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Predicting Mental Conditions Based on “History of Present 
Illness” in Psychiatric Notes with Deep Neural Networks

Tung Trana and Ramakanth Kavulurua,b,*

aDepartment of Computer Science, University of Kentucky, 329 Rose Street, Lexington, KY 
40506, USA

bDivision of Biomedical Informatics, Department of Internal Medicine, University Kentucky, 725 
Rose Street, Lexington, KY 40536, USA

Abstract

Background—Applications of natural language processing to mental health notes are not 

common given the sensitive nature of the associated narratives. The CEGS N-GRID 2016 Shared 

Task in Clinical Natural Language Processing (NLP) changed this scenario by providing the first 

set of neuropsychiatric notes to participants. This study summarizes our efforts and results in 

proposing a novel data use case for this dataset as part of the third track in this shared task.

Objective—We explore the feasibility and effectiveness of predicting a set of common mental 

conditions a patient has based on the short textual description of patient’s history of present illness 

typically occurring in the beginning of a psychiatric initial evaluation note.

Materials and Methods—We clean and process the 1000 records made available through the 

N-GRID clinical NLP task into a key-value dictionary and build a dataset of 986 examples for 

which there is a narrative for history of present illness as well as Yes/No responses with regards to 

presence of specific mental conditions. We propose two independent deep neural network models: 

one based on convolutional neural networks (CNN) and another based on recurrent neural 

networks with hierarchical attention (ReHAN), the latter of which allows for interpretation of 

model decisions. We conduct experiments to compare these methods to each other and to baselines 

based on linear models and named entity recognition (NER).

Results—Our CNN model with optimized thresholding of output probability estimates achieves 

best overall mean micro-F score of 63.144% for 11 common mental conditions with statistically 

significant gains (p < 0.05) over all other models. The ReHAN model with interpretable attention 

mechanism scored 61.904% mean micro-F1 score. Both models’ improvements over baseline 

models (support vector machines and NER) are statistically significant. The ReHAN model 

additionally aids in interpretation of the results by surfacing important words and sentences that 

lead to a particular prediction for each instance.

*Corresponding author. tung.tran@uky.edu (Tung Tran), ramakanth.kavuluru@uky.edu (Ramakanth Kavuluru). 
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Conclusions—Although the history of present illness is a short text segment averaging 300 

words, it is a good predictor for a few conditions such as anxiety, depression, panic disorder, and 

attention deficit hyperactivity disorder. Proposed CNN and RNN models outperform baseline 

approaches and complement each other when evaluating on a per-label basis.

Graphical abstract

Keywords

Psychiatric condition prediction; multi-label text classification; convolutional and recurrent neural 
networks; hierarchical attention networks

1. Introduction

According to the 2014 National Survey on Drug Use and Health, the National Institute of 

Mental Health reports [28] that one in five adults suffer from a mental illness in a given year. 

A February 2011 Robert Wood Johnson Foundation research synthesis report [11] presents 

evidence that the subgroup of people with both mental and medical disorder comorbidities 

are at significant risk for poor quality of care and high costs. Given this, there has been 

major emphasis on identifying connections between mental disorders such as depression and 

anxiety disorders that have high prevalence and other chronic medical conditions including 

cancer, diabetes, and heart disease. Also, most of these analyses have generally focused on 

structured datasets even when natural language processing (NLP) techniques are being 

extensively used to derive insights from clinical notes for many chronic medical conditions. 

Overall, applying NLP techniques to assess mental health disorders has been a largely 

unexplored problem space. The 2016 Centers of Excellence in Genomic Science (CEGS) 

Neuropsychiatric Genome-Scale and RDoC Individualized Domains (N-GRID) NLP 

challenge proposed the first open competition to address this gap. As part of the challenge, a 

dataset of 1000 neuropsychiatric notes, which constitutes the first of its kind, was released to 

the participants.

Novel data use track

Track three of the N-GRID challenge explores research questions and novel use cases of the 

released dataset and is the primary focus of this paper while the first two tasks focus on de-

identification and symptom severity score prediction. Specifically, we propose and 

demonstrate the application of deep neural networks in predicting individual patient mental 

conditions based on the short history of present illness text field of the corresponding note. 

For details about the organizational aspects of the shared task including data collection, 

annotation, and track objectives, please refer to the corresponding overview papers [12, 40].
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Our novel data use-case

The notes provided for the challenge are rich in different types of information including 

demographic variables, histories of violent behavior, substance use, risk factors, and a 

treatment plan. Besides these, two additional fields that are consistently available and 

represented in a uniform manner are

1. “History of present illness and precipitating events”: Averaging 300 words over 

all notes, this short text segment appears as one of the first few headings in a 

typical note describing the initial assessment and observations made by the 

psychiatrist.

2. “Psychiatric review of systems”: This section of the note has a high level 

structure and is composed of a set of questions about the presence of 13 different 

mental conditions and the corresponding Boolean assessments of the 

psychiatrist.

Our novel data use case is to predict the presence of these mental conditions from the second 

field above solely based on the short text narrative from the first field on history of present 

illness. That is, the ground truth for the mental conditions’ presence that we aim to predict is 

based on Yes/No answers to corresponding questions in the psychiatric review portion of the 

note. We believe a model capable of making such predictions with reasonable accuracy has 

several real-world applications. For one, it would make it possible for physicians and other 

healthcare professionals to make quick assessments, based on a relatively small narrative, 

that could lead to early hints of a mental disorder. It can also assist psychiatrists in filling out 

the corresponding structured fields when needed. Furthermore, such a model would make it 

possible to perform automated surveillance of a patient’s ongoing mental condition, which 

can further be accomplished in a large-scale fashion over multiple databases for which 

patient notes are available. In practice, for this shared task, the psychiatric review fields are a 

good choice because unlike most other fields, as indicated earlier, they are consistently 

present in a large majority of notes made available. Given multiple conditions can be present 

for each case, we map the core prediction problem to a multi-label text classification 
instance and solve it using conditional models including deep neural networks. Next, we 

outline the organization of this manuscript.

In Section 2, we give further details about the dataset including specifics of different target 

labels predicted and some preliminary analysis of label correlation. We discuss our main 

methods involving deep neural networks in Section 3. In Section 4, we present the 

experimental setup including model configurations and evaluation measures. We then 

discuss our results and conduct extensive qualitative error analysis in Section 5.

2. Dataset: Labels and their Associations

Under the psychiatric review of systems heading of each note, there are questions pertaining 

to the presence of these thirteen conditions: depression, bipolar disorder, psychosis, general 

anxiety disorder (GAD), panic disorder, anxiety spectrum disorders, obsessive compulsive 

disorders (OCD), obsessive compulsive spectrum disorder (OCSD), attention deficit 

hyperactivity disorder (ADHD), post traumatic stress disorder (PTSD), eating disorders, 
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dementia, and complicated grief. The answers are Boolean Yes/No responses and 

unambiguously indicate the presence/absence of a condition. For dementia, for example, we 

have the question: “Dementia: Has anyone told the patient they are concerned the patient has 

memory problems?” Some conditions are fine-grained in that they distinguish between 

variants of a particular disorder; e.g. for dementia, there exists a separate question (and an 

associated Boolean response label) concerning difficulty learning new information – Does 

the patient have trouble learning new information? To minimize label imbalance issues and 

for simplicity, we collapsed such couplings into a single label whose value is a yes if either 

of the sub-labels (i.e., responses) is positive. We also combined OCD with OCSD and GAD 

with anxiety spectrum disorders into single labels. So there are a total of 11 labels which we 

predict based on the text from the history of present illness field. The final list set of labels 

and their corresponding distribution in the dataset are displayed in Table 1. Given a note can 

have multiple labels assigned to it based on Yes responses to the corresponding condition 

related questions, we note that the proportions do not add up to 100% in the table.

For this effort, we build a dataset composed of 986 of the total 1000 released notes for each 

of which we have the history of present illness section as well as Yes/No labels in the 

psychiatric review of systems. As a pre-processing step, we fixed a few formatting errors in 

the text such as in cases when line-breaks are missing in appropriate places or when present 

in inappropriate places. Next, we generated a key-value pair dictionary from each note by 

matching text segments with certain regular expressions, which were based on our manual 

observation of the note structure. In this process, we also accounted for other concerns 

including some frequent spelling mistakes and structural inconsistencies. Although we could 

have missed some fields, given this particular approach is based on few fields that are almost 

always present and written up in a consistent manner in the notes, we believe this regex 

based pre-processing strategy is effective for our purposes.

We computed the odds ratios (OR) of pair-wise labels and present them in Table 2; this can 

be interpreted as a measure of how strongly two labels are associated. An OR of 1 implies 

that there is no association, while OR < 1 implies that a condition is less likely to be present 

when the other is positive and OR > 1 signals that presence of a condition makes it more 

likely that the other occurs. From the table, it is clear that there is a positive correlation 

among all label pairs, with complicated grief and dementia having an exceptionally high 

correlation. This is an indication that multi-label classification methods that exploit label 

correlations might be more effective than those that treat each label independently.

3. Methods: Deep Neural Networks for Multi-Label Text Classification

Predicting the binary presence (Yes/No) of mental conditions based on the history of present 

illness field can be framed as a multi-label text classification problem where an input 

document needs to be assigned one or more categories from a fixed set [42]. Well known 

examples in biomedicine include assigning diagnosis codes to EMRs [21] and indexing 

biomedical articles with medical subject headings [20]. If there are m labels, traditionally 

this problem is solved by using the binary relevance approach – we form m datasets, one per 

label, of positive and negative examples from the original dataset. Here, an instance is 

considered a negative example if it is not assigned the label at hand even if it is assigned 
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other labels. Next, m binary classifiers are built one per label and at test time, the labels 

corresponding to the classifiers that output a positive prediction are assigned to the test 

instance. Researchers typically use a linear conditional model such as support vector 

machines (SVMs) for text classification for each of the base models in the binary relevance 

approach. Such an approach has been successful but does not account for label correlations 

and might not be the best approach when associations exist. We nevertheless explore 

conventional approaches in our experiments for comparison purposes.

Beyond the traditional approach, there has been notable advancement in the realm of text 

classification by using a deep neural network architecture such as convolutional neural 

networks (CNNs) in conjunction with neural word embeddings [37]. CNNs were originally 

intended and motivated to replicate the visual perception of humans and animals and have 

experienced success in image recognition tasks [23]. A powerful aspect of CNNs is 

translational invariance, which allows them to detect unique contextual features regardless of 

where they appear in the field of vision. This along with the inclusion of the so called 

pooling operation (more later) makes it possible for CNNs to deal with variable-length 

inputs such as text data. Using CNNs along with neural word embeddings has been shown to 

be effective in many NLP tasks (including text classification and relation extraction) since 

they additionally capture syntactic and semantic information [5, 9, 25]. Unlike CNNs, which 

are a feedforward type of network, recurrent neural networks (RNNs) have been successful 

in sequence labeling tasks such as part-of-speech tagging, named entity recognition (NER), 

and machine translation [4, 18] due to their ability to handle arbitrary-length sequential input 

via cyclical connections and some form of internal memory. In the main methods we 

propose in this section, predictions are made on all 11 psychiatric labels simultaneously 

using a single deep neural network model which has the advantage of accounting for label 

correlation to some extent – this is conceptually similar to multi-task learning [8] given the 

task of predicting each label is closely related. This setup is different from the binary 

relevance approach where correlation is ignored altogether.

Next, we introduce two different deep learning based methods that form our core 

methodology to address the problem at hand. In Section 3.1, we present a CNN-based model 

based on a prior approach for text classification as introduced by Yoon Kim [22] and later 

adapted by Rios and Kavuluru [37] for biomedical text classification. We adapt these prior 

efforts suitable for a multi-class (needing selection of exactly one class) scenario to the 

current multi-label situation. CNN models, while exceptional in performance, are not easily 

interpretable. To aid in interpretability, in Section 3.2, we introduce an alternative RNN-

based approach that uses hierarchical attention mechanism [43]; the advantage being that 

such a network is able to learn word-level and sentence-level softmax weights which can be 

visualized and interpreted. We call this the recurrent hierarchical attention network 

(ReHAN) model.

Neural word embeddings

Both our approaches are based on using neural word embeddings, a setup that has been 

shown to be effective for learning tasks in NLP [10]. Word embeddings (e.g., those 

generated by Google Inc.’s Word2Vec program) are dense vector representations that have 
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been shown to capture both semantic and syntactic information. A few recent approaches 

learn word vectors [5, 9, 25] (as elements of ℝd, where d is the dimension) in an 

unsupervised fashion from textual corpora. These dense word vectors obviate the sparsity 

issues inherent to the so called one-hot representations of words that lead to very large 

dimensionality (typically the size of the vocabulary) resulting in further issues in similarity 

computations. Before we proceed ahead, we note that the rest of this section focuses on main 

foundations of deep learning architectures. The detailed experimental setup including 

various hyperparameter settings and model configuration aspects are described in Section 4.

3.1. A CNN Model for Multi-Label Learning

We propose using a deep neural network architecture based on convolutional neural 

networks from our prior work [37] modified to suit this task. The full CNN architecture is 

shown in Figure 1. The input is a document with words w = (w1, w2, ‥, wn) each represented 

by their corresponding index to the vocabulary V. The words are mapped to word vectors via 

an embedding matrix E ∈ ℝ|V|×d to produce a document matrix D ∈ ℝn×d where d is the 

dimension of the word representation vectors. More concisely,

where Ei is the ith row of E. The word embedding matrix can be initialized to random or 

pretrained values using methods identified in the introduction of this section; in either case, 

the word vectors are (further) modified via backward propagation. The central idea in CNNs 

is the so called convolution operation over the document matrix to produce a feature map 

representation using a convolution filter (CF). The convolution operation * is formally 

defined as the sum of the element-wise products of two matrices. That is, for two matrices A 

and B of same dimensions, A * B = Σj Σk Aj,k · Bj,k. With this, a CF is the matrix W ∈ ℝh×d 

that is applied as a convolution to a window of size h over D to produce a feature map v = 

[υ1, …, υn−h+1], such that

where Di:i+h−1 is a window of matrix D spanning from row i to row i + h − 1, W and b ∈ ℝ 
are learned parameters, and f is a non-linear activation function such as the sigmoid or 

hyperbolic tangent function. The goal is to learn multiple CF that can collectively capture 

diverse representations of the same document. Suppose there are k filters, then we produce k 
corresponding feature maps v1, …, vk. We select the most distinctive feature of each feature 

map using a max-over-time pooling operation [10] to produce the final feature vector p̂ ∈ 

ℝk, such that  where .

We can also learn different sets of k CFs for different window sizes h as is typically the 

practice. Choosing a larger h provides more context and thus could be beneficial in 
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improving predictive power but might adversely affect efficiency given the additional time 

needed. We can then take the corresponding feature vector for each window size and 

concatenate them to form the final feature vector. More formally, we can parameterize the 

window sizes as a sequence h1, …, hH of H unique sizes. Suppose p̂hi denotes the feature 

vector produced on k filters with a window size of hi, then the final kH × 1 feature vector is

where ‖ is the vector concatenation operation. The details covered thus far correspond to 

components ① and ② of Figure 1.

The output layer consists of m sigmoid units (one per each of the m target labels) and is fully 

connected to the full feature vector p̂*. The output vector q ∈ ℝm is thus defined as

(1)

where Wq ∈ ℝm×kH is a parameter matrix of the fully connected layer mapping feature 

vectors to output layer, bq ∈ ℝm is the vector of bias terms, and σ(x) is the sigmoid function. 

This forms component ③ of Figure 1.

During training, we optimize the network parameters by minimizing the binary cross 

entropy loss function [27]

(2)

where  are the ground truth 0/1 values and  are model output values for the j-th label and 

i-th instance, and L is the number of training examples. Each sigmoid unit’s [0, 1] output is 

the probability estimate on which predictions are made for the corresponding label. That is, 

an output greater than 0.5 results in a positive prediction for the label. Thus, the final set of 

labels determined as such becomes the predicted set of conditions for the patient.

The network is trained using stochastic gradient descent (SGD) using mini-batches [30] 

approach, in which each training iteration uses only a small sample of the training data. 

Multiple epochs or “passes” over the training data are usually necessary to obtain a good fit. 

The model is prone to overfitting as the number of training epochs increases; in order to 

combat this, we apply the now popular dropout [39] regularization to the feature vector layer 

during the training phase. Given this has been a standard process in deep neural networks, 

we request readers to refer to our prior work [37, Section 3.1] for more specifics on the 

intuition and formal description of this regularization approach and the associated dropout 

parameter.
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3.2. Interpretable Recurrent Hierarchical Attention Networks (ReHANs)

The CNN model from Section 3.1 is effective but not suitable if interpretability is a desired 

feature. Hence, we introduce an alternative model architecture using RNNs in combination 

with Hierarchical Attention Networks (HANs), henceforth called the ReHAN approach, that 

performs competitively with interpretable predictions. The general model we present here is 

based on the architecture by Yang et al. [43], which allows for observation of the 

contributional weights of words and sentences in a document toward the eventual prediction 

using two levels of attention mechanisms [4]. We start out with a general introduction to 

RNNs.

3.2.1. RNNs, BiRNNs, and LSTMs—Unlike feedforward networks like CNNs and 

multi-layer perceptrons, RNNs have cyclical connections and are more suitable for language 

processing tasks where the meaning of a text segment is naturally dependent on what 

occurred in the narrative before it. This aligns closely with how we process language where 

the interpretation of a word is dependent on what occurred before it in the document. This 

recurrent composition of word vectors effectively lets information persist from the history of 

previously seen words. There is typically an input layer, a hidden layer that is connected to 

itself, and an output layer. The hidden layer’s output is fed back to itself at consecutive time 

steps (generally as many times as there are words in the narrative) and the output at any time 

step is generally the recurrent composition of information until that point. Parameter 

optimization is implemented through the so called back propagation through time because of 

the “unfolding” of the cyclical connections in the hidden layer through different time steps. 

For a thorough treatment of RNNs, we encourage the reader to refer to a popular resource by 

Graves [15, Chapter 3].

In the context of RNNs for NLP, the input at each time step is the vector corresponding to 

the next word in the narrative. The output is the context vector that composes word vectors 

that include all previous words and itself using the RNN architecture. Additional details of 

RNNs for NLP applications are available in the detailed primer by Goldberg [14]. The final 

prediction for text classification can be made based on the output at the final time step or 

using some combination of all outputs generated at each step (more in Section 3.2.2).

Bidirectional RNNs: In addition to the default left to right processing of a document, it has 

been shown that running the RNN from right to left over the input text can yield additional 

contextual hints for eventual prediction tasks. This aids in exploiting signals that come from 

the future in interpreting the current word. This is not uncommon in NLP tasks where 

presence of passive voice and other language constructs have valuable information 

pertaining to the context of a word coming later in the text. This gave rise to bi-directional 

RNNs (BiRNNs) which essentially have two separate RNNs, each with its own parameters, 

capturing the context at each position from both directions. The output at each time step is a 

combination of output vectors from both RNNs typically produced via concatenation.

Long short-term memory: A significant issue with traditional RNNs is the problem of 

vanishing gradients [31] where the back propagated errors that are needed to update the 

parameters become extremely small for earlier layers (in the cyclical layer unfolding) due to 
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the application of the familiar chain rule in computing derivatives of expressions involving 

functions of functions. Because of this, learning becomes extremely slow and may be 

ineffective overall. This effect increases the deeper the network is and hence is an issue for 

RNNs given the unfolded cyclical connections are as deep as the lengths of sentences. To 

counter this in RNNs, one popular idea is to use a more involved hidden layer with the so 

called long short-term memory (LSTM) units [13, 16]. Unlike in a traditional RNN, in 

LSTMs, the state representation includes an explicit memory cell access to and use of which 

is controlled through three gates – first to control how much of the next input to incorporate 

in the memory (input gate), second to determine to what extent the current memory is to be 

forgotten (forget gate), and third to limit the extent of information from the current memory 

cell to propagate to the output state (output gate). These three gates control the flow of 

information based on the previous output and cell state via sigmoid outputs ∈ [0, 1]. We 

encourage readers to refer to Graves [15, Chapter 4] and Goldberg [14, Section 11] for 

thorough details of LSTMs and the corresponding derivations of gradients. In this paper, we 

used BiRNNs with LSTM units (simply termed BiLSTMs) in the hidden layer as the main 

neural architecture augmented by attention mechanism.

3.2.2. BiLSTM based ReHANs with Word and Sentence Level Attention—
Interpretability is a major issue for nonlinear predictive models, especially for deep neural 

networks, where it is traded-off for better performance. As such, many recent efforts are 

focusing on deriving interpretable insights from neural models for NLP tasks. Although 

there exist methods that visualize and analyze the inner workings at different network layers 

and in different dimensions [24], high level insights can be derived from attention 
mechanisms. The intuition behind attention based classification in deep learning also arises 

from how we process language. Specifically, in classifying a document, human assessors 

also determine that certain segments are more informative/contributive toward the eventual 

decision than others. In fact, the N-GRID clinical NLP challenge’s main task of predicting 

RDoC positive valence symptom severity scores is introduced in a document where the 

organizers highlight portions of a sample narrative that lead the experts to classify it as a 

SEVERE case. The attention mechanism essentially learns these informativeness weights as 

part of the overall prediction task when the BiLSTM network is augmented in a specific 

manner. Yang et al. [43] offer the first hierarchical attention framework for text classification 

by exploiting such inherent structure – words are composed to form sentences and sentences 

in turn form the document. We implemented their method (originally used for sentiment 

classification) to our current task of multi-label classification. The hierarchical attention 

architecture ReHAN is outlined in Figure 2.

Word-level attention: Let wi,t denote the t-th word of the i-th sentence. For simplicity, we 

assume the length of a sentence is T words. It is important to have fixed sentence size given 

the attention mechanism learns custom weights per word position. Typically, this is 

accomplished by choosing T to be the length of the longest sentence in training data and 

padding a special blank word vector for small sentences and ignoring words after the T-th 

word for longer sentences encountered at test time. The blank word vector is treated like any 

other word vector and is updated during the training phase. Each word is mapped to a word 

vector via an embedding matrix E such that xi,t = Ewi,t as in the case of CNNs. The input is 
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passed through a recurrent layer composed of bi-directional LSTM units, i.e., iterating both 

in the forward and in the backward direction for the input sequence. In order to produce a 

feature vector for each word in the sequence that captures contextual information in both 

directions, we concatenate the outputs of the forward and backward word level LSTM (or 

WLSTM) units at each corresponding word position:

where h⃗i,t, h⃖i,t ∈ ℝkh (the forward or backward LSTM is indicated based on the arrow 

direction for the corresponding symbols), hi,t ∈ ℝ2kh is the concatenated output from both 

LSTMs, and vector length kh is a hyperparameter specific to these LSTM units. Next, we 

outfit an attention mechanism layer on top of the contextualized word features as to produce 

a softmax weight αi,t for each word in the sequence. This is achieved by first producing 

hidden feature vectors ui,t of length ku (another hyperparameter) using the equation

(3)

where Wword ∈ ℝku×2kh and bword ∈ ℝku are parameters. We then learn the per word 

attention weights αi,t via a learnable context position vector aw ∈ ℝku as

(4)

The αi,t weights are used as scalar factors to the original word-wise context vectors such that 

a sentence representation si ∈ ℝ2kh can be obtained as a weighted average:

(5)

The word level LSTMs and the corresponding attention structure correspond to components 

① and ② of Figure 2.

Sentence-level attention: We now apply the same attention mechanism but at the sentence 

level using sentence vectors si, i = 1, …, N, where N is the fixed number of sentences per 

document chosen to be the maximum such value over the training dataset with additional 

blank vector padding as outlined for word level attention. We can produce contextual 

sentence vectors by feeding the sentence embeddings through a bidirectional sentence level 

LSTM (SLSTM) layer as follows:
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where gi ∈ ℝ2kh is the contextual sentence vector for the i-th sentence. We again fit an 

attention network at the sentence level, producing a final vector r̂ ∈ ℝ2kh that represents the 

full document as follows

where the formulation is similar to that for word level attention in eqs. (3) to (5), albeit with 

different parameters. The sentence level LSTMs and the corresponding attention structure 

correspond to components ③ and ④ of our full model in Figure 2.

Just as in eq. (1) in Section 3.1 for CNNs, the m sigmoid outputs are determined by

where Wq̂ ∈ ℝm×2kh and bq̂ ∈ ℝm are parameters. We optimize on the same binary cross 

entropy loss introduced in eq. (2). Dropout regularization is applied at the hidden feature 

layer for both word and sentence-level attention. This forms the final component of Figure 2.

4. Experimental Setup

In this section, we describe specific details of different experiments we conducted including 

baseline methods, model configurations, and evaluation measures. The CNN model was 

built using the Theano library [7] and the ReHAN model was implemented in the 

TensorFlow framework [1].

4.1. Baselines

Given the present illness text field may already contain direct mentions of various 

psychiatric conditions, running a named entity recognition (NER) and concept mapping tool 

on that field is an important baseline for our experiments. We first manually curated a set of 

related named entities (Concept Unique Identifiers (CUIs)) for each target label using the 

UMLS Metathesaurus [29] (2016AA dataset) as a reference by browsing through NLM’s 

online interface. Let this set be Kc for label c where |Kc| is 26 on average based on our 

curation. All such curated CUIs for each condition are presented in a supplementary file for 

this paper. For each instance i, we ran NLM’s MetaMap [3] concept mapping tool and thus 

extracted UMLS concepts Mi from the corresponding text field. We configured the tool to 

run on strict mode using the 2016AA dataset with word sense disambiguation enabled. Next, 

we predicted label c for instance i if and only if |Kc ∩ Mi| > 0.

We also ran our experiments with a straightforward linear support vector machine (SVM) 

based binary model, training one model per label, based on uni/bi-gram features extracted 

from the narrative.
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4.2. CNN Model Configuration

As a reminder, both of our neural network models rely on word vectors to form the input 

document matrix. Given our prior experiences with obtaining superior results with using pre-

trained word vectors [37] as opposed to randomly initialized vectors, we used those 

published by Pyysalo et al. [34] with a dimensionality of 200 induced from PubMed 

abstracts with the word2vec [25] program. In neural network learning, it is common practice 

to initialize parameters with relatively small non-zero values [15, Chapter 3.3] to break 

symmetry and facilitate the learning process [19]. Hence non-word vector parameters were 

heuristically initialized to a random value in [−0.15, 0.15]. We use k = 250 filters for each 

window size of three, four, and five adjacent tokens. For the non-linear activation function, 

we use the recommended rectified linear unit [26]. We set the dropout regularization 

hyperparameter p = 0.5 for the training process. We trained 25 epochs with a mini-batch size 

of five instances. Parameter states are check-pointed on each epoch and the parameter state 

with the best micro-F1 on the validation set is used for evaluation on the test set. The models 

are trained using the RMSProp [41] optimizer, an extension of SGD, with a learning rate of 

0.001. We train ten such CNN models with different random parameter initializations as part 

of an ensemble and predictions are made by averaging the probability estimates output over 

all models. Next, we outline two additional CNN configurations that involve post-processing 

the basic CNN model’s per-class outputs.

CNN with meta-labeler—In this variant, we extend the CNN model with a meta-labeler 
component. We rank labels based on CNN output scores and select the top k̄ labels 

(regardless of whether the corresponding sigmoid output is > 0.5) as the final predictions. k̄ 

is a hyper parameter predicted for each instance based on a linear regression model built 

using uni/bi-gram features. The intuition is that the narrative might also be informative of 

the number of labels to be chosen. This could be important to pick up infrequent labels 

whose sigmoid units may not fire often.

CNN with optimized threshold—This is similar to the meta-labeler approach but 

instead of selecting the top few labels, we choose customized sigmoid unit output thresholds 

for each label separately based on the validation fold. That is, we choose a hyperparameter 

threshold t̄j ∈ [0, 1] for each label j = 1, …, m, such that we predict the label as true if and 

only if qj > t̄j where qj is the sigmoid unit output for the j-th label. The thresholds are learned 

on a validation fold in each cross validation iteration. Both this approach and the meta-

labeler approach are popular in literature and have resulted in performance gains in our 

earlier efforts in multi-label classification [21, 35, 36].

4.3. ReHAN Model Configuration

We used the same pre-trained word vectors as in Section 4.2 and similarly initialize other 

network parameters to a random value in [−0.15, 0.15] for the ReHAN architecture in 

Section 3.2.2. Words that occur less than five times in the dataset were are not only ignored 

in order to reduce vocabulary space (as in Yang et al. [43]) but discarded altogether to 

additionally reduce maximum sequence length and hence overall training time. We introduce 

another form of noise similar to dropout by randomly removing words from the sequence 

and replacing it with the blank word token during training. In doing so, we force the model 
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to cope with a distinctively noisy version of the training set on each epoch. We find that 

introducing this noise by nullifying words at a probability of 0.25 along with a dropout 

hyperparameter of p = 0.7 worked favorably as a form of regularization. Likewise, we found 

that setting the LSTM unit length kh and hidden feature vector length ku to relatively small 

values (kh = ku = 50) worked well for this task. We train at most 25 epochs with a mini-batch 

size of three instances using RMSProp [41], again picking the parameter state checkpoint 

with the best F1 score on the validation to be used for testing and evaluation. Here also we 

ensemble ten ReHAN models and average their outputs to make final predictions.

4.4. Evaluation Measure and Experimental Design

Since the distribution of labels is not balanced, we evaluated the effectiveness of our 

methods using the F1 score metric instead of accuracy. We use label specific precision, 

recall, and F1-score to measure per-label effectiveness of our methods. In order to evaluate 

the overall model performance over all 11 conditions, we used the well known micro-

averaged F1 score [42] which is the harmonic mean of

where TPc, FPc, and FNc are the true positive, false positive, and false negative counts, 

respectively, for class c. We evaluated each method using the 10-fold cross-validation 

technique. Given we also need a validation dataset for hyperparameter tuning, we used eight 

folds for training, one fold for validation, and the remaining one for testing.

5. Main Results and Discussion

Our per-label scores are shown in Table 3 and micro measures are displayed in Table 4. In 

the rest of this section we analyze these results and discuss interpretability aspects of the 

ReHAN model.

5.1. Result Analysis

From Table 3, we find that neural models outperform the baselines for nine out of 11 labels 

in terms of F1 scores. The CNN model is the best performer for five labels, ReHAN model 

for four labels, and SVM for the other two labels. Although relatively short, we find that the 

history of present illness field tends to be a good predictor of some conditions, such as 

depression and anxiety, with F1 scores of 87 and 80 respectively. However, these are also the 

top two most frequent labels in our list (depression and anxiety occur in 77% and 68% of all 

records, respectively). The ReHAN approach exhibits high recall across almost all labels as 

observed from Table 3. We see that the CNN/Thresholding and ReHAN approaches 

complement each other very well with CNN/Thresholding being the best model for 

predicting bipolar disorders, depression, eating disorders, and OCD/OCSD while ReHAN is 

the decisive choice for predicting ADHD, dementia, complicated grief, and panic disorder.

From the per-label results we conjecture that it is possible to improve on these results by 

either (1) combining the RNN and CNN models at the architectural level or (2) keeping the 
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two models separate and delegating label prediction to the model that exhibits the best 

results for that particular label. In any case, the ReHAN approach would be the ideal choice 

under circumstances that require fewer false negatives (better recall). Such situations are not 

uncommon especially in medicine when it is best to “err on the side of caution”. Conversely, 

the NER approach exhibits high precision overall but very low recall (nearly half that of the 

ReHAN model), which can be attributed to the fact that it is looking for presence of very 

specific terms in the text with little inference. Nevertheless, it does very well in predicting 

depression since depression is more likely to be explicitly discussed in text. After depression 

and anxiety, we notice F1 scores over 60 for ADHD and panic disorder.

According to the results in Table 4, the CNN model with output score thresholding works 

best overall with a mean micro-averaged F1 score of 63.144, offering good balance of 

precision and recall. The base CNN model comes in at second in terms of mean micro F1 

score. The last column shows 95% confidence intervals around the mean F1 score computed 

using 40 repeated experiments using different shuffles of our dataset. We performed pair-

wise comparisons between different models using the F1 scores from these forty train-test 

splits with the paired t-test approach. All our deep net models except for the CNN meta-

labeler model had statistically significant (p < 0.05) improvements over the linear SVM 

model. We also found that the CNN model with thresholding showed statistically significant 

(p < 0.05) improvements over all other models in Table 4.

When evaluated based on the F2 measure (which gives more importance to recall), we found 

that the ReHAN outperforms all other models. This is not surprising given we noticed that 

its recall gains are statistically significant (p < 0.05) in comparison with all other models. 

The CNN with meta-labeler performs poorly even when compared to the base CNN model 

and this is likely because the former is underestimating the label count and making very 

precise predictions at the expense of recall. To evaluate the importance of using pre-trained 

word embeddings instead of randomly initialized embeddings, we took our model with the 

best mean performance, the CNN with thresholding, and experimented with it using 

randomly initialized word vectors. The mean F1 score went down by more than 1% (last two 

rows of Table 4) and this dip was found to be statistically significant (p < 0.05). Hence, it is 

clear that pre-trained embeddings would be helpful for this task based on this dataset.

These are our preliminary results with a 986 instance dataset and we believe the 

performances will improve with larger datasets; as we do not need any hand labeling for this 

task, adding more records that are curated as part of routine patient care should be feasible in 

general with appropriate IRB protocols.

5.2. Interpretability and Error Analysis

In Section 3.2 we introduced the ReHAN model that employs hierarchical attention 

mechanisms. Such a model is able to learn to recognize the importance of words and 

sentences based on context as it pertains to the task. Specifically, once a test instance is 

passed through the model, the weights that are generated for different words and sentences 

at runtime can be visualized and interpreted in order to assess how and why the model made 

a particular prediction for that instance. This in turn can help the physician make informed 

final decisions and can be a complementary tool that can help expedite tasks and maintain 
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quality control in a clinical setting. Following the trend established in Yang et al. [43], we 

scale the weight of each word by the square root of its parent sentence weight and use 

 as the word weight for visualization so as to emphasize words in very important 

sentences while at the same time granting visibility to important words in less important 

sentences.

In Figure 3a, we show a nuanced true positive instance for depression and anxiety. Only a 

few segments of the full note are shown with all private health information altered. Although 

no direct usage of the word depression or its derivatives occur in this narrative, ReHAN is 

still able to correctly classify based on several highlighted phrases including “feeling down 

over the past several months” which is directly related to depression based on the questions 

in the note. Similarly, although the word anxiety is not directly mentioned, highlighted 

phrases such as “feeling worried about career options”, and “losing enjoyment” are directly 

indicative of anxiety based on the questions for anxiety in the psychiatric review of systems. 

Even though the word PTSD is present in the note, ReHAN correctly classified it as a 

negative case for it given the semantics of the note around the word clearly indicate the 

psychiatrist not leaning toward such an assessment based on the PCL score. In Figure 3b, we 

see a false positive for anxiety. However, we see several strong indications via highlighted 

phrases such as “potential anxiety issues”, “experiencing anxiety with the move”, and “short 

lived anxiety”, all of which seem to indicate that this could be a potential error in the ground 

truth annotation of this note. That is, we believe this surfaces a potential quality control issue 

and a possible missed diagnosis. These examples demonstrate the power of hierarchical 

attention models in producing instance specific insights into the prediction process.

In order to identify ambiguous words that could be sources of difficulty for the model, we 

looked at the top ranking words for both correct (FPs and TNs) and incorrect (FPs and FNs) 

predictions for each class. The word-level attention weights are scaled by sentence-level 

attention weights to better represent its ranking for a document instance given the 

hierarchical nature of the model. If a word ranks among top five for an instance that is a true 

positive for some class c, we add it to the set . We do the same for FPs, FNs, and TNs by 

adding top weighted terms in corresponding instances to , and  respectively. 

We examine the overlap of high ranking terms for TP and FP examples for each label by 

computing . The terms in these intersections are ambiguous in that their presence 

is deemed important by the model but reality informs that their presence alone may not be 

enough to arrive at a positive decision. Similarly we also determine  for each 

label c. We present some of the more interesting overlapping terms resulting from this 

experiment in Table 5. We note that there are no overlaps between top five terms for TN and 

FN instances for anxiety, depression, and panic disorder. Unsurprisingly, these are also the 

top three labels for which our model performs relatively well (especially with high recall), 

which may be an indication that there is less semantic ambiguity when making predictions 

on these labels. We believe these terms may need special handling potentially in a post-

processing setup to refine model decisions.

Tran and Kavuluru Page 15

J Biomed Inform. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Related Work and Limitations

Although the dataset used in our study represents the first of its kind released to all 

participants in a shared task setting, a few earlier efforts already used psychiatric notes in 

interesting ways.

NLP applications in psychiatry

Almost all papers in our literature review that applied NLP methods to psychiatric notes are 

from the past decade. Rumshisky et al. [38] predict early readmits (within 30 days) to 

inpatient psychiatric units through topic models built with discharge summaries. Jackson et 

al. [17] identify over 40 key symptoms (e.g., aggression, apathy, irritability, and stupor) of 

severe mental illness based on discharge summaries from nearly 8000 patients visiting a UK 

based mental healthcare provider using SVM models. Perlis et al. [32] provide results of one 

of the first text mining applications of psychiatric notes where they apply logistic regression 

models (with LASSO regularization) and show that combining information from 

unstructured notes with coded information results in major gains in predicting patient mood 

state when compared with using coded information alone. For additional examples of NLP 

applications in psychiatry, we refer the reader to this detailed literature review by Abbe et al. 

[2]. There is also a quickly growing body of literature detailing machine learned models to 

predict mental health status based on social media data. For a detailed analysis of the current 

state-of-the-art in this emerging domain, readers are encouraged to refer to the deep learning 

architecture by Benton et al. [6]. An important related effort by Pestian et al. [33] involves 

identifying emotions discussed in suicide notes.

Limitations of our study

An important caveat of our work is that concept mapping based approach through MetaMap 

is a weak baseline that relies on catching only explicit direct mentions of conditions in the 

notes and does not go for any prediction/inference. As such, it is expected to perform poorly 

as a baseline. In fact, its recall in our task is almost half that of the recall achieved by our 

best model. This method may simply be capturing those conditions that are the primary 

reasons for the current visit (and hence directly mentioned) but are nevertheless assessed as 

part of the psychiatric review of systems, thus showing up in our 11 labels. The SVM model 

is a stronger baseline and we demonstrated that except the CNN+Meta-labeler model, all our 

deep net models outperform it.

We would like to clarify that our prediction of the 11 conditions in this study is based solely 

on the training ground truth labels obtained from the Yes/No responses to the condition-

specific questions as explained earlier in Section 2. In this sense, these may not be directly 

used in medical practice to arrive at a clinical diagnosis given such diagnoses are typically 

made using more exhaustive resources such as the Diagnostic and Statistical Manual of 

Mental Disorders (DSM-5) published by the American Psychiatric Association. 

Nevertheless, our predictions can be treated as signals that warrant further examination of 

the patient’s case. In this preliminary effort, we have not exploited label correlations. 

Accounting for such correlations and fine-tuning individual per-label classifiers may lead to 

further improvements overall.
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7. Conclusion

In this paper, we demonstrated that the short history of present illness segment in a 

psychiatric evaluation note can be used as a good predictor for a few psychiatric conditions. 

We introduced models based on CNNs and RNNs and compared them to baseline models. 

We showed that CNNs had superior performance on average while RNNs with attention 

networks are more suitable when interpretability is desired. We found that the CNN model 

with output score thresholding results in statistically significant improvements over all other 

models. However, our efforts in employing RNNs to address the problem are preliminary. 

We believe there is unexplored potential in using attention mechanisms for this particular 

problem and dataset based on how well the RNN and CNN models complement each other 

on a per-label evaluation. The next focus of our research will be to improve on performance 

while retaining interpretability, possibly using CNNs in conjunction with attention 

mechanisms.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

Psychiatric conditions are predicted based on the “history of present illness” text 

field

Deep neural networks resulted in a 3% improvement in micro F-score over linear 

models

Recurrent neural networks (RNNs) with attention helped in model interpretation

CNNs and RNNs complemented each other in per-condition evaluations
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Figure 1. 
CNN model architecture for multi-label text classification
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Figure 2. 
BiLSTM hierarchical attention network architecture for multi-label classification
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Figure 3. 
ReHAN based visualization of word and sentence weights for interpretability
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Table 1

Distribution of labels in the N-GRID dataset

Condition Label Occurrence Proportion

ADHD 41%

Anxiety 68%

Bipolar 33%

Dementia 27%

Depression 77%

Eating Disorder 31%

Grief 27%

OCD/OCSD 34%

Panic 47%

Psychosis 25%

PTSD 38%
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Table 4

Results comparing overall effectiveness of our methods

Micro-P (%) Micro-R (%) Micro-F (%)

NER 69.500 34.400 46.000

SVM 63.863 56.423 59.787 ± 0.583

CNN 65.386 60.789 62.843 ± 0.704

CNN+Meta-Labeler 67.029 53.314 59.276 ± 0.657

ReHAN 59.478 65.184 61.904 ± 0.946

CNN+Thresholding 65.629 61.115 63.144 ± 0.709

CNN+Thresholding+RandInit 64.857 59.641 62.000 ± 0.941
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Table 5

Ambiguous but heavily weighted terms leading to FPs and FNs. Other commons terms in these lists that were 

omitted to avoid redundancy are: depressive, depressed, anxiety, manic, hypomanic, bipolar, panic, psychotic, 

and psychotherapy.

Label Intersection of top ranking terms for TPs and FPs Intersection of top ranking terms for TNs and FNs

ADHD medication, mental, weight, obsessive, attacks, emotional emotional, down, feelings

Anxiety harm, sexual, mood, angry, nightmares, concerns, stress ∅

Bipolar eating, weight, disorder, mania, generalized, anger harm, mental, sexual, mood, dose, violence

Dementia disordered, weight, anger mood, agoraphobia, driving, crying, abusing, outbursts

Depression crying, emotionally, insomnia, nightmares, dose, violence ∅

Eating Disorder violence, years, medication, anger past, insomnia, heroin, years, stress, attacks

Grief disordered, weight, spring, problems, anger issues, mood, crying, experience, feelings, heroin, stress

OCD/OCSD harm, medication, disordered, years, anger driving, mood, emotionally, feelings, generalized, experienced

Panic medication, weight, anger, children, nightmares, obsessive ∅

Psychosis eating, disordered, weight, years, disorder house, anger, children, issues, mood, angry, crying, pain

PTSD program, harm, spring, medication, disorder, nightmares down, anger, dose, conflict, years, wife, stress, past, behavior
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