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Abstract

Numerous studies have examined how both negative and positive maternal exposures 

(environmental contaminants, nutrition, exercise, etc.) impact offspring risk for age-associated 

diseases such as obesity, type 2 diabetes, hypertension, and others. The purpose of this study was 

to introduce the foreskin as a novel model to examine developmental programming in human 

neonates, particularly in regards to adipogenesis and insulin receptor signaling, major contributors 

to age-associated diseases such as obesity and diabetes. Neonatal foreskin was collected following 

circumcision and primary dermal fibroblasts were isolated to perform adipocyte differentiation and 

insulin stimulation experiments. Human neonatal foreskin primary fibroblasts take up lipid when 

stimulated with a differentiation cocktail and demonstrate insulin signaling when stimulated with 

insulin. Thus, we propose that foreskin tissue can be used to study developmental exposures and 

programming that occur in the neonate as it relates to age associated diseases such as obesity and 

diabetes.
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1.0 INTRODUCTION

The Barker hypothesis supports that maternal under-nutrition during pregnancy reprograms 

offspring to be at greater risk for developing cardiovascular and metabolic disease later in 

life (Barker et al., 1993). Since this early work, the Developmental Origins of Health and 

Disease (DOHaD) hypothesis has been expanded to include a large number of intrauterine 

exposures during fetal and early postnatal development (Wadhwa et al., 2009). Numerous 

studies have examined how negative and even positive maternal exposures (environmental 

contaminants, nutrition, exercise, etc.) impact fetal development and long-term offspring 

health. Studies report altered risk of obesity, type 2 diabetes, hypertension, and others in 

offspring from mothers who are exposed to a number of environmental influences (Alfaradhi 

et al., 2014; Carter et al., 2012; Carter et al., 2013; Ino, 2010; Rashid et al., 2013; Swanson 

et al., 2009; Wang et al., 2002; Zhang et al., 2014). Further, obesity and type 2 diabetes are 

associated with early death (Kitahara et al., 2014; Leal et al., 2009). Thus, understanding 

how to prevent and treat obesity and type 2 diabetes is crucial to healthy aging.

The Dutch Famine of 1944 presented a unique time to study developmental programming 

and specifically the impact of undernutrition during pregnancy on offspring late life disease 

risk. Roseboom et al. found that adult children born to mothers undernourished during 

pregnancy were smaller at birth and had increased prevalence of cardiovascular disease 

morbidity and mortality compared to adult children who were not exposed to undernutrition 

in utero (Roseboom et al., 2001). Heijmans et al., (Heijmans et al., 2008) followed up on 

these studies and demonstrated that whole blood samples from adults who were exposed to 

the famine 6 decades earlier had reduced insulin-like growth factor-2 (IGF2) differentially 

methylated region (DMR) compared to their same sex siblings not exposed to famine. This 

study was one of the first to provide empirical evidence that undernutrition during gestation 

epigenetically alters individuals. Since these landmark studies, over 126 articles have been 

published using the key phrases “developmental programing aging” on PubMed, expanding 

upon the idea that maternal environmental exposures can impact long-term healthy aging.

Gavrilov and Gavrilova put forth the High Initial Damage Load Hypothesis which suggests 

that high amounts of damage early in development contribute to the accumulated damage 

associated with aging later in life, giving these events a large impact on lifespan (Gavrilov 

and Gavrilova, 2004). The basis of their hypothesis stems from studies suggesting that 

human paternal age can influence aging rates in female offspring (Gavrilov et al., 1997), and 

the season of birth can affect human longevity (Gavrilov and Gavrilova, 1999). Using animal 

models, Ozanne and Hales found that offspring born to female mice fed a protein restricted 

diet had decreased longevity when fed a normal or high fat diet after birth (Ozanne and 

Hales, 2004; Ozanne and Hales, 2005). These mice were born lighter than offspring from 

standard diet fed females, but they achieved rapid “catch-up” growth early in life and aged 

more rapidly. Miller et al. have been studying the importance of growth trajectories and 

found that smaller mice, at young and old age, generally live longer in the absence of the 

catch-up growth seen in the studies by Ozanne (Miller et al., 2000; Miller et al., 2002). In 

addition, Sun et al. found that increasing litter size from 8 to 12 pups during nursing 

increased lifespan of the offspring due to decreased growth (Sun et al., 2009). Together these 

data suggest that age-related mechanisms and lifespan can be influenced by the prenatal or 
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early postnatal environment. Given that pregnancy in humans is only ~40 weeks and the 

entire lifespan of a human living in the United States of America is on average 78.8 years 

(CDC, 2015), the relative investment in time during pregnancy is low to make positive 

modifiable behavior changes which can impact offspring health for years to follow. 

However, examining the mechanisms of how maternal behaviors/exposures during 

pregnancy directly impact offspring health in humans is a major challenge.

Globally, many laboratories are investigating molecular and physiologic features in 

accessible newborn tissues, such as human placenta and cord blood to explore 

developmental changes induced by maternal parameters, and these samples have provided 

valuable information about in utero exposures. However, these provide a cross-sectional 

snapshot of potential variation accumulated over the course of pregnancy, and generally, do 

not allow for experimental manipulation to determine the functional relevance of these 

characteristics. In order to overcome these challenges, we propose to use the foreskin as a 

model to study developmental programming in humans. The skin is readily available via 

circumcision at birth and through skin punches later allowing for lifelong aging 

comparisons. This reason sets it apart from the placenta and cord blood, which represent 

unique samples available at birth. The foreskin is generally considered a waste tissue and 

thus is readily available where circumcisions are performed. Further, there is ample tissue 

(roughly 400 mg per foreskin) present for the extraction of RNA, DNA, or protein. In 

addition, primary fibroblasts can be isolated from the dermal layer and will allow for the 

creation of an in vitro system for living cell experiments that are representative of the 

neonatal environment (or in utero exposures). In fact, other laboratories are already utilizing 

skin-derived fibroblasts in the study of aging (Harper et al., 2007; Salmon et al., 2005). The 

purpose of this study is to introduce the foreskin as a novel model to examine developmental 

programming in human neonates, particularly in regards to adipogenesis and insulin receptor 

signaling, major contributors to age-associated disease.

2.0 METHODS

Approximately 58% of male infants in the United States are circumcised (Owings, 2013). 

Neonatal foreskins from the Birthing Center at the University of Kentucky Chandler 

Hospital were collected immediately following planned circumcision into phosphate 

buffered saline (PBS) and transported on ice to the laboratory. Foreskins were collected from 

male infants undergoing routine circumcision within 96 hours of birth. Study protocols were 

either approved by or considered exempt by the Institutional Review Board of the University 

of Kentucky.

2.1 Experimental Design

2.1.1 Experiment 1: Confirm that foreskin primary dermal fibroblasts 
differentiate into lipid droplets and markers regulating adipogenesis appear to 
be regulated epigenetically—Markers of increased and decreased adiposity such as 

fatty acid binding protein 4 (FABP4) (mRNA) (Krusinova and Pelikanova, 2008; Terra et al., 

2011) and Ras and Rab Interactor 3 (RIN3) (mRNA and DNA methylation), respectively, 
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(Padilla et al., 2014; Wens et al., 2013) were measured from foreskin primary dermal 

fibroblasts.

2.1.2 Dissection and plating of foreskin dermal primary fibroblasts—Fat and 

loose fascia (dartos/hypodermal layer) were grossly dissected away from the epidermal/

dermal layers. Dermal cells were isolated and plated according to standardized procedures 

from Life Technologies with slight modifications. In brief, tissue was treated with 5 mL 

dispase II solution (25 U/mL) (Life Technologies, catalogue #17105-041) for 16–20 hours in 

order to separate the dermis from the epidermis. Using forceps, the epidermis was peeled 

from the dermis and discarded. The dermal layer was put in a culture dish with 10 mL of 

media (Gibco, catalogue #10569-010) supplemented with 10% fetal bovine serum and 

gentamicin/amphotericin (Life Technologies, catalogue #R01510) and cut into small pieces. 

Media and dermal pieces were then placed in a 50 mL conical tube with 10 mL of 

collagenase type IV solution (1,500 U/mL) (Life Technologies, catalogue #17104-019) with 

an additional 10 mL of media (total of 30 mL) for 1 hour at 37°C. Every 15 min the tube 

was shaken for 30 seconds to agitate and breakdown dermal pieces. Following digestion, the 

conical tube was spun at 180g for 7 min to pellet tissue and cells. Media and collagenase 

were aspirated off and cells were re-suspended in 5 mL of media. The media was then 

filtered through a 0.22 µm filter (BD Transduction, catalogue #352340) onto a 100 × 20 mm 

round plate. Another 5 mL of media was rinsed through the filter and added onto the plate. 

Cells were grown in a 37°C incubator with 5% CO2. Media was changed 24 hours following 

plating and every 48 hours following until cells were at 80% confluency (generally 3–4 

days). Cells were passaged onto a 12 well plate for adipocyte differentiation experiments.

2.1.3 Adipocyte Differentiation—Two days following confluency, adipocyte 

differentiation induction medium [cocktail of media (Gibco, catalogue #10569-010), 10% 

fetal bovine serum, gentamicin/amphotericin, 1µM dexamethasone, 0.5 mM 3-isobutyl-1-

methylxanthine, 10µg/mL insulin and 1.0 µM rosiglitazone] was added to half of the wells 

for 72 hours to induce adipocyte differentiation. The remaining wells served as controls and 

only contained cell media (Gibco, catalogue #10569-010), 10% fetal bovine serum and 

amphotericin. Insulin (10 µg/mL), rosiglitazone (1.0 µM), and cell media were replaced 

every 48 hours for an additional 11 days. Media was refreshed on the control cells at the 

same time. Cells were stained for lipid droplets (described below) and DNA, RNA, and 

protein were collected.

2.1.4 DNA methylation—Foreskins were collected and dermal primary fibroblasts grown 

in culture on 12-well plates. Cells were isolated for the examination of DNA methylation of 

an array of genes assessed 48 hours post-confluency and 14 days following adipogenesis 

(Section 2.1.3) (Green et al., 2016). DNA was extracted from cell pellets using the Qiagen 

DNease mini kit via standard manufacturer procedures, and the quality and quantity of DNA 

was assessed via NanoDrop spectrophotometry. Isolated DNA underwent sodium bisulfite 

modification using the EZ Methylation kit (Zymo Research, Irvine, CA), were plated 

randomly across 12 sample batches, and assessed for genome-wide DNA methylation using 

the Infinium MethylationEPIC Bead Chip (Illumina, San Diego, CA) profiling methylation 

status for approximately 800,000 CpG loci. The microarrays were processed at the 
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Biomedical Genomics Center at the University of Minnesota (Minneapolis, MN) following 

manufacturer’s protocol. Data was assembled using the BeadStudio methylation software 

package (Illumina) and then processed using the ‘minfi’ package in R (R Core Team 2013). 

Data were normalized using the functional normalization (funNorm) protocol within the 

‘minfi’ package as specified by the software authors (Guide available at: http://

bioconductor.org/packages/release/bioc/html/minfi.html). Following normalization, all X 

and Y probes were removed. Differentially methylated loci were identified with a 2 × 2 

factorial linear regression where individual subjects were included as a random effect. 

Within the linear model, contrasts were made between cultures before and after adipogenic 

differentiation. Bonferroni correction was used when appropriate.

2.1.5 RNA quantification—RNA was collected and isolated from a different set of 

primary dermal fibroblasts than those included in the DNA methylation experiments using 

standard procedures from the Qiagen RNeasy kit. mRNA of RIN3 and FABP4 were assessed 

via quantitative real-time PCR using the Step One Plus Real-Time PCR System (Applied 

Biosystems, Life Technologies). 20 ng cDNA per reaction was used with RIN3 or FABP4 

TaqMan Probes (Applied Biosystems, Life Technologies). Tubulin, beta class I (TUBB) was 

selected as the housekeeping gene.

2.1.6 Protein quantification—Protein was collected from primary fibroblasts following 

14 days of incubation in the adipogenic cocktail as described above. Briefly, 50 µL of RIPA 

buffer (ThermoFisher Scientific, catalogue # 89900) was added to each well for 5 min. Cells 

were collected after scraping with a cell scraper and immediately frozen at −80°C until 

analysis for FABP4 protein via ELISA (R&D Systems, catalogue # DFBP40). A Bradford 

protein assay was used to assess protein concentration of each sample.

2.1.7 Oil Red O staining—Oil Red O staining was performed with modifications as 

previously described (Zhang et al., 2013). 0.25 g of Oil Red O (Sigma, catalogue #O-0625) 

was mixed with 50 mL of isopropanol. 15 mL of this stock Oil Red O solution was mixed 

with 10 mL of diH2O and sat at room temperature for at least 5 min prior to filtration 

(Millipore, catalogue #8CGP00525) to make the working solution of Oil Red O. Cells were 

placed in 4% paraformaldehyde (Sigma, catalogue #441244) for 15 min prior to being 

washed once for 5 min in phosphate buffer saline (PBS). The cells were incubated in PBS 

for 5 min and then 60% isopropanol for an additional 5 min. Isopropanol was removed and 

Oil Red O working solution was added to each well for 30 min. Following removal of Oil 

Red O, cells were washed 4 times for 5 min in diH2O and imaged. After imaging, cells were 

treated with 100% isopropanol and Oil Red O was extracted out of each well. The 

isopropanol/Oil Red O solution (250 uL) was loaded in triplicate on a 96 well plate and read 

on a plate reader at 500 nm for quantification of Oil Red O staining in each well.

2.2.1 Experiment 2: Examine whether primary dermal fibroblasts respond to 
insulin stimulation—Foreskins were collected and plated as described in section 2.1.2 to 

assess insulin signaling proteins following insulin stimulation. Cells were stimulated with 

insulin for 15 min and protein collected to assess phosphorylation of Protein Kinase B 

(pAKT) and AKT signaling.
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2.2.2 Insulin Signaling—Primary fibroblasts from each of the 10 samples were plated 

onto 2, 60 mm × 15 mm style cell culture dishes. 24 hours post confluency media was 

removed from cells and Krebs-Ringer-Phosphate (KRP) buffer plus 1% BSA was added and 

the cells incubated for 1 hr at 37°C. Then half of the plates were treated with 100 nM insulin 

(Sigma, catalogue #I0908) for 30 min and half served as controls with KRP buffer only. 

Cells were washed twice in cold KRP buffer and protein collected as described above. 

Protein from each sample was mixed with cell lysis buffer and 5× Laemmli to dilute each 

sample to 2 ug/uL. 20 ug of sample was loaded onto a 10% gel (Bio-Rad, California, USA) 

and run at 100 volts for 10 min, then 200 volts for 45 min. Protein in the gel was then 

transferred to membrane at 100 volts for 45 min and incubated for 1 hour at room 

temperature in 5% milk. Total AKT (Cell Signaling, catalogue #4685s) and pAKT ser 473 

(Cell Signaling, catalogue #9271S) primary antibodies were added to each respective 

membrane overnight at 1:1000 dilution at 4°C. Membranes were washed 3 times for 5 min 

in Tris-Buffered Saline and Tween 20 buffer (TBST) and secondary antibody (Life 

Technologies, catalogue #A10547) was added at 1:2000 dilution for 1 hour at room 

temperature. Membranes were washed again (5 times for 5 min each in TBST) and imaged 

using femto max (Life Technologies, catalogue #34095). Bands were quantified using 

Quantity One software (Bio-Rad).

2.3.1 Statistics—A one tailed, paired, student’s t-test was used to analyze the difference in 

pAKT and AKT in non-stimulated and insulin stimulated cells and change in adipogenesis 

(mRNA, protein, and Oil Red O staining) in basal and differentiated cells. Natural log 

transformation was performed where data were not normally distributed (FABP4 mRNA and 

protein). Significance was set at p < 0.05 and individual data points are shown on figures 

with median bars.

3.0 RESULTS

3.1 Primary Dermal Fibroblasts

3.1.1 Experiment 1: Confirm that foreskin primary dermal fibroblasts 
differentiate into lipid droplets and markers regulating adipogenesis appear to 
be regulated epigenetically—Primary neonatal fibroblasts incubated in the adipogenesis 

media for 14 days showed a significantly greater abundance of vacuoles staining positive 

with Oil Red O (Fig. 1A) compared to basal conditions (p=0.002). FABP4 mRNA (Figure 

1B) and protein (Figure 1C) were significantly increased in the differentiated cells compared 

to basal conditions (p < 0.001).

Genome-wide DNA methylation analysis indicated that 459 CpG sites demonstrated 

differential methylation between differentiated and basal cells (Bonferroni, p < 0.05), with 

probe ch.14.1488981R, in the promoter region of the RIN3 gene exhibiting the greatest 

differential methylation of an identified gene following adipogenesis. The DNA methylation 

was significantly higher at this site in cells following adipogenesis (Figure 2A) compared to 

the basal state (p < 0.001).

To then assess the functional importance of this methylation change, we examined 

expression of the gene via qPCR, and demonstrated a significantly reduced expression of 
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RIN3 mRNA following adipogenesis compared to basal (p < 0.05, Figure 2B), suggesting 

that methylation may be functionally reducing the gene expression.

3.1.2 Experiment 2: Examine whether primary dermal fibroblasts respond to 
insulin stimulation—AKT phosphorylation at serine 473 occurs downstream of insulin 

binding to the insulin receptor and is considered one of the main markers for insulin 

signaling (Bae et al., 2003). Primary dermal foreskin fibroblasts demonstrated increased 

pAKT (Figure 3A) in response to insulin stimulation (p < 0.001); while no significant 

changes in total AKT (Figure 3B) were observed (p > 0.05).

4.0 DISCUSSION

We demonstrate that foreskin primary fibroblasts can be plated and grown from foreskin 

tissue collected following circumcision of human infants. These dermal primary foreskin 

fibroblasts can differentiate into adipocyte-like cells expressing increased and decreased 

mRNA levels of FABP4 and RIN3, respectively, as well as increased RIN3 DNA 

methylation. These cells also display increased phosphorylation of AKT when stimulated 

with insulin. Thus, this tissue appears to be a good surrogate for examining the influences of 

birth weight or environmental parameters during pregnancy on metabolic activity in 

offspring utilizing a tissue that comes directly from the neonate after birth.

We recognize that gene expression in the foreskin is not likely the driving factor for later life 

onset of obesity or diabetes; however, cells of foreskin are representative of the types of 

programming that can occur. Further, one study demonstrates that skin glucose content 

correlates to venous blood glucose levels in individuals with type 1 diabetes undergoing a 

three stage glucose clamp (Jensen et al., 1995); indicating that a relationship between skin 

glucose and whole body plasma glucose exists. Whether or not these findings would be 

demonstrated in non-diabetic individuals is not known. However, it is likely that skin 

glucose uptake is mediated through insulin receptor substrate 2 (IRS2), as previous studies 

indicate that dermal fibroblasts lacking IRS2 have reduced cellular glucose uptake 

(Sadagurski et al., 2005). Thus, it appears that mechanisms of glucose uptake are similar 

between skin and other tissues more classically believed to be involved with regulating 

whole body blood glucose control. While earlier studies by others were not directly 

performed in foreskin dermal tissue, we demonstrate that this tissue maintains the basic 

features of insulin signaling similar to other tissues. Therefore, experiments in foreskin 

tissue and foreskin dermal primary fibroblasts are a critical step along the way to examining 

how environmental exposures during pregnancy may impact offspring glucose regulation 

and will serve to guide upcoming studies in humans. Future steps in our lab will be to 

examine radiolabeled glucose uptake in whole tissue and primary fibroblasts grown in 

culture, and these experiments will provide a functional measure of glucose homeostasis 

following a wide variety of environmental exposures in utero.

Thus, we demonstrate the capabilities of using foreskin dermal primary fibroblasts to 

examine adipogenic potential of cells from human infants. These findings confirm what 

others have shown in adult dermal primary fibroblasts (Jaager and Neuman, 2011). 

Collectively, these data support the use of foreskin from infants as a metabolically active 
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tissue to examine insulin signaling and adipogenesis. Obesity and diabetes are associated 

with a shortened lifespan (Kitahara et al., 2014; Leal et al., 2009). Thus, identifying 

mechanisms which are altered in early life may identify individuals who are at a greater risk 

of dying early and provide a targeted approach for therapeutic interventions to increase 

healthy aging.

Other laboratories are currently utilizing skin derived fibroblasts to study aging. The ability 

to respond to environmental and cellular stress plays a role in healthy aging. Salmon et al. 
(Salmon et al., 2005) demonstrate that dermal fibroblasts from a long lived mice strain have 

developed a resistance to cellular oxidative and non-oxidative stress which may be a 

mechanism of their increased lifespan. These results provide exciting support for the use of 

primary dermal foreskin fibroblasts in stress response experiments to examine the role of 

developmental programming and aging. While the foreskin tissue can only be collected at 

birth from neonates following circumcision, we can collect skin biopsy samples from adults 

later in life which would allow us to make multiple comparisons over time of how genes 

adapt and change following various in utero stimuli with aging.

In summary, the proposed studies introduce a novel approach to examine insulin signaling 

and adipogenesis in neonatal tissue. Using skin as a means to study mechanistic alterations 

in infants is the only viable neonatal tissue that can be easily collected following birth 

(circumcision) as well as the individual ages into adulthood (skin biopsy). The foreskin 

should be considered a tissue of interest for fetal programming studies in order to assess 

mechanisms of dysfunction in insulin signaling and adipocyte differentiation in response to 

various maternal exposures during pregnancy. Utilizing this model provides the foundation 

for future studies to predict pediatric and adulthood obesity, diabetes, and ultimately early 

death risk. Maternal factors which may impact early aging in offspring, such as maternal 

smoking, obesity, and exercise, can be examined via this model and will provide direct 

evidence of those factors which promote early aging in offspring. Thus, future studies should 

work towards long-term follow-up outcomes, examining the foreskin tissue shortly after 

birth and skin tissue into adulthood following specific maternal exposures to examine 

mechanisms of healthy (or diseased) aging, as well as the predictive potential of this tissue 

prospectively in children’s growth and metabolic related outcomes.

Acknowledgments

We would like to thank the Maternal-Fetal Medicine Division at the University of Kentucky for access to fresh 
tissues. Funding was provided by the Graduate Center for Nutritional Sciences at the University of Kentucky 
(K.J.P.) and the National Institutes of Health (R01ES022223 to C.J.M). Leryn Reynolds was supported by an 
American Heart Association Post-Doctoral Fellowship (15POST25110002). Brett Dickens was supported by a 
CCTS Professional Student Mentored Research Fellowship.

REFERENCE LIST

Alfaradhi MZ, Fernandez-Twinn DS, Martin-Gronert MS, Musial B, Fowden A, Ozanne SE. Oxidative 
stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal obesity. 
Am J Physiol Regul Integr Comp Physiol. 2014; 307:R26–R34. [PubMed: 24789994] 

Bae SS, Cho H, Mu J, Birnbaum MJ. Isoform-specific regulation of insulin-dependent glucose uptake 
by Akt/protein kinase B. J Biol Chem. 2003; 278:49530–49536. [PubMed: 14522993] 

Reynolds et al. Page 8

Exp Gerontol. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and 
cardiovascular disease in adult life. Lancet. 1993; 341:938–941. [PubMed: 8096277] 

Carter LG, Lewis KN, Wilkerson DC, Tobia CM, Ngo Tenlep SY, Shridas P, Garcia-Cazarin ML, 
Wolff G, Andrade FH, Charnigo RJ, Esser KA, Egan JM, de Cabo R, Pearson KJ. Perinatal exercise 
improves glucose homeostasis in adult offspring. Am J Physiol Endocrinol Metab. 2012; 
303:E1061–E1068. [PubMed: 22932781] 

Carter LG, Qi NR, De Cabo R, Pearson KJ. Maternal exercise improves insulin sensitivity in mature 
rat offspring. Med Sci Sport Ex. 2013; 45:832–840.

CDC. National Center for Heath Statistics- Life Expectancy. Centers for Disease Control and 
Prevention; 2015. 

Gavrilov LA, Gavrilova NS. Season of Birth and Human Longevity. J Anti Aging Med. 1999; 2:365–
366.

Gavrilov LA, Gavrilova NS. Early-life programming of aging and longevity: the idea of high initial 
damage load (the HIDL hypothesis). Ann N Y Acad Sci. 2004; 1019:496–501. [PubMed: 
15247073] 

Gavrilov LA, Gavrilova NS, Kroutko VN, Evdokushkina GN, Semyonova VG, Gavrilova AL, Lapshin 
EV, Evdokushkina NN, Kushnareva YE. Mutation load and human longevity. Mutat Res. 1997; 
377:61–62. [PubMed: 9219579] 

Green BB, Karagas MR, Punshon T, Jackson BP, Robbins DJ, Houseman EA, Marsit CJ. Epigenome-
Wide Assessment of DNA Methylation in the Placenta and Arsenic Exposure in the New 
Hampshire Birth Cohort Study (USA). Environ Health Perspect. 2016; 124:1253–1260. [PubMed: 
26771251] 

Harper JM, Salmon AB, Leiser SF, Galecki AT, Miller RA. Skin-derived fibroblasts from long-lived 
species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone. 
Aging Cell. 2007; 6:1–13. [PubMed: 17156084] 

Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. 
Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl 
Acad Sci U S A. 2008; 105:17046–17049. [PubMed: 18955703] 

Ino T. Maternal smoking during pregnancy and offspring obesity: meta-analysis. Pediatr Int. 2010; 
52:94–99. [PubMed: 19400912] 

Jaager K, Neuman T. Human dermal fibroblasts exhibit delayed adipogenic differentiation compared 
with mesenchymal stem cells. Stem Cells Dev. 2011; 20:1327–1336. [PubMed: 21142453] 

Jensen BM, Bjerring P, Christiansen JS, Orskov H. Glucose content in human skin: relationship with 
blood glucose levels. Scand J Clin Lab Invest. 1995; 55:427–432. [PubMed: 8545601] 

Kitahara CM, Flint AJ, Berrington de Gonzalez A, Bernstein L, Brotzman M, MacInnis RJ, Moore SC, 
Robien K, Rosenberg PS, Singh PN, Weiderpass E, Adami HO, Anton-Culver H, Ballard-Barbash 
R, Buring JE, Freedman DM, Fraser GE, Beane Freeman LE, Gapstur SM, Gaziano JM, Giles GG, 
Hakansson N, Hoppin JA, Hu FB, Koenig K, Linet MS, Park Y, Patel AV, Purdue MP, Schairer C, 
Sesso HD, Visvanathan K, White E, Wolk A, Zeleniuch-Jacquotte A, Hartge P. Association 
between class III obesity (BMI of 40–59 kg/m2) and mortality: a pooled analysis of 20 prospective 
studies. PLoS Med. 2014; 11:e1001673. [PubMed: 25003901] 

Krusinova E, Pelikanova T. Fatty acid binding proteins in adipose tissue: a promising link between 
metabolic syndrome and atherosclerosis? Diabetes Res Clin Pract. 2008; 82(Suppl 2):S127–S134. 
[PubMed: 18977052] 

Leal J, Gray AM, Clarke PM. Development of life-expectancy tables for people with type 2 diabetes. 
Eur Heart J. 2009; 30:834–839. [PubMed: 19109355] 

Miller RA, Chrisp C, Atchley W. Differential longevity in mouse stocks selected for early life growth 
trajectory. J Gerontol A Biol Sci Med Sci. 2000; 55:B455–B461. [PubMed: 10995043] 

Miller RA, Harper JM, Galecki A, Burke DT. Big mice die young: early life body weight predicts 
longevity in genetically heterogeneous mice. Aging Cell. 2002; 1:22–29. [PubMed: 12882350] 

Owings MSU, Williams Sonja. Trends in Circumcision for Male Newborns in U.S. Hospitals. 1979–
2010. 2013

Ozanne SE, Hales CN. Lifespan: catch-up growth and obesity in male mice. Nature. 2004; 427:411–
412.

Reynolds et al. Page 9

Exp Gerontol. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ozanne SE, Hales CN. Poor fetal growth followed by rapid postnatal catch-up growth leads to 
premature death. Mech Ageing Dev. 2005; 126:852–854. [PubMed: 15992609] 

Padilla J, Jenkins NT, Thorne PK, Martin JS, Rector RS, Davis JW, Laughlin MH. Identification of 
genes whose expression is altered by obesity throughout the arterial tree. Physiol Genomics. 2014; 
46:821–832. [PubMed: 25271210] 

Rashid CS, Carter LG, Hennig B, Pearson KJ. Perinatal Polychlorinated Biphenyl 126 Exposure Alters 
Offspring Body Composition. J Pediatr Biochem. 2013; 3:47–53. [PubMed: 23741283] 

Roseboom TJ, van der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP. Effects of prenatal 
exposure to the Dutch famine on adult disease in later life: an overview. Twin Res. 2001; 4:293–
298. [PubMed: 11869479] 

Sadagurski M, Weingarten G, Rhodes CJ, White MF, Wertheimer E. Insulin receptor substrate 2 plays 
diverse cell-specific roles in the regulation of glucose transport. J Biol Chem. 2005; 280:14536–
14544. [PubMed: 15705592] 

Salmon AB, Murakami S, Bartke A, Kopchick J, Yasumura K, Miller RA. Fibroblast cell lines from 
young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J 
Physiol Endocrinol Metab. 2005; 289:E23–E29. [PubMed: 15701676] 

Sun L, Sadighi Akha AA, Miller RA, Harper JM. Life-span extension in mice by preweaning food 
restriction and by methionine restriction in middle age. J Gerontol A Biol Sci Med Sci. 2009; 
64:711–722. [PubMed: 19414512] 

Swanson JM, Entringer S, Buss C, Wadhwa PD. Developmental origins of health and disease: 
environmental exposures. Semin Reprod Med. 2009; 27:391–402. [PubMed: 19711249] 

Terra X, Quintero Y, Auguet T, Porras JA, Hernandez M, Sabench F, Aguilar C, Luna AM, Del Castillo 
D, Richart C. FABP 4 is associated with inflammatory markers and metabolic syndrome in 
morbidly obese women. Eur J Endocrinol. 2011; 164:539–547. [PubMed: 21257725] 

Wadhwa PD, Buss C, Entringer S, Swanson JM. Developmental origins of health and disease: brief 
history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med. 2009; 
27:358–368. [PubMed: 19711246] 

Wang X, Zuckerman B, Pearson C, Kaufman G, Chen C, Wang G, Niu T, Wise PH, Bauchner H, Xu 
X. Maternal cigarette smoking, metabolic gene polymorphism, and infant birth weight. JAMA. 
2002; 287:195–202. [PubMed: 11779261] 

Wens B, De Boever P, Verbeke M, Hollanders K, Schoeters G. Cultured human peripheral blood 
mononuclear cells alter their gene expression when challenged with endocrine-disrupting 
chemicals. Toxicology. 2013; 303:17–24. [PubMed: 23146750] 

Zhang C, He Y, Okutsu M, Ong LC, Jin Y, Zheng L, Chow P, Yu S, Zhang M, Yan Z. Autophagy is 
involved in adipogenic differentiation by repressesing proteasome-dependent PPARgamma2 
degradation. Am J Physiol Endocrinol Metab. 2013; 305:E530–E539. [PubMed: 23800883] 

Zhang HY, Xue WY, Li YY, Ma Y, Zhu YS, Huo WQ, Xu B, Xia W, Xu SQ. Perinatal exposure to 4-
nonylphenol affects adipogenesis in first and second generation rats offspring. Toxicology Lett. 
2014; 225:325–332.

Reynolds et al. Page 10

Exp Gerontol. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Foreskin primary fibroblasts accumulate lipid in response to an adipogenic 

cocktail

• Insulin stimulation increases insulin signaling in foreskin primary fibroblasts

• Foreskin is a useful tissue to study the developmental programming of aging
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Figure 1. 
Primary foreskin dermal fibroblasts following 14 days of basal media and adipocyte 

differentiation media. The cells were stained with Oil Red O in order to quantify lipid 

content (A). Each image was obtained at a power of 20×. Fatty Acid Binding Protein 4 

(FABP4) mRNA (B) and protein (C) increased following adipocyte differentiation.
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Figure 2. 
Primary foreskin dermal fibroblasts DNA methylation at position 93077342 on chromosome 

14 (A) and mRNA expression (B) of RIN3 48 hours after plating and following 14 days of 

adipocyte differentiation media.
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Figure 3. 
Primary foreskin dermal fibroblasts with or without insulin had significantly increased AKT 

phosphorylation (A) but showed no change in total AKT (B). Three representative samples 

out of 10 different primary foreskin dermal fibroblasts are shown.
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