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Abstract

Introduction—We aimed to investigate if cerebral amyloid angiopathy (CAA) is more frequent 

in genetically determined than in sporadic early onset forms of Alzheimer disease (EOAD).

Methods—Neuroimaging features of CAA, APOE, and cerebrospinal fluid-Aβ40 levels were 

studied in subjects with Down syndrome (DS, n=117), autosomal dominant AD (ADAD, n=29), 

sporadic EOAD (n=42), and healthy controls (n=68).

*Corresponding authors: Juan Fortea Ormaechea, Memory Unit, Department of Neurology, Hospital de la Santa Creu y Sant Pau. Sant 
Antoni María Claret, 167. 08025. Barcelona. Spain. Phone number: (34) 935565986. Fax: (34) 935565602. jfortea@santpau.cat.
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Results—CAA was present in 31%, 38% and 12% of cognitively impaired DS, symptomatic 

ADAD, and sporadic EOAD subjects, and in 13% and 4% of cognitively unimpaired DS 

individuals and healthy controls, respectively. APOE-ε4 genotype was borderline significantly 

associated with CAA in sporadic EOAD (p=0.06), but not with DS or ADAD. There were no 

differences in Aβ40 levels between groups or between subjects with and without CAA.

Discussion—CAA is more frequently found in genetically determined AD than in sporadic 

EOAD. Cerebrospinal fluid-Aβ40 levels are not a useful biomarker for CAA in AD.

Keywords

Cerebral amyloid angiopathy; sporadic early onset Alzheimer disease; autosomal dominant 
Alzheimer disease; Down syndrome; neuroimaging; cerebrospinal fluid biomarkers

Introduction

Most cases of Alzheimer's disease are sporadic, and caused by complex interactions between 

genetic and environmental factors. In approximately 5% of cases, Alzheimer's disease can 

present clinically before the age of 65 (early-onset Alzheimer's disease-EOAD) [1]. These 

patients frequently present with non-amnestic phenotypes and faster clinical decline than 

older sporadic Alzheimer's disease cases [1]. In 0.1-0.5% of cases, Alzheimer's disease is 

transmitted with an autosomal dominant pattern of inheritance (ADAD) due to the presence 

of mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), or amyloid precursor protein 

(APP) genes [2]. Down syndrome (DS) is also recognized as a form of genetically 

determined AD, mainly caused by the APP gene triplication [2]. Despite the different 

genetic background, the Alzheimer's disease neuropathological findings in sporadic EOAD, 

ADAD and DS are very similar [3,4].

Cerebral Amyloid Angiopathy (CAA) is a major cause of lobar intracerebral hemorrhage 

(ICH) in the elderly and is present in up to 90% of Alzheimer's disease brains at autopsy [3]. 

Previous neuropathological studies have suggested a more severe CAA in ADAD than in 

sporadic Alzheimer's disease [4]. CAA in some APP mutations or duplication carriers drives 

the clinical presentation [4], and is also consistently observed in subjects with DS [5]. The 

modified Boston criteria for CAA-related hemorrhage (mBCAA) have been validated to 

attribute in vivo an ICH to CAA based on several neuroimaging features, and are frequently 

used in clinical practice [6]. There are no previous studies systematically assessing the CAA 

neuroimaging features in DS and ADAD.

Aβ40 is the major form of Aβ deposited in the vessel walls in individuals with CAA. Low 

levels of Aβ40 and Aβ42 have been found in the CSF of subjects with sporadic CAA [7]. 

However, scarce and contradictory data are available about the CAA CSF biomarker profile 

in sporadic Alzheimer's disease patients [8–10], and no previous studies have assessed this 

profile in DS or ADAD. Moreover, the APOE-ε4 genotype is a risk factor for both sporadic 

Alzheimer's disease and sporadic CAA [11], as it increases Aβ deposition in both the 

parenchyma and blood vessels [12]. However, the effect of the APOE genotype in 

Alzheimer's disease dementia within DS and ADAD is controversial, and there are no 

studies assessing the influence of the APOE genotype on CAA in ADAD or DS [13].
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The differences in the CAA neuroimaging features and CSF biomarkers profile in the 

different forms of Alzheimer's disease are thus, not established. Our primary objective was 

to determine the CAA presence assessing the fulfillment of the mBCAA and the CSF Aβ40 

levels in three different Alzheimer's disease populations: DS, ADAD and EOAD. We 

hypothesized that patients with genetically determined Alzheimer's disease would have more 

CAA neuroimaging and biochemical features than EOAD.

Materials and methods

Study design and participants

A total of 256 subjects were recruited from 5 centers: Hospital of Sant Pau, Hospital Clínic 

de Barcelona, and Barcelona Down Medical Center in Barcelona, Spain; and the Sanders-

Brown Center on Aging in Kentucky and the Down Syndrome Biomarker Initiative (DSBI) 

project in San Diego, United States of America. Four study groups were evaluated: EOAD, 

ADAD, DS, and healthy controls (HC).

EOAD (N=42)—Patients were recruited at the Memory Unit of Hospital de Sant Pau from 

the Sant Pau Initiative on Neurodegeneration (Barcelona SPIN cohort) [14]. We used the 

International Working Group-2 diagnostic criteria for AD with in vivo evidence of AD based 

on CSF biomarkers [2]. This group included 19 individuals with prodromal AD (p-EOAD) 

and 23 subjects with probable AD dementia (d-EOAD).

ADAD (N=29)—Participants were recruited from the Genetic counseling program for 

familial dementias (PICOGEN) at the Hospital Clínic de Barcelona [15]. Fifteen 

symptomatic carriers (CDR≥ 0.5) carrying 9 different PSEN1 mutations (M139T, S169P, 

L173F, G209E, L235R, K239N, L282R, L286P, I439S) and one symptomatic carrier of the 

APP I716T mutation were included. The symptomatic carriers were further classified as 

prodromal ADAD (pAD-ADAD, n=5) and ADAD dementia (dADAD, n=11). Twelve pre-

symptomatic mutation carriers (CDR= 0) carrying 7 different PSEN1 mutations (M139T, 

S169P, L173F, R220G, K239N, L282R, I439S) and one pre-symptomatic carrier of APP 
I716T were labeled as asymptomatic ADAD. We used the IWG2 diagnostic criteria for AD 

[2].

DS (N=117)—Adults with DS were recruited from three centers, the Down Alzheimer 

Barcelona Neuroimaging Initiative (DABNI) in the Barcelona Down Medical Center [16]; 

the Sanders-Brown Center on Aging; and the DSBI pilot project [17]. Adapted 

neuropsychological batteries (detailed in the Appendix section), covering all cognitive 

domains classified DS subjects into “without cognitive decline” (asymptomatic DS, N=91), 

prodromal AD (pAD-DS, N=13), and AD dementia (dAD-DS, N=13). pAD-DS and dAD-

DS were also labeled as symptomatic DS.

Healthy controls (N=68)—Participants were recruited at Hospital de Sant Pau (n=60) and 

Hospital Clínic de Barcelona (n=8) enrolled among patients' caregivers. They did not have 

cognitive complaints, scored 0 on CDR, had normal neuropsychological evaluation, and 

normal core Alzheimer's disease CSF biomarkers [18,19].
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Procedures

Medical records were reviewed for potential confounders and effect modifiers: age, sex, and 

presence of arterial hypertension, neuropsychological information on disease severity 

(MMSE for EOAD and ADAD and the Cambridge Examination for mental Disorders of 

Older People with DS and Others with Intellectual Disabilities-Cognitive Scale - 

CAMCOG-DS scale for DS) were recorded and sent to the coordinating center (Hospital de 

Sant Pau) with the CSF biomarkers (Aβ42, Aβ40) and neuroimaging data.

The study was approved by the local Ethics Committees following the ethical standards 

recommended by the Helsinki Declaration. All participants and/or their caregivers gave their 

written informed consent.

Neuroimaging assessments

The inclusion criteria for all participants included a 1.5 or 3T MRI scan including T2*-GRE 

or SWI, axial fluid attenuated inversion recovery (FLAIR) and coronal T1-weighted 

sequences in the five centers involved GRE or SWI sequences were assessed for the 

presence of the main CAA neuroimaging features: localization and number of lobar 

microbleeds, presence of cortical superficial siderosis (cSS), and lobar ICH. We evaluated 

the fulfillment of mBCAA in all participants regardless of the age criterion included in the 

criteria set (>55 years) [6]. White matter hyperintensites (WMH) were semi-quantitatively 

assessed in FLAIR sequences according to the Fazekas score [20]. MTA was evaluated in 

coronal T1-weighted images trough the Scheltens scale [21]. MTA was scored bilaterally 

and the highest score was considered for the analyses.

The radiological evaluation was performed by two raters (either MCI or MB; neurologists 

with expertise in cognitive disorders and SG; neuroradiologist) blinded to the clinical data. 

Inter-rater reliability was above 90% and discrepancies within ratings were solved by 

consensus.

CSF biomarkers and APOE genotype

The inclusion criteria for EOAD and healthy controls included CSF data, but not for ADAD 

and DS. Details of analysis are described elsewhere [14,18]. In short, commercially available 

ELISA kits were used to determine CSF-Aβ40 and CSF-Aβ42 levels (Millipore and 

Fujirebio-Europe, respectively), following the manufacturers' recommendations.

APOE genotyping was performed by PCR amplification of the exon four fragment 

containing the two polymorphisms (rs429358 and rs7412) that encode the three common 

APOE isoforms. The following oligonucleotides: APOE-F: 5′-

ACTGGAGGAACAACTGACCC-3′ and APOE-R: 5′-CTGCCCATCTCCTCCATC-3′, 

were used and final PCR products were purified and Sanger sequenced using BigDye 

terminator chemistry (Applied Biosystems). Sequences were run on an Applied 

Biosystems® 3130 Genetic Analyzer and resulting elecropherograms were visually 

inspected using Sequencher (version 4.1, Gene Codes Corp.).
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Statistical analysis

Statistical analyses were performed with the Statistical Package for the Social Sciences v19 

software (IBM corp. http://www-01.ibm.com/software/es/analytics/spss/). The primary 

objectives of this study were to compare across groups the frequency of the mBCAA and the 

CSF-Aβ40 levels and were analyzed with the exact Fisher and Mann-Whitney test 

respectively.

The secondary objectives were to assess the white matter lesions measured by the Fazekas 

scale and the hippocampal atrophy measured by the Scheltens scale and were analyzed with 

the exact Fisher test. Spearman correlation coefficients were calculated between age, clinical 

stage, hippocampal atrophy and white matter lesions and the different study groups. With the 

purpose of improving the statistical power, prodromal and demented groups in EOAD, 

ADAD and DS were merged when analyzed. All significance tests were two-sided with the 

statistical significance set at 5%.

Results

Table 1 displays the demographics, clinical features, CSF data, and APOE genotype of the 

participants. CSF data were available in 71% (N=182) of the subjects (including all healthy 

controls and patients with EOAD). Symptomatic ADAD and symptomatic DS subjects were 

younger than patients with EOAD (48.4, 54.4, 61.1 years of age respectively; p<0.001).

The APOE-ε4 allele frequency was higher in EOAD than in any other group. However, no 

differences were observed between symptomatic or asymptomatic subjects within the 

ADAD or DS groups.

Table 2 shows the neuroimaging results across the different groups. The fulfillment of the 

mBCAA criteria was more frequent in symptomatic DS, 31% (N=8), and in symptomatic 

ADAD, 38% (N=6), than in EOAD 24% (N=19) (p=0.055 and 0.026 respectively). When 

present, the most frequent CAA neuroimaging features were lobar microbleeds in 91.2% 

(N=31), followed by cSS in 29.4% (N=10) and ICH in 8.8% (N=3). All three features were 

more frequent in the symptomatic than in asymptomatic subjects within all groups (Table 2).

The symptomatic ADAD and DS groups had a higher proportion of lobar microbleeds than 

the EOAD group (p=0.02, p=0.046 respectively). cSS and ICH were statistically associated 

(p=0.004). In those who had cSS, 20% (N=2) had also an ICH, and cSS was present in 67% 

(N=2) of those with ICH. Symptomatic DS had a higher proportion of subjects with cSS and 

lobar ICH than the EOAD group, but this difference did not reach statistical significance 

(p=0.056). The position of the mutation (pre or post codon 200) did not significantly impact 

the presence of lobar microbleeds in PSEN1 carriers (37 vs 25%, p=0.4). One of the 

asymptomatic ADAD subjects included in our study had a massive lobar ICH after 

recruitment into this study that lead to its dead in a stage of moderately severe dementia.

The mean time lag between MRI and CSF sampling was 5.3 months. Symptomatic 

participants had lower CSF-Aβ42 levels than asymptomatic subjects within all groups 

(Figure 1A). No significant differences were detected in CSF-Aβ40 levels between the 
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different groups or between symptomatic and asymptomatic subjects within each group 

(Figure 1B).

All EOAD patients fulfilling the mBCAA were APOE-ε4 carriers and the APOE-ε4 allele 

was significantly more frequent in EOAD subjects than in the symptomatic ADAD 

(p=0.015) or symptomatic DS (p=0.071) subjects fulfilling the mBCAA criteria. In sporadic 

EOAD, there was a trend for the association between mBCAA fulfillment and APOE-ε4 

genotype (p=0.06).

There were no differences in CSF-Aβ40 levels between those subjects who fulfilled the 

mBCAA criteria and those who did not (or the presence of lobar microbleeds, cSS, or ICH) 

in any group.

Symptomatic subjects presented higher Fazekas scores than asymptomatic subjects in all 

groups: EOAD patients had higher Fazekas scores than healthy controls (p<0.001); 

symptomatic ADAD higher than asymptomatic ADAD (p=0.022) or HC (p=0.05); and 

symptomatic DS higher than asymptomatic DS (p=0.011) and healthy controls (p<0.001) 

(Figure 2 and table 2).

There was a significant positive correlation between age and Fazekas score in the whole 

sample (r=0.337, p<0.001), in ADAD (r=0.407, p=0.031) and in DS (r=0.506, p=0.000) 

groups. This correlation was also found in asymptomatic DS (r=0.495, p<0.001) and in 

healthy controls (r=0.323, p=0.007) (Figure 3).

Age positively correlated with Scheltens scores in the whole sample (r=0.229, p<0.001), 

healthy controls (r=0.276, p=0.023), ADAD (r=0.412, p=0.027), asymptomatic DS (r=0.341, 

p=0.001), and symptomatic DS (r=0.431, p=0.023). The Scheltens scores increased from 

asymptomatic to symptomatic subjects within each group. Symptomatic DS patients 

presented higher MTA scores than EOAD and symptomatic ADAD patients (p<0.001 in 

each comparison) and asymptomatic DS subjects higher than HC (p<0.001). There were no 

differences in Scheltens scores between EOAD and symptomatic ADAD.

Discussion

We found that DS and ADAD have a more severe CAA than EOAD as measured by the 

mBCAA criteria, but CAA did not impact the CSF-Aβ40 levels. The APOE-ε4 allele might 

be associated with CAA in EOAD, but does not seem to have an effect in DS or ADAD.

There are previous studies assessing the prevalence of lobar microbleeds in ADAD and 

EOAD [22] [23,24], but, to our knowledge, none has specifically assessed and compared the 

mBCAA between the different AD populations. The mBCAA were more frequent in DS and 

ADAD, suggesting a more severe CAA, as shown in pathological studies [5,25]. The most 

frequent CAA neuroimaging feature was the presence of lobar microbleeds, as previously 

described [26]. The frequency of lobar microbleeds in ADAD (and healthy controls) was in 

agreement with the literature (ranging from 25% to 66%) [23,24][26], but we found a lower 

frequency of lobar microbleeds in EOAD (9.5%) than that reported in late onset AD 

(20-30%) [27]. Age might be responsible for this difference. There are no previous studies 
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assessing the mBCAA criteria or any of its component neuroimaging features in DS. CAA is 

also consistently observed in DS pathological studies [5,28], but it had been proposed that 

other genetic factors in DS might protect these subjects from the ICH [29]. We found 38.5% 

of frequency for lobar microbleeds in symptomatic DS and, more importantly, a frequency 

of 15.4% for ICH. While this is lower than the reported 30% prevalence for symptomatic 

ICH in non-trisomic APP duplication carriers, it is well above the 3%-3.8% figure for 

symptomatic ICH in DS reported in the same study [29]. This discrepancy might be 

explained because many non-fatal ICH might be unnoticed in DS with AD. Of note, both 

subjects with DS and ICH on the MRI did not present with ICH-related clinical symptoms.

A significant percentage of symptomatic subjects, nonetheless, did not meet the mBCAA 

and were free of the CAA associated neuroimaging features. This is in contrast with 

pathological studies, where CAA is found in up to 90% of AD brains, suggesting that the 

available MRI sequences only identify a subset of AD-CAA subjects [23]. The CAA 

neuroimaging features might thus detect only the most severe cases or, alternatively, they 

might select different subgroups of patients [23]. In this respect, cSS, although less frequent 

than lobar microbleeds, was strongly associated with lobar ICH. cSS might be a particular 

important marker for severe CAA in AD, as it has been suggested in sporadic CAA [7]. 

More work in longitudinal studies is needed to confirm the higher risk conferred by cSS for 

future ICH and cognitive decline.

We also assessed other neuroimaging features associated with CAA, but not included in the 

mBCAA criteria. Both WMH and MTA are increasingly recognized as core Alzheimer's 

disease features and as a manifestation of CAA [30]. We found a gradient in WMH 

extension in all groups [31], but we also found more extended WMH in those subjects 

fulfilling the mBCAA criteria. WMH also increased with age and in relation with vascular 

risk factors. We found this correlation also in healthy controls, even though they all had 

normal core Alzheimer's disease CSF biomarkers and low prevalence of HBP. However, we 

found a strong correlation between age and WMH in asymptomatic DS despite their younger 

mean age. This correlation supports the relationship between amyloid deposition and WMH. 

Not surprisingly, the Scheltens scores increased with symptom severity in all AD 

populations. Hippocampal atrophy, however, was more severe in DS, even in asymptomatic 

DS individuals. These results are in agreement with the notion that individuals with DS have 

smaller hippocampal size from birth, but also show atrophy when Alzheimer's disease 

develops [17].

Decreased CSF-Aβ40 levels might differentiate sporadic CAA from healthy controls and 

Alzheimer's disease cases [7]. In our study, nevertheless, CSF-Aβ40 levels did not 

discriminate CAA neuroimaging features in any group. This finding could be influenced by 

the fact that amyloid vascular burden in CAA in ADAD and DS contains not just Aβ40, but 

also Aβ42. It is difficult to sort out the contribution of vascular Aβ42 deposition from 

parenchymal plaque deposition except with neuropathological analysis of the post-mortem 

brain, which was not available in this study [32,33].

To our knowledge, there are only two studies that determine CSF-Aβ40 in subjects with 

Alzheimer's disease with and without lobar microbleeds and show conflicting findings 

Carmona-Iragui et al. Page 7

Alzheimers Dement. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[9,10]. In any case, our results suggest that CSF-Aβ40 levels are not a sensitive biomarker to 

detect CAA in the context of an Alzheimer's disease process.

The APOE-ε4 allele confers a higher risk for CAA in the general population and in 

Alzheimer's disease [11,12]. We also found a trend for an association between APOE-ε4 

genotype and CAA in sporadic early onset Alzheimer's disease. Furthermore, all EOAD 

subjects with CAA neuroimaging features were APOE-ε4 carriers. We did not find this 

relationship in ADAD or DS. The APOE-ε4 genotype might be thus associated with CAA in 

EOAD, but not in DS or ADAD. In ADAD and DS, other genetic factors, such as the type or 

position of the causing mutation in ADAD, might be more important in predicting CAA [4].

Our findings have potential clinical implications. The mBCAA criteria have not been 

validated in patients <55 years of age. We consider that, at least in ADAD and DS, age 

should not be an essential requirement for CAA diagnosis. Our results also have substantial 

implications in Alzheimer's disease clinical trials given the relationship between CAA and 

amyloid-related neuroimaging abnormalities (ARIA). Vascular amyloid may be a 

pathophysiological mechanism for ARIA [34,35] and recent studies have shown that after 

Aβ immunotherapy there is an increase in CAA severity and an increase in lobar 

microbleeds associated with removal of plaques [36]. Trials targeting Aβ commonly use 

lobar microbleeds and APOE genotype to stratify subjects [37]. However, there are no 

available data on the relationship of CAA neuroimaging abnormalities (and APOE) and 

ARIA in the setting of amyloid-lowering therapy in ADAD and DS. Our data emphasize 

heterogeneity in prevalence and possibly etiology for CAA, therefore, the recommendations 

on the exclusions for presence of baseline ARIA-H (microbleeds or hemosiderosis) from 

sporadic Alzheimer's disease should be taken with caution. On the other hand, the APOE-ε4 

genotype is also commonly used to stratify participants given its influence on ARIA [37], 

however this strategy might not be as important in ADAD or DS. Finally, our data also 

suggest that the CSF-Aβ40 levels will not be a useful biomarker in these trials.

The higher prevalence of CAA in ADAD and DS might play a role in the conversion to 

clinical dementia. In sporadic Alzheimer's disease, CAA is an independent contributor to 

cognitive impairment and can worsen the severity of cognitive dysfunction [38]. Future 

longitudinal studies are needed to assess the CAA contribution to cognitive impairment in 

ADAD and DS.

The main strengths of the present study are the relatively large sample size of different rare 

populations, such as ADAD and DS, as well as the confirmation of the clinical diagnosis 

with genetics or CSF biomarkers. The study has some limitations. The use of two different 

imaging techniques is an important limitation when estimating the real prevalence of lobar 

microbleeds. SWI has a higher sensitivity for hemosiderin, detecting up to 50% more lobar 

microbleeds than conventional T2*GRE [39]. However, in our study the ADAD group was 

exclusively investigated using T2*GRE leading to a possible underestimation of the CAA 

neuroimaging features in these subjects. Finally, most of the EOAD patients were at a stage 

of mild dementia and we lack neuropathological data.
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In conclusion, the CAA-associated neuroimaging features are more frequent in adults with 

DS and in patients with ADAD than in those with EOAD suggesting a more severe CAA 

pathology. Our study also shows that the CSF-Aβ40 levels are not a reliable biomarker for 

CAA and that the risk factors for CAA (such as the APOE-ε4 genotype) might be different 

in EOAD and genetically determined Alzheimer's disease. These findings should be taken 

into account in the design of clinical trials with anti-amyloid therapies in people with ADAD 

or DS.
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Appendix

Neuropsychological batteries assessed in the Down syndrome group.

Each participant received an annual physical and neurological examination. Diagnostic was 

established after a clinical consensus performed by the clinical neurologist and the 

neuropsychologist.

- Neuropsychological battery from the Down Alzheimer Barcelona Neuroimaging 

Initiative (DABNI), Spain.

- Kauffman Brief Intelligence Test

- CAMDEX-DS (informant interview) and CAMCOG-DS (subject 

cognitive assessment)

- Clued recall test (Free and cued immediate and delayed recall)

- Digit span (forward/ backward)

- Picture cancellation task (Devenny)

- Barcelona Test (assessment of limb apràxia-pantomime of intransitive 

gestures)

- Cats and dogs tests

- Verbal fluency (animals)

- Abstract thinking (Barcelona test)
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- Mental State examination- DS (MEC-DS), screening instrument, not 

validated

- Neuropsychiatric inventory (12 item NPI)

- Fundació Catalana Sindrome de Down Functional Scale, not validated

- Dementia questionnaire for people with intellectual disabilities (DMR)

- Neuropsychological battery from the Sanders-Brown Center on Aging in 

Kentucky, USA.

- Kauffman Brief Intelligence Test

- Severe Impairment Battery

- Brief Praxis Test

- Fuld Object Memory Evaluation

- Peabody Picture Vocabulary Test (4th ed.)

- Children's Memory Scale: Dot Locations

- Category verbal fluency

- Beery Visual Motor Integration

- Neuropsychiatric inventory (NPI)

- WISC-R Block Design

- Vineland Adaptive Behavior Scale

- Behavioral Rating of Executive Functions (BRIEF)

- Adaptive Behavior Assessment System (ABAS)

- Dementia Questionnaire for people with intellectual disabilities 

(DMR)

- Neuropsychological battery from the Down Syndrome Biomarker Initiative 

(DSBI) project in San Diego, USA is detailed in Rafii et al. Front Behav 

Neurosci. 2015, 14;9:239.
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APOE Apolipoprotein-E

APP Amyloid precursor protein

ARIA Amyloid-related imaging abnormalities

CAA Cerebral amyloid angiopathy

CAMCOG-DSCambridge Examination for mental Disorders of Older People with DS and 

Others with Intellectual Disabilities-Cognitive Scale

cSS Cortical superficial siderosis

d-EOAD Dementia in early onset Alzheimer's disease

DABNI Down Alzheimer Barcelona Neuroimaging Initiative

dAD-DS Alzheimer's disease dementia in Down syndrome

dADAD Dementia in autosomal dominant Alzheimer's disease

DS Down syndrome

DSBI Down syndrome biomarker initiative

EOAD Early onset Alzheimer's disease

FLAIR Fluid attenuation inversion recovery

GRE Gradient echo

ICH Intracerebral hemorrhage

mBCAA Modified Boston criteria for cerebral amyloid angiopathy

MMSE Mini-mental state examination

MTA Medial temporal atrophy

p-EOAD Prodromal Alzheimer's disease in early onset Alzheimer's disease

pAD-ADAD Prodromal Alzheimer's disease in autosomal dominant Alzheimer's disease

pAD-DS Prodromal Alzheimer's disease in Down syndrome

PSEN1 Presenilin 1

PSEN2 Presenilin 1

SWI Susceptibility weighted imaging

WMH White matter hyperintensities
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Figure 1. CSF biomarker levels in the clinical groups, according to modified Boston criteria for 
CAA (cBCAA)
Box plot displaying the distribution of CSF-Aβ42 (A) and CSF-Aβ40 (B) from healthy 

controls, sporadic EOAD, asymptomatic ADAD (aADAD), symptomatic ADAD (sADAD), 

asymptomatic DS (aDS), and symptomatic DS (sDS). Subgroups in blue represent those 

subjects who do not fulfill cBCAA, subgroups coloured in green do fulfill cBCAA for 

possible or probable CAA.

No differences in levels of CSF-Aβ42 or in CSF- Aβ40 were detected between subjects that 

fulfilled cBCAA and those who did not within each clinical group.
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Figure 2. Proportion of subjects in each group according modified Boston criteria, Fazekas score, 
and medial temporal lobe atrophy
Frequency bar graph showing: A) modified Boston criteria fulfillment, B) Fazekas score 

and, C) MTA score of each clinical group. Healthy controls and sporadic AD in the first row, 

ADAD in the second row, DS in the third row.
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Figure 3. Proportion of subjects according to Fazekas score by range of age
The frequency bar graphs showing the percentage of subjects with each Fazekas categories 

by age in: A) Healthy controls and, B) asymptomatic Down syndrome subjects.
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