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Abstract

Alterations in the lumbo-pelvic coordination denote changes in neuromuscular control of trunk 

motion as well as load sharing between passive and active tissues in the lower back. Differences in 

timing and magnitude aspects of lumbo-pelvic coordination between patients with chronic low 

back pain (LBP) and asymptomatic individuals have been reported; yet, the literature on lumbo-

pelvic coordination in patients with acute LBP is scant. A case-control study was conducted to 

explore the differences in timing and magnitude aspects of lumbo-pelvic coordination between 

females with (n=19) and without (n=19) acute LBP. Participants in each group completed one 

experimental session wherein they performed trunk forward bending and backward return at 

preferred and fast paces. The amount of lumbar contribution to trunk motion (as the magnitude 

aspect) as well as the mean absolute relative phase (MARP) and deviation phase (DP) between 

thoracic and pelvic rotations (as the timing aspect) of lumbo-pelvic coordination were calculated. 

The lumbar contribution to trunk motion in the 2nd and the 3rd quarters of both forward bending 

and backward return phases was significantly smaller in the patient than the control group. The 

MARP and the DP were smaller in the patient vs. the control group during entire motion. The 

reduced lumbar contribution to trunk motion as well as the more in-phase and less variable lumbo-

pelvic coordination in patients with acute LBP compared to the asymptomatic controls is likely the 

result of a neuromuscular adaptation to reduce painful deformation and to protect injured lower 

back tissues.

*Correspondence to: F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, 514E Robotic and 
Manufacturing Building, Lexington, KY 40506. Tel.: +859 257 1379; fax: +859 257 1856. babak.bazrgari@uky.edu. 
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INTRODUCTION

Lumbo-pelvic coordination during trunk forward bending and backward return is often 

assessed by clinicians to better identify biomechanical abnormalities in patients with low 

back pain (LBP) (Esola et al., 1996; Hestœk and Leboeuf-Yde, 2000; Whittaker, 2007). 

Alterations in lumbo-pelvic coordination denote changes in neuromuscular control of trunk 

motion as well as changes in the load sharing between passive and active components of the 

lower back (Davis and Jorgensen, 2005; Davis et al., 1965; Farfan, 1975; Hashemirad et al., 

2010). Both neuromuscular control and load sharing have been recognized to play a role in 

LBP development (Abouhossein et al., 2011; Dubois et al., 2011; Hashemirad et al., 2009; 

Leinonen, 2003; Panjabi, 2003; van Dieën and Nussbaum, 2000). The assessment of lumbo-

pelvic coordination may simply involve evaluation of the relative contributions of lumbar 

flexion and pelvic rotation to trunk motion at the end range of forward bending or may 

include more in-depth evaluation of timing and magnitude of such relative contributions 

throughout the course of motion (Kim et al., 2013; Lariviere et al., 2000; Mokhtarinia et al., 

2016; Pries et al., 2015; Silfies et al., 2009).

In asymptomatic individuals, the lumbar contribution to forward bending has been reported 

to be dominant in the early stage of trunk motion, whereas pelvis contribution increases 

toward the end of motion and is dominant at the late stage of motion (Esola et al., 1996; Lee 

and Wong, 2002; Pal et al., 2007; Tafazzol et al., 2014; Vazirian et al., 2016a; Vazirian et al., 

2017; Vazirian et al., 2016b). Conversely, backward return starts with a small lumbar 

contribution that gradually increases toward the end of motion (Granata and Sanford, 2000; 

Lee and Wong, 2002; McClure et al., 1997; Pal et al., 2007). In terms of timing of motion, it 

has been reported that in forward bending, lumbar motion tends to start sooner than pelvic 

motion and lumbar motion remains ahead of pelvic motion throughout the forward bending. 

In the backward return lumbar motion remains behind pelvic motion (Pal et al., 2007; 

Thomas and Gibson, 2007). Compared to asymptomatic individuals, lumbo-pelvic 

coordination in patients with LBP is generally more in-phase and less variable and involves 

smaller lumbar contribution to the trunk motion (Mokhtarinia et al., 2016; Seay et al., 2011; 

Selles et al., 2001). There are, however, some exceptions to such general trend of observed 

differences in the literature which could be due to heterogeneity of LBP (e.g., different 

subtypes of LBP), differences in patient’s personal characteristics, and difference in 

performing forward bending and backward return (e.g., pace of task, presence of load, etc.) 

(Granata and Sanford, 2000; Kim et al., 2013; Silfies et al., 2009; Van Wingerden et al., 

2008; Vazirian et al., 2016b). Kim et al. (2013), for instance, observed larger lumbar 

contribution to the trunk motion in a subgroup of patient with LBP who were identified to 

have “lumbar flexion with rotation syndrome”. Silfies et al. (2009) reported a less in-phase 

and more variable lumbo-pelvic coordination in patients with LBP compared to 

asymptomatic controls under a reaching task. Despite considerable research related to 

Shojaei et al. Page 2

J Biomech. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lumbo-pelvic coordination, most of prior studies included patients with chronic LBP and it 

is not clear whether their findings can be generalized to include also patients with acute LBP. 

Due to the simplicity of the assessment, an evaluation of lumbo-pelvic coordination in 

clinical practice could prove useful to identify biomechanical etiologies for LBP and to 

direct patient treatment; thus a further understanding of this construct in acute LBP is 

needed.

Authors of the present study have recently reported the differences in lumbo-pelvic 

coordination between patients with acute LBP and asymptomatic controls by calculation of 

the relative contributions of lumbar and pelvis to trunk motion at the end point of forward 

bending. Compared to asymptomatic controls, patients with LBP implemented smaller 

lumbar flexion and larger pelvic rotation when bending from standing posture to the end 

point of forward bending. These results clearly distinguished patients from asymptomatic 

controls in discrete end points, however, they don’t offer any information related to potential 

differences in lumbo-pelvic coordination throughout the trunk forward bending and 

backward motion. Further characterization of lumbo-pelvic coordination throughout the 

entire task cycle could provide more in-depth information about the impact of acute LBP on 

timing and magnitude aspects of lumbo-pelvic coordination (Mokhtarinia et al., 2016; Pal et 

al., 2007; Selles et al., 2001; Thomas and Gibson, 2007; Vazirian et al., 2016b). In other 

words, potential biomechanical abnormalities in the lower back of patients with LBP, 

particularly due to neuromuscular impairments, could be better identified by assessment of 

lumbo-pelvic coordination throughout the entire task. Therefore, the objective of this study 

was to investigate differences in timing and magnitude aspects of lumbo-pelvic coordination 

between patients with acute LBP and asymptomatic controls during forward bending and 

backward return. Lumbar contribution to the trunk rotation was investigated at each quartile 

of forward bending and backward return as the magnitude aspect of lumbo-pelvic 

coordination. The timing aspect of lumbo-pelvic coordination was investigated using the 

continuous relative phase method (Lamb and Stöckl, 2014). We hypothesized that patients 

with acute LBP would display a more in-phase and less variable lumbo-pelvic coordination 

that involves a reduced lumbar contribution to the trunk motion compared to the 

asymptomatic controls during the entire period of the forward bending and backward return 

task.

METHODS

Study Design and Participants

A case-control study design was used wherein 19 female patients (aged 40–70 years old) 

with acute LBP (health care provider-diagnosed LBP ≤ 3 months) completed a set of trunk 

forward bending and backward return tasks. Data for 19 asymptomatic female controls (aged 

40–70 years old) were extracted from an earlier study (Vazirian et al., 2016a). All 

participants completed an informed consent procedure approved by the University of 

Kentucky Institutional Review Board before participation. Age, stature, body mass, and 

body mass index (BMI) for the two groups were comparable (Table.1). Asymptomatic 

controls with any history of LBP or musculoskeletal disorders were excluded (Shojaei et al., 
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2016; Vazirian et al., 2016a). Patients with acute LBP were excluded if they had any 

significant cognitive impairment, intention to harm themselves or others, or substance abuse.

Experimental Procedures

Two wireless Inertial Measurement Units (IMUs; Xsens Technologies, Enschede, 

Netherlands) were attached superficial to the T10 and the S1 spinous process of participants 

to collect kinematics of thorax and pelvis as rigid bodies (50 Hz). A Kalman filter was used 

to minimize any potential effect of noise on the data. Each participant completed two trunk 

forward bending and backward return tasks in the sagittal plane; one at a preferred pace and 

the other at a fast pace. During the task with preferred pace, participants stood in an upright 

posture for 5 seconds, bent forward using a preferred pace to reach their maximum trunk 

rotation, held their maximum trunk rotation for 5 seconds, returned back to the initial 

upright position, and stood again for 5 seconds. During the task with fast pace, participants 

performed the same task but with their fastest possible pace and without a pause at the 

maximum trunk rotation. Each task pace was repeated three times, and participants 

completed the task with the preferred pace prior to the task with the fast pace.

Data analysis

Using the kinematics data collected with the IMUs, pelvic and thoracic rotations were found 

with respect to the standing posture. At each time instant, flexion/extension of lumbar spine 

(i.e., as a deformable segment between thorax and pelvis) was calculated as the difference 

between the pelvic and thoracic rotations. To calculate the lumbar contribution, the forward 

bending and the backward return of each task was divided into quarters of equal thoracic 

rotation. The ratio of range of lumbar flexion/extension over the range of thoracic rotation 

was then calculated for each quartile. Lumbar contribution in each quartile of forward 

bending and backward return task was finally calculated as the average of the above ratio for 

the same quartile across the three repetitions of the task. The thoracic and pelvic rotation 

data were also used to calculate the continuous relative phase between thorax and pelvis by 

initially generating the phase planes of pelvic and thoracic rotations according to (Lamb and 

Stöckl, 2014), and then subtracting the pelvic phase angle from the thoracic phase angle at 

each instant of the task. To characterize the timing aspect of lumbo-pelvic coordination, two 

measures from the continuous relative phase (CRP) curve of forward bending and backward 

return were extracted: 1) the mean absolute relative phase (MARP), and 2) the deviation 

phase (DP) (Stergiou et al., 2001). Briefly, the mean and standard deviation of the absolute 

value of relative phase for each percentile of trunk forward bending and backward return 

across the three repetitions of each task were initially obtained. Subsequently, the average of 

the calculated mean and standard deviation values over the entire forward bending and 

backward return were respectively calculated as MARP and DP values. By definition, 

MARP values closer to 0 represent a more “in-phase” lumbo-pelvic coordination (i.e., more 

synchronous movement of segments) whereas values closer to π radians represent a more 

“out-of-phase” lumbo-pelvic coordination (i.e., less synchronous movement of segments). 

Moreover, a smaller DP represents a lumbo-pelvic coordination with less trial-to-trial 

variability (i.e., a more stable motion pattern).
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Statistical Analysis

For each task and phase of trunk motion (i.e., forward bending and backward return), the 

lumbar contribution in each quartile, MARP, and DP were extracted for statistical analyses. 

All statistical procedures were conducted in SPSS (IBM SPSS Statistics 23, Armonk, NY, 

USA), and in all cases a p value smaller than 0.05 was considered as statistically significant. 

Mixed-model analysis of variance (ANOVA) tests were conducted on the dependent 

variables with group (with and without LBP) and age (40–50, 50–60, 60–70) as the between-

subjects factors and motion pace (preferred and fast) as the within-subjects factor. Mixed-

model ANOVA assumptions were verified, and significant ANOVA tests were followed by 

post hoc tests using Tukey’s procedure.

RESULTS

Interaction effects

Forward bending—The lumbar contribution in the 1st quarter was larger (40–50: F=4.95, 

p=0.045; 60–70: F=7.90, p=0.016) in the control vs. patient group only during the task with 

fast pace and for individuals in the 40–50 (40s) and 60–70 (60s) year-old age groups (Fig. 

1). This lumbar contribution was also larger (F=10.47, p=0.018) in the task with preferred 

vs. fast pace only for patients in the 60–70 (60s) year-old age group (Fig. 1).

Additionally, lumbar contribution in the 4th quarter was larger (F=6.22, p=0.041) in the task 

with preferred vs. fast pace only for patients in the 50–60 (50s) year-old age group. This 

lumbar contribution was also larger (F=5.97, p=0.012) in the 60–70 (60s) versus 50–60 (50s) 

year-old age group only among patients and under task with fast pace (Fig. 2).

Backward return—The lumbar contribution in the 1st quarter was larger (F=14.71, 

p=0.012; F=9.37, p=0.022) during the task with preferred vs. fast pace only for controls in 

the 40–50 (40s) and 60–70 (60s) year-old age group (Fig. 3). This lumbar contribution was 

also larger (F=5.01, p=0.020) for controls in the 40–50 (40s) vs. controls in the 50–60 (50s) 

year-old age group (Fig. 3).

Additionally, the lumbar contribution in the 4th quarter was larger (F=5.12, p=0.043) for 

controls in the 60–70 (60s) year-old age group vs. patients in the same age group only 

during the task with fast pace (Fig. 4). This lumbar contribution was also larger (F=17.62, 

p=0.009) in the task with preferred vs. fast pace only for controls in the 50–60 (50s) year-old 

age group (Fig. 4). Furthermore, this lumbar contribution was larger (F=21.26, p=0.004) 

during the task with preferred vs. fast pace only for patients in the 60–70 (60s) year-old age 

group (Fig. 4).

Group differences—During forward bending and backward return, the lumbar 

contribution in the 2nd and 3rd quarters was smaller in the patient group than the control 

group (Table 2 and Table 3). Furthermore, the MARP and DP were smaller in the patient vs. 

control group during forward bending and backward return (Table 2 and Table 3).

The effects of task pace—Lumbar contribution to the trunk rotation was smaller during 

the 2nd and 3rd quarters of both forward bending and backward return of the task with fast 
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vs. preferred pace (Table 3). MARP during forward bending and DP during both forward 

bending and backward return were smaller in the task with fast vs. preferred pace (Table 2 

and Table 3).

Age-related differences—Lumbar contribution to the trunk rotation during the 2nd and 

3rd quarters of both forward bending and backward return was larger in the 40–50 (40s) 

year-old age group than the other two age groups (Table 3). No age related differences in 

MARP and DP during forward bending and backward return were found (Table 2 and Table 

3).

DISCUSSION

The purpose of this study was to investigate differences in magnitude and timing aspects of 

lumbo-pelvic coordination between patients with acute LBP and asymptomatic controls 

during trunk forward bending and backward return. Lumbar contribution to the trunk motion 

in the 2nd and 3rd quarters of forward bending and backward return were smaller in patients 

with acute LBP vs. asymptomatic controls (i.e., partially confirming our hypothesis). 

Lumbo-pelvic coordination was more in-phase (i.e., denoted by smaller MARP values) and 

less variable (i.e., denoted by smaller DP values) in patients with acute LBP vs. 

asymptomatic controls (i.e., confirming our hypothesis).

In our earlier study, lumbar contribution to the trunk motion at the end point of the forward 

bending was observed to be smaller in patients with acute LBP vs. asymptomatic controls. 

Our current finding, further suggest that such overall observed difference was due to smaller 

lumbar contribution in patients with acute LBP in the 2nd and 3rd quarters of forward 

bending and backward return. To the best of our knowledge, no other study has reported 

differences in lumbar contribution to trunk motion throughout the forward bending and 

backward return between patients with acute LBP and asymptomatic controls. However, in 

studies including patients with chronic LBP and individuals with a history of LBP similarly 

smaller lumbar contribution to the trunk motion in all quartiles (Lariviere et al., 2000) as 

well as in the early stage (Porter and Wilkinson, 1997) or middle stage (Esola et al., 1996) of 

forward bending and backward return have been reported.

While in the current study the patients implemented a more in-phase motion of pelvis and 

thorax segments compared to asymptomatic controls, Wong and Lee (2004) reported no 

differences in timing aspects of the lumbo-pelvic coordination between a patient group and a 

asymptomatic control group. Such inconsistency in the results between the current study and 

the study by Wong and Lee (2004) could be due to the differences in the personal 

characteristics of participants (e.g., females ~ 57 years old in the current study vs. males ~ 

40 years old in the study by Wong and Lee (2004)), different methods of data analysis (CRP 

method in the current study vs. Cross-correlation method in the study by Wong and Lee 

(2004); see Vazirian et al. (2016b) for differences between the two methods) and potential 

differences in LBP subtypes. In studies including patients with chronic LBP, there are 

reports of a more in-phase lumbo-pelvic coordination in patients vs. asymptomatic controls 

during forward bending and backward return (Asgari et al., 2015; Mokhtarinia et al., 2016) 

as well as during walking and running (Seay et al., 2011; Selles et al., 2001). In contrast, 
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Silfies et al. (2009) and Paquet et al. (1994) reported, respectively, a more out-of-phase and 

similar lumbo-pelvic coordination in patients vs. asymptomatic controls. Discrepancies in 

the results of studies concerning patients with chronic LBP may be attributed to the 

differences in the population studied (e.g., personal characteristics and LBP subtype), 

differences in the methods of data analysis, and differences in LBP severity at the time of 

study.

The smaller contribution of lumbar flexion to trunk motion, as seen in patients with acute 

LBP in the current study, reduces passive contribution of lower back tissues in offsetting the 

physical demand of the task on the lower back. Such an alteration in lumbar contribution has 

been suggested to prevent painful deformation in posterior elements of the ligamentous 

spine (Colloca and Hinrichs, 2005). More in-phase and less variable lumbo-pelvic 

coordination, also known as phase-locked or rigid coordination (Mokhtarinia et al., 2016), is 

regarded as a protective motor control strategy to reduce the likelihood of painful 

deformation of spinal tissues under dynamic tasks. Such a strategy, however, demands 

higher levels of trunk muscles activation and co-activation which in turn can lead to 

increased spinal loads and muscle fatigue (Bazrgari et al., 2008a, b; Marras et al., 2001).

The lumbar contribution in the 2nd and 3rd quarters was smaller during the task with fast vs. 

preferred pace for both forward bending and backward return. Similarly, MARP and DP 

were found to be smaller during the task with fast pace. These findings are consistent with 

earlier reports on the effects of task pace on trunk kinematics variability (Asgari et al., 

2015). The smaller lumbar contribution and more in-phase lumbo-pelvic coordination is 

consistent with the strategy to prevent painful deformation and injury (intensified by 

viscoelastic behavior and inertial demand of fast tasks) given the higher risk of injury under 

fast trunk motion (Bazrgari et al., 2008c).

Better understanding of differences in lumbo-pelvic coordination during trunk forward 

bending and backward return between individuals with and without LBP is clinically 

important (Panjabi, 2003; Van Hoof et al., 2012; White III and Panjabi, 1978). Specifically, 

quantification of such differences, as done in the present study, may improve the 

effectiveness of current management paradigm for LBP by positively impacting the 

diagnosis and treatment stages. More in-depth information about normal and abnormal trunk 

kinematics during trunk forward bending and backward return can help better match patient 

pathology with targeted treatments and decide whether a given treatment is moving the 

patient in the right direction. Additionally, our results indicate that lumbo-pelvic 

coordination varies with age which also should be considered in the diagnostic process.

Although our findings contribute to the current understanding of the timing and magnitude 

of lumbar spine contribution to the trunk forward bending and backward return in patients 

with acute LBP, there are study limitations. First due the use of cross sectional data, we are 

unable to infer causality. As such we are unable to infer if study findings result in or are 

consequence to acute LBP. Second, we did not control for intersubject variability such as 

anthropometric measures, pain level, potential musculoskeletal abnormalities like foot shape 

abnormalities, flat back, hyper-lordosis as well as LBP-related disability, fear of movement, 

and general health status. With this being said, there is the possibility of additional unknown 
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factors that affect study outcomes and were not included in our analysis. Third, although we 

controlled for age and gender-related differences, the influence of differences in lumbar 

spine stiffness or mobility between groups on our finding, though perhaps minimal, should 

not be overlooked. Finally, while studying magnitude and timing aspects of lumbo-pelvic 

coordination in patients with acute LBP provides some insights into neuromuscular control 

of trunk motion and load sharing between lower back tissues, quantification of such 

variables requires detailed model-based studies (Arjmand et al., 2009; Bazrgari et al., 2008a) 

which we plan to conduct in the future.

In summary, the lumbar contribution to trunk motion during the 2nd and 3rd quarters of trunk 

forward bending and backward return phases of motion as well as MARP and the DP during 

the entire motion were smaller in the patient vs. the control group. These differences in 

lumbo-pelvic coordination of individuals with acute versus without acute LBP are likely to 

be due to a neuromuscular motor control strategy to temporarily reduce the painful 

deformations in the lumbar tissues.
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Figure 1. 
The simple main effects of group (a) and task pace (b) on lumbar contribution (LC) were 

significant in the 1st quarter of forward bending. Error bars indicate positive standard 

deviations. The symbols * and + indicate significant paired differences.

Shojaei et al. Page 11

J Biomech. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The simple main effects of task pace (a) and age (b) on lumbar contribution (LC) were 

significant in the 4th quarter of forward bending. Error bars indicate positive standard 

deviations. The symbol * indicates significant paired differences.
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Figure 3. 
The simple main effects of task pace (a) and age (b) on lumbar contribution (LC) were 

significant in the 1st quarter of backward return. Error bars indicate positive standard 

deviations. The symbols * and + indicate significant paired differences.
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Figure 4. 
The simple main effects of group (a) and task pace (b and c) on lumbar contribution (LC) 

were significant in the 4th quarter of backward return. Error bars indicate positive standard 

deviations. The symbol * indicates significant paired differences.
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Table 1

Mean (SD) participants characteristics

Group Controls Patients t-value p-values

Age (years) 56 (9) 58 (9) 0.723 0.474

Stature (m) 1.64 (5) 1.63 (7) −0.592 0.557

Body mass (kg) 70(12) 76(17) 1.553 0.130

BMI 25.7(4.1) 27.5(4.6) 1.608 0.117
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