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Abstract

Starting from a known non-specific agonist (1) of nicotinic acetylcholine receptors (nAChRs), 

rationally guided structural-based design resulted in the discovery of a small series of 5′-
phenyl-1,2,5,6-tetrahydro-3,3′-bipyridines (3a – 3e) incorporating a phenyl ring off the pyridine 

core of 1. The compounds were synthesized via successive Suzuki couplings on a suitably 

functionalized pyridine starting monomer 4 to append phenyl and pyridyl substituents off the 3- 

and 5-positions, respectively, and then make subsequent modifications on the flanking pyridyl ring 

to provide target compounds. Compound 3a is a novel antagonist which is highly selective for 

α3β4 nAChR (Ki = 123 nM) over the α4β2, and α7 receptors.

Graphical Abstract

Structure-based molecular design starting from a known non-specific agonist (1) of nicotinic 

acetylcholine receptors has generated a novel antagonist (3a) that is a reasonably potent and highly 

selective antagonist for the α3β4 receptor over α4β2 and α7.

*Corresponding authors. showalh@umich.edu (H.D.S.) or zhan@uky.edu (C.-G.Z.). 
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Introduction

Nicotinic acetylcholine receptors (nAChRs) are a family of well-studied ligand-gated ion 

channels that directly mediate fast signal transmission at chemical synapses through binding 

with neurotransmitter molecules.[1–5] This family of receptors consists of various subtypes, 

including α3β4, α4β2, and α7 etc. in the central nervous system (CNS). Abnormal opening-

closing of these ion channels contributes to neurodegenerative disorders, resulting in several 

severe diseases, including Alzheimer’s disease, Parkinson’s disease, dyskinesias, Tourette’s 

syndrome, schizophrenia, attention deficit disorder, anxiety, pain, and nicotine addiction.[2, 

6–13] Hence, there is a need to develop subtype-selective agonists/antagonists of nAChRs as 

potential therapeutic agents.

For the rational design of potent agonists or antagonists of nAChRs, one first needs to 

understand the detailed three-dimensional (3D) structures and physiological functions of 

nAChRs. According to various reported X-ray diffraction and molecular modeling studies,

[14–22] a ligand binding to the nAChR receptor in the acetylcholine (ACh)-binding site can 

be either an agonist or an antagonist, because the receptor can exist in the open- or closed-

channel state.[19] An agonist can more favorably bind with the open-channel state of the 

receptor, whereas an antagonist can more favorably bind with the closed-channel state.[19] 

Various agonists and antagonists of nAChRs have been reported in the literature. However, 

compared to agonists, there are relatively few reported antagonists of nAChRs, particularly 

for α3β4, α4β2, and α7 subtypes.[6, 10, 13, 23] We are particularly interested in subtype-

specific antagonists of α3β4 and α4β2 nAChRs, and toward that end set out to design and 

synthesize new antagonists of these nAChRs as potential treatments for drug addiction.

In this study, we tested the feasibility of converting a known agonist to an antagonist by 

modifying the agonist structure. Our strategy is based on a previous demonstration[19] that 

an agonist may bind to both the open- and closed-channel states of the nAChR, but with a 

relatively higher binding affinity to the open state. If we could appropriately modify the 

agonist structure in such a way that it no longer fits the binding pocket of the open-channel 

state, but still fits the binding pocket of the closed state, then it could become an antagonist.

Compound 1, depicted in Figure 1, is a known non-specific agonist of nAChRs in rat brain 

membranes (with Kd = ~2.2 nM).[24, 25] According to our modeling inspection using the 

3D model of the open-channel structures[19] of α3β4, α4β2, and α7 nAChRs, compound 2 
(modified from compound 1 with a phenyl ring attached to the pyridine ring) would not fit 
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the binding pocket of the open-channel state of any of the above three receptors. But it might 

still fit the binding pocket of the closed-channel state. To test this hypothesis, we targeted the 

synthesis of five 5′-phenyl-1,2,5,6-tetrahydro-3,3′-bipyridine analogues (3a – 3e, Figure 1) 

related to compound 2 to determine whether we could identify a new antagonist. Our 

decision to focus initially on 2′-fluoropyridines rather than 2′-chloropyridine 2 related to 

their ease of synthesis (vide infra).

Our strategy toward constructing the novel 5′-phenyl-1,2,5,6-tetrahydro-3,3′-bipyridine core 

was to carry out successive Suzuki couplings on a suitably functionalized pyridine starting 

monomer to append desired aromatic substituents at the 3- and 5-positions, and then make 

subsequent modifications on the flanking 5-pyridyl ring to provide target compounds 

(Scheme 1). Our decision to start with the core 5-bromo-2-fluoropyridine-3-boronic acid (4) 

rather than the 2-chloro congener (toward securing analogues of 2) was predicated on the 

assumption that the second-stage Suzuki coupling would have been highly unselective. The 

initial coupling of commercially available boronic acid 4 with phenyl halides (iodo, bromo) 

to provide 3-(phenyl-substituted)pyridyl intermediates 5a–5d was carried out by a 

modification of a literature procedure [26]. Yields were poor to modest (16 – 37%) with 

TLC showing the presence of multiple products, likely due to competitive palladium-

catalyzed hetero- and homo bimolecular coupling side reactions. A second stage Suzuki 

coupling of 5a–5d with pyridine-3-boronic acid under similar conditions proceeded much 

more cleanly to give 3,3′-bipyridine products 6a–6d in 71 – 93 % yield. Two-step 

elaboration of these to target 1-methyl-1,2,5,6-tetrahydro-3,3′-bipyridine derivatives 3a – 3d 
was achieved by following a literature procedure with close precedence [27]. Thus, 

treatment of 6a – 6d with excess iodomethane in acetone resulted in selective methylation of 

the flanking pyridine ring to give 7a – 7d in 72 – 100% yields. Subsequent reduction of 

these with sodium borohydride in ethanol then gave target compounds 3a – 3d in 35 – 85% 

yields as free bases. These were then converted to hydrochloride salts for biological testing. 

Further modification of 3a with concentrated HCl utilized a literature procedure [28] to 

provide 6′-pyridinol congener 3e in 53 % yield. Complete experimental procedures can be 

found in Supplemental Materials.

Calculated lipophilicity (clogP), topological polar surface area (TPSA), and logBB-derived 

values provide information as to the potential of a compound for development as a 

pharmacotherapy for treating CNS disorders. These molecular descriptors were calculated 

for compounds 1, 2 3a–3e, as well as reference compounds nicotine and epibatidine (Table 

1). In general, successful drugs used for treating CNS disorders have a clogP in the range 2–

4[29], TPSA less than 76 Å[30] and logBB greater than −1[31]. All the compounds have 

clogP values (2.08 – 4.04) within the range of CNS drugs, and run higher than the reference 

compounds nicotine and epibatidine. TPSA values (16.1 – 58.6 Å) and logBB values (−0.38 

– 0.51) also meet the criteria of successful CNS drugs and except for 3d and 3e are higher 

than for the reference compounds (0.04 – 0.06). All compounds have molecular weight (< 

400 daltons) that predict for good BBB penetration.

Of the five analogues (3a–3e) synthesized, 3a should be the most selective according to our 

previously reported molecular modeling and docking protocols.[19] This is because the 

modeling suggested that compound 3a can reasonably fit the binding pocket of the closed-
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channel state of α3β4 nAChR, but not α4β2 or α7 nAChR. None of these analogues 

appeared to fit the binding pocket of the open-channel state of any receptor examined (α3β4, 

α4β2, α7). Hence, we proposed that compound 3a should be a selective antagonist of the 

α3β4 receptor. In the modeled binding structure of α3β4 nAChR with compound 3a 
(depicted in Figure 2), 3a stays on the interface between an α3 subunit and a β4 subunit in 

the usual agonist-binding site, with the protonated amine group of 3a interacting with the 

aromatic residues αY93 (i.e., Y93 residue of the α3 subunit), αY190, αW149, and βW54 

(i.e., W5 residue of the β4 subunit). The F atom of 3a is close to the aromatic sides of 

αY197 and αW149. The phenyl ring of 3a is packed with the hydrophobic side chains of 

residues βI108, βL116, and βL118 from β4 subunit and, hence, any hydrophilic substitution 

on the p- or m-position of the phenyl ring would be incompatible with the hydrophobic 

residues nearby.

The insights from molecular modeling were tested by carrying out electrophysiological 

experiments on compound 3a with α3β4, α4β2, and α7 nAChRs using OpusXpress 6000A 

(Molecular Devices, Union City, CA), as we had done previously.[18, 32] OpusXpress is an 

integrated system that provides automated impalement and voltage clamp of up to eight 

oocytes in parallel (see Supplementary Information for complete experimental methods). 

First, we tried to detect possible agonist activity of compound 3a at a concentration of 100 

μM for α3β4, 30 μM for α4β2, and 60 μM for α7 as compared with 100 μM for 

acetylcholine (ACh) as a control response. The data were normalized to the corresponding 

control ACh responses, showing no significant agonist activity for any of the receptors 

tested.

Further, electrophysiological experiments were performed to test the antagonist activity 

against the nAChR receptors with ACh at the same concentrations of the three receptors 

specified above. The data revealed that at a concentration of 100 μM, compound 3a 
significantly antagonized the α3β4 receptor, but showed no significant antagonist activity 

against the α4β2 or α7 receptors. With this finding, we ran a dose-response curve for 

compound 3a against the α3β4 receptor at 100 μM ACh, calculating an IC50 = 20 ± 1 μM 

(Figure 3). Hence, our data show that structural modification of the known agonist 1 has 

indeed resulted in the discovery of an α3β4 antagonist (3a) in vitro.

It should be noted that, in general, s a generated IC50 value is dependent on the substrate 

(ACh in this study) concentration [S] used in the assay. The higher the substrate 

concentration compared to the protein-substrate binding affinity (Kd ≈ Km), the larger the 

IC50 value. But the IC50 value can be converted to an inhibition constant (Ki), which is 

independent of the substrate concentration. It was reported[6] that Kd = 619.63 nM for ACh 

binding with α3β4 nAChR. Hence, based on the well-known relationship between the IC50 

and Ki for a competitive antagonist/inhibitor,

(1)
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Using this equation, this computes to IC50 ≈ 162Ki for the α3β4 nAChR antagonist, 

assuming competitive antagonism in our assays using [S] = 100 μM. So, Ki = ~123 nM for 

compound 3a against α3β4 nAChR.

In conclusion, we have used structure-based design on a known non-specific agonist (1) of 

the nicotinic acetylcholine receptor to generate a novel antagonist (3a) that is a reasonably 

potent and highly selective antagonist for the α3β4 receptor over α4β2 and α7. Future 

studies will detail ongoing studies of 3a and other compounds of this series, including in 
vivo evaluation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of the known nAChR agonist (1) and hypothesized analogues (2, 3a–3e) acting as 

antagonists.
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Figure 2. 
The modeled structure of compound 3a binding with the closed-channel state of α3β4 

nAChR. Left panel: The protein is represented in colored ribbon, with one β4 subunit in 

green, and compound 3a is in ball-stand-stick style with cyan color. Right panel: the details 

of intermolecular interactions. Amino acid residues of the protein are represented in sticks 

and are colored by atom types.
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Figure 3. 
Dose-dependent antagonism of compound 3a against α3β4 nAChR with 100 μM ACh.
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Scheme 1. 
Synthesis of 5′-phenyl-1,2,5,6-tetrahydro-3,3′-bipyridine analogues (3a – 3e). (i) 4-Y-Ph-Z 

(Z = Br, I), Pd(PPh3)4, Na2CO3, aq. p-dioxane, 90 °C (16 – 37 % yield); (ii) Pyridine-3-

boronic acid, Pd(PPh3)4, Na2CO3, aq. p-dioxane, 90 °C (71 – 93 % yield); (iii) MeI, 

acetone, rt (72 – 100 % yield); (iv) NaBH4, EtOH, 0 °C – rt (35–85 % yield); (v) for 3a to 

3e, conc. HCl, aq. p-dioxane, 75 °C (53 % yield). See Supplemental Materials for 

experimental details.

Jin et al. Page 11

Bioorg Med Chem Lett. Author manuscript; available in PMC 2018 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jin et al. Page 12

Table 1

Calculated Physico Chemical Properties of 1, 2, and 3a–3e

Compd ID Mol. Wt. Log Pa TPSAa logBBb

nicotine 162.2 1.02 16.13 0.06

epibatidine 208.7 1.78 24.92 0.04

1 208.7 2.13 16.13 0.22

2 284.8 3.81 16.13 0.48

3a 268.3 3.52 16.13 0.44

3b 286.3 3.66 16.13 0.46

3c 302.8 4.04 16.13 0.51

3d 346.4 2.29 58.65 (50.27)c −0.38 (−0.26)c

3e 266.3 2.08 32.34 −0.02

a
ChemAxon Calculator Plugins, Marvin 16.8.8, 2016.

b
logBB = −0.0148 × TPSA + 0.152 × log P + 0.139.[31]

c
Excludes sulfur from calculation.
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