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Abstract

Elevated birth weight is linked to glucose intolerance and obesity health-related complications 

later in life. No studies have examined if infant birth weight is associated with gene expression 

markers of obesity and inflammation in a tissue that comes directly from the infant following 

birth. We evaluated the association between birth weight and gene expression on fetal 

programming of obesity. Foreskin samples were collected following circumcision, and gene 

expression analyzed comparing the 15% greatest birth weight infants (n = 7) versus the remainder 

of the cohort (n = 40). Multivariate linear regression models were fit to relate expression levels on 

differentially expressed genes to birth weight group with adjustment for variables selected from a 

list of maternal and infant characteristics. Glucose transporter type 4 (GLUT4), insulin receptor 

substrate 2 (IRS2), leptin receptor (LEPR), lipoprotein lipase (LPL), low density lipoprotein 

receptor-related protein 1 (LRP1), matrix metalloproteinase 2 (MMP2), plasminogen activator 
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inhibitor-1 (PAI-1), and transcription factor 7-like 2 (TCF7L2) were significantly upregulated and 

histone deacetylase 1 (HDAC1) and thioredoxin (TXN) downregulated in the larger birth weight 

neonates versus controls. Multivariate modeling revealed that the estimated adjusted birth weight 

group difference exceeded one standard deviation of the expression level for eight of the 10 genes. 

Between 25% and 50% of variation in expression level was explained by multivariate modeling for 

eight of the 10 genes. Gene expression related to glycemic control, appetite/energy balance, 

obesity, and inflammation were altered in tissue from babies with elevated birth weight, and these 

genes may provide important information regarding fetal programming in macrosomic babies.

Keywords

Circumcision; fetal macrosomia; fetal programming; gestational weight gain

INTRODUCTION

Obesity has long-term, remarkable medical and public health implications.1 Obese women 

are more likely to deliver macrosomic infants.2, 3 Excessive weight gain in pregnancy also 

increases the risk for birth weight greater than the 90th percentile.4 Higher birth weights are 

associated with increased risk of adolescent obesity.5 An intergenerational risk of obesity 

and diabetes has been described, whereby maternal obesity is an independent risk factor for 

offspring obesity, separate from that of diabetes.6–9 The influences of fetal programming 

imposed by maternal obesity and diabetes may not be immediately evident at birth or early 

childhood, but may emerge later.10

The model of fetal programming outlined by David Barker classically describes the risk of 

disease among growth restricted infants during pregnancy.11 This hypothesis suggests fetal 

programming occurs based on maternal exposures which alters development and influences 

risk of future disease.11 An abnormal metabolic environment imposed by obesity or excess 

weight gain in pregnancy leads to fetal and neonatal overgrowth, childhood obesity and 

decreased insulin sensitivity.12, 13 These sequelae can lead to early onset of adult disease 

such as type 2 diabetes and metabolic syndrome. The cycle may continue when these 

women become pregnant.14 Several studies indicate that metabolic changes can be passed to 

subsequent generations. Responsible molecular mechanisms that contribute to offspring 

programming of obesity and type 2 diabetes include: hyperglycemia, impaired insulin 

signaling, increased circulation of adipocyte and inflammation signaling markers, abnormal 

adipose differentiation and metabolism, excessive placental hormone production, and 

alterations in the adipo-insular axis.15−17 Numerous studies have identified correlations 

between maternal factors and biochemical evidence of abnormal placental and fetal 

metabolism.18–22 In addition, animal models have tested the effects of under and over-

nutrition in pregnancy and its effects on offspring.23, 24

We proposed to utilize neonatal foreskin to evaluate the effects of infant birth weight on fetal 

programming. Neonatal foreskin is a tissue that is readily available where circumcisions are 

performed and has previously been utilized to assess different cellular processes including 

wound healing and developmental abnormalities such as hypospadias.25–28 Importantly, the 
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foreskin represents a terminal neonatal tissue which can be utilized in the study of 

developmental programming.29 We postulated that changes in gene expression involved in 

glucose metabolism, insulin signaling, inflammation, and oxidative stress in neonatal 

foreskin are associated with infant birth weight.

MATERIALS AND METHODS

Subjects

This was a birth cohort study of male neonates from 55 mother-baby couplets that was 

approved by the University of Kentucky Institutional Review Board. Subjects were born at 

the University of Kentucky from June 2012 to March 2013. Inclusion criteria were English-

speaking mothers, ≥ 18 years old, and term delivery (≥ 37 weeks) of a non-anomalous, 

singleton male infant. Neonates admitted to the neonatal intensive-care unit were excluded. 

Mothers who had already consented to have a circumcision performed were approached for 

study enrollment. Foreskin samples were collected by study personnel after routine 

circumcisions were performed by the obstetric team on duty each day. The hypodermis 

(dartos) layer was immediately, grossly dissected from the dermis/epidermis. Samples were 

frozen in liquid nitrogen and stored at −80°C until processing. Eight samples were excluded 

because they were twins (n = 4) or preterm (n = 2), so tissues were not analyzed, or the RNA 

was degraded (n = 2).

Data Collection

Maternal demographic and clinical factors [pre-pregnancy body mass index (BMI), 

gestational weight gain, co-morbidities, and delivery data] and infant birth weight and 

anthropomorphic measurements (body length and head circumference) were recorded. 

Maternal ethnicity and smoking status were self-reported.

Sample Processing

mRNA Isolation.—Approximately 40 mg of tissue was placed in 1 mL Qiazol and 

homogenized using a Geno/Grinder 2010 (SPEX SamplePrep). RNA was extracted from 

hypodermis samples using the Qiagen RNeasy Lipid Tissue Mini Kit (Cat. No. 74804, 

Qiagen).30 RNA was eluted from column using 30 µl of nuclease free water. RNA integrity 

number (RIN) was measured using an Agilent 2100 BioAnalyzer (Agilent) and samples with 

RIN values lower than 6.8 were omitted (2 samples). The average RIN for the remaining 47 

hypodermis samples was 8.3. cDNA was reverse transcribed using C1000 Thermal Cycler 

(Bio-Rad Laboratories, Inc.) and qScript cDNA SuperMix (Quanta Biosciences) for 

quantitative real-time PCR (qPCR).

NanoString CodeSet.—We pre-selected a panel of 120 genes involved in glucose 

metabolism, insulin signaling, inflammation, and oxidative stress. One hundred ng of RNA 

was loaded per sample for each NanoString run. NanoString results were normalized by 

creating scaling factors for positive controls (sum of positive controls) and pre-selected 

housekeeping genes (the geometric mean was calculated for 13 housekeeping genes for each 

sample) according to manufacturer’s suggestions. After normalization, all 13 housekeeping 

genes had a false discovery rate (FDR)-adjusted p-values above 0.10 in comparing the 7 
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largest babies to the other 40.31, 32 The FDR was defined with respect to these 13 genes. 

There were 17 (non-housekeeping) genes whose average corrected NanoString counts were 

below 15; these were excluded from the analyses described subsequently. A comprehensive 

list of analyzed genes is included (Supplemental Information). The NanoString nCounter 

system is highly reproducible and provides similar expression patterns to qPCR.33

qPCR.—Quantitative PCR was performed using a Step One Plus Real-Time PCR System 

(Applied Biosystems, Life Technologies). 20 ng cDNA/reaction was used in conjunction 

with TaqMan probes (Applied Biosystems, Life Technologies) developed using gene 

accession numbers associated with NanoString CodeSet above. Tubulin, beta class I (TUBB, 
Cat. # Hs00742828_s1) was selected as an endogenous control for normalization due to its 

expression levels being comparable for the two groups of babies. The top three genes from 

Table 2, plasminogen activator inhibitor 1 (PAI-1, Hs01126606_m1), glucose transporter 

type 4 (GLUT4, Hs00168966_m1), leptin receptor (LEPR, HS00174497_m1) were 

validated with qPCR for a subset of the samples. A subset of the control samples (n=7) were 

tissues collected from babies directly before or after the increased birth weight babies (n=7). 

Genes of interest were run in duplicate and TUBB was run in triplicate. Replicates were then 

averaged, and mRNA expression levels are presented as 2ΔΔCT. 34

Statistical Analysis

Statistical analyses were done using Sigma Plot 12.0 (Jandel Scientific, Chicago, IL), SAS 

9.3 (SAS Institute Inc, Cary, NC), and Microsoft Excel 2013 (Microsoft Corp., Redmond 

WA). As this was a pilot and exploratory study, an a priori power analysis was not 

conducted. We targeted a sample size of 50. Greater birth weight was defined as the top 15% 

of the cohort (7 babies), and the control group consisted of the remainder of the samples (40 

babies). In bivariate analysis (Table 1), we compared the two groups on continuous clinical 

factors via t-tests and on categorical clinical factors via Fisher’s exact tests. NanoString gene 

expression was analyzed via t-test according to birth weight stratum. If expression departed 

substantially from normality, a log transformation was performed before t-test; this 

happened once (nicotinamide phosphoribosyltransferase). If even log-transformed 

expression departed substantially from normality, a nonparametric rank sum test was 

performed in lieu of t-test; this happened once (superoxide dismutase 1). Group variances 

were treated as equal in the t-test unless a companion f-test yielded a contrary result (with P 
< 0.01), which happened three times [histone deacetylase 1 (HDAC1), low density 

lipoprotein receptor-related protein 1 (LRP1), and thioredoxin (TXN)]. The 90 resulting p-

values (120 minus 13 [housekeeping] minus 17 [low counts]) were adjusted by FDR.31, 32 

The 10 genes with FDR-adjusted P < 0.05 were ranked by fold change (Mean increased 

birth weight group/Mean control). In multivariate analysis on the 10 genes for which FDR-

adjusted p-values were less than 0.05, the Schwarz Bayesian Criterion35 was used to select a 

multiple linear regression model predicting expression for each gene based on group 

membership (increased birth weight versus not) and a subset of variables chosen from the 

following list: ethnicity of the mother (Caucasian versus not), gestational weight gain 

category (over recommended versus not), mode of delivery (caesarean versus not), smoking 

during pregnancy (yes versus no), insurance status (private versus not), employment (full-

time versus not), education (affirmed college degree or better versus not), feeding (complete 
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or partial use of bottle versus not), third trimester glucose tolerance test, ponderal index, age 

at delivery, gravida, parity, pre-pregnancy weight, pre-pregnancy BMI, gestational weight 

gain, gestational age, day of life for circumcision, birth weight, birth length, and head 

circumference. Ten records (out of 47) had missing values on glucose tolerance test or 

ponderal index, which were imputed by mean value within birth weight group. Ordinary 

least squares was used for model fitting, unless birth weight group variances were 

substantially different (as judged by the aforementioned f-test), in which case weighted least 

squares was employed. qPCR gene expression was compared between birth weight groups 

by t-test and natural log transformation performed preceding t-test when normality failed 

(PAI-1 and GLUT4). Continuous data are summarized as mean ± SEM and categorical data 

by counts.

RESULTS

Maternal:

Table 1 outlines the demographics and obstetrical characteristics of our study sample. The 

mean maternal age was 27.6 years (range 20–38). Thirty-two percent of women smoked 

prior to pregnancy (15/47); no mother’s smoking status changed during pregnancy. The 

mean parity was 2.0 (range 1–5). The mean gestational age at delivery was 39.3 weeks 

(range from 37.2–41.3). Sixty-two percent of the study patients delivered vaginally. The 

mean pre-pregnancy BMI in our study cohort was 26.0 kg/m22 (range 17.5–41.4). Twenty-

seven percent of women were categorized as obese with BMI > 30 and mean gestational 

weight gain was 14.5 kg (range 3.2–26.3). 43% (20/47) of women gained excess weight 

during pregnancy, 47% (22/47) gained within the recommendations, and 11% (5/47) gained 

less than recommended.36 Overall, gestational weight gain was similar between obese and 

non-obese women (P = 0.77). The mean 3rd trimester 50 g glucose challenge was 113.8 

mg/dl (range 64–179) and was not significantly correlated with continuous birth weight in 

this cohort, (P = 0.74). Ten women underwent 3 hour glucose challenge for screening values 

>130 mg/dl and one was diagnosed with gestational diabetes. Six women were diagnosed 

with gestational hypertension, and three developed pre-eclampsia.

Offspring:

Foreskin samples from 47 neonates were used for NanoString analysis. About half of the 

samples were taken on day 1 of life (51%, range 0–3). The mean birth weight of the control 

babies was 3324 ± 60 grams compared to 4115 ± 87 grams for the top 15% of babies in the 

cohort (P < 0.0001).

The control and increased birth weight samples did not differ significantly according to 

maternal age (P = 0.84), ethnicity (P = 0.49), parity (P = 0.68), smoking (P = 1.00), or mode 

of delivery (P = 1.00). In this cohort, pre-pregnancy BMI was not significantly correlated 

with continuous birth weight overall (P = 0.36), and birth weights were not significantly 

different between non-obese and obese mothers (3411 ± 80 g vs. 3521 ± 120 g, P = 0.47). 

Gestational weight gain was significantly correlated with continuous birth weight (Pearson’s 

r = 0.43; P = 0.002) and women that gave birth to increased birth weight babies also had 

higher gestational weight gain (P = 0.01; Table 1).
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Gene expression was measured in the hypodermis of 47 neonates and expression levels of 

the highest 15% of birth weight babies (n = 7) were compared to those of the remaining 

babies (n = 40). Table 2 shows the 10 genes with an FDR adjusted P < 0.05. Both HDAC1 
and TXN were significantly downregulated in the hypodermal layer in higher birth weight 

newborns compared to the remainder of the cohort. Eight genes were significantly 

upregulated with a fold change > 1.25 in the larger babies. These genes were PAI-1, GLUT4, 
LEPR, lipoprotein lipase (LPL), matrix metalloproteinase 2 (MMP2), insulin receptor 

substrate 2 (IRS2), LRP1, and transcription factor 7-like 2 (TCF7L2). We validated 3 genes 

with the greatest (and significantly different) fold change in mRNA differences in the 

NanoString CodeSet with real-time PCR (PAI-1, GLUT4, and LEPR). We found significant 

increases in PAI-1 (P = 0.006), GLUT4 (P = 0.026), and LEPR (P = 0.043) in babies with 

the 15% highest birth weights compared to a subset (n = 7) of the normal weight babies 

(Figure 1).

Multivariate analysis results are summarized in Table 3. Each column represents a different 

regression model, corresponding to one of the 10 genes for which the FDR-adjusted p-value 

was less than 0.05 in comparing birth weight groups. Eight of the 10 models contain, in 

addition to group, one or more maternal or infant characteristics which portend gene 

expression. As an example, controlling for gestational age, LEPR expression is predicted to 

increase by more than one-and-a-half of its standard deviations when birth weight crosses 

from normal to elevated; and, controlling for birth weight, each increase in gestational age 

by one of its standard deviations decreases predicted LEPR expression by approximately 

one-quarter of its standard deviation. The latter result makes sense intuitively; for instance, if 

a 37-week gestational age baby and a 41-week gestational age baby have the same birth 

weight, then the 37-week baby is larger relative to his age and would be anticipated to have 

greater LEPR expression consistent with being of larger size. With two exceptions, one on 

the high end (PAI-1, 65.9%) and one on the low end (TCF7L2, 16.1%) between 25% and 

50% of each gene’s variation in expression level was accounted for by birth weight group 

and other maternal or infant characteristics. Besides birth weight, the predictor most often 

appearing in multivariate analysis was gravida, which was selected for five out of the 10 

regression models. The direction of the relationship between gravida and gene expression in 

these five models was the same as that between birth weight and gene expression; when 

increased birth weight corresponded to greater gene expression, so did increased gravida, 

and vice versa. In addition, part or all bottle fed appeared in four out of the ten regression 

models with the direction of the relationship being opposite to that of birthweight and gene 

expression. No other predictor was selected for more than two of the regression models, 

though, interestingly, the model for PAI-1 contained 10 predictors; no other model contained 

as many as five.

DISCUSSION

We used human foreskin tissue to assess changes in gene expression of neonates related to 

obesity, weight gain in pregnancy, and birth weight. Our main finding was that birth weight 

was associated with the expression of genes related to metabolism and inflammation in 

neonatal tissue. We confirmed what others have shown37 in that birth weight was positively 

correlated with gestational weight gain. Understanding weight induced alterations in gene 
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expression may be important in establishing potential mechanisms responsible for the 

detrimental effects of small or large birth weight and increased maternal weight gain on 

offspring risk of developing obesity and type 2 diabetes. While we do not anticipate that 

gene expression changes in the foreskin are driving whole body changes in appetite and 

energy balance, hyperglycemia, and inflammation, we suspect that these changes are 

representative of the types of alterations that are seen in other tissues. Results from this 

study point to the foreskin as a useful model to study developmental programming using a 

tissue that comes directly from the infant after birth and may not include maternal 

contributions like placenta38 and cord blood.39 However, given that others have shown that 

elevated baby birth weight impacts a number of markers related to glycemic control,40 

appetite/energy balance,41, 42 obesity,43 and inflammation in placenta or cord blood,18 we 

assessed similar markers in the neonatal foreskin.

Upregulation of gene expression in foreskin tissue related to appetite and energy balance, 

hyperglycemia, and inflammation were found in babies with increased birth weight. These 

data support human epidemiological evidence demonstrating that high birth weight babies 

are at an increased risk for developing obesity44, 45 and type 2 diabetes later in life46. These 

data further our knowledge by providing mechanisms of dysfunction that may be 

predisposing high birth weight babies to an obese, insulin resistant phenotype at increased 

risk of developing cardiovascular disease in adulthood. 47 Several markers of obesity, insulin 

resistance, and cardiovascular disease had the greatest fold change in gene expression with 

higher birth weight (Table 2). While some markers have been measured in animal models of 

developmental programming or in human placenta/cord blood, this is the first study to 

examine them in neonatal foreskin. The skin is readily available following circumcision at 

birth and can be obtained later in life through skin biopsies. These repeated measures are a 

necessary next step in determining if the observed gene expression changes in the current 

study extend beyond infancy.

Results from the present study suggest that high birth weight babies have increased 

expression of obesity related genes (LPL and LEPR). Studies in rodents have shown that 

treating hyperleptinemia in offspring late in development slows neonatal weight gain and 

reverses prenatal adaptations resulting from stimuli that promote adulthood obesity.48 LEPR 

expression is increased in response to leptin insensitivity as a compensatory mechanism to 

defend against obesity. However, in later stages of LEPR insensitivity, there is a loss of 

weight homeostasis and obesity ensues 48 This provides exciting evidence of particular 

markers which may be targeted for therapeutic interventions in high birth weight babies to 

prevent adulthood obesity. Future studies in our lab will begin to investigate these 

mechanisms in humans.

Chronic obesity leads to whole body and skeletal muscle insulin resistance.49 A number of 

proteins are involved in regulating cellular insulin sensitivity. GLUT4 mRNA is increased 

acutely in response to hyperinsulinemia;50 however, as insulin resistance develops and 

progresses to type 2 diabetes, translocation of GLUT4 to the cell membrane in response to 

insulin is reduced.51 While infants in the present study were not obese per se, we did find 

that the highest 15% body weight babies had significantly elevated mRNA expression of 

GLUT4 and IRS2, proteins stimulated by insulin which are, in part, responsible for glucose 
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uptake into cells. Though, it is important to note that we did not directly measure differences 

in protein or phosphorylation levels as part of this study.

In the area of developmental programming, elevated levels of PAI-1, an inhibitor of 

fibrinolysis, were found in the white adipose tissue of male rat offspring born to obese dams 

fed a high-fat diet during pregnancy.52 This is a phenotype that is common in obesity and is 

related to increased risk of developing cardiovascular disease.53 In the heart, elevated PAI-1 

plays a role in the development of fibrosis.54 In the present study, PAI-1 was increased in the 

hypodermal layer of the foreskin in the 15% highest birth weight babies; however, whether 

or not this also translates into increased PAI-1 expression in the hearts of these babies which 

might be predisposing them to greater risk of developing cardiovascular disease is not 

known. Huang et al. demonstrated that fetal hearts of sheep from obese mothers had 

increased cardiac fibrosis,55 thus, this may be a mechanism of increased cardiovascular 

disease risk in babies born to obese mothers (and thus, predisposed to elevated birth weight).
56 Interestingly, TXN, an antioxidant,57 was reduced in the 15% highest birth weight babies, 

thus providing further evidence for a phenotype which may be more predisposed to 

increased oxidative stress and developing cardiovascular disease later in life. In fact, 

previous animal studies have demonstrated that offspring born to obese dams tend to have 

higher rates of oxidative stress,58 potentially due to downregulation of TXN.

Although not a specific aim of the paper, it is of interest that gravida, or number of 

pregnancies a woman has had, appeared as a predictor in five of the regression models 

(Table 3), second in frequency to increased birth weight. Increased parity, or number of live 

births a female has had (which would also increase gravida), has been associated with 

weight gain and obesity in humans59 and mice.60 Given that obese mothers tend to have 

bigger babies,61 the fact that all of the genes whose expression levels were altered with 

gravida (adjusted for other variables) are also associated in the same direction with increased 

birth weight, is not a surprise.

There were several limitations to this study. The top 15% birth weight babies were grouped 

together, as opposed to using a more standard definition of macrosomia, due to our limited 

sample size. Further, the relatively low number of samples did not allow for analysis of 

gestational diabetes or hypertension as confounding factors on gene expression. While gene 

expression was altered in the top 15% birth weight babies compared to controls, it is 

significant to note that mRNA levels do not strongly correlate with protein expression.62 

Finally, neonatal tissue can only be collected in males following circumcision; thus, female 

neonates were not included in this study and we cannot comment on a potential sex bias at 

this time. Despite these limitations, we have demonstrated the neonatal foreskin as a useful 

tissue to study developmental programming.

We found that gene expression related to glycemic control, appetite/energy balance, obesity, 

and inflammation was altered in tissue from babies with elevated birth weight. These genes 

point to potential mechanisms regarding fetal programming in macrosomic babies. 

Importantly, this model can be expanded in future studies to include collection of placenta, 

cord blood, and maternal serum for comparative analyses.
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Figure 1. 
qPCR validation of 3 genes with the highest (and significant) fold change in mRNA 

differences in the NanoString CodeSet. Horizontal line depicts the mean expression for each 

gene.
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Table 1.

Maternal Demographics of Study Sample

Maternal Variable
Total Sample

(n = 47)
Control
(n = 40)

Increased Birth Weight
(n = 7) P 

a

Ethnicity 
b

0.49

Non-Hispanic White 32 27 5

Non-Hispanic Black 12 11 1

Hispanic 1 1 0

Asian 2 1 1

Smoker 
b

15 13 2 1.00

Parity 
c

2.0 ± 0.2 2.1 ± 0.2 1.9 ± 0.3 0.68

GA at Delivery, Weeks 
c

39.3 ± 0.1 39.3 ± 0.2 39.2 ± 0.4 0.79

Mode of Delivery 
b

1.00

SVD 29 25 4

CS 18 15 3

Pre-Pregnancy BMI 
c

26.0 ± 1.0 25.5 ± 1.0 28.9 ± 3.6 0.21

Gestational Weight Gain, kg 
c

14.5 ± 0.8 13.7 ± 0.8 19.2 ± 1.9 0.01

Gestational Weight Gain, Category 
b

0.33

under 5 5 0

normal 22 20 2

over 20 15 5

3rd Trimester Glucola 
c,d

113.8 ± 4.0 111.0 ± 4.2 128.0 ± 10.8 0.12

Abbreviations: BMI (body mass index), CS (caesarean section), GA (gestational age), SVD (spontaneous vaginal delivery)

a
Continuous variables were compared with the use of Student t-test while categorical variables were compared by Fisher’s exact test;

b
Data given as count;

c
Data are given as mean ± SEM;

d
Glucose tolerance test (Glucola).
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Table 2.

Comparison of gene expression in hypodermis in the subsample with higher birth weight versus control

Gene

Average Gene
Expression

Control 
a

Average Gene
Expression

Increased Birth

Weight 
b

Fold

Change 
c

Unadjusted

P value 
d

FDR
Adjusted

P Value 
e

PAI-1 20.4 ± 1.8 66.6 ± 31.7 3.27 0.0011 0.0198

GLUT4 27.6 ± 1.6 50.2 ± 7.9 1.82 <0.0001 0.0022

LEPR 83.3 ± 3.8 145.6 ± 21.8 1.75 <0.0001 0.0010

LPL 15.3 ± 0.9 24.6 ± 5.4 1.61 0.0038 0.0429

MMP2 348.8 ± 22.3 558.9 ± 74.6 1.60 0.0013 0.0198

IRS2 50.8 ± 2.3 75.9 ± 10.7 1.50 0.0007 0.0159

LRP1 318.1 ± 10.0 443.8 ± 29.5 1.39 0.0044 0.0439

TCF7L2 156.1 ± 5.9 201.6 ± 15.7 1.29 0.0053 0.0474

HDAC1 434.5 ± 9.6 344.7 ± 15.4 0.79 0.0004 0.0120

TXN 3095.9 ± 144.8 2221.7 ± 178.6 0.72 0.0017 0.0213

a
Data are given as mean ± SEM,

b
Increased birth weight group is the top 15 percent from the study (n = 7) compared to the rest (n = 40),

c
Fold change in mean gene expression of increased birth weight divided by control,

d
Unadjusted p-values from t-tests are shown.

e
False discovery rate-adjusted p-values are displayed; since this table includes only genes with FDR-adjusted p-values below 0.05, the 

interpretation is that we expect 9 or 10 of these discoveries to be true.
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Table 3.

Multivariate Analysis of Gene Expression Levels

Predictor/
Outcome

GLUT4 HDAC1* IRS2 LEPR LPL LRP1* MMP2 PAI-1 TCF7L2 TXN*

Increased Birth Weight 1.60
p<0.001

−1.41
p<0.001

1.16
p=0.002

1.62
p<0.001

1.22
p=0.001

1.59
p<0.001

1.31
p<0.001

0.90
p=0.007

1.11
p=0.005

−0.86
p<0.001

Gravida 0.29
p=0.019

−0.29
p=0.016

0.35
p=0.010

0.26
p=0.054

−0.34
p=0.008

Part or All Bottle −0.53
p=0.048

−0.68
p=0.018

−0.74
p=0.005

0.66
p=0.007

Glucose Tolerance Test 0.28
p=0.029

0.29
p=0.008

Gestational Age −0.26
p=0.028

−0.27
p=0.018

Affirmed College Degree 
or Better

−0.62
p=0.032

−0.85
p=0.003

Gestational Weight Gain 
Over Recommended

0.62
p=0.008

Smoke During Pregnancy 0.63
p=0.018

Private Insurance 1.22
p=0.002

Full-Time Employment −0.90
p=0.010

Day of Life 
Circumcision

−0.21
p=0.065

Ponderal Index −0.26
p=0.030

R2 0.391 0.434 0.403 0.420 0.299 0.266 0.272 0.659 0.161 0.455

Each column represents a separate regression model. Variables actually selected for each model are those whose cell entries are filled in. Each 
regression coefficient is the estimated number of standard deviations by which the outcome is expected to increase when the predictor goes from no 
to yes (if the predictor is binary) or when the predictor increases by one standard deviation (if the predictor is continuous), while adjusting for all 
other predictors in the same model; these regression coefficients turned out to be greater than 0.50 in absolute value for all binary predictors and 
less than 0.50 in absolute value for all continuous predictors. Accompanying each regression coefficient is a p-value. Asterisks in column headings 

indicate a weighted least squares analysis. The final row contains R2, the proportion of (weighted) variation in gene expression explained by the 
variables used to predict it.
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