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Oral microbial biofilm stimulation of epithelial cell responses

Rebecca Peyyala*, Sreenatha S. Kirakodu, Karen F. Novak1, and Jeffrey L. Ebersole
Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY
40536, United States

Abstract

Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the

tissue destructive events of periodontitis. However, the characteristics of the capacity of specific

host cell types to respond to these biofilms remain ill-defined. This report describes the use of a

novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and

chemokines that contribute to the local inflammatory environment in the periodontium.

Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis,

Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas

gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these

same bacterial species, were incubated under anaerobic conditions with a human oral epithelial

cell line, OKF4, for up to 24 h. Gro-1α, IL1α, IL-6, IL-8, TGFα, Fractalkine, MIP-1α, and IP-10

were shown to be produced in response to a range of the planktonic or biofilm forms of these

species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and

chemokines, except MIP-1α. Generally, the biofilms of all species inhibited Gro-1α, TGFα, and

Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1α,

IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The

oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these

mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in

biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the

same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact

with host cell receptors to trigger pathways of responses that appear quite divergent from

individual bacteria.
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1. Introduction

Host gingival tissues respond to an array of microbial challenges in the oral cavity that are

crucial for maintaining homeostasis within this constantly infected environment. These
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responses comprise a wide array of pro- and anti-inflammatory molecules produced by

resident cells of the periodontium [1,2], as well as response molecules derived from

infiltrating inflammatory and immune cells in the tissues [3,4]. While these innate and

adaptive immune responses are generated to protect the host from the microbial burden

juxtaposed to the tissues, magnitude of the burden and chronicity of the inflammatory

response can result in both soft and hard tissue damage defined as periodontitis [5].

Many in vitro studies have reduced the complex in situ microbial infection into individual

proposed pathogenic or commensal species as planktonic challenges of host cells [6–8].

These types of studies have frequently focused on a particular host target molecule [9,10],

emphasized molecular aspects of Toll-like receptor engagement [11,12] and/or developed

data to identify intracellular signaling pathways that account for the response profile of the

cells [13]. Moreover, it appears clear that the net result of these host–bacterial interactions as

maintaining health or manifesting disease is reflected in the relative distribution and

abundance of a wide range of biomolecules with competing and complementary activities in

the tissue microenvironment [14,15]. Many of these conclusions have resulted from studies

that attempt to sample the oral environment and compare the patterns of various responses in

health and disease [16], during progression of the periodontal lesion [17], or following

clinically successful therapy of disease [18]. While providing a robust snapshot of the

characteristics of the compendium of responses that can occur in the oral cavity, these types

of studies are not able to delineate details of the microorganisms that have a predilection to

elicit the particular responses or the relative contribution of individual host cell types to

these response profiles.

It is clear that the bacteria inhabiting the oral cavity in contact with oral tissues reside in

complex multispecies biofilms [19]. These biofilm structures arise via interaction with host

substrates [20,21] and accrue and mature based upon the oral environment and specific

interactions among individual species of bacteria [22,23]. However, there are very few

reports that have evaluated the response profiles of specific host cells to oral bacteria in

biofilms. Recently, Guggenheim and colleagues used a hydroxyapatite disc model to prepare

oral multispecies biofilms and used these to challenge epithelial cell cultures [24,25]. While

numerous species were used to create the biofilms, of the nine species used, Porphyromonas

gingivalis and Fusobacterium nucleatum made up a rather small proportion of the overall

microbial composite at a level approximating 1% of the total. Thus, while the architecture of

these very complex biofilms was described using confocal scanning laser microscopy, it

remains undetermined the density of the bacteria that interacted with the individual cells, nor

the species that may have been primary participants in this process. Nevertheless, this report

did document a range of host responses molecules produced in response to the biofilm

challenge that occurred under aerobic conditions over 24 h. The primary findings were an

apparent increase in apoptosis and degradation of IL-1β, IL-6 and IL-8 cytokines that were

elicited from the epithelial cells that was predicted to be related to the presence of proteases,

such as those produced by P. gingivalis in these biofilms.

The present report describes our use of a novel biofilm model, created on rigid gas

permeable contact lens (RGPL) material [26,27] that were used to challenge oral epithelial

cell cultures in an anaerobic environment that may better reflect the subgingival sulcus. We
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evaluated patterns of cell responses to single species biofilms, compared with planktonic

challenge with the same species, to elucidate unique features of the cellular responses to the

biofilm challenge.

2. Materials and methods

2.1. Bacteria and culture conditions

P. gingivalis (FDC381), F. nucleatum ATCC 25586, Actinomyces naeslundii ATCC 49840,

and Streptococcus gordonii ATCC 10558 were cultured in Brain Heart Infusion (Becton

Dickinson and Company, Sparks, MD) medium supplemented with 5 μg hemin ml−1 and 1

μg menadione ml−1 under anaerobic conditions (85% N2, 10% H2, 5% CO2) at 37 °C.

Streptococcus sanguinis ATCC 10556 and Streptococcus oralis ATCC 10557 were grown in

Trypticase yeast extract salts (TYS) medium under anaerobic conditions. All bacterial

strains used in this study have been described previously and were obtained from the ATCC,

except P. gingivalis (FDC381) [26].

2.2. Biofilm growth conditions

Biofilms were grown on rigid gas permeable lenses (RGPLs) (Advanced Vision

Technologies, Golden, CO) as previously described [26]. Briefly, prior to biofilm formation,

RGPLs were coated with 1% fetal bovine serum (FBS; Invitrogen) to support the adherence

of bacteria and incubated at room temperature until dry. Each RGPL was inoculated with a 5

ml of monospecies planktonic culture at 0.3 OD A600 in a single well of a 6-well

polystyrene tissue culture plate (BD Falcon, Franklin Lakes, NJ) and incubated in an

anaerobic chamber for 3 days for development of biofilms under static conditions. At each

24-h interval spent media was replenished by fresh medium. After incubation, RGPLs with

adherent biofilms were washed in 1X PBS twice to remove loosely adherent cells and used

in subsequent epithelial cell challenge. Biofilms grown on three additional RGPLs were

used for bacterial enumeration by qPCR analysis as described previously [26].

2.3. OKF4 cell growth and bacterial challenge

An immortalized epithelial cell line OKF4 (Rheinwald 2002) was cultured in keratinocyte

serum free medium (Invitrogen, Carlsbad, CA) and seeded into 48-well tissue culture plates

(Costar, Cambridge, MA) at a density of 105 cells per well in a 1 ml volume and allowed to

adhere for 24 h in a 5% CO2 chamber at 37 °C to form a confluent monolayer. Planktonic,

biofilm and control treatments were each carried out in six wells in 1 ml/well fresh media

and continuously incubated for 6 h under anaerobic conditions (85% N2, 5% CO2, and 10%

H2). For planktonic challenge, overnight cultures were harvested by centrifugation and

resuspended in keratinocyte medium. A 108, 107 and 106 cells/well challenge corresponding

to a multiplicity of infection (MOI) at 1000:1, 100:1 and 10:1 was used to stimulate the

OKF4 cells. The estimated MOI for the planktonic challenge represents the numbers of

bacteria that could be predicted to be in association with the OKF4 cells interacting with the

biofilms. Three day old biofilms grown on contact lens were overlaid with biofilm-side

facing the epithelial cells. OKF4 cells with or without overlaid RGPL were used as controls

for the biofilm or planktonic bacterial challenges, respectively. OKF4 cell supernatants from

each of two wells were pooled and stored at −80 °C for cytokine determination. Previous
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studies with this model system demonstrated that these biofilm challenges did not result in

any obvious toxicity or cell death, as determined by both metabolic activity and

housekeeping gene expression [27].

2.4. Inhibition of biofilm growth during the course of challenge

In order to constrain the biofilms from replicating in the keratinocyte media during the 24 h

challenge with OKF4 cells, biofilms were treated with green fluorescent nucleic acid stain

SYTO 24. SYTO 24 was chosen as it yielded lowest optical density with highest

fluorescence intensity values for S. gordonii, A. naeslundii and P. gingivalis indicating that

this stain inhibited replication while not affecting viability [26]. S. oralis and S. sanguinis

biofilms were also treated with SYTO 24 to inhibit replication. Prior to challenging OKF4

cells, biofilms were immersed in 10 μg/ml SYTO 24 stain in keratinocyte media for 5 min.

after which they were immersed in 1X PBS twice to remove excess stain. F. nucleatum was

not treated with any SYTO stains as it did not replicate in keratinocyte media.

2.5. Detection of cytokines/chemokines

The level of cells by 24 h was determined using a multiplexed beadlyte kit (R & D systems,

Minneapolis, MN, USA) and a Luminex IS100 (Luminex, Inc., Austin, TX) instrument. The

mean ± standard error of the mean of the planktonic and biofilm stimulation of OKF4 cells

was compared with unchallenged and RGPL overlaid OKF4 cells, respectively. Statistical

comparison of the data was accomplished using an ANOVA on ranks test with Dunn’s test

for multiple comparisons for multiple comparisons (SigmaStat 3.5; Systat Software, Inc.,

Chicago, IL).

3. Results

3.1. Characteristics of cytokine responses

An array of cytokines and cell communication factors produced by epithelial cells and

having some potential role in responses to oral bacterial challenge was evaluated and

included, IL-1α, IL-6, and TGFα. The results in Fig. 1A–C demonstrate the responses of the

epithelial cells to challenge with the range of oral bacteria. Biofilms of A. naeslundii and all

three streptococci provided minimal stimulus of IL-1α, while the planktonic challenge with

these microorganisms appeared to inhibit production of this cytokine. The F. nucleatum

biofilms significantly upregulated production of IL-1α, while P. gingivalis biofilms

significantly inhibited this response. Of the planktonic bacteria only P. gingivalis appeared

to have the capacity to induce IL-1α in this system.

The response of the epithelial in producing IL-6 was quite limited across these bacterial

species. Only biofilms and planktonic A. naeslundii and F. nucleatum elicited this cytokine

response, with the biofilms of each species inducing significantly greater quantities of IL-6

compared to the planktonic challenge.

As was noted with IL-1α, all of the bacterial biofilms inhibited the production of TGFα,

with P. gingivalis totally eliminated. Planktonic bacterial challenge with P. gingivalis and S.

sanguinis elicited elevated levels of this cell communication factor.
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3.2. Characteristics of chemokine responses

This investigation also profiled a range of chemokines, Gro-1α, IL-8, Fractalkine, IP-10, and

MIP-1α, RANTES and MCP-1 that are produced by epithelial cells and could be expected to

provide early warning signals to the local tissue environment and the host immune system.

The results in Fig. 2A–E provide a profile of these chemokine responses by the epithelial

cells, with the exception of RANTES and MCP-1 which provided minimal detectable levels.

Gro-1α production was inhibited by biofilms challenge with P. gingivalis, F. nucleatum and

all three streptococci. Only planktonic challenge with A. naeslundii and F. nucleatum

showed an induction of this chemokine. Interestingly, among the oral streptococci, S. oralis

was completely nonreactive as a stimulus for this chemokine.

Significantly elevated production of IL-8 was observed with biofilms of A. naeslundii and F.

nucleatum, as well as following challenge with planktonic versions of these species. In

contrast, no effect was observed with the oral streptococci, and P. gingivalis inhibited the

production of this critical chemokine.

The levels of Fractalkine were generally unaffected by challenge with all of the oral

bacteria, except the lowest dose of planktonic P. gingivalis. A similar selective effect was

observed with IP-10 and MIP-1α. Biofilms of A. naeslundii and F. nucleatum stimulated

production of IP-10, as well as planktonic challenge with these species. Biofilms of P.

gingivalis and the oral streptococci inhibited IP-10 production. Interestingly, with MIP-1α

the biofilms of P. gingivalis increased the levels of this chemokine, as did selective doses of

planktonic challenge with each of the other species of bacteria.

3.3. Profiles of cytokine/chemokine production by epithelial cells

Fig. 3A and B provides a summary of the patterns of responses of the epithelial cells to the

individual biofilms and high and low dose challenge of the planktonic bacteria. The high

dose planktonic challenge is similar to the overall numbers of the species in the biofilms,

while the low dose planktonic challenge estimates the number of the bacteria in the layered

biofilms that might be expected to be able to interact directly with the epithelial cells.

Clearly, the profiles of stimulation are unique to each species, and the biofilms are unique

compared to these doses of the planktonic stimulus across the species. The biofilms of A.

naeslundii and F. nucleatum appear to be the most active with regards to breadth and

quantity of mediators induced. In contrast, P. gingivalis biofilms were minimally reactive,

and in most cases inhibited production of the cytokines and chemokines. Fig. 3B shows that

generally the oral streptococci in any form were not particularly active in stimulating the

epithelial cells. However, of interest was that while these are considered highly related

species, there were distinct differences in the patterns of mediators induced by challenge

with the planktonic forms of the bacteria. As noted, the streptococcal biofilms were not

active in stimulating cytokines/chemokines and in most cases appeared to inhibit basal

production by the epithelial cells.

4. Discussion

This report provides some of the first data documenting the patterns of cytokines and

chemokines that are induced in oral epithelial cells following challenge with monospecies
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oral bacterial biofilms. It is clear that the oral bacterial ecology is acquired early in life and

evolves over time with the host to form a complex of numerous genera and species

occupying the various ecological niches in the oral cavity as biofilms [28,29]. Moreover, it

is clear that with the two major oral diseases being infections, the characteristics of the

microbial ecology changes when transitioning from health to disease [30]. Many

investigations have reported the responses of various host cells, e.g. epithelial cells,

fibroblasts, lymphocytes, following challenge with oral microorganisms in planktonic form

from individual species [7,31–33]. Reducing the system even further, various studies have

targeted selected biomolecules or structures of the oral bacteria, that in an isolated in vitro

system can also stimulate an array of host responses [34,35]. Specifically, with respect to the

characteristics of the interactions examined in this study, P. gingivalis, F. nucleatum,

Actinomyces species, and oral streptococci have been shown to elicit IL-1α, IL-1β, IL-6,

IL-8, IL-10, IL-8, LL37, HBD 1,2,3 from oral epithelial cells [31]. As noted in a number of

these reports, the characteristics of the host cell responses to individual oral bacteria varies

significantly across genera and species, as well as showing some differences when

considering individual microorganisms as oral pathogens or commensals [7,8,31]. While

these studies have some value in understanding the biology of host–bacterial interactions

that occur in vivo, the challenge does not reflect the primary organization of the oral bacteria

into complex multispecies biofilms that stimulate both non-immune and immune cells in

situ. Recent reports have emphasized the important differences in oral microbial interactions

with host tissues and cells when these bacteria exist in complex biofilms. Thus, it could be

anticipated that these responses would vary due to interbacterial metabolic and virulence

synergisms within biofilms. Additionally, differences in host responses would be expected

related to the variations in bacterial gene expression profiles that contribute to the biofilm

structure, enhanced resistance to antimicrobials, and physiologic microenvironments within

the biofilms [36–40]. This study provides some foundational knowledge using a novel

biofilm model system to demonstrate unique features of host response patterns to challenge

across a range of oral bacteria and when comparing biofilms to planktonic forms of the

bacteria.

A recent study has reported that complex multispecies biofilms stimulate a range of

mediators from epithelial cells including IL-1β, IL-6, IL-8 [24] and RANKL/OPG [25].

These nine species biofilms provide support to the underlying premise that host cellular

responses to biofilms versus planktonic bacteria are substantively different. However, these

studies do not shed light on the characteristics of individual bacteria in these biofilms,

whether or not they are even specifically interacting with the epithelial cell monolayer, and

in general, these multispecies biofilms were vastly dominated by a very limited number of

species [24]. Consequently, there remain unanswered questions regarding the stimulatory

capacity of individual bacteria in biofilms, how they compare with planktonic stimuli, and

how these responses would be altered in the presence of a complex multispecies biofilm.

This report provides details on the use of a novel rigid gas-permeable lens material to build

bacterial biofilms that were used to challenge oral epithelial cells. For this investigation we

selected a group of cytokines and chemokines that have been reported to be induced by

various stimuli interacting with a range of epithelial cell types [41,42]. IL-1α is a cytokine
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produced by a range of cell types, with important functions in enhancement of inflammation

and host defence [43]. IL-6 is a pleiotropic pro-inflammatory cytokine that regulates several

biological functions including inflammatory responses and bone biology [44]. TGFα is

produced by macrophages and keratinocytes, is closely related to epidermal growth factor

(EGF), and can also bind to the EGF receptor leading to epithelial development [45]. The

results demonstrated that each of these cytokines/growth factors was differentially induced

by biofilms of the oral bacteria. Clearly, IL-1α was the most responsive to the biofilms,

while IL-6 was selectively elicited by only A. naeslundii and F. nucleatum biofilms, and

TGFα levels were inhibited below basal cell production by biofilms of all the oral bacteria.

As was predicted the biofilm stimulation patterns were distinct from the planktonic bacteria,

and in a number of instances, the level of stimulation was greater than planktonic challenge

with approximately a two logs higher number of the bacteria.

Anticipating that a major role of the epithelial cells is to provide an “early warning” signal

to the host inflammatory and innate and adaptive immune responses, we examined a range

of chemokines that would be predicted to have a principle role for inducing the emigration

of protective cells and biomolecules into the infected oral sites. IL-8 is a primary chemokine

for attracting neutrophils into sites of inflammation, and is a hallmark of the chronic

inflammatory response in periodontitis [46]. Gro-1α is a chemokine with multiple functions

associated with atherosclerosis, angiogenesis and many inflammatory conditions [47].

Soluble Fractalkine is a potent chemoattractant for T cells and monocytes, although cell-

bound Fractalkine promotes adhesion of leukocytes to activated endothelial cells [48]. IP-10

is secreted by monocytes, endothelial cells, epithelial cells and fibroblasts in response to

interferon (IFN)γ. It is a chemoattractant for monocytes/macrophages, T cells, NK cells, and

dendritic cells, and as with Fractalkine promotes T cell adhesion to endothelial cells [49].

MIP-1α is one of a family of chemokines produced by stimulated macrophages and

epithelial cells in response to infection. This chemokine activates granulocytes contributing

to acute inflammatory responses [50] and induces the synthesis of a range of pro-

inflammatory molecules [51]. As was noted with the cytokines, the patterns of responses of

the chemokines to the oral microbial biofilms were quite varied. Only IL-8 and IP-10

appeared to show elevated response levels to the biofilms, and this was limited to A.

naeslundii and F. nucleatum. Additionally, with IP-10, planktonic forms of the A. naeslundii

were significantly more stimulatory, while the F. nucleatum biofilms were most active for

the chemokines compared to planktonic bacteria. While we also examined MCP-1 and

RANTES in this study, neither of these analytes provided sufficient signal to identify any

role they might have in the epithelial cell responses to these oral biofilms.

Our findings using planktonic forms of a range of species are consistent with those previous

reports regarding epithelial cell responses. Of some interest was the variation in the dose

response of a number of the mediators towards challenge with the planktonic bacteria. These

results showed similar levels across the 2-log challenge, as well as instances where the

highest or lowest challenge dose resulted in the greatest levels of individual cytokines/

chemokines. Previous studies have identified that challenge of epithelial cell cultures with

planktonic bacteria, irrespective of the MOI, results in a very disjointed host–bacterial

interaction at the individual cell level. Thus, even though these are proposed to be identical

Peyyala et al. Page 7

Cytokine. Author manuscript; available in PMC 2014 July 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



cells in culture, microscopic evaluation demonstrated some cells with tens to hundreds of

bacteria coating their surface, while the juxtaposed neighboring cells have no bacteria

attached to the host cell surface. Thus, population based evaluation of cellular responses can

be affected by how the individual bacteria interact with the targeted host cells, as well as the

relatively broad capacity of Toll-like receptors to interact with bacterial structures [52].

However, the novel inclusion of monospecies oral bacterial biofilms demonstrated response

patterns, some of which at the bacterial species and/or analyte levels were parallel between

the biofilms and planktonic bacteria. However, other bacterial-host interactions clearly

showed that the biofilms stimulated unique patterns of responses, and in some cases as a

biofilm the bacteria were significantly inhibitory to basal mediator production by the

epithelial cells. An additional example of these variations was noted with different patterns

of responses across the oral streptococcal species that were evaluated. While the oral

viridans streptococci have been historically considered similar in their physiology and

ecological niches within the commensal microbiota, recent genomic and functional studies

have provided clear evidence the not only do these bacteria have some unique metabolic and

structural characteristics, but also integrate into complex multispecies biofilms in unique

ways [53–56]. Thus, variations in responses of the epithelial cells to these individual species

should not be unexpected.

An interesting aspect of these studies was that the majority were conducted under standard

aerobic tissue culture conditions. However, the literature supports that at the site of a

periodontal disease lesion the ecology reflects an anaerobic microenvironment for the

bacteria to interact with the host. A single recent study has been reported examining the

variation in cellular response to oral bacterial challenge in aerobic versus anaerobic

conditions [57]. This report showed that under reduced oxygen tension (i.e. 2% oxygen)

selected oral bacteria, e.g. Tannerella forsythia, P. gingivalis, and Prevotella intermedia

elicited elevated levels of IL-8 and TNFα with the highest levels in the low oxygen

environment. Thus, with the variations in the subgingival microbial environment, including

oxygen tension [58], presence of volatile sulfur compounds [59], and elevated pH [60],

results are lacking regarding the impact of these environmental changes on the host–

bacterial interactions related to periodontal disease. The model reported in this study will

enable us to combine investigations of oral microbial biofilms, both monospecies and

multispecies, to directly address the environmental control of host cell responses that could

occur in the oral cavity.

While the mediators examined in this study do not cover the extent of response capacity of

the oral epithelium, the variation even with two pro-inflammatory cytokines (IL-1α and

IL-6) indicates that data is clearly needed to document the characteristics of responses of

epithelial cells to the format in which oral bacteria exist in situ in the oral cavity. As

importantly, these studies were limited in directly evaluating monospecies biofilms as a

basis to understand the capabilities of individual bacteria, recognizing the ultimate need to

delineate how these bacteria in complex multispecies biofilms would interact with and

stimulate these host cells.
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Fig. 1.
A–C: Levels of cytokines elicited by challenge of oral epithelial cells with biofilms or

planktonic forms of various oral bacteria. Each bar denotes mean level of triplicate

determinations for each condition and the vertical brackets signify 1 SD. The asterisk (*)

denotes significantly different than controls (Con for planktonic; Lens for biofilms) at least

at p < 0.05. The # signifies significantly greater that other stimuli for the particular

microorganism at p < 0.05.
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Fig. 2.
A–E: Levels of chemokines elicited by challenge of oral epithelial cells with biofilms or

planktonic forms of various oral bacteria. Each bar denotes mean level of triplicate

determinations for each condition and the vertical brackets signify 1 SD. The asterisk (*)

denotes significantly different than controls (Con for planktonic; Lens for biofilms) at least

at p < 0.05. The # signifies significantly greater that other stimuli for the particular

microorganism at p < 0.05.
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Fig. 3.
A and B: Summary of cytokine and chemokine response profiles for monospecies biofilms

compared with response patterns for 108 or 106 planktonic forms for each bacterial species.

The line peaks denote fold difference in response compared to control cell basal levels

(planktonic comparison) or cells overlaid with a bacterial free RGPL (biofilms comparison).

Numbers in parentheses denote fold changes beyond the scale of the graph.
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