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Abstract

Background—Prior studies have reported differences in lumbo-pelvic kinematics during a trunk 

forward bending and backward return task between individuals with and without chronic low back 

pain; yet, the literature on lumbo-pelvic kinematics of patients with acute low back pain is scant. 

Therefore, the purpose of this study was set to investigate lumbo-pelvic kinematics in this cohort.

Methods—A case-control study was conducted to investigate the differences in pelvic and 

thoracic rotation along with lumbar flexion as well as their first and second time derivatives 

between females with and without acute low back pain. Participants in each group completed one 

experimental session wherein they performed trunk forward bending and backward return at self-

selected and fast paces.

Findings—Compared to controls, individuals with acute low back pain had larger pelvic range of 

rotations and smaller lumbar range of flexions. Patients with acute low back pain also adopted a 

slower pace compared to asymptomatic controls which was reflected in smaller maximum values 

for angular velocity, deceleration and acceleration of lumbar flexion. Irrespective of participant 

group, smaller pelvic range of rotation and larger lumbar range of flexion were observed in 

younger vs. older participants.
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Interpretation—Reduced lumbar range of flexion and slower task pace, observed in patients 

with acute low back pain, may be the result of a neuromuscular adaptation to reduce the forces and 

deformation in the lower back tissues and avoid pain aggravation.

Keywords

Acute low back pain; Forward bending and backward return; Lumbo-Pelvic Kinematics; Age and 
motion pace effects

1. INTRODUCTION

Low back pain (LBP) has been suggested to be the leading cause of disability, ahead of 290 

other health related conditions (Buchbinder et al., 2013). In the United States ~ 80% of 

people are affected by LBP at some point during their lifetime; with an estimated annual 

healthcare expenditure of ~ $100 billion (Hart et al., 1995; Katz, 2006). The lack of clarity 

in mechanisms driving pain presents challenges to the management of LBP. In only ~10% of 

LBP cases (i.e., specific LBP) the pain can be related to severe spinal pathology such as 

infection or tumor (Krismer and Van Tulder, 2007).

The lower back mechanical environment, specifically forces and deformations experienced 

by lower back tissues, has an important causal role in occurrence of LBP (Adams et al., 

2006; Marras, 2000); thus, a developed understanding of differences in the lower back 

mechanical environment between individuals with and without LBP is imperative to 

characterize the mechanisms driving various types of LBP. Although studies have been 

conducted to delineate such differences, there are limitations to these studies. Direct in-vivo 

assessment of the lower back mechanical environment is not currently possible due to 

technical limitations, and ethical considerations associated with the use of the existing 

measurement techniques (Ledet et al., 2005; Winkelstein et al., 2002). Instead, indirect in-

vivo measures of the lower back mechanical environment, like trunk kinematics and 

electromyography of trunk muscles, have been used by researchers (Cholewicki et al., 1995; 

Granata and Marras, 1993; Kim et al., 2013; McClure et al., 1997; Wong and Lee, 2004). 

These indirect measures have also been used by clinicians to assess the patient’s status and 

guide the treatment (Carpes et al., 2008; Rittweger et al., 2002; Scannell and McGill, 2003). 

Findings from studies involving indirect measures of the lower back mechanical 

environment, particularly kinematic measures, have considerable variability and are not 

conclusive. Several studies have reported restrictions on the relative contribution of lumbar 

flexion to trunk rotation in patients with LBP vs. controls (Porter and Wilkinson, 1997; 

Wong and Lee, 2004). In contrast, other studies have found no differences or larger 

contribution of lumbar flexion to the forward bending in a LBP cohort (McClure et al., 

1997). The reason for such inconsistency in results may be in part due to differences in the 

clinical history, LBP subtypes and personal characteristics of the participants. It has been 

reported that in only 54% of earlier studies of lumbo-pelvic kinematics were the patient and 

control groups comparable for age, gender and body mass index (BMI) (Laird et al., 2014). 

Furthermore, most of prior studies included patients with chronic LBP and it is not clear 

whether their finding can be generalized to patients with acute LBP. Although only ~ 10 % 

of patients with acute LBP develop chronic LBP (Andersson, 1999; Carey et al., 2000; 
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Majid and Truumees, 2008; Waddell, 2004), treatment of LBP has been suggested to be 

more effective before the chronic stage (Waddell and Burton, 2001).

The objective of this study was to investigate differences in the lower back mechanical 

environment, using measures of trunk kinematics, between females with and without acute 

LBP. Although participants’ ages were comparable between the two groups in our study, we 

included age as an independent variable to further explore any group by age interaction. We 

included the age-related analysis because of our recent findings of age-related differences in 

lower back biomechanics (Shojaei et al., 2016; Shojaei et al., 2015b; Vazirian et al., 2015). 

We also investigated the effects of task pace (i.e., fast versus self-selected) on lower back 

kinematics. We hypothesized that, in an effort to reduce the forces and deformation in the 

lower back tissues, and hence avoid pain aggravation due to mechanical stimulation, patients 

with acute LBP would display reduced lumbar range of flexion compared to the 

asymptomatic controls during the forward bending and backward return task. We further 

hypothesized that such reduction of lumbar flexion in patients would affect the task 

performance, reflected in smaller thoracic range of rotation, or/and result in larger 

compensatory pelvic range of rotation. We similarly hypothesized that patients would make 

an effort to decrease the forces and deformations in their lower back tissues by adopting a 

slower pace as compared to asymptomatic controls that would be reflected in smaller values 

of the maximum angular velocity, deceleration and acceleration of lumbar flexion. Whether 

the hypothesized differences between patients and controls would be magnified with aging 

(i.e., interaction of group and age) was unclear and left as an exploratory objective of this 

study.

2. METHODS

Study Design

A case-control study design was used wherein patients with acute LBP (health care provider 

diagnosed LBP ≤ 3 months) were recruited to complete a set of experimental procedures that 

had been used in a baseline study involving asymptomatic individuals between 20 and 70 

years old (Shojaei et al., 2015a; Vazirian et al., 2015). Upon completion of data collection 

from the patients with LBP, the data from all participants in the baseline study who were 

gender matched and were within the same age range (i.e., 40–70 years old) were extracted 

for comparison with the data collected from the patients.

Participants

The patients with acute LBP were referred to the study by their primary physician, whereas 

the asymptomatic controls were recruited via advertisement. The final sample included a 

group of 19 asymptomatic subjects (controls) and a group of 19 patients with acute LBP 

(cases). To minimize the effects of gender on the mechanical behavior of the lower back 

(Nachemson et al., 1979; Shojaei et al., 2016; Sullivan and Dicknison, 1994) and 

considering that the incidence of LBP is higher among females (Manchikanti, 2000), we 

only recruited female participants in this study and accordingly only used data obtained from 

females from the baseline study. There were no age, stature, body mass, or BMI differences 

(Table. 1) between the two groups (p=0.05). Exclusion criteria for asymptomatic controls 
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were any history of LBP, self-reported musculoskeletal disorders or other medical conditions 

that might have substantially influenced the experimental results (Shojaei et al., 2015a; 

Vazirian et al., 2015). All asymptomatic controls also reported engaging in regular, moderate 

levels of physical activity. Patients with acute LBP (e.g., ≤ 3 months) were excluded if they 

had significant cognitive impairment, intention to harm themselves or others, or substance 

abuse (Borson et al., 2000; Brown and Rounds, 1994; Ewing, 1985; Radloff, 1977). All 

participants in these studies completed an informed consent procedure approved by the 

University of Kentucky Institutional Review Board before any screening procedure.

Experimental Procedures

Participants completed two trunk forward bending and backward return tasks while standing 

on the center of a force platform (AMTI, Watertown, MA). During the first task participants 

were instructed to stand in an upright posture for five seconds, bend forward using a self-

selected pace to reach their maximum trunk rotation (without excessively aggravating their 

LBP), hold their maximum trunk rotation for 5 seconds, extend back up to the original 

upright position, and stand again in an upright posture for five seconds. For the second task, 

participants performed the same task but as fast as possible and without a pause at the 

maximum trunk rotation. Prior to the conduct of these tasks, the desired method of 

performing them, wherein knees were kept extended throughout the tasks and arms were 

hanged in front at full flexed posture, was demonstrated to participants by one of research 

personnel. All participants completed the task with a self-selected pace prior to the task with 

a fast pace. Each task was repeated three times. During these tasks, trunk kinematics were 

tracked using wireless Inertial Measurement Units (IMUs; Xsens Technologies, Enschede, 

Netherlands) attached superficial to the T10 and the S1 spinous process (Shojaei et al., 

2015b). The sampling rate of the inertial units was 50 Hz. Sensors placed on the T10 and the 

S1 were assumed to measure rotations of pelvis and thorax as rigid bodies whereas the 

difference between these two rotations (i.e., relative rotation of thorax with respect to the 

pelvis) was considered to represent lumbar flexion/extension as a joint.

Data analysis

The Xsens MTw™ system is a miniature wireless inertial measurement unit system 

incorporating 3D accelerometers, gyroscopes, magnetometers, and a barometer. We have 

tested the accuracy of our sensors and the reliability of using the Xsens system in our lab by 

a unique testing fixture (Shojaei et al., 2016) which enables us to generate known rotation 

with <1 deg accuracy. The mean (SD) accuracy of our sensors is 0.5 (0.3) deg and the 

reliability of using the Xsens system in our lab, quantified using intraclass correlation 

coefficients, is excellent (i.e., ~1.000). Using the rotation matrices extracted from the IMUs, 

rotation quaternions (a rotation about a unit vector n through an angle α for each IMU) were 

obtained and used to calculate the pelvic and thoracic rotations in the sagittal plane 

(Roetenberg et al., 2009). The initial standing posture was regarded as the reference posture. 

At each time point, lumbar flexion was calculated from the difference between the thoracic 

and pelvic rotations (Fig. 1 and Fig. 2). Angular velocity and acceleration of the lumbar 

spine during the fast paced tasks were obtained using a successive numerical differentiation 

procedure (Fig. 3). To remove high-frequency noise, specifically amplified by 
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differentiating, the kinematic raw data were filtered at 6Hz using a fourth order, 

bidirectional, Butterworth filter (Winter, 2009; Kristianslund et al., 2012).

Statistical Analysis

For each task, pelvic and thoracic ranges of rotation as well as lumbar range of flexion were 

extracted for statistical analyses. Specifically, range of rotation/flexion was considered to be 

the maximum recorded rotation/flexion with respect to its value at reference posture. The 

peak values of angular velocity, acceleration (i.e., increase in absolute value of velocity), and 

deceleration (i.e., decrease in absolute value of velocity) of the lumbar spine during the 

forward bending and backward return phases of the task with fast pace also were extracted 

for statistical analyses. For each variable, the mean value across the three trials was used. All 

statistical procedures were conducted in SPSS (IBM SPSS Statistics 22, Armonk, NY, 

USA), and in all cases a p value smaller than 0.05 was considered as statistically significant. 

One set of mixed-model analysis of variance (ANOVA) tests were conducted on the 

dependent variables of pelvic and thoracic range of rotations and lumbar range of flexion. 

The between subjects factors were group (with and without LBP) and age. The within 

subjects factor was motion pace (self-selected and fast). To be consistent with our earlier 

baseline study, the age factor was considered to have three levels each related to a decade of 

life between 40 and 70 years (i.e., 40–50, 50–60, 60–70). A second set of mixed-model 

ANOVA tests were conducted to test for the effects of group, age, and motion phase on peak 

values of lumbar angular velocity, angular acceleration, and deceleration during the as fast as 

possible condition. The between subjects factors were group and age. The within subjects 

factor was motion phase (forward bending or backward return). Significant ANOVA tests 

were followed by post hoc tests using Tukey’s procedure.

3. RESULTS

Thoracic range of rotation

While there were no significant differences (Table. 2) in the thoracic range of rotation 

between patients (104.6° (13.6°)) and controls (99.1° (13.4°)), the thoracic range of rotation 

was larger during tasks with fast (105.3° (12.9°)) vs. self-selected (98.4° (13.7°)) paces. 

Furthermore, there was no age-related difference (Table. 2) in thoracic range of rotation (40–

50: 99.7° (12.7°); 50–60: 108.0° (11.2°); 60–70: 97.4° (14.6°)). There was also no 

significant interaction effects of independent variables on the thoracic range of rotation 

(Table. 2).

Pelvic range of rotation

Pelvic range of rotation was larger in patients (61.6° (12°)) vs. controls (43.4° (14.5°)) and 

was larger in tasks with fast (56.7° (15.2°)) vs. self-selected (48.3° (16°)) pace (Table. 2). 

The effect of age also was significant (Table. 2) such that pelvic range of rotation was larger 

in the two older groups compared to the younger group (Fig. 4). There was no significant 

interaction effects of independent variables on the pelvic range of rotation (Table. 2)
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Lumbar range of flexion

Lumbar range of flexion was smaller in patients (43° (11.2°)) vs. controls (55.7° (11.3°)) 

and was smaller during tasks with a fast (48.6° (13.3°)) vs. self-selected (50.1° (12.5°)) pace 

(Table. 2). The effect of age on lumbar range of flexion was significant with a smaller range 

of flexion in the oldest vs. youngest group (Table. 2 and Fig. 4).

Lumbar angular velocity, acceleration, and deceleration during the task with fast pace

Peak angular velocity of lumbar flexion was higher in controls (94.7 deg/sec (25.9 deg/sec)) 

than in patients (65.5 deg/sec (31 deg/sec)) and was higher during the forward bending (84.7 

deg/sec (33 deg/sec)) vs. backward return (78 deg/sec (28 deg/sec)) phase of the motion 

(Table. 3). There was a significant three-way interaction of group × motion phase × age on 

lumbar angular deceleration (Table. 3). Specifically, during the forward bending phase, the 

effect of group was significant (F=9.5, p=0.009) on peak lumbar deceleration of individuals 

in the 60–70 year old group such that the deceleration was larger in controls (259.8 deg/sec2 

(89.2 deg/sec2)) than patients (137.4 deg/sec2 (55.2 deg/sec2)) (Fig. 5). Moreover, during the 

backward return phase, the effect of group was significant (F=22.5, p<0.000) on peak 

lumbar deceleration of individuals in the 50–60 year old group such that the deceleration 

was larger in controls (291.4 deg/sec2 (69.3 deg/sec2)) than patients (140.2 deg/sec2 (38.3 

deg/sec2)) (Fig. 5). Similarly, there was a significant (Table. 3) interaction of group × motion 

phase × age on the lumbar angular acceleration. Specifically, for the forward bending phase 

of the motion, the effect of group was significant (F=5.56, p=0.036) for individuals in the 

60–70 year old group with larger lumbar acceleration in controls (213.2 deg/sec2 (73.9 

deg/sec2)) vs. patients (132.2 deg/sec2 (53.0 deg/sec2)) (Fig. 5). Furthermore, for the 

backward return phase of the motion, the effect of group was significant (F=8.95, p=0.011) 

for individuals in the 50–60 years old group with larger lumbar acceleration in controls 

(265.3 deg/sec2 (79.0 deg/sec2)) vs. patients (148.0 deg/sec2 (67.7 deg/sec2)) (Fig. 5)

4. DISCUSSION

The purpose of this study was to investigate differences in the lower back mechanical 

environment, using measures of trunk kinematics, between a group of asymptomatic 

controls and a group of patients with acute LBP. The thoracic range of rotation was similar 

in both groups. However, the contribution of pelvic rotation and lumbar flexion to range of 

thoracic rotation was, respectively, larger and smaller among patients compared to controls. 

These findings confirmed our first hypothesis. Furthermore, as we hypothesized, patients 

adopted a slower pace compared to asymptomatic controls which was reflected in smaller 

values of the maximum angular velocity, deceleration and acceleration of lumbar flexion. 

While the main effect of age was significant on lumbo-pelvic kinematics with smaller pelvic 

rotation and larger lumbar flexion in younger vs. older population, there was not any 

interaction effect of group × age on lumbo-pelvic kinematics indicating that aging similarly 

affects individuals with and without acute LBP.

A fair number of studies have investigated the effects of LBP on lumbo-pelvic kinematics, 

however, only a few have included patients with acute LBP (Wong and Lee, 2004). Our 

finding of smaller lumbar range of flexion in patients with acute LBP is consistent with 
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those reported by Wong and Lee (2004). However, due to different methods of measurement 

between the two studies, we were not able to compare pelvis range of rotation, though, they 

reported smaller hip flexion (vs. larger pelvis rotation in our study) in patients with acute 

LBP (Wong and Lee, 2004). Considering a population with comparable personal 

characteristics and accounting for the effects of age and motion pace, our findings 

demonstrated clear differences (Table. 2) in lumbo-pelvic kinematics between individuals 

with and without acute LBP. In studies with a more heterogeneous sample where the 

confounding variables are not considered in the analysis, it is not clear whether the reported 

differences in kinematics were purely due to LBP or other variables such as personal or task 

characteristics (Intolo et al., 2009; McGregor and Hughes, 2000; Shojaei et al., 2015b; 

Sullivan and Dicknison, 1994). Therefore, our findings might have better isolated and 

highlighted the likely LBP-related differences in lower back kinematics.

The smaller contribution of lumbar flexion to thoracic rotation, adopted by patients with 

acute LBP, may be an attempt to reduce tension in posterior elements of the ligamentous 

spine (posterior longitudinal ligaments, posterior aspect of annulus fibrosus, and facet 

capsule) that have embedded pain sensitive nerve endings (Adams et al., 2006). These 

results are also consistent with the reported persistent activation of the lumbar erector spinae 

muscles and the absence of flexion-relaxation phenomenon among patients with LBP which 

has been suggested to be an attempt to stabilize injured spinal structures and protect them 

from further injury (Colloca and Hinrichs, 2005). In other word, smaller lumbar flexion is 

associated with smaller passive contribution of lower back tissues to spine equilibrium; a 

difference in contribution that should be offset by increase in active muscle contribution.

The smaller lumbar contribution in patients with LBP compared to controls did not affect the 

task performance; both groups displayed a similar amount of thoracic rotation. The similar 

amount of thoracic movement was the result of using more pelvic rotation by patient with 

LBP compared to the controls. Large pelvic rotations impose higher shearing demands on 

the lower back (Shojaei et al., 2015b) and are also associated with projection of a larger 

shearing component of internal muscle forces on the spine (Arjmand and Shirazi-Adl, 2005). 

Therefore, an increased level of contact force on facet joints of the lumbar spine could be the 

negative cost of the adopted posture displayed by patients with acute LBP.

Earlier studies on lumbo-pelvic kinematics during forward bending and backward return 

mostly have been conducted under stationary conditions (imaging studies) (Jensen et al., 

1994; Pearcy et al., 1984) or slow and self-selected paces (Kim et al., 2013; McClure et al., 

1997; Wong and Lee, 2004). Including a faster motion pace enabled us to better delineate 

differences in biomechanics between people with acute LBP and asymptomatic controls. 

Specifically, while the thoracic rotation increased in the fast vs. self-selected pace, the 

lumbar flexion decreased. Such posture adoption is probably a safer strategy for reducing 

stress in the lower back tissues because of the viscoelastic behavior and the inertial demand 

of fast tasks (Bazrgari et al., 2008).

Higher order lumbo-pelvic kinematics have been suggested to be reliable objective measures 

of the trunk motion (Aluko et al., 2011; Kroemer et al., 1990) and can well distinguish 

patients with chronic LBP from asymptomatic controls (Marras et al., 1993). Similar to the 
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study by Marras et al. (1993), where much larger difference was found in lumbar angular 

acceleration than angular velocity and flexion between patients with chronic LBP and 

controls (i.e., 5 degree, 49 deg/sec, and 251 deg/sec2 differences in the respective values of 

lumbar flexion, lumbar angular velocity, and lumbar angular acceleration), greater 

differences in angular acceleration were found in the present study (i.e., 12.7 deg, 29.2 deg/

sec, and >81 deg/sec2 differences in the respective values of lumbar flexion, lumbar angular 

velocity, and lumbar angular acceleration.

Although we didn’t control for intersubject variability such as pain level, LBP related 

disability, fear of movement, and general health status, lumbo-pelvic kinematics were clearly 

different between LBP patients and asymptomatic controls. However, it remains unclear 

whether such kinematic differences are the cause or consequence of LBP. Such a research 

question can be addressed in future studies through conducting longitudinal studies. The 

observed kinematic differences suggest likely differences in lower back biomechanics 

between people with acute LBP and people without LBP, however, a better understanding 

can be achieved regarding altered neuromuscular strategy using model based estimations of 

trunk muscle forces and spinal loads (Shojaei et al., 2015a). Finally, our results on age-

related differences in lumbo-pelvic kinematics were consistent with our earlier findings, 

however, the potential inferential errors due to small sample size should be kept in mind 

when interpreting these results.
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HIGHLIGHTS

• The literature on trunk kinematics of patients with acute low back pain is 

scant

• Trunk kinematics in patients with acute low back pain and controls were 

quantified

• Patients had larger pelvic range of rotations and smaller lumbar range of 

flexions

• The adopted trunk kinematics by patients might be a strategy to avoid pain
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Figure 1. 
Definition of the pelvic and thoracic rotations as well as the local coordinate system of 

IMUs. Y axis is normal to the plane (the right-hand rule). Lumbar flexion is the difference 

between the thoracic and pelvic rotations.
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Figure 2. 
Typical examples of pelvic and thoracic rotations as well as lumbar flexion for the tasks with 

a self-selected pace (top) and a fast pace (bottom).
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Figure 3. 
Typical examples of lumbar angular velocity (top) and acceleration (bottom). To facilitate 

automatic extraction of maximum values for lumbar acceleration (i.e., increase in absolute 

value of velocity) and deceleration (i.e., decrease in absolute value of velocity), the second 

derivative of lumbar flexion (i.e., containing acceleration and deceleration) was obtained 

through the numerical differentiation of the absolute values (i.e., positive only) of lumbar 

angular velocity.
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Figure 4. 
Age-related differences in pelvic range of rotation (top), and lumbar range of flexion 

(bottom). Error bars indicate standard deviations.
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Figure 5. 
The age × group × motion phase interactions in peak lumbar angular deceleration (i.e., 

decrease in absolute value of velocity) and acceleration (i.e., increase in absolute value of 

velocity). Error bars indicate standard deviations.
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Table 1

Mean (SD) participants characteristics

Group Controls Patients t-value p-values

Age (years) 56 (9) 58 (9) 0.723 0.474

Stature (m) 1.64 (5) 1.63 (7) −0.592 0.557

Body mass (kg) 70(12) 76(17) 1.553 0.130

BMI 25.7(4.1) 27.5(4.6) 1.608 0.117
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Table 2

Summary of statistics for the effects of group (with and without LBP), motion pace (self-selected and fast) and 

age (40–50, 50–60, and 60–70) on pelvic and thoracic ranges of rotation and lumbar range of flexion.

Thoracic
Rotation

Pelvic
Rotation

Lumbar
Flexion

Group
F 1.40 17.34 10.69

p 0.246 <0.001 0.003

Pace
F 24.87 61.67 4.97

p <0.001 <0.001 0.033

Age
F 2.43 3.70 3.58

p 0.104 0.036 0.039

Group × Pace
F 0.18 0.01 0.91

p 0.672 0.918 0.346

Group × Age
F 0.36 0.15 0.41

p 0.700 0.861 0.666

Age × Pace
F 0.84 0.24 1.19

p 0.442 0.789 0.317

Group × Age ×
Pace

F 0.84 0.37 1.57

p 0.441 0.691 0.223

Boldface indicates a significant effect
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Table 3

Summary of statistics for the effects of group (with and without LBP), motion phase (forward bending and 

backward return) and age (40–50, 50–60, and 60–70) on the maximum values of lumbar velocity, deceleration, 

and acceleration.

Lumbar
Velocity

Lumbar
Deceleration

Lumbar
Acceleration

Group
F 7.08 6.84 2.88

p 0.012 0.014 0.100

Age
F 1.89 1.50 1.13

p 0.168 0.238 0.337

Motion phase
F 8.81 13.19 2.69

p 0.006 0.001 0.111

Group × Age
F 0.30 0.34 0.56

p 0.741 0.714 0.575

Group × Motion
phase

F 1.49 2.04 9.76

p 0.231 0.163 0.004

Age × Motion
phase

F 2.83 1.95 4.64

p 0.074 0.159 0.017

Group × Age ×
Motion phase

F 2.86 6.86 4. 37

p 0.072 0.003 0.021

Boldface indicates a significant effect
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