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Abstract

Human mPGES-1 is recognized as a promising target for next generation of anti-inflammatory 

drugs. Although various mPGES-1 inhibitors have been reported in literature, few have entered 

clinical trials and none has been proven clinically useful so far. It is highly desired for developing 

the next generation of therapeutics for inflammation-related diseases to design and discover novel 

inhibitors of mPGES-1 with new scaffolds. Here, we report the identification of a series of new, 

potent and selective inhibitors of human mPGES-1 with diverse scaffolds through combined 

computational and experimental studies. The computationally modeled binding structures of these 

new inhibitors with mPGES-1 provide some interesting clues for rational design of modified 

structures of the inhibitors to more favorably bind with mPGES-1.
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A combined use of virtual screening and wet experimental activity assays has led to identification 

of new, potent and selective inhibitors of human mPGES-1 with diverse scaffolds.

Keywords

Prostaglandin; inflammation; selective inhibitor; inhibitor identification

Prostaglandin E2 (PGE2) is known as the principal proinflammatory prostanoid and plays an 

important role in nociception.[1] The biosynthesis[2] of PGE2 starts from arachidonic acid 

(AA) which is converted by cyclooxygenase COX-1 or COX-2 to prostaglandin H2 (PGH2).

[2] Then, PGH2 is converted to PGE2 by the prostaglandin E synthase (PGES) enzymes,[3] 

including microsomal PGES-1 (mPGES-1), an inducible enzyme.[4] It is known that 

mPGES-1 and COX-2 together[5, 6] play a key role in a number of inflammation-related 

diseases.[7–13] Hence, human mPGES-1 is recognized as a promising target for next 

generation of drugs to treat the inflammation-related diseases.[14]

There are a number of non-steroidal anti-inflammatory drugs (NSAIDs) available for current 

clinical practice. The available NSAIDs inhibit COX-1 and/or COX-2.[15] All of the 

available COX-1/2 inhibitors have significant adverse side effects.[16] The serious side 

effects led to withdrawal of rofecoxib (Vioxx), a selective COX-2 inhibitor. So, it is 

interesting to develop novel, improved anti-inflammatory drugs.[15] Through the action of 

the COX inhibitors, all prostaglandins downstream of PGH2 cannot be produced, resulting in 

a variety of problems. For example, blocking the production of prostaglandin-I2 (PGI2) will 

cause significant cardiovascular problems.[17] Inducible enzyme mPGES-1 is a more 

promising target for anti-inflammatory drugs, because the mPGES-1 inhibition will only 

block the PGE2 production without affecting PGI2 and other prostaglandins for their 

production, as confirmed by reported knock-out studies.[18, 19] Thus, mPGES-1 inhibitors 

are expected to retain the anti-inflammatory effect of COX inhibitors, but without the side 

effects caused by the COX inhibition.
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Although various mPGES-1 inhibitors have been reported in literature,[20–40] few have 

entered clinical trials[41] and none has been proven clinically useful so far due to various 

problems with the compounds themselves. It is highly desired for developing the next 

generation of therapeutics for inflammation-related diseases to design and discover new 

inhibitors of mPGES-1 with different scaffolds. Here, we report the identification of a set of 

new, potent and selective inhibitors of human mPGES-1 with various scaffolds through 

combined computational and experimental studies.

Our virtual screening was based on the X-ray crystal structure (PDB ID: 4BPM)[42] of 

human mPGES-1 and performed on the Development Therapeutics Program (DTP) Release 

4 compound library including ~265,000 compounds available at the National Cancer 

Institute (https://cactus.nci.nih.gov/download/nci/). The virtual screening procedure used to 

screen the compounds in the library is similar to that we previously used to identify small-

molecule inhibitors of various protein targets.[43, 44] First, the ~265,000 compounds were 

screened by performing receptor-rigid docking using AutoDock Vina,[45] leading to 

identification of top-100,000 compounds. Then, each of the top-100,000 compounds was 

further optimized using a four-step procedure (including 2,000 steps of energy-

minimization, 20 ps of molecular dynamic simulation, 4,000 steps of energy-minimization, 

and then Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) binding 

energy calculation using AMBER 12 software package)[46, 47] similar to the known 

binding estimation after refinement (BEAR) protocol.[48, 49] The top-40 compounds were 

selected according to the ascending order of the MM/PBSA binding energies.

The computationally selected 40 compounds were tested for their inhibitory activity against 

human mPGES-1. Our protocol for the protein preparation and in vitro activity assays were 

the same as what we described previously.[50–52] All of the 40 compounds were assayed 

first for their inhibitory activity at a concentration of 10 µM. Then, the most active 

compounds were tested further for the dose-dependent inhibition in order to determine their 

IC50 values (Table 1) against mPGES-1. Finally, the most promising compounds were also 

assayed for their inhibitory activities against COX-1/2 (mixed COX-1 and COX-2) in order 

to know their selectivity for mPGES-1 over COX-1/2. The COX-1/2 assays were performed 

by using the COX (ovine/human) Inhibitor Screening Assay Kit (Item No. 560131) ordered 

from Cayman Chemical Company (Ann Arbor, MI). According to the kit, the COX activity 

assay utilizes the competition between prostaglandins (PGs) and a PG tracer, i.e. a PG-

acetylcholinesterase (PG-AChE) conjugate, for a fixed amount of PG antiserum.[53, 54] 

Following the assay using the kit, we used a mixture of COX-1 and COX-2 (denoted as 

COX-1/2) with equal amount of each enzyme. The efficacies of tested compounds were 

determined as % inhibition against the COX enzymes at the concentration of 100 µM. All of 

the enzyme activity assays were carried out in triplicate.

According to the activity assays, all of the computationally selected 40 compounds showed 

significant inhibitory activity against human mPGES-1, with 10% to 100% inhibition at a 

concentration of 10 µM (see Table 1). Molecular structures of the most active compounds 

(top-7) are depicted in Figure 1, and those of the remaining compounds are provided in 

Supporting Information.
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Based on the activity data summarized in Table 1, compounds 1 to 7 at a concentration of 10 

µM inhibited the mPGES-1 activity by at least 75%. All of these compounds showed 

nanomolar IC50 values, 276 to 917 nM. Depicted in Figure 2 are their dose-response curves. 

The data in Table 1 also revealed that all of the top-7 compounds are highly selective for 

mPGES-1 over COX-1/2, as these compounds at a very high concentration (100 µM) 

showed no significant inhibition against COX-1 or COX-2, except for compound 6. Even for 

compound 6, the inhibition at 100 µM was only ~37%, suggesting that IC50 > 100 µM for 

compound 6 against COX-1/2.

Depicted in Figure 3 are the energy-minimized structures of human mPGES-1 binding with 

the top-7 compounds. In general, each of these compounds binds with the enzyme at the 

substrate-binding site and fit the binding site well. Figure 3(A) depicts the overall complex 

of the enzyme with 1, and Figure 3(B) shows the structural detail of the binding site, 

showing that the main scaffold of 1 binds very well with the hydrophobic groove of the 

substrate-binding site of mPGES-1. The extended hydrocarbon side chain has hydrophobic 

interaction with the protein environment.

As shown in Figure 3(C), 2,4-dinitrobenzyl group of compound 2 stays in the bottom of the 

substrate-binding pocket of mPGES-1. The thiazole and dichlorobenzyl groups have the 

hydrophobic interaction with the protein. Compound 3 fits very well into the substrate-

binding site of mPGES-1, as seen in Figure 3(D) showing a hydrogen bond (HB) between 

the NH group (including N9) and the hydroxyl oxygen on the side chain of residue T131. 

Compound 4 is huge in size, but it fits well in the substrate-binding site as seen in Figure 

3(E). It is interesting to know that the binding site of the enzyme can accommodate a ligand 

as large as compound 4.

As shown in Figure 3(F), there are two HBs between the protein and compound 5. One HB 

is between N22 of 5 and the hydroxyl group of S127 side chain, and the other forms 

between and O12 of 5 and the hydroxyl group of T131 side chain. In addition, the benzyl 

rings of 5 have the hydrophobic interaction with the protein.

Figure 3(G) shows that, unlike the other compounds discussed above, compound 6 binds 

with the protein on the upper part of the substrate-binding groove of mPGES-1, with a HB 

between N7 of 6 and the hydroxyl group of S127 side chain. As seen in Figure 3(H), 

compound 7 occupies the substrate-binding pocket with both of the 

phenyltriazolothiadiazole rings. N30 of compound 7 forms a HB with the hydroxyl group of 

Y130 side chain.

In summary, through structure-based virtual screening followed by in vitro activity assays, 

we have identified a series of new, potent and selective inhibitors of human mPGES-1 with 

diverse scaffolds. In addition, the diverse binding structures of these highly selective 

inhibitors with mPGES-1 depicted in Figure 3 provide some interesting clues concerning 

how to design modified structures of the inhibitors to more favorably bind with mPGES-1. 

Based on the structures in Figure 3, each inhibitor has some unique interaction with the 

protein. A more potent inhibitor/ligand could be designed to have more of these favorable 

protein-ligand interactions.
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Figure 1. 
Molecular structures of the top-7 inhibitors of human mPGES-1 identified. Some atoms with 

the numbering as superscripts are mentioned in the text for convenience of the discussion.
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Figure 2. 
Dose-dependent inhibition of human mPGES-1 by compounds 1 to 7: plots of the remaining 

enzyme activity vs the inhibitor concentration.
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Figure 3. 
Energy-minimized structures of human mPGES-1 binding with the identified inhibitors (1 to 

7 depicted in Figure 1): (A) and (B) Compound 1; (C) 2; (D) 3; (E) 4; (F) 5; (G) 6; (H) 7. 

The protein is shown in cyan cartoon, and the key residues are shown in green ball-and-stick 

models. The ligand is shown in orange ball-and-stick models. Important polar interactions 

are shown in dashed lines.
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Table 1

In vitro inhibitory activities of the newly identified mPGES-1 inhibitors.

Com-
pound

%Inhibition
of mPGES-1 at
10 µMa

IC50 (nM) for

mPGES-1b
%Inhibition
of COX-1/2 at
100 µMc

1 99 276 ± 60 14 ±13

2 98 284 ± 81 8 ± 20

3 99 370 ± 79 1 ± 3

4 100 439 ± 84 9 ± 22

5 94 664 ± 106 0 ± 3

6 100 889 ± 186 37 ± 4

7 75 917 ± 99 15 ± 2

8 71 N.D. N.D.

9 70 N.D. N.D.

10 70 N.D. N.D.

11 69 N.D. N.D.

12 65 N.D. N.D.

13 65 N.D. N.D.

14 64 N.D. N.D.

15 59 N.D. N.D.

16 59 N.D. N.D.

17 59 N.D. N.D.

18 57 N.D. N.D.

19 53 N.D. N.D.

20 50 N.D. N.D.

21 49 N.D. N.D.

22 49 N.D. N.D.

23 48 N.D. N.D.

24 47 N.D. N.D.

25 46 N.D. N.D.

26 46 N.D. N.D.

27 46 N.D. N.D.

28 44 N.D. N.D.

29 43 N.D. N.D.

30 40 N.D. N.D.

31 37 N.D. N.D.

32 36 N.D. N.D.

33 32 N.D. N.D.

34 30 N.D. N.D.

35 29 N.D. N.D.

36 28 N.D. N.D.

37 26 N.D. N.D.

38 25 N.D. N.D.
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Com-
pound

%Inhibition
of mPGES-1 at
10 µMa

IC50 (nM) for

mPGES-1b
%Inhibition
of COX-1/2 at
100 µMc

39 15 N.D. N.D.

40 10 N.D. N.D.

a
The % inhibition of the compound at a concentration of 10 µM against human mPGSE-1.

b
The determined IC50 against human mPGES-1 based on the data depicted in Figure 2.

c
The % inhibition of the compound at a concentration of 100 µM against the COX-1/2 (mixed COX-1 and COX-2). The enzyme mixture contained 

equal amounts of COX-1 and COX-2 in terms of their enzyme activities. In this way, when a compound can significantly inhibit either COX-1 or 
COX-2, it will show the significant inhibitory effects against the mixed COX-1 and COX-2.
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