
University of Kentucky
UKnowledge

Biology Faculty Publications Biology

9-1-2017

Deep Ancestry of Programmed Genome
Rearrangement in Lampreys
Vladimir A. Timoshevskiy
University of Kentucky, v.timoshevskiy@uky.edu

Ralph T. Lampman
Yakama Nation Fisheries Resource Management Program

Jon E. Hess
Columbia River Inter-Tribal Fish Commission

Laurie L. Porter
Columbia River Inter-Tribal Fish Commission

Jeramiah J. Smith
University of Kentucky, jeramiah.smith@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/biology_facpub

Part of the Biology Commons, Developmental Biology Commons, and the Genetics and
Genomics Commons

This Article is brought to you for free and open access by the Biology at UKnowledge. It has been accepted for inclusion in Biology Faculty Publications
by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Repository Citation
Timoshevskiy, Vladimir A.; Lampman, Ralph T.; Hess, Jon E.; Porter, Laurie L.; and Smith, Jeramiah J., "Deep Ancestry of
Programmed Genome Rearrangement in Lampreys" (2017). Biology Faculty Publications. 167.
https://uknowledge.uky.edu/biology_facpub/167

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232598966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/biology_facpub?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/biology?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/biology_facpub?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/11?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/27?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/27?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/biology_facpub/167?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Deep Ancestry of Programmed Genome Rearrangement in Lampreys

Notes/Citation Information
Published in Developmental Biology, v. 429, issue 1, p. 31-34.

© 2017 Elsevier Inc.

This manuscript version is made available under the CC‐BY‐NC‐ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/.

The document available for download is the author's post-peer-review final draft of the article.

Digital Object Identifier (DOI)
https://doi.org/10.1016/j.ydbio.2017.06.032

This article is available at UKnowledge: https://uknowledge.uky.edu/biology_facpub/167

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://uknowledge.uky.edu/biology_facpub/167?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages


Deep Ancestry of Programmed Genome Rearrangement in 
Lampreys

Vladimir A. Timoshevskiy1, Ralph T. Lampman2, Jon E. Hess3, Laurie L. Porter3, and 
Jeramiah J. Smith1,*

1University of Kentucky, Department of Biology, Lexington, KY 40506

2Yakama Nation Fisheries Resource Management Program, Toppenish, WA 98948

3Columbia River Inter-Tribal Fish Commission, Portland, OR 97232

Abstract

In most multicellular organisms, the structure and content of the genome is rigorously maintained 

over the course of development. However some species have evolved genome biologies that 

permit, or require, developmentally regulated changes in the physical structure and content of the 

genome (programmed genome rearrangement: PGR). Relatively few vertebrates are known to 

undergo PGR, although all agnathans surveyed to date (several hagfish and one lamprey: 

Petromyzon marinus) show evidence of large scale PGR. To further resolve the ancestry of PGR 

within vertebrates, we developed probes that allow simultaneous tracking of nearly all sequences 

eliminated by PGR in P. marinus and a second lamprey species (Entosphenus tridentatus). These 

comparative analyses reveal conserved subcellular structures (lagging chromatin and micronuclei) 

associated with PGR and provide the first comparative embryological evidence in support of the 

idea that PGR represents an ancient and evolutionarily stable strategy for regulating inherent 

developmental/genetic conflicts between germline and soma.
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INTRODUCTION

Programmed genome rearrangement has been observed in several vertebrate and invertebrate 

taxa and appears to have arisen multiple times over the evolutionary history of eukaryotes 1. 

Notably, PGR has been previously observed within two deeply diverged vertebrate groups 

(jawless vertebrates). Reproducible differences in the structure and content of germline and 

somatic cells have been reported for all hagfish species surveyed to date 2. More recently, 

PGR was also discovered and characterized in the sea lamprey (Petromyzon marinus) 3–6. 
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The lineage leading to P. marinus diverged from the ancestral lineage of all other extant 

(jawed) vertebrates and the lineage leading to hagfish approximately 500 million years ago 

(MYA) 7, raising questions as to the ancestry and evolutionary significance of PGR in P. 

marinus, ancestral gnathostome lineages and the ancestral vertebrate lineages.

Recent efforts have made progress in identifying the gene targets and cellular mechanisms of 

PGR in P. marinus 4–6. These analyses indicate that PGR contributes to early differentiation 

events in the embryo that define somatic and germline lineages, wherein DNA elimination 

acts to permanently silence “germline” genes in somatic cell lineages. Notably, lamprey 

PGR parallels differentiation events that occur early in gnathostome development with 

respect to the genes that are relegated to the germline 4,6 and with respect to the earliest 

epigenetic modification events that mediate these events 5. Given the available data, it is 

possible that observation of PGR in hagfish and sea lamprey reflects the inheritance and 

maintenance of PGR from their common ancestor, inheritance from the common ancestor of 

all extant vertebrates, or the independent evolution of superficially similar genome biologies 

in two deeply diverged vertebrate lineages similar to that observed for closely related finch 

species 7,8. While several embryological and genetic details of PGR have been characterized 

in P. marinus, analogous datasets do not currently exist for any other rearranging vertebrate, 

which has precluded direct comparative analyses that are necessary to begin evaluating these 

alternate evolutionary scenarios.

Here we describe the development of new hybridization-based approaches for performing 

comparative embryological studies of PGR and use these methods to further resolve the 

ancestry of PGR in the lamprey lineage. These studies reveal several conserved cellular/

developmental features of PGR in two divergent lamprey species (lagging chromatin and 

micronuclei), observations that are interpreted as strong evidence that PGR has occurred in 

lampreys for at least the last 40 million years.

RESULTS and DISCUSSION

To shed light on the deeper evolutionary history of PGR in the lamprey lineage, we obtained 

early-stage embryos from the Pacific lamprey (Entosphenus tridentatus). The species E. 

tridentatus was selected as a representative of a clade of lampreys (genera Entosphenus, 

Lethenteron and Lampetra) that diverged from the sea lamprey’s lineage ~40 MYA, 

corresponding to the deepest divergence within the family Petromyzontidae (Northern 

Hemisphere lampreys) 7. Presumably features shared between P. marinus and E. tridentatus 

reflect aspects of their biology that were inherited from the common ancestor of all 

petromyzontids. Pacific lamprey embryos were generated using husbandry and in vitro 

fertilization methods optimized for the species 7. Embryos were sampled at 1, 2 and 3 days 

post fertilization (Tahara stages 7, 9/10 and 11, respectively)9, fixed and cleared according to 

protocols developed for P. marinus 5. Examination of E. tridentatus embryos revealed 

anaphases with lagging chromatin at 2 days post fertilization and interphase cells with 

micronuclei similar to those observed in P. marinus embryos at the same developmental 

stages (Figures 1 and 2). Lagging chromatin and micronuclei are considered hallmarks of 

PGR in P. marinus 5. We interpret these observations as strong evidence that PGR occurs in 

both species through similar, highly orchestrated events. Notably, micronuclei and lagging 
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segments appear to be smaller in E. tridentatus when compared to those in P. marinus. Given 

the large difference in genome size between P. marinus (<2 Gb) and other petromyzontids 

(<1.5 Gb)10 observed size differences may not be particularly surprising. This difference in 

genome size presumably reflects the recent expansion of repetitive elements within the P. 

marinus genome, which harbors an exceedingly large number of high-identity repeats11,12.

To further test the assumption that lagging chromatin in divergent lamprey species reflects a 

shared evolutionary origin of PGR, we developed probes that specifically label eliminated 

chromatin in P. marinus throughout embryogenesis. These probes were generated by first 

isolating lagging chromatin from individual anaphases via laser capture microdissection, 

then amplifying and labeling captured sequences. Hybridization to P. marinus embryos 

confirmed that these probes specifically label eliminated chromatin before and during PGR 

(Figure 1). These probes yielded strong and specific hybridization to lagging chromosomes 

within elimination anaphases and to micronuclei within interphase cells that had recently 

undergone PGR (Figures 1, 2A, 2C). Notably, these hybridization signals mark several 

segments of lagging chromatin that also contain Germ1, a multicopy sequence known to be 

eliminated via PGR 3. These same probes were also found to hybridize to lagging chromatin 

and micronuclei in E. tridentatus embryos (Figure 2B, D). These cross-hybridization 

experiments reveal that phenotypically similar structures associated with PGR in P. marinus 

and E. tridentatus (lagging chromosomes and micronuclei) also contain similar sequences, 

lending further support to the idea that PGR is a shared ancestral feature of these two 

lamprey lineages.

Performing hybridizations in the presence of labeled somatic repetitive DNA (liver CoT2 

DNA) allowed us to competitively suppress cross-hybridization with retained chromosomes 

and visualize the differential expansion of repetitive elements in E. tridentatus. 

Hybridization with conspecific CoT2 yielded strong signals on retained chromosomes and 

the centromeres of lagging chromatin in P. marinus and E. tridentatus. Notably, 

hybridization of P. marinus CoT2 to E. tridentatus yielded signals that were more broadly 

distributed, including punctate signals on retained and eliminated chromatin as well as 

signals that overlapped fainter regions of cross-hybridization to our P. marinus germline-

specific probe (Figure 2E–H). We interpret these patterns as evidence for the movement of 

repetitive sequences between germline-specific and retained chromatin and differential 

expansion within these genomic compartments. These comparative hybridizations reveal 

broad evolutionary changes in the repeat content of both retained and eliminated chromatin 

over the last ~40 Million years of lamprey evolution and provide the first evidence for 

movement of sequences between germline-specific and somatically-retained regions.

Taken together, we interpret these findings as strong evidence that PGR existed in the 

ancestral lineage that gave rise to all extant species within the family Petromyzontidae, 

which includes 6 genera and 29 described species that are distributed across the Northern 

Hemisphere. It therefore appears that PGR occurs in the vast majority of, if not all, agnathan 

species. While these studies do not necessarily indicate that PGR occurred in the common 

ancestor of all agnathans (or all vertebrates), they do provide further evidence that PGR 

represents an ancient and evolutionarily stable strategy for regulating inherent genetic 

conflicts between germline and soma.
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METHODS

PACT Clearing

Lamprey embryos were fixed, embedded in hydrogel and cleared according a modified 

PACT (passive clarity technique) protocol recently developed for lamprey embryos 5,13. 

Briefly, embryos were fixed in 4% paraformaldehyde and gradually transferred to 100% 

methanol and stored at −20°C 14. Prior to clearing embryos were gradually rehydrated in 1X 

PBS then perfused with hydrogel monomer solution (5% acrylamide supplemented 0.5% 

VA-044) by incubating overnight at 4°C. Hydrogel polymerization was performed at 37°C 

for 2.5 hours. After brief washes with 1X PBS, embryos were transferred in 50 ml screw-cup 

tube and incubated in stripping solution (8%SDS in 1X PBS) for 3–5 days at 37°C with 

gentle rotation. Upon reaching transparency samples were washed in 1X PBS with 5 buffer 

changes over the course of a day and transferred into staining solution (1X PBS, pH=7.5, 0.1 

Triton X-100, 0.01% sodium azide).

Preparation of Genomic-, Cot-, Germ1- Probes

Genomic lamprey DNA was isolated by phenol-chloroform extraction 15 and Germ1 probes 

were generated from a previously characterized clone 3. Cot1 and Cot2 fractions were 

isolated from genomic DNA using S1 nuclease to digest single stranded (low copy) DNA as 

described previously 16. Probes for in situ hybridization were labeled by nick-translation 

using biotin-11-dUTP (Thermo) or direct fluorophores: Cyanine 3-dUTP (Enzo) and 

Fluorescein-12-dUTP (Thermo) according to previously published protocols 15,16.

Laser Capture Microscopy and Development of Elimination-Specific Probes To aid in laser 

capture microdissection (LCM) of lagging chromatin, we developed a colorimetric DNA 

stain that circumvents issues associated with background staining and signal loss following 

dry mounting to LCM membrane slides (e.g. with DAPI, SYTO and Giemsa) and permits 

precise visualization of DNA in PACT-cleared lamprey embryos via light microscopy. To 

robustly label DNA in cleared embryos we developed a biotinylated DNA-probe via nick-

translation labeling lamprey germline genomic DNA. Hybridization of the biotinylated 

probe to whole cleared embryos was performed as described above for 3-D FISH. After 

washes, samples were incubated in blocking solution (Vector Labs) for 1 hour at 37°C, then 

in alkaline phosphatase streptavidin (Vector Labs, 1 μg/ml in 1x blocking solution) at the 

same conditions. Samples were subsequently washed in 100 mM Tris, pH=9 buffer, 30 min 

at room temperature and treated for color development with BCIP/NBT Substrate kit 

according to manufacturer instruction (Vector Labs).

After color development embryos were incubated with stripping solution overnight at 37°C 

and washed as described above. For LCM, 1–2 embryos were transferred to a 1.0 mm PEN- 

membrane slide (Zeiss) and flattened under HybriSlip™ cover (Sigma). After 10 min of 

incubation on a 45°C plate, the cover film was carefully removed and slides were dried in 

sterile box in the presence of dessicant and under slight vacuum. Laser capture was 

performed using Zeiss PALM Laser Microbeam Microscope. Approximately 10 lagging 

structures were collected per adhesive cap tube (Zeiss). Samples where re-suspended in 10 

μl of sterile water by vortexing the tubes in an inverted position for 30 min and centrifuging 
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at 6000 g for 5 min. WGA library construction, amplification, reamplification and labeling 

procedures were performed using GenomePlex® Single Cell Whole Genome Amplification 

Kit (Sigma) and GenomePlex® WGA Reamplification Kit (Sigma) following the 

manufacturer instructions. For labeling, Cyanine 3-dUTP (Enzo) or ChromaTide® Alexa 

Fluor® 594-5-dUTP (Thermo) were used along with 10 mM dATP, dCTP, dGTP, and 3 mM 

dTTP, replacing dNTP mix from the reamplification step.

3D-FISH

To enhance accessibility of DNA to hybridization, cleared embryos were incubated in 8% 

sodium thiocyanate overnight at 37°C, then washed in PBS for 30 minutes at room 

temperature. For each FISH experiment, 4–5 embryos were placed in 2 ml tube with 50% 

formamide and incubated 1 hour at 37°C. After incubation formamide solution was 

discarded and 30 μl hybridization mix (50% formamide, 10% dextran sulfate, 200 ng labeled 

DNA-probe in 1.2xSSC) was added to cover embryos. For competitive hybridizations two or 

more probes were mixed in equal ratios (200 ng each). Co-hybridized probes should 

preferentially label their targets and suppress lower-affinity hybridizations, particularly to 

repetitive sequences. Samples were incubated overnight at 37°C to permit probe penetration, 

then denatured at 75°C for 5 min. Samples were rapidly cooled in an ice-bath, then left to 

hybridize at 37°C for three days. After hybridization, samples were washed subsequently in 

0.4X SSC, 0.3% IGEPAL CA-630 and 2xSSC, 0.1% IGEPAL CA-630 for 30 min each at 

45°C. For visualization, 2–3 embryos were placed on a slide and mounted with DAPI 

(VectaShield) after removing remaining wash buffer.
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Highlights

• Lagging chromatin is observed in Pacific lamprey (Entosphenus tridentatus) 

embryos.

• Probes were developed using laser capture of eliminated chromatin from sea 

lamprey.

• Cross-hybridization reveals homology of eliminated segments in two lamprey 

species.

• Findings indicate that most lamprey species undergo programmed genome 

rearrangement.

• Repetitive probes reveal movement of sequences between eliminated and 

retained DNA.
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Figure 1. 
Tracking germline-specific DNA before and during programmed elimination. Laser-capture 

FISH probes mark eliminated sequences during all phases of the cell cycle, including those 

that precede the first cellular events known to be associated with programmed genome 

rearrangement (lagging of eliminated chromatin). Cells are hybridized with probes generated 

from amplified lagging chromatin that was isolated by laser capture from P. marinus 

(eliminated DNA: red) and counterstained with DAPI (blue).
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Figure 2. 
Evidence for PGR in Northern Hemisphere lampreys. A–H) Cells undergoing DNA 

elimination in P. marinus and E. tridentatus embryos. Cells are hybridized with probes 

generated from amplified lagging chromatin that was isolated by laser capture from P. 

marinus (eliminated DNA: red) and counterstained with DAPI (blue). A) An elimination 

anaphase from P. marinus. This anaphase is also labeled with somatic CoT2 DNA (green) 

and the eliminated element Germ1 (white). B) An elimination anaphase from E. tridentatus, 

counter-labeled with E. tridentatus CoT2 DNA. C–D) Post-elimination interphase cells 

showing localization of eliminated DNA to micronuclei in C) P. marinus and D) E. 

tridentatus. E - H) Elimination anaphases from E. tridentatus, counter-labeled with P. 

marinus somatic CoT2 DNA (green). E) early/mid anaphase F) mid anaphase G,H) late 

anaphase.
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