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Removable singularities in C*-algebras of
real rank zero

Lawrence A. Harris

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027

Abstract

Let 2 be a C*-algebra with identity and real rank zero. Suppose a complex-
valued function is holomorphic and bounded on the intersection of the open unit
ball of 2 and the identity component of the set of invertible elements of 2. We
give a short transparent proof that the function has a holomorphic extension to
the entire open unit ball of 2. The author previously deduced this from a more
general fact about Banach algebras.

Keywords: infinite dimensional holomorphy, weak (FU)
2010 MSC: 46G20, 46L05

1. Preliminary definitions and theorems.

Recall [1] that a C*-algebra is a closed complex subalgebra 2l of the Banach
algebra B(H) of all bounded linear operators on a Hilbert space with the op-
erator norm such that 2[ contains the adjoints of each of its elements. All our
C*-algebras contain the identity operator I.

To give a basic example, let S be a compact Hausdorff space and let C(.5)
be the algebra of all continuous complex-valued functions on S with the sup
norm. Then there exist a Hilbert space H, a C*-algebra 2 in B(H) and an
isomorphism p : C(S) — 2 that preserves norms and adjoints. To see this, let
H be the Hilbert space having the same dimension as the cardinality of S and
let {es : s € S} be an orthonormal basis for H. Then we may take p(f) to
be the multiplication operator defined by p(f)(es) = f(s)es for all s € S and
fecC(s).

More generally, one can define a Banach algebra that is an abstraction of
a C*-algebra and show that an isomorphism like the above exists. Specifically,
a B*-algebra is a complex Banach algebra A with an involution * such that
|lz*x|| = ||z||? for all z € A. Then a norm and adjoint preserving isomorphism
p of A onto a C*-algebra exists by the Gelfand-Naimark theorem [1, p. 209].

*Dedicated to Richard Aron with gratitude



We now turn to some basic facts about complex-valued holomorphic func-
tions defined on a domain D in a complex Banach space X. We say that a
function f : D — C is holomorphic if for each x € D there exists a continuous
complex-linear functional ¢ € X™* such that
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Clearly, if f is holomorphic in D then the function ¢(A) = f(z + Ay) is holo-
morphic (in the usual sense) in a neighborhood of the origin for each z € D
and y € X. It is well known [7, Theorem 3.17.1] that this property also implies
holomorphy when f is locally bounded in D. One can extend many classical
results about holomorphic functions by applying the above property. For ex-
ample, this is true for the following elementary form of the identity theorem [7,
Theorem 3.16.4].

Proposition 1. Let D be a domain in a complex Banach space X and let f :
D — C be holomorphic in D. If f vanishes on a ball in D then f wvanishes
everywhere in D.

By definition, a ball is a set of the form
By (zg) ={x € X : ||z —zo| <7},

where zg € X and r > 0.

We will need the following elementary version of Taylor’s theorem, which
can be proved as in [7, Theorem 3.17.1], and a simple converse, which can be
obtained from the Weierstrass M-test and [7, Theorem 3.18.1].

Proposition 2. Let X be a complex Banach space and let xog € X and r > 0.
If f : B.(z0) — C is a bounded holomorphic function, then for each n there is a
continuous complex-homogeneous polynomial P, : X — C of degree n such that

flx)= ZPn(m —xz0) for z € B.(zo). (1)

Conversely, if for each n there is a continuous complex-homogeneous polynomial

P, : X — C of degree n and if

M
HPnHST—n, n=20,1,... (2)
for some positive constants r and M, then the function f given by (1) is holo-
morphic in By.(xg).

For example, if (1) holds then

1 dar

Pn(y):a(ﬁﬁf($0+ty)t:0, n=0,1,... (3)



for all y € X. If f is holomorphic on B, (o) and M is a bound for f, then (2)
is a consequence of the classical Cauchy estimates. As usual,

[1Pall = sup{[ P ()] : o] < 1,2 € X}

2. Real rank zero.

Definition 1. (See [2].) Let A be a C*-algebra and let S be the set of self-
adjoint elements of A. Then A has real rank zero if the elements of S with finite
spectra are dense in S.

As shown by Brown and Pedersen [2], many interesting C*-algebras have real
rank zero. For example, the C*-algebra B(H) of all bounded linear operators
on a Hilbert space H has real rank zero. More generally, any von Neumann
algebra has real rank zero. The space C(S) of all continuous functions on
a compact Hausdorff space S has real rank zero if and only if S is totally
disconnected. (It is a von Neumann algebra only if S is extremely disconnected.)
Also, any AF-algebra has real rank zero. If BC(H) is the C*-algebra of all
compact operators on H, then CI + BC(H) has real rank zero as does the
Calkin algebra B(H)/BC(H). Note that the set of invertible elements of the
Calkin algebra has a different component for each value of the Fredholm index
and thus is not connected. See [3] for further details and references.

Let 2 be a C*-algebra with identity, let

Ap={AcA: A <1}

be the open unit ball of 2 and let 2(f, be the identity component of the set of

mv
invertible elements of 2. Our main result is the following:

Theorem 1. Suppose A has real rank zero and let f be a complex-valued func-
tion that is holomorphic and bounded on the intersection of the domains Ay and
AS . Then f has a holomorphic extension to g.

mv*

The author does not know even in the commutative case whether the remov-
able singularity property of Theorem 1 characterizes C*-algebras of real rank
zero. However, it is shown in [4] that C(S) does not have this property when S
contains the homeomorphic image of an interval.

The proof given below of the previous theorem depends on two important
facts about the identity component U of the set of unitary operators in 2l. The
first is a maximum principle that is a special case of [6, Theorem 8] and [5,
Theorem 9] and the second is a density theorem due to Huaxin Lin [8].

Proposition 3. Let f : 2y — C be a holomorphic function having a continuous
extension to the closed unit ball Ay of A. If |f(U)] < 1 for all U € U then
[f(A)| <1 forall Ae.



Proposition 4. If2 has real rank zero then the set of unitaries in U with finite
spectrum is dense in U.

Proof of Theorem 1. Given any e with 0 < € < 1/2,let r = 1—e. The set D =
B,.(eI)NAL, ., is open since 2Af, ., is open and one can deduce that D is connected
from the fact that B,(el) contains a neighborhood of 0. By Proposition 1,
it suffices to show that there exists a function f. that is holomorphic in the
ball B,.(eI) and satisfies f(A) = f(A) for all A € D. Since the function f is

holomorphic in a ball with center at zq = €I, it follows from Proposition 2 that
F(A) = Py(A—el) (4)
n=0

for all A in this ball. Thus by the converse part of Proposition 2, it suffices to

show that u
P < —, mn=0,1,..., (5)
rn

where M satisfies | f| < M on 2y N2A{,, since then the function

fe(A) = an(A_ 61)
n=0

is holomorphic on B,.(eI) and agrees with f on D by Proposition 1.

Let B € 2l with ||B|| < 1 and suppose the spectrum o(B) is finite. Define
@A) = f(eI + AB). If |A| < r then el + AB € g, el + AB € 2, and
|¢(A)| < M for all but finitely many A. By the classical Riemann removable
singularity theorem, the function ¢ has a holomorphic extension to the disc
I\ < r with |¢| < M. Hence |$(™ (0)| < n!M/r™ by the Cauchy estimates so

Pa(B)| < ()
by (3).

By Proposition 4, inequality (6) holds whenever B is in the identity compo-
nent of the set of unitary elements of 2 and hence for all B € 2 with ||B|| <1
by Proposition 3. This establishes (5) and completes the proof.

The proof of Theorem 1 given in [4] does not require Proposition 4 but
the argument is less straightforward. See [4] for further results, examples and
references.
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