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Abstract 

The shape memory effect (SME) and superelasticity (SE) behavior of homogenized 

Co35Ni35Al30 single crystals were systematically characterized along the [100], [110] and [111] 

orientations under compression. The shape memory behavior of CoNiAl was found to be highly 

orientation and stress/temperature dependent. Maximum compressive recoverable strains were 

3.98 % in [110], 3 % in [100] and 0.30 % in [111] orientations, respectively. The Co35Ni35Al30 

demonstrated a very high superelastic temperature window of more than 350 °C along the [100] 

and [110] orientations. Moreover, two-way shape memory effect with very low thermal 

hysteresis of about 6 °C was observed along the [110] orientation. The large decrease of 

recoverable strain and hysteresis with stress (or temperature) was mainly attributed to the 

difference of elastic moduli of transforming phases. 

Keywords: Shape memory alloys; CoNiAl; Single crystal; Two-way shape memory effect; 

superelasticity 

1. Introduction 

The magnetic shape memory alloys (MSMAs) received considerable attention since they 

have the ability to show large reversible magnetic field-induced strains (MFIS) [1, 2]. There are 

two main mechanism for reversible shape change: variant reorientation as in NiMnGa alloys or 

phase transformation as in NiMnCoIn alloys [3-5]. Although NiMnGa Heusler alloys can 

achieve high MFIS with low magnetic field, their extreme brittleness restricts their envisioned 

applications as magneto-actuators, sensors, caloric materials or energy harvesters.  CoNiGa [6-9] 

and CoNiAl [10-12] alloys were developed as an alternative MSMA and they demonstrated high 

strength, stable behavior, low stress for variant reorientation, ability to alter transformation 

temperatures with heat treatments and high resistance to oxidation. The ductility of Co-based 

alloys were found to be improved mainly due to the existence of γ-phase (disordered fcc A1) 

[13]. The stress required for the onset dislocation slip of CoNiAl has been reported  around 1100 
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MPa [11]. Comparing to other MSMAs, CoNiAl alloys have relatively inexpensive constituents 

and their transformation and Curie temperatures can be altered by composition alteration [14].  

It is well known that shape memory response of SMAs are highly temperature, stress and 

orientation dependent [15, 16]. Temperature dependent superelastic response of CoNiAl 

polycrystals were studied under compression where two stage phase transformation was 

observed at room temperature with superelastic strain of 4 % [11]. The orientation dependent 

behavior of CoNiAl single crystals were  studied and it has been found that transformation strain 

is highly orientation dependent, a large superelastic temperature window of more than 150 °C 

can be observed in [100] orientation and there is huge tension-compression asymmetry [10, 11, 

17, 18]. Moreover, it was revealed that transformation strain decreases with stress and 

temperature [10] [19]. The [100]-oriented Co35Ni35Al30 single crystals were studied as a function 

of temperature under compressive loading in solutionized and trained (cyclic loading) state 

conditions [20]. It was reported that training results in austenite stabilization and strengthening, 

and consequently increase the amount of stress induced martensite which is attributed to the 

formation of fine coherent precipitates during training. Several studies suggested that the 

morphology of precipitates and inter-particle spacing influence the martensitic transformation, 

where the large inter-particle spacing (100-400nm) and surrounding stressed region in the case of 

CoNiAl alloys [18, 21] favor the nucleation of martensite, raising the Ms temperature. During 

superelasticity, a pronounced decrease of transformation strain with temperature was reported in 

CoNiGa along the [100] orientation [22] which demonstrates a large superelastic window of 

more than 385 °C. The decrease in superelastic strain attributed to the single variant formation at 

low temperature and the formation of multiple variants at high temperature. Although the 

mechanical characterization in terms of thermal cycling and superelastic behavior of CoNiAl 

alloys have been reported under compression and tension [10, 11, 17, 23, 24], orientation and 

temperature dependent shape memory behavior of CoNiAl alloys have not been systematically 

studied.   

The present study was undertaken on the shape memory and superelasticity behavior of 

Co35Ni35Al30 (at %) single crystals along the [100], [110] and [111] orientations systematically. 

The composition of Co35Ni35Al30 was selected to have a low martensite start temperature for easy 

single crystal growth [14] and observe superelasticity at room temperature for practical 
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applications. The current study also presents the theoretical transformation strain calculations of 

CoNiAl single crystals for compression. For CoNiAl alloys, B2 austenite has a lattice parameter 

of  a0=0.287��, and L10 martensite has lattice parameters of  a=0.385�� and c=0.314�� [10]. The 

three orientations are selected due to the following facts: the activation of slip systems in B2 

phase is difficult in [100] orientation upon loading due to inhibition of the active slip systems of 

[100] <001> and [110] <001>, [25-27], and the transformation strain is large in [110] orientation 

and very low in [111] orientation.  

2. Experimental Procedure 

         CoNiAl alloy was cast to a nominal composition of Co-35Ni-30Al in at. %. Single 

crystals were grown by using the Bridgman technique in a He atmosphere. The composition of 

single crystal was determined to be Co-35.32Ni-27.69Al (at. %) using a Zeiss EVO MA 10 

scanning electron microscope (SEM) equipped with an energy dispersive X-Ray spectroscopy 

(EDX) microanalysis system. Compression samples (4mm x 4mm x 8mm) were cut using 

electro-discharge machining (EDM) such that their compression axes are along the [100], [110] 

and [111] directions in B2 phase. Specimens were initially homogenized at 1350 °C for 6 hours 

in sealed quartz tubes filled with argon and followed by water-quenching at room temperature. 

CoNiAl single crystal alloys present a single B2 phase at room temperature after annealing and it 

transforms into a tetragonal L10 martensite phase. The transformation temperatures of the two-

phase alloy were determined by using Perkin-Elmer Pyris 1 differential scanning calorimetry 

(DSC) with thermal cycling rate of 10 °C min-1. Mechanical experiments were conducted using 

an MTS Landmark servohydraulic test frame equipped with customized compression and tension 

grips. The applied force was controlled by a 100 kN capable load cell (precision: + 0.1 N), and 

the axial strains were measured with a high-temperature MTS extensometer. The heating/cooling 

of the samples was achieved by conduction through compression plates at the rates of 10 °C min-

1 during heating and -5 °C min-1 during cooling by using a PID driven Omega CN8200 series 

temperature controller.  

3. Results 

In this section, the compressive response of CoNiAl single crystals will be revealed along the 

selected orientations. Two types of experiment were carried out; 1) thermal cycling under 
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constant load and 2) stress cycling at constant temperature. Two-way shape memory effects were 

also revealed in [100] and [110] orientations. 

3.1.Shape Memory Effect 

Figure 1 shows the DSC response of homogenized Co35Ni35Al30 single crystal. It is clear 

that during transformation, sharp peaks were observed in CoNiAl alloys. It should be noted that 

in NiTi alloys the transformation peaks are broader and smoother [28-30]. Upon cooling, 

martensite start (Ms) and finish (Mf) temperatures were -44.3 °C and -66.6 °C, respectively. As 

seen in Figure 1, the transformation was quick initially, leading to high and sharp peaks. Further 

cooling resulted in a gradual type transformation with small peaks. Upon heating, austenite start 

(As) and finish (Af) temperatures were -31.3 °C and 10.3 °C, respectively. These sharp/narrow 

peaks indicate “burst type” transformation where the quick and sequential formation/ 

disappearance of martensite plates were observed during thermal cycling.  

 

 

Figure .1. DSC response of a homogenized Co35Ni35Al30 single crystal. 

Co35Ni35Al30 single crystals were thermally cycled under selected stress levels to 

determine their shape memory effects and their responses at selected stress levels are shown in 

Figure 2. The maximum applied stress level was 300 MPa for [100] and [110] orientations, and 

800 MPa for [111] orientation. The compressive stress (σ) was isothermally applied when the 
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material was in the austenitic phase at a temperature beyond Af, and then the sample was cooled 

down to below Mf and heated back to above Af under constant stress. In [100], the phase 

transformation was gradual and the difference between Mf and Ms was large, indicating large 

elastic energy storage [31]. However, it seems there are two types transformation during cooling 

where the type I shows relatively sharp behavior than the type II shown in Figure 2a. Here, type I 

behavior is defined as the burst type phase transformation region while the type II is the graduate 

phase transformation after burst transformation. Intersection method was used to determine the 

strains of these two transformation regions as shown in Figure 3a. The transformation 

temperatures increased with applied stress, where the Ms and Af were -40 °C and -10 °C under 

25 MPa and increased to 109 °C and 149 °C under 300 MPa, respectively. A detail schematic in 

Figure 3a shows how to determine the total strain (����
� ) and irrecoverable strain (����

�		 ). ����
�  

was determined at Ms and ����
�		  was measured as the difference between the cooling and heating 

curves at temperature above Af +20 ºC. The ����
	
�  was calculated as the difference between ����

�  

and ����
�		 . Temperature hysteresis was determined graphically at the midpoint of the total strain, 

and measured by the temperature differences between the heating and cooling curves. Figure 3b 

is used to determine the compressive superelastic strain at plateau region (���
�  ) and under zero 

stress (���

 ) graphically, as well as the Young’s moduli of austenite and martensite phases. The 

critical stress (σc) was determined by using the intersection method shown in Figure 3b. ����
	
�  

was initially increased with stress from 1.53 % under 25 MPa to 3 % under 75 MPa, and then 

decreased to 2.18 % under 200 MPa. Thermal hysteresis initially increased and then decreased 

with stress, and a small amount of ����
�		  of 0.2 % was observed under 300 MPa.  

The thermal cycling response along the [110] orientation in Figure 2b is similar to the 

behavior of [100] where the transformation temperatures increased with applied stress. ����
	
�  

increased with stress up to 50 MPa and then decreased with further increase in stress. The 

maximum ����
	
�  of [110] was 3.96 % under 50 MPa, higher than what was observed in [100] 

orientation. Thermal hysteresis increased to the maximum value of 91.7 ºC at 25 MPa and then 

decreased with stress. ����
�		  of 0.18 % was observed under 75 MPa. Under low stress (<100MPa), 

burst type transformation was observed where the sample suddenly transformed from austenite to 

martensite (type I).  At high stresses (>100 MPa), combined type I+II transformation was 

observed where the sudden transformation was followed by gradual change in strain. The type I 
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(����
� ) and type II (����

�� ) strains were determined by using the method shown in Figure 3a. The 

total stain is the sum of those two strains. The type I+II behavior in [100] and [110] can also be 

correlated to the DSC response where the burst type transformation was followed by an 

incremental transformation.  

Figure 2c shows the thermal cycling response of [111] orientation. The transformation 

strain was very low, of about 0.3 % under 300 MPa. Almost negligible ����
�		  of 0.05 % was 

observed under high stress of 800 MPa. The behavior was very stable and almost stress 

independent as the transformation temperatures and ����
	
�  did not increase significantly with 

stress. Thermal hysteresis increased from 16 °C under 100 MPa to the maximum value of 20 °C 

under 300 MPa, and then decreased with stress. As seen in Figure 2c, incremental transformation 

behavior was observed at all stress levels.  

   

Figure. 2. Thermal cycling responses of the homogenized Co35Ni35Al30 alloys along the a) [100] 
b) [110] and c) [111] orientations under selected compressive stress. 
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Figure. 3. Schematic of strain calculation from a) SME and b) superelasticity. 

3.2.Two-way Shape Memory Effect 

After thermal cycling under compressive stress responses shown in Figure 2, an 

additional thermal cycling was conducted under a low compressive stress of 5 MPa along the 

[100] and [110] orientations to explore the TWSME. The thermal cycling compression responses 

before and after “training” along the [100] and [110] orientation are shown in Figures 4a and 4b, 

respectively. In [100], the two-way shape memory strain (������) was increased from 0.33 % to 

2.85 % with training, which is almost equal to the maximum strain observed during thermal 

cycling responses shown in Figure 2a. Moreover, two-stage transformation behavior was 

observed. In [110], two-way shape memory strain was increased from 0.34 % (before training) to 

3.58 % (after training) with a very narrow thermal hysteresis of 6.8 ºC. The ����
�  strain was 

measured as 2.83 % along the [110] orientation. The low temperature hysteresis indicates the 

good compatibility of transforming phases and it is desired for actuator applications. Ms was 

determined as -67 ºC from Figure 1. After training, Ms increased in both orientations to 0 ºC for 

[100] and 26 ºC for [110]. However, after training, Af was 25 ºC for [100] and 28 ºC for [110], 

which is close to the Af of 10.3 ºC (determined from Figure 1). The increase of Ms with training 

can mainly be attributed to i) the internal stress created during thermal cycling under high stress 

and ii) the generation of plastic strain and residual stresses during thermal cycling experiments 

shown in Figure 2. These two factors may help the nucleation of martensite, increasing 

compatibility and enhancing strength, leading to the increase of Ms and decrease of dissipation 

energy. Detail discussion can be found in the phase diagram section. 
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Figure. 4. Compressive two-way shape memory effect behavior of Co35Ni35Al30 single crystal 
before training under 5 MPa and after training under 5 MPa with orientation of a) [100] and b) 
[110].  

3.3.Superelasticity  

Figures 5a shows the selected temperature dependent superelastic response of [100] 

oriented single crystal in compression. The superelastic response was determined from 0 ºC to an 

elevated temperature of 350 °C. The single crystal of [100] was first loaded to a total strain of 4 

% and then unloaded at a constant temperature 0 ºC. Almost perfect shape recovery was 

observed upon unloading. Then, the temperature was increased by 20 ºC up to 100 ºC and 50 ºC 

afterwards where the loading/unloading was repeated isothermally. Perfect superelastic behavior 

was observed for a very large temperature window of 350 ºC. The critical stress for phase 

transformation was increased while transformation strain was decreased with temperature. Figure 

5a clearly showed a strong temperature dependent superelastic behavior. The slope during the 

transformation (mtr) was low at low temperatures (< 40 ºC), and increased with temperature. This 

behavior can be attributed to the increased difficulty for phase transformation and detwinning 

[32]. Moreover, the results are in good agreement with the incremental shape memory behavior 

observed in Figure 2a. The stress hysteresis was 41 MPa at 80 °C and substantially increased to 

181 MPa at 350 °C. Perfect superelasticity was observed at 350 °C with maximum stress level 

reaching to 1.2 GPa. A large superelasticity window of 350 °C was revealed along the [100] 
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orientation which is more than two times larger than what was reported before for CoNiAl alloys 

[11] and similar to CoNiGa alloys [22]. 

Figure 5b shows the superelastic response along the [110] orientation with a temperature 

interval of 20 ºC. The sample was firstly loaded up to a total strain of 4 % at 57 ºC. After the 

initial linear elastic behavior, a clear transformation occurred with a plateau like response at low 

temperatures (<137 ºC). At higher temperatures, mtr increased considerably. At 57 ºC, there were 

three notable features: 1) very low stress hysteresis of about 16 MPa; 2) perfect superelasticity 

where the unloading path followed similar behavior with loading curve; 3) stress dropped two 

times during forward transformation and increased two times during back transformation. The 

stress required for phase transformation increased with testing temperatures. The decrease of 

stress in plateau region is related to burst type behavior observed in shape memory effect test.  

Since SE tests were conducted under strain control, the decrease of stress is detected. If force 

control was used instead of strain control, it would show a burst type transformation behavior at 

the plateau region similar to ones observed at force controlled SME tests. Stress hysteresis 

increased dramatically from 16 MPa at 57 ºC to 250 MPa at 307 ºC. Perfect superelasticity was 

observed till 307 °C. At higher temperatures, small irrecoverable strain was detected. At high 

temperature of 407 ºC, with a 2 % strain deformation, maximum stress was reached to 1.2 GPa 

and perfect superelasticity was again attained with large stress hysteresis.  The SE temperature 

window of [110] was found to be higher than 350 °C. Moreover, high strength for plastic 

deformation (>1200 MPa) was revealed in both [100] and [110] 

The transformation strain at the plateau region of SE decreased with temperature. Such a 

behavior can be attributed to the formation of multiple variants which enhanced the variant-

variant interaction at high temperature [22] and change in lattice parameters with temperature. 

The methods used to determine Young’s modulus of austenite (EA) and martensite (EM), and 

transformation strain under stress at plateau region (���
� ) and under zero stress (���


 ) were shown 

in Figure 3b. The highest SE recoverable stain was about 3.4 % for the temperature range of 57-

137 °C, indicating the fewer martensite variants growth at low temperature. However, the 

recoverable strain reduced pronouncedly to about 0.7 % between 207-407 °C and it is attributed 

to the growth of multiple variants at high temperature.  
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Figure. 5. Compressive stress-strain responses along the a) [100] and b) [110] orientations as a 
function of testing temperature. 

4. Discussion  

4.1.Elastic Modulus  

Figure 6 shows the elastic moduli during loading and unloading for [100] and [110] 

orientations as a function of temperature, extracted from the results shown in Figure 5. Initial 

elastic regions during loading and unloading were used to determine the moduli of austenite (EA) 

and martensite (EM), respectively. It should be noted that at low temperatures, the end of plateau 

and the elastic region where modulus of martensite obtained was clear. However, at higher 

temperatures, it is not clear if the transformation is fully completed. At high temperatures the 

modulus determined during unloading might have contributions from austenite, thus, the 

modulus during unloading was marked as EM*. It should be noted that the modulus of 

conventional materials such as Al, Cu, Ti decrease with increasing temperature due to the 

material softening [33-35]. The modulus of shape memory alloys shows a highly temperature 

dependence behavior. Temperature dependence of the elastic constants and anisotropy factors 

were reported in NiTi-based alloys [36-38], where elastic constants decreases prior to the 

forward martensitic transformation, mainly due to the softening. Similar softening was also 

observed in magnetic NiMnGa alloys [39, 40]. For B2 crystals there exist three elastic constants 

moduli (c11, c12, c44) where c’ ((c11-c12)/2) and anisotropy factor A (c44/c’) are two important 

factors in martensitic transformation. As shown in Figure 6, EA and EM* have similar trends 

where their moduli decreased with decreasing temperature for both orientations prior to the 

martensitic transformation. The EM* in [100] decreased with temperature below 80 ºC and then it 
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increased with temperature. The increase of EM* at higher temperatures can be attributed to the 

change in lattice parameters with stress and temperature, incomplete transformation and 

multivariant martensite formation.  At all orientations, elastic modulus was higher during 

unloading when it is compared to the elastic modulus during loading. At 100 ºC, the modulus of 

martensite was three times higher than the modulus of austenite in [110] orientation. It should be 

noted that EA is higher than EM in NiTi alloys [41].  

 

Figure. 6. Young’s modulus of austenite and martensite as a function of temperature in [100] 
and [110] orientations. Elastic moduli during initial loading and unloading were extracted from 
Figure 5 by using the schematic in Figure 3b. 

4.2.Transformation Strain 

The ����
	
� 	were extracted from Figures 2, and plotted as a function of applied stress in 

Figure 7. It shows that ����
	
�  for both the [100] and [110] orientations increases with applied 

stress at low stress region due to the increased volume fraction of favored martensite variants. 

The maximum ����
	
�  were measured as 3 % at 75 MPa, 3.96 % at 50 MPa, and 0.3 % at 200 MPa 

along the orientation [100], [110], and [111], respectively. After the peak value, the recoverable 

strains decrease linearly with stress for all orientations. In [100] and [110] orientations, ����
	
�  

decrease from 3 % to 1.78 % and 3.96 % to 2.18 % when stress increases from 50 MPa to 300 

MPa, respectively. The decrease in recoverable strain with stress or temperature can be attributed 
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to the large changes in lattice parameters and elastic moduli with temperature and the difference 

in Young’s moduli of austenite and martensite phases.  

It should be noted that at the plateau region, both austenite and martensite phases are 

compressed, thus they are elastically deformed.  The difference between the ���
�  and ���


  is 

increasing with the difference between the elastic moduli of transforming phases, as in CoNiAl 

alloys. ���
�  and ���


  along the [100] and [110]orientations were plotted in Figure 7 by using the 

critical stress for transformation and temperature from superelasticity experiments shown in 

Figure 5. For both orientations,  ���
�  and ���


  decreased considerably with stress. The ���
�  is in 

good agreements with ����
	
�  in both orientations, especially in [110] orientation. The ���


  exhibits 

a relatively higher values than both ���
�
	���	����

	
�  which can be attributed to difference in moduli 

of transforming phases. If the ���
� is known, calculated superelastic strain under no stress (���


�) 

can be obtained by the equation below: 

���

� = ���

�
+ (

��

��
� −

��

��
� )         (1) 

Where � 
� is the Young’s modulus of austenite and ��

�  is the Young’s modulus of martensite, 

and !� is the critical stress for phase transformation.  

In [110] at 57 ºC, !� is 145 MPa, ���
�  is 2.91 %, EA is 13.3 GPa and EM is 44.7 GPa. Thus, the  

���

�  can be determined as 3.67 % which is higher than ���

�  of 2.91 % and close to the 

experimental measurement of ���

  of 3.35 %. The error can attributed to inaccurate determination 

of ���
�  due to the lack of flat plateau region.  Similar to the superelastic strain equation, the 

calculated SME strain under zero stress (����

� )	can be estimated as; 

����

� = ����

	
� + (
�

��(�)
−

�

��(�)
)         (2) 

Where ! is the applied constant stress, � (") and ��(") are the elastic moduli of austenite and 

martensite, respectively, at the temperature where the ����
	
�  was determined. ����


�  for [100] and 

[110] orientations were added to Figure 7. It is clear that the ����

� 	is higher than the  ����

	
�  and the 

corrected strains have linear fit in both [100] and [110] orientations. Thus, ����

� at zero stress 

level is named as “projected strain” and shown in Figure 7. The projected strains of SME are 
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4.43 % and 4.85 % for [100] and [110] orientations, respectively. Furthermore, ε�����  , 

determined from the TWSME responses of [100] and [110] orientation shown in Figure 3, were 

added to Figure 7. It is worth to note that ε����� is very close to the highest recoverable strains 

observed for both [100] and [110] orientations.  

 

 

Figure. 7. The relationship of compressive strain vs. stress for three orientations a) [100] and 
[111], b) [110]. In detail, ����

	
�  is the recoverable strain measured from SME under stress, ����

�  is 

the corrected SME strain under zero stress, ���
�  is the strain measured from SE at plateau region, 

���

  is the strain measured from SE under zero stress. 

Transformation strain is generated from the crystal structural difference between 

martensite and austenite phases. In this study, as shown by Figure 7, the degree of the change of 

strain with temperature in superelasticity and with stress in shape memory response are 

orientation dependent (the slope of the ����
	
�  and stress were -4.41x10&'  %/MPa, -6.50 x 

10&' %/MPa for [100] and [110] , respectively, for the stress levels above 50 MPa), which had 

already been reported in Cobalt based alloys [10, 23]. However, it should be noted that the strain 

increases with temperature/stress in  NiTi while it decreases in CoNiAl [29]. Combined with 

equation (1), a schematic is provided to explain the decrease in transformation strain with stress 

in Figure 8. The decrease in ���
�  in CoNiAl alloys along the [100] and [110] orientations is 

mainly due to fact that the EA is considerable lower than EM. In NiTi, the EA is higher than EM, 

resulting in increased  ���
�  with stress as shown by the schematic in Figure 8b. It should be kept 

in mind that critical stress of transformation increases with temperature and elastic moduli of 
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transforming phases change with temperature as well. Thus, the combined effects of those two 

facts govern the change in ���
� . In CoNiAl, the difference in elastic moduli of transforming 

phases is very high but !� is low at temperatures close to Ms. As temperature increases, the 

difference in elastic moduli of transforming phases decrease but !� increases. Thus, ���
�   is 

governed by those two competing facts. Lastly, it should be noted that in all cases the corrected 

recoverable strain decreases with temperature which can be attributed the change in lattice 

parameters.   

 

Figure. 8. A schematic of superelastic transformation strain at plateau region as a function of 
increasing stress. a) CoNiAl where EA < EM  and b) NiTi where EA > EM. 

4.3.Phase Diagram 

Ms of three orientations are extracted from Figure 2 and plotted as a function of applied 

stress in Figure 9. For all orientations, Ms increases with stress. Such a linear relation between 

stress and temperature is well explained by the Clusius-Clapeyron (C-C) relationship of; 

∆�(�)

∆�
= −

∆�

)*+
= −

∆,

�-)*+
                          (3) 

∆!(") is the change in critical stress, ∆T is the change in temperature, ∆S is the specific or molar 

transformation entropy change and ∆H is the enthalpy change. T0 is the equilibrium temperature 

that can be estimated in the usual form:"
 =
.

/
(01 + �2), and ��	 	is the transformation strain. 

From the SME experiments, C-C slopes were determined as 1.96 MPa °C-1, 1.25 MPa °C-1 and 

22.80 MPa °C-1 along the [100], [110] and [111] orientations, respectively. From the SME 
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experiments shown in Figure 2, the maximum ����
	
�  are determined to be 3 %, 3.98 % and 0.3 % 

along the [100], [110] and [111] orientation, respectively. It is clear from equation (3) that C-C 

slope decreases with increased transformation strain when ∆H/T0 is constant which is the case 

for this study of CoNiAl single crystals. In [110], ����
	
�  is highest and C-C slope is lowest. The 

maximum C-C slope of 22.8 MPa °C-1 was observed in [111] orientation, which also has the 

lowest ����
	
�  of about 0.3 %. The conventional NiTi single crystals was reported to have C-C 

slopes of 4-8 MPa °C-1 in compression [42]. 

The critical stress for forward transformation as a function of temperature were extracted 

from Figure 5 and added to the Figure 9 for [100] and [110] orientations. The maximum !� in 

[110] orientation occurs at Md where testing at higher temperatures results in plastic deformation 

and decrease in !�. Figure 9 shows that [100] orientation has a high strength of greater than 850 

MPa and it is in good agreement with previous findings [19, 43, 44].  The superelasticity C-C 

slopes are 1.45 MPa °C-1 for [100] and 1.55 MPa °C-1 for [110] orientations. In [100] orientation, 

the superelasticity is observed from -20 to 350 °C as shown in Figure 9. In [110] orientation, the 

SE was observed from 57 °C to 407 °C. It is clear that in both orientation the SE is very large 

(~350 °C) which is due to their low CC slope and high strength. The high C-C slope of [111] 

orientation results in the lack of SE as !� increases rapidly with temperature and reaches to the 

critical stress for plastic deformation at temperatures above Af.  

According to the C-C slop from Eq (3), we can calculate the stress change (∆σ) between 

prior to the thermal cycling and after TWSME. As shown in Figure 1 and 4, the ∆ 01
[..
]= 25 

°C-(-44°C) = 69 °C. Therefore, with SME C-C slop of [110] orientation, we have: 

∆!���
[..
]

= 55���
[..
]

∗	∆	01
[..
]

=
1.250:�

°C
∗ 69	°C = 86.25	MPa 

Follow the same procedure for [100] orientation, we will get ∆!���
[.

]

= 78.400:� . The 

observed stresses are the internal stress created during the thermal cycling experiments and can 

be the main reason account for the cause of Ms increase in TWSME. 
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Figure. 9. Stress vs. temperature phase diagram of Co35Ni35Al30 single crystals. Ms and !� are 
extracted from the load-biased thermal cycling (Figure 2) and superelastic tests (Figure 5), 
respectively, by using the schematics shown in Figure 3b. 

4.4.Thermal and Stress Hysteresis 

Figure 10 shows the thermal hysteresis of three orientations as a function of applied 

stress. The change in thermal hysteresis with stress has a similar trend as the recoverable strain, 

where the thermal hysteresis increase at low stress region and then decrease with stress. In Figure 

10, thermal hysteresis of [100] orientation increases from 35.4 °C under 15 MPa to 54.2 °C under 

50 MPa, and then decrease to 33.8 °C under higher stress of 300 MPa. The change in thermal 

hysteresis is more pronounced in [110] orientation, where it shows the sudden jump from 56.3 °C 

at 15 MPa to 91.7 °C at 25 MPa due to the burst type (Type I) phase transformation during 

thermal cycling experiments under low stress levels. The thermal hysteresis then decreases to its 

lowest value of 28.3 °C at 200 MPa, and then increases to 52.37 °C at 300 MPa. For [100] 

orientation, the transformation behavior happens gradually with a smooth transition at each stress 

level, indicating stored elastic energy. However, the transformation occurs in a very sudden 

manner at low stress levels in [110]. This burst type response indicates the absence of stored 

elastic energy where once the energy required for nucleation of martensite is achieved, a sudden 
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transformation is observed. The orientation dependence of thermal hysteresis can mainly be 

attributed due to the difference of elastic energy relaxed during forward transformation [10].  

The effects of lattice parameters on the thermal hysteresis were reported before [45]. It 

was found that lattice parameters governs the compatibility between the transforming phases and 

thermal hysteresis. In CoNiAl single crystals, the large decrease of thermal hysteresis with 

temperature can be attributed to the effects of temperature and stress to lattice parameters and 

crystal structure that govern the compatibility of transforming phases. The increase in thermal 

hysteresis at high stress levels is due to the increased plastic strain and dissipation energy.  

Thermal hysteresis obtained from the TWSME responses of [100] and [110] orientations 

are also displayed in Figure 10. It is notable that the thermal hysteresis reaches to an extreme low 

value of 6.7 °C along the [110] orientation under 5 MPa. Such narrow thermal hysteresis from 

TWSME can be understood by some defects such as that dislocation, stabilized martensite can 

modify nucleation and growing martensite of TWSME, and this martensite can be very fine 

compare with the initial created martensite.  

It should be noted that Co35Ni35Al30 alloys shows the lowest thermal hysteresis reported 

among Cobalt based SMAs. Low thermal hysteresis and large ε����� 	make these alloys very 

promising for actuator applications 
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Figure. 10. The relationship of temperature hysteresis vs. stress for three orientations [100], 
[110], and [111]. 

Stress hysteresis can be extracted from Figure 5 for [100] and [110] orientations, where 

the stress hysteresis decreases with temperature. It is difficult to determine the stress hysteresis 

of [100] shown in Figure 5a due to the lack of plateau regions for both forward and backward 

transformations. As mentioned before, at low temperatures, stress decrease and increase abruptly 

during forward and backward transformation, respectively, in [110].  The observation of the first 

stress drop after reaching to the stress required for transforming phases was also observed in 

polycrystalline Co38Ni33Al29 alloys at room temperature [11] and it is attributed to the differences 

between the stresses required for nucleation and propagation [11]. The first stress drop can also 

be attributed to the differences of the speed of the phase front and cross head motion [46], where 

the phase boundary moves faster than the cross head, resulting the stress drop. The second drop 

can be linked to the nucleation and propagation of another phase front and/or detwinning. The 

stress drop in superelasticity can be correlated with the responses observed during the thermal 

cycling experiments shown in Figure 2b. In [110], Type I (burst type) deformation was observed 

at low stress levels which corresponds to stress drops in Figure 5b at low temperatures. 

Eventually, thermal cycling under stress becomes Type I+II behavior at higher stress level in 

Figure 2b where in SE, stress drops are observed at low temperatures (mtr<0) and single plateau 

is observed at mid temperatures (mtr~0) and stress increased during transformation at higher 

temperatures (mtr>0).  To be noted, if force control was used instead of displacement control, 

burst type behavior would have been observed at lower temperatures during SE. The sudden 

phase transformation or stress drops are not observed in [100] to the extent observed in [110], 

however clearly, transformation was fast at first and then incremental with further cooling. Such 

differences between [100] and [110] can be stemmed from the formation of only twinned 

martensite along the [100] orientation and twinned and then detwinned martensite along the 

[110] orientation. The increase of stress hysteresis of both [100] and [110] orientations with 

temperature can be attributed to plastic deformation. As the critical stress for transformation 

increases with temperature, plastic deformation occurs and increases the dissipation energy and 

hysteresis 
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4.5. Theoretical Strain Calculation 

The transformation strain of SMAs is governed by the crystal structure and lattice 

parameters of transforming phases. The theoretical transformation strain as a function of 

crystallographic orientation can be calculated by using the framework based on the “Energy 

Minimization Theory” [47, 48]. For CoNiAl alloys, B2 austenite has a lattice parameter of  

a0=0.287��, and L10 martensite has lattice parameters of  a=0.385�� and c=0.314�� [10]. Table 1 

includes the theoretical transformation strain calculations along the [100], [110], and [111] 

orientation for Correspondence Variant Pair (CVP) and detwinned martensite formation under no 

stress. CVP is the martensite plate which contains two compatible martensite variants. The 

theoretical calculation of CVP is the strain change caused by the formation of CVP during 

thermal cycling, while the detwinning is the growth of one variant within a martensite in expense 

of the other [49]. The detwinning produces additional recoverable strain, especially in tension. 

The maximum experimental recoverable strains observed in shape memory and superelastic tests 

are also listed, as well as the projected SME strain. As shown in Table 1, the experimental SME 

strains are very close to the maximum SE strains (under zero stress). The projected SME strains 

measured from Figure 7 are 4.43 % and 4.85 % for [100] and [110], respectively. In [100], 

although the experimental SME strain is lower than the theoretical strain due to the stress/ 

temperature effect, the projected SME strain (4.43 %) which is the corrected value at zero stress, 

closes to the theoretical number in both CVP (5.01 %) and Detwinned (5.01 %). It is hard to 

predict the transforming type by only comparing the experimental and theoretical strain values 

since they are very close. However, the inconspicuous type I+II behavior compared with [110] 

orientation shows that the transformation might have contributions from both CVP and 

Detwinned. In [110], the projected SME strain (4.85 %) almost equals to the theoretical 

Detwinned value (5.01) and the burst type strain (type I) is close to the theoretical CVP number 

(2.47 %), indicating the CVP and Detwinned transformations exist in [110] orientation. 

Moreover, the SME/SE experiment also shows those two types transformation profoundly at low 

stress/ temperature. The experimental SME strain in [111] is almost negligible compared with 

other two orientations, and it is reasonable when compare to theoretical strains. 

Table. 1. Experimental recoverable strains from SME and SE, “projected SME” strains, 
theoretical strain calculations of CVP and detwinned martensite along the [100], [110], and [111] 
orientations.   
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Experimental Strain (%) Theoretical Strain (%) 

SME  Projected SME  SE CVP Detwinned 

[100] 
3 

4.43 2.75 5.01 5.01 
2.42 (Type I) 

[110] 
3.98 

4.85 3.35 2.47 5.01 
3.54 (Type I) 

[111] 0.31 0.31 NA 0.03 0.03 

 

Conclusion  

In this study, shape memory characteristics of Co35Ni35Al30 (at %) alloy single crystals were 

investigated under compression. Transformation behavior under constant stress levels, and 

superelasticity as a function of strain and temperature were studied as well as two-way shape 

memory behavior. The conclusions can be listed below: 

1. The shape memory behavior of CoNiAl alloys is highly orientation, stress and 

temperature dependent. The maximum compressive recoverable strains in Co35Ni35Al30 

single crystal oriented in [100], [110], and [111] are 3 %, 4 %, and 0.31 %, respectively. 

The recoverable strains decrease substantially with stress/temperature. 

2. Perfect superelasticity is observed along the [100] and [110] orientations. Low stress 

hysteresis of 16 MPa is observed in superelasticity along the [110] orientation. The lack 

of SE in [111] orientation is attributed to the high C-C slope. The SME response of [111] 

orientation is stable and temperature independent.   

3. The Co35Ni35Al30 single crystal oriented in [100] and [110] have a large superelasticity 

window of more than 350 °C, thus CoNiAl alloys are promising candidates for high 

temperature applications. The burst type transformation behavior is observed in both 

[100] and [110] orientations. Applied stress affects the transformation behavior where 

both burst and gradual shape change are observed at high stress levels.  

4. Two-way shape memory effect (TWSME) behavior with very low thermal hysteresis is 

observed in [100] and [110] orientations.  

5. The decrease in recoverable strain during SE and SME tests is mainly attributed to the 

difference in Young’s moduli of austenite and martensite phases.  
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6. Stress-temperature phase diagram under compression is constructed for Co35Ni35Al30 

single crystals. C-C slopes of 1.96 MPa/°C, 1.25 MPa/°C, 22.80 MPa/°C were obtained 

along the [100], [110] and [111] orientations, respectively.  
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Highlights: 

• Shape memory and superelastic behaviors of single crystal Co35Ni35Al30 alloys 
have been explored under compression. 

• Decrease of recoverable strain with stress was discovered along [100] and [110] 
orientations. 

• CoNiAl demonstrates two-way shape memory effect with narrow thermal 
hysteresis after thermal cycling experiments. 

• Phase diagram of CoNiAl shows a wide range of superelastic window 
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