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ABSTRACT OF THESIS 

SPECIAL PROBLEMS IN AGRICULTURAL ECONOMICS 

According to the USDA Economic Research service, farm-level prices are on the decline. 

This decline in prices particularly hurts smaller scale operators with many needing to rely 

on off-farm income in order to ensure they remain in operation. This thesis studies two 

problems of key interest to the Southeast region and the State of Kentucky by 

investigating dairy management practices and the environmental benefits of hemp 

production. As dairy prices have been on the decline and dairy co-ops have tightened 

their restrictions on somatic cell count (SCC) levels, dairy farmers and farm managers 

must decide the best course of action for maintaining milk quality in order to maintain 

their contract and profitability. Maintenance decisions as well as factors like sanitation 

and animal living conditions can all contribute to bulk tank SCC and depending on the 

type of incentives or penalties instituted by the co-op they can have an impact on net farm 

income. The objective of the dairy study is to determine which dairy management 

practices have the largest impact on SCC levels.  

Industrial hemp is produced worldwide. Historically, the major producers of hemp have 

been China, Europe, and Russia. In 2014, the passage of the Farm Bill opened the door to 

the production of Industrial hemp through the development of state pilot programs. Then 

the 2018 Farm Bill removed industrial hemp from the Scheduled Drug list. This has 

further expanded the opportunities and excitement for this crop. The plant’s versatility 

and the variety of products that can be made from it are coming to light. Sustainability is 

one of the key attributes touted concerning industrial hemp. Specifically, in the state of 

Kentucky, it is expected to be a replacement for tobacco and other traditional crops. 

However, how does the crop compare to tobacco production in terms of sustainability? 

The objective of the hemp study is to develop a life cycle analysis on the planting and 

harvesting of hemp and compare its impacts to more traditional crops.  

Keywords: Somatic Cell Count, Dairy Management, Efficiency, Industrial Hemp, Life 

Cycle Analysis 
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Chapter 1: Introduction 

According to the USDA National Agricultural Statistics Service, the number of farms in 

the United States is on the decline. This decline in prices particularly hurts smaller scale 

operators with many needing to rely on off-farm income to ensure they can continue to 

operate their farm. In the time between 2016 and 2017, the United States lost 

approximately 12 thousand farms (NASS, 2018). Additionally, the land in farms 

decreased by 1 million acres despite average farm size increasing. The largest decreases 

for both the number of farms and the total amount of farmland were in the farm sales 

class between $1,000 and $9,999. What this indicates is that in the United States, small 

and midsize farms are declining, and the land is being consolidated into larger farms or 

being lost entirely. Figure 1.1 shows the national trends in the number of farms and the 

average farm size from 2010 to 2017. 

Two ways to help mitigate the downturn of revenues would be to increase the quality of 

output or to diversify the crop portfolio. These strategies are what create the basis for this 

thesis. Chapter 2, “Dairy of a Madman: A Panel Stochastic Efficiency Model of the 

Relationship Between Somatic Cell Count and Dairy Farming Practices,” seeks to 

determine which dairy management practices have a significant impact on influencing 

somatic cell count in Kentucky dairies while chapter 3, “Hemper Tantrum: A Life Cycle 

Analysis on the Environmental Impact of Hemp Fiber,” looks at the life cycle of the 

hemp fiber production process to determine its environmental impact as compared to 

other crops such as hay and tobacco. 
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1.1 The Dairy Problem 

  

Between 2017 and 2018 milk prices declined from $17.70 per cwt to $16.20 per cwt 

(ERS, 2019). Dairy producers within the United States often face price volatility from 

year to year which creates pressure for dairy managers to ensure they are getting the best 

price possible for their product so that their farm can remain profitable. Part of this goal 

is to ensure they are taking advantage of any incentives offered by their dairy processor, 

avoiding any penalties, and ensuring contract continuation. In the Southeast region, dairy 

processors judge dairies and provide price incentives/penalties based on the somatic cell 

count of the milk produced. A trend that has been occurring throughout the Southeast is a 

decrease in milk quality, exhibited by an increase in somatic cell count, and an overall 

decline in the number of dairies. With this in mind, the Southeast Quality Milk Initiative 

seeks to understand the factors that are contributing to these declines and address those 

factors. Using data gathered from SQMI surveys of 27 dairy farms throughout the 

southeast across multiple years, a panel stochastic efficiency model was developed to 

understand which management practices are significant in determining somatic cell 

count.  

 

Two methods of calculating the efficiency frontier, a time-varying decay model with a 

truncated-normal distribution and a true random effects model with a half-normal 

distribution, were compared to determine which management practices produced the 

greatest effect. While this model is typically used with efficiency being defined in terms 

of quantity of output, this study defines efficiency as a lower somatic cell count, or rather 

the quality of output being produced. Both methods of calculating the model found that 
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performing sanitation more frequently within the milking parlor and performing 

maintenance checks and repairs more frequently were significant in producing milk with 

a lower somatic cell count. It was also found that the true random effects model with a 

half-normal distribution is a more accurate representation of Kentucky dairies due to how 

the efficiency score would increase or decrease based on the behaviors of somatic cell 

count for the farm from year to year. This study implies that when dairy managers 

sanitize the milking parlor more frequently and perform maintenance checks and repairs 

more frequently, they improve their odds of producing milk with a lower somatic cell 

count and thus will be more likely to avoid any penalties or to take advantage of any 

bonuses offered by dairy processors.  

 

1.2 The Hemp Problem 

 

Industrial hemp is a crop which can be grown and used to produce a wide array of 

products such as rope, textiles, activated carbon, CBD oil, and food and beverages. 

Industrial hemp has been viewed as not only a viable monetary substitute to more 

traditional crops like tobacco but also a far more environmentally friendly alternative to 

many traditional crops. This eco-friendly reputation is based upon the characteristics of 

the plant like the fast growth, high biomass yield, and its ability to thrive against 

competitors which causes it to require fewer chemical inputs (Alberta Agriculture and 

Forestry, 2017). The passage of the 2018 Farm Bill allows for states to develop a “state 

plan” that regulates the cultivation of the crop. The state plans must include information 

on where in the state hemp is produced, procedures designed to verify hemp produced 

does not contain more than 0.3% THC, procedures for disposal of material which exceeds 
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the 0.3% threshold, and the handling of violations to the 2018 Farm Bill and state plan 

(Mark & Shepherd, 2019). Additionally, in 2015, the total retail sales for hemp products 

of various categories in the United States total $573.3 million (Johnson, 2017). This 

emerging market and the relaxation of regulations has led to an increase in the number of 

industrial hemp acres planted. Between 2017 and 2018, the number of acres of industrial 

hemp planted in the United States increased from 25,713 acres to upwards of 78,000 

acres while the acres in Kentucky increased from 3,271 acres to 6,700 acres (Mark & 

Shepherd, 2019). This is the foundation of the life cycle analysis performed in “Hemper 

Tantrum: A Life Cycle Analysis on the Environmental Impact of Hemp Fiber.”  

 

Using process and raw material data from the various libraries within the SimaPro 

software, University of Kentucky Industrial Hemp budgets, and outside research, a life 

cycle analysis was created to determine the environmental impact of planting and 

harvesting industrial hemp for fiber based on the metrics of global warming potential, 

human toxicity, land occupation, acidification, and freshwater exotoxicity. The process of 

hemp planting was created from information found in the industrial hemp budget as well 

as process data from SimaPro. The hemp planting process was then used as an input for 

the hemp fiber harvest process, which was created similarly to hemp planting, to study 

the overall impact of the entire life cycle from planting to harvest. It was found that the 

largest contributor to the overall environmental impact of industrial hemp fiber 

production was the planting process due to the agricultural machinery used. These results 

were then compared to LCA results on hay, a crop harvested in similar fashion whose 

data came from within SimaPro, and tobacco, a crop which hemp is often discussed as 
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being a substitute. It was found that hemp is a more environmentally friendly crop than 

tobacco and hay in the metrics of global warming potential, acidification, and freshwater 

exotoxicity, hay was superior in human toxicity, and tobacco was superior in land 

occupation.  

1.3 Thesis Objectives  

 

The decline of dairies and the rise of hemp represent two special problems for 

agriculture; and the various disciplines which study it, moving into the future. The 

research found in this thesis represents efforts to understand and address these problems 

with a variety of methodology and areas of focus. This research will help to expand the 

knowledge base on the two subjects of interest through its novelty and the results 

generated. The insights found within the results will help agricultural decision makers at 

the farm level make more informed decisions when determining how best to run their 

operation.  
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1.4 Chapter 1 Tables and Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1:  Number of Farms and Average Farm Size for the United States from 2010-

2017. Source: USDA NASS, 2018 
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Chapter 2: Dairy of a Madman: A Panel Stochastic Efficiency Model of the Relationship 

Between Somatic Cell Count and Dairy Management Practices 

 

2.1 Introduction 

 

Dairy farmers in the United States face a large amount of price volatility from year to 

year and even month to month (Figure 2.1). In the years between the 2012 and 2017 

USDA Census of Agriculture, the number of farms with dairy cows went from 64,098 in 

2012 to 54,599 in 2017. However, the total number of dairy cows increased from 

9,252,272 in 2012 to 9,539,631 in 2017 (USDA, 2019). The state of Kentucky recorded a 

slight increase in the 5 years moving from 1,564 in 2012 to 1,577 in 2017, although the 

number of cows in the state dropped from 71,783 in 2012 to 57,645 in 2017. Despite an 

increase in the census numbers, it has been found that in 2018, the state of Kentucky lost 

approximately 10% of its dairy farms (Estep, 2018). Most of the dairy farms in Kentucky 

are smaller operations with herd sizes of less than 100 (1,182 out of the 1,577 in the 2017 

census) and most of those operations only have herds of one to nine cows (957 of the 

1,577) (USDA, 2019). These smaller operations are the most vulnerable to shifts in 

pricing that occur within milk markets. With these trends in mind, it falls onto the dairy 

managers to determine how best to ensure they will manage this risk so that their 

enterprise remains profitable despite any negative price shifts.  

 

One factor that dairy managers have to take into consideration is their bulk tank SCC 

(BTSCC). BTSCC “refers to the number of white blood cells (primarily macrophages and 

leukocytes), secretory cells, and squamous cells per milliliter of raw milk” (USDA 2012). 

The BTSCC refers to the combined SCC (SCC) of all cows which contributed to the milk 
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in a tank, and is thus impacted by the SCC of milk produced by individual cows. Since 

milk with a high SCC leads to lower shelf life for milk products, many co-ops provide 

incentives and penalties based on the SCC content of the milk farmers provide. The 

question for dairy producers/managers becomes: what can be done in order to ensure 

BTSCC is below a certain level to ensure that any bonuses are taken advantage of and no 

penalties incurred?  

 

The purpose of this study is to describe some of the dairy management decisions that can 

affect SCC to aid dairy producers and managers in the decision making process. The data 

comes from the Southeastern Quality Milk Initiative and is survey data from 27 farms 

throughout the southeast region across multiple years. Surveyors selected these farms 

because they were deemed to be representative of farms across the states in which they 

are located. The variables for this study come from survey questions grouped into four 

main categories: Animal Health, Sanitation, Operations Management, and Machinery 

Maintenance. These variables will be put through a panel stochastic efficiency frontier to 

determine which category constitutes the largest contributor to dairy farm inefficiency 

and SCC. Existing literature offers different views for the validity of each variable in 

keeping SCC low. 

 

2.2 Literature Review 

 

Esguerra et al. (2018) focused on the management practices of Brazilian dairy farms and 

how they relate to SCC. Utilizing survey data and SCC counts the research team studied 
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farms that were both below and above specific SCC benchmarks to determine variation in 

management practices based on factors such as milking machine maintenance checks, 

employee motivation, owner participation, and technical knowledge of herd management 

processes. Their study found that the two largest contributors to SCC differences amongst 

the sample farms were the management practices and machinery upkeep. Their study 

found that the farms in the lower SCC range exhibited stronger management practices 

(such as using gloves, having a more intimate knowledge of milking conditions, and 

ownership being involved in milking for example) as well as more disciplined 

maintenance schedules and procedures (Esguerra et al. 2018). 

 

One crucial factor to remember when determining which dairy management practices to 

implement to decrease SCC is that there is no single factor guaranteed to affect SCC but 

rather a combination of factors. Risvanli et al. (2017) found that on a farm with generally 

favorable management practices (access to water, bedding conditions, cleaning and 

scraping of milking area, proper machinery maintenance, etc.) for most of the year, there 

was still possible variation in SCC data. This could have been caused by factors such as 

the true random effects of moving animals to new housing areas or the season in which 

milking occurred (Risvanli et al. 2017). The Risvanli study helps to put this research into 

perspective in that rather than viewing the results as one factor being the most important; 

it highlights inefficiencies that are occurring and could be targeted in conjunction with 

the other efficient practices to help lower SCC.  
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One common theme in existing literature regarding dairy management practices and the 

SCC is the uses of survey data gathered from farmers across the areas of interest. 

Skrzypek et al. (2004) uses a survey consisting of questions regarding facilities for cows, 

milking practices, and matters of animal health and well-being to determine which factors 

contribute to SCC numbers. The other common theme is that stochastic efficiency 

modelling for this type of data is relatively non-existent, thus creating a case for the 

novelty of this study. Skrzypek’s study alludes to factors such as herd size, the length of 

the dry period, time of the year, and foremilking as being indicators of SCC. Examining 

these factors is one way of studying this phenomenon. However, this study focuses on 

other factors not usually discussed.  

 

Given the volatility in milk prices and increasing quality standards from dairy processors, 

dairy managers must find a way to ensure that they are taking advantage of premiums for 

milk quality and low BTSCC numbers. By focusing on factors like operations 

management, sanitation, machinery maintenance, and animal health, a producer can make 

decisions that will best increase their efficiency and thus their likelihood of receiving a 

premium and avoiding a penalty. The remainder of this paper will focus on the data and 

methods used for the study, the results of the stochastic efficiency model, and the 

implications these results have on decision makers.   

 

2.3 Data  

 

The data for this study comes from the Southeastern Quality Milk Initiative (SQMI, 

2013) and a sample of 27 farms across the Southeast over the years spanning from as 
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early as 2015 to 2018. The survey includes questions regarding demographic information 

(such as farm ID and year), animal health and living conditions, sanitation, operations 

management, and machinery maintenance. Answers to the questions were in words for 

participant response and then numbered for the survey conductor to record the answers 

(Figure 2.2). These numbers are the independent variables for analysis in this study. The 

dependent variable is the SCC recorded in the DHIA database for these farms. Due to the 

survey answers being recorded as one digit values, the natural log of the SCC value is 

taken to detect variability in the data. While taking the natural log actually causes there to 

be less variability with the dependent variable, it is better for comparing how the 

relatively small changes in the independent variables impact the actual SCC. Using the 

SCC as the dependent variable with each entry being multiple hundreds in value causes 

excess noise in the model and inaccuracy in the efficiency score calculation. One issue 

with using the stochastic panel frontier model is that the model considers larger numbers 

to be more efficient than lower numbers. In the case of SCC and milk quality, the 

opposite is true. To address this concern, the log of SCC was converted to a negative 

number and used as the dependent variable for this study (NegLogSCC). Due to data 

limitations, only SCC data from Kentucky were available and used for this study. The 

small dataset creates errors in the results. However, the framework of this study will be 

used for future research, as additional data becomes available.   

 

The survey questions were not all organized in the same format, with some questions 

having larger numerical codes indicating more frequent/intensive practices and attitudes 

while other questions would be scaled the opposite. With this in mind, all survey 
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questions were turned into dummy variables. The dummy process started by coding each 

item response as a variable and coding it with either a 1 or 0 depending on the answer. 

This creates a large number of independent variables with uneven amounts of variables 

depending on how many answer choices a question has. To address this concern, 

questions were further condensed to where ranges of answer choices became the 

variables. These ranges can be described as “more frequent/intensive,” “intermediate 

frequency/intensity,” and “less frequent/intensive.” From there, the answers were further 

condensed to where each question had two dummy variable choices, “more 

frequent/intensive” and “less frequent/intensive.”  

 

By creating dummy variables, the imbalanced survey questions now have uniformity, and 

studying them is more feasible. To create further variability in the data, the questions 

were then grouped into categories which represent the kind of question being asked. The 

values for each category were then summed in order to create the independent variables 

to be put through the model. The groups became animal health more frequently (AHMF), 

animal health less frequently (AHLF), sanitation non-parlor more frequently (SNPMF), 

sanitation non-parlor less frequently (SNPLF), sanitation parlor more frequently (SPMF), 

sanitation parlor less frequently (SPLF), operations management more intensely 

(OMMI), operations management less intensely (OMMLI), milking two times per day 

(Milk2xDay), milking three times per day (Milk3xDay), maintenance more frequent 

(MMF), and maintenance less frequent (MLF). Figure 2.3 shows how the data was input 

for analysis, and table 2.1 shows the descriptions and summary statistics for each 

variable. Table 2.1 includes the summary statistics of the entire dataset except for 
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NegLogSCC, which is only for Kentucky data. It should be noted that except for non-

parlor sanitation decisions and operations management decisions, all variables carry 

larger mean values for the more frequent categories. This could indicate that the more 

frequent variables are significant in determining the somatic cell counts for these farms 

and thus how efficient/inefficient the farms tend to be.  

 

2.4 Methods 

 

Stochastic frontier models are used to study and analyze efficiency in a variety of 

situations. The two pieces of the model are the stochastic production frontier; or the basis 

for how inefficiency is measured, and the error term that shows how far from the frontier 

a firm is operating (Liu, 2006). The output of a firm will be on or below the frontier 

(Aigner et al., 1977) and any deviation from this frontier is an inefficiency (Belotti et al. 

2013). Stochastic frontiers have been used to study the efficiency of a variety of 

industries such as hotel management (Anderson et al., 1999 and Chen, 2007), investment 

strategies (Cebenoyan et al., 1993), and the relationship between information technology 

and production efficiency (Shao & Lin, 2001). Most literature in the agricultural space 

involves research on production outputs (Abdulai & Abdulai 2016 and Zaman et al. 

2018) or the introduction of mechanization to a process (Abass et al. 2017). Within the 

subject of dairy economics, stochastic frontiers have been used to study the economic 

efficiency of New England dairies based on variables such as farm size and education 

(Bravo-Ureta & Reiger, 1991).  
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Most of the traditional stochastic frontier models only take into account cross-sectional 

data while this study uses panel data. Using panel data for a stochastic frontier creates the 

assumption that inefficiencies are a result of firm-specific variables and time (Batesse & 

Coelli, 1995). This ensures that inefficiencies can be attributed to specific firms as 

opposed to the entire population. To put this in the context of this study, the efficiency of 

individual firms can be calculated and observed as opposed to the efficiency of the entire 

dairy market. Stochastic panel frontiers also can be looked at as either a time decay 

model or time-invariant (Belotti et al. 2013). With a large amount of literature concerning 

stochastic efficiency and production output, a study such as this concerning the quality of 

what is being produced fills a largely non-explored avenue for research.  

 

This study uses the STATA software command sfpanel described in “Stochastic frontier 

using STATA” by Belotti et al. (2013) to model the survey data acquired. The 

command’s default model is used, and it is a time-decay model on a truncated-normal 

distribution in line with that of Battese and Coelli (1988). The model developed by 

Battese and Coelli is described by Crisci et al. (2016) as having the form: 

Equation 2.1: Yit=αt + f(x’itb) + vit – uit = αit + f(x’itb) + vit  i= 1,2, …N, 

t=1,2,…T 

For this study, i is the farm in question during time t, x is the category being looked at 

(AHMF, AHLF, SNPMF, SNPLF, SPMF, SPLF, OMMI, OMLI, Milk2xDay, 

Milk3xDay, MMF, and MLF), and b is an unknown vector. The inefficiency is found in 

the term u, and while equation 1 is the general form for a panel data model, different 

models have a different estimation of u. This particular functional form was selected 
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primarily because it varies with time as a dairy’s management decisions would. 

Additionally, a truncated-normal distribution is suitable for the model because of the 

small dataset. The method of calculating the technical inefficiency score used for this 

study was developed by Jondrow et al. (1982) as being: 

Equation 2.2: E (u/ε) 

After running the initial sfpanel command, the predict command will use that equation to 

determine a technical inefficiency score which will then be compared with the other 

farms’ and years’ scores.  

 

In addition to the truncated normal distribution of Battese and Coelli (1988), it is possible 

that a different model and distribution would better fit the data. With this in mind, the 

true random effects model of Greene (2005) will be used with a half-normal distribution. 

The model specification for the true random effects model is:  

Equation 2.3: Yit=αi+x’itβ+εit 

In addition to the true random effects model having a different distribution (half normal 

vs. truncated normal), the model also has a different calculation for the efficiency of the 

farms. The true random effects model uses an efficiency score (as opposed to the 

inefficiency score calculated in the time-varying decay model) calculated by Battese and 

Coelli (1988). The efficiency score is specified as: 

Equation 2.4: E{exp(-u/ε)} 

By using two models to analyze the data, it creates a higher likelihood that the functional 

form which best represents that data will be utilized.  
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Calculating inefficiency based on the characteristics and decisions of a firm allows policy 

makers and researchers to examine better what determines the inefficiencies and make 

decisions and recommendations based on the findings (Liu, 2006). This idea is what 

allows this model to be used for this study. Traditionally, stochastic frontiers are used to 

determine the efficiency of a process using pure output or costs as the measure. It is 

inherently logical that the management decisions of a firm can have an impact on the 

outputs and costs of that firm. Taking this thought a step further, it becomes logical that 

the management decisions of a firm can also impact the quality of what is being 

produced. By using a panel stochastic efficiency frontier, a quality benchmark for lower 

SCC can be created and then the individual dairy farms can be compared to determine 

where their inefficiencies lie. Once it is known what causes the inefficiencies, and thus 

the higher SCC, management suggestions can be made in order to bolster farm efficiency 

and lower SCC. With this in mind, the two model specifications described above will be 

used on a subset of the SQMI data containing dairy farms from the state of Kentucky. 

The use of this small subset is due to data restrictions for the other states involved in the 

survey, but it will provide the foundation for future research on the complete dataset 

when the missing data becomes available.  

 

2.5 Results 

 

To address the collinearity issues which occur when using dummy variables, the model 

will be run as two different sets, the more frequent variable set, and less frequent variable 

set. These two sets will also be observed through the lens of the two different functional 

forms. After accounting for the collinearity, the time-varying decay model was run on the 
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more frequent variables. It was found that the variables of SPMF (engaging in sanitation 

practices more frequently within the milking parlor) and MMF (performing maintenance 

more frequently) were significant at the five percent level in determining the 

NegLogSCC (Table 2.2).  

 

It should also be noted that these variables have positive coefficients, which would 

indicate that an increase in these areas leads to an increase in the NegLogSCC and thus 

an increase in the efficiency of the dairy. This finding makes practical sense because if a 

milking machine is not properly maintained it can become a breeding ground for bacteria 

that will affect milk quality, as well as if the milking parlor and stalls are not cleaned then 

bacteria can grow there as well. After the model was run on the more frequent variables, 

it was run on the less frequent. This model returned no significant variables (Table 2.3).  

 

The two models produced two significant variables between them in SPMF and MMF 

and these findings make practical sense because if a milking machine is not properly 

maintained it can become a breeding ground for bacteria that will affect milk quality, as 

well as if the milking parlor and stalls are not cleaned then bacteria can grow. While the 

findings of significance are helpful, the actual results of interest will be the inefficiency 

scores generated for the farms (which will be compared with those generated by the true 

random effects model later); although these findings also indicate variables which could 

be significant in the true random effects models. 
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The true random effects model was run on the two groups of variables like the time-

varying decay model. The first model run was on the more frequent variable set, and it 

once again called SPMF and MMF significant in determining NegLogSCC (Table 2.4). 

This was not surprising. However, the alternative functional form still called them the 

only significant variables. Additionally, it should be noted that the results of the true 

random effects model and the time-varying decay model were virtually identical except 

for a few hundredths of a value. This could indicate that the truncated-normal and half-

normal distributions fit the data in the same fashion. A true random effects model was 

also run on the less frequent variables, but because it also yielded no significant variables 

and was virtually identical to its time-varying decay counterpart a table containing the 

coefficient, standard error, z, and p-values is being omitted. 

 

For each of the four models ran efficiency scores were calculated to be compared to 

determine which functional form better fits the data. For the time-varying decay models, 

the technical inefficiency is what is calculated so to make comparison easier the 

inefficiency score which was calculated will be subtracted from 1. Due to the fact that the 

less frequent models did not yield any significant results, their efficiency scores will be 

omitted and the focus placed on the differences between the more frequent time-varying 

decay and true random effects models. Table 2.5 shows the farm number, the date of the 

survey, the NegLogSCC, the SCC, the efficiency score for the time-varying decay model 

(score_HFtnorm), and the efficiency score for the true random effects model 

(score_HFtrue random effects).  
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The efficiency scores between the two functional forms are incredibly similar, both in 

relation to the farm scores within a particular functional form and between the two forms 

themselves. This similarity would indicate that the time-varying decay model with a 

truncated-normal distribution or the true random effects half-normal distribution fit the 

population of Kentucky dairies in the same fashion. Another facet of the efficiency score 

results that can be considered alarming is that all values are incredibly high. With every 

value starting with 0.997 and the variation coming from the digits that follow would 

mean that each dairy being surveyed is already over 99% efficient. Since the farms were 

selected for the survey by researchers because they were deemed as representative of the 

dairy farm population for the state, this would imply that the entire state of Kentucky has 

a highly efficient and well-functioning dairy industry. If this were the case, it is highly 

unlikely that 10% of Kentucky dairies would have shut down in 2018 (Estep, 2018). The 

questionable results are a direct result of the small dataset being utilized to test the model. 

 

One other facet to consider in terms of the validity of the results would be how the 

efficiency scores change as SCC (and in the study NegLogSCC) changes. Table 2.6 

shows the farm number, the date of the survey, the SCC, the change in SCC from year to 

year, the efficiency score for the time-varying decay model, the time-varying decay score 

change from year to year, the efficiency score for the true random effects model, and the 

true random effects score change from year to year.  

 

The table shows the actual difference between the two functional forms. SCC differs 

from year to year and either increases or decreases. With this in mind, if SCC were to 
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increase (a positive value in the SccChange column) then the efficiency scores in both 

functional forms should decrease and vice versa. What appears to occur is that no matter 

what actually occurs in the SCC, the efficiency score for the time-varying decay model 

with a truncated-normal distribution decreases from year to year. In contrast, the true 

random effects model with a half-normal distribution behaves as it should. When an 

increase in SCC from the previous year occurs, then the efficiency score decreases while 

a decrease from the previous year’s SCC leads to an increase in efficiency score. This 

finding indicates that the true random effects model with a half-normal distribution is a 

better fit to represent the market of Kentucky dairy farms.  

 

Putting the findings together, the true random effects model with a half-normal 

distribution fits the data better than the time-varying decay model. With this in mind, the 

true random effects model’s findings of more frequent maintenance and more frequent 

sanitation within the milking parlor being the significant drivers of efficiency indicate 

that by making sure equipment is properly checked and maintained and facilities are 

adequately sanitized, the dairy manager can lower the risk of SCC numbers being above 

acceptable levels. By doing so, the farm manager will avoid any penalties and perhaps 

gain an incentive depending on the cost structure of the dairy processor. However, 

Risvali et al. (2017) points out that even when favorable management practices are being 

performed, there can still be variation in the SCC data and other aspects of dairy 

management should not be overlooked. While the efficiency scores are increasing and 

decreasing as SCCs decrease and increase respectively, it cannot be ruled out that there is 

a better functional form to fit the data. Additionally, the incredibly high-efficiency scores 
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are cause for concern and could indicate that there is insufficient data to adequately 

perform the panel stochastic frontier analysis. An increased dataset and different 

functional forms would both be potential avenues for future research opportunities.  

 

2.6 Conclusion 

 

With dairy prices showing a downward trend and being volatile between periods, dairy 

managers have to make management decisions that will ensure the dairy operation 

remains profitable and can continue to operate. One of those decisions is how to ensure 

they are maintaining milk quality as measured by SCC. Many co-ops have incentive and 

penalty structures based on SCC so ensuring that the milk they are producing meets those 

standards to take advantage of incentives and avoid penalties is of major importance to 

the profitability of a dairy operation. While many studies have been done regarding the 

relationship between SCC and management practices, few have been done on dairies in 

the United States, and even fewer have taken the approach of using a panel stochastic 

efficiency model to investigate the relationship. 

 

For this model, the STATA command sfpanel was used to calculate a stochastic frontier 

from panel data using the formulations of Battese and Coelli (1992 and 1988), Jundrow et 

al. (1982), and Greene (2005). The survey questions for this study formed the basis for 

the independent variables and were converted into dummy variables and then condensed 

and combined into topics of more frequency/intensity and less frequency/intensity. The 

independent variables for the study were more frequent animal health practices (AHMF), 

less frequent animal health practices (AHLF), more frequent sanitation in outside of the 



22 
 

milking parlor (SNPMF), less frequent sanitation outside of the milking parlor (SNPLF), 

more frequent sanitation within the milking parlor (SPMF), less frequent sanitation 

within the milking parlor (SPLF), more intense operations management (OMMI), less 

intense operations management (OMLI), milking cows twice daily (Milk2xDay), milking 

cows three times per day (Milk3xDay), more frequent maintenance (MMF), and less 

frequent maintenance (MLF). The dependent variable of SCC was transformed into the 

negative log of SCC (NegLogSCC) to ensure the model considered a lower SCC as being 

more efficient. The data was put through the functional forms of a time-varying decay 

model with a truncated-normal distribution and the true random effects model with a 

half-normal distribution and separated into more frequent variables and less frequent 

variables in order to prevent issues with collinearity. 

 

The four models run across the two functional forms found that the only significant 

variables were more frequent sanitation within the milking parlor and more frequent 

performing of maintenance. Practically speaking, this indicates that sanitation within the 

parlor and maintenance decisions are significant in generating lower SCC values and that 

by investing time into ensuring facilities are properly cleaned, and equipment is 

maintained the dairy manager will lower the risk of incurring a penalty for high SCC 

from the co-op. Additionally, the two functional forms yielded coefficient, standard error, 

z, and p-values that were nearly identical along with efficiency scores that were all 

incredibly high (each score was over 99% efficient) which could be indicative of 

problems with the data. Despite these similarities, the two functional forms differed in 

what is considered the critical finding of this study.  



23 
 

 

As SCC changed from year to year, it would either increase or decrease. In theory, if 

SCC were to grow, then the efficiency score that the model calculated would decrease 

and as SCC decreased, then the efficiency score would increase. The time-varying decay 

model with a truncated-normal distribution would show efficiency scores constantly 

decreasing as the years went on regardless of how SCC changed from year to year. In 

contrast, the true random effects model with a half-normal distribution had efficiency 

scores which would change depending on how the SCC changed, meaning as SCC 

decreased the efficiency score would increase and vice versa. This key difference 

between the two models indicates that the population of Kentucky dairies is better 

represented by a true random effects model with a half-normal distribution.  

 

It should be noted that the model results could have been confounded by outside factors 

such as the stress of moving animals, undiagnosed infections, seasonal factors, or other 

factors that could cause herd distress. Additionally, not all questions from the SQMI 

survey were able to be transformed into dummy variables for the study and thus were 

excluded, which could lead to some omitted variable bias in the model. The number of 

data points was also low, with only nine different farms in the state of Kentucky being 

surveyed. A combination of these factors could be the cause of the abnormally high-

efficiency scores generated by the models. A retooled survey combined with more data 

either from more Kentucky dairies or from dairies in other states would be changes that 

can influence future research. Additionally other functional forms could be the focus of 

future research on the subject. Finally, implementing changes to the current strategy 
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creates costs for dairy producers. In the wake of declining profits, determining which 

costs are integral to maximizing profits and which can be ignored or delayed is vital to 

the management decision. Another avenue for future research would be to examine a cost 

approach to making changes depending upon the current milk quality level and pricing 

structure of processors. 
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2.7 Chapter 2 Tables and Figures 

 

 

 

Figure 2.1: Price of Milk in dollars/cwt from 2010-2019. Note the volatility and 

large decline after 2014. Source: USDA NASS, 2019 

 

 

 

Figure 2.2: An example survey question 

regarding sanitation. Source: SQMI 

 

 

 

Figure 2.3: An example of how the independent variables were input for analysis. The individual questions were turned 

to dummy variables and then condensed into more frequent and less frequent options which were then categorized and 

combined. 

 

 

Farm Date AHMF AHLF SNPMF SNPLF SPMF SPLF OMMI OMLI Milk2xDay Milk3xDay MMF MLF

101 2/13/2016 3 2 1 2 2 0 3 0 1 0 1 0
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Table 2.1: The descriptions and summary statistics for each variable for all states. 

Variable Mean St.Dev. Min Max Description 

Farm     Farm Identifier 

Date     Year Identifier 

NegLogSCC -2.39 0.17 -2.67 -2.12 Dependent variable represent the negative log of SCC *KY data 
only 

AHMF 2.645 0.97 0 4 Independent variable representing survey answers regarding 
matters of Animal Health being done More Frequently  

AHLF 2.34 0.99 1 5 Independent variable representing survey answers regarding 
matters of Animal Health being done Less Frequently 

SNPMF 1.06 1.14 0 3 Independent variable representing survey answers regarding 
matters of Non-Parlor Sanitation being done More Frequently  

SNPLF 1.94 1.14 0 3 Independent variable representing survey answers regarding 
matters of Non-Parlor Sanitation being done Less Frequently  

SPMF 1.31 0.50 0 2 Independent variable representing survey answers regarding 
matters of Parlor Sanitation being done More Frequently  

SPLF 0.69 0.50 0 2 Independent variable representing survey answers regarding 
matters of Parlor Sanitation being done Less Frequently  

OMMI 1.44 0.62 0 3 Independent variable representing survey answers regarding 
matters of Operations Management being done More Intensely  

OMLI 1.56 0.62 0 3 Independent variable representing survey answers regarding 
matters of Operations Management being done Less Intensely  

Milk2xDay 0.50 0.50 0 1 Independent variable representing survey answers regarding 
milking being done twice per day  

Milk3xDay 0.50 0.50 0 1 Independent variable representing survey answers regarding 
milking being done three times per day 

MMF 1.61 1.18 0 3 Independent variable representing survey answers regarding 
matters of Maintenance being done More Frequently  

MLF 1.40 1.20 0 3 Independent variable representing survey answers regarding 
matters of Maintenance being done Less Frequently  

  

Table 2.2: The coefficient, standard error, z, and p-values for the variables of AHMF, SNPMF, SPMF, 

OMMI, Milk3xDay, and MMF in the time-varying decay model with truncated-normal distribution. 

Variable Coefficient Std. Error Z P-Value 

AHMF -0.003 0.028 -0.13 0.897 

SNPMF -0.043 0.034 -1.25 0.213 

SPMF** 0.100 0.049 2.03 0.042 

OMMI 0.055 0.046 1.20 0.231 

Milk3xDay -0.051 0.056 -0.91 0.362 

MMF** 0.122 0.036 3.35 0.001 

*=significant at 10% 

**=significant at 5% 

***=significant at 1% 
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Table 2.3: The coefficient, standard error, z, and p-values for the variables of AHLF, SNPLF, SPLF, 

OMLI, Milk2xDay, and MLF in the time-varying decay model with truncated-normal distribution. 

Variable Coefficient Std. Error Z P-Value 

AHLF 0.015 0.033 0.44 0.658 

SNPLF 0.003 0.037 0.07 0.944 

SPLF -0.065 0.057 -1.14 0.252 

OMLI -0.073 0.056 -1.30 0.195 

Milk2xDay 0.046 0.066 0.70 0.484 

MLF 0.025 0.036 0.69 0.487 

*=significant at 10% 

**=significant at 5% 

***=significant at 1% 

 

 

Table 2.4: The coefficinet, standard error, z, and p-values for the variables of AHMF, SNPMF, 

SPMF, OMMI, Milk3xDay, and MMF in the true random effects model with half-normal 

distribution. 

Variable Coefficient Std. Error Z P-Value 

AHMF -0.004 0.028 -0.13 0.896 

SNPMF -0.043 0.034 -1.24 0.215 

SPMF** 0.100 0.049 2.02 0.043 

OMMI 0.055 0.046 1.19 0.232 

Milk3xDay -0.051 0.056 -0.92 0.359 

MMF** 0.122 0.036 3.38 0.001 

*=significant at 10% 

**=significant at 5% 

***=significant at 1% 
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Table 2.5: The farm number, survey date, NegLogSCC value, SCC value, efficiency score for the time-

varying decay model (score_HFTnorm), and the efficiency score for the true random effects model 

(score_HFtrue random effects). 

Farm Date NegLogSCC SCC Score_HFtnorm Score_HFtrue 
random effects 

101 2/13/2016 -2.16732 147 0.997262 0.9975415 

101 6/13/2017 -2.1271 134 0.997256 0.9975595 

101 8/2/2018 -2.66932 467 0.997253 0.9974982 

102 2/13/2016 -2.21748 165 0.997346 0.9975743 

102 5/9/2017 -2.65418 451 0.997342 0.9975103 

102 8/2/2018 -2.43136 270 0.997337 0.9975543 

103 3/26/2015 -2.40993 257 0.997282 0.9975272 

103 9/17/2016 -2.60423 402 0.997279 0.9974731 

103 5/8/2017 -2.44248 277 0.997278 0.9975425 

103 8/1/2018 -2.20412 160 0.997273 0.997596 

104 2/17/2016 -2.4216 264 0.997276 0.9975365 

104 5/17/2017 -2.11727 131 0.997272 0.9975585 

104 7/17/2018 -2.65514 452 0.99727 0.9975123 

105 2/18/2016 -2.66087 458 0.99712 0.9974911 

105 5/15/2017 -2.38202 241 0.997116 0.9975373 

105 7/12/2018 -2.53529 343 0.997114 0.9975101 

106 2/18/2016 -2.45025 282 0.997266 0.9975306 

106 5/15/2017 -2.33846 218 0.997263 0.9975488 

106 7/12/2018 -2.53275 341 0.997261 0.9975238 

107 2/18/2016 -2.14613 140 0.997287 0.9975553 

107 5/17/2017 -2.22531 168 0.997282 0.9975402 

107 7/26/2018 -2.38917 245 0.99728 0.9975165 

108 3/10/2016 -2.38382 242 0.997239 0.9975355 

108 7/18/2018 -2.44091 276 0.997233 0.9975231 

109 3/11/2016 -2.35793 228 0.99721 0.997527 

109 5/11/2017 -2.20412 160 0.997208 0.9975449 

109 7/18/2018 -2.40824 256 0.997205 0.9975058 
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Table 2.6: The farm number, date of survey, the SCC, the change in SCC from year to year, the efficiency 

score for the time varying-decay model, the time-varying decay score from year to year, the efficiency score 

for the true random effects model, and the true random effects score change from year to year 

farm date SCC SccChange Hftnorm TnormChange 

Hftrue 
random 
effects 

True random 
effectsChange 

101 2/13/2016 147 - 0.997262 - 0.997542 - 

101 6/13/2017 134 -13 0.997256 -5.8E-06 0.99756 1.8E-05 

101 8/2/2018 467 333 0.997253 -3.2E-06 0.997498 -6.13E-05 

102 2/13/2016 165 - 0.997346 - 0.997574 - 

102 5/9/2017 451 286 0.997342 -3.6E-06 0.99751 -6.4E-05 

102 8/2/2018 270 -181 0.997337 -5.1E-06 0.997554 4.4E-05 

103 3/26/2015 257 - 0.997282 - 0.997527 - 

103 9/17/2016 402 145 0.997279 -3.1E-06 0.997473 -5.41E-05 

103 5/8/2017 277 -125 0.997278 -5E-07 0.997543 6.94E-05 

103 8/1/2018 160 -117 0.997273 -5.3E-06 0.997596 5.35E-05 

104 2/17/2016 264 - 0.997276 - 0.997537 - 

104 5/17/2017 131 -133 0.997272 -4.7E-06 0.997559 2.2E-05 

104 7/17/2018 452 321 0.99727 -1.6E-06 0.997512 -4.62E-05 

105 2/18/2016 458 - 0.99712 - 0.997491 - 

105 5/15/2017 241 -217 0.997116 -3.9E-06 0.997537 4.62E-05 

105 7/12/2018 343 102 0.997114 -1.7E-06 0.99751 -2.72E-05 

106 2/18/2016 282 - 0.997266 - 0.997531 - 

106 5/15/2017 218 -64 0.997263 -3.7E-06 0.997549 1.82E-05 

106 7/12/2018 341 123 0.997261 -1.6E-06 0.997524 -2.5E-05 

107 2/18/2016 140 - 0.997287 - 0.997555 - 

107 5/17/2017 168 28 0.997282 -4.2E-06 0.99754 -1.51E-05 

107 7/26/2018 245 77 0.99728 -2.6E-06 0.997517 -2.37E-05 

108 3/10/2016 242 - 0.997239 - 0.997536 - 

108 7/18/2018 276 34 0.997233 -5.9E-06 0.997523 -1.24E-05 

109 3/11/2016 228 - 0.99721 - 0.997527 - 

109 5/11/2017 160 -68 0.997208 -2.1E-06 0.997545 1.79E-05 

109 7/18/2018 256 96 0.997205 -3.3E-06 0.997506 -3.91E-05 
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Chapter 3: Hemper Tantrum: A Life Cycle Analysis on the Environmental Impact of 

Hemp Fiber 

 

3.1 Introduction 

 

With the passage of the Agricultural Improvement Act of 2018 allowing states to develop 

an individual “State Plan” that regulates the production of industrial hemp by farmers 

according to specific guidelines. The passage of the Farm Bill now brings into focus this 

controversial and misunderstood crop. Industrial hemp is a versatile crop which can be 

used to make a variety of products like textiles, rope, CBD oil, food and beverages, and 

activated carbon. Industrial hemp has been viewed as a way to revitalize struggling farms 

through diversification and being a substitute for declining crops like tobacco. Industrial 

hemp has also been touted as a more environmentally friendly crop due to its heartiness 

and lower need for fertilizers and pesticides. The environmental impacts of hemp 

cultivation are the focus of this study.  

 

Life Cycle Analysis (LCA), also referred to as life cycle assessment, is a methodology 

used for determining the environmental impacts of a variety of processes and products. 

With studies ranging from the impact of different packaging materials, office building 

energy use, and the creation of activated carbon with agricultural byproducts, LCA is a 

versatile tool for investigating environmental impacts. While the focus of this study is the 

environmental impact of hemp planting and harvest and the creation of a life cycle 

inventory with the SimaPro software, it is essential to compare these impacts with other 

popular crops. For this purpose, tobacco and hay have been selected to compare their 

environmental impacts. Tobacco is a crop in decline, 180,000 tobacco growing farms in 
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the 1980s to only approximately 10,000 in 2012 (CDC, 2018), and hemp has been 

suggested as a more profitable substitute and thus a natural subject for comparison while 

hay is harvested in the same manner as industrial hemp and thus shares many of the 

processes involved in harvest, creating another natural comparison.  

 

3.2 Literature Review 

 

Historically speaking, hemp was once one of the most highly traded commodities pre-

1830, and today around 30 countries allow their farmers to produce the crop (Pal and 

Lucia, 2019). The most substantial reason for the popularity of hemp is the plant’s ability 

to be used in the production of a large variety of products. As a non-food crop, hemp can 

be used to produce biofuels, construction materials, packaging, and pharmaceutical 

products in addition to being an additive in particular food and beverages (Simpson-

Holley and Law, 2007). This versatility is what makes industrial hemp a viable economic 

alternative for older cash crops like tobacco becoming less popular (Pal and Lucia, 2019). 

Additionally, industrial hemp can be ecologically helpful due to “its low soil 

requirements and traces of cannabinoid content endowing it with antiseptic and fungicide 

properties, which makes them resistant to most diseases, thanks to which the application 

of fertilizers or herbicides is unnecessary” (Brzyski and Fic, 2017). Figure 3.1 shows a 

diagram of the hemp plant and the various uses each part has. This versatility and ease of 

growth are what have propelled hemp back into public discussion and even prompted the 

United States 2018 Farm Bill to allow American farmers to grow the crop.  
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Industrial Hemp is a dioecious (plants can be male or female), short day plant that comes 

in three varieties: oilseed, fiber, and hybrid. While hybrid plants can produce both oilseed 

and fibers, it does not produce as much as its specialized brethren (Purdue, 2015). Hemp 

being dioecious has been known to create problems with harvesting due to the fact the 

two genders have different maturity rates. To combat this, plants have been developed to 

be monoecious diploid which creates the added benefits of higher seed yield, more 

homogeneity in the crops, and easier harvest (Razumova et al., 2016). Known as a bast 

fiber plant, hemp is similar to plants like jute, kenaf, and flax. The interior of the hemp 

stalk is hollow and surrounded by a layer of fiber known as hurd. The hemp plant also 

contains bast fibers in the parenchyma layer. Hemp seeds are small and contain oil, which 

is similar to linseed oils (USDA, 2000). Despite having a variety of uses, in the United 

States, the growth of industrial hemp was prohibited after the 1937 Marijuana Tax Act 

prohibited all varieties of Cannabis plants. This incorrect classification is what has fueled 

misinformation regarding industrial hemp for years and is one of the largest barriers 

facing the expansion of industrial hemp production in the United States (Pal and Lucia, 

2019). As time went on, it was recognized that not all Cannabis plants are created equal, 

and their THC1 content differentiates industrial hemp and marijuana. With this difference 

in mind, varieties of industrial hemp grown must have a THC content of 0.3% or lower 

based on dry weight (Kim and Mark, 2018). Since marijuana is bred for its psychoactive 

qualities, plants carry a larger THC content. Another difference between the two plants is 

how they are grown. Marijuana plants are valued for their leaf and budding and thus 

                                                           
1 Delta-9 Tetrahydrocannabinol, the psychoactive substance found in Cannabis plants  
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require larger row spacing than industrial hemp plants grown for their fiber content 

(USDA, 2000).  

 

Tobacco is a popular cash crop facing decline. This decline has been attributed to factors 

like changing political attitudes regarding tobacco (Brown et al., 1999) and a deeper 

understanding of the health hazards of tobacco use (Cambala et al., 2019). In 2017 the 

World Health Organization conducted an environmental impact study on the growth, 

production, and consumption of tobacco products. This study found that in addition to the 

health consequences of tobacco use, the growth (which utilizes machinery and fertilizers) 

and harvest of tobacco have environmental impacts that should be considered. With this 

environmental impact in mind along with the prevailing theory of hemp being a substitute 

for tobacco, the LCA created for hemp will be compared with the findings of an LCA 

performed on tobacco. Zafeiridou et al. (2018) performed a life cycle analysis which 

sought to determine the environmental impacts of cigarette smoking from cradle-to-grave 

or, in other words, from planting to disposal of smoked cigarettes.  

 

While the entirety of the study by Zafeiridou et al. (2018) is focused on cigarettes, it 

includes enough information on the impacts of the cultivation process to provide a 

comparison between the cultivation of tobacco and the cultivation of hemp. Table 3.1 

contains their results for the farming process of their tobacco study (converted from per 

ton of tobacco to a per kg basis) and the effects it has on global warming potential, 

human toxicity, acidification, freshwater exotoxicity, and land occupation. The largest 



34 
 

environmental impact comes from the land occupation needed to grow tobacco. Further 

discussion and analysis of these results as they compare to those of the hemp LCA will 

occur in the results section of this study. While tobacco is a crop most often discussed 

that hemp is a replacement for, there is another crop that more closely resembles the 

harvesting process of industrial hemp: hay. Much like hemp grown for fiber, hay must be 

swathed, raked, baled, and then stored in a barn or shed (Chartier, 2019). The similarities 

in harvest provide a natural comparison of the environmental impacts between the two 

crops, and thus, an LCA for hay will be performed and compared.  

 

LCAs are often conducted on products or processes to determine the environmental 

impacts they carry. The LCA methodology can be applied to a variety of agricultural and 

non-agricultural topics such as the packaging material for apples (Manteuffel Szoege and 

Sobolewska, 2009), activated carbon production from coconuts (Arena et al., 2015), the 

energy usage of office buildings (Samnang and Jutidamrongphan, 2018), and ethanol 

production from miscanthus (Lask et al., 2019). Since industrial hemp is an emerging 

market, there is very little LCA literature regarding the production of hemp, thus 

illustrating the necessity for this study. LCA is typically done in a fashion referred to as 

“cradle-to-gate” meaning starting with the raw materials that are used for the process up 

to the finished product that will be put in the hands of consumers. Additionally, 

researchers have conducted life cycle analyses in cradle-to-grave fashion or gate-to-

grave, both of which also take into account the disposal of the product after use (Schenck, 

2000).  
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In her book LCA for Mere Mortals: A Primer on Environmental Life Cycle Assessment 

Rita C. Schenck (2000) describes the steps involved in conducting a life cycle 

assessment. The first steps in performing a life cycle analysis are to establish the goal and 

scope of the project. The goal and scope are necessary to ensure all researchers and 

stakeholders are on the same page in terms of what the LCA is supposed to look at. The 

next step is to create a life cycle inventory. The life cycle inventory is the collection of 

processes, raw materials, emissions, byproducts, etc. that are used or occur during the 

production of what is being analyzed. Once the inventory is established, the life cycle 

impact assessment (LCIA) can be performed. The LCIA takes into account all the data 

provided by the inventory and creates indicators for the impact of each raw material and 

process. “An indicator is not a measurement of actual environmental effects. Instead, it is 

a measurement of something that most environmental scientists believe will correlate 

well with the actual effects” (Schenck, 2000). The final step of the LCA is the 

interpretation of results in order to share with the stakeholders of the research.  

3.3 Data 

 

Most of the data from this study came from within the SimaPro software. The software 

contains various databases (referred to as libraries) containing large amounts of 

environmental impact data on different processes and raw materials. The libraries 

included in SimaPro and used for this study were ecoinvent v3, agri-footprint, USLCI, 

ELCD, EU and Danish input-output, industry data 2.0, and Swiss input-output 

(SimaPro.com). Ecoinvent is a life cycle inventory (LCI) database which contains over 

15,000 different datasets for life cycle inventories over a variety of topics from 

agriculture, energy supply, packaging materials, construction materials, transport, 
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biofuels, chemicals, metals, dairy, wood, and waste treatment (SimaPro.com).  Agri-

footprint is an LCI database focused on processes and materials involving agriculture in 

order to perform LCAs centered on agricultural matters. The database includes 

information on land use, water use, land use changes, fertilizers, and soil carbon content 

(SimaPro.com). ELCD is the European Life Cycle Database and includes datasets from 

the chemical and metal industries as well as energy production, transport, and end-of-life 

processes (SimaPro.com). USLCI is the United States Life Cycle Inventory database it 

contains life cycle inventory information on a variety of commonly used materials, 

products, and processes used in the United States (NREL.gov). The EU and Danish input-

output and Swiss input-output databases serve the same purpose for their respective 

countries. The industry data 2.0 database collects data from a variety of industry 

associations, including PlasticsEurope, worldsteel, and European Detergents and 

Surfactants Industries (SimaPro.com).  

 

These databases allow for the processes to be selected and their inputs, outputs, and 

environmental impacts to be measured without the researcher needing to select them 

separately. Despite their depth of knowledge, outside information is still needed for some 

processes. For this study, the hemp processes were created from outside data as well as 

processes contained within the SimaPro software. For the hemp crop process, data on 

inputs came from a combination of the SimaPro library information and the University of 

Kentucky Industrial Hemp Budgets (Shepherd and Mark, 2019). The industrial hemp 

budget gave information on the amount of hemp that would be produced, the fertilizers 

and amounts needed, and the farm machinery required to perform the process of planting 
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and growing the hemp crop. The input values found in the industrial hemp budget were in 

the United States customary units and for input into the SimaPro system had to be 

converted to metric values. From there, the various inputs for the hemp crop were found 

within the collection of SimaPro libraries and the individual inputs of those materials and 

processes were automatically inserted and analyzed based on the amounts entered from 

the industrial hemp budget. 

 

Data for the hay and tobacco comparisons was gathered from outside sources, and the 

processes were not manually designed for this study. Data for the hay impacts comes 

from the SimaPro collection of databases and is qualified as being the average inputs, 

processes, and outputs for alfalfa grass silage produced in the rest of the world (outside of 

Europe) in relation to producing 1kg of hay. The data for the tobacco results comes from 

the study “Cigarette Smoking: An Assessment of Tobacco’s Global Environmental 

Footprint Across Its Entire Supply Chain” by Zafeiridou et al. (2018). Their study covers 

the life cycle of cigarettes, starting with the planting process up through used cigarette 

disposal. However, the information used for the comparison will be the environmental 

impact results they found for the farming process of the life cycle. It should be noted that 

the Zafeiridou et al. (2018) study does not specify whether or not the tobacco is flue-

cured which could bias the results being compared. Additionally, “since very little 

reliable data is available on the illegal and unsustainable logging associated with tobacco 

curing…” the study by Zafeiridou et al. (2018) assumes sustainable logging practices, 

and thus the environmental impacts of deforestation associated with the tobacco 

cultivation and curing processes is minimized.  
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3.4 Methods 

 

In order to conduct the life cycle analysis, the processes involved in hemp cultivation 

were programmed into the SimaPro LCA software. The first process created was the 

planting of hemp seeds, referred to as “Hemp Planting.” The process is based on 

producing one hectare worth of hemp and uses various inputs found within the SimaPro 

libraries and the industrial hemp budget. The first part of the hemp planting process is to 

prepare the soil with a disk harrow. The process for using a disk harrow was taken from 

SimaPro and specified as being for preparation of one hectare of land (Figure 3.2). The 

next process is the actual planting, which is also based on one hectare of land. After the 

hemp is planted, fertilizers can be applied. The fertilizer information comes from the 

industrial hemp budget and has been adjusted to kg. 673kg of lime fertilizer, 56kg of urea 

containing 46% nitrogen, 50kg of potassium fertilizer, and 34kg of phosphorous fertilizer 

make up the fertilizer inputs for the hemp planting process. Table 3.2 shows the inputs 

involved in the hemp planting process. The hemp planting inputs each have their inputs 

and outputs/emissions. However, SimaPro automatically considers those when the 

particular input is selected, and thus, those do not have to be individually entered for 

analysis.  

 

The next process after hemp planting is the hemp fiber harvest. One hectare of planted 

hemp (which is considered an input to the harvest process) will yield approximately 

11,209 kg of hemp fiber. The harvesting process consists first of swathing via windrower 

over the 1 hectare of crop. The windrower both cuts the hemp plants (swathing) and 

arranges the mowed crop into windrows for drying before baling (windrowing). The next 
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phase of the harvest process is to take a hay rake or similar implement and flip the hemp 

windrows to allow for drying on the other side. Because SimaPro does not contain 

information on this step, a second round of the swathing via windrower over the hectare 

will be added. This could skew the results slightly, but ultimately not enough to cause 

concern. The next step is the baling process. The hectare of planted hemp will yield 

approximately 28 round bales worth of hemp fiber for storage. Storage can be done in 

any preexisting space with enough volume to hold the number of bales produced. With 

this in mind, it is assumed that the farmer producing the hemp fiber already has a storage 

area such as a barn or shed suitable for storage of hemp and other crops. Due to the 

storage structure already being there as opposed to needing to be constructed, its 

environmental impact will not be considered because it is not impacting the environment 

in any additional fashion than it already did when it was constructed for a different 

enterprise. Table 3.3 shows the inputs involved in the hemp fiber harvesting process.  

 

For the comparisons between hay and tobacco, outside resources will be used. In the case 

of hay, the SimaPro process for alfalfa grass silage (hay) produced under the standard 

practices of the rest of the world (outside Europe) and its associated inputs and 

outputs/impacts will be used to create the comparison results for hay. For the tobacco 

comparisons, the effects of “Cigarette Smoking: An Assessment of Tobacco’s Global 

Environmental Footprint Across Its Entire Supply Chain” by Zafeiridou et al. (2018) will 

be used as the reference.  
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3.5 Results 

 

The results of the life cycle analysis reveal the environmental impacts involved in 

planting and harvesting hemp fiber. The impacts of interest in this study are the global 

warming potential, human toxicity potential, land occupation, freshwater exotoxicity, and 

acidification. The EPA describes global warming potential as the amount of energy the 

emissions of 1 ton (or in this study, kg) of a gas will absorb over a given period relative 

to the emission of 1 ton (kg for this study) of carbon dioxide (EPA). It is measured in kg 

CO2 equivalent. Human toxicity (which can be viewed as cancerous, non-cancerous, or 

combined) is an index which is calculated to reflect the potential harm of a unit of 

chemicals released into the environment, accounting for both the inherent toxicity of the 

compound and the dosage, and is measured in either kg 1,4-DB eq (as in the Zafeiridou 

study) or Comparative Toxic Units (CTU). This study uses CTU which is defined as 

being “the estimated increase in morbidity in the total human population, per unit mass of 

a chemical emitted” (Usetox). Land occupation discusses the amount of land used for the 

process and the impacts changing the land has and is measured in square-meter-years. 

Acidification potential measures the impacts on soil, groundwater, surface water, 

organisms, ecosystems, and materials that occur when acidifying substances are emitted 

into the air (NZME). Acidification is measured in kg SO2 equivalent. Freshwater 

exotoxicity is the impact on freshwater ecosystems as a result of emissions of toxic 

substances to air, water, and soil (NZME). Freshwater exotoxicity is measured in this 

study by CTU but can also be measured in kg 1,4-DB eq. Table 3.4 shows the results of 

the life cycle analysis for hemp fiber production broken down by the processes involved 

in making 1 kg of hemp fiber.  
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According to the results of the LCA, the hemp planting process is the largest contributor 

to the five impact categories of interest to the study. In terms of the global warming 

potential for the hemp fiber process, hemp planting creates 0.0208 kg CO2 eq when 

producing 1 kg of hemp fiber, just slightly over 50% of the impact category. Figure 3.3 

depicts the results of the impact assessment in a segmented bar graph format. Note that 

the hemp planting process (orange portion) makes up the largest portion of the total 

impact across all categories. Closer examination of the process network of global 

warming potential (Figure 3.4) reveals the reason for this occurrence to be due to the 

existence and contributions of the sub-processes involved in hemp planting and the raw 

materials and processes which go into the manufacture of the fertilizers used. The red 

bars within each node and the thickness of the arrows connecting them serve as visual 

representations of the environmental impact contributed by each process or raw material. 

The cutoff for showing a node within the network is 7% contribution or higher, and thus 

only 20 nodes within the entire 11,618 node network are visible. The network shows the 

interconnectedness of the processes involved in hemp fiber production as well as their 

contribution to the overall global warming potential. Starting from the top and flowing 

down, the harvested hemp fiber makes up 100% of the global warming potential and the 

processes which directly yield the harvested fiber are broken down by their contribution. 

Flowing down further, the separate sub-processes and raw materials for the baling, 

planting, and swathing processes are broken down by their impact on their particular 

primary process. Each raw material or process had a node and then flows to the next node 

which uses it, with some materials or processes flowing to multiple other nodes. This 
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serves to show the interrelatedness of each process as well as some of the raw materials 

which go into making the machines or chemicals required of each process to understand 

the impact a product or process has on the environment. Now the comparison between 

hemp, tobacco, and hay can be made.  

 

Table 3.5 shows the impact assessment results for the three crops of hemp, tobacco, and 

hay. In terms of global warming potential, hemp carries the lowest environmental impact 

of the three crops. This implies that producing one kg of hemp produces less kg CO2 eq 

than does one kg of either tobacco or hay, and producing one kg of hay will produce less 

than one kg of tobacco. Tobacco cannot be directly compared on the basis of human 

toxicity or freshwater exotoxicity due to the results of these impacts found in Zafeiridou 

et al. (2018) being measured in kg 1,4-DB eq while the LCAs performed on hemp and 

hay for this study use comparative toxic units, though hay and hemp can still be 

compared using these categories. Hay has a human toxicity measure of -1.992E-07 

(caused by the non-cancerous measure of human toxicity) which implies it helps to 

absorb some of the harmful amounts human toxicity causing chemicals and creates a 

benefit to humans, thus making it more environmentally friendly in terms of human 

toxicity than hemp. This is most likely due to hay being able to absorb any CO2
 released 

into the air as a result of the planting and harvesting processes. Though in terms of 

freshwater exotoxicity hay has the largest impact of the three crops and hemp has the 

lowest. This is due to the properties of hemp, which make it heartier and less dependent 

on fertilizers or pesticides in comparison to other crops. Hemp also has the lowest 

acidification potential of the three crops examined and the second lowest land 
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occupation. Tobacco was found to have the lowest impact on land occupation, meaning 

that to produce the raw materials needed as well as the crop itself there needs to be less 

transformation of land and other land impacts across years. It is possible that these results 

are skewed due to the assumption made by Zafeiriduo et al. (2018) that all wood was 

sustainably sourced and thus, the impacts of deforestation were minimized.  

 

These comparative results imply that on the whole, hemp is a more environmentally 

friendly plant than either tobacco or hay. This is most likely attributable to the properties 

of hemp which allow it to need less fertilizer and pesticides for growth as opposed to 

other types of plants. Possible factors affecting these results could be incomplete data 

regarding some of the emissions and outputs involved in cultivating hemp, the lack of 

comparable units for human toxicity for tobacco, or conversion errors regarding the 

amount of inputs or outputs examined.  

 

3.6 Conclusion 

 

 With legislation regarding the planting and cultivation of hemp in the United States 

becoming more relaxed, further study on the environmental impacts of planting and 

harvesting hemp is necessary. The three varieties of the crop (one grown for the fiber, 

one grown for the seeds, and one variety acting as a hybrid which can produce both) can 

provide a slew of different products which can be sold to consumers. These include rope, 

CBD oil, textiles, activated carbon, and food and beverages and has been seen as a viable 

alternative to declining staple crops such as tobacco. Additionally, hemp has been 
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discussed as a viable means of diversification to allow for farming enterprises to boost 

farm income. Hemp has also been viewed as a more environmentally friendly crop 

because of the lower fertilizer and pesticide needs than most other crops. This study takes 

a life cycle analysis approach to determine whether this reputation as an eco-friendly 

alternative can be substantiated.  

 

The life cycle analysis (also referred to as life cycle assessment) methodology has been 

employed to study the environmental impacts of different processes or products like 

packaging materials, building energy use, government projects, activated carbon 

production, and ethanol production. LCAs are typically performed as either cradle-to-

gate, meaning beginning with the raw material extraction and going through all the 

processes associated with the creation of a finished product, or cradle-to-grave, going 

beyond the cradle-to-gate analysis and looking at factors such as the distribution of the 

product through consumer use and a disposal scenario. The steps of a life cycle 

assessment are to establish a goal and scope, create the life cycle inventory of the 

processes, raw materials, emissions, byproducts, etc. of what is being analyzed, perform 

the life cycle impact assessment, and finally interpret and share results with stakeholder 

of the research.  

 

The data for this LCA comes from the databases included within the SimaPro life cycle 

analysis software (Ecoinvent v3, Agri-footprint, USLCI, ELCD, EU and Danish input 

output, Industry data 2.0, and Swiss input output), University of Kentucky industrial 
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hemp budgets, and “Cigarette Smoking: An Assessment of Tobacco’s Global 

Environmental Footprint Across Its Entire Supply Chain” by Zafeiridou et al. (2018). The 

life cycle analysis was conducted by creating the processes for planting one hectare of 

hemp and then harvesting the grown hemp for its fiber. The planting process consisted of 

using a disk harrow to prepare the soil, a planter to plant the seeds, and then the use of 

nitrogen, potassium, phosphorous, and lime fertilizers to produce 11,209 kg of hemp 

fiber. The harvesting process consisted of the planting process, utilization of a windrower 

to swath the hemp plants and arrange them into windrows for drying, a second round of 

windrowing to flip the crop over to dry the other side, and then a collection of the fiber 

via baling. The results of the LCA were then compared to the results of an LCA of hay 

(due to the similarities in the harvesting process) contained within the SimaPro software 

and an LCA of tobacco (due to the comparisons drawn between the two crops as 

substitutes) performed by Zafeiridou et al. (2018). The impact categories of interest for 

the study were global warming potential, human toxicity, land occupation, acidification, 

and freshwater exotoxicity.  

 

It was found that the largest contributor to the overall environmental impact of hemp 

fiber production was the planting process. In terms of global warming potential, the 

overall process totaled 0.0411 kg CO2 eq per production of one kg of hemp fiber. Of that 

total, 0.0208 kg CO2 eq, or just over 50%, was attributed to the planting process. This can 

be attributed primarily to the planter machine as well as the preparation of soil via disk 

harrow. The fertilizers had a relatively minuscule impact with only the 46% nitrogen 

solid urea being over the 7% impact cutoff to appear as a node in the process network. 
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When compared against tobacco and hay across the five impact categories, hemp was 

found to have the lowest impact for global warming potential, acidification, and 

freshwater exotoxicity (compared to only to hay). Hay was found to have a positive 

impact on human toxicity (compared only to hemp) which was due to its non-cancerous 

toxicity properties. Lastly tobacco was found to have the lowest impact on the land 

occupation. These findings imply that hemp could be a more eco-friendly alternative to 

conventional crops.   

 

Possible shortcomings to this research could be incomplete data regarding the emissions 

and byproducts/other outputs involved with cultivating hemp, a lack of comparable units 

for the toxicity impact categories for tobacco, or data input errors. Future research would 

include refinement and expansion of the processes included in this model, as well as the 

expansion of the analysis to include a product made from hemp fiber (such as textile 

products or activated carbon) or a comparison between the fiber and seed hemp varieties 

and their impacts. Further research could also tie in monetary benefits/pitfalls to the 

implementation of hemp for an enterprise as well as the environmental impacts or the 

environmental impact of starting a hemp operation from scratch and the increased 

transformation of land that would occur. 
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3.7 Chapter 3 Tables and Figures 

  

 

 

 

 

Table 3.1: The results of the farming portion of the LCA conducted by Zaferidou et al. (2018), which will be 

compared to the results of the hemp LCA conducted in this study. Source: Zafeiridou et al., 2018 

Impact Category Unit Amount 

Global Warming Potential kg CO2 eq 3.49 

Human Toxicity kg 1,4-DB eq 1.19 

Land Occupation m2a 7.04 

Acidification kg SO2 eq 0.0199 

Freshwater Exotoxicity kg 1,4-DB eq 0.0309 

 

 

 Table 3.2: the inputs, their amount, and their unit for the Hemp Planting process 

Input Amount Unit 

Disk Harrow* 1 ha 

Planting* 1 ha 

Urea** 56 kg  

Potassium** 50 kg  

Phosphorous** 34 kg  

Lime** 673 kg  

*=a process included within SimaPro 

**=a raw material included within SimaPro whose amount comes from the industrial hemp 

budget 

 

Table 3.0.3: the inputs, their amount, and their unit for the Hemp Planting process. 

Input Amount Unit 

Disk Harrow* 1 ha 

Planting* 1 ha 

Urea** 56 kg  

Potassium** 50 kg  

Phosphorous** 34 kg  

Lime** 673 kg  

*=a process included within SimaPro 

**=a raw material included within SimaPro whose amount comes from the industrial hemp 

budget 

Table 3.3: The inputs, their amount, and their unit for the Hemp Fiber Harvesting process. 

Input Amount Unit 

Hemp Planting** 1 ha 

Baling* 28 bales 

Swathing/windrowing* x2 1 ha/repetition  

*= a process included within SimaPro 

**= a process created for this study 

 



48 
 

 

 

 

 

 

 

 

 

Table 3.4: The results of the LCA for Hemp Fiber Production broken down by the processes 

involved in creating 1kg of hemp fiber. 

Impact 

Category 

Unit Total Baling Hemp 

Planting 

Swathing & 

windrowing 

x2 

Global 

Warming 

Potential 

kg CO2 eq 0.0411 0.0171 0.0208 0.003199 

 

Human 

Toxicity 

CTU 5.21E-8 1.44E-08 3.18E-08 5.89E-09 

Land 

Occupation 

M2a 0.000743 0.000217 0.000382 0.000143 

Acidification kg SO2 eq 0.000235 9.22E-5 0.00012 2.21E-05 

Freshwater 

Exotoxcitity  

CTU 0.216 0.0781 0.1116 0.021825 

 

 

 

Table 3.5: Impact assessment results for hemp, tobacco, and hay. Tobacco data source: Zafeiriduo et 

al., 2018. 

Impact Category Unit Hemp Tobacco Hay 

Global Warming 

Potential 

kg CO2 eq 0.0411 3.49  0.368 

Human Toxicity kg 1,4-DB eq 5.21E-8 CTU 1.19  -1.922E-07 CTU 

Acidification  kg SO2 eq 0.000743 7.04  0.00387 

Freshwater 

Exotoxicity 

kg 1,4-DB eq 0.000235 CTU 0.0199  0.951 CTU 

Land Occupation M2a 0.216 0.0309 1.74 
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Figure 3.1: A diagram of the parts of a hemp plant 

and the uses for those parts. Source: Simpson-Holley 

and Law, 2007. 

 

 

 

Figure 3.2: An example of the input menu for the Hemp Planting process in SimaPro. 
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Figure 3.3: Results of the impact assessment in segmented bar form. Baling is depicted in light green, hemp 

planting in orange, and the two swathing and windrowing processes in yellow and blue. 
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Figure 3.4: The process network for hemp fiber harvest. 

Thickness of arrows and red bars within nodes indicate 

a larger contribution to the overall environmental 

impact. 

 

 



52 
 

Chapter 4: Conclusion 

 

Farmers in the United States are facing new challenges as time goes on. From declining 

prices to an overall decline in the number of farms, finding ways to improve farm 

productivity is paramount to farm managers to ensure the continued profitability of the 

farm. In addition to profits, producers must ensure that what they are doing will cause as 

little harm to the environment as is possible. These two issues are the drivers of this 

study. With dairies on the decline across the southeast and Kentucky in particular, dairy 

managers must find ways to lower the somatic cell count of the milk they are producing 

to ensure they can get the highest price possible. The panel stochastic efficiency model in 

“Dairy of a Madman: A Panel Stochastic Efficiency Model of the Relationship Between 

Somatic Cell Count and Dairy Farming Practices” seeks to answer the question of which 

dairy management practices have a significant impact on somatic cell count.  

 

Additionally, with the passage of the 2018 Farm Bill allowing for the increased 

production of Industrial Hemp, the environmental impacts of the crop have come under 

scrutiny to truly test the claim of it being an eco-friendly alternative to traditional crops. 

In order to determine hemp’s environmental impact and compare it to traditional crops 

such as hay and tobacco, “Hemper Tantrum: A Life Cycle Analysis on the Environmental 

Impact of Hemp Fiber Production” uses a life cycle analysis model to determine what 

part of the hemp fiber production process contributes the largest environmental impact 

and how the overall process compares to hay and tobacco.  
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“Dairy of a Madman: A Panel Stochastic Efficiency Model of the Relationship Between 

Somatic Cell Count and Dairy Farming Practices” uses dairy management survey data 

collected by the Southeastern Quality Milk Initiative from the same 27 dairy farms 

throughout the southeast across multiple years. With questions spanning multiple topics 

such as animal health, operations management, sanitation, and machinery maintenance, 

the survey data were transformed into dummy variables. The data for Kentucky were 

input into two different panel stochastic efficiency models, a time-varying decay model 

with a truncated-normal distribution and a true random effects model with a half-normal 

distribution, to determine which management decisions impact somatic cell count more 

significantly as well as the efficiency scores of the farms. It was found that performing 

sanitation within the milking parlor more often and performing maintenance checks and 

repairs more often were significant in determining somatic cell count. Based on the 

efficiency scores calculated by the two methods, it was found that the true random effects 

model with a half-normal distribution best fits the Kentucky dairy data.  

 

The implications of this research are that dairy managers should make sure that they are 

correctly sanitizing the milking parlor more frequently and should conduct routine 

maintenance checks and repairs more frequently in addition to their other practices in 

order to ensure that the somatic cell count of the milk taken to co-ops is lower and they 

will avoid penalties. For future research on this topic, a larger dataset should be used with 

the true random effects model with a half-normal distribution as well as investigating 

other ways of calculating a panel stochastic efficiency frontier in order to determine the 

most accurate way of describing the efficiency levels of the farms.  
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“Hemper Tantrum: A Life Cycle Analysis on the Environmental Impact of Hemp Fiber 

Production” uses data from the various databases within the SimaPro software, the 

University of Kentucky industrial hemp budget, and outside research to perform a life 

cycle assessment on the production of industrial hemp fiber. Data on fertilizer and 

cultivation practices was taken from the industrial hemp budget and combined with the 

process information contained within SimaPro to determine the overall environmental 

impact of hemp fiber production as well as the impacts of individual processes and how 

they contributed to the total across the measures of global warming potential, 

acidification, freshwater exotoxicity, human toxicity, and land occupation. It was found 

that the largest contributor to the overall environmental impact of hemp fiber production 

was the planting process. The results were then compared to LCA results on hay and 

tobacco to determine if industrial hemp was a more eco-friendly alternative to the more 

traditional crops. According to the LCA results, industrial hemp carries less global 

warming potential, acidification, and freshwater exotoxicity than the other crops while 

hay and tobacco were superior in human toxicity and tobacco, respectively.  

 

This research implies that hemp is, in fact, a more environmentally friendly crop than 

more traditional ones such as hay and tobacco. Further, most of this impact came from 

the machinery used in planting and was mitigated by hemp’s natural characteristics, 

which cause it to require less fertilizer and pesticides than other crops. Future research on 

the subject would refine the LCA process data as well as expand the model to include the 

manufacture of one of hemp’s various products. Further research could also focus on 
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comparing the environmental impacts of hemp fiber production vs. hemp seed 

production.  

 

As agricultural markets and practices change, producers must be ready to adapt. This 

could entail making changes to dairy management practices to achieve higher milk 

quality or embracing a new plant for its eco-friendly qualities and lower fertilizer 

dependence. As the legislative landscape for both industries continues to shift (with milk 

quality requirements becoming more stringent for producers and the regulations of hemp 

becoming less stringent), producers must keep in mind the costs associated with 

managing a dairy operation and producing hemp. The panel stochastic efficiency model 

of “Dairy of a Madman: A Panel Stochastic Efficiency Model of the Relationship 

Between Somatic Cell Count and Dairy Farming Practices” and the life cycle assessment 

of “Hempter Tantrum: A Life Cycle Analysis on the Environmental Impact of Hemp 

Fiber Production” serve as foundations which can be used to create a management index 

for both industries, which can serve as future avenues of research for both studies, 

particularly in Kentucky where dairies are on the decline, and industrial hemp research is 

on the rise.  
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