilizes Markov 

transition probabilities to simulates the distribution of total acreages by crop type whether 

the forecasted acreage for each crop meet the minimum acreage requirements by 

Endangered Species Act (ESA) for a variety of endangered species.  

The main objectives of this paper are two-fold. First, we estimate the conditional 

transition probabilities for crop choice utilizing a novel application of the multinomial logit 

(MNL) model. Secondly, we simulate the distribution of total acreages by crop using the 

recovered transition probabilities from the first-order Markovian process. Through this 

process, both sampling error and mean forecast issues can be overcome by using all the 

fields instead of a random sample of the fields; forecasting the distribution of acreage in 

addition to the mean acreage. The method proposed in this paper utilizes forecasted 

distributions for the five largest crops produced in the state of Kentucky. The method, 

therefore, could make use of publicly available data and provide an additional option for 

governmental and non-governmental groups trying to predict crop yield, acreage, price 

forecasts, land values, etc. In addition, response rates on NASS crop acreage and 

production surveys have been declining since the early 1990s, and it consequently could 

result in declining the statistical reliability of estimates and forecasts (Johansson, et al., 
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2017; Schnepf, 2017). Therefore, the method proposed in this study could supplement 

NASS survey and improve the quality of NASS crop acreage and production estimates.   

The remainder of the paper is structured as follows: section two discusses related 

literature, section three describes and presents data. Section four explains the empirical 

models including the multinomial logit model and a first-order Markov chain approach. 

Section five discusses the analysis and presents the results. We conclude the paper in 

section six and offer policy implications and areas for future research.  

2.3 Literature Review 

This paper has relevance to the existing literature in two particular areas: (i) 

importance of evaluating crop rotation and transition probabilities; (ii) literature that uses 

MNL and first-order Markov process theory in agricultural related studies. 

2.3.1 Crop Rotation and Crop Transition Probabilities 

Crop rotation (also called polyculture) is defined as growing a series of multiple 

crops in the same field in alternating years whereas monoculture is defined as growing a 

single crop in consecutive years in the same field (Martinez and Maier, 2014). Farmers 

commonly practice crop rotation because its advantages offset its disadvantages. Crop 

rotation benefits include increased yield (Leteinturier, et al., 2006, Porter, et al., 1997), 

improved soil fertility (Hendricks, et al., 2014b, Karlen, et al., 2006, Plourde, et al., 2013), 

reduced greenhouse gas emissions (Halvorson, et al., 2008), and reduced economic risk by 

having more than one crop as a potential income source (Martinez and Maier, 2014). The 

traditional crop rotation in western Kentucky is either a Corn-Soybean Rotation or Wheat-

Double Crop Soybeans-Corn. In areas with tobacco production, it is typically Tobacco-

Tobacco-Alfalfa. Both corn and tobacco require significant nitrogen fertilizer for growth, 
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so that is why they are rotated with either soybeans or alfalfa. Furthermore, incorporating 

leguminous crops, commonly known as nitrogen-fixing crops such as soybeans, into a 

rotational sequence with the region’s dominant crop will result in increasing the robustness 

and resilience of local agricultural system (Burgess, et al., 2012, Long, et al., 2014).  

2.3.2 The Multinomial Logit Model and Markov Chain Process 

The MNL model has been widely used in agricultural related studies especially for 

modeling land use (Carrión-Flores, et al., 2009, Hardie and Parks, 1997, Lichtenberg, 1989, 

Plantinga, et al., 1999, Wu, et al., 2004). Lichtenberg (1989) estimates county-level 

cropland allocation based on the seven major crops in western Nebraska from 1966-1980. 

Hardie and Parks (1997) employ the MNL model into the land use decision by 

incorporating heterogeneous land quality in the southeastern U.S. They argue that the MNL 

model allows errors not only from the use of county averages but also from the use of 

sample estimates of land use acreage. Plantinga, et al. (1999) simulate carbon sequestration 

based on estimates of land use share in Maine, South Carolina, and Wisconsin by utilizing 

the MNL model. Wu, et al. (2004) predict crop choice and tillage practices to assess the 

economic and environmental consequences of agricultural land-use changes by using the 

MNL model. Carrión-Flores, et al. (2009) use the MNL model by incorporating spatial 

dependence in Medina County, Ohio for the determinants of land use choices. Paton, et al. 

(2014) investigate the impact of rainfall and crop profit margin on crop choice by using 

MNL regression to generate the crop choice transition probabilities.  

Matis, et al. (1985) propose a methodology to forecast crop yields and provide 

forecast distributions of crop yield by using Markov chain theory. They find that 

forecasting crop yield distributions are more informative compared to forecasting mean 
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yields. Regarding preciseness, they also find that estimates using the Markov chain and 

regression approaches are approximately similar. The Markov chain approach, as a non-

parametric method, provides point estimates that are not constrained by distribution 

assumptions whereas the point estimates from the regression approach, a parametric 

method, depends upon the normal distribution assumption. In this study, we use the first 

order Markov Chain approach to predict crop acreage distribution by accounting for the 

dynamics in the analysis by specifying the year-to-year transitions between five crops. 

Furthermore, the first order Markov chain is appropriate in this study because crop rotation 

generates dynamic complementarity in crop production. Specifically, the probability of 

planting a particular crop one year depends on what was planted on the field in the prior 

year (Hendricks, et al., 2014a). We contribute to the previous and existing literature on 

forecasting crop production in two main ways: First, we generate crop choice transition 

probabilities based on first-order Markov theory using field-level data. Second, to the best 

of our knowledge, our acreage forecasting approach has not been employed and applied 

previously to forecast crop acreage distributions. Therefore, our novel approach will 

contribute to filling the gap in forecasting distribution of crop acreage.    

2.4 Data 

The primary source of information for crop choice data is the Cropland Data Layer 

(CDL). NASS produces the CDL, which was initiated in early 1997, to provide annual 

geospatial content to customers who were interested in annual cropland cover updates. 

CDL is a comprehensive, raster-formatted, and geo-referenced imagery for crop-specific 

land cover classification to identify field crop types accurately and geospatially (Boryan, 
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et al., 2011).9 The CDL includes the entire U.S. crop or land use classification codes, which 

are assigned to each pixel and classified by NASS using data from satellite sensors and 

validation. Use of the CDL data to date has been limited but has received more attention 

recently to study farmer’s behavior regarding crop choice (Hendricks, et al., 2014a, 

Hendricks, et al., 2014b, Long, et al., 2014, Plourde, et al., 2013, Stern, et al., 2012, Yost, 

et al., 2014). For this manuscript, the Kentucky CLD data from 2010-2015 is the focus. 

Specifically, we examine the five main crops: corn, soybeans, tobacco, wheat, and alfalfa.10 

Kentucky provides an opportunity to examine a tradition corn-soybean rotation, a rotation 

for a contract crop in tobacco, and a perennial crop in alfalfa.  

 Next, we employ the Common Land Unit (CLU) boundaries, obtained from the 

GeoCommunity, to identify field boundaries.11 Based on the Farm Service Agency (FSA) 

of the USDA, the CLU is defined as the smallest unit of land and individual contiguous 

farming parcel. The CLU is composed of contiguous boundary, common land cover, and 

land management (FSA, 2016).  

To construct a filed level crop choice data, we used the following steps: First, we 

overlay the CLU with the National Land Cover Dataset (NLCD) 2011, which is the most 

recent national land cover product, produced by the Multi-Resolution Land Characteristics 

                                                 
9 Raster, also called raster graphic, is simply an image that represents the rectangular grid of pixels. Each 

pixel in the CDL is a ground resolution of 30 meters by 30 meters.  
10 These are the top five row crops in Kentucky based on acreage. Please see the figure 1A in the appendix. 

This will provide an idea of how much areas these crops occupy in Kentucky. 
11 The CLU data was publicly available on FSA before 2008. However, FSA no longer provides the 

geospatial data including the CLU due to the Food, Conservation, and Energy Act of 2008. More detailed 

information about the CLU is available at https://www.fsa.usda.gov/programs-and-services/aerial-

photography/imagery-products/common-land-unit-clu/index. In addition, more detail information about the 

GeoCommunity can be found at http://www.geocomm.com.  

https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-products/common-land-unit-clu/index
https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-products/common-land-unit-clu/index
http://www.geocomm.com/
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(MRLC) to remove non-agricultural fields.12 Second, we overlay the CLU with the CDL 

to identify changes in rotations on a field by field basis instead of pixel or county basis. 

Third, we apply a moving window filter, which replaces each cell in raster based on the 

majority of adjacent cells, in Geographic Information System (ArcGIS) to remove 

misspecified (i.e., spurious) cells and to smooth rasters. Finally, we employ zonal statistics, 

which calculate the values of a raster within the zones of another dataset, to identify how 

many pixels are located in each field.13 Table 2.1 shows the total observations and percent 

of observations by crop class and by year, respectively. We used 1,874,184 fields in total 

with approximately 1.5 million observations.14 In 2015, the percentage of land in soybeans, 

corn, alfalfa, tobacco, and wheat acreage in Kentucky are 42%, 36%,1%, 0.6%, and 0.4%, 

respectively.15 Twenty-eight (out of 120) counties in Kentucky are excluded from this 

study because the CLU data was not available. Table 2.2 shows the missing acres in 

percentage compared to the original CDL data. Based on Table 2.2, we are losing more 

data for tobacco and alfalfa compared to corn, soybeans, and wheat.16       

Crop choice decisions by farmers are heavily dependent on the weather (e.g., 

precipitation and temperature) observed in the growing season. To control for weather 

factors, we obtained precipitation and temperature data from the Parameter-elevation 

Regressions on Independent Slopes Model (PRISM), which is official climatological data 

                                                 
12 There are 16 different classifications of the NLCD, and this study only focuses on pasture/Hay and row 

crops as agricultural lands defined by the MRLC.  
13 More detail information about the zonal statistics can be found at 

http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/h-how-zonal-statistics-works.htm 
14 This study encountered some difficulties in combining several public data sets with overlapping 

technical information on land characteristics and use. Appendix A describes what difficulties were 

encountered and how we overcame them. 
15 Figure 2.4 in Appendix C represents how these major crops are distributed in Kentucky. This figure 

shows that the majority of corn and soybeans are planted in the western Kentucky. 
16 Figure 2.5 in Appendix C shows the locations of excluded counties. 

http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/h-how-zonal-statistics-works.htm
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from the USDA.17 For the weather variables, we calculate and use average precipitation in 

April, May, and June; the average temperature in June, July, and August months of each 

year.  

Soil quality is another main factor that affects crop choice behavior by farmers. To 

control for this factor, we obtain data on soil textures (e.g., percent clay, percent silt, and 

percent sand) from Gridded Soil Survey Geographic (gSSURGO) database, which is 

provided by USDA National Resources Conservation Service (NRCS). The gSSURGO 

database has greater spatial extents (i.e., high resolutions) than the traditional SSURGO.18 

Finally, we obtain National Elevation data (30-meter resolution) from the Geospatial Data 

Gateway provided by USDA-NRCS to calculate the elevation and slope. The soil and 

elevation data sets are time-invariant. 19  All of the data, which are precipitation, 

temperature, slope, elevation, and soil textures, are spatially joined based on the unique 

field ID. Table 2.3 shows the summary statistics of the data used in this study. As shown 

in Table 2.3, the mean acreage of these fields is 5.97 acres, and their average soil 

composition is 66.25% silt, 20.59% clay, and 11.83% sand. These fields represent 92 

counties in Kentucky (out of 120 counties).20 In addition, the average monthly temperature 

and precipitation are 29.94 (°C) and 143.68 (mm), respectively.  

                                                 
17 For more detail information about the PRISM dataset, see 

http://www.prism.oregonstate.edu/documents/PRISM_datasets.pdf 
18 For more detail information about the gSSURGO, see 

https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052164.pdf 
19 Soil and Elevation data sets in different years are not publicly available.     
20 92 counties account for 32,149.43 square miles out of the total 40,407.78 square miles. Thus, our sample 

covers about 79.56% of total land in Kentucky. 

http://www.prism.oregonstate.edu/documents/PRISM_datasets.pdf
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052164.pdf
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2.5 Empirical Model 

2.5.1 Multinomial Logit Model 

This study employs the multinomial logit (MNL) model by McFadden (1973) to 

develop Markov transition probabilities for the five primary crops in Kentucky: corn, 

soybean, tobacco, wheat, and alfalfa. The MNL model is motivated by the random utility 

model (RUM) framework, and the following discussion of RUM is based on McFadden 

(1973) and Croissant (2012). The farmer chooses one alternative among different and 

exclusive alternatives. The decision to choose the alternative is then determined by the 

utility level, 𝑈𝑖𝑗, for a farmer i derives from choosing alternative j. It follows that  

 𝑈𝑖𝑗 = 𝑥𝑖𝑗
′ 𝛽𝑗 + 𝜀𝑖𝑗 = 𝑉𝑖𝑗 + 𝜀𝑖𝑗 (1) 

where 𝑖 = 1, … , 𝑁 , 𝑗 = 1, … , 𝑚 , 𝑉𝑖𝑗  is a deterministic component that depends on 

regressors and unknown parameters, 𝜀𝑖𝑗 is an unobserved component (i.e., error terms).21 

This is called RUM, and the alternative providing the highest level of utility will be chosen; 

in other words, alternative j is chosen if and only if ∀ 𝑘 ≠ 𝑗 𝑈𝑗 > 𝑈𝑘. Suppose a farmer 

chooses at least one crop from different alternatives (other crops). The farmer will choose 

corn if the utility by choosing corn is higher than the utility by choosing soybeans (i.e., 

𝑈𝐶𝑜𝑟𝑛 > 𝑈𝑆𝑜𝑦𝑏𝑒𝑎𝑛). Under the RUM framework, the utility and the choice are random in 

that some of the determinants of the utility are unobserved, implying the choice is supposed 

to be analyzed in probabilities. In this regard, we observe the outcome 𝑦𝑖 = 𝑗 if alternative 

                                                 
21 The regressors are case-specific regressors and alternative-specific regressor. The case-specific 

regressors vary over the farmer i but do not vary over the alternative j while the alternative-specific 

regressors vary over the farmer i and the alternative j (Green, 2003) 
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j provides the highest utility and the general expression of the probability of choosing 

alternative j can be defined as:  

 

𝑃𝑖𝑗 = 𝑃(𝑦𝑖 = 𝑗) = 𝑃(𝑈𝑖𝑗 > 𝑈𝑖𝑘|𝑥, ∀ 𝑘 ≠ 𝑗 )

= 𝑃(𝜀𝑖𝑘 − 𝜀𝑖𝑗 ≤ 𝑥𝑖𝑗
′ 𝛽𝑗 − 𝑥𝑖𝑗

′ 𝛽𝑘|𝑥, ∀ 𝑘 ≠ 𝑗 ) 

(2) 

According to Croissant (2012), the MNL model assumes that error terms are independently 

and identically distributed (IID). With this strong assumption, equation (2) can be shown 

that the choice probabilities are  

 𝑃𝑖𝑗 = 𝑃(𝑦𝑖 = 𝑗) =
exp (𝑥𝑖𝑗

′ 𝛽𝑗)

∑ exp (𝑥𝑖𝑘
′ 𝛽𝑘)𝑚

𝑘=1

 (3) 

where 𝑃𝑖𝑗  , 0 < 𝑃𝑖𝑗 < 1 and ∑ 𝑃𝑖𝑗
𝑚
𝑗=1 = 1. In this study, we use crop choice at year t as the 

dependent variable and choice in year 𝑡 − 1 , precipitation, temperature, soil texture 

variables, slope, and elevation as explanatory variables to model Kentucky farmers crop 

choice behavior. This study also considers and includes one more alternative, called 

“other.” The choice of other is when the farmer does not plant any of five major crops in 

this field during our study period. The choice of other includes fallow, oats, barley, grain 

sorghum, and double-crop beans. In the MNL model, one set of coefficients is normalized 

to zero because there is more than one solution to set of coefficients (Greene, 2003). By 

setting 𝛽𝑗 = 0, the set of coefficients corresponding to each outcome are estimated as 

following:22 

                                                 
22 We record outcomes 1, 2, 3, 4, 5, and 6 for other, corn, soybean, tobacco, wheat, and alfalfa respectively. 

Since the recorded numerical values are arbitrary, greater number does not imply better outcome compared 

to the smaller number. In addition, outcome of no production (i.e., the choice of other) is our base outcome: 

𝛽
1

= 0.   
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 𝑃(𝑦𝑖 = 𝑗) =
exp (𝑥𝑖𝑗

′ 𝛽𝑗)

1 + ∑ exp (𝑥𝑖𝑘
′ 𝛽𝑘)𝑚

𝑘=1

 (4) 

 

2.5.2 Markov Chain Approach 

The Markov chain approach has been widely used in land use studies such as Bell 

(1974), Baker (1989), Brown, et al. (2000), Muller and Middleton (1994), Savage (2011), 

and Thornton and Jones (1998). It has also been used in agricultural related studies 

especially for studying crop rotation behavior such as Aurbacher and Dabbert (2011), 

Castellazzi, et al. (2008), Matis, et al. (1985), Osman, et al. (2015), Paton, et al. (2014), 

and Troffaes and Paton (2013). Based on Taylor and Karlin (2014) and Savage (2011), a 

Markov process {𝑋𝑡} given the value of 𝑋𝑡 is a stochastic process with the property that the 

values of 𝑋𝑢 for 𝑢 < 𝑡 do not affect the values of 𝑋𝑠 for 𝑠 > 𝑡. In other words, knowledge 

of past behavior is informative for the probability of any specific future behavior of the 

process if the current state is known. The Markov property in general can be defined as the 

following: 

 Pr{𝑋𝑡+1 = 𝑗|𝑋0 = 𝑖0, … , 𝑋𝑡−1 = 𝑖𝑡−1, 𝑋𝑡 = 𝑖} = Pr{𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖} (5) 

for all time periods t and all states 𝑖0, … , 𝑖𝑡−1, 𝑖, 𝑗. 

The probability of 𝑋𝑡+1 in state j given 𝑋𝑡  in state i is called the one-step transition 

probability, denoted by 𝑃𝑖𝑗
𝑡,𝑡+1

. The Markov chain is stationary if the one-step transition 

probabilities are not a function of the time variable t. Considering stationary Markov chain, 

the one-step transition probabilities are re-written as  

 𝑃𝑖𝑗
𝑡,𝑡+1 = 𝑃𝑖𝑗 = Pr{𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖} (6) 
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The one-step transition probabilities that outcome j observed in the current period given 

the outcome i observed in the previous period can be modified as follows: 

 𝑃{𝑋𝑡 = 𝑗|𝑋𝑡−1 = 𝑖𝑡−1, 𝑋𝑡−2 = 𝑖𝑡−2, … } = 𝑃{𝑋𝑡 = 𝑗|𝑋𝑡−1 = 𝑖𝑡−1} (7) 

With the stationary Markov chain, the transition probabilities are arrayed in a square matrix 

with a dimension based on the number of possible outcomes. The Markov process is then 

fully defined based on both the transition probability matrix and initial condition. In this 

study, we have six possible outcomes based on six different choices, so the transition 

probability matrix has 6 × 6 with elements, which are the probability of transitioning from 

the row outcome to the column outcome. A row outcome represents a crop choice among 

five crops in the previous year and a column outcome represents the crop choice in the 

current year.  

2.6 Empirical Results 

2.6.1 MNL Results and Transition Probabilities 

Table 2.4 represents the estimated results of the MNL model. Based on the 

likelihood ratio chi-square of 443,752.37 with a p-value of 0.00 indicates that the model as 

a whole is statistically significant. Table 2.4 demonstrates the expected crop rotation results 

for all five crops used in this study. For example, in the corn case it is expected that there 

is a higher likelihood for soybeans or wheat to be planted after corn compared to corn, 

tobacco or alfalfa. We also calculate the marginal effects, which are reported in Table 2.5. 

Table 2.5 shows that if corn was planted, for example, in the previous year, corn and alfalfa 

are 13% and 0.2% less likely to be planed in the current year. However, soybean, tobacco, 
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and wheat are more likely to be planted in the current year with 31.2%, 0.04%, 0.2%, 

respectively.23 The marginal effects reflect traditional crop rotations as expected.  

This study implements several hypotheses tests for the measures of fit. First, 

McFadden’s R-squared shown in Table 2.4 from the MNL model, in general, does not 

provide a direct interpretation as does the R-squared in linear regression; however, it can 

be used to measure the goodness of fit for the MNL model. Based on Louviere, et al. 

(2000), the model fit is considered to be extremely good if the value of the McFadden’s R-

squared is between 0.2 and 0.4. Domenich and McFadden (1975) argue this range is 

equivalent to 0.7 to 0.9 for a linear regression model. Even though the McFadden’s R-

squared of 0.12 presented in Table 2.4 does not provide strong evidence of extremely good 

model fit, it does not mean that our model is inappropriate. Second, we test whether all of 

the coefficients associated with the independent variable are equal to zero by using the 

Likelihood-ratio (LR) test and Wald test. These tests allow us to determine whether the 

independent variables used in the MNL model are significant across all outcome categories. 

Based on results of both tests, we reject the null hypothesis that all coefficients associated 

with given variables are zero, implying no variables can be dropped from the model since 

independent variables have a significant impact across all crop choices. Third, we test 

whether some categories of the dependent variable can be combined or not by using the 

Wald test. If outcomes are not differentiated concerning the independent variables, we 

combine outcomes. We find that any pair of outcome categories cannot be combined by 

                                                 
23 In table 2.5, we do not report the marginal effect for choice of other. In general, the marginal effects sum 

up to zero. 
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rejecting the null hypotheses that independent variables do not differentiate between 

outcome categories.    

  Furthermore, this study conducts a validation test for the predicted probabilities 

from the MNL model. This will measure accuracy of predictions on crop choice using the 

estimated MNL model. For the validation test, we employ the following steps. First, we 

select 10% of the data using a random sampling process, called a test sample. Second, we 

estimate the MNL model with the remaining dataset (90% of data, also called training set), 

and then predict using the test sample. Third, we assign crops based on the highest 

predicted probabilities for each field. For example, a field X using MNL model is predicted 

with 55%, 20%, 10%, 5%, 5%, and 5% probabilities for corn, soybeans, tobacco, alfalfa, 

wheat, and others, respectively. The corn is then assigned to the field X because corn has 

the highest probability of being planted. Finally, we compare the predicted and actual crop 

choice in each field and calculate the accuracy percentage, which is a number of accurate 

predictions over the total number of predictions. From the out of sample validation method, 

this study finds the probabilities are predicted with 51.9% accuracy. We also resize the test 

sample sizes by 20% and 30%, and we find that probabilities are correctly predicted by 

52.2% and 52.2%, respectively. Even though the probabilities from the MNL model are 

predicted with approximately 52% accuracy, the predicted probabilities for the crop choice 

transition matrix and forecast distribution are plausible.24 

 Based on the results from the MNL model in Table 2.4, we generate a set of average 

conditional predicted probabilities or Markov transition probabilities. Table 2.6 shows 

                                                 
24 From the discrete choice model standpoint, the probabilities will be better predicted with fewer outcome 

categories. Since we have six different outcome categories, out of sample prediction with 52% accuracy is 

considered as a reliable prediction.  
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these calculated as the average number of observed transitions between 2010 and 2015.25 

Based on Table 2.6, this study finds that if corn is planted in year t, there is a 22% chance 

that corn will be planted in year t+1. Crop rotation probabilities between corn to soybean 

and soybean to corn from the current year to the next year are 46.2% and 58.7%, 

respectively. Compared to other crops, such as tobacco, wheat, and alfalfa, transition 

probabilities of corn and soybean show relatively lower probabilities in their transition. 

Martinez and Maier (2014) state that crop rotation between cereal crops such as corn and 

wheat followed by leguminous crops such as soybean and alfalfa is a common example. 

Therefore, farmers switch corn to soybean and soybean to corn for not only maintaining 

and improving the soil fertility but also protecting the environment from the nitrogen 

runoff. 

2.6.2 Simulation Exercise 

The objective of this section is to generate a distribution by reflecting total acreage 

of crop i for the year t using information up to year t-1 (e.g., predicting crop composition 

in 2016 using data up to 2015). For this purpose, we follow three steps. First, we used a 

multinomial logit model specified in the previous section to estimate the probability of 

field j with crop i. Using this method, we generate a matrix of probabilities that have a 

probability of crop i (where i includes corn, soybeans, tobacco, wheat, alfalfa, and other 

crops) being planted in field j where the sum of each row would be 1. Second, we utilize 

random sampling with 1,000 iterations to identify crop choice in each field based on the 

transition probability matrix. In each iteration, field j is assigned to crop i. The average 

                                                 
25 Table 2.7 in the Appendix B provides the yearly transition probabilities in percentage.   
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probability of choosing crop i for field j after 1,000 iterations would be approximately the 

same as the choice probabilities that are used in the first step. Up to this point, we forecasted 

the crop choice by each field in year t. Third, we assume that acreage that is going to be 

planted in year t is the same as the planted acreage at year t-1. Based on this assumption, 

we assigned planted acreage in each field at year t-1 to the forecasted crop. This process 

generates forecasted acreage for each crop and each field for year t.  

This process is replicated for each iteration (1,000 times). Next, for each iteration 

and each crop, we calculate aggregate acreage that would be planted in year t. Finally, we 

used the forecasted aggregate acreages for each iteration and crop to calculate the 

distribution of total expected acres in year t.    

We apply this method to Kentucky fields and predict the expected crop composition 

in 2016 using realized crop choice from 2010 to 2015. Figure 2.1 indicates forecasted 

distributions for each crop in 2016. When comparing these to the actual state average acres 

produced, we find that the forecasted mean is close to the historical means for the simulated 

counties. There are missing counties from the data set due to the lack of CLUs for those 

counties. One word of caution when interpreting this is to watch the scales on the x-axis. 

The two largest crops produced in the state are by far corn and soybeans. As expected, 

these distributions are significantly wider than the other three crops considered. In general, 

there is a little variation in the tobacco, wheat and alfalfa acres in the simulation. There are 

several reasons for this result. First, alfalfa is a perennial crop and has a five to seven-year 

rotation, and is typically rotated with tobacco. This causes the acres of this crop to be stable 

over time. Secondly, tobacco is primarily produced via a production contract. This creates 
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a situation where the acreage will be quite stable from year to year. Thirdly, for wheat, 

Kentucky is home to significant milling and distilling industries that contract with 

producers to ensure supply. Lastly, this leaves corn and soybean acres to be the primary 

acreages in the state that shift to fill in the gaps. These distributions demonstrate this 

phenomenon.  

In addition to the separate crop distribution in figure 2.1, we generate a violin 

distribution for each crop to compare shapes of the distributions between crops and the 

distributions are presented in figure 2.2. These distributions are a different way of 

presenting figure 2.1 in which we can compare differences in forecasted acres between the 

crops. In this figure, the top panel compares the forecasted crop acreage distribution 

between corn and soybeans, and bottom panel compares forecasted acres between tobacco, 

wheat, and alfalfa. Using this figure, we can identify that the forecasted acreage of corn is 

the highest among other crops followed by soybeans, and tobacco and wheat are the lowest, 

implying corn and soybean plantings dominate in Kentucky. In addition, the widths of the 

distributions provide insights into where crops such as hemp would enter the crop rotation. 

The wider the distribution, the more likely acreages from these crops are to shift.   

Furthermore, we generate a distribution of each crop sales based on the forecasted 

distributions, which are presented in figure 2.3. For example, sales of corn, soybeans, 

alfalfa, wheat, and tobacco, on average, are $599, $400, $8.7, $1.24, and $18.04 (in million 

dollars), respectively in 2016.  

To review the main results, there are higher probabilities of planting soybeans or 

wheat after corn relative to corn after corn, tobacco, or alfalfa. In addition, the transition 
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probability of the crop rotation demonstrates that corn will be planted after soybean, and 

vice versa, and that alfalfa has a lower probability of being rotated with other crops from 

year to year. These findings are expected with traditional crop rotation in the U.S., and a 

characteristic of a perennial crop, especially for alfalfa. Finally, forecasting results indicate 

that there are significantly wider distributions in corn and soybean, whereas there is little 

variation in the tobacco, wheat and alfalfa acres in the simulation. 

2.7 Concluding Remarks and Policy Implications 

This study proposes a novel application of the multinomial logit (MNL) model to 

estimate the conditional transition probabilities of crop choice and forecast distributions of 

total acreages by crop type using recovered transition probabilities. For this purpose, we 

utilize the Cropland Data Layer (CDL), which is overlayed with the Common Land Unit 

(CLU) dataset to identify crop choice at the field-level accurately. In this paper, we focused 

on the production of corn, soybeans, tobacco, wheat, and alfalfa in Kentucky from 2010 to 

2015.  

Based on transition probability estimation results, we find that corn is more likely 

to be followed by soybeans, as would be expected. For tobacco and alfalfa, they are found 

to be monoculture crops since they are more likely to be planted in consecutive years. 

These findings are consistent with the traditional crop rotation in Kentucky. Our forecasted 

distributions based on the simulation exercise show wider distributions for corn and 

soybeans, whereas narrower for tobacco, wheat, and alfalfa. The different shapes of the 

distribution can be explained in that alfalfa is a perennial crop and tobacco is a contracted 

crop. The forecasted distributions can be used and applied in various fields of research and 

will contribute to policy implications. 
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Kentucky, for example, is the largest cow/calf state east of the Mississippi River 

and one of the reasons for this is its ability to produce forages or biomass. In the period 

between 2010 and 2014, a large number of acres in the state switched from pastureland to 

crop production to take advantage of record prices. Now that crop prices are trending down, 

many of these producers are searching for alternative viable feedstocks. Therefore, the 

identification of viable feedstocks and locations that these feedstocks can be produced is 

one of the important steps in the development of the Kentucky bioeconomy.  

The method proposed in this study could be used to evaluate where the most likely 

places are for the production of industrial hemp, but it could also be used to evaluate other 

potential crops, as they all have to compete for scarce land resources. By recovering the 

forecast distributions of the traditional commodities grown, such as corn, soybeans, wheat, 

tobacco, and alfalfa, producers have a much richer view of the future when they decide to 

adopt alternative feedstocks. Moreover, the forecasted crop acreage distribution can 

support management decisions for fertilization, irrigation, and pesticide uses. The crop 

acreage distribution could further provide the basis for planning, formulation, and 

implementation of policies related to the crop procurement, distribution, price structure, 

and import-export decisions. Our results may also supplement NASS survey in areas where 

response rates are low and could serve as estimates in the winter season before the Spring 

Survey. The generation of the forecast distributions could be one way for farmers, policy-

makers, and other stakeholders to consider uncertainty in forecast estimates by crop.26 

                                                 
26 The historical distributions of Corn and Soybeans are presented in Figure 2.6 in Appendix C. We find 

that the forecasted distribution of Corn looks similar to the historical distribution of Corn even though the 

average acre is a little lower in the forecasted distribution. This can be explained by missing counties in 

CLU (see figure 2.5 in Appendix C). For soybeans, we find that the historical distribution of soybeans is 

right skewed, whereas the forecasted distribution of soybean is normal. This indicates that the average 

acreage reported in NASS report tends to be overly provided.  
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Finally, further expansion would be the identification of critical thresholds based on the 

forecasted distributions that can be applied not only to calculate the total nitrogen or 

fertilizer runoff for sustainable agriculture but also to develop wildlife habitat management 

plan. 

Several limitations should be outlined alongside our findings. First, our state-level 

aggregated prediction results might be under- or over-estimates due to the 28 missing 

counties and accuracy of CDL data. Some crops are poorly identified in the CDL data. 

Based on CDL accuracy assessment information provided by NASS, average accuracy for 

tobacco, wheat, and alfalfa in Kentucky are 76.1%, 48.8%, and 74.1% from 2010 to 2015, 

whereas corn and soybeans are identified with 96.1% and 93.5% accuracy, respectively. 

Higher quality CDL data will result in better predictions. In this study, we consider corn 

and soybeans as our best estimates since they have the highest accuracy of the CDL data. 

Second, in this study, for simplicity and data availability, we assume that farmers plant a 

single crop in each field per growing season instead of planting several crops in one field 

in one growing season. In reality, however, a farmer might grow more than one crop in 

their field which needs to be addressed in the future studies. Third, our MNL model and 

simulation exercise are only based on agronomy-based characteristics. Therefore, this 

study can be extended by incorporating microeconomic variables such as expected net 

return, expected price, and farmer’s characteristics. Finally, this study focuses on 

Kentucky, where agricultural lands are relatively heterogeneous compared to some states 

like Iowa, Illinois, and Nebraska where agricultural lands are homogeneous. Our results 

may not be consistent with those states with the homogeneous agricultural lands; therefore, 

future research will be needed by looking at other states. 
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2.8 Tables and Figures 

Table 2.1 Total Number of Fields in the Sample by Crop Class by Year 

 

  2010 2011 2012 2013 2014 2015 Sum 

Corn 105,266 100,060 123,638 112,930 113,079 113,662 668,635 

 (33.70) (32.03) (39.58) (36.15) (36.20) (36.39)  

Soybean  98,311 79,480 76,268 79,492 99,343 129,684 562,578 

 (31.47) (25.44) (24.41) (25.45) (31.80) (41.51)  

Tobacco  456 298 734 1,056 1,317 1,730 5,591 

 (0.15) (0.10) (0.23) (0.34) (0.42) (0.55)  

Wheat  276 254 267 344 203 1,232 2,576 

 (0.09) (0.08 (0.09) (0.11) (0.06) (0.39)  

Alfalfa  1,742 2,936 1,593 1,537 2,168 3,136 13,112 

 (0.56) (0.94 (0.51) (0.49) (0.69) (1.00)  

Other  106,313 129,336 109,864 117,005 96,254 62,920 621,692 

 (34.03) (41.40) (35.16) (37.45) (30.81) (20.14)  

Sum 312,364 312,364 312,364 312,364 312,364 312,364 1,874,184 

Notes: Numbers in parenthesis are the percent of fields by crop class by year. These 

numbers are calculated as dividing a number of fields for each crop by the total number 

of fields in each year (last row in table 2.1).  
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Table 2.2 Percentage of Missing Acres in Out Analysis Based on Missing Counties in the 

CLU by Crop Type and Year 

 

Year Corn Soybean Wheat Tobacco Alfalfa 

2010 19.45% 17.73% 52.43% 64.44% 68.29% 

2011 19.66% 20.16% 32.60% 44.99% 55.79% 

2012 19.37% 20.86% 29.49% 39.69% 58.53% 

2013 19.58% 19.84% 47.87% 33.40% 56.37% 

2014 19.67% 21.81% 44.47% 33.89% 62.02% 

2015 20.44% 21.74% 30.31% 31.41% 57.58% 

 

Notes: The field boundary in CLU has 28 missing counties out of 120 counties in 

Kentucky. We compared the observed acres based on CLU and the acres from the CDL. 

For example, 19.45% of corn acres in 2010 are missing in our analysis. 
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Table 2.3 Summary of Data Used for Estimation of Conditional Probabilities 

 

Variable Mean S.D. Min. Max. 

Acres  5.97 15.92 0.00 934.28 

Silt (%) 66.25 13.27 0.00 82.00 

Clay (%) 20.59 7.00 0.00 58.00 

Sand (%) 11.83 8.75 0.00 93.90 

Slope 2.51 1.95 0.00 35.07 

Elevation (meter) 174.79 60.56 0.00 423.09 

Temperature (Celsius) 24.94 1.27 20.78 28.13 

Precipitation (mm) 143.68 55.25 0.00 308.89 

 

Notes: Summary statistics are based on the observations from 2010 to 2015. Units of the 

observations are reported in the parenthesis. Acres indicate a number of acreages planted, 

and zero acreage refers to another choice. S.D represents standard deviation.  
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Table 2.4 Conditional Multinomial Logit Model Results 

 

  Corn Soybean Tobacco Wheat Alfalfa 

Choice lag           

Corn 
-0.013*** 1.580*** 0.294*** 1.806*** -1.065*** 

(0.005) (0.005) (0.035) (0.055) (0.039) 
      

Soybean 
1.916*** 2.041*** 1.016*** 1.866*** -0.220*** 

(0.006) (0.007) (0.040) (0.067) (0.040) 
      

Tobacco 
0.210*** 0.984*** 4.501*** 2.517*** 0.112 

(0.044) (0.044) (0.053) (0.212) (0.210) 
      

Wheat 
1.176*** 0.927*** 1.625*** 3.001*** 2.038*** 

(0.064) (0.085) (0.309) (0.311) (0.157) 
      

Alfalfa 
-0.975*** -0.618*** -0.409** 0.418 3.691*** 

(0.038) (0.045) (0.220) (0.294) (0.031) 

            

Observations: 1,561,820     

McFadden R-Square: 0.123     

Log Likelihood: -1,587,530         

 

Notes: Robust standard errors are reported in parenthesis. Control variables used in this 

model are crop acreage, soil type (slit, clay, and sand), slope and elevation at the filed-

level, average monthly temperature, and total monthly precipitation. Significance levels 

are indicated by ***, **, * for 10, 5, and 1 percent significance level, respectively. 
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Table 2.5 Marginal Effect from Conditional Multinomial Logit Model Results 

 

  Corn Soybean Tobacco Wheat Alfalfa 

Choice lag     

Corn 
-0.130*** 0.312*** -0.0004*** 0.002*** -0.002*** 

(0.001) (0.001) (0.0001) (0.0001) (0.0001) 
      

Soybean 
0.239*** 0.137*** -0.0007*** 0.0004*** -0.002*** 

(0.001) (0.001) (0.0001) (0.0001) (0.0001) 
      

Tobacco 
-0.071*** 0.109*** 0.133*** 0.004*** -0.001* 

(0.008) (0.007) (0.005) (0.001) (0.0004) 
      

Wheat 
0.203*** 0.035*** 0.003** 0.005*** 0.008*** 

(0.014) (0.011) (0.002) (0.002) (0.002) 
      

Alfalfa 
-0.188*** -0.052*** -0.0005 0.001 0.132*** 

(0.005) (0.004) (0.0004) (0.0003) (0.003) 

            

 

Notes: Robust standard errors are reported in parenthesis. Marginal effect for the control 

variables used in this model are not reported here. Significance levels are indicated by 

***, **, * for 10, 5, and 1 percent significance level, respectively. 
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Table 2.6 Conditional Transition Probabilities (in percentage) 

 

 To: 

   Other Corn Soybean Tobacco Wheat Alfalfa 

From: 

Other 51.07 32.69 14.72 0.38 0.08 1.07 

Corn 30.80 22.40 46.17 0.25 0.24 0.14 

Soybean 12.20 58.67 28.66 0.20 0.11 0.16 

Tobacco 32.12 23.59 23.75 19.32 0.62 0.60 

Wheat 28.42 49.11 17.04 0.82 0.82 3.79 

Alfalfa 46.61 8.56 5.85 0.21 0.12 38.64 

 

Notes: Estimated conditional transition probabilities are based on the conditional 

multinomial logit model. Transition probabilities are presented in percentage form (e.g., 

transition probability from corn to corn is 22.40%). In this table, “Others” include fallow, 

oats, barley, grain sorghum, and double-crop beans. 
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Corn (mean=1,019; Min.=1,004; Max.= 1,035, 

SD= 4.75, CV=0.47) 

Soybeans (mean=809; Min.=795; Max.= 821, SD= 

4.26, CV=0.53) 

 

Alfalfa (mean=1.87; Min.=10; Max.= 11.75, 

SD=0.29, CV=2.65) 

Wheat (mean=3.44; Min.=2.53; Max.= 4.48, SD= 

0.29, CV=8.56,) 

 

Tobacco (mean=4.79; Min.=4.12; Max.= 5.53, 

SD=0.24, CV= 4.96) 

 

Figure 2.1 Forecasted distributions for each crop in the year 2016. Dashed red lines 

indicate mean forecasted acreage in 2016. Summary statistics of the distributions are 

reported in parenthesis, and all units are in thousands of acres. 
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Figure 2.2 Comparison of forecasted distributions of crop acreage in 2016 in Kentucky. 

 

Notes: Major crops divided into two groups: group one is Corn, Soybeans, and group two 

includes Tobacco, Wheat, and Alfalfa.  
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Corn (mean=599; Min.=591; Max.= 609, 

SD=2.79, CV=0.47) 

Soybeans (mean=$400; Min.=393; Max.= 406, 

CD=2.11, CV=0.53) 

 
Alfalfa (mean=8.7; Min.=7.99; Max.= 9.39, 

SD=0.23, CV=2.65) 

Wheat (mean=1.24; Min.=0.91; Max.= 1.61, 

SD=0.11, CV=8.56) 

 
Tobacco (mean=18.04; Min.=15.53; Max.= 

20.84, SD=0.89, CV= 4.96) 

 

 

Figure 2.3 Forecasted distributions for each crop sales (million dollars) in 2016. 

 

Notes: Dashed red lines indicate mean forecasted acreage in 2016. Summary statistics of 

the distributions are reported in parenthesis, and all units are in a million dollars. 
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2.9 Appendix A: Discussion of Data Set 

Although we mentioned and described how we merged and utilized all the different 

data sets in the data section, we would like to discuss some difficulties we had and how we 

overcame them more in detail. First, we realized that the field boundary data do not cover 

the entire state of Kentucky (i.e., there are missing field boundaries) as we mentioned in 

the manuscript (see Figure 2B). However, we think those missing fields do not represent 

the major crops produced in Kentucky. In other words, those missing fields may be a 

problem in other states if the missing fields cover a large portion of the major croplands. 

Utilizing the CDL data with CLU, therefore, researchers should pay attention to those 

missing fields and carefully check before merging with the CDL. Second, we had an issue 

in identifying the crop choice. In reality, each field is not fully covered by one single crop 

based on a pixel in CDL when we overlay with CLU (see Figure 1B). For instance, there 

might exist multiple crops in one single field, so we make a strong assumption that the field 

is corn if corn acreage dominates other crops. Alternatively, the analyst is able to identify 

the representative crop in the field by using a centroid point if the point interacts spatially 

with the pixel. This alternative method might work with a large sample such as all 48 

contiguous U.S. states instead of one single state. However, this may provide inaccurate 

results from a forecasting perspective. Third, some of the data sets (especially Soil, Slope, 

and Elevation data) used in this study are not time-varying data. However, those data sets 

are only available information that can be merged with the field level data, and we assume 

soil quality, slope, and elevation for lands do not significantly vary over time.  
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2.10 Appendix B: Additional Table 

Table 2.7 Year to Year Conditional Transition Probabilities (in percentage) 

 

Year Choice Other Corn Soybean Tobacco Wheat Alfalfa 

2011 Other 48.75 29.01 21.01 0.23 0.12 0.88 
 Corn 29.64 44.05 25.58 0.18 0.11 0.43 
 Soybean 32.85 33.88 32.55 0.18 0.15 0.39 
 Tobacco 44.15 30.82 21.67 2.16 0.19 1.01 
 Wheat 38.07 29.41 31.01 0.39 0.21 0.90 

  Alfalfa 53.74 20.30 12.42 0.38 0.13 13.02 

2012 Other 43.84 34.45 20.73 0.34 0.11 0.53 
 Corn 27.89 48.86 22.67 0.29 0.09 0.19 
 Soybean 28.78 39.41 31.17 0.30 0.14 0.19 
 Tobacco 37.63 37.66 22.08 2.05 0.16 0.42 
 Wheat 36.35 33.15 29.60 0.38 0.18 0.34 

  Alfalfa 49.79 22.11 12.69 0.53 0.15 14.72 

2013 Other 38.95 28.47 30.96 0.38 0.17 1.06 
 Corn 26.05 39.57 33.27 0.34 0.15 0.61 
 Soybean 24.66 30.21 44.06 0.34 0.22 0.51 
 Tobacco 30.64 30.61 34.98 2.48 0.26 1.04 
 Wheat 30.04 28.20 39.80 0.70 0.28 0.98 

  Alfalfa 39.90 18.80 15.63 0.54 0.17 24.95 

2014 Other 41.33 29.81 27.50 0.38 0.15 0.83 
 Corn 27.58 41.59 29.90 0.34 0.13 0.45 
 Soybean 26.67 32.54 39.71 0.39 0.20 0.49 
 Tobacco 33.88 31.33 29.52 3.95 0.26 1.06 
 Wheat 34.24 28.41 34.57 0.61 0.31 1.86 

  Alfalfa 41.91 21.51 15.99 0.60 0.17 19.81 

2015 Other 38.73 30.61 29.23 0.33 0.15 0.95 
 Corn 27.68 42.89 28.40 0.32 0.13 0.57 
 Soybean 28.06 33.78 36.92 0.36 0.19 0.68 
 Tobacco 38.20 29.65 25.35 5.05 0.28 1.47 
 Wheat 29.49 29.69 39.08 0.68 0.26 0.81 

  Alfalfa 39.21 20.12 16.03 0.60 0.18 23.85 

 

Notes: Transition probabilities are presented in percentage form. For example, 44.05% of 

corn will be planted in 2011 if the corn was planted in 2010.  
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2.11 Appendix C: Additional Figures 

 

Figure 2.4 2015 major crops produced in Kentucky from CDL 
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Figure 2.5 Numbers of Missing Counties in Kentucky based on CLU 
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Corn (Mean = 1,326.5 Std. Dev = 123.9 Min = 1,120 Max = 1,650) 

 

Soybeans (Mean = 1,322.7 Std. Dev = 192.9 Min = 1,120 Max = 1,840) 

 

Figure 2.6 Historical Distributions of Corn and Soybeans from 1990 to 2015 
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CHAPTER 3. PROFILING CONSUMER OF HEMP FOODS IN THE U.S.: 

EVIDENCE FROM NIELSEN CONSUMER PANEL DATASET FROM 2008 TO 

2015 

3.1 Abstract 

The objective of this study is to identify critical consumer-demographic characteristics that 

are associated with the consumption of products containing hemp and investigate their 

effect on total expenditure in the U.S. To estimate the likelihood of market participation 

and consumption level, the Heckman selection model, is employed using the maximum 

likelihood estimation procedure utilizing Nielsen consumer panel data from 2008 to 2015. 

Results indicate marketing strategies targeting consumers with higher education and 

income levels can attract new customers and increase sales from current consumers for this 

burgeoning market. Head-of-household age in different regions shows mixed effects on 

decisions to purchase hemp products and consumption levels. Findings will provide a basic 

understanding of a consumer profile and overall hemp market that has had double-digit 

growth over the last six years. As the industry continues to move forward, policymakers 

are going to need a deeper understanding of the factors driving the industry if they are 

going to create regulations that support the development of the industry.  

 

3.2 Introduction 

Can a market that is expected to top $1.8 billion in sales by 2020 be based on a 

feedstock that was classified as a schedule 1 narcotic less than a few month ago? Over the 

last two decades, industrial hemp (also known as hemp) globally has received a great deal 

of interest in being grown as an agricultural crop. Industrial hemp is a variety of the 

Cannabis sativa plant species with delta-9 tetrahydrocannabinol concentration (THC) of 

no more than 0.3 percent on a dry weight basis.27 Industrial hemp and marijuana are 

botanically the same plant species as Cannabis sativa even though they are genetically 

different from a chemical makeup and cultivation practice standpoint (Cherney and Small, 

2016, Datwyler and Weiblen, 2006, Johnson, 2017). The Comprehensive Drug Abuse 

                                                 
27 See more detail about the 2014 Farm bill at https://www.gpo.gov/fdsys/pkg/BILLS-

113hr2642enr/pdf/BILLS-113hr2642enr.pdf 

https://www.gpo.gov/fdsys/pkg/BILLS-113hr2642enr/pdf/BILLS-113hr2642enr.pdf
https://www.gpo.gov/fdsys/pkg/BILLS-113hr2642enr/pdf/BILLS-113hr2642enr.pdf
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Prevention and Control Act in 1970 classified industrial hemp as a schedule 1 narcotic. In 

this regards, growing industrial hemp in the U.S. for  commercial purpose was illegal and 

strictly restricted. 28  Within the U.S. Section 7606 of the 2014 Farm Bill set the 

reintroduction of industrial hemp as a potential crop to be grown in motion. Interest in this 

crop has continued to gain momentum with acreage growing to approximately 40,000 acres 

in 2017. On December 2018, the 2018 Farm Bill was approved by U.S. Congress, and it 

allows industrial hemp to be legalized by removing it from the Controlled Substances 

Act.29 To be specific, industrial hemp is allowed not only to cultivate broadly but also to 

produce hemp-derived products across state lines based on the 2018 Farm Bill.  

Industrial hemp has fifty thousand plus uses that range from fiber to health 

products, and more than 30 countries currently grow industrial hemp (Johnson, 2017). The 

Kentucky Department of Agriculture (KDA) reports that approximately 55,700 metric tons 

of industrial hemp are produced around the world each year. Approximately 70 percent of 

industrial hemp in the world is produced in China, Russian, and South Korea.30 According 

to Fortenbery and Bennett (2004), industrial hemp production has environmental benefits 

such as low pesticide and herbicide requirements, a wide range of adaptability for 

agronomic conditions, increased profit centers for U.S. farmers, and relatively low water 

needs. Other benefits of industrial hemp on the demand side are increased efficiency 

compared to other inputs for industrial use, health benefits of both hemp oil and hemp 

                                                 
28 Although growing industrial hemp was illegal in the U.S., some states such as Colorado, Kentucky, and 

North Carolina grew and produced as a research or pilot programs. 
29 https://www.fda.gov/ohrms/dockets/ac/03/briefing/3978B1_07_A-FDA-Tab%206.pdf 
30 http://www.kyagr.com/marketing/industrial-hemp.html 

https://www.fda.gov/ohrms/dockets/ac/03/briefing/3978B1_07_A-FDA-Tab%206.pdf
http://www.kyagr.com/marketing/industrial-hemp.html
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hearts consumption, and competitive use in textile manufacturing (Fortenbery and Mick, 

2014).31  

Since there is minimal commercial production in the U.S. due to production 

restrictions, most hemp-based products are imported from other countries.32 For instance, 

raw and processed hemp fiber is predominantly imported from China whereas hemp seed 

and oilcake are imported from Canada (Johnson, 2017). Figure 3.1 provides the total value 

of U.S. hemp imports from 2010 to 2015, and it shows that the total value of imported 

hemp is increasing. Based on Johnson (2017), Hemp Industries Association (HIA) 

estimates that annual growth in U.S. hemp retail sales averaged more than 15% from 2010 

to 2015. The author also mentions that growth is explained by increased sales of hemp-

based body products, supplements, and foods by accounting for more than 60% of the value 

of U.S. retail sales. Recently, Vote Hemp, which is the national, single-issue, nonprofit 

organization and nation’s leading grassroots hemp advocacy organization, estimates the 

total retail value of hemp products sold in the U.S. in 2016 at approximately $688 million 

including food and body products, clothing, auto parts, building materials, and other 

products.33  

                                                 
31 For example, hemp can be substitutable for cotton to make textile in that hemp fiber is 10 times stronger 

than cotton; in addition, hemp can be used as building materials instead of wood at low manufacturing 

costs. More detail environmental and economic benefits of hemp can be found at 

http://www.nemeton.com/static/nemeton/axis-mutatis/hemp.html 
32 Even though the process of commercial production in the U.S. has been started as a pilot program for the 

research purpose since 2014, growing hemp is still illegal in the U.S. according to federal law.  
33 Vote Hemp is dedicated to the acceptance of and free market for industrial hemp, low-THC oilseed and 

fiber varieties of Cannabis and working to change state and federal laws to allow commercial hemp 

farming. More information about estimates of 2016 Annual Retail Sales for Hemp Products are available at 

http://www.votehemp.com/PR/PDF/4-14-17%20VH%20Hemp%20Market%20Data%202016%20-

%20FINAL.pdf 

http://www.nemeton.com/static/nemeton/axis-mutatis/hemp.html
http://www.votehemp.com/PR/PDF/4-14-17%20VH%20Hemp%20Market%20Data%202016%20-%20FINAL.pdf
http://www.votehemp.com/PR/PDF/4-14-17%20VH%20Hemp%20Market%20Data%202016%20-%20FINAL.pdf


44 

 

 Even though there is minimal commercial hemp production in the U.S., retail sales 

for hemp production is increasing over time. Based on our best knowledge, no study has 

investigated and examined factors that affect consumption of hemp products. In this study, 

we investigate the critical economic and demographic characteristics that are associated 

with hemp consumption and investigate their effects on expenditures in the U.S. by 

utilizing Nielsen’s consumer panel data from 2008 to 2015. Due to the limited data 

availability, we limit the investigation to four different categories of hemp containing 

products including granola, nuts, nutrition, and protein.34 This study employs a Heckman 

selection model since this model provides different parameters of the choice and 

consumption processes by controlling for non-randomly selected samples. Therefore, we 

specifically identify the impact of either economics or household characteristics on the 

probability of purchasing hemp products and which factors impact total expenditures on 

hemp products. Furthermore, we take account of states that have passed regulations that 

allow the production of industrial hemp. The hypothesis is that the probability of 

purchasing and expenditures on hemp products are relatively higher in states that have 

already passed this legislation.35  

 Findings from this study will contribute to understanding the continued growth of 

the burgeoning industrial hemp market as the U.S. Congress approved 2018 Farm Bill to 

allow the commercialization of hemp production. Also, this paper provides potential 

market strategies by not only understanding consumers but also targeting groups of 

                                                 
34 The term of hemp product used in this study is referred to the product that contains hemp. However, we 

make no designation as to the amount of hemp contained in the products. It could be .0001% to 100%. 

Later in the paper, we refer to the four different hemp products as hemp granola, hemp nuts, hemp 

nutrition, and protein in order to avoid confusion.  
35 In this study, hemp legislation infers any legislations that have been passed or introduced in the state to 

allow commercial hemp. 



45 

 

consumers to increase the market share of hemp products. The rest of the paper is organized 

as follows. The next section provides a summary of U.S. hemp history and current U.S. 

hemp production, while the subsequent section describes the econometric model. The 

following section describes the data section especially the structure of the data and the 

variable classification. The next section presents results and discussions, while the final 

section summarizes the main results with limitations and directions for future research. 

3.3 Background 

3.3.1 U.S. Hemp History 

The first harvest of hemp was estimated around 8500 years ago (Schultes, 1970) 

and actively cultivated and domesticated around 4000 and 6000 years ago in China 

(Kraenzel et al., 1998, Vavilov and Dorofeev, 1992). In 1545, hemp was initially 

introduced in the world after Spanish brought the plant to Chile, and hemp became an 

essential crop in Colonial America since New England first grew the plants for a fiber 

source for household spinning and weaving in 1645 (Ehrensing, 1998, Fike, 2016). 

Cultivation spread to Virginian and Pennsylvania, and a commercial cordage industry with 

hemp fiber was developed and flourished in 1775 by settlers who brought hemp from 

Virginia to Kentucky (Fortenbery and Bennett, 2004). In the mid-1800s, hemp was widely 

grown for use in fine and coarse fabrics, twine, and paper in the U.S. (Johnson, 2012). 

Between 1840 and 1860, especially, the hemp industry was expanded from Kentucky to 

Missouri and Illinois due to the strong demand for cordage and sailcloth by the U.S. Navy 

(USDA, 2000). However, hemp production began to decline by the end of the 1800s due 

to the technological innovation and the discovery of alternative inputs for traditionally 

hemp-based industries (Fortenbery and Mick, 2014). In 1937, U.S. hemp production was 
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effectively prohibited by the passage of the Marijuana Tax Act, which placed all Cannabis 

culture as a narcotic drug under the control of the U.S. Treasury Department (Fortenbery 

and Bennett, 2004, Johnson, 2012). During World War II, hemp was produced again in the 

U.S. by an emergency program since World War II interrupted supplies of jute and abaca 

to the U.S. from the tropics, and the production peaked in 1943 and 1944 (Ehrensing, 1998). 

According to Johnson (2012),  hemp production reached more than 150 million pounds on 

146,200 harvested acres in 1943, 140.7 million pounds were hemp fiber, and 10.7 million 

pounds were hemp seed. However, hemp production declined to 3 million pounds on 2,800 

harvested acres in 1948. The decline in hemp production after the war was due to the re-

imposed legal restriction and re-established jute and abaca imports (Fortenbery and 

Bennett, 2004, USDA, 2000). Even though a small hemp fiber industry continued in 

Wisconsin until 1958, there has been virtually no U.S. hemp production since then 

(Dempsey, 1975, Ehrensing, 1998, Fortenbery and Mick, 2014). 

3.3.2 Current U.S. Hemp Production 

The U.S. Congress replaced the 1937 Marijuana Tax Act with the Comprehensive 

Drug Abuse Prevention and Control Act in 1970 to distinguish between marijuana and 

hemp, but U.S. Drug Enforcement Agency (DEA) policy eventually treated marijuana and 

hemp as the same plant (Cherney and Small, 2016). Even though the federal laws and drug 

policy have restricted domestic hemp production in the U.S., there has been an active 

movement to legalize industrial hemp production in the U.S. for the last two decades 

(Fortenbery and Mick, 2014). In the mid-1990s, hemp resurfaced in the U.S. as the 

potential uses of the plant expanded and after Europe and Canada legalized and issued 

licenses to allow industrial hemp production (Fike, 2016). Even though hemp is still 
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classified as a Schedule 1 controlled substance under the Controlled Substances Act (CSA), 

section 7606 of the U.S. Agricultural Act of 2014 legalized state departments of agriculture 

and certain research institutions to grow hemp as a pilot program for research purposes 

(Cherney and Small, 2016, Johnson, 2017). The Vote Hemp reports that 36 states have 

enacted hemp bills, and those of 19 states are allowed to grow and cultivate hemp in 2017.36 

Compared to other cultivating states, the states of Colorado and Kentucky are the two 

predominate with planted acres of 9,700 and 3,100 acres in 2017, respectively. Colorado 

and Kentucky acres expanded by 64% and 23% from 2016 to 2017.  

3.3.3 Current Retail Sales of U.S. Hemp Products 

Nielsen Retail Scanner data provides consumption and accessibility information to 

allow us to gain a deeper understanding of the U.S. hemp market. The scanner data contains 

weekly pricing, volume, and store information based on a point-of-sale system with more 

than 90 participating retail chains in the U.S. Table 3.1 demonstrates the quantity sold for 

hemp products– granola, nuts, nutrition, and protein–by region in the U.S. from 2008 to 

2015. The regions in Table 1 are based on four statistical regions defined by the U.S. 

Census Bureau: Northeast, Midwest, South, and West. As shown in Table 3.1, the total 

quantity sold in each category of hemp products is increasing over time regardless of the 

regions. The sales volume of hemp granola, especially, is much higher than other hemp 

products, and noticeably about 40% of hemp granola is sold in the West region. This 

implies there might be many stores selling granola hemp, and consumers might have better 

accessibility in the West region. For the category of hemp nuts, approximately 33% and 

                                                 
36 Please see more detail about state hemp legislation at http://www.votehemp.com/PR/PDF/Vote-Hemp-

2017-US-Hemp-Crop-Report.pdf 

http://www.votehemp.com/PR/PDF/Vote-Hemp-2017-US-Hemp-Crop-Report.pdf
http://www.votehemp.com/PR/PDF/Vote-Hemp-2017-US-Hemp-Crop-Report.pdf
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31% of hemp nuts are sold in the Northeast and West regions, respectively. Also, about 

65% of hemp nutrition are sold mainly in the West and Northeast regions: approximately 

38% in the west and 28% in the Northeast. Compared to other hemp products, hemp protein 

is sold mainly in the West with 43% and Midwest with 31%. For hemp protein, the sales 

volume in the South region is steadily decreasing since 2008 and rebounding from 2012. 

To sum, consumption of most hemp products show an increasing trend from 2008 to 2015 

although there are little variations in four different regions and years. Particularly from 

2008 to 2015, the amount of hemp granola sold in the Northeast decreased by 

approximately 48% while hemp protein in the Southeast decreased by 42%.  

3.4 Data Description 

The consumer panel data started in 2004 and is updated with a 2-year time lag. The 

database contains information about product purchases made by a representative panel of 

households, approximately 40,000-60,000 households, across all retail channels in all U.S. 

markets, including food, non-food grocery products, health and beauty aids, and general 

merchandise. The panelist households continuously provide information, what products 

they purchase, as well as where and when they make purchases based on the scanned 

Universal Product Code (UPC) barcode from in-home scanners. Therefore, the Nielsen 

Consumer Panel data includes detailed information about demographic and geographic 

information of the panelists, products, product characteristics, retail channels, and market 

location.  

 Consumer Panel product data are organized based on the hierarchy as follow: 

departments, product groups, product modules, and UPC codes. In the first step, we employ 

a searching index function based on a string of characters that include “hemp” to identify 
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the product hierarchy. Since most hemp products are found in the product groups of cereal, 

nuts, vitamins, and medications, this study considers and focuses on only those four 

product groups. In the second step, we narrow the product groups down to the next 

hierarchy, which is product modules, to identify whether there are any missing information 

or irrelevant products that are associated with the four product groups. In this step, this 

study excludes the product modules if there are no or only a few observations to represent 

the product groups identified in the first step. In the third step, we collect all households 

from the Nielsen Consumer Panel data and limit the panelists to four main product 

categories: granola, nut, nutritional supplement, and protein supplements. In the final step, 

we exclude households based on the store code, which is uniquely assigned for each 

household. It is due to the fact that some households may not be accessible to buy hemp 

products if stores do not sell products that contain hemp. In this case, we are not able to 

identify and differentiate factors that make consumers more likely to buy products that 

contain hemp than conventional products. Through these steps, we explicitly classify the 

hemp consumers and estimate the probability of purchasing hemp products and the impact 

of characteristics of households on total hemp expenditures. Table 3.2 shows the number 

of observations for each product with the proportion of hemp products. For nuts, for 

example, there are total 15,241 households who consume nuts from 2008 to 2015, and 

11.20 percent of them consume hemp nuts.     

The demographic and socioeconomic characteristics, especially, education level, 

age, race, and ethnicity in Nielsen’s consumer data contains both the male and the female 

head of households. Since the head of the household is either male or female head, this 

study mainly uses female demographic information by assuming that females make the 
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majority of grocery shopping. This assumption is consistently applied to previous studies 

such as Dettmann (2008) and Alviola and Capps (2010) that use Nielsen’s consumer data. 

If the female head of household does not exist, then the head of the household is replaced 

with the male head of household. Table 3.3 shows the summary statistics of variables used 

in the analysis.  

Many of the demographic and socioeconomic variables in Nielsen’s consumer data 

are classified into many different group categories. This study reclassifies some of them to 

be used as explanatory variables. The reclassification of the explanatory variables is as 

follows. The income in Nielsen is initially classified into 16 different categories, ranging 

from less than $5,000 to above $200,000. We reclassify 16 income categories into three 

categories: low if household income is less than $30,000, middle if household income is 

between $30,000 and $70,000, and high if household income is above $70,000. The age of 

the household head is reclassified from nine categories into three categories: less than 40 

years, between 40 and 64 years, and over 64 years. Finally, the education of the household 

head is reclassified from six into four categories: high school or less, some college, college 

graduate, and post-collegiate.  

In addition to the demographic and socioeconomic characteristics, this study 

incorporates a new variable called hemp legislation if the state has enacted any hemp 

legislation that allows for the production of hemp in the state. Therefore, this study 

hypothesizes that households in states where hemp bills and resolutions introduced are 

more likely to be exposed to hemp products compared to households in other states. 

The variable Hemp is used as a dependent variable for the probit model and is 

defined as 1 to represent the purchase of hemp product and 0 otherwise. The sample of 
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households purchasing hemp products of granola, nuts, nutrition, and protein are 

approximately 24%, 11%, 2%, and 13%, respectively from 2008 to 2015. The proportions 

of household income with low, medium and high levels across all products are roughly 

10%, 37%, and 50%, respectively. On average, the household sizes are roughly 2.4, 70% 

are married, and more than 50% of the households are between 40 and 64 years old across 

the products. For other demographic characteristics, on average across the products, more 

than 50% of the head of households are employed, and 80% plus have at least some college. 

This study also includes race and the sample is approximately classified as white, black, 

Asian, and other races with 80%, 8%, 5%, and 6%, respectively. Additionally, about 8% 

of the sample are classified as Hispanic. Finally, this study includes four regional dummies 

as Midwest, South, West, and East, and the majority of the households, on average across 

the products, are in the West (about 37%), followed by the South, Midwest, and East.37 

Even though this study includes year dummies to avoid and control for potential 

heterogeneity across years, we do not report them in Table 3.3. 

3.5 Empirical Methodology 

This paper employs the Heckman sample selection approach (also called a two-

step model) developed by Heckman (1979) to correct for sample selection bias from non-

randomly selected samples. Therefore, this study estimate the likelihood of market 

participation and consumption level. The Heckman selection model is different from 

other approaches such as Tobit model and Cragg’s model (also known as the hurdle 

                                                 
37 In the Nielsen Consumer Panel, the regions are originally classified with 9 different regions However, 

we reclassified 9 regions with 4 major regional distinctions: East includes New England and Middle 

Atlantic, Midwest includes East North Central and West North Central, South includes South Atlantic, East 

South Central, and West South Central, and finally West includes Mountain and Pacific. 
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model) for the censored data (i.e., truncated sample) in that the Heckman model is based 

on incidental truncation rather than truncation. The Heckman approach takes place in two 

stages as follows.  

3.5.1 First Stage of the Heckman Model 

The first stage is estimated by the probit model (i.e., selection model) by assuming that 

error terms are normally distributed. The probit model is defined as follows: 

 𝑃𝑟(𝑧𝑖 = 1) = Φ(𝑊𝑖𝛾) (1) 

where 𝑧𝑖 is an indicator that takes on the value of 1 if the household i buys hemp product 

and 0 otherwise, Φ is the standard normal cumulative distribution function, and 𝑊𝑖 is the 

vector of explanatory variables for the decision to buy hemp products. In the first stage, we 

obtain estimates of 𝛾 by Maximum Likelihood Estimation (MLE), and the inverse Mills 

ratio (IMR) for each household in the selected sample can be estimated as following:  

 𝐼𝑀𝑅 = 𝜆̂𝑖(𝑊𝑖𝛾) =
𝜙(𝑊𝑖𝛾)

Φ(𝑊𝑖𝛾)
 (2) 

where 𝜙(𝑊𝑖𝛾)  is the estimated probability density function (pdf), and Φ(𝑊𝑖𝛾)  is the 

cumulative density function (cdf). The calculated IMR indicates the probability that the 

household i decided to buy hemp products over the cumulative probability of the 

household’s decision. In addition, the IMR captures all the effects of the omitted variables 

(Alviola and Capps, 2010). 

3.5.2 Second Stage of the Heckman Model 

In the second stage of the Heckman model, we include estimated IMR as an 

additional explanatory variable to control the endogeneity since the part of the error term 

for which the decision to buy hemp products influence the total expenditure. Therefore, 
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the regression model for the selected sample in the second stage is mathematically 

formed as  

 𝐸(𝑌𝑖|𝑧𝑖 = 1) = 𝑋𝑖𝛽 + 𝛼𝜆̂𝑖(𝑊𝑖𝛾) + 𝑣𝑖 (3) 

where 𝑌𝑖 represents the total expenditure of hemp products by the 𝑖𝑡ℎ household, 𝑊 is the 

vector of variables that explain the decision to purchase hemp products, 𝑋 is the vector of 

explanatory variables associated with the total expenditure of the hemp products, and 𝛼 is 

the parameter related to the IMR.  

3.5.3 Marginal Effects of the Heckman Model 

The following discussion about the marginal effects of the Heckman model is based 

on Saha et al. (1997) and Alviola and Capps (2010). Let 𝑋𝑖𝑗 denote the 𝑗𝑡ℎ regression, and 

it is common for both 𝑊𝑖 and 𝑋𝑖. Then estimated marginal effect (ME) of a change in the 

regressor is defined as 

 𝑀𝐸̂𝑖𝑗 =
𝜕𝐸(𝑌𝑖|𝑧𝑖 = 1)

𝜕𝑋𝑖
= 𝛽𝑗 +  𝛼

𝜕𝐼𝑀𝑅𝑖

𝜕𝑋𝑖𝑗
 (4) 

Therefore, the marginal effect of the independent variables on 𝑌𝑖 in the observed sample is 

composed of two parts. First, there is a direct effect of the expected expenditure on hemp 

products captured by 𝛽𝑗. Second, the indirect effect is captured by a change in the IMR 

with respect to a unit change in 𝑋𝑖𝑗. The equation above can be simplified and rewritten as 

 𝑀𝐸̂𝑖𝑗 = 𝛽̂𝑗 − 𝛼̂𝛾(𝑊𝑖𝛾𝜆̂𝑖 + (𝜆̂𝑖)
2) (5) 

where 𝑀𝐸̂𝑖𝑗  represents the marginal effect of the 𝑗𝑡ℎ  explanatory variable for the 𝑖𝑡ℎ 

household, 𝛽̂𝑗 is a parameter estimates for the 𝑗𝑡ℎ explanatory variable in the second stage 

of the Heckman model, 𝛼̂ is an estimated parameter for the IMR variable, 𝛾 is an estimated 
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parameter of the 𝑗𝑡ℎ explanatory variable in the first stage of the Heckman model, 𝑊𝑖𝛾 is 

the prediction from the probit model for the 𝑖𝑡ℎ household, and 𝜆̂𝑖 is an estimated the IMR 

for the 𝑖𝑡ℎ household who purchase hemp products. Saha, et al. (1997) and Alviola and 

Capps (2010) ague 𝑀𝐸̂𝑖𝑗 ≠ 𝛽̂𝑗  in general, but 𝑀𝐸̂𝑖𝑗 = 𝛽̂𝑗  if and only if 𝛼̂ = 0, implying 

covariance of two error terms between first- and second-stage equations are equal to zero. 

Since this case is not common, and the ME is different across the observation (i.e., 

observation dependent), this paper evaluates the ME at the sample mean as follows: 

 𝑀𝐸̂𝑖𝑗|𝒔𝒂𝒎𝒑𝒍𝒆 𝒎𝒆𝒂𝒏 = 𝛽̂𝑗 − 𝜆̂𝛾̂𝑗 ((𝑊̅𝛾)𝜆̅̂ + 𝜆̅̂2) (6) 

where 𝑊̅ denote the vector of regressor sample mean and 𝜆̅̂ =
𝜙(𝑊̅𝛾̂)

Φ(𝑊̅𝛾̂)
 is the IMR evaluated 

at the means. 

3.6 Empirical Specification 

For the model specification, the first-stage Heckman model, probit model, is 

hypothesized as a function of the socioeconomic and demographic characteristics including 

household income, household size, marital status, age, education, race and ethnicity of the 

household head, employment, and hemp state.38 The mathematical expression of the probit 

model for the decision to purchase hemp products is written as follows: 

 

𝑃𝑟(𝑧𝑖 = 1) = 𝛾0 + 𝛾1𝑀𝐼𝑛𝑐𝑜𝑚𝑒 + 𝛾2𝐻𝐼𝑛𝑐𝑜𝑚𝑒 + 𝛾3𝐴𝑔𝑒2 + 𝛾4𝐴𝑔𝑒3

+ 𝛾5𝐻𝐻𝑆𝑖𝑧𝑒 + 𝛾6𝑀𝑎𝑟𝑟𝑖𝑒𝑑 + 𝛾7𝐸𝑑𝑢2 + 𝛾8𝐸𝑑𝑢3 + 𝛾9𝐸𝑑𝑢4

+ 𝛾10𝑊ℎ𝑖𝑡𝑒 + 𝛾11𝐵𝑙𝑎𝑐𝑘 + 𝛾12𝐴𝑠𝑖𝑎𝑛 + 𝛾13𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐

+ 𝛾14𝐸𝑚𝑝𝑙𝑜𝑦 + 𝛾15𝐻𝑒𝑚𝑝_𝑆𝑡𝑎𝑡𝑒 + 𝜖𝑖 

(7) 

                                                 
38 We test multicollinearity between the variables based on Variance Inflation Factor (VIF) across all 

different categories of hemp products, and we find there is no strong evidence of multicollinearity. 
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A description of the variable names in the equation above is based on Table 3.3 with 

associated descriptive statistics. The reference category for each dummy variable scheme 

is excluded and reported with an asterisk symbol in Table 3.3. Regional and year dummies 

are also included in the estimation but are not reported in the equation above.39 

 

ln (𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒)

= 𝛽0 + 𝛽1𝑀_𝐼𝑛𝑐𝑜𝑚𝑒 + 𝛽2𝐻_𝐼𝑛𝑐𝑜𝑚𝑒 + 𝛽3𝐴𝑔𝑒2 + 𝛽4𝐴𝑔𝑒3

+ 𝛽5𝐻𝐻𝑆𝑖𝑧𝑒 +  𝛽6𝑀𝑎𝑟𝑟𝑖𝑒𝑑 + 𝛽7𝐸𝑑𝑢2 + 𝛽8𝐸𝑑𝑢3

+ 𝛽9𝐸𝑑𝑢4 + 𝛽10𝑊ℎ𝑖𝑡𝑒 + 𝛽11𝐵𝑙𝑎𝑐𝑘 + + 𝛽12𝐴𝑠𝑖𝑎𝑛

+ 𝛽13𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐 + 𝛽14𝐸𝑚𝑝𝑙𝑜𝑦 + 𝜆1𝐼𝑀𝑅 + 𝑢𝑖 

(8) 

For the dependent variable, this study uses aggregated monthly expenditure, and we 

transform the dependent variable into logarithm form. Econometrically, more outliers in 

the linear dependent variable reflect high variance and result in more risk of 

heteroskedasticity. Also, the distribution of consumption data is commonly highly skewed 

(Zhang, et al., 2008), and estimators might be inconsistent with a dependent variable 

without transformation (Newman, et al., 2003). According to Newhouse (1987), Wagner 

and Hanna (1983), Zhang, et al. (2008), the transformation of the natural logarithm will 

control for positively skewed expenditures. Figure 3.2 shows the histograms for hemp 

products and the distributions of the values are positively skewed across all categories, 

implying that most consumers are spending small amounts of money to purchase hemp 

products.40 On the other hand, the distributions of the expenditures in the natural logarithm 

                                                 
39 For the time dummies, this paper employs year fixed effects instead of monthly fixed effects due to the 

fact we find there is no significant variation among months. 
40 For both Figures 3 and 4, we only use the positive value of the expenditures that head of household who 

purchase hemp products. 
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of hemp products are more normally distributed as shown in Figure 3.3. Therefore, we use 

the logarithm dependent variable to reduce problems resulting from a non-normal 

distribution. In the second stage estimation, we exclude the variable of hemp state in that 

it is not atypical in Heckman selection model. Also, the variable of IMR calculated from 

the probit model is included to test the selection bias. 

3.7 Empirical Results 

3.7.1 First-Stage Estimation 

The results of the first stage probit model for four different categories are reported 

in Table 3.4 including the maximum log-likelihood estimates and McFadden R2. The 

marginal effects associated with the estimates of the parameters are also reported in Table 

3.4 since the magnitude of the coefficients does not provide direct interpretation. By 

looking at the marginal effects in Table 3.4, households with higher income are more likely 

to consume hemp granola and nuts, relative to low-income categories with less than 

$30,000. Older households are less likely to consume all hemp products except hemp 

protein compared to the younger households who are less than 40-year-old, indicating 

young households are more likely consumers of hemp products. For the education level, 

we find that most of the categories of hemp products except hemp granola are more likely 

to be consumed as education increases. Also, we find that significant regional effects on 

the probability of buying hemp products, but the regional effects vary across the categories 

of hemp products. This finding suggests that consumers may have different preferences for 

hemp products across the regions regardless of the quantity sold. For example, the 

likelihood of buying hemp granola is less in the South but more in the Midwest and West 

regions compared to the Northeast region even though quantity sold for hemp granola in 
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the South is about 13% higher compared to Northeast based on Table 3.1. States that have 

enacted industrial hemp legislation are more likely to consume hemp granola but less likely 

to consume hemp nuts relative to no hemp legislation states. This could be a function of no 

processing of hemp and minimal advertising of hemp in states without hemp legislation.  

After the estimation of the probit model, the prediction success is evaluated to 

assess the usefulness of the probit model as suggested by other studies such as (Alviola and 

Capps, 2010, Capps, et al., 1999, Park and Davis, 2001). Table 3.5 shows the goodness of 

fit measures from the probit model for all four categories. To generate the classification 

statistics, especially the percentage of correct predictions, we employ different cut off 

values for each category rather than the default value of 0.5. This is used because the 

classification of households who purchased hemp products are incorrectly classified if the 

default value is used instead of market penetration (Alviola and Capps, 2010). Therefore, 

the cut off value represents the market penetration that is the proportion of the households 

who purchase hemp products. As shown in Table 3.5, the percentage of correct predictions 

between hemp products and non-hemp products of granola, nuts, nutrition, and proteins are 

61.97%, 53.65%, 59.77%, and 61.82%, respectively. Based on the sensitivity in Table 3.5, 

our models correctly predict the decision to buy hemp-products of granola, nuts, nutrition, 

and protein: approximately 63%, 72%, 67%, and 63%, respectively. Regarding specificity, 

the decision to purchase non-hemp products of granola, nuts, nutrition, and proteins are 

correctly predicted approximately 64%, 51%, 59%, and 61%, respectively.  

3.7.2 Second-Stage Estimation 

The results of the second stage estimation are reported in Table 3.6. Within the 

second stage of results, the lambda (i.e., inverse mills ration) is estimated to test sample 
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selection bias, and it is statistically significant for categories of granola, nuts, nutrition, and 

protein at the 0.10, 0.01, 0.10, and 0.01 level, respectively. This indicates the evidence of 

sample selection bias, and the use of Heckman selection model is justified. In Table 3.6, 

we also reported the marginal effects that are evaluated at the mean due to the observation 

dependent. Also, the marginal effect used in this study is the partial effect on the truncated 

mean. The marginal effect is calculated based on consumers who have an observed value 

by excluding consumers who do not purchase hemp products. For the second stage 

estimation, once a decision to buy hemp products has been made by households (i.e., hemp 

buyers), higher income group households are positively associated with total expenditure 

but only for hemp granola. If household’s income is above $70.000, the total expenditure 

of hemp granola increases by 9.8% compared to the household whose income is less than 

$30,000, ceteris paribus. Total expenditure for the hemp nuts and nutrition are positively 

associated with households in higher age groups. To be specific, on average, the total 

expenditure of hemp nuts increases by 2.5% while the total expenditure of hemp protein 

decreases by 19.2% if household’s age is above 74 compared to the household whose age 

is less than 40. This finding suggests that the younger age group may be looking for 

healthier sources of protein than the older age group. Across all categories of hemp 

products, we find higher education level is not statistically related to the total expenditure 

across most categories. For the different regions, households in the South and West regions 

consume less for hemp granola compared to the households in the East region whereas 

households in the Midwest and South regions consume more hemp nutrition and protein, 

relative to households in the East region. The findings can be explained by two potential 

reasons. First, households in South and West regions have less accessibility to stores and 
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availability of products to purchase hemp granola compared to the households in the East 

region. Likewise, there might be more stores that carry hemp nutrition and protein in the 

Midwest and South regions compared to the East region. Second, households in the 

Midwest and South regions might have a stronger perception of hemp products as nutritious 

and protein-rich than households in the East region.   

3.8 Concluding Remarks 

Industrial hemp as a variety of the Cannabis sativa plant species has received a great 

deal of interest in the last two decades since there are many benefits in environmental, 

production, and health. The passage of the 2014 Farm Bill only accelerated the interest in 

this crop and its potential. In global markets, industrial hemp is an agricultural crop used 

for textiles, automotive paneling, furniture, food, personal care, construction, paper, etc. 

Then on December 2018, the 2018 Farm Bill was passed and approved by the U.S. 

Congress to legalize the production of industrial hemp. Ratification of this legislation 

would open up the opportunity for commercial hemp production and increasing the supply 

of hemp available in the U.S. market. 

In the U.S., retail sales for hemp production is increasing over time even though 

there is no commercial hemp production due to the production of restrictions. This study 

investigates the critical sociodemographic factors that are associated with increasing hemp 

consumption and measures their effects on total expenditure in the U.S. by utilizing 

Nielsen’s consumer panel data from 2008 to 2015. By analyzing the retail data, a more 

objective view of the consumer profile is identified for this developing industry. Knowing 

this consumer profile, therefore, can contribute to the viability of the hemp products market 

in the U.S.  
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By employing the Heckman selection model, this study finds that 

sociodemographic characteristics especially income, age, and education play an important 

role in purchasing and explaining the demand for different categories of hemp products. 

To be specific, higher income is positively associated with the probability and consumption 

level of hemp products. The role of the age of household head is mixed with respect to 

consumption decisions and consumption level across the products: a negative and 

significant effect on the probability of buying hemp products except for hemp protein, 

whereas a positive and significant effect on total expenditure of hemp nuts and nutrition 

once households make the decision to buy hemp products. In most of the cases, households 

with higher education are more likely to buy hemp products, and those households are 

associated with significantly higher levels of the consumption except for hemp nuts. To 

understand the hemp market in the U.S., these findings will provide insights into a more 

targeted marketing strategy for hemp industries to attract new consumers and increase more 

sales from current consumers. Many different markets such as hemp seed, hemp fiber, and 

hemp CBD can be derived from the hemp industry since more than fifty thousand uses are 

produced from hemp. Hemp products used in this study are made of hemp seeds; however, 

our findings show that hemp seeds market could be segmented based on the forms: hemp 

cereal, hemp nuts, hemp nutrition, and hemp protein.     

Industrial hemp is recently removed from the Schedule 1 narcotic and is legal to 

produce in the U.S. according to the 2018 Farm Bill. As of 2018, 40 plus states already 

have hemp legislation in place that allows for the production and processing of industrial 

hemp within the state. Based on our best knowledge, there is no empirical study related to 

hemp in the U.S. Thus, findings in this study will begin to fill the knowledge gap on a crop 
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that is increasing consumption and production in the U.S. As the industry continues to 

move forward, findings in this study may also open the door to create a business and 

marketing plans that allow to create goals and strategies to marketers, retailers, and other 

stakeholders. Not only will this manuscript contribute to the industrial hemp literature, but 

it has the potential to generate significant discussion. Little is known about modern 

industrial hemp, and there are many unknowns about everything from its production to its 

marketing channels. A basic understanding of consumer profiles is a starting point for these 

discussions.
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3.9 Table and Figures 

Table 3.1 The Quantity of Hemp Products Sold by Region in the U.S. 
 

 

Products Regions 2008 2009 2010 2011 2012 2013 2014 2015 

Granola 

Northeast     27,469      17,054      14,508      19,855      23,070      19,023      13,012      14,171  

Midwest     36,299      32,427      37,898      42,753      45,648      41,713      37,471      36,763  

South     32,387      32,201      34,556      41,673      45,095      42,724      38,065      46,816  

West     34,787      37,400      60,834      73,067      75,967      65,929      68,496      77,001  

 Total   130,942    119,082    147,796    177,348    189,780    169,389    157,044    174,751  

Nuts 

Northeast          467           577           970        1,873        6,001      18,687      23,220      25,808  

Midwest          166           349           751        1,189        2,902        7,607      15,915      19,944  

South          222           253           426           613           998        3,559      10,271      20,181  

West            -               79           214           322           618        1,708      26,944      42,806  

 Total          855        1,258        2,361        3,997      10,519      31,561      76,350    108,739  

Nutrition 

Northeast            -                 9             26           198           863      10,470      21,753      20,405  

Midwest            45           253             94           150        1,523        6,305      13,531      15,703  

South          104           504             32             -               63           553      12,958      14,516  

West       4,073        3,312        2,959        6,416        9,303      12,216      19,194      16,999  

 Total       4,222        4,078        3,111        6,764      11,752      29,544      67,436      67,623  

Protein 

Northeast            -               54             47             32             65           185           314        8,149  

Midwest          253        1,540        1,018        1,367        2,230        3,256        3,403        5,027  

South       1,029        3,023           187           153           170           270           276           596  

West          660        6,106        4,806        3,235        3,813        4,845           967           494  

 Total       1,942      10,723        6,058        4,787        6,278        8,556        4,960      14,266  
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Table 3.2 Number of Observations for Each Product with Proportion of Hemp Product 
 

Products 2008 2009 2010 2011 2012 2013 2014 2015 Total 

Granola & Nature Valley 727 599 502 559 697 877 1,011 992 5,964 
 (25.86) (32.22) (38.25) (37.92) (25.82) (17.10) (14.24) (17.04) (23.94) 

Nuts (Bags) 
1,313 1,304 642 975 1,674 2,859 3,395 3,079 15,241 

(2.74) (1.99) (8.10) (9.74) (11.95) (14.20) (14.02) (13.51) (11.20) 

Nutrition 
1,741 1,744 848 1,211 2,194 3,517 3,966 3,657 18,878 

(0.63) (1.09) (1.65) (2.64) (1.60) (2.22) (3.23) (3.66) (2.39) 

Protein 
105 125 101 132 277 457 569 500 2,266 

(19.05) (28.00) (23.76) (15.15) (9.75) (8.97) (10.19) (12.60) (12.71) 

Total 
3,886 3,772 2,093 2,877 4,842 7,710 8,941 8,228 42,349 

(6.56) (7.41) (13.09) (12.00) (10.55) (10.96) (11.49) (11.80) (10.66) 
 

Notes: Observations in Table 3.2 represent the total number of observations for each product type, regardless of whether it 

contains a hemp product. Parentheses represent the proportion of these observations for which a hemp product is included in the 

ingredients. 
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Table 3.3 Definitions and Summary Statistics of Variables Used in the Analysis 

 

Variable Description 

Hemp Exp Total monthly expenditure for Hemp product in log 

Hemp =1 if HH consume Hemp by product 

Low Income* =1 if HH income is less than $30,000 

Median Income =1 if HH income is between $30,000 and $70,000 

High Income =1 if HH income is above $70,000 

Age1* =1 if HH age is less than 40 

Age2 =1 if HH age is between 40 and 64 

Age3 =1 if HH age is above 64 

HH Size Size of Households 

Married =1 if HH married 

Edu1* =1 if HH education is High School or less 

Edu2 =1 if HH education is Some College 

Edu3 =1 if HH education is College Graduate 

Edu4 =1 if HH education is Post Collegiate 

White =1 if HH is White 

Black =1 if HH is African American (Black) 

Asian =1 if HH is Asian 

Other Race* =1 if HH is other races 

Hispanic =1 if HH is Hispanic 

Employ =1 if HH is employed 

Hemp State =1 if HH is living in State with Hemp Legislation 

Midwest =1 if HH is living Midwest region 

South  =1 if HH is living South region 

West =1 if HH is living West region 

East* =1 if HH is living East region 

Notes: HH represents the head of household, and HH is defined as the female head. If a female of 

the household does not exist, the HH is the male head. A variable with an asterisk symbol 

represents a reference (base) category.  
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Table 3.3 (Continued) 

 

  Granola Nuts Nutrition Protein 

Variable Mean SD Mean SD Mean SD Mean SD 

Hemp Exp 1.40 0.48 2.45 0.54 2.44 0.47 2.69 0.39 

Hemp 0.24 0.43 0.11 0.32 0.02 0.15 0.13 0.33 

Low Income* 0.10 0.30 0.14 0.35 0.14 0.35 0.11 0.31 

Median Income 0.37 0.48 0.39 0.49 0.39 0.49 0.33 0.47 

High Income 0.53 0.50 0.47 0.50 0.47 0.50 0.56 0.50 

Age1* 0.14 0.34 0.09 0.28 0.07 0.26 0.13 0.34 

Age2 0.65 0.48 0.65 0.48 0.63 0.48 0.67 0.47 

Age3 0.21 0.41 0.26 0.44 0.29 0.46 0.20 0.40 

HH Size 2.52 1.26 2.39 1.19 2.28 1.16 2.45 1.29 

Married 0.73 0.44 0.71 0.46 0.67 0.47 0.68 0.47 

Edu1* 0.15 0.36 0.20 0.40 0.18 0.39 0.13 0.34 

Edu2 0.27 0.44 0.30 0.46 0.31 0.46 0.32 0.47 

Edu3 0.36 0.48 0.34 0.47 0.35 0.48 0.36 0.48 

Edu4 0.22 0.41 0.16 0.36 0.16 0.36 0.18 0.39 

White 0.84 0.37 0.81 0.40 0.81 0.40 0.78 0.42 

Black 0.06 0.23 0.09 0.29 0.09 0.28 0.11 0.31 

Asian 0.05 0.21 0.05 0.22 0.05 0.23 0.05 0.21 

Other Race* 0.06 0.23 0.06 0.23 0.05 0.23 0.07 0.25 

Hispanic 0.08 0.27 0.08 0.27 0.07 0.26 0.08 0.27 

Employ 0.64 0.48 0.57 0.50 0.56 0.50 0.64 0.48 

Hemp State 0.37 0.48 0.40 0.49 0.40 0.49 0.48 0.50 

Midwest 0.20 0.44 0.21 0.41 0.15 0.36 0.17 0.38 

South  0.26 0.44 0.31 0.46 0.31 0.46 0.29 0.45 

West 0.35 0.48 0.32 0.47 0.41 0.49 0.41 0.49 

East* 0.19 0.39 0.16 0.37 0.13 0.33 0.13 0.33 

Observations 5,959 15,233 18,871 2,263 

Notes: S.D represents the standard deviation. 
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Table 3.4 First Stage Probit Estimation Results 

 

  Granola (N=5,959) Nuts (N=15,233) 

Variable Coef   M.E Coef   M.E 

M_Income 0.154 ** 0.047 0.151 *** 0.026 
 (0.069)  (0.021) (0.047)  (0.008) 

H_Income 0.129 * 0.038 0.167 *** 0.029 
 (0.072)  (0.021) (0.050)  (0.009) 

Age2 -0.199 *** -0.061 -0.083  -0.014 
 (0.054)  (0.017) (0.051)  (0.009) 

Age3 -0.294 *** -0.082 -0.141 ** -0.023 
 (0.069)  (0.018) (0.059)  (0.009) 

HH Size -0.084 *** -0.025 -0.021  -0.004 
 (0.018)  (0.005) (0.015)  (0.002) 

Married -0.066  -0.02 -0.157 *** -0.028 
 (0.050)  (0.015) (0.037)  (0.007) 

Edu2 -0.053  -0.016 0.121 *** 0.021 
 (0.060)  (0.018) (0.042)  (0.008) 

Edu3 -0.039  -0.012 0.1 ** 0.017 
 (0.059)  (0.017) (0.042)  (0.007) 

Edu4 0.029  0.009 0.184 *** 0.034 
 (0.065)  (0.020) (0.049)  (0.010) 

Employed 0.134 *** 0.04 0.015  0.003 
 (0.043)  (0.013) (0.031)  (0.005) 

White -0.259 *** -0.082 -0.206 *** -0.038 
 (0.084)  (0.028) (0.061)  (0.012) 

Black -0.013  -0.004 -0.281 *** -0.041 
 (0.114)  (0.034) (0.076)  (0.009) 

Asian -0.504 *** -0.123 -0.321 *** -0.045 
 (0.123)  (0.024) (0.088)  (0.010) 

Hispanic -0.011  -0.003 0.147 *** 0.027 
 (0.073)  (0.022) (0.053)  (0.010) 

Midwest 0.159 *** 0.049 -0.097 * -0.016 
 (0.059)  (0.019) (0.051)  (0.008) 

South -0.202 *** -0.058 0.26 *** 0.047 
 (0.059)  (0.016) (0.046)  (0.009) 

West 0.268 *** 0.082 0.269 *** 0.049 
 (0.053)  (0.017) (0.044)  (0.008) 

Hemp State 0.086 * 0.026 -0.055 * -0.009 
 (0.044)  (0.013) (0.032)  (0.005) 

Constant -0.302 **  -1.94 ***  

 (0.145)   (0.125)   

Log Likelihood -3054.221 -5035.573 

McFadden R2 0.069 0.058 
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Table 3.4 (Continued) 

 
 Nutrition (N=18,871) Protein (N=2,263) 

Variable Coef   M.E Coef   M.E 

M_Income 0.041  0.002 0.035  0.007 
 (0.065)  (0.003) (0.128)  (0.025) 

H_Income -0.107  -0.005 -0.077  -0.015 
 (0.070)  (0.003) (0.126)  (0.025) 

Age2 -0.298 *** -0.016 0.084  0.016 
 (0.066)  (0.004) (0.107)  (0.020) 

Age3 -0.403 *** -0.016 -0.113  -0.021 
 (0.078)  (0.003) (0.148)  (0.026) 

HH Size 0.005  0.0002 -0.03  -0.006 
 (0.021)  (0.001) (0.034)  (0.007) 

Married 0.098 * 0.004 0.063  0.012 
 (0.054)  (0.002) (0.096)  (0.018) 

Edu2 0.163 *** 0.008 0.241 ** 0.049 
 (0.063)  (0.003) (0.117)  (0.025) 

Edu3 0.178 *** 0.009 0.237 ** 0.048 
 (0.064)  (0.003) (0.119)  (0.025) 

Edu4 0.006  0.0003 -0.035  -0.007 
 (0.081)  (0.004) (0.138)  (0.026) 

Employed -0.006  -0.0003 0.159 * 0.03 
 (0.045)  (0.002) (0.086)  (0.016) 

White -0.024  -0.001 0.095  0.018 
 (0.098)  (0.005) (0.158)  (0.029) 

Black 0.15  0.008 0.019  0.004 
 (0.114)  (0.007) (0.195)  (0.038) 

Asian -0.283  -0.01 0.167  0.035 
 (0.149)  (0.004) (0.223)  (0.051) 

Hispanic -0.098  -0.004 0.031  0.006 
 (0.089)  (0.004) (0.148)  (0.030) 

Midwest -0.192 *** -0.008 0.147  0.03 
 (0.067)  (0.002) (0.124)  (0.027) 

South -0.321 *** -0.014 0.092  0.018 
 (0.060)  (0.002) (0.115)  (0.023) 

West -0.307 *** -0.014 -0.279 ** -0.052 
 (0.057)  (0.002) (0.118)  (0.021) 

Hemp State 0.001  0.0001 -0.027  -0.005 
 (0.057)  (0.003) (0.082)  (0.016) 

Constant -2.09 ***  -1.068 ***  

 (0.189)  (0.002) (0.297)   

Log Likelihood -2027.504 -812.334 

McFadden R2 0.046 0.058 

Notes: Significance levels are indicated by ***, **, * for 1, 5, and 10 percent 

significance level, respectively. Robust standard errors are reported in parentheses.  
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Table 3.5 The Goodness of Fit Measures from the Probit Model 

 

Categories Sensitivity (%) Specificity (%) Cutoff Value 
% of Correct  

Predictions 

Granola 63.77 64.41 0.239 61.97% 

Nuts 72.47 51.28 0.112 53.65% 

Nutrition 67.11 59.6 0.024 59.77% 

Protein 63.19 61.62 0.127 61.82% 

Notes: Sensitivity represents the percentage of correctly predicting the choice of hemp 

products, whereas specificity represent the percentage of correctly predicting the 

choice of choosing non-hemp products 
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Table 3.6 Second Stage Estimation Results 

 
 Granola Nuts 

Variable Coef   M.E Coef   M.E 

M_Income 0.080 * 0.085 -0.039  0.058 
 (0.044)  (0.044) (0.053)  (0.044) 

H_Income 0.094 ** 0.098 0.004  0.106 
 (0.045)  (0.046) (0.055)  (0.046) 

Age2 -0.110 *** -0.117 0.091 * 0.042 
 (0.040)  (0.040) (0.053)  (0.042) 

Age3 -0.010  -0.021 0.113 * 0.025 
 (0.049)  (0.048) (0.066)  (0.054) 

HH Size -0.064 *** -0.067 0.028 * 0.014 
 (0.014)  (0.014) (0.015)  (0.012) 

Married 0.096 *** 0.094 0.049  -0.055 
 (0.033)  (0.033) (0.043)  (0.036) 

Edu2 0.063  0.061 -0.072  0.008 
 (0.042)  (0.042) (0.048)  (0.038) 

Edu3 0.003  0.002 -0.070  -0.007 
 (0.040)  (0.040) (0.046)  (0.037) 

Edu4 -0.029  -0.028 -0.117 ** 0.006 
 (0.044)  (0.043) (0.056)  (0.044) 

Employed 0.072 *** 0.077 -0.061  -0.052 
 (0.027)  (0.027) (0.037)  (0.030) 

White -0.071  -0.081 0.158 ** 0.039 
 (0.055)  (0.055) (0.064)  (0.052) 

Black -0.119 * -0.119 0.164 ** 0.000 
 (0.065)  (0.065) (0.083)  (0.067) 

Asian -0.135  -0.154 0.186 ** -0.014 
 (0.084)  (0.083) (0.092)  (0.073) 

Hispanic -0.144 *** -0.145 -0.040  0.056 
 (0.049)  (0.049) (0.060)  (0.049) 

Midwest 0.029  0.035 0.064  -0.001 
 (0.045)  (0.044) (0.060)  (0.049) 

South -0.105 ** -0.113 -0.083  0.073 
 (0.041)  (0.041) (0.053)  (0.042) 

West -0.076 * -0.066 -0.054  0.115 
 (0.039)  (0.038) (0.052)  (0.042) 

Lambda -0.046 * − -0.765 *** − 
 (0.026)  − (0.047)  − 

Constant 1.493 *** − 3.698 *** − 
 (0.097)  − (0.195)  − 

Log Likelihood -3,976.47 -6,340.95 

Censored 4,532 13,526 

Uncensored 1,427 1,707 

Observations 5,959 15,233 
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Table 3.6 (Continued) 

  
 Nutrition Protein 

Variable Coef   M.E Coef   M.E 

M_Income 0.102  0.115 0.089  0.073 
 (0.070)  (0.066) (0.095)  (0.058) 

H_Income 0.119  0.087 0.056  0.083 
 (0.078)  (0.074) (0.097)  (0.061) 

Age2 0.226 *** 0.136 -0.027  -0.073 
 (0.071)  (0.060) (0.079)  (0.048) 

Age3 0.206 ** 0.083 -0.247 ** -0.192 
 (0.091)  (0.075) (0.106)  (0.063) 

HH Size -0.035  -0.034 -0.013  0.001 
 (0.023)  (0.022) (0.022)  (0.015) 

Married 0.077  0.107 -0.036  -0.063 
 (0.060)  (0.058) (0.071)  (0.045) 

Edu2 -0.072  -0.023 0.077  -0.023 
 (0.073)  (0.066) (0.086)  (0.055) 

Edu3 -0.031  0.023 0.062  -0.041 
 (0.071)  (0.065) (0.089)  (0.057) 

Edu4 0.002  0.004 -0.114  -0.064 
 (0.085)  (0.081) (0.102)  (0.065) 

Employed -0.042  -0.044 0.093  0.002 
 (0.050)  (0.048) (0.064)  (0.039) 

White 0.06  0.053 0.038  -0.034 
 (0.090)  (0.088) (0.113)  (0.056) 

Black 0.122  0.167 0.029  -0.01 
 (0.112)  (0.111) (0.144)  (0.085) 

Asian 0.181  0.096 -0.091  -0.179 
 (0.175)  (0.166) (0.161)  (0.098) 

Hispanic 0.183 * 0.153 -0.014  -0.016 
 (0.099)  (0.095) (0.107)  (0.056) 

Midwest 0.254 *** 0.195 0.237 *** 0.148 
 (0.073)  (0.074) (0.088)  (0.052) 

South 0.328 *** 0.229 0.247 *** 0.173 
 (0.073)  (0.071) (0.081)  (0.049) 

West 0.391 *** 0.297 0.067  0.184 
 (0.074)  (0.071) (0.092)  (0.059) 

Lambda -0.34 * − 0.657 *** − 
 (0.194)  − (0.059)  − 

Constant 3.101 *** − 1.811  − 
 (0.530)  − (0.209)  − 

Log Likelihood -2,278.85 -894.196 

Censored 18,421 1,975 

Uncensored 450 288 

Observations 18,871 2,263 
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Figure 3.1  Total Value of U.S. Hemp Imports, 2010-2015 

 

Notes: Main source of the total value for hemp imports is obtained from U.S. 

International Trade Commission, and total hemp imports include hemp seed, hemp oil 

and fractions, hemp seed oilcake and solids, and true hemp. Please see more detail 

information on U.S. hemp import at https://fas.org/sgp/crs/misc/RL32725.pdf 
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Figure 3.2 Distributions of Hemp Products Expenditures in Original Scale 
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Figure 3.3 Distributions of Hemp Products Expenditures in Original Scale 
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CHAPTER 4. FACTORS AFFECTING HETEROGENEOUS AGRICULTURAL 

LAND: THE CASE OF KENTUCKY  

4.1 Abstract 

This study investigates the factors that affect agricultural land values by proposing a new 

rich dataset, Zillow Transaction and Assessment Data (ZTRAX) provided by Zillow from 

2009 to 2014. This study also examines whether the National Commodity Crop 

Productivity Index (NCCPI) could be a good indicator of land values or not by comparing 

two different regression models between county-level cash rent and parcel-level NCCPI. 

Finally, this study incorporates flexible functional forms to test the parcel size and land 

values relations. Findings show that factors influencing agricultural land values in states 

with heterogeneous agricultural lands such as Kentucky are not different from other states 

with relatively homogeneous agricultural lands. This study also provides suggestive 

evidence that there is a non-linear relationship between parcel size and land values. 

Furthermore, we find that a disaggregated NCCPI at parcel-level could be considered an 

acceptable indicator to estimate agricultural values compared to an aggregated cash rent at 

county-level. 

 

4.2 Introduction 

Farmland is the source of equity and primary input for most farms; in addition, 

farmland values are an essential indicator to explain the financial well-being of the farm 

sector since farmland accounts approximately more than 82 percent of farm-sector assets 

in 2016 (Burns, et al., 2018). In this regard, not only farmland values but also the factors 

affecting farmland valuation have been received considerable interest and been the subject 

of a great deal of economic research (Nickerson, et al., 2012). Abundant research in the 

literature has examined the factors influencing farmland values and shown that a complex 

set of factors determines farmland values such as environmental amenities (Bastian, et al., 

2002, Borchers, et al., 2014, Wasson, et al., 2013), Urban influence (Delbecq, et al., 2014, 

Guiling, et al., 2009, Livanis, et al., 2006, Zhang and Nickerson, 2015), Potential land 

development (Plantinga, et al., 2002), decoupled payment (Ifft, et al., 2015), and wind 

power facilities (Heintzelman and Tuttle, 2012).  
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None of the previous studies on land values in the U.S., however, considers the 

direction and the size of the effect of land size even though some of the studies include the 

land size as a control variable. Most of the previous studies such as (Borchers, et al., 2014, 

Delbecq, et al., 2014, Huang, et al., 2006, Zhang and Nickerson, 2015) find that the size of 

the land parcel has a significantly negative impact on land values. Brorsen, et al. (2015) 

specifically focus on the relationship between land value and parcel size, and they find that 

there is an inverse relationship between parcel size and per acre prices of agricultural land. 

In other words, increasing parcel size leads to a decrease in agricultural land value. A recent 

working paper by Ritter et al (2019) argues that empirical analysis with hedonic price 

models is somewhat unclear about the direction and the effect of size. They explain that 

the ambiguousness regarding the direction and the size effects are attributable to the 

economies of scale related to farm machinery and management, and partially fixed 

transaction costs in land values. In addition, the farmland values could be over- or 

underestimated with a single estimated coefficient of the parcel size due to the large 

variation that is associated with the parcel size (Ritter et al., 2019). In this respect, our study 

fills the knowledge gap between the direction and the effect of parcel size by including 

different functional forms for the parcel size. We also calculate specific threshold points 

where the direction and effect of parcel size change. This study hypothesizes that the size 

and land values relations could be non-linear.  

A fundamental assumption, which is common to the land value literature, is that 

land value is the discounted present value of expected returns from the land. One measure 

of the return to the land is the cash rents (Robison, et al., 1985). According to the Ricardian 

Rent Theory, cash rents generally reveal the level of profitability of the land (Ibendahl and 
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Griffin, 2013). Figure 4.1 shows a graphical relationship between agricultural land value 

and cash rent in the U.S. from 2008 to 2016. As shown in figure 4.1, there is co-movement 

between land values and cash rents over time, suggesting there is a strong relationship 

between them. Knowing the relationship between cash rents and land prices is important 

because it helps indicate whether cash rents are a cost-effective way of controlling farmland 

relative to purchasing the land. In this regard, we hypothesize that land values can be 

explained as a function of cash rents, and there is a positive relationship between them.  

Based on our best knowledge, however, cash rents at the parcel or field level is not 

publicly available and difficult to observe. This motivates our research question whether 

aggregate county-level data (for example, cash rents used in this study) can be substitutable 

with disaggregated parcel-level or field-level data (for example, NCCPI used in this 

study).41 If the disaggregate characteristic predicts land values relatively better than cash 

rents, it suggests the disaggregate characteristic can be used as an alternative and 

appropriate indicator when analyzing land values. The productivity of agricultural land in 

Ricardian rent theory is explained by  the natural fertility of the soil (Blaug, 1997). National 

Commodity Crop Productivity Index (NCCPI) is a national soil interpretation developed 

by the Conservation Reserve Program (CRP) of USDA and generated in the National Soil 

Information System.42 NCCPI is a national soil interpretation that utilizes soil, landscape, 

and climate factors not only to assign ratings but also model the response for commodity 

                                                 
41 The disaggregated parcel-level data is obtained by using spatial join tool in ArcGIS from NCCPI, which 

is a raster (i.e., image) file. 
42 NCCPI has three different submodels (i.e., categories): Corn and Soybeans, Small Grains, and Cotton. 

NCCPI used in this study represents the Corn and Soybean submodel. The corn and soybeans index is 

calculated by multiplying ratings from the chemical, water, physical, climate, and landscape. Please see 

more detail information about NCCPI at 

https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/16/nrcs143_020559.pdf 

https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/16/nrcs143_020559.pdf
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crops such as corn and soybeans, small grains, and cotton (Dobos, et al., 2008, Zhang and 

Nickerson, 2015). Therefore, NCCPI should be representative of cash rents, as a result, 

land value also could be a function of commodity crop productivity, NCCPI.  

 The main objective of this paper is three-fold. First, we investigate the factors that 

affect agricultural land values by proposing a new rich dataset, Zillow Transaction and 

Assessment Data (ZTRAX) provided by Zillow from 2009 to 2014. This study focuses 

only on Kentucky where the agricultural lands are heterogeneous, and we hypothesize that 

the factors influencing farmland values may not be consistent with the findings in the 

previous studies on farmland values. Figure 4.2 shows the commodity crop productivity in 

Kentucky. As shown in figure 4.2, eastern Kentucky has lower productivity compared to 

western Kentucky. This clearly supports evidence that agricultural lands in Kentucky are 

heterogeneous. Another reason to focus on one single state is based on Palmquist (2005) 

that it is appropriate to treat a region or state as a single land market. Second, we examine 

two different regression models with county-level cash rent and with parcel-level NCCPI 

to test whether NCCPI could be a good indicator of land values. Finally, this study 

incorporates flexible functional forms of the parcel size to test the parcel size and land 

values relations. The remainder of this paper is organized as follows. In the next section, 

we present a conceptual and empirical framework. The data and variables used in this study 

are discussed in section 4.4. Section 4.5 discusses the results of the analysis, and section 

4.6 provides discussion and conclusions. 
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4.3 Conceptual Framework and Empirical Model 

4.3.1 Conceptual Framework 

The value of land based on economic theory should be defined as the net present 

value of future returns, and most previous studies on land value are influenced by Ricardian 

theory of rend (David, 1817). The relationship between current farmland values and 

expected returns in future periods is formally expressed in the capitalization formula, which 

is the foundation of most farmland valuation studies (Ifft, et al., 2015). The following 

discussion of the capitalization formula is based on Guiling, et al. (2009). The 

capitalization formula is expressed: 

 𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝐿𝑎𝑛𝑑 𝑉𝑎𝑙𝑢𝑒𝑠 =  
𝑅𝑒𝑡𝑢𝑟𝑛𝑠

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑅𝑎𝑡𝑒
 (2) 

The equation (1) can be written as the infinite-horizon present value model:  

 𝑉𝑖𝑡 =  ∑
𝐸𝑡(𝑅𝑖𝑠)

(1 + 𝑟)𝑠−𝑡
, 𝑤ℎ𝑒𝑟𝑒 𝑠 = 𝑡, 𝑡 + 1, …

∞

𝑠

 (2) 

where 𝑉𝑖𝑡 is the value of a parcel of land i at time t, 𝑅𝑖𝑠 represents the returns to land i in 

period t, r is a constant discount rate, and 𝐸𝑡(∙) is the expectations operator given the 

information available at time t. Since expectations are unobservable, it is commonly 

substitutable with cash rents or imputed returns, which are the measure of observed returns. 

By taking the logarithm of both sides of equation (2), equation (2) can be re-written as 

follows: 

 𝑙𝑛(𝑉𝑖𝑡) = 𝑙𝑛 (∑ 𝐸𝑡(𝑅𝑖𝑠)

∞

𝑠=𝑡

) − 𝑙𝑛(1 + 𝑟)𝑠−𝑡 (3) 
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In the empirical model, 𝑙𝑛 (∑ 𝐸𝑡(𝑅𝑖𝑠)∞
𝑠=𝑡  is approximated by a linear function of parcel 

characteristics, and the approximation of 𝑙𝑛 (∑ 𝐸𝑡(𝑅𝑖𝑠)∞
𝑠=𝑡  is expressed as 

 𝑙𝑛 (∑ 𝐸𝑡(𝑅𝑖𝑠)

∞

𝑠=𝑡

= 𝑿𝑖𝑡𝜷 + 𝜏𝑡 + 𝜀𝑖𝑡 (4) 

where 𝑿𝑖𝑡 is a vector of factors affecting returns in parcel i, 𝜏𝑡 is a fixed effect for year that 

controls unobservable effects that change over time, 𝜀𝑖𝑡 is variation in farmland values that 

cannot be explained by the model and assumed to be a normally distributed error term. 

Substituting equation (4) into (3) results 

 𝑙𝑛(𝑉𝑖𝑡) = (𝜏𝑡 − 𝑙𝑛(1 + 𝑟)𝑖) + 𝑿𝑖𝑡𝜷 + 𝜀𝑖𝑡 (5) 

In equation (5), both 𝜏𝑡 and 𝑙𝑛(1 + 𝑟)𝑖 can be captured by fixed effect of 𝛿𝑡 that controls 

unobservable heterogeneity of interest rates over time. With this, an estimable reduced 

form model from the equation (5) is expressed  

 𝑙𝑛(𝑉𝑖𝑡) = 𝑿𝑖𝑡𝜷 + 𝛿𝑡 + 𝜀𝑖𝑡 (6) 

In equation (5), the vector of parcel attributes and location characteristics 𝑿𝑖𝑡  can be 

decomposed into five different categories: (1) the parcel-specific characteristics 𝑳𝑖𝑡 such 

as soil quality, slope and elevation of the parcel; (2) the weather characteristics 𝑾𝑖𝑡 such 

as temperature and precipitation; (3) the amenities and dis-amenities characteristics 𝑨𝑖𝑡 

such as proximities to a waterbody and Superfund site; (4) the urban influence 

characteristics 𝑼𝑖𝑡  such as county-based population density, median household income, 

and proximity to cities; (5) agricultural market influence characteristics 𝑴𝑖𝑡 such as cash 

rent and proximity to grain elevators, so that 

 𝑿𝑖𝑡 = 𝑳𝑖𝑡 +  𝑾𝑖𝑡 + 𝑨𝑖𝑡 + 𝑼𝑖𝑡 + 𝑴𝑖𝑡 (7) 
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 Alternatively, we can define the following specification: 

 𝑉𝑖𝑡 = 𝐸𝑡 ∑ 𝑓(𝑳𝑖𝑡

∞

𝑡=1

, 𝑾𝑖𝑡  , 𝑨𝑖𝑡 , 𝑼𝑖𝑡 , 𝑴𝑖𝑡; 𝑟𝑡) (8) 

4.3.2 Empirical Model 

The Hedonic price method, which was initially introduced by Griliches (1961) and 

further developed by Rosen (1974), has become the popular approach and has been widely 

employed in modeling the determinants of agricultural land values (Delbecq, et al., 2014, 

Dillard, et al., 2013, Zhang and Nickerson, 2015). The hedonic price method is known as 

a revealed preference method that the value of a parcel of agricultural land is a function of 

its attribute and characteristics. Numerous applications of hedonic models have been 

applied to examine the critical characteristics that affect farmland values. Guiling, et al. 

(2009), Delbecq, et al. (2014), and Zhang and Nickerson (2015) identify the extent of the 

urban fringe and its impact on agricultural land values. Furthermore, Bastian, et al. (2002), 

Wasson, et al. (2013), and Borchers, et al. (2014) investigate the effects of environmental 

amenities on agricultural land values. Other studies investigate the effect of other specific 

factors on the land values, including erosion control and drainage (Palmquist and 

Danielson, 1989), farmland preservation programs (Nickerson and Lynch, 2001), potential 

land development (Plantinga, et al., 2002), wildlife recreation income (Henderson and 

Moore, 2006), and wind facilities (Heintzelman and Tuttle, 2012). 

Our empirical model with the hedonic price model is specified as a linear 

combination of parcel attributes and location characteristics that were defined previously. 

Under the hedonic price model, farmland is a differentiated product with a bundle of 
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agricultural quality and location characteristics, and implicit prices can be estimated based 

on each characteristic. By substituting equation (8) into equation (7), we have 

 𝑙𝑛(𝑉𝑖𝑡) = 𝛽0 + 𝛽𝐿𝑳𝑖𝑡 +  𝛽𝑊𝑾𝑖𝑡 + 𝛽𝐴𝑨𝑖𝑡 + 𝛽𝑈𝑼𝑖𝑡 + 𝛽𝑀𝑴𝑖𝑡 + 𝛿𝑡 + 𝜀𝑖𝑡 (9) 

The hedonic regression is formed with the log-linear specification. Because there is no 

clear theoretical guideline for the correct functional form for hedonic pricing models, a 

semi-log is preferred as a more flexible-form with unobserved attributes or presence of 

measurement error (Borchers, et al., 2014). The estimated regression estimated is defined 

as   

 𝑙𝑛(𝑙𝑎𝑛𝑑 𝑣𝑎𝑙𝑢𝑒𝑖)

= 𝛽1𝐶𝑎𝑠ℎ 𝑅𝑒𝑛𝑡𝑖 + 𝛽2𝐴𝑐𝑟𝑒𝑖 + 𝛽3𝐴𝑐𝑟𝑒𝑖
2 + 𝛽4𝐴𝑐𝑟𝑒𝑖

3 + 𝛽5𝐶𝑙𝑎𝑦𝑖

+ 𝛽6𝑆𝑖𝑙𝑡𝑖 + 𝛽7𝑇𝑒𝑚𝑝 + 𝛽8𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑖 + 𝛽9𝑆𝑙𝑜𝑝𝑒𝑖

+ 𝛽10𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑖 + 𝛽11𝐺𝑟𝑎𝑖𝑛 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟𝑖 + 𝛽12𝑆𝑢𝑝𝑒𝑟𝑓𝑢𝑛𝑑𝑖

+ 𝛽13𝐶𝑖𝑡𝑦𝑖 + 𝛽14𝑊𝑎𝑡𝑒𝑟𝑏𝑜𝑑𝑦𝑖 + 𝛽15𝑃𝑎𝑟𝑘𝑖 + 𝛽16𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖

+ 𝛽17𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖 + 𝛽18𝑀𝑒𝑑𝑖𝑎𝑛 𝐼𝑛𝑐𝑜𝑚𝑒 + 𝛽19𝑅𝑒𝑠𝑎𝑙𝑒𝑖

+ 𝛽20𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑖 + 𝛽21𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑖 + 𝜀𝑖 

(10) 

The dependent variable in this study is the per acre sales value.43 Although the Box-Cox 

test could be applied to select the functional form, this study could not employ the Box-

Cox test since some of the independent variables contain zero values. Furthermore, all 

independent variables are selected based on the Variance Inflation Factor (VIF) that tests 

multi-collinearity problems. Based on the VIF result, we find there are no severe multi-

collinearity problems among the variables. In this study, we control the potential impacts 

                                                 
43 In the ZTRAX, the sales price is entered in whole dollars and amounts $100 or less are ignored. 



82 

 

of outliers by considering observations between $150/acre and $15,000/acre. It is because 

prices that are too low (high) may indicate transactions among related individuals below 

(above) the market value (Guiling, et al., 2009).44 

We begin with a specification that treats our sample as pooled cross-section data 

that assumes all sales transactions are independent. This is because we do not have enough 

repeated transactions, and as a result, any panel methods such as fixed or random effect 

estimation may not be adequate. In this regard, we take out the time subscription from 

equation (9) as shown in equation (10). However, we include a dummy variable to control 

how agricultural land values are associated with repeated sales compared to non-recurring 

transactions. Furthermore, we incorporate several dummy variables such as the month, 

year, and agricultural district to control for time-specific fixed effects and 

regional/locational heterogeneity, respectively. In addition, we estimate equation (10) by 

replacing the cash rent with NCCPI in order to compare the two models. One of the main 

objectives of this paper is to examine whether NCCPI could be a good indicator for the 

cash rent. If the model with NCCPI predicts agricultural land values relatively better than 

the model with cash rent, this result would support the idea that NCCPI might be a good 

indicator for cash rent. 

4.4 Data 

The primary source of data used in this study is the Zillow Transaction and 

Assessment Data (ZTRAX) provided by Zillow, an online real estate database company. 

                                                 
44 The threshold used in this study is based on the previous studies. For example, Delbecq et al (2014) 

exclude observations when sales price is below $100/acre and above $20,000/ acre. In addition, Zhang and 

Nickerson (2015) limit observations if the estimated sales price for farmland value is between $1,000/acre 

and $20,000/acre. Likewise, the threshold to limit observation could be arbitrary. Our study tests with a 

different threshold that per acre sales price is between $100 and $1,000, and we find the results are robust.  
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The ZTRAX data includes information on approximately 374 million public records across 

more than 2,750 U.S. counties. Notably, the ZTRAX data covers more than 20 years of 

mortgages, foreclosures, auctions, and property taxes, especially for residential and 

commercial properties. In addition, all the corresponding property characteristics, 

geographical information, and prior valuation on approximately 200 million parcels are 

included across 3,100 counties in the assessor data. Utilizing the ZTRAX data, we geocode 

locations of the agricultural farmlands and identify the value of the farmland in Kentucky 

from 2009 to 2014.45 In total, 3,845 transactions occurred for 3,546 parcels, indicating 

about 8% of the sample have sold more than once during the study period. Figure 4.3 shows 

the locations of agricultural land sold in Kentucky from 2009 to 2014, and it also shows 

the agricultural land value prices per acre that range from $2.42 to $901,315.80. As shown 

in figure 4.3, agricultural lands are widely and randomly distributed over the entire state. 

The following other explanatory variables used in this study for parcel attributes 

and locations are discussed and explained with the previous studies on land value. Data on 

parcel attributes and location characteristics were collected mostly from the U.S. 

Department of Agriculture Natural Resources Conservation Services GeoSpatial Data 

Gateway (GeoSpatial Data Gateway 2018), including National Elevation Dataset, and 

Gridded Soil Survey Spatial Data (gSSURGO).  

Soil quality is considered as an essential factor that influences farmland values in 

that farmland with higher soil quality leads to not only fewer production inputs and 

management time but also higher expected farming returns (Nickerson, et al., 2012). To 

                                                 
45 We extract the agricultural land data from the ZTRAX based on the property land use classification. 
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control for soil quality, we obtain data on soil textures (e.g., percent clay, percent silt, and 

percent sand) from gSSURGO, which is provided by USDA National Resources 

Conservation Service (NRCS). The gSSURGO database provides greater spatial extents 

than the traditional SSURGO. 46  We include the National Elevation data (30-meter 

resolution) to calculate the elevation and slope. Some of the previous studies on land values 

include the slope such as (Borchers, et al., 2014, Zhang and Nickerson, 2015) and elevation 

such as (Buck, et al., 2014). The elevation could provide aesthetic qualities to an area; in 

addition, higher elevation could result in a shorter growing season with a high risk of crop 

damage from freezing (Vasquez, et al., 2002). For the slope, Palmquist and Danielson 

(1989) find that sales price for agricultural land is negatively related to the slope since 

steeper slop results in more erosion. A recent study by Borchers, et al. (2014) includes the 

slope as a measure of topography and finds a positive relationship between slope and 

farmland price especially for pastureland whereas the relationship is not statistically 

significant for the cropland. Moreover, Zhang and Nickerson (2015) find that the slope 

does not statistically influence the farmland values in western Ohio. In this regard, this 

study expects that the direction of the impact of slope and elevation on farmland values 

could be unknown. 

The weather data such as precipitation and temperature were obtained from the 

Parameter-elevation Regressions on Independent Slopes Model (PRISM) climate Group.47 

The weather characteristics were included in that particular landscape, and climate features 

provide rich natural amenities (Borchers, et al., 2014, McGranahan, 1999). This study 

                                                 
46 For more detail information about the gSSURGO, see 

https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052164.pdf 
47 http://prism.oregonstate.edu/ 

https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052164.pdf
http://prism.oregonstate.edu/
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hypothesizes that precipitation and temperature will be significantly associated with 

agricultural land values. It is because crop profitability is heavily dependent on the weather 

condition in the growing season. If the weather condition is unstable from year-to-year, 

there could be high risk associated with the land for planting crops. For the weather 

variables, we calculate and use an average temperature and total precipitation from March 

to August in each year of the growing season.  

This study includes urban influence factors because previous research such as 

Huang, et al. (2006), Livanis, et al. (2006), Zhang and Nickerson (2015), and Burns, et al. 

(2018) suggest that farmland values are positively associated with near urban and 

developed areas. This positive association could be explained by the fact that the farmlands 

near urban lead to higher return by reallocating production from commodity-oriented 

agriculture to higher-valued commodities (Livanis, et al., 2006). In addition, farmland 

values could be positively influenced by increased access to markets and customers but 

also proximity to population centers (Nickerson, et al., 2012). In this regard, we include 

the proximity to the cities in Kentucky by calculating the minimum distance to the closest 

city. All the locations of the major city are obtained from the Environmental System 

Research Institute (ESRI 2018). In addition to the urban influence, we incorporate the 

locations of the grain elevators. We obtain the geographical locations of the grain markets 

from the Department of Agricultural Economics at the University of Kentucky.48 We then 

measure the proximity to the closest locations of the grain elevator. This study hypothesizes 

the positive relationship between the land values and the locations of the grain elevators 

                                                 
48 The map of Kentucky Grain Markets is originally generated by Dr. Jordan M. Shockley who is an 

Assistant Extension Professor in the Department of Agricultural Economics at the University of Kentucky.  
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since lands located closer to grain elevators tend to be valued more highly (Burns, et al., 

2018, Nickerson, et al., 2012, Zhang and Nickerson, 2015).   

 The existing literature on farmland values show that recreation and natural 

amenities are positively associated with the farmland values (Bastian, et al., 2002, 

Borchers, et al., 2014, Nickerson, et al., 2012, Wasson, et al., 2013). Based on the previous 

studies, this study includes the locations of the waterbody, recreational park, hospital, and 

Superfund sites.49 The water body boundary, locations of the recreational park and hospital 

are obtained from ESRI, which provides many data layers for U.S. Census, government 

and non-government, and commercial geographies (Borchers, et al., 2014).50  Based on 

ESRI-provided landmark and recreation dataset, we measure the nearest distances to these 

features. For the Superfund site, we collect data such as longitude and latitude of each 

Superfund site in Kentucky from the U.S. Environmental Protection Agency (EPA) and 

calculate the distance to the closest Superfund site. The Superfund sites, however, are 

considered as a dis-amenity because it represents the lands or areas that are contaminated 

and hazardous with toxic wastes. Previous studies such as Fischhoff (2001), Davis (2004), 

Messer, et al. (2006), and Gamper-Rabindran and Timmins (2013) provide evidence of an 

inverse relationship between the property values and Superfund sites. Therefore, we 

hypothesize that agricultural land values are negatively affected by Superfund sites.  

Other control variables used in this study include median household income and 

population density. Agricultural lands located in higher income and high population 

density county might reveal greater economic opportunities for residents (Borchers, et al., 

                                                 
49 We considered other variables such as the locations of nearest golf course and college/university. 

However, we excluded those variables due to the multicollinearity problem.  
50 ESRI is also known as the supplier of the Geographic Information System software ArcGIS. 
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2014). In this study, we use county-level measures of median household income and total 

population obtained from the USDA Economic Research Service (USDA, ERS).51 Huang, 

et al. (2006) and Borchers, et al. (2014) find that farmland values in both cropland and 

pasture are positively influenced by median household income and population intensity 

index. Furthermore, Ifft, et al. (2015) and Zhang and Nickerson (2015) show there is a 

positive relationship between farmland values and total population. This study, therefore, 

hypothesizes that farmland values in Kentucky are positively associated with county-level 

measures: median household income and total population density. 

For an observed measure of agricultural return, this study includes the cash rent as 

an explanatory variable. The cash rent used here is the aggregated county-level data and is 

obtained from the U.S. Department of Agriculture, National Agricultural Statistics Service 

(USDA, NASS). This study only employs and focuses on the non-irrigated cash rent rather 

than irrigated rent since agricultural lands in Kentucky are mostly non-irrigated.52 As we 

discussed in the introduction, one of the main objectives of this paper is to test whether 

NCCPI could be a good indicator for the cash rent. In this regard, we utilize the National 

Commodity Crop Productivity Index (NCCPI). NCCPI is a national soil interpretation and 

generated in the National Soil Information System (NASIS). It relates to the ability of soils, 

landscape, and climates to enhance crop productivity (Dobos, et al., 2008).53 Only a few 

recent studies such as Delbecq, et al. (2014) and Zhang and Nickerson (2015) include the 

                                                 
51 The county population density is calculated by dividing the county total population by county square 

miles. 
52 The cash rent data is only available at the county level from 2009 to 2014. Since the cash rent is the one 

of the main variables of interest, we limit our sample up to 2014. The cash rent for irrigated, we find there 

is almost no information.   
53 More detail information on NCCPI is available at 

https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/16/nrcs143_020559.pdf 

https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/16/nrcs143_020559.pdf
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NCCPI to examine the farmland values in that NCCPI provides a measure of potential 

returns from the production of agricultural goods and services. Their findings demonstrate 

that farmland values are positively and significantly affected by NCCPI. In this study, we 

obtained NCCPI through use of gSSURGO. We extracted the values of NCCPI from the 

raster (see figure 4.2) and spatially joined to each parcel location using ArcGIS. The values 

of NCCPI indices are numbers ranging from 0 (least productive) to 1 (most productive).   

Finally, this study incorporates different land classifications. In the ZTRAX, 

agricultural land is classified with 7 different property land uses: general agriculture, farm 

non-irrigated or dry, timberland/forestry/trees, livestock, rural improves (non-residential), 

miscellaneous structures, and unimproved vacant lands. We combine general agriculture, 

farm, and livestock as an immediate land and combine the rest as non-immediate land.54 

This study hypothesizes that land values in Kentucky could be positively related to the 

immediate lands compared to the non-immediate lands.      

4.5 Results and Discussions 

Table 4.1 shows the descriptive summary statistics for the dependent and 

covariates. The average parcel size is 46.77 acres; it has a price per acre of $3,599.93, and 

is predominantly classified as immediate lands (74%). Agricultural lands in Kentucky, on 

average, are composed of about 59% silt, 25% clay, and 16% sand. Only 7% of the sales 

transactions are made more than once from 2009 to 2014. On average, total precipitation 

and mean temperature from March to August are 29.50mm and 66.15 °F, respectively. 

                                                 
54 The immediate lands represent the lands that could be converted or transferred to generate profits, 

whereas the non-immediate lands that could not be immediately converted for the profit generation. 
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Furthermore, the average county-level cash rent is $79.19, and average commodity crop 

productivity of parcels based on NCCPI are particularly below average (0.44).  

Table 4.2 presents our main regression results. The regressions correspond to 

equation (10) and are reported with the model (1) with cash rent and model (2) with NCCPI. 

All reported models include agricultural district dummies, year dummies, and month 

dummies. Additionally, all models report robust standard errors clustered at the county 

level. Because the log-linear specification was used, the reported coefficients could be 

interpreted as the percentage change in per acre land value with a one-unit changes in the 

explanatory variable. 

Based on model (1) with cash rent (column 2 in Table 4.2), the results suggest that 

farmland values in Kentucky are positively associated with cash rent, proximity to a grain 

elevator, county median income, county population density, and immediate lands. On the 

other hands, the land values are negatively associated with parcel size, repeated sales, 

slope, and proximity to the Superfund site. The model suggests that county-level cash rent 

has a statistically significant impact on land values, with an approximately 0.2% increase 

in land values with a $1/acre increase in cash rent. This might be because cash rents 

generally explain the amount paid per acre based on the measure of the productivity of the 

land. If the parcels are sold more than once in our study period, from 2009 to 2014, the 

values of the land are negatively associated with the repeated transactions compared to the 

single transaction. This negative effect might be explained that if agricultural lands are sold 

in the market more than once for a short time period, the lands are treated as vacant lands 

(i.e., no operation or management). This implies that the productivity of lands is likely to 

be lower and as a result lower the land values. Parcels one mile close to the gain elevator 
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have a 0.4% increase in land values and this difference is significant. This positive 

relationship can be explained factors such as lower transportation cost and better inventory 

management. This finding is also supported by a study of Nickerson, et al. (2012). Results 

from the variable of immediate suggest that lands with general agriculture, farmland, and 

livestock are associated with 13.4% higher land values compared to lands with non-

residential, miscellaneous structures, and unimproved vacant lands. This difference is also 

significant. 

The estimates for parcel size (acre) show that a one-acre increase in parcel size is 

associated with a 1.2% decrease in land values. With the different functional forms, such 

as acre2 and acre3, this study finds there is a non-linear relationship between the land value 

and parcel size. Land values begin with a decreasing relationship with size, but it increases 

and then decreases again as the parcel size increases. Figure 4.4 shows the marginal effect 

of acres. We calculate the threshold points where the effect of acre changes from negative 

to positive and vice versa based on the following equation: 𝑦̂ = 3.803646 −

0.0117155𝑥 + 0.0000359𝑥2 − 0.0000000285𝑥3 where 𝑦̂ = predicted land values and 𝑥 

= acre.  By taking the partial derivative 𝑦̂  respect to acre, 
𝑑𝑦̂

𝑑𝐴𝑐𝑟𝑒
= −0.0117155 +

0.0000718𝑥 − 0.0000000855𝑥2 = 0, we find that the threshold points are 221.70 and 

618.07. With the threshold points, agricultural land values in Kentucky decrease until 

parcel size reaches 221.70 acres and continues to increase until 618.07 acres. It then starts 

to decrease. At stage 1 where the parcel size is below 221.70 acres, agricultural lands could 

be considered as hobby farms or hunting farms; in other words, people buy or lease lands 

for other purposes rather profits on lands. At stage 2 where the parcel size is between 

221.70 and 618.07, the positive impact of parcel size on land values could be explained by 



91 

 

increasing returns to scale or efficient land operation. At stage 3 where the parcel size is 

above 618.07, the negative relationship between land values and parcel size could be due 

to decreasing returns to scale or capital constraint. Since parcel size is relatively large in 

this stage, people might not want to buy or rent the lands; in addition, the production 

process in large lands may not be inefficient.  

Several locational characteristics such as distance to the nearest city and 

recreational park have no significant impact on land values except for the proximity to the 

closest hospital: one mile closer to a hospital is associated with a 1.1% increase in land 

values. The insignificant effects of the locational characteristics can be explained by 

potential correlations between variables even though all locational characteristics are 

included in the model based on the VIF test. These results are similar to a previous study 

of Borchers, et al. (2014) in that they find the distance to the recreational waterbody and 

nearest park do not influence land values. Interestingly, we find that agricultural land 

values are negatively associated with the proximity to the closest Superfund sites: one mile 

close to a Superfund site results in a 0.3% decrease in land values. The impact of Superfund 

site on local property values, especially housing values, have been extensively investigated, 

and the vast of previous studies show that property values are negatively influenced by 

proximity to Superfund sites (Boyle and Kiel, 2001, Farber, 1998, Kiel and Williams, 

2007). This finding will contribute to the existing literature on agricultural land values in 

that the proximity to the nearest Superfund site could be one of the critical determinants of 

land values. This study also finds that a one-degree increase in the slope of parcel results 

in a 1.8% decrease in land values. Lands with steep slope can lead to excessive erosion 

without improved production practices (which can be costly). Various county-level 
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characteristics such as median household income and population density are associated 

with higher agricultural land values. 

As we discussed before, we estimate equation (10) by replacing cash rent with 

NCCPI in order to compare which model predicts better. The model (2) in table 4.2 shows 

the regression results with NCCPI. Compared to the results of the regression model with 

the cash rent, the results with NCCPI are qualitatively similar to the regression model with 

cash rent although the coefficient estimates of interest vary slightly in terms of magnitude. 

The positive and significant effect of NCCPI on land values in this study is consistent with 

Zhang and Nickerson (2015). The reported R2
 in table 4.2 for model 1 with cash rent and 

model 2 with NCCPI is 33.6 and 33.7, respectively. Although R2 could suggest which 

model predicts better than the other, we conduct several model fit tests, and test results are 

reported in table 4.3. As shown in table 4.3, we find that the regression model with NCCPI 

predicts relatively better than the model with cash-rent. In particular, the rule of thumb to 

find the better model is based on smaller values of information criteria (IC) and higher 

values of R2.  

This study also conducts a validation test of how accurately one model predicts land 

values relative to the other. For the validation test, we employ the following steps. First, 

we select 10% of the data using a random sampling process, called a hold-out sample. 

Second, we estimate the regression model with the remaining dataset (90% of data, called 

the training sample). Third, we predict using the hold-out sample then calculate the 

residuals in percentage term by taking the difference between actual values and predicted 

values. Fourth, we compare the residuals between the two models at the top 95%. By 

employing the out-of-sample validation, this study finds that 95% of the estimates from the 
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regression models with cash rent and NCCPI are within 34.194% and 32.178% of the true 

values, respectively. For robustness, we resize the test sample size by 20% and 30%, and 

we find that land values with NCCPI are predicted 0.61% and 0.13% better than cash rent, 

respectively. This result provides suggestive evidence that agricultural land values are 

predicted relatively better with NCCPI rather than cash rent. The better prediction with 

NCCPI might be due to the fact that NCCPI is disaggregated data at the parcel level, 

whereas cash rent is aggregated at the county-level.55 Although cash rent could be a key 

determinant to explain land values in that it has more variations over time, our study shows 

NCCPI should be considered a good indicator of land values. Currently, available NCCPI 

data does not provide any variations over time. This is because inherent productivity is 

considered almost invariant over time (Dobos, et al., 2008). 

4.6 Conclusions 

This study provides the first empirical examination of land values using the 

individual transaction data, Zillow Transaction and Assessment Data (ZTRAX) provided 

by Zillow. The main focus of the research is on three important research questions namely 

i) Are determinants of land values in Kentucky, where agricultural lands are heterogeneity, 

consistent with the previous studies on agricultural or farmland values? ii) What are the 

direction and size of the effect of parcel size on agricultural land values? iii) Could NCCPI 

be considered an acceptable indicator for agricultural land values compared to cash rent? 

The analysis is based on pooled OLS regression under the hedonic price model.  

                                                 
55 Especially for Kentucky, the county-level cash rent data for 2015 is not publicly available. 



94 

 

Findings of this study provide evidence that factors influencing agricultural land 

values in states with heterogeneous agricultural lands such as Kentucky are not different 

from other states with relatively homogeneous agricultural lands. In contrast to the previous 

studies, several findings in this study may have important implications and therefore 

contribute to the growing existing literature of land values. We particularly find that the 

agricultural land values decrease by 19.2% if lands are sold more than once compared to 

the single transaction. This suggests that land management practice might be needed to 

sustain the land quality and productivity when lands are in the market. When agricultural 

lands are categorized with more specific land classifications, we find that lands with 

general agriculture, farmland, and livestock are associated with 8.4% increase in land 

values. Furthermore, if there is a building on the parcel, the agricultural land values are 

increased by 30.3% compared to the land without the building. Interestingly, we find that 

agricultural land values are negatively associated with the proximity to the closest 

Superfund sites. To the best of our knowledge, no studies investigate the relationship 

between Superfund site and land values even though a vast literature has examined the 

impact of Superfund site on residential property values. 

Our results also provide suggestive evidence that there is a non-linear relationship 

between parcel size and land values. We specifically find two threshold points where the 

marginal effect of parcel size varies from negative to positive and vice versa. By knowing 

the non-linear relationship and threshold points, it may provide important baseline 

information for land owners to manage the efficient land allocation in order to generate 

more revenues: For instance,  there is a negative relationship between parcel size and 

farmland value if parcel size is larger than 618.07 acres. This suggests that land 
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management or allocation from larger parcels to smaller parcels could generate higher 

revenue. Furthermore, we find that a disaggregated NCCPI at the parcel-level is an 

acceptable indicator to estimate agricultural values compared to an aggregated cash rent at 

the county-level. Although both cash rent and NCCPI show a significantly positive impact 

on land values with similar statistical power, NCCPI is found to predict land values better 

than county-level cash rent. This finding could imply that using aggregated data on cash 

rent may be substitutable with the disaggregated data, NCCPI, not only to investigate the 

individual transaction data at the field-level but also to mitigate any potential aggregation 

bias problem. It also contributes to the existing literature on analyzing agricultural land 

values under the hedonic model in that price information such as cash rent should not be 

necessary to be included.  

This study has several limitations. First, our main dataset of ZTRAX is a rich 

dataset on all individual transactions for both property and land values at the parcel. 

Nevertheless, researchers who use the ZTRAX data should make sure that the observations 

and information obtained from the ZTRAX sufficiently cover and represent the study areas 

since we find some states unreasonably have lack of observations. Second, we find that 

NCCPI could be a good indicator of agricultural land values since the estimated regression 

model with NCCPI predicts relatively better than the model with cash rent. However, this 

result may not be consistent with the field-level cash rents based on the availability of data 

and may vary in the different states due to the large variations in cash rents within the state.
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4.7 Tables and Figures 

Table 4.1 Descriptive Summary Statistics (N=3,266) 

 

Variable Variable Description/Definition Mean Std. Dev. Min Max 

Log Price Agricultural land sales per acre (in log) 7.77 0.98 5.01 9.62 

acre Parcel size in acre 46.55 58.67 0.18 872 

acre2 Parcel size in acre square 5608.82 29379.19 0.03 760384 

acre3 Parcel size in acre cubic 1684381 21300000 0 663000000 

Cash Rent County-level Non-Irrigated Cash Rent (dollar) 79.19 36.81 24.00 210 

NCCPI National Commodity Crop Productivity Index 0.44 0.25 0.01 0.94 

Repeated Sales = 1 if parcel sold more than once, 0 otherwise 0.07 0.26 0 1 

Clay Soil with a combination of Clay in parcel (percent) 24.90 9.01 4.00 58.00 

Silt Soil with a combination of Silt in parcel (percent) 58.81 13.30 15.70 82.00 

Precipitation Total precipitation from March to August (mm) 29.50 6.38 11.05 45.61 

Temperature Mean temperature from March to August (°F) 66.15 2.50 60.97 72.10 

Slope Slope of Parcel (degree) 6.08 5.61 0.00 41.97 

Elevation Slope of Elevation (m) 226.52 67.40 96.40 609.72 

Grain Elevator Distance to nearest gain elevator (miles) 18.98 13.85 0.08 91.12 

Superfund  Distance to nearest Superfund site (miles) 32.00 19.38 0.15 84.84 

City Distance to nearest city (miles) 17.89 12.74 0.78 81.86 

Waterbody Distance to nearest waterbody for recreation (miles) 2.83 2.35 0.01 15.72 

Park Distance to nearest national, state, or local park (miles) 5.29 3.06 0.07 19.78 

Hospital Distance to nearest hospital (miles) 9.24 4.18 0.13 22.11 

Median Income County-level median household income (in thousand dollar) 41.21 8.99 23.16 80.87 

Population Density County-level population density (percent) 164.31 229.44 22.05 1913.88 

Immediate = 1 if parcel is agriculture, farm, or livestock, 0 otherwise 0.74 0.44 0 1 

Building = 1 if there is a building located on parcel 0.21 0.41 0 1 
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Table 4.2 Regression Results 

 

Variables 
Model 1 

(Cash Rent) 

Model 2 

(NCCPI) 

Acre -0.012*** -0.012*** 
 (0.001) (0.001) 

Acre2 0.00004*** 0.00004*** 
 (0.00005)  (0.00005)  

Acre3 -0.000*** -0.000*** 
 (0.000)  (0.000)  

Cash Rent 0.002** ― 
 (0.001) ― 

NCCPI ― 0.264*** 
 ― (0.081) 

Repeat -0.192** -0.197** 
 (0.078) (0.077) 

Clay -0.002 0.001 
 (0.002) (0.002) 

Silt 0.001 0.0004 
 (0.001) (0.002) 

Precipitation -0.001 -0.001 
 (0.005) (0.005) 

Temperature 0.051 0.056 
 (0.027) (0.027) 

Slope -0.018*** -0.015*** 
 (0.004) (0.004) 

Elevation 0.0004 0.0006 
 (0.0005)  (0.0005)  

Grain Elevator -0.004* -0.004* 
 (0.002) (0.002) 

Superfund 0.003** 0.002* 
 (0.001) (0.001) 

Median Income 0.022*** 0.023*** 
 (0.004) (0.004) 

Population Density 0.0004*** 0.0004*** 

  (0.00006)  (0.00006)  

Note: Robust standard errors in parentheses. *** p<0.001, ** p<0.01, * p<0.05 
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Table 4.2 (Continued) 
 

Variables 
Model 1 

(Cash Rent) 

Model 2 

(NCCPI) 

City -0.003 -0.003 
 (0.002) (0.002) 

Waterbody -0.011 -0.011 
 (0.008) (0.009) 

Parks -0.009 -0.008 
 (0.009) (0.009) 

Hospital -0.011** -0.011* 
 (0.005) (0.005) 

Immediate 0.085* 0.077 
 (0.047) (0.047) 

Building 0.303*** 0.301*** 

 (0.057) (0.057) 

Constant 3.804** 3.355* 

  (1.862) (1.904) 

Observations 3,266 3,266 

R-squared 0.336 0.337 

District FE Yes Yes 

Year FE Yes Yes 

Month FE Yes Yes 

Note: Robust standard errors in parentheses. *** p<0.001, ** p<0.01, * p<0.05 
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Table 4.3 Comparison Measure of Fit between Two Models 

 

  Model 1 Model 2 

 (Cash Rent) (NCCPI) 

Log-likelihood                             

Model -3896.765 -3893.975 

Intercept-only -4565.198 -4565.198 

Chi-square                             

Deviance (df=3324) 7793.530 7787.949 

R2                             

R2 0.336 0.337 

Adjusted R2 0.327 0.328 

McFadden 0.146 0.147 

McFadden (adjusted) 0.137 0.138 

Cox-Snell/ML 0.336 0.337 

Cragg-Uhler/Nagelkerke 0.358 0.359 

IC                             

AIC 7877.530 7873.949 

AIC divided by N 2.412 2.411 

BIC (df=42) 8133.365 8135.876 

 

Notes: The value of Cox-Snell/ML represents the R-Squared that is calculated by 𝑅2 =

1 − {
𝐿(𝑀𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)

𝐿(𝑀𝐹𝑢𝑙𝑙)
}

2 𝑁⁄

where 𝐿(𝑀𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) is the log likelihood of the intercept model and 

𝐿(𝑀𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) is the log likelihood of the full model. The value of Cragg-

Uhler/Nagelkerke also represents the R-Squared, which is calculated by 𝑅2 = 1 −

{
𝐿(𝑀𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)

𝐿(𝑀𝐹𝑢𝑙𝑙)
}

2 𝑁⁄

1−𝐿(𝑀𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)2 𝑁⁄  . AIC and BIC represent Akaike’s Information Criterion and Bayesian 

Information Criterion, respectively. To compare between two models (Model 1 and 

Model 2), the smaller the deviance, the better the model fit. For the 𝑅2, the higher the 𝑅2, 

the better the model fit. Finally, the smaller AIC and BIC show better model fit. 
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Figure 4.1  Total Value of U.S. Hemp Imports, 2010-2015 

 

Source: USDA NASS 
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Figure 4.2 National Commodity Crop Productivity in Kentucky (in %) 
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Figure 4.3 Location of Parcel Sold in Kentucky from 2009 to 2014 
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Figure 4.4 Marginal Effect of Acre 
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CHAPTER 5.  SUMMARY AND CONCLUSIONS 

This dissertation combines large scale datasets to evaluate crop prediction, land 

values, and consumption of crop being considered to advance a sustainable bioeconomy. 

Chapter 2 proposes a novel application of the multinomial logit (MNL) model to estimate 

the conditional transition probabilities of crop choice and forecast distribution of total 

acreages by crop type for the state of Kentucky from 2010 to 2015. The Cropland Data 

Layer (CDL) data is primarily utilized and merged with the Common Land Unit (CLU) 

dataset. Findings show that corn is more likely to be followed by soybeans, whereas 

monoculture crops such as tobacco and alfalfa are more likely to be planted in consecutive 

years. In addition, the forecasted distributions based on the simulation exercise show wider 

distributions for corn and soybeans, whereas narrower distributions for tobacco, wheat, 

and alfalfa. The wide distribution in corn acreage indicates a high likelihood of above 

average nutrient run-off since, on average, corn receives nitrogen and phosphorous 

applications. In addition, the tighter distributions in alfalfa and tobacco acreages can be 

explained that alfalfa is a perennial crop and tobacco is contacted crop. The forecasted 

distributions can be used and applied in various fields of research and will contribute to 

policy analysis. For instance, the distribution can be used to make probability statements 

related to the ability of producers to incorporate new crops such as hemp into the land-use 

rotations as well as using distributions of land-use to generate distributions of soil erosion, 

nitrogen run-off and other soil and water quality indicators.  

Chapter 3 investigates the critical sociodemographic factors that are associated 

with increasing hemp consumption and examines their effect on total expenditure in the 

U.S. by utilizing Nielsen’s consumer panel data from 2008 to 2015. We find that 
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sociodemographic characteristics, especially income, age, and education, play an 

important role in purchasing and explaining the demand for different categories of hemp 

products. Specifically, households with higher income and education are positively 

associated with the probability and consumption level of hemp products. In addition, 

households with higher education are more likely to buy hemp products, and of those 

households are significantly associated with a higher level of consumption except hemp 

nuts. However, the role of the age of household head shows mixed results with respect to 

consumption decisions and consumption levels across the products. These findings provide 

insights into a more targeted marketing strategy for hemp industries to attract new 

consumers and increase sales to current consumers. Furthermore, findings in this study fill 

the knowledge gap on a new agricultural crop that is increasing consumption and 

production in the U.S. Since there are many unknowns about everything from hemp 

production to its marketing channels, a basic understanding of consumer profiles will 

provide a starting point for these discussions. 

Chapter 4 utilizes a new rich dataset, Zillow Transaction and Assessment Data 

(ZTRAX) provided by Zillow, to investigate the factors that affect agricultural land values 

in Kentucky from 2009 to 2014. Agricultural lands in Kentucky are relatively 

heterogeneous compared to other states like Iowa, Illinois, and Nebraska, where 

agricultural lands are homogeneous in that those states are known as corn-belt states. 

Findings show that factors influencing land values in Kentucky are not different from other 

states discussed in the previous and existing literature. However, this study finds that 

agricultural land values decrease by 19.3% if lands are sold more than once compared to a 

single transaction, suggesting land management practice might be needed to sustain the 
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land quality and productivity when lands are in the market. We also find that land values 

are positively associated with specific land classifications: general agriculture, farmlands, 

and livestock. Furthermore, our results provide suggestive evidence that there is a non-

linear relationship between parcel size and land values: agricultural land values in 

Kentucky decrease until parcel size reaches 218.64 acres and continue to increase until 

622.25 acres. It then starts to decrease. Knowing the non-linear relationship and specific 

threshold points might provide important policy-oriented implication to manage the 

efficient land allocation and improve agricultural land values by reducing land use conflict 

resolutions. Finally, we find that a disaggregated NCCPI at the parcel-level is an acceptable 

indicator to estimate agricultural values compared to an aggregated cash rent at the county-

level. This implies that price information such as cash rent should not be necessary to be 

included in the hedonic price model for analyzing the agricultural values.   
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