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Sulfonylureas are a class of antidiabetes medications prescribed to millions of individuals worldwide. Rodents have been used
extensively to study sulfonylureas in the laboratory. Here, we report the results of studies treating mice with a sulfonylurea
(glimepiride) in order to understand how the drug affects glucose homeostasis and tolerance. We tested the effect of glimepiride
on fasting blood glucose, glucose tolerance, and insulin secretion, using glimepiride sourced from a local pharmacy. We also
examined the effect on glucagon, gluconeogenesis, and insulin sensitivity. Unexpectedly, glimepiride exposure in mice was
associated with fasting hyperglycemia, glucose intolerance, and decreased insulin. There was no change in circulating glucagon
levels or gluconeogenesis. The effect was dose-dependent, took effect by two weeks, and was reversed within three weeks after
removal. Glimepiride elicited the same effects in all strains evaluated: four wild-type strains, as well as the transgenic Grn−/− and
diabetic db/db mice. Our findings suggest that the use of glimepiride as a hypoglycemic agent in mice should proceed with
caution and may have broader implications about mouse models as a proxy to study the human pharmacopeia.

1. Introduction

The potassium (K+) channel subtype, the “KATP channel,”
and its orthologs are expressed in a range of species and have
many functions. When KATP channels are present in the
plasma membrane, K+ ions are pumped out, thus establish-
ing an ion gradient. Inhibition of KATP channels induces
membrane depolarization and activation of voltage-gated
calcium channels. The KATP channel is also responsive to
the ATP/ADP ratio, thus working as a “metabolic sensor”
[1]. The channel contains a regulatory subunit, composed
of the ABCC8 or ABCC9 (ATP-binding cassette, subfamily
Cmembers 8 and 9) gene products referred to as sulfonylurea
receptor 1 and 2 (SUR1 and SUR2) proteins [2], respectively.

SUR1 and SUR2 are so named because an important
drug class, the sulfonylureas, bind to, and block, activity.
In the pancreas, sulfonylureas stimulate insulin secretion,
leading to their use as oral antidiabetes medication,

prescribed worldwide to millions of individuals [3]. Multiple
generations of sulfonylurea drugs have been used in the
human pharmacopoeia, alone and in drug combinations,
varying in their specificity, activity, and impact on human
subjects, with much of the variation unexplained to date.
Because there has been suggestion that sulfonylurea drugs
may have deleterious effects for some persons, this is a topical
biomedical issue [4].

Understanding the characteristics of SUR proteins has
been a focal point among researchers for decades. The two
SUR paralogs are well-conserved across species: protein
sequence homology between human and zebrafish SUR2 is
~70% [1]. One reason for evolutionary conservation is that
they play phylogenetically durable roles, including metabo-
lism, stress response, and regulation of blood vessel function
[2, 5–9]. SUR1 and SUR2 allelic variants are associated with
human diseases, including congenital diabetes, heart disease,
and CNS disorders [6]. SUR1 function is best understood in
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the vertebrate pancreas and central neuronal tissue, as a
regulator of insulin secretion and neuronal excitability.

Rodent studies are a common experimental context in
which to study SUR physiology and pharmacology. A
PubMed search combining “Sulf/phonylurea” and "rat/
mouse" returns over 5400 published papers. However, there
has been some indication that the pharmacological effect of
sulfonylureas seen in humans differs appreciably from that
seen in rodents in lab experiments. It is important to under-
stand such a discrepancy, both for relevance to experimental
models and for understanding the pharmacobiology of drugs
commonly used in humans.

Here, we report the results of studies using the orally-
administered sulfonylurea drug glimepiride (tradename
Amaryl™) in six different mouse strains, in order to under-
stand how the drug affects glucose homeostasis and toler-
ance. We used glimepiride sourced from a local pharmacy
for comparison to human clinical use. Contrary to expecta-
tions, glimepiride exposure was associated with increased
blood glucose levels and impaired glucose tolerance in all
strains tested, both of which were reversible after several
weeks wash-out.

2. Materials and Methods

2.1. Animals. All animal work was conducted with prior
University of Kentucky IACUC approval and was performed
in accordance with USDA and PHS guidelines. Information
about the mouse (Mus musculus) strains used, including
age, length of treatment, and tests performed, is summarized
in Table 1. All strains were obtained from the Jackson Labs
(C57Bl/6J, C57Bl/6N, BalbC, and C3H; Bar Harbor, ME) or
in-house breeding colonies at the University of Kentucky
(Grn−/− [10, 11] and db/db). db/db mice were on a hybrid
C57Bl/6J/CD-1/129 background, described previously [12].
Mice were group housed, fed and provided with water ad libi-
tum, and maintained on a constant 12-hour light/dark cycle.
Glimepiride was obtained by prescription and milled into
chow (1 or 8mg/kg/day: BioServ Custom Diet:, Flemington,
NJ). We based our estimate of glimepiride dose on a 25 g
mouse, and an average food consumption of 5 g per day.
Nicorandil (Tocris: Minneapolis, MN; TCI, Portland, OR)
was administered in drinking water (15mg/kg/day), based
on an average of 5mL of water consumed per day. Control
mice were fed a control diet (BioServ) with a consistent nutri-
ent content and given control water with no additives. For
the wash-out experiment, mice were tested three weeks after
removal of glimepiride chow. Mice were euthanized by CO2
asphyxiation, followed by decapitation, and the liver and
serum frozen until use.

2.2. Metabolic Testing. Mice were tested using standard glu-
cose [13], insulin [14], or pyruvate [15, 16] tolerance testing.
For glucose and insulin tolerance, mice were fasted for six
hours in advance of testing. A drop of blood was obtained
by tail nick, and the baseline blood glucose was measured
by glucometer (Bayer Breeze 2: Bayer, Tarrytown, NJ). Mice
were then injected intraperitoneally with glucose (2mg/g
body weight: Vedco, St. Joseph, MO) or insulin (0.75U/kg

body weight; Humulin, Eli Lilly, Indianapolis, IN). Blood glu-
cose was tested at multiple time points over two to three
hours. Any measurement giving a reading of “HI” on our
glucometer was set to 700mg/dL for analysis. For pyruvate
tolerance testing, mice were fasted overnight (16–18 hours)
in order to deplete glycogen stores. After a baseline glucose
measurement, pyruvate (2mg/g body weight; Sigma-Aldrich,
St. Louis, MO) was injected intraperitoneally and blood
glucose was assessed over three hours.

2.3. Serum Hormone Immunoassays. Serum was obtained by
either saphenous bleed or trunk bleed (at euthanasia).
Insulin and glucagon serum levels were analyzed using
mouse-specific, commercially available ELISA (Insulin,
EMD Millipore, Billerica, MA) or EIA (Glucagon, Sigma-
Aldrich) kits, according to manufacturers’ instructions.

2.4. Glycogen Measurement. Liver glycogen was extracted as
reported [17, 18]. Briefly, livers were homogenized in 10 vol-
umes 30% KOH, using a Polytron homogenizer (PRO200:
ProScientific, Oxford, CT), then heated at 95°C for 30
minutes. Samples were cooled on ice, then 1.5 volume of
95% ethanol was added. Samples were centrifuged (3000×g,
20 minutes at 4°C) to precipitate glycogen. The supernatant
was discarded, and the pellet was washed with 1 volume
water and 1.5 volume 95% ethanol. The resulting pellet was
dissolved in 1 volume water. The extracted glycogen was
reacted with anthrone reagent (Sigma Aldrich: 14.6mM
anthrone in concentrated H2SO4) for 20 minutes at 90°C
[17, 18]. Absorbance was detected at 625nm and compared
against a standard curve of D-glucose.

2.5. Data Analysis. Measurements from each mouse were
counted as individual data and then used to calculate group
averages. All data are reported as group mean± SEM. For
simplification, GTT data is expressed as the area under the
curve (AUC) for the time course, though comparisons at

Table 1: Mouse strains and treatments.

Strain N Assay Treatment length Age (months)

C57Bl/6J

29 GTT 2 weeks 2.5–5

11 PTT 1.5 months 3.4

12 ELISAs 1.5 months 3.5

C57Bl/6N

12 GTT 2 weeks 3.7

11 ITT 1 month 4.2

12 ELISAs 1.5 months 4.8

C3H

12 GTT 2 weeks 2.4

12 GTT† 3 weeks 3

12 ELISAs ‡ 3.1

BalbC 10 GTT 2 weeks 2.4

Grn−/−
18 GTT 2 weeks 5–10

10 ELISAs 8 months 21

db/db 11 GTT 2 weeks 4.4
†Performed after three weeks after removal of glimepiride (wash out). ‡Blood
was collected at endpoint, soon after the three-week wash out.
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each time point were also made. Data were analyzed with
SPSS (Hewlett Packard, Palo Alto, CA) using the general lin-
ear model (GLM) module for ANOVA with the independent
variables (as needed) treatment, genotype, and fasting state
(for explanation of this model, http://pic.dhe.ibm.com/
infocenter/spssstat/v21r0m0/index.jsp?topic=%2Fcom.ibm.
spss.statistics.help%2Fidh_glm_multivariate.htm).

3. Results

3.1. Glimepiride Treatment Causes an Impairment in Glucose
Tolerance. In order to minimize stress to the animals, we
chose to administer glimepiride in chow. Wild-type C57Bl/
6J mice were fed ad libitum with glimepiride chow for two
weeks, after which a glucose tolerance test was performed.
Glimepiride was well-tolerated, with no significant adverse
complications , including no observed hypoglycemic events.
Glimepiride treatment did not cause a change in weight
(not shown). Contrary to published reports, glimepiride
treatment increased fasting blood glucose and blood glucose
at most of the time points after glucose injection
(Figure 1(a)), at least at 8mg/kg/day. There was also an
increase in the area under the curve for the time course,
indicative of impaired glucose tolerance (Figure 1(b)). The
lower dose (1mg/kg/day) trended toward an increase in the
area under the curve (p = 0 07).

Sulfonylureas, such as glimepiride, are widely used in
human diabetic patients to stimulate insulin secretion from
pancreatic beta cells and subsequently reduce hyperglycemia.
In order to determine the effect of glimepiride on insulin
secretion in mice, we measured serum insulin by ELISA.
The nonfasting serum insulin concentration was reduced by
half in mice treated with glimepiride (Figure 1(c)). This sug-
gests that glimepiride is acting on the pancreatic beta cells to
reduce, instead of promote, insulin secretion.

In order to maintain a constant level in between and after
meals, blood glucose is highly regulated. This is accom-
plished primarily through a combination of hormonal and
neural control of cellular processes. In addition to insulin,
the pancreatic hormone glucagon regulates many aspects of
cellular metabolism, especially during fasting. We, therefore,
determined the effect of glimepiride on the secretion of gluca-
gon. Glimepiride treatment had no effect on serum glucagon
levels (Figure 1(d)), indicating that the hormone is not a
major target of glimepiride action.

The liver is also a major driver of glucose homeostasis,
both for glucose generation during fasting as well as glu-
cose uptake and long-term storage. An increase in gluco-
neogenesis in the liver could explain higher fasting blood
glucose in glimepiride-treated animals. We performed a
pyruvate tolerance test after overnight fasting in order
to deplete liver glycogen stores. Even after fasting over-
night, mice treated with glimepiride had significantly ele-
vated blood glucose compared with untreated animals
(Figure 1(e)). This may indicate the presence of residual
glycogen. There was no difference in glucose production
after pyruvate challenge, however (Figures 1(e) and 1(f)),
indicating that there was no stimulation of gluconeogenesis
due to glimepiride treatment.

The changes in insulin output and glucose tolerance
occurred after two weeks of treatment, far shorter than the
time frame that human diabetics are typically prescribed gli-
mepiride. We reasoned that glimepiride might initially stim-
ulate insulin secretion, which becomes suppressed over time,
possibly due to feedback inhibition. To determine whether
there was an improvement in glucose control after a very
short-term treatment, we performed an acute, overnight
treatment with glimepiride (8mg/kg/day). Overnight treat-
ment did not elicit an increase in fasting blood glucose or
an impairment in glucose tolerance (Figures 2(a) and 2(b)),
unlike the two-week treatment. However, we did not see a
decrease in fasting or post-injection glucose levels, as previ-
ously described [19].

3.2. Glimepiride Treatment in Different Strains. C57Bl/6J
mice are known to have a predisposition to obesity and
diabetes [20, 21]. We wondered, therefore, if the effect on glu-
cose tolerance was limited to C57Bl/6J mice or was a more
universal phenomenon. To test this possibility, we treated
three additional, commonly-used inbred mouse strains with
glimepiride (8 mg/kg/day) for two weeks: C57Bl/6N (a
related substrain without the susceptibility to diabetes [20]),
BalbC, and C3H mice. The strains differed with respect to
their glucose tolerance in the absence of glimepiride: C3H
and BalbC mice had the best glucose tolerance (smallest area
under the curve), while C57Bl/6J had the worst (Figure 3(b)).
Glimepiride treatment caused a significant increase in fasting
blood glucose (Figure 3(a)) in all strains tested, though the
C57Bl/6 substrains displayed the largest increase (70 vs.
30%). Glucose tolerance was also impaired in glimepiride-
treated animals of all strains tested (Figure 3(b)).

The factors that regulate blood glucose in the fed state
differ from those in the fasting state (e.g., insulin vs. gluca-
gon). Therefore, we also examined the difference between
nonfasting and fasting blood glucose in C57bl/6N mice.
Though there was not a significant difference between treat-
ment groups in nonfasting mice, blood glucose increased
nearly two-fold in glimepiride-treated mice during the six-
hour fasting period (Figure 4(a)). Untreated mice maintained
constant blood glucose during that time. Similarly, we
measured serum insulin in the nonfasting and fasting period.
Control mice displayed a significant decrease in serum insu-
lin during the fast (Figure 4(b)), consistent with the lack of
food intake. As observed in C57Bl/6J mice, glimepiride-
treated C57Bl/6N mice had significantly lower serum insulin
in the nonfasted state than control-treated mice. A six-hour
fast did not change insulin levels in treated mice. We also
measured serum insulin 30 minutes after i.p. administration
of glucose, as performed during a GTT (approximately the
time at which blood glucose peaks). Glucose administration
stimulated insulin secretion in the untreated mice, but did
not significantly change insulin levels in glimepiride-treated
mice (Figure 4(b)), indicating that glimepiride treatment
not only suppresses insulin secretion in the fed state but also
in response to a glucose bolus.

These data suggest that (1) glimepiride-treated animals
are able to maintain normal blood glucose under fed condi-
tions, despite low insulin levels, and (2) a change in
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Figure 1: Glimepiride treatment impairs glucose tolerance in C57Bl/6J mice. Wild-type C57Bl/6J mice were treated for two weeks with
glimepiride (1 or 8mg/kg/day) or control chow, after which a glucose tolerance test (GTT) was performed. Blood glucose was measured
after a 6-hour fast (time = 0). The mice were then injected with glucose (2mg/g body weight), and the blood glucose was measured over
the next 2 hours. Mice treated with 8mg/kg/day glimepiride had significantly elevated fasting blood glucose and higher blood glucose at T
= 60 and 120 minutes (a) (∗p ≤ 0 04). Closed circles = control group; open circles = 1mg/kg/day; inverted triangles = 8mg/kg/day
glimepiride. The area under the curve was also calculated for the GTT time course as a representation of glucose tolerance. Mice treated
with 8mg/kg/day glimepiride had significantly impaired glucose tolerance (bigger area under the curve) than control animals (b)
(∗p ≤ 0 001). Treatment with 1mg/kg/day glimepiride trended toward impaired glucose tolerance, though this did not reach significance
(p ≤ 0 07). n = 6/group. Circulating insulin (c) and glucagon (d) levels were measured after glimepiride treatment (8mg/kg/day; n = 6
/control, n = 5/glimepiride). Serum insulin was decreased by approximately 50% in mice treated with glimepiride (∗p ≤ 0 002). Unlike
insulin, serum glucagon was unaffected by glimepiride treatment. Gluconeogenesis was assessed using a pyruvate tolerance test. Even after
an overnight fast, glimepiride-treated mice had elevated fasting blood glucose (e) (p < 0 02). However, there was no difference in blood
glucose in any of the other time points, or in the area under the curve (f). n = 6/control; n = 5/glimepiride. Closed circles = control diet;
open circles = glimepiride group.
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circulating insulin is not responsible for the increase in
blood glucose during the fasting period. Insulin’s primary
target tissues are muscle and liver, which take up blood glu-
cose for acute use as well as long-term storage. To determine
whether glimepiride impacts insulin sensitivity, we per-
formed an insulin tolerance test on C57Bl/6N mice. Both
treated and control mice were sensitive to insulin, showing
a time-dependent decrease in blood glucose after insulin
administration (Figure 4(c)). In fact, glimepiride-treated
mice had lower blood glucose at 15 minutes after insulin
injection, indicating that they may be more sensitive to insu-
lin action than untreated mice. We also postulated that an
increase in glycogen storage could account for the increase

in fasting blood glucose observed in glimepiride-treated
mice. We measured glycogen levels in the liver since it is a
primary site of storage and is partially responsible for the
maintenance of blood glucose availability during fasting.
There was a trend toward elevated glycogen in glimepiride-
treated mice, though this did not reach significance
(Figure 4(d), p < 0 2). This increase was mostly observed in
male mice (not shown).

3.3. Reversibility of the Glimepiride Effect.We next wanted to
know if the effect on glucose tolerance and impairment of
insulin secretion was a long-term deficiency, which would
indicate permanent β-cell damage, or would return to
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Figure 3: Glimepiride impairs glucose tolerance in many different strains. We treated a variety of wild-type inbred mice with glimepiride (8
mg/kg/day) or control chow for 2 weeks, then performed a glucose tolerance test. C57Bl/6J (n = 6/control, n = 5/glimepiride), C57Bl/6N
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normal upon removal of the drug. We treated wild-type C3H
mice with glimepiride for two weeks, then switched them to
control diet for three weeks in order to affect a systemic
“wash out” of the drug, after which we performed another
GTT. Wild-type C3H mice treated with glimepiride had
significantly elevated fasting glucose and impaired glucose
tolerance after a two-week treatment (Figures 3, 5(a), and
5(b)). These impairments returned to normal after the drug
was removed (Figures 5(a) and 5(b)), indicating that the
glimepiride-induced changes in glucose tolerance were not
permanent. Similarly, insulin levels in the 3-week post-
treatment mice were not significantly different from control
animals (Figure 5(c)).

3.4. Glimepiride Treatment in Progranulin Knockout Mice.
Progranulin knockout mice (Grn−/−) have been used to
model neurodegenerative diseases, such as frontotemporal
dementia [10, 22, 23]. Progranulin and the subsequently-pro-
duced granulins play distinct roles in inflammation and lyso-
somal function [10, 24–27]. Circulating progranulin has been
positively correlated with diabetes [28–30], with Grn/− mice
protected from high-fat diet-induced diabetes [31]. It is pos-
sible, therefore, that Grn−/− mice would be resistant to
glimepiride-induced changes in glucose control. In order to
test this hypothesis, we treated Grn−/− mice (on a C57Bl/6J
background) with glimepiride (1 or 8mg/kg/day) for two
weeks, then assessed glucose tolerance. Fasting blood glucose
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Figure 4: C57Bl/6N mice have decreased insulin, but normal insulin tolerance in response to glimepiride (8 mg/kg/day) treatment. Mice were
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mice (a). Control-fed mice maintain a constant blood glucose levels during this fast. Glimepiride-fed mice, on the other hand, have increased
blood glucose after the 6-hour fast. We also tested insulin levels before and after fasting. Even in nonfasting animals, glimepiride treatment
decreases circulating insulin levels (b). Insulin decreases in control-fed mice during the fasting period, but does not change in glimepiride-fed
animals. Administration of a glucose bolus stimulated insulin secretion in control-fed animals, but not in glimepiride-fed animals. Black
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was elevated at both doses, and blood glucose levels were
high throughout the assay (Figure 6(a)). Even the lowest
dose tested (1mg/kg/day) impaired glucose tolerance, as
evidenced by the increase in the area under the curve
(Figure 6(b)). Interestingly, serum insulin was significantly
lower in untreated Grn−/− mice, compared with age-
matched wild-type C57Bl/6J mice (Figure 6(c)). There
was a trend toward reduced insulin levels in glimepiride-
treated Grn−/− mice, though this did not reach signifi-
cance. In many cases, insulin levels were below the assay
detection limit in glimepiride-treated Grn−/− mice (note
that these were included in the group mean that was
displayed in the graph). Glimepiride treatment did not
affect glucagon levels (Figure 6(d)).

Sulfonylureas maintain KATP channels in the closed
position by binding to the regulatory sulfonylurea receptor
and promoting insulin secretion. Glimepiride, in particu-
lar, has specificity for both the pancreatic SUR1 and
SUR2, an isoform present in other cell types, such as car-
diac muscle [3]. We next asked whether modulation of
SUR2 could elicit an effect on glucose. In order to test
this, we treated Grn−/− mice with nicorandil, a SUR2 mod-
ulator used clinically to maintain KATP channels in the
open position, thus preventing membrane depolarization.
Unlike glimepiride, nicorandil treatment did not alter

either fasting blood glucose or glucose tolerance
(Figures 6(e) and 6(f)), suggesting that SUR2 agonism has
no effect on glucose tolerance. However, it is still unclear if
the effect of glimepiride is solely due to SUR1 binding or
could involve SUR2 in extrapancreatic tissues.

3.5. Glimepiride Treatment of db/db Mice. Diabetic mice,
such as the obese, insulin-resistant db/db strain [12], are used
extensively in research and are often treated with antidiabetic
drugs, such as sulfonylureas, to mimic the relevant human
clinical course. It is, therefore, of interest to know whether
these drugs are having the intended effect in the employed
models. We, therefore treated db/db mice with glimepiride
(1mg/kg/day) for two weeks. Untreated db/db mice are
already hyperglycemic and glucose intolerant, as compared
to wild-type animals (Figures 1(a), 7(a), and 7(b), [12]). Gli-
mepiride treatment further exacerbated these deficits, even at
the relatively low dose used in this study. Therefore, despite
already existing metabolic derangements, db/dbmice are still
susceptible to the effects of glimepiride treatment.

4. Discussion

Sulfonylureas have been widely used as insulin secretagogues
to reduce hyperglycemia in human diabetic patients, as well
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Figure 5: The effect of glimepiride on glucose tolerance is reversible. C3Hmice were treated with glimepiride (8mg/kg/day) for 2 weeks, after
which glucose tolerance was assessed. The mice were then switched to the control diet for 3 weeks, and the glucose tolerance was reassessed.
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as research animals. In spite of the reported success of these
treatments in humans, at least in regard to glycemic control,
robust translation to rodent models is unclear. In order to
test the impact of sulfonylurea medications in mice, we
treated a variety of strains with the third-generation sulfonyl-
urea glimepiride, using a preparation that was generated for
the purpose of treating human diabetic patients and sourced
from a local pharmacy. We found that, contrary to expecta-
tions, glimepiride exposure was associated with inhibition
of insulin secretion, increased fasting glucose levels, and
an impairment in glucose tolerance. These effects required
more than a day to take effect, with impairment of glucose
tolerance by two weeks, and were seen in all strains tested
including mice that are reportedly resistant to diabetes
(Grn−/− mice [29]) and those with impairments in glycemia
and insulin sensitivity (db/db mice [12]). Indeed, among
the dozens of mice tested, we observed no hypoglycemic epi-
sodes and no reduction in blood glucose after exposure to the
glimepiride. The negative effects of glimepiride on blood glu-
cose levels and glucose tolerance were reversed by several
weeks of “wash-out,” indicating that the induced changes
are not permanent.

The rise in blood glucose during the six-hour fasting
period is an interesting finding and is likely independent of
the decrease in circulating insulin, which does not signifi-
cantly change in glimepiride-treated animals during fasting.
There was no increase in gluconeogenesis in glimepiride-
treated mice, nor did glucagon levels change. There was a
trend toward increased liver glycogen in glimepiride-treated
animals, which may account for the surge in blood glucose.
This would be consistent with published findings [32].

There are several caveats to these data: (1) All treatments
used for glucose tolerance testing were performed in one
vivarium, raising the possibility of a locally specific effect.
We feel that this is unlikely, both due to the consistency
between various strains and due to the fact that we did
observe the decrease in insulin levels in mice treated in a
separate vivarium. (2) Likewise, we used glimepiride from a

single source to be milled into feed. Given the amount of time
over which these experiments were performed (~3 years),
and the number of batches of feed generated (4+), we feel that
source bias is unlikely to be a contributing factor in our
results. In addition, we also performed small pilot experi-
ments where we administered glimepiride in drinking water
(not shown; the glimepiride in these experiments was sourced
from the apothecary at the University of Kentucky). (3)
Although we measured serum insulin in response to fasting
or glucose bolus, as well as during the nonfasting period,
we did not determine if this was due to the downregulation
of insulin production or a loss of secretion itself.

We focused on glimepiride for these studies, both for its
popularity among human diabetics and our interest in
SUR2 modulation specifically. Sulfonylureas have been used
for over half a century to control hyperglycemia, and pre-
scriptions still top 80 million per year in the U.S. [33]. Glime-
piride is the most commonly prescribed sulfonylurea, due in
part to a lower instance of acute hypoglycemic episodes and
reduced cardiovascular complications. Glimepiride is some-
what unique among the sulfonylureas for its dual specificity
for SUR1 and SUR2 [3], raising the possibility of effects in
multiple tissues.

Glimepiride and other sulfonylureas have been used
extensively in rodent studies in order to study their effects
on the pancreas and other organs. These studies vary widely
with regard to the rodent models tested (including both wild
type and diabetic rodents), as well as the dose and the length
of treatment (Table 2). The parameters tested in this study
encompass both the published dose ranges (1–8mg/kg/day)
and treatment length (1 day to 2 weeks). Despite aligning
with reported methods, our results contradict the prevailing
dogma that glimepiride reduces blood glucose by stimulating
insulin secretion. One difference of note is that published
studies predominantly use a once daily administration, by
either oral gavage or intraperitoneal injection. In contrast,
we delivered glimepiride in chow (or drinking water in a lim-
ited number of experiments). Chow administration has the
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Figure 7: Glimepiride impairs glucose tolerance in db/dbmice. We treated the obese, insulin-resistant db/dbmouse with glimepiride (1mg/
kg/day). Though blood glucose was not significantly affected at any of the time points during the GTT (a), there was an overall impairment in
glucose tolerance (b). n = 6/control, n = 5/glimepiride. ∗p ≤ 0 04. Closed circles = control; open circles = glimepiride.

9Journal of Diabetes Research



advantage of minimizing stress to the animals, as well as pro-
viding a route of absorption similar to that of humans ingest-
ing a pill (as opposed to injection). However, the mice eat
multiple times per day and, thus, would receive the indicated
dose spread out over a day, versus a single bolus. This may
have implications on the steady-state level of glimepiride.

The results of this study were quite surprising given the
described mode of sulfonylurea action, leading us to repeat
the experiments with multiple doses of glimepiride and test-
ing six different strains of mice. Glimepiride treatment elic-
ited the same effect on blood glucose in all strains tested,
including both wild type and transgenic animals, leading us
to conclude that this phenomenon is more universal to
rodents. The direct relevance to humans is less clear.

The specific mechanistic pathway(s) underlying these
results are yet to be fully elucidated. Prior studies, primarily
in cell culture, indicate that the first generation sulfonylureas
induce a decrease in both β-cell granularity and insulin secre-
tion, though the mechanism underlying these changes is
unclear [34]. A prior study treating mice with glibenclamide
showed higher blood glucose levels after a week of treatment
[35]. Less is known about the changes induced by glimepiride
specifically, though it is known to have extrapancreatic tar-
gets which may also affect glucose regulation, including adi-
pocytes and the hypothalamus [19]. One recent study
showed that glimepiride treatment alone had no effect on
fasting blood glucose or glucose tolerance in ZDF rats and
postulated that peroxynitrite-induced β-cell damage could
explain this phenomenon, though these investigators did
not test the hypothesis [36]. Peroxynitrite is very reactive
and challenging to study experimentally, but this could be
an avenue for future research.

Though many patients on sulfonylurea mono- or multi-
drug therapy eventually experience β-cell failure and must
be treated with insulin, the clinical course of these drugs
can extend to decades of use [4]. There is some evidence that
this failure may not be due to sulfonylurea treatment itself,

but rather a loss of function due to years of diabetic insult
(hyperglycemia) [37–39]. In addition, some sulfonylureas
are more protective against β-cell failure than others [4].

Our results show that suppression of insulin secretion
occurs in mice after only two weeks of glimepiride treatment.
There are a large number of hypothetical explanations that
could explain our observations. We highlight four possibili-
ties: (1) sequence and/or structural differences in SUR1 that
would affect glimepiride-mediated inhibition of KATP chan-
nels, (2) desensitization of voltage-gated calcium channels
to membrane depolarization, (3) species-specific differences
in pathways involved in insulin biosynthesis and storage,
which would result in a decrease in β-cell insulin granules,
and (4) in this study, we administered glimepiride in chow,
while humans take a pill once a day. This may have repercus-
sions in regard to steady-state levels, versus a spike in circu-
lating levels that decreases before the next dose, causing a
more sustained activation of voltage-gated calcium channels.

5. Conclusions

In conclusion, short-term (two weeks or less) glimepiride
treatment in mice caused significant impairment of insulin
secretion, resulting in profound glucose intolerance. This
includes a substantial increase in fasting blood glucose,
though insulin sensitivity was unimpaired. Whatever the
underlying mechanism(s), it is not entirely clear that it is
independent of what occurs in humans. Our findings suggest
that the use of sulfonylureas as a hypoglycemic agent in mice
should proceed with caution and may have broader implica-
tions about the use of mouse models to study the human
pharmacopeia.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Table 2: Rodent glimepiride treatments in previous publications.

Species Strain Glimepiride (mg/kg/day) Route of administration Length of treatment Blood glucose Reference

Mouse

ApoE−/− 0.1 Oral gavage 8 weeks Decreased [40]

KK-Ay 0.5 Oral gavage 8 weeks Decreased [41]

C57Bl/6 2 Oral gavage 4 weeks Decreased [42]

db/db/C57Bl/6 + STZ 2.5 Oral gavage 6 weeks Decreased [43]

KsJ-db/db 2.5 Oral gavage 4 weeks Decreased [44]

BALB/c 4 i.p. 3 weeks Decreased [45]

Swiss albino + STZ 10 Oral gavage 1 week Decreased [46]

Rat

OLETF 0.05 Chow add-mixture 12 weeks Unchanged [47]

Wistar± STZ 0.09 Oral gavage <1 day Decreased [48]

Wistar 0.1 Drinking water 4 weeks n.d. [32]

Sprague-Dawley 4 Oral gavage 3 days n.d. [49]

Wistar 5 i.p. 2 days Unchanged [50]

ZDF 5 Oral gavage 12 weeks Unchanged [36]

BB 200 Oral gavage 108 days Decreased [51]

Wistar± STZ 200 Oral gavage 3 days/8 weeks Decreased [52]

i.p. = intraperitoneal injection; n.d. = not determined; OLETF =Otsuka Long-Evans Tokushima fatty; STZ = streptozotocin; ZDF = Zucker diabetic fatty.
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