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ABSTRACT OF DISSERTATION 

ECONOMIC IMPACT OF ETHANOL BIOREFINERIES IN THE U.S. MIDWEST 
FROM 2001 TO 2015:  A QUASI-EXPERIMENTAL APPROACH 

The objective of this dissertation is to analyze the economic impact of newly 
operational ethanol biorefineries on rural counties in the U.S. Midwest region for the 
period 2001 to 2015 using a quasi-experimental approach.  Rapid growth in the ethanol 
industry expanded the number of ethanol plants located in the U.S. Midwest from 54 in 
2001 to 173 in 2015.  Out of the counties with 119 new ethanol biorefineries, 97 counties 
met the general treatment criteria defined in this dissertation, but only 56 of those 
counties qualified for the rural treatment criteria.  Counties with ethanol biorefineries that 
qualified for treatment were organized into a treated group based on county level data. 
Six counterfactual control groups (or control counties without ethanol biorefineries) were 
contemporaneously matched to the treated counties based on the Mahalanobis distance 
metric evaluated on a set of 29 selection variables.  Matching occurred on two levels.  In 
the first level, matching was performed both for the in-state level and over the entire 
Midwest region.  In the second level, three criteria were used to select the final control 
groups:  Mahalanobis distance metric best match, population best match, and rural-urban 
continuum codes (RUCC) best match.    

Economic impact is evaluated based on the growth rate in real per capita earnings 
for the treated group over a period from one to five years after treatment relative to the 
control group.  A difference-in-differences (DID) model is used to assess the significance 
of results where the dependent variable is the natural log of real per capita earnings and a 
set of control variables is used to capture state fixed effects, time fixed effects and 
spillover effects.  Empirical results evaluated against a representative Midwest control 
group and over six regression models adjusting for various fixed effects produced, on 
average, one-sided significant results for average treatment on the treated (ATOT) with a 
(min, max) range of growth rates as (5.53%-7.63%), (10.0%-12.0%), (14.7%-19.6%), 
(14.5%-18.3%), and (13.3%-18.9%) from one to five years after treatment, respectively.  



The minimum value of these estimates can be represented as an uncorrected average 
annual growth rate as 2.75%, 3.33%, 3.68%, 2.90%, and 2.22% over the respective 
period from one to five years after treatment.  Employment levels for the treated group 
increased on average by 211 at the county level five years after treatment.  A comparative 
Midwest control group lost, on average, 169 jobs over the five year period after 
treatment.  A treated county employment multiplier calculated using the direct, indirect 
and induced employment impacts varied from 1.46 during the year of treatment to 7.6 
five years after treatment relative to the control group.  Five years after treatment, the 
treated group employment rate gradually increased, on average, by 2.2% which was 
better than either of the two counterfactual control groups used in this comparison. 

Overall, the analysis presented in this dissertation does show statistically 
significant positive economic impacts, on average, for rural U.S. Midwest counties with 
newly operational ethanol biorefineries relative to control counties without an ethanol 
biorefinery.  These results demonstrate that the Renewable Fuel Standard (RFS) 
contributed to positive rural economic development impacts in treated counties with the 
possibility of spillover effects positively affecting contiguous counties. 

KEYWORDS:  Rural Economic Development, Renewable Fuel Standard, Energy, 
Bioenergy, Ethanol Biorefineries, U.S. Midwest 
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CHAPTER 1.  INTRODUCTION 

1.1 Overview 

The rapid expansion of the U.S. fuel ethanol industry from 2001 to 2015 created 

an opportunity to examine whether there were significant localized economic impacts 

associated with rural investment in ethanol biorefineries and their continuous operations 

in the U.S. Midwest.  This research proposes that a quasi-experimental event took place 

with the recent expansion of the fuel ethanol industry and that local communities where 

ethanol biorefineries were located economically benefitted more so than communities 

without an ethanol biorefinery. 

This chapter will proceed with an overview of the fuel ethanol industry.  First, a 

brief overview of fuel ethanol use as an energy source is presented.  Second, an overview 

of an ethanol plant’s operations is presented by describing the fuel ethanol production 

process.  Third, since corn is the primary feedstock used in ethanol production, some 

highlights of production technologies used to increase corn yields are discussed.  Fourth, 

a review on ethanol industry expansion is presented.  Fifth, insight into local economic 

impacts associate with the fuel ethanol industry is discussed.  Finally, an overview of 

how policy has been a driving factor in the fuel ethanol industry’s expansion. 

This chapter will conclude with three sections which focus the research performed 

in this dissertation.  First, the objective of the research is formalized.  Second, the null 

and alternative hypotheses are formally stated.  Finally, the overall structure of the 

research conducted in the remaining chapters of this dissertation is presented. 
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1.2 U.S. Fuel Ethanol Industry Overview 

1.2.1 Background on Fuel Ethanol Use 

Fuel ethanol has properties which allow it to function as both a complement and a 

substitute for gasoline.  As a complement to gasoline, fuel ethanol is used as an additive 

which functions both as an oxygenate which enables more complete combustion of the 

fuel within an engine and as an octane enhancer to boost the octane rating of gasoline 

which prevents engine knock.  Ethanol is classified as an oxygenate since it has one 

oxygen atom in its chemical structure (C2H5OH) which helps to facilitate more complete 

combustion and reduces carbon monoxide pollution.  In the Clean Air Act Amendments 

of 1990, fuel ethanol was one of the oxygenates listed for use in the production of 

reformulated gasoline (RFG).  The real benefit of oxygenates is the reduction in air 

pollutants as products of the combustion process, such as carbon monoxide (CO), 

nitrogen oxides (NOX), hydrocarbons, and indirect secondary products such as ozone.   

In the automotive industry, there have always been trade-offs between engine 

efficiency which requires higher compression ratios and the types of fuels that can be 

used which are capable of withstanding the higher compression ratios prior to self-

ignition.  This problem was solved in the early years of the automotive industry by using 

tetraethyl lead, a highly toxic substance, as an octane enhancer. In the 1970s, public 

health concerns over the use of tetraethyl lead increased public pressure on gasoline fuel 

refiners to produce unleaded fuels and on automotive manufacturers to produce vehicles 

that would run efficiently on unleaded fuels.  Though the fuel ethanol industry was 

virtually non-existent in the 1970s, ethanol’s octane rating of 113 made it a promising, 

non-toxic octane enhancer for gasoline.  Currently, fuel ethanol is one of the most 
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common octane boosters for gasoline.  For example, a gasoline-ethanol mixture with 10% 

ethanol (E10) will raise gasoline’s refined octane rating from about 85 to above 87 which 

is generally the minimum octane rating available for use in most motor vehicles.  Thus, 

fuel ethanol provides a non-toxic solution to enhance engine efficiency. 

Since fuel ethanol is an energy source, it is also a substitute for gasoline.  In 

Brazil, Flex Fuel Vehicles (FFVs) can run on hydrous ethanol1 (E100) or any mixture of 

gasoline and ethanol.  One downside of ethanol is its energy content which is only about 

67% of gasoline’s energy content on a volumetric basis.  Therefore, Brazilian consumers 

make fuel substitution trade-offs based on how the relative pricing of the fuels reflects the 

relative energy content.  In the U.S., FFVs can operate with any gasoline-ethanol fuel 

mixture up to E85 (85% ethanol).  In order to create a blended gasoline-ethanol fuel mix, 

the ethanol used must be anhydrous ethanol2.  Too much water in the ethanol can cause 

chemical phase separation into its constituent parts (gasoline, ethanol and water) which 

can create engine performance issues.  In the U.S., all fuel ethanol biorefineries ship 

denatured anhydrous ethanol to fuel blenders to insure that phase separation will not 

occur.  Additionally, fuel ethanol’s use as a substitute to gasoline is frequently used by 

the Renewable Fuels Association (RFA), an ethanol industry trade association, to tout 

historic oil import displacement through the use of fuel ethanol (RFA, 2019). 

As an additional note on this topic, the terms “ethanol”, “fuel ethanol”, 

“anhydrous ethanol”, and “conventional ethanol” are mostly used interchangeably in this 

dissertation.  There can be slight differences in the meaning of the terms depending on 

                                                 
1 Hydrous ethanol is distilled to its highest azeotropic purity of about 95% pure ethanol with water 
composing the remaining percentage of the mixture. 
2 Anhydrous ethanol has a water content of less than 1% by volume as specified by ASTM D4806. 
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context, but where appropriate, the proper terminology will be used for purposes of 

clarity. 

 

1.2.2 Fuel Ethanol Production Process 

Ethanol distillers, using corn as a feedstock, build their biorefineries to operate 

using either a dry mill or a wet mill production process.  Approximately 90% of all fuel 

ethanol biorefineries are dry mills (RFA, 2019).  A dry mill ethanol production process 

flow is shown in Figure 1.1.  In the dry mill process, the biorefinery receives corn from 

local farmers which is ground into coarse flour and mixed with water to form a mash.  

Alpha-amylase enzymes are added into the mixture and the slurry is cooked at the proper 

temperature and pH level to facilitate the saccharification process which converts 

starches into long-chain sugars.  After the first phase of saccharification is complete, 

gluco amylase enzymes are added to break the long-chain sugars into simple sugars 

which are more suitable for yeast consumption.  The sugary solution is piped into 

fermentation tanks where yeast (saccharomyces cerevisiae) and yeast nutrients are added 

to ferment the mixture.  For some biorefineries, carbon dioxide is a co-product from 

fermentation which is captured and marketed to beverage companies or used for the 

production of dry ice.  Other biorefineries treat carbon dioxide as a by-product and 

release it into the atmosphere.  Depending on how carbon dioxide is processed, it can 

greatly change the lifecycle greenhouse gas (GHG) emission profile of the resulting fuel 

ethanol.   

After the fermentation process is complete, the resulting “Beer” with about 16% 

ethanol by volume is pumped into intermediate storage to facilitate a continuous flow of 
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the Beer solution into the distillation columns.  The Beer goes through a multistage 

distillation process which produces two main co-products:  distillers grains and 190 proof 

ethanol.  The distillers grains are further refined to extract water and corn oil.  Extracted 

water is recycled back into the earlier stages of the process.  Corn oil can be used to make 

biodiesel or added back into the grain solids for feed.  The refined distillers grains are 

now wet distillers grains with solubles (WDGS) and can be immediately sold for feed.  

Also, the WDGS can be dried into dried distillers grains with solubles (DDGS) which has 

a longer shelf life for storage or can be immediately sold for feed.   

The 190 proof ethanol is filtered through molecular sieves to extract most of the 

remaining water from the ethanol until it has less than 1% water content by volume.  

Then, the anhydrous ethanol is denatured by adding about 2% gasoline to make it 

unpalatable for human consumption.  The finished denatured anhydrous ethanol (fuel 

ethanol) is shipped to blenders either by 8,000 to 10,000 gallon tanker trunks or by 

30,000 gallon railcars.  Average output yield from a dry mill process based on a bushel of 

corn as input is shown in Table 1.1.  The ethanol industry has improved its yield 

efficiency over the past two decades to produce about 2.86 gallons of denatured fuel 

ethanol, 15.9 pounds of distillers grains (10% moisture), 0.75 pounds of corn distillers 

oil, and 16.5 pounds of carbon dioxide from a bushel of corn (RFA, 2019). 

Since wet milling production is only used by about 10% of ethanol producers, the 

process will not be discussed in detail, but there are some notable differences with respect 

to the dry mill process that are worth discussion.  In the wet milling process, capital costs 

are higher than in dry milling process.  One advantage of the higher capital costs is that it 

enables greater flexibility in the mix of starch co-products produced, extraction of corn 
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oil, and in the production of gluten feed.  This dynamic mix of co-products allows wet-

milling producers the short-term flexibility to optimize their profits by being more 

responsive to output market price fluctuations.  One limiting factor is that wet mills 

cannot produce as much ethanol as dry mills per bushel of corn input.  This occurs due to 

portions of the starch exiting some of the processes attached to other co-products (food 

starches or high fructose corn syrup).   

 

1.2.3 Corn Feedstock 

In the United States, corn is the primary feedstock used in most fuel ethanol 

production though many different types of starchy grains (barley, wheat, sorghum grain), 

sugar crops (sugar beets, sugarcane), and biomass (cellulosic and lignocellulosic)  can be 

used to make ethanol.  In most cases, starchy grains and sugar crops have greater value in 

other uses than to make ethanol.  Biomass ethanol production is still cost prohibitive 

since the technological advances required to become cost competitive with corn 

feedstock have not yet come to fruition.  Thus, corn is the most abundant starch crop 

available in the United States which can be efficiently utilized in the production of 

ethanol. 

The Midwest is the ideal place to grow corn in the United States.  It has rich soils, 

temperate climate and relatively flat terrain which facilitate large scale crop production 

and the use of precision agriculture equipment.  Through the use of precision agriculture, 

genetically engineered seed corn and center pivot irrigation systems, corn yields have 

increased from an average 138 bushels per acre in 2001 to 168.4 bushels per acre in 2015 

(USDA-NASS).  In fact, Nebraska and Iowa average corn yields were 185 and 192 
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bushels per acre, respectively, in 2015 (USDA-NASS).  Additionally, the Midwest region 

produced 88% (11.9 billion bushels) of the total U.S. corn production (13.6 billion 

bushels) in 2015 (USDA-NASS).  Since ethanol production is a weight-losing production 

activity, industrial location theory states that corn-based ethanol plants should locate near 

their feedstock source in order to minimize their costs associated with transportation 

(Edwards, 2007).  As of 2015, 87% of all U.S. operating ethanol biorefineries were 

located in the Midwest (RFA, 2016). 

Over the past two decades, genetically engineered corn use has dramatically 

increased from virtually non-existent in 1996 to almost 90% market penetration in 2018 

(USDA-ERS, 2018).  The Bt (insect-resistant varieties) and HT (herbicide-tolerant 

varieties) traits were integrated into the genetic code of the corn seed to help corn 

producers increase productivity and reduce yield loss due to insects.  More recently, 

genetically engineered corn products are becoming more focused on the production uses 

of the corn.  For instance, Syngenta has introduced a genetically modified corn with 

higher alpha-amylase content called Enogen®.  Several ethanol biorefinery operations 

either require their corn suppliers to grow the Enogen® corn crop as a condition of being 

a feedstock supplier or pay a higher premium for corn delivered to them with higher 

alpha-amylase content.  Since ethanol producers spend several millions of dollars each 

year on amylase products3 to assist in the saccharification process, this type of product is 

targeted at lowering the operational costs of the biorefinery. 

As the corn-based fuel ethanol industry approaches the 15 billion gallon ethanol 

volumetric regulatory limit as defined under the Renewable Fuel Standard (RFS), the 
                                                 
3 Information based on “Ethanol Profitability Spreadsheet” created by Agricultural Marketing Resource 
Center (AGMRC) at Iowa State University.  Spreadsheet can be found at:  
http://www.extension.iastate.edu/agdm/energy/xls/d1-10ethanolprofitability.xlsx. 

http://www.extension.iastate.edu/agdm/energy/xls/d1-10ethanolprofitability.xlsx
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demand for corn feedstock will reach 5.357 billion bushels per year4.  This is 39.4% of 

total U.S. corn production and 45% of corn production in the Midwest based on 2015 

production levels.  Corn is expected to be the primary feedstock for ethanol biorefineries 

for years to come.  The biggest question facing corn producers in the relatively near 

future is whether the RFS will be renewed or allowed to expire in 2022. 

 

1.2.4 Ethanol Biorefinery Expansion in U.S. Midwest 

In 2001, there were 54 ethanol biorefineries operating in the U.S. Midwest as 

shown by the blue location dots in Figure 1.2.  Ethanol plants were operating in 10 of the 

12 Midwest states with North Dakota and Ohio being the exceptions.  In the contiguous 

United States, there were 74 operational ethanol biorefineries using a variety of 

feedstocks.  The largest capacity plants were located in the U.S. Midwest and used corn 

as a feedstock.  Cooperatives accounted for 34 of the 54 plants in the Midwest with an 

average production capacity of about 28.7 million gallons of ethanol per year (mgy).  The 

other 20 plants were not classified as cooperatives and had an average annual production 

capacity of about 31 million gallons which excluded the 950 million gallon operations of 

Archer Daniel Midlands (ADM) since those operations can range from 100 mgy to 350 

mgy. 

As of 2015, there were 173 ethanol biorefineries operating in the U.S. Midwest as 

shown in Figure 1.3.  These 173 plants are about 87% of the 199 total ethanol 

biorefineries operating in the contiguous United States (RFA, 2016).  Thus, ethanol 

biorefineries built since 2001 have tended to concentrate in the Midwest region primarily 

to be in close proximity to an abundant feedstock (corn).  It is estimated that only 32 of 
                                                 
4 A transformation of 2.8 gallons of ethanol per bushel of corn is assumed. 
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these 173 biorefineries are cooperatives or locally owned with an average annual 

production capacity of 62.5 mgy.  The 141 Midwest plants with corporate structure other 

than locally owned and excluding ADM have an average annual production capacity of 

73.7 mgy.   

 The expansion of the ethanol industry in the U.S. Midwest from 2001 to 2015 is 

shown in the Midwest Ethanol Biorefinery Locations movie that accompanies this 

dissertation.  More information is provided on the movie in Section 4.9. 

 

1.2.5 Policy Driven Fuel Ethanol Industry Expansion 

The fuel ethanol industry is essentially a study of how policy is used as an 

instrument to drive industry growth.  These policy interventions can take several forms.  

Several legislative acts have used tax incentives to promote the blending of fuel ethanol 

into the domestic gasoline fuel supply.  Other policies have driven fuel ethanol demand 

either through bans on substitute products or directly through volumetric blending 

requirements.  The following discussion will chronologically highlight a few of the many 

policies used to either directly or indirectly promote the growth of the fuel ethanol 

industry. 

The birth of the modern fuel ethanol industry can be traced backed to the late 

1970s with the passage of the Energy Tax Act of 1978 which provided an exemption 

from the gasoline excise tax for any gasoline blended with at least 10% ethanol (Tyner, 

2008).  Another boost for the ethanol industry came with the passage of the Clean Air 

Act Amendments in 1990 which established the oxygenate requirements for gasoline and 

also banned the use of lead additives in gasoline.  Oxygenate requirements were 
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established to formulate a more clean burning fuel referred to as Reformulated Gasoline 

(RFG) which reduced air pollution in smog prone areas (USEPA, 2018).  Lead additives 

were given a five year phase-out period and leaded fuel sales were completely banned for 

on-road use on January 1, 1996 (USEPA, 1996). 

In the late 1990s, another octane enhancer, methyl tertiary butyl ether (MTBE), 

was deemed to be a ground water and surface water contaminant.  Due to the ban on 

leaded gasoline and the RFG requirement for smog prone areas, MTBE had become the 

preferred gasoline additive for refiners.  Investigations into fuel leaks from underground 

storage tanks (USTs) showed high concentrations of MTBE in soil and water samples 

(USEPA, 2008).  Based on concerns related to water contamination, states took 

legislative action to ban MTBE’s use in gasoline (USEPA, 2007).  Thus, the systematic 

elimination of a substitute product to fuel ethanol, MTBE, essentially increased the 

demand for fuel ethanol.  

Prior to the events of September 11, 2001, the U.S. was a large importer of crude 

oil to support domestic energy needs.  Afterwards, it was consider highly likely that 

individuals made rich in oil producing countries were financing international terrorism.  

Though this was only suspected at the time, it was eventually confirmed by the 9/11 

Commission Report by the National Committee on Terrorist Attacks upon the United 

States (2004).  In the interim, this led to discussions on energy independence and 

security, and sustainable energy as a means to reduce our dependence on foreign oil 

imports.  Eventually, the Energy Policy Act of 2005 enacted the first Renewable Fuel 

Standard (RFS) which the U.S. Environmental Protection Agency (USEPA) referred to as 

RFS1 (RFS-one).  In the text of the legislation describing the benefits of RFS1, the 
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legislation stresses the importance of energy security, sustainable and renewable fuel 

sources, and rural economic development.  Since ethanol biorefineries were already 

expanding operations in the U.S. Midwest at the time of this legislation, the intended 

effect was to drive more investment and growth into this region.  The RFS1 covered the 

years 2006 to 2012 and annually incremented volume requirements from 4.0 billion 

gallons up to 7.5 billion gallons of ethanol over the seven year period of RFS1.   

The RFS was revised by the Energy Independence and Security Act of 2007 

(EISA) which is referred to as RFS2.  RFS2 requirements have been extended through 

2022 and the volumetric requirements are shown in Figure 1.4.  Though RFS2 stresses 

the development of advanced biofuels, cellulosic, and biomass based fuels, these 

technologies are presently underdeveloped and in most cases are not cost competitive.  

Conventional ethanol is produced from corn kernel starch and is seen as less desirable 

than the advanced biofuels due to its less favorable greenhouse gas (GHG) lifecycle 

emissions profile.  Under RFS2, conventional ethanol reaches it maximum volumetric 

requirement of 15 billion gallons by 2015.  Though the legislative requirement is set in 

RFS2, the USEPA actually sets the true volumetric requirements in any particular 

calendar year for which the fuel blenders are required to comply.  Also, the USEPA does 

not set the conventional ethanol requirement.  USEPA sets the overall requirement for 

ethanol and advanced ethanol fuels, then the conventional ethanol requirement is 

determined by subtracting the advanced ethanol fuels requirement from the overall 

ethanol requirement.  Based on the 2017 volumetric requirements released by the EPA, 

conventional ethanol will meet the 15 billion gallon requirement in 2017 (USEPA, 2017).  
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Thus, as of 2017, conventional ethanol has reached its maximum production output as 

defined by the RFS which can be blended in the domestic gasoline supply.   

The proceeding discussion presented particular policy highlights that have 

influenced the production of fuel ethanol.  Figure 1.5 shows the evolution of monthly and 

annual fuel ethanol production for the United States.  Ethanol industry fuel production 

was fairly slow up until the early 2000s.  Then, the MTBE bans and the establishment of 

the RFS drove industry growth up until 2010 where the industry’s growth dramatically 

slowed.  There are a few reasons for the slow-down.  First, ethanol blending was 

approaching the 10% blend wall which is the maximum percent of ethanol in gasoline 

deemed safe for operation in engines built prior to 2001.  Second, industry capacity build-

out had out-paced volumetric requirements of the RFS.  In 2010, the RFS mandated 12 

billion gallons of conventional ethanol, but the total industry capacity was about 14 

billion gallons and production was about 13.5 billion gallons (RFA, 2011).  A final 

reason is that most of the conventional biorefinery capacity had been built out to meet the 

15 billion gallon regulatory limit on conventional ethanol, even though the EPA 

established requirements were slightly lower than the regulatory levels.  Plus, it would 

take another seven years before the EPA would allow conventional ethanol to produce at 

its maximum regulatory level of 15 billion gallons (USEPA, 2017). 

Future efforts for industry expansion seem to be focused on increasing the amount 

of ethanol as a percent of the fuel mix from E10 to E15.  Currently, in the U.S., most 

gasoline is E10.  For more than two decades, E10 has been established as the blend wall 

which is the maximum volumetric percent of ethanol mixed with gasoline without 

causing engine or fuel system damage on non-FFVs.  Research by the U.S. Department 
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of Energy and U.S. EPA has determined that all vehicles built in 2001 or newer can use 

E15 without vehicle deterioration over its useful life span (USEPA, 2015).  The Alliance 

of Automotive Manufacturers and the American Motorcycle Association have differing 

views on the use of E15 in which they claim it is harmful to engine systems in non-FFVs 

and may void vehicle warranty coverage.  Despite the back and forth, it is not quite clear 

what the ethanol industry wants to achieve by pushing for E15, since a majority of 

ethanol biorefiners are conventional ethanol producers (corn-based) and are currently 

producing at their maximum legislative authorization of 15 billion gallons.  Perhaps they 

want to become more entrenched in the marketplace prior to the potential expiration of 

the RFS at the end of 2022. 

 

1.2.6 Local Economic Impacts of Ethanol Biorefineries 

The best approach for explaining the local economic impacts of an ethanol 

biorefinery is to go through an example.  Assume a 100 millon gallon per year (mgy) 

ethanol plant is to be constructed in a rural county.  Capital costs5 are assumed to be 

around $2.00 to $2.50 per gallon of capacity, but for simplicity assume the total 

construction costs are $200 million.  A prerequisite for any potential construction site 

must include proximity to an existing rail line and numerous corn producers within a 30 

mile radius which are capable of supplying a significant portion of the plant’s feedstock 

demand.  Most of the construction costs are expected to go to specialized firms which 

produce the distillery equipment, grain handling and storage facilities, large storage 

                                                 
5 Iowa State University’s Agricultural Marketing Resource Center (AGMRC) created a spreadsheet on 
ethanol biorefinery profitability which addresses capital costs and annual operating costs.  Spreadsheet can 
be found at:  https://www.agmrc.org/national-value-added-agriculture-conference/renewable-
energy/ethanol/ethanol-profitability 

https://www.agmrc.org/national-value-added-agriculture-conference/renewable-energy/ethanol/ethanol-profitability
https://www.agmrc.org/national-value-added-agriculture-conference/renewable-energy/ethanol/ethanol-profitability
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tanks, fuel handling, grain dryers, decanter centrifuges, etc. and the crews that specialize 

in installing these operations.  Thus, the initial construction phase is expected to have 

minimal local impact, since most of the resources used to build the facility are acquired 

from outside of the local community.    

In most cases, the start of production (or “first grind” as it is generally referred to 

in the industry) occurs about 1 year after the start of construction.  At this point, the plant 

employs 40 to 65 people consisting of operators, material handlers, maintenance staff, lab 

technicians, administrative assistants and management with an average salary in the range 

of $75,000 per year.  Though good middle-class jobs are provided by the plant, the $4 

million or more in salaries is still a minimal impact on the local community.  The greatest 

impact on the local community is through the purchase of feedstock from local corn 

producers.  A 100 mgy ethanol plant requires over 35.7 million bushels of corn to 

produce at the rated output.  If a corn price of $3.50 per bushel is assumed, then the 

annual corn feedstock cost to the plant is about $125 million.  Corn producers receive 

their $125 million in revenue which gets dispersed into the local economy by paying back 

loans at the bank, buying seed and fertilizer, buying or repairing equipment, and buying 

general supplies.  Since it requires many corn producers to supply an ethanol plant, their 

aggregate purchasing in the local community generates more local benefits through 

multiplier effects.   

Additional mechanisms which may impact the local economy are local ownership 

of the ethanol biorefinery and the production of WDGS and DDGS.  Local ownership, 

such as farmer cooperatives, is more likely to reinvest some of their profits into the local 

community.  Non-local owners are more likely to export their profits outside of the 



 

15 
 

community and therefore, the local community does not benefit from the ethanol 

biorefinery’s profits.  Wet and dry distiller’s grains with solubles (WDGS, DDGS) could 

benefit local cattle, swine, and poultry operations with a plentiful and relatively 

inexpensive source of feed.  If these operations reduce operational costs based on using 

this feed source, then the operations would stay competitive and perhaps realize higher 

profits which would benefit the local community. 

 The preceding discussion has provided a brief overview related to some of the 

economic pathways in which an ethanol biorefinery can economically benefit a local 

community.  Therefore, it seems reasonable that ethanol biorefineries have direct, indirect 

and induced economic impacts on the local economy.  Thus, there should be measureable 

differences between counties with ethanol biorefineries and appropriate counterfactual 

control counties without ethanol biorefineries. 

 

1.3 Research Objective 

The objective of this research is to analyze the economic impacts of newly, 

continuously operational ethanol biorefineries on rural counties in the U.S. Midwest 

between the years 2001 to 2015 using a quasi-experimental methodology.  This research 

will demonstrate whether rural counties with newly operational ethanol biorefineries 

experienced significant growth and other economic impacts relative to similarly matched 

control counties without an ethanol biorefinery.  Additionally, one of the stated purposes 

of the Renewable Fuel Standard (RFS) policy was to promote rural economic 

development.  If statistically significant positive results are achieved in this analysis, then 

the rural economic development objective of the RFS will be confirmed. 
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1.4 Research Hypothesis 

The research null hypothesis is designed to present a one-sided alternative 

hypothesis of positive significance if the treatment effect, defined by the delta symbol 

(𝛿𝛿), has a one-sided p-value of less than 10%.   A 10% threshold is selected based on a 

limited treatment group size (only 56 units for rural counties), of which, individual units 

are located over a quite varied spatial region.  The research null and alternative 

hypotheses are formerly presented as follows: 

 Null hypothesis (𝐻𝐻𝑜𝑜: 𝛿𝛿 ≤ 0):  Rural counties in the U.S. Midwest with new and 

continuously operational ethanol biorefineries during the period 2001-2015 did not 

experience economic benefits relative to similar (or matched) rural counties without 

ethanol biorefineries. 

Alternative hypothesis (𝐻𝐻𝑎𝑎: 𝛿𝛿 > 0):  Rural counties in the U.S. Midwest with 

new and continuously operational ethanol biorefineries during the period 2001-2015 

experienced positive economic benefits relative to similar (or matched) rural counties 

without ethanol biorefineries. 

In this research, rural counties will be classified as all counties with populations 

less than 25,000.  This definition is much simpler to interpret than the United States 

Census Bureau’s definition which generally specifies rural as anyplace that is not urban 

(50,000 or more) or an urban cluster (at least 2,500 up to 50,000).  More information will 

be provided on this topic in the Methodology Chapter. 
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1.5 Research Structure 

The structure of this dissertation will proceed as follows.  Chapter two presents a 

literature review covering quasi-experimental analysis, regional economic analysis and 

ethanol industry specific research. 

Chapter three lays the foundation for the quasi-experimental methodology used to 

analyze the research hypothesis.  The chapter progresses from a theoretical background 

on the difference-in-differences econometrics approach used for testing the research 

hypothesis to addressing practical issues associated with its execution.   

Chapter four discusses the data used in this dissertation.  The full and rural treated 

and control groups are presented.  Descriptions and descriptive statistics are provided for 

the data used to match treated and control groups using the Mahalanobis distance metric.  

Descriptive statistics are provided for the dependent variable which can provide insight 

into the regression analysis.  

Chapter five presents the empirical results from the quasi-experimental analysis.  

The hypothesis is tested against six models from one to five years after treatment using a 

stable Midwest control county group.  One model is selected from the first stage and then 

run against all control groups to test the robustness of the results over control groups.  

Employment and employment rate means are compared against two representative 

control groups.  An employment multiplier is calculated based on treated county 

employment gains after treatment.  Exploratory analysis is presented on the full set of 

treated counties without population restrictions.  Finally, an exploratory analysis is 

presented on the impacts of initial capacity versus population.  Chapter six discusses the 

conclusions of the dissertation and presents ideas for future research.  



 

18 
 

1.6 Tables in Chapter 1 

 

Table 1.1  Ethanol Dry Mill:  Input Feedstock and Output Co-products (RFS, 2019) 
Input Outputs 

1 Bushel of Corn 
(56 lbs) 

2.86 gallons of denatured fuel ethanol 
15.9 lbs of distillers grains (10% moisture) 
0.75 lbs of corn distillers oil 
16.5 lbs of biogenic CO2 
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1.7 Figures in Chapter 1 

 

 

 

Figure 1.1 Ethanol Dry-mill Production Process Flow  
[Source:  Renewable Fuels Association (RFA)] 
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Figure 1.2 Midwest Ethanol Biorefineries in 2001 
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Figure 1.3 Midwest Ethanol Biorefineries in 2015 
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Figure 1.4 RFS2 Volumetric Requirements 
(Source:  EIA) 
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Figure 1.5 U.S. Fuel Ethanol Production 
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CHAPTER 2. LITERATURE REVIEW 

There are four aspects of the literature relevant to this research: regional economic 

analysis and the quasi-experimental approach, quasi-experimental applications, recent 

spatio-temporal analysis, and ethanol industry specific research focused on local 

economic impacts.  Each of these topics will be addressed in sequence. 

2.1 Regional Economic Analysis and the Quasi-Experimental Approach 

In Feser (2013), Campbell and Stanley (1963) are credited with the origins of the 

term “quasi-experiment” in an effort to build new research design approaches which 

would facilitate causal inference when other methodologies were not feasible.  A quasi-

experiment is essentially defined as a research design which has distinct similarities to 

traditional experiments except that the study subjects (counties are the subjects in this 

dissertation) are not randomly assigned to treatment and control groups (Rephann and 

Isserman, 1994; Feser, 2013).  The nonrandom selection of the counterfactual (control 

group) can produce biased outcomes and therefore care must be taken in the selection 

process in order to find a control group that effectively represents the counterfactual of 

the treatment group (Feser, 2013).  Though Campbell and Stanley (1963) were the 

leading advocates of quasi-experimental methodology, Isserman and Merrifield (1982, 

1987) were among the first researchers to systematically apply the quasi-experimental 

approach to regional economic development studies.   Their work emphasizes the 

application of quasi-experimental techniques to treatment events in economic geography 

and stresses the importance of identifying suitable control groups.  In their approach 

(after a treatment event is identified), a set of potential control matches are scrutinized on 

multiple attributes (selection variables) in order to identify the best control matches 
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suitable for a control group.  Isserman and Merrified (1987) also recommend a pre-test 

phase prior to treatment in order to confirm that the economic variables of the control 

counties adequately represent the economic variables of the treatment counties.  Then, the 

treatment effect for the treatment group is identified relative to the control group 

(counterfactual) either through difference methods or using a difference-in-differences 

approach (Feser, 2013).  The selection process for control groups was further formalized 

in Rephann and Isserman (1994) using the Mahalanobis distance metric.  In this 

approach, an inverse variance-covariance matrix is used to orthogonalize and apply equal 

weights to a set of selection variables in order to determine the best control match for a 

particular treatment subject (county).  The Mahalanobis distance metric is the approach 

pursued in this research and further discussion on the quasi-experiment methodology is 

presented in the CHAPTER 3. 

 

2.2 Quasi-Experimental Applications (Spatial Linkages) 

In many cases, quasi-experiments have spatial dimensions.  Often these spatial 

dimensions are suppressed because the spatial linkages are considered weak; otherwise, 

the spatial linkages must be explicitly modeled.  Though this is demonstrated in many 

articles, only two will be discussed here.  Card and Krueger (1994) examined 

employment growth at fast food restaurants to assess the impact of a 1992 minimum 

wage hike in New Jersey against a counterfactual eastern Pennsylvania region without a 

minimum wage hike.  The results of the study showed “no indication” that employment 

was reduced in New Jersey due to the minimum wage hike.  In this case, the labor 

markets were considered sufficiently separate; thus, spatial linkages were not modeled. 
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In another study using repeated sales approach to assess the impact on housing 

prices associated with the location of an incinerator, Kiel and McCain (1995) modeled 

the distance of homes from the incinerator.  It was determined that during siting and 

construction phases of the incinerator, the distance from the incinerator did not affect 

housing prices.  After the incinerator went operational, the distance from it became 

significant.  In this case, the distance from the incinerator is an important characteristic 

and must be modeled; otherwise, the parameter results could be biased. 

The importance of the preceding literature is that when there are true spatial 

linkages, those spatial linkages should be modeled.  In this research, there are two main 

spatial linkages:  spatial group effects which are modeled as state fixed effects and 

spillover effects which are due to economic activity that is not restricted to the artificial 

boundaries of a county.  More will be discussed on these effects in CHAPTER 3. 

 

2.3 Spatio-Temporal Analysis 

There are recent efforts to improve the modeling of spatial-temporal problems by 

improving spatial econometric techniques.  Several articles published by Jean Dubé and 

Diègo Legros (2012, 2014b) and Jean Dubé et al. (2014a, 2017) are expanding spatial 

econometric techniques, such as spatial difference-in-differences to handle more complex 

spatial analyses.  The advantage of these techniques is that it adds structure to the spatial 

dimension which allows the model to be solved.  Otherwise, if the spatial structure is 

suppressed, appropriate variables must be added to the model in order to compensate for 

the suppressed spatial structure.  Effort was made to incorporate the spatial difference-in-
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difference into this research, but the complex spatio-temporal nature of this research 

made this extremely difficult in the short-run. 

2.4 Ethanol Industry Specific Literature 

There are numerous studies (Taylor and Elliot, 2012; Urbanchuk, 2007-2016) 

which attempt to quantify the benefits of ethanol biorefineries, but these studies are 

mostly based on the IMPLAN (Impact Analysis for Planning) analysis which utilizes 

input-output models and economic multipliers to assess local, state and national 

economic impacts.  The results of these studies are extremely dependent on the 

assumptions used in the models and can produce overly inflated estimates of the 

economic benefits as discussed in Swenson (2007, 2008) and Low and Isserman (2009) 

with remedies proposed in Low and Isserman (2009).  Most statistical research on the 

local benefits of ethanol biorefineries tend to focus on the impacts to local corn prices 

(McNew and Griffith, 2005; Katchova, 2009) or land values (Blomendahl, Perrin & 

Johnson, 2011).  In McNew and Griffith (2005), corn prices were examined over the 

period from 2000 to 2003 and their research determined that there was a significant 

increase in corn prices within a 68 mile radius of an ethanol biorefinery.  Katchova 

(2009) analyzed USDA Agricultural and Resource Management Survey (ARMS) data for 

2005 and 2007 using a difference-in-differences approach between regions with and 

without an ethanol biorefineries.  The results did not show any significant corn price 

differences between regions.  Also, there is no indication in Katchova (2009) as to the use 

of any matching techniques to find a suitably matched control region; thus, there is the 

possibility that the results might be biased relative to a properly matched counterfactual 

control group.  Blomendahl, Perrin & Johnson (2011) proposed that land values should 
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reflect corn price gradients over the region, quality of land, and any transportation cost 

reductions associated with being near an ethanol biorefinery.  Their study for 961 

farmland parcels, during 2004 to 2008 in Nebraska, showed no support for ethanol 

biorefinery location positively affecting land values in the immediate vicinity of the 

plant.  Thus, a clear economic impact due to ethanol biorefinery location has not been 

uncovered by corn price and land value analysis. 

Collectively, these studies seem to show conflicting results on whether ethanol 

biorefineries have positive impacts on rural communities.  There could be several reasons 

for this since each study uses different time frames and different regions in their analysis.  

However, the research in this dissertation spans a much longer time frame, 2001 to 2015, 

and covers approximately 87% of the ethanol biorefineries in the U.S. with county 

population limits imposed in order to isolate the effect on more rural communities. In 

essence, this seems be the first research which applies statistical analysis techniques at 

the county-level to assess whether positive economic impacts (other than corn pricing or 

land values) occurred in rural communities due to the initial operation of ethanol 

biorefineries. 
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CHAPTER 3. QUASI-EXPERIMENTAL RESEARCH METHODOLOGY 

This chapter addresses the quasi-experimental methodology used in this 

dissertation.  The approach pursued in this research is strongly influenced by the regional 

economic research of Rephann and Isserman (2004), Isserman and Merrified (1982, 

1987) and Ona, Hudoyo, and Freshwater (2007).  It was mentioned in Holland (1986) 

that there is “no causation without manipulation.”  In this research, numerous ethanol 

biorefineries were located in counties throughout the U.S. Midwest from 2001 to 2015; 

thus, the manipulation (i.e. treatment).  Whether this manipulation had a hypothesized 

significant economic impact on local communities can only be solved using a carefully 

crafted research methodology. 

 

3.1 The Rubin Causal Model  

This is not meant to be a complete explanation of the Rubin causal model, but 

there are certain elements worth mentioning which can add value to the subsequent 

discussions.  The Rubin causal model is based on the potential outcomes framework 

(Imbens and Rubin, 2015).  For instance, if a treatment can be defined, then it is 

necessary to define a counterfactual to that treatment.  In the context of this research, a 

treatment can be defined by the start of operations of the first new ethanol biorefinery in a 

U.S. Midwest County from 2001 to 2015.  Similarly, a county without an ethanol 

biorefinery contemporaneously exists at the same time in the U.S. Midwest and can be 

classified as a no-treatment county.   Since both of these events can be imagined, it is 

possible to propose that both events have potential outcomes.  In reality, these outcomes 

can be measured to evaluate the response of each subject (county).  A causal 
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interpretation can be formulated by differencing the treatment measured outcome against 

the no treatment measured outcome. 

Since this research involves non-equivalent no-treatment groups (control groups), 

the causal interpretation must account for the differences in the composition of these 

groups.  This approach requires a difference-in-differences approach since it compensates 

for the differences between groups prior to treatment.  In order for there to be a causal 

interpretation, the identification strategy of Section 3.2.1.1 must be satisfied. 

 

3.2 Quasi-Experimental Methodology 

A quasi-experimental research design is pursued to test the hypothesis of this 

research using an approach referred to by Cook and Campbell (1979) as “interrupted time 

series and non-equivalent no-treatment control group” design.  The interrupted time 

series and non-equivalent control group design is diagrammed in Figure 3.1 where T and 

C represent the Treated and Control groups, respectively, and the X represents a point in 

time where the treated group is exposed to the treatment.  The term “non-equivalent” 

refers to the fact that the treated and control groups were not established through random 

sampling.  In the diagram, there are multiple pre-test and post-test measurements (where 

“O” represents observations) taken on a relevant set of variables.  The multiple pre-test 

measurements are used for matching to a non-equivalent control group.  In this research, 

the matching process is implemented through the Mahalanobis distance metric which is 

discussed in Section 3.3.  The post-test measurements are used to develop a treatment 

response profile by evaluating the difference-in-differences (DID) regression model with 

pre-test and post-test data as shown in Figure 3.2 and Figure 3.3 which are examples of 
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testing one and three years after treatment, respectively, relative to a base year (year prior 

to treatment).  For the actual results, regression models are run on the dependent variable 

from one to five years after treatment. 

 Though the quasi-experiment follows the diagram in Figure 3.1, this is 

accomplished by time aligning each treated-control county pair on the treatment event X.  

For instance, treatment on a treated county can occur at any point in time from 2001 to 

2015.  In reality, it occurred at a specific time for a particular treated county.  These 

numerous treatment events are time aligned around the treatment, X, which effectively 

pools the data for the regression model.  Even though the data is pooled for the 

regression, the time information is preserved which allows for contemporaneous 

matching between the treated and control counties. 

 

3.2.1 Difference-in-Differences (DID) Model 

The difference-in-differences (DID) model is used to analyze the dependent 

economic variable over the treated and control counties in order to acquire the average 

treatment effect on the treated (ATOT), 𝛿𝛿, as defined by the following equation: 

 𝑦𝑦𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛿𝛿(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 × 𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖) + 𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑖𝑖𝑖𝑖 3.1 

where Treati is an indicator variable that takes a value of one for a treated county and the 

value of zero for a control county and Aftert is an indicator variable that takes on the 

value of one in the period after the treatment has occurred and the value of zero in the 

period prior to treatment.  Several control variables can be added to the model, such as, 

state fixed effects, time fixed effects and spillover fixed effects which are discussed in 

Section 3.2.1.2.   
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Taking the expectation of Equation 3.1 over the various dummy variable values 

produces the following result (excluding state, time, and spillover indicator variables):  

 

𝐸𝐸(𝑦𝑦𝑖𝑖𝑖𝑖) =  �

 𝛽𝛽0                                      𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0,𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 = 0   [𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝐶𝐶𝑇𝑇𝐴𝐴𝐶𝐶𝑇𝑇𝑇𝑇 = 𝐴𝐴]
𝛽𝛽0 + 𝛽𝛽1                            𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1,𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 = 0   [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇 𝐶𝐶𝑇𝑇𝐴𝐴𝐶𝐶𝑇𝑇𝑇𝑇 = 𝐵𝐵]
𝛽𝛽0 + 𝛽𝛽2                            𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0,𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 = 1   [𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝐶𝐶 𝑇𝑇𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐸𝐸]
𝛽𝛽0 + 𝛽𝛽1 + 𝛽𝛽2 + 𝛿𝛿          𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1,𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 = 1   [𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇 𝑇𝑇𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐶𝐶]

 

 

which shows how the different parameters correspond to the diagram in Figure 3.4.  The 

parameter of interest is 𝛿𝛿 and is determined as 

𝛿𝛿 = (𝐶𝐶 − 𝐸𝐸) − (𝐵𝐵 − 𝐴𝐴) = [(𝛽𝛽0 + 𝛽𝛽1 + 𝛽𝛽2 + 𝛿𝛿) − (𝛽𝛽0 + 𝛽𝛽2)]− [(𝛽𝛽0 + 𝛽𝛽1) − 𝛽𝛽0] 

 

or can be directly obtained from an DID econometric approach proposed in Equation 3.1 

using an econometric analysis package, such as, STATA which automatically calculates 

the standard errors.  Several econometric textbooks (Hill, et al., 2011; Stock & Watson, 

2015) recommend the use of cluster-robust standard errors on cross-sectional subjects 

(counties in this case) when using panel data or DID techniques to account for any serial 

correlation in the data.  A preliminary investigation into the use of cluster-robust 

standards errors for the natural log of real per capita earnings showed a reduction in the 

standard error in almost every case which produced higher t-statistics and lower p-values.  

Therefore, in this dissertation, a conservative approach to significance is pursued by 

utilizing Huber-White robust standard errors which produced lower t-statistics and higher 

p-values. 
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The final step is to test the hypothesis using a standard one-sided t-test which is 

defined as: 

 𝑇𝑇 =
𝛿𝛿

𝐶𝐶𝑇𝑇(�̂�𝛿)
 3.2 

where 𝛿𝛿 is the DID parameter estimate for the mean economic benefit between a treated 

county and an untreated county, and 𝐶𝐶𝑇𝑇(�̂�𝛿) is the Huber-White robust standard error of 

the economic benefit parameter.  As stated previously, the null and alternative hypotheses 

are: 

 
Null hypothesis                  𝐻𝐻𝑜𝑜: 𝛿𝛿 ≤ 0   

Alternative hypothesis    𝐻𝐻𝑎𝑎: 𝛿𝛿 > 0   

 

If there is growth in the treated counties that significantly exceeds the growth in 

the control counties (counterfactual), then the null hypothesis will be rejected in favor of 

the alternative hypothesis.  In this case, the counties with biorefineries have significantly 

higher economic growth rates or performance levels than the control counties and it can 

be inferred that this growth is due to the presence of the biorefineries (ceteris paribus).  If 

the test fails to reject the null hypothesis, then there is no significant difference of 

economic growth rates/performance levels between treated and control counties.  Hence, 

it could be inferred that the economic benefits of biorefinery location are more 

widespread than just for the county where the biorefinery is located.  Furthermore, the 

spatial-temporal effect of local economic benefits due to a biorefinery’s location may 

diffuse into neighboring communities much more rapidly than can be captured by the 

phantom boundaries of a county and time scale of data (annual) used in this study. 
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3.2.1.1 Identification Strategy 

In general, there are two steps in the identification strategy for a DID analysis.  

The first step is to define an appropriate counterfactual control group that is 

representative of the treated group in the absence of treatment.  Essentially, the second 

step is a confirmation of the first step, since it establishes that a parallel trend must exist 

between the treated and control groups prior to treatment.  Without the parallel trend, no 

meaningful results can be obtained from the DID analysis.  Further, the parallel trend 

prior to treatment can be projected as an offset from the control group trend after 

treatment to establish the parallel trend assumption.  The parallel trend assumption is the 

expected result of the treated group in the absence of treatment.  If the treated group’s 

actual trend after treatment noticeably deviates from the parallel trend assumption, then 

there is a treatment response in the treated group which can be quantified using the DID 

econometric model.  A representation of this model is effectively shown in Figure 3.4 

where the dashed line represents the parallel trend assumption.  Thus, using an 

appropriate counterfactual control group and establishing the parallel trend prior to 

treatment are generally sufficient conditions for identification as long as there are no 

other factors that can have contemporaneous asymmetrical economic impacts on the 

treated and control groups.  All contemporaneous symmetrical impacts will cancel out 

due the contemporaneous differencing in the DID analysis. 

 

3.2.1.2 Control Variables 

Some factors that may present contemporaneous asymmetrical economic impacts 

are state fixed effect, time fixed effects and spillover effects.  Controlling for these 
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variables minimizes bias in the treatment effect estimate.  State fixed effects are 

represented by an indicator variable for each state in the regression except for the 

reference state (usually Iowa) to avoid multicollinearity.   The intent of the state fixed 

effects is to capture differences between states (laws, ethanol incentives, etc.) which may 

bias the parameter of interest.   Time fixed effects are a set of indicator variables for all 

time periods in the regression with the exception of the reference period (usually the 

earliest period) which captures differences over time.  Spillover indicator variables are 

used to capture the economic spillover effects associate with scenarios where a 

contiguous treated county may affect the baseline level of economic activity measured in 

either another treated county or a counterfactual control county.  All of these control 

variables are used to correct for spatio-temporal events which may cause biases in the 

parameter of interest. 

 

3.2.1.3 Rural Population 

In the rural-urban continuum codes (RUCC_2013) data file from USDA-ERS, the 

2010 populations are listed for each county.  These population values are used for 

treated-control county matching and to filter the treated data set using this population 

variable (Population_2010).  Since rural county populations go through very slow 

change, this seemed to be a reasonable approach and greatly simplified the population 

matching process.  The six treated-control group sets matched each treated-control county 

pair into a 4-tuple set based on the treated county’s population in 2010.  The 4-tuple set 

(treated before, treated after, control before, control after) was defined by the variable 
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“Pop_match”; thus, the treated-control groups could be population filtered on this 

variable and keep the treated-control matched pairs together. 

Based on 2010 population statistics, the populations in the 97 qualified treated 

counties ranged from 2,695 residents to 270,056 residents.  Obviously, a county with a 

population of 270,056 is not a rural county.  In order to analyze only rural counties, a 

maximum population size for a treated county must be determined.  Since there is a trade-

off between population level in the treated counties and having sufficient data capable of 

producing any significant statistical results, the population break point for rural 

populations was set to be less than 25,000 for any treated county.  Thus, less than 25,000 

defines the rural population criteria for treated counties in this research for which 56 

treated counties meet this criterion (or 56 4-tuple treated-control matched sets for each 

control group). 

 

3.2.1.4 Population versus Sample Statistics (Analysis Assumption) 

Often, real world quasi-experiments use the total population of data rather than a 

random sample from the population to assess the impacts associated with the experiment.  

Most econometric models are designed to use sample data from a population and then use 

the parameter estimates from the regression to make inferences about the population.  In 

this research, the data evaluated in the regression model is assumed to be equivalent to 

sample data even though it may actually be the complete population data set.  There are 

two ways to think about this.  In the first thought process, the mean of any population 

data set is known with 100 percent certainty with zero standard error.  Thus, to assume 

the population data set is essentially a sample data set is just a small leap since it still has 
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the same mean, but now it has a mean distribution based on the total number of 

observations and uses the sample standard error for the mean distribution.  In some sense, 

this is a conservative approach to a population analysis since the mean has a distribution.  

The second thought process is more conceptual and perhaps less palatable.  It is possible 

to assume that the data observed in this research is merely a sample from a super 

population which exists in a multi-universe.  In each universe, the ethanol biorefinery 

treatment took place in that universe’s U.S. Midwest region and the one selected for this 

research is just a sample from that super population of those events.  Though this second 

explanation is a bit more farfetched, the result is the same as the first explanation. 

The importance of this assumption is that it allows for the use of models to 

evaluate the parameter of interest.  Without the model, controlling for state fixed effects, 

time fixed effects and spillover effects would be much more difficult.   

 

3.2.2 Treatment Definition and Treatment Event 

Treatment is defined as the first new corn-based ethanol biorefinery to start 

continuous operations in a U.S. Midwest county between the years 2001 to 2015.  The 

term “first” is important since it signifies the change in the county status from a county 

without an operational ethanol biorefinery to a county with an operational ethanol 

biorefinery.  Also, it is expected that the “first” ethanol biorefinery in a county will have 

a much more dramatic impact on the local economy than a “second” biorefinery or a 

capacity expansion phase, since these latter events are more likely to create greater 

spillover effects which makes it more difficult to isolate the economic impact associated 
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with an ethanol biorefinery.  The “start” of production or “first grind” is important since 

it defines when that particular treatment was applied to a particular county. 

When a treatment occurs in a particular county, it defines a location (county) and 

it occurs at a particular time (year).  The term “treatment event” will be used to identify 

the location of the ethanol biorefinery (county) and the start date of production (year) for 

the county exposed to the treatment.  Non-corn based ethanol biorefineries are excluded 

from consideration since these types of plants experience erratic operations, tend to go 

out of business, and their initial capacities are generally much smaller than corn-based 

ethanol biorefineries. 

 

3.2.3 Treated Spatial Units 

Treated spatial units are limited to the 1055 counties of the twelve state region 

referred to as the U.S. Midwest.  A treated spatial unit is a county that has been exposed 

to the treatment as defined by the treatment event. 

 

3.2.4 Control Spatial Units 

Control spatial units are limited to the 1055 counties of the twelve state region 

referred to as the U.S. Midwest, but excludes all counties with an existing or future 

ethanol biorefinery through 2015.   

 

3.2.5 Matching Process for Control Units 

A two stage matching process is used to develop six sets of control counties.  In 

the first stage of matching, each potential control county is contemporaneously ranked 
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against each treated county based on the Mahalanobis distance metric results.  The 

Mahalanobis metrics are calculated for two matching regions: in state matching and 

Midwest region matching.  Each regional matching scheme was implemented into an R 

program to produce the ranked results for each treated county.  In the second stage, a 

treated-control county match was determined based on three criteria:  Mahalanobis 

distance metric best match (Best Match), population best match, and rural-urban 

continuum codes (RUCC) best match.  The best way to describe this process is through 

an example.  

This example starts with the ranked results from the Mahalanobis distance 

calculations as shown in Figure 3.5.  The matching is all potential control counties 

(column 1) in the U.S. Midwest against all treated counties whose production started in 

2003.  The treated counties in 2003 are the four counties shown in columns 2 through 5 

(Kearney, NE; Brookings, SD; Turner, SD; Winnebago, WI).  For this example, Turner, 

SD is the treated county which will be matched to control counties based on the three 

criteria (Best Match, Population Match, and RUCC match).  Currently, the Turner 

County column is ranked based on Mahalanobis distance calculations.  When Turner 

County is ranked matched, its own result is zero as expected. To identify a best match 

result, it will be selected from the first blank line in the ProdYear column.  The ProdYear 

column represents the first year of production for a biorefinery located in that county.  A 

blank line in ProdYear represents that there is no ethanol biorefinery in that county.  

Thus, Hutchinson County, SD is the best match control county over the entire Midwest 

region to the treated Turner County, SD.  For a best population match, check for a blank 

line in ProdYear column and then select the closest population match from the 
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Population_2010 column.  In this case, Hutchinson County, SD is the best population 

match to Turner County, SD, but the actual selection used in this case was McCook 

County, SD due to the major differences in RUCC levels.  Thus, under some unique 

conditions, more information is used to make the decision about a control county 

selection than just the initial criteria.  In a similar fashion for RUCC, check for a blank 

line in ProdYear and then select the best RUCC match.  McCook County, SD is the best 

RUCC match since it has the lowest Mahalanobis distance metric, a blank line in 

ProdYear, and a RUCC match to Turner County, SD. 

Essentially, in-state treated-control county matches are found using the same 

process.  The main difference is that the Mahalanobis matching program uses only in-

state based data for matching a particular in-state treated county with all potential in-state 

control counties for each time period from 2001 to 2015 to facilitate contemporaneous 

matching. 

 

3.2.6 Dependent Variable 

The dependent variable used in the DID model is the natural log of real per capita 

earnings at the county level.  Real per capita earnings represents an aggregate measure of 

direct, indirect and induced earnings effects that occur at the county level.  For a treated 

county, these aggregate earnings effects associated with the presence of an ethanol 

biorefinery are expected to be substantial and occur by the mechanisms discussed in 

Section 1.2.6.  In a control county, there should not be any earnings effects associated 

with an ethanol biorefinery and therefore should present a stable reference to compare the 

treated county’s treatment response against.   
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Since earnings are in general inherently right-skewed, the natural log of real per 

capita earnings is used as the dependent variable to insure the error terms are more 

normally distributed.  The log dependent variable also means the coefficients on the 

indicator variables in the DID model represent growth rates.  Other variables, such as, 

employment and employment rate are used to compare treated county versus control 

county employment impacts on average, but are not used as dependent variables in a 

regression model. 

 

3.2.7 Parameter of Interest:  Average Treatment on the Treated (ATOT) 

The coefficient of interest in the DID model is the average treatment on the 

treated (ATOT or 𝛿𝛿).  There is one main reason why the coefficient of interest should be 

called the ATOT as opposed to the average treatment effect (ATE).  Since this is a real-

world quasi-experiment, no random sampling was performed to establish the treated and 

control groups.  This means that the control group is potentially non-equivalent to the 

treated group as mentioned previously.  This non-equivalence could mean that a treated 

county exposed to the treatment could have a different response than a control county 

exposed to the treatment.  Since there is a possible difference between those two potential 

outcomes, the appropriate way to refer to the parameter of interest for the treated county 

group is average treatment on the treated (ATOT). 

 

3.2.8 Spillover Effects - General Explanation 

Spillover effects represent the situation where the economic benefits of an ethanol 

biorefinery cannot be isolated to just the county where the plant resides.  These economic 
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benefits most likely occur through increased corn production and associated multiplier 

effects in contiguous counties relative to the treated county.  Spillover effects affect both 

treated and control counties.  Indicator variables are used to capture these effects and are 

based on a set of conditions for the treated and control counties. 

A treated county has four specific situations which affect the assignment of 

spillover indicator variables.  First, when a treatment event occurs in a treated county and 

there are no contiguous treated counties, then no spillover indicator variables are required 

because this is not an identifiable situation (spillover effects cannot be quantified by the 

information provided in the DID model).  Second, when a treatment event occurs in a 

treated county and there is/are previous contiguous treated counties, then an indicator 

variable must be set in the before period (prior to treatment) and in the after period (post-

treatment).  The prior treatment spillover indicator variable captures the possible 

economic spillovers from the previously treated counties into the newly treated county 

and is identifiable based on the relative difference between this situation and the situation 

with no contiguous treated counties.  The post treatment spillover indicator variable 

captures the spillover changes that occur based on the new plant’s operations in the new 

treated county.  Third, there is the situation where two contiguous counties are treated 

simultaneously with new ethanol biorefineries.  In this case, a single spillover indicator 

variable is appropriate in the post treatment period.  The fourth situation is similar to the 

third situation, but involves evaluating the DID model for two to five years after 

treatment.  For instance, if the treated county under analysis has a contiguous county that 

undergoes a treatment event a year later, then in the two years after treatment analysis a 

spillover indicator variable is used to capture these spillover effects.  Thus, this fourth 
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approach is used to capture spillover effects based on DID model evaluation for two to 

five years after treatment and is conditional on the time after treatment.  

For a control county, there are three situations which require explanation.  First, 

when there are no contiguous treated counties prior to treatment or when there is a 

contiguous treated county prior to treatment, no spillover effect indicator variables are set 

for the control county.  It is obvious that no spillover indicator is required when there is 

no contiguous treated county.  In the case of a contiguous treated county, there are no 

differential events that will allow for identification of this spillover effect.  Additionally, 

these control counties were assigned based on Mahalanobis best matches over several 

criteria in the pre-treatment period which means these counties were good matches 

whether there were spillovers effects or not.  Second, a contiguous treated county occurs 

simultaneously with the control county.  For this case, a spillover indicator variable is set 

in the after period.  The third case involves evaluating the DID model for two to five 

years after treatment and has the same explanation as for the fourth situation for the 

treated counties. 

What do the spillover effects indicator variables do?  For treated counties, the 

spillover effect indicator variables essentially compensate for the lost economic benefit 

that spills over into contiguous counties.  In control counties, the spillover effect indicator 

variables attempt to capture the increased economic activity in the control county related 

to the spillover from a contiguous treated county which overinflates the county’s baseline 

level in the post treatment period.  Thus, using spillover indicator variables should 

statistically approximate the true value of ATOT that would occur in the absence of 

spillover effects.  
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3.2.9 Spillover Effects – Setting the Indicator Variables 

In order to set the indicator variables for spatial spillovers, the contiguity between 

all Midwest counties must be established.  This is accomplished through a series of steps 

starting with GeoDa software.  In GeoDa, a contiguity file is generated for the Midwest 

county level ERSI shapefile.  The output file is in text format and is based on the unique 

id of each county unit (FIPS) and the contiguity method (Rook or Queen) used to 

generate the GeoDa .gal file.  The gal file is organized as follows (note: all line 

information is separated using a single space):  the first line contains header information; 

the second line identifies a particular county in the U.S. Midwest using its FIPS id and 

then is followed by a number which identifies the number of contiguous counties for that 

particular county; the third line lists the FIPS ids for all contiguous counties relative to 

the county listed on the preceding line; and finally, the contiguous information for all 

other counties in the U.S. Midwest are encoded on separate lines and in the same manner 

as described for the second and third lines.  Thus, all 1055 counties and their contiguous 

neighbors in the Midwest are listed in the manner just described. 

The next step involves converting the gal file into a contiguity matrix.  An R 

program was written to perform this operation by using a Midwest counties file with all 

counties listed in ascending order by their FIPS id along with their county and state 

names.  This file is used to order the rows and columns of the contiguity matrix in 

ascending order of the FIPS codes for the counties, since the gal file may not be ordered 

on the FIPS ids.  The contiguity matrix is initialized as an all zero matrix; then, the gal 

file is read into the program and all spatially contiguous counties are identified with a 
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value of one.  Output from the R program is a contiguity matrix of zeros and ones 

identifying contiguous counties. 

Since contiguity to a biorefinery county is a dynamic event in this analysis due to 

industry expansion from 2001 to 2015, it is important to capture the changes in contiguity 

to biorefineries over time in order to properly identify the spatial spillover indicator 

variables.  This is accomplished by a another R program which reads in the biorefinery 

location master file and the contiguity matrix; then, converts this information into a 

biorefinery contiguity over time data structure for all Midwest counties.  The biorefinery 

location file contains information on existing ethanol biorefineries (prior to 2001) and the 

start of production years for all new ethanol biorefineries established in the period 2001 

to 2015.  By identifying all biorefineries that exist at a particular point in time, for 

example 2001, then the columns of the contiguity matrix associated with these unique 

biorefinery counties are extracted to form a matrix of all Midwest counties (rows) against 

all existing contiguous biorefinery counties (columns) for the year 2001.  Then, all rows 

are summed.  The result is a single column vector of all Midwest counties (rows) against 

the number of contiguous counties with a biorefinery (column) in 2001.  This process is 

repeated for all subsequent years to produce a dynamic contiguity to biorefinery county 

data structure which can be analyzed to assign spatial spillover indicator variables. 

There are three unique spatial spillover indicator variables defined for a treated 

county.  If there is an existing contiguous treated county prior to treatment, then a 

spillover indicator is set in the period before the treatment and another spillover indicator 

variable is set in the period after the treatment for the reasons explained in Section 3.2.8.  

If a change in the number of contiguous treated counties is detected for any period of 
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time between the base year and any period up to five years after treatment depending on 

the DID model being analyzed, then another spillover indicator variable is set to capture 

these effects for the reasons explained in Section 3.2.8. 

 Control counties have only one unique spatial spillover indicator variable.  If a 

change in the number of contiguous treated counties is detected for any period of time 

between the base year and any period up to five years after treatment depending on the 

DID model being analyzed, then a spillover indicator variable is set to capture these 

effects for the reasons explained in Section 3.2.8. 

 

3.3 Mahalanobis Distance Metric (Ranking of Control Units) 

The Mahalanobis distance metric is used to find the minimum distance match 

between a treated county and a set of potential control counties.  The Mahalanobis 

distance metric is defined as 

 

 𝑑𝑑2(𝒙𝒙𝑇𝑇 ,𝒙𝒙𝑐𝑐) = (𝒙𝒙𝑇𝑇 − 𝒙𝒙𝑐𝑐)′𝚺𝚺−1(𝒙𝒙𝑇𝑇 − 𝒙𝒙𝑐𝑐) 3.3 

 

where 𝑑𝑑2(𝒙𝒙𝑇𝑇 ,𝒙𝒙𝑐𝑐) is the scalar distance metric between the selection variable vectors  𝒙𝒙𝑇𝑇 

and 𝒙𝒙𝑐𝑐 for the treated county (T) and potential control county (c), respectively, and 𝚺𝚺−1 is 

the inverse variance-covariance matrix for the selection variables over the range of 

county data (U.S. Midwest county data for region matching and each state county data for 

in-state matching). A discussion on the selection variables used in this dissertation is 

presented in Section 4.7.  For each treatment year (from 2001 to 2015), there is a unique 

set of selection variables used to contemporaneously match each treated county with a set 
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of potential control counties based on a five year pre-treatment period prior to treatment.  

The Mahalanobis metric is applied between a treated county in the five year period prior 

to treatment against all potential control counties.  Then, a search algorithm is used to 

find the minimum distance closest matched county suitable as a control county.  This 

matching process is repeated for each treated county until each treated county is matched 

with a control county.   

 For the calculation of the Mahalanobis variance-covariance matrix, all counties 

with populations greater than 250,000 people were eliminated.  Large population areas 

can increase the calculated variances and covariances which effectively reduces all 

calculated Mahalanobis distance metrics between treated and potential control counties.  

Excluding large population areas served the purpose of creating better matches between 

treated and potential control counties with similar characteristics while creating extreme 

mismatches between treated counties and large population potential control counties. 
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3.4 Figures in Chapter 3 

 

Groups t-5 t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4 t+5 Time 
T Ot,t-5 Ot,t-4 Ot,t-3 Ot,t-2 Ot,t-1 X Ot,t+1 Ot,t+2 Ot,t+3 Ot,t+4 Ot,t+5 

 C Oc,t-5 Oc,t-4 Oc,t-3 Oc,t-2 Oc,t-1 
 

Oc,t+1 Oc,t+2 Oc,t+3 Oc,t+4 Oc,t+5 
  

Figure 3.1 Diagram of Pre-Treatment Observations and Post-Treatment Observations 
 

 
Groups t-5 t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4 t+5 Time 

T • • • • Ot,t-1 X Ot,t+1 • • • • 
 C • • • • Oc,t-1 

 
Oc,t+1 • • • • 

  
Figure 3.2 Diagram of DID Regression Analysis for One Year after Treatment 
 

 
Groups t-5 t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4 t+5 Time 

T • • • • Ot,t-1 X • • Ot,t+3 • • 
 C • • • • Oc,t-1 

 
• • Oc,t+3 • • 

  
Figure 3.3 Diagram of DID Regression Analysis for Three Years after Treatment 
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Figure 3.4 Difference-in-Differences Estimation 
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Figure 3.5 Mahalanobis Control County Ranking by Year of Treatment 

 

Kearney_ NE Brookings_ SD Turner_ SD Winnebago_ WI FIPS State County_Name Population_2010 RUCC_2013 Description ProdYear
Turner_ SD 11.17884999 6.482080742 0 8.55604867 46125 SD Turner County 8,347 3 Metro - Countie                                                                                                                                                 2003
Lake_ SD 11.04601331 4.853708603 3.815769513 7.206490708 46079 SD Lake County 11,200 6 Nonmetro - Urb                                                                                                                                           2000
Hutchinson_ SD 12.6673082 6.37838567 4.66428306 9.093478491 46067 SD Hutchinson Count 7,343 8 Nonmetro - Co                                                                                                                            
Moody_ SD 10.04010713 5.403020707 4.984330241 7.849511006 46101 SD Moody County 6,486 8 Nonmetro - Co                                                                                                                            
Audubon_ IA 9.287959359 7.325172009 5.018419293 7.371482418 19009 IA Audubon County 6,119 8 Nonmetro - Co                                                                                                                            
McCook_ SD 11.49911783 6.614464403 5.104426161 8.83914994 46087 SD McCook County 5,618 3 Metro - Countie                                                                                                                                                 
Cass_ IA 8.903547379 5.162863544 5.15855327 6.88483947 19029 IA Cass County 13,956 6 Nonmetro - Urb                                                                                                                                           
Butler_ IA 9.063956935 5.983018997 5.202185411 7.49861104 19023 IA Butler County 14,867 8 Nonmetro - Co                                                                                                                            2008
Montgomery_ IA 9.055319436 6.091084708 5.38537013 6.739290629 19137 IA Montgomery Coun10,740 6 Nonmetro - Urb                                                                                                                                           
Madison_ IA 9.003961487 5.729134126 5.39142279 7.249987586 19121 IA Madison County 15,679 2 Metro - Countie                                                                                                                                                
Worth_ IA 8.61197939 5.995849098 5.402493135 6.989810381 19195 IA Worth County 7,598 9 Nonmetro - Co                                                                                                                         2004
Hamlin_ SD 10.22304514 4.193167431 5.429761627 7.662094152 46057 SD Hamlin County 5,903 9 Nonmetro - Co                                                                                                                         
Adair_ IA 9.412811012 4.788985257 5.435123814 6.182598769 19001 IA Adair County 7,682 8 Nonmetro - Co                                                                                                                            
Guthrie_ IA 9.757556992 4.78922329 5.446005927 6.633376014 19077 IA Guthrie County 10,954 2 Metro - Countie                                                                                                                                                2000
Pipestone_ MN 10.24664481 5.503259446 5.557023898 8.014503944 27117 MN Pipestone County 9,596 6 Nonmetro - Urb                                                                                                                                           
Bon Homme_ SD 10.49088907 4.750124661 5.615845024 7.01716391 46009 SD Bon Homme Coun7,070 9 Nonmetro - Co                                                                                                                         2000
Lac qui Parle_ MN 10.46682434 5.112635886 5.618854965 7.492979598 27073 MN Lac qui Parle Coun7,259 9 Nonmetro - Co                                                                                                                         
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CHAPTER 4. DATA DESCRIPTION 

This chapter provides details on the data acquired and used in the quasi-

experimental research design.  The logic behind region and time period selection is 

presented.  Treated-control county matches are provided for the full match set of counties 

(97) and the rural matched set of counties (56) for all control groups.  Summary statistics 

are provided for the data used in the Mahalanobis distance calculations and for the 

dependent variable used in the difference-in-differences (DID) econometric models.  

Some of the data for the selection variables and for the treated-control county matching 

process has been compiled into movies to accompanying this dissertation which 

demonstrates the dynamic nature of the data used in this analysis. 

 

4.1 U.S. Midwest Region 

The U.S. Midwest region is selected for this analysis for two main reasons.  First, 

87% of operating ethanol biorefineries are located within this region.  Second, about 88% 

of the U.S. corn crop is grown in this region which is the primary feedstock for ethanol 

production.  Thus, if there is a significant economic impact associated with ethanol 

biorefinery location, then it is likely to be revealed through an analysis of the Midwest 

region.  The U.S. Midwest is a twelve state region consisting of the following states:  

Illinois, Iowa, Indiana, Kansas, Michigan, Missouri, Minnesota, Nebraska, North Dakota, 

Ohio, South Dakota, and Wisconsin.  Table 4.1 shows the number of counties in each 

state, planted acres of corn in 2015, and number of ethanol biorefineries in each state. 
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4.2 Spatial Units 

The spatial units of interest are the 1054 counties as shown by state in Table 4.1 

and one independent city in Missouri (St. Louis) located in the U.S. Midwest for a total 

of 1055 spatial units.  These spatial units are mostly referred to as counties throughout 

this dissertation. 

 

4.3 Time Period Selection 

The time period selected for this research spans from 2001 to 2015 for three main 

reasons.  First, this is a period of rapid expansion in the U.S. ethanol industry with a large 

increase in the number of biorefineries in the U.S. Midwest (54 to 173) along with a 

dramatic increase in total industry production capacity (2 billion gallons per year to 15.7 

billion gallons per year).  Second, by 2015, the RFS had reached its maximum regulatory 

volumetric requirement of 15 Billion gallons per year from conventional sources (corn).  

Even though the maximum regulatory requirement is reached for conventional ethanol, 

this does not mean that the EPA will necessarily set the requirement at that level since 

advanced ethanol biofuels have priority over conventional ethanol.  The actual 

conventional ethanol level in 2015 was 14.05 billion gallons.  Third, since 2001, the 

Renewable Fuels Association (RFA) has published annual data on ethanol biorefinery 

operation, construction, and initial capacity.  The RFA’s Ethanol Industry Outlook 

publication is probably the most reliable source for tracking the ethanol industry’s 

progress over this period and can be used as a starting point for tracking ethanol 

biorefinery initial start dates and operations.  
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4.4 Ethanol Biorefinery Operational Status and Location 

Using RFA’s Ethanol Industry Outlook publication from 2001 to 2016, the annual 

lists of all ethanol biorefineries under construction or in operation were compiled into an 

ethanol biorefinery data set.  From this data set, each biorefinery is tracked over time to 

view its transition from being under construction to going operational which provides the 

first indication of a production start date (year).  Secondary confirmation of a production 

start date is conducted through information searches, such as, on the company’s website, 

News releases, industry magazines, and satellite images from Google Earth.  To confirm 

a plant’s continuous operations, a similar search is pursued.  Often, if a plant goes off-

line, there are news articles or industry magazine articles which will refer to this event.  If 

there is not sufficient evidence that a plant had continuous operations or a well-defined 

start date, it is eliminated from the treated county list. 

 Finding the location of the plant is quite simple.  By searching on the ethanol 

biorefinery’s name, city location and state location in Google, search results are 

generated which provide a detailed street address.  Using the street address in Google 

Earth, the ethanol biorefinery can be viewed in satellites images and geolocated using the 

latitude and longitudinal information which can be extracted from Google Earth for 

mapping purposes.  A Google Earth image of a 105 mgy ethanol biorefinery located in 

Iowa Falls, Iowa is shown in Figure 4.1. 

 

4.5 Treated and Control County Data 

If a county with a new ethanol biorefinery satisfies the treatment criteria, then it 

becomes part of the treatment group regardless of the population size of county.  A 
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treated county can be eliminated from the treatment group if its production start date and 

continuous operational status are not confirmed.  Then, the list of treated counties is used 

to find appropriate matches using the Mahalanobis distance metric.  Based on the 

matching process described in Section 3.2.5, six control groups were established.  The six 

treated-control groups with 97 matched pairs are shown in Table 4.2 through Table 4.7.  

For the purposes of this research, treated counties with populations less than 25,000 are 

classified as rural.  The six rural treated-control groups with 56 matched pairs are shown 

in Table 4.8 through Table 4.13.  The six treated-control groups are classified by region 

(Midwest or in-state matching) and a secondary sorting process based upon Mahalanobis 

best match, population best match, and Rural-Urban Continuum Code (RUCC) best 

match. 

 

4.6 Dependent Variable 

The natural log of real per capita earnings is the only dependent variable in this 

analysis.  Per capita earnings data was acquired from the Bureau of Economic Analysis 

(BEA) for all Midwest counties.  Real per capita earnings was calculated by deflating per 

capita earnings by CPI2010.  CPI2010 was obtained from Federal Reserve Economic Data 

(FRED).   

 

4.7 Selection Variables 

Selection variables define characteristics for each county in the U.S. Midwest 

which are deemed important for matching a treated county with an ethanol biorefinery to 

a set of potential control counties without an ethanol biorefinery.  There are 29 selection 
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variables defined for use in the Mahalanobis distance metric calculation and are classified 

into three categories:  growth rates, spatial structure and economic structure as shown in 

Table 4.14.  Table 4.15 shows the 29 selection variables for a hypothetical treated county 

based on an ethanol biorefinery that starts initial production in 2001 (treatment year).  

The numerical portions of the variable names are defined relative to the treatment year 

(“2001” for this example) in order to match the treated county’s characteristics with 

similar characteristics in a potential control county for the pre-treatment period.  The 

growth rates consist of population growth rates and real per capita earnings growth rates 

for the five pre-treatment years prior to treatment.  Spatial structure variables use levels 

for population, population density, and corn acres in the period just prior to treatment and 

use corn and soybean production levels for the five pre-treatment years prior to treatment.  

Finally, the economic structure variables use levels in real per capita earnings, farm real 

cash receipts (crops), and employment while using share information for farm share of 

earnings, manufacturing share of earnings and retail share of earnings at the county level. 

Descriptions of the dependent variable and selection variable data are provided in 

Table 4.16.  Summary statistics for this data from 1995 to 2016 are shown in Table 4.17.  

A more detailed summary statistics for the dependent variable used in the difference-in-

differences regression (DID) models are shown in Table 4.18.  Descriptions for the rural-

urban continuum codes (RUCC) are shown in Table 4.19. 

 

4.8 Missing Data 

Corn and soybean data acquired from the USDA-NASS Quick Stats website has 

data missing for certain counties during certain years.  Additionally, Bureau of Economic 
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Analysis (BEA) data has missing values which are generally attributed to confidentially 

reasons.  Since this data is used in mathematical calculations and graphing, it is best to 

convert the missing data into values based on the history embedded in the data.  The 

following subsections will discuss the techniques used to convert the missing data into 

values. 

 

4.8.1 Continuity 

Continuity adjustment is used when there are clear trends in the harvested acreage 

data and there are only a few missing years of data for a particular county.  In this case, 

harvested acres are assumed to follow a trend between two known data points.  Then, the 

contemporaneous average yields for the state in which the county resides are used to 

calculate the production values to fill-in the missing data. 

 

4.8.2 High Uncertainty:  Zero-out 

When a county displays erratic harvested acres or has no history of production of 

a particular field crop, then there is a high degree of uncertainty about that county’s crop 

production activities.  In this case, the missing data are replaced by zeros.   

 

4.8.3 Phase-in or Phase-out 

If a county had no history of production for a crop and later showed strong signals 

of continuous production of that crop, then a phase-in period is modeled into the 

harvested acres and then multiplied by the contemporaneous state average yields to 

calculate the production values to replace the missing values.  Similarly, if a county had 
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continuous production of a crop which seemed to sharply decrease, then a phase-out 

period is modeled into harvested acres and then multiplied by contemporaneous state 

average yields to calculate the production values used to replace the missing values.  

Generally, the phase-in and phase-out periods are five years or less. 

 

4.9 Data Movies 

Data movies were created to show the spatial-temporal aspects of the data.  The 

content of the movies include three choropleths on crop production, one movie on the 

expansion of fuel ethanol industry over time (ethanol biorefinery location and start of 

operations), and two movies on the matching process between treated and control 

counties.  These movies are listed in Table 4.20. 

To produce the movies, several R programs were written for mapping the specific 

type of information (choropleth, biorefinery location, matching) into static data images.  

These images were imported into a movie maker program and compiled into MP4 movie 

files.   

The three choropleth movies show the evolution of corn production, corn yield 

and soy production by county over time in the U.S. Midwest.  This data is very similar to 

United States Department of Agricultural (USDA) published choropleths with the only 

differences being the adjustments made for missing data.  In the Midwest Ethanol 

Biorefinery Location movie, the industry expansion from 54 biorefineries in 2000 to 173 

biorefineries in 2016 is animated to show the operational startup of these biorefineries 

across the U.S. Midwest over time.  Ethanol industry expansion is quite dynamic between 

the years of 2004 to 2009 which is the period when the RFS1 and RFS2 were put into 
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effect, 2006 and 2008, respectively.  In the two matching movies, the contemporaneous 

matches between treated and control counties as a result of the Mahalanobis distance 

matching process are shown for both matching over the entire Midwest region (RUCC 

match) and matching within state (Best Match) for the treated counties over time.  

Treated counties are shown in blue while control counties are displayed in red.  A gold 

line is used to connect the contemporaneously matched treated and control county pairs.  

The number of treated counties is displayed in the upper right-hand corner for each year.  

Additionally, the difference between New Plants and Treated counties relates to new 

ethanol biorefineries that did not qualify as a treatment event for this research.  These 

non-treatment event new plants are displayed on the map as deep pink location points 

only for the period where they supposedly go operational. 

 

4.10 Data Sources and Links 

The data used in this research was acquired from multiple sources.  This section 

will provide a brief overview of the data and how it is used while a complete list of the 

data sources and links is provided in Table 4.21.   

The data used in the Mahalanobis distance metric calculation comes from four 

sources:  Bureau of Economic Analysis (BEA), Federal Reserve Economic Data (FRED), 

Census, and United States Department of Agriculture – National Agricultural Statistics 

Service (USDA-NASS).  All county level data are setup in a cross-sectional (county) and 

longitudinal format (time: 1995 to 2015).  The following county-level variables were 

accessed from BEA:  personal earnings, per capita earnings, population, farm earnings, 

manufacturing earnings, and retail earnings.  All nominal value data are converted to real 
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data using CPI2010 obtained from FRED.  In particular, personal earnings and per capita 

earnings are deflated by CPI2010 to produce real personal earnings and real per capita 

earnings.  All growth rate data are calculated using the standard growth rate equation 

(growth rate = Valuet+1/Valuet – 1).  Farm share is calculated as farm earnings in the 

numerator with the sum of farm earnings, manufacturing earnings and retail earnings in 

the denominator.  Manufacture share and retail share are calculated in a similar fashion.  

County population density is calculated from the BEA county-level population data 

divided by the 2010 Census value for the county-level area.  Agricultural data on corn 

and soybean production at a county-level were retrieved from the USDA-NASS database.  

All the selection variable data was organized into 13 separate csv files for use in the 

Mahalanobis distance metric R programs for matching on the Midwest region (R program 

in Appendix 1) and for matching in-state (R program in Appendix 2). 
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4.11 Tables in Chapter 4 

 

 

Table 4.1  U.S. Midwest States: Number of Counties, Corn Arces, & Biorefineries  
Major Corn Producing States in U.S. Midwest 

State Number of Counties Planted Corn (Acres, 2015) Biorefineries (2015) 

Iowa 99 13,600,000 41 

Illinois 102 11,700,000 14 

Nebraska  93 9,300,000 25 

Minnesota 87 8,500,000 21 

Indiana 92 5,800,000 14 

South Dakota 66 5,200,000 15 

Wisconsin 72 4,100,000 9 

Kansas 105 4,050,000 11 

Ohio 88 3,500,000 7 

Missouri 114 3,300,000 6 

North Dakota 53 2,700,000 5 

Michigan 83 2,450,000 5 

Totals 1054 74,200,000 173 

Data Sources: USDA-NASS (counties and planted arces) and RFA (biorefineries) 
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Table 4.2 Midwest Best Match Treated-Control County Pairs 

 
Treated Control 

  
Treated Control 

ProdYear County State County State 
 

ProdYear County State County State 
2002 Grant SD Montgomery IA 

 
2007 Fillmore NE Clay NE 

2003 Kearney NE Clay NE 
 

2007 Gage NE Nodaway MO 
2003 Brookings SD Deuel SD 

 
2007 Madison NE Jefferson NE 

2003 Turner SD Hutchinson SD 
 

2007 Perkins NE Frontier NE 
2003 Winnebago WI La Crosse WI 

 
2007 Valley NE Howard NE 

2004 Crawford IL Fulton IN 
 

2007 McLean ND Box Butte NE 
2004 Cerro Gordo IA Poweshiek IA 

 
2007 Stark ND Barton KS 

2004 Des Moines IA Lee IA 
 

2007 Spink SD Clark SD 
2004 Osceola IA Watonwan MN 

 
2007 Juneau WI Adams WI 

2004 Worth IA Audubon IA 
 

2007 Rock WI LaPorte IN 
2004 Gove KS Florence WI 

 
2008 Henry IL Knox IL 

2004 Hitchcock NE Harding SD 
 

2008 Putnam IL Osage MO 
2004 Merrick NE Howard NE 

 
2008 St. Clair IL St. Charles MO 

2004 Lincoln SD Chisago MN 
 

2008 Madison IN Columbiana OH 
2005 Crawford IA Carroll IA 

 
2008 Randolph IN Fulton IN 

2005 Webster IA Boone IA 
 

2008 Wabash IN Huntington IN 
2005 Wright IA Humboldt IA 

 
2008 Wells IN Huntington IN 

2005 Anderson KS Crawford KS 
 

2008 Butler IA Franklin IA 
2005 Blue Earth MN Brown MN 

 
2008 Delaware IA Winneshiek IA 

2005 Chippewa MN Brown MN 
 

2008 Dickinson IA Dickinson MI 
2005 Kandiyohi MN Goodhue MN 

 
2008 Mitchell IA Humboldt IA 

2005 Saline MO Clark IL 
 

2008 O'Brien IA Emmet IA 
2005 Columbia WI Oconto WI 

 
2008 Plymouth IA Monona IA 

2006 Buena Vista IA Carroll IA 
 

2008 Republic KS Franklin IL 
2006 Fayette IA Bremer IA 

 
2008 Rice KS Forest WI 

2006 Hamilton IA Warren IL 
 

2008 Otter Tail MN Pope MN 
2006 Story IA Poweshiek IA 

 
2008 Carroll MO Montgomery IA 

2006 Phillips KS Rooks KS 
 

2008 Furnas NE Norton KS 
2006 Calhoun MI Ashtabula OH 

 
2008 Hall NE Clayton IA 

2006 Audrain MO Chariton MO 
 

2008 Holt NE Cloud KS 
2006 Dawson NE Custer NE 

 
2008 Morrill NE Smith KS 

2006 Davison SD Yankton SD 
 

2008 Cass ND Barnes ND 
2006 Dunn WI Polk WI 

 
2008 Richland ND Wilkin MN 

2007 Ogle IL Kankakee IL 
 

2008 Darke OH Mercer OH 
2007 Cass IN Adams IN 

 
2008 Marion OH Morrow OH 

2007 Grant IN Delaware IN 
 

2008 Putnam OH Fulton OH 
2007 Jasper IN Pulaski IN 

 
2008 Seneca OH Crawford OH 

2007 Jay IN Huntington IN 
 

2008 Edmunds SD Clark SD 
2007 Adams IA Worth MO 

 
2008 Jefferson WI Knox OH 

2007 Floyd IA Bremer IA 
 

2009 Ford IL Poweshiek IA 
2007 Fremont IA Page IA 

 
2009 Chickasaw IA Bremer IA 

2007 Seward KS Ford KS 
 

2009 Greene IA Boone IA 
2007 Lenawee MI Ashtabula OH 

 
2009 Pottawattamie IA Cass IA 

2007 St. Clair MI Licking OH 
 

2009 Redwood MN Murray MN 
2007 Jackson MN Watonwan MN 

 
2009 Waseca MN McLeod MN 

2007 Buchanan MO Douglas KS 
 

2010 Madison IL St. Charles MO 
2007 Boone NE Webster NE 

 
2011 Putnam IN Parke IN 

2007 Buffalo NE Custer NE 
 

2015 Stutsman ND Barnes ND 
2007 Dakota NE Osceola MI 
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Table 4.3 Midwest Population Match Treated-Control County Pairs 

 
Treated Control 

  
Treated Control 

ProdYear County State County State 
 

ProdYear County State County State 
2002 Grant SD Mitchell KS 

 
2007 Fillmore NE Clay NE 

2003 Kearney NE Clay NE 
 

2007 Gage NE Nodaway MO 
2003 Brookings SD Morgan IL 

 
2007 Madison NE Douglas MN 

2003 Turner SD McCook SD 
 

2007 Perkins NE Frontier NE 
2003 Winnebago WI Outagamie WI 

 
2007 Valley NE Harlan NE 

2004 Crawford IL Fulton IN 
 

2007 McLean ND Mercer ND 
2004 Cerro Gordo IA Marshall IA 

 
2007 Stark ND Lawrence SD 

2004 Des Moines IA Lee IA 
 

2007 Spink SD Burt NE 
2004 Osceola IA Adair IA 

 
2007 Juneau WI Mille Lacs MN 

2004 Worth IA Van Buren IA 
 

2007 Rock WI Berrien MI 
2004 Gove KS Logan KS 

 
2008 Henry IL Knox IL 

2004 Hitchcock NE Clark KS 
 

2008 Putnam IL Sullivan MO 
2004 Merrick NE Clay NE 

 
2008 St. Clair IL Mahoning OH 

2004 Lincoln SD Insanti MN 
 

2008 Madison IN Clark OH 
2005 Crawford IA Poweshiek IA 

 
2008 Randolph IN Decatur IN 

2005 Webster IA Morgan IL 
 

2008 Wabash IN Adams IN 
2005 Wright IA Winnebago IA 

 
2008 Wells IN Van Wert OH 

2005 Anderson KS Dawes NE 
 

2008 Butler IA Newton IN 
2005 Blue Earth MN Rice MN 

 
2008 Delaware IA Clayton IA 

2005 Chippewa MN Union IA 
 

2008 Dickinson IA Clay IA 
2005 Kandiyohi MN Goodhue MN 

 
2008 Mitchell IA Humboldt IA 

2005 Saline MO Perry IL 
 

2008 O'Brien IA Clay IA 
2005 Columbia WI Newton MO 

 
2008 Plymouth IA Todd MN 

2006 Buena Vista IA Carroll IA 
 

2008 Republic KS Thayer NE 
2006 Fayette IA Buchanan IA 

 
2008 Rice KS Forest WI 

2006 Hamilton IA Carroll IL 
 

2008 Otter Tail MN Waupaca WI 
2006 Story IA Platte MO 

 
2008 Carroll MO Howard MO 

2006 Phillips KS Rooks KS 
 

2008 Furnas NE Norton KS 
2006 Calhoun MI Richland OH 

 
2008 Hall NE Winona MN 

2006 Audrain MO Van Wert OH 
 

2008 Holt NE Emmet IA 
2006 Dawson NE Jackson IA 

 
2008 Morrill NE Polk NE 

2006 Davison SD Yankton SD 
 

2008 Cass ND Olmsted MN 
2006 Dunn WI Polk WI 

 
2008 Richland ND Kanabec MN 

2007 Ogle IL Whiteside IL 
 

2008 Darke OH Logan OH 
2007 Cass IN Huntington IN 

 
2008 Marion OH Wayne IN 

2007 Grant IN Shiawassee MI 
 

2008 Putnam OH Williams OH 
2007 Jasper IN Lafayette MO 

 
2008 Seneca OH Ashland OH 

2007 Jay IN Fulton IN 
 

2008 Edmunds SD Clark SD 
2007 Adams IA Ringgold IA 

 
2008 Jefferson WI Muskingum OH 

2007 Floyd IA Poweshiek IA 
 

2009 Ford IL Madison IA 
2007 Fremont IA Jefferson NE 

 
2009 Chickasaw IA Union IA 

2007 Seward KS Osceola MI 
 

2009 Greene IA Howard IA 
2007 Lenawee MI Ashtabula OH 

 
2009 Pottawattamie IA LaPorte IN 

2007 St. Clair MI Licking OH 
 

2009 Redwood MN Clay IA 
2007 Jackson MN Watonwan MN 

 
2009 Waseca MN Fountain IN 

2007 Buchanan MO Grand Traverse MI 
 

2010 Madison IL Trumbull OH 
2007 Boone NE Polk NE 

 
2011 Putnam IN Perry OH 

2007 Buffalo NE Branch MI 
 

2015 Stutsman ND Nobles MN 
2007 Dakota NE Owen IN 
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Table 4.4 Midwest RUCC Match Treated-Control County Pairs 

 
Treated Control 

  
Treated Control 

ProdYear County State County State 
 

ProdYear County State County State 
2002 Grant SD Cloud KS 

 
2007 Fillmore NE Clay NE 

2003 Kearney NE Phelps NE 
 

2007 Gage NE Nodaway MO 
2003 Brookings SD Wapello IA 

 
2007 Madison NE Wayne IN 

2003 Turner SD McCook SD 
 

2007 Perkins NE Frontier NE 
2003 Winnebago WI La Crosse WI 

 
2007 Valley NE Kiowa KS 

2004 Crawford IL Fulton IN 
 

2007 McLean ND Dade MO 
2004 Cerro Gordo IA Wapello IA 

 
2007 Stark ND Barton KS 

2004 Des Moines IA Lee IA 
 

2007 Spink SD Clark SD 
2004 Osceola IA Emmet IA 

 
2007 Juneau WI Wadena MN 

2004 Worth IA Lac qui Parle MN 
 

2007 Rock WI LaPorte IN 
2004 Gove KS Logan NE 

 
2008 Henry IL Woodford IL 

2004 Hitchcock NE Webster NE 
 

2008 Putnam IL Elk KS 
2004 Merrick NE Howard NE 

 
2008 St. Clair IL St. Charles MO 

2004 Lincoln SD Grundy IA 
 

2008 Madison IN Porter IN 
2005 Crawford IA Carroll IA 

 
2008 Randolph IN Miami IN 

2005 Webster IA McDonough IL 
 

2008 Wabash IN Huntington IN 
2005 Wright IA Humboldt IA 

 
2008 Wells IN Whitley IN 

2005 Anderson KS Henry MO 
 

2008 Butler IA Warren IN 
2005 Blue Earth MN Nicollet MN 

 
2008 Delaware IA Allamakee IA 

2005 Chippewa MN Barton KS 
 

2008 Dickinson IA Clay IA 
2005 Kandiyohi MN Goodhue MN 

 
2008 Mitchell IA Humboldt IA 

2005 Saline MO Clark IL 
 

2008 O'Brien IA Emmet IA 
2005 Columbia WI Oconto WI 

 
2008 Plymouth IA Woodbury IA 

2006 Buena Vista IA Carroll IA 
 

2008 Republic KS Thayer NE 
2006 Fayette IA Buchanan IA 

 
2008 Rice KS Linn MO 

2006 Hamilton IA Warren IL 
 

2008 Otter Tail MN Barron WI 
2006 Story IA Grundy IA 

 
2008 Carroll MO Montgomery IA 

2006 Phillips KS Neosho KS 
 

2008 Furnas NE Knox NE 
2006 Calhoun MI Richland OH 

 
2008 Hall NE Dubuque IA 

2006 Audrain MO Highland OH 
 

2008 Holt NE Cloud KS 
2006 Dawson NE Custer NE 

 
2008 Morrill NE Smith KS 

2006 Davison SD Yankton SD 
 

2008 Cass ND Clay MN 
2006 Dunn WI Polk WI 

 
2008 Richland ND Wilkin MN 

2007 Ogle IL Walworth WI 
 

2008 Darke OH Rush IN 
2007 Cass IN Henry IN 

 
2008 Marion OH Crawford OH 

2007 Grant IN Henry IN 
 

2008 Putnam OH Paulding OH 
2007 Jasper IN Lafayette MO 

 
2008 Seneca OH Crawford OH 

2007 Jay IN Huntington IN 
 

2008 Edmunds SD Clark SD 
2007 Adams IA Worth MO 

 
2008 Jefferson WI Knox OH 

2007 Floyd IA Poweshiek IA 
 

2009 Ford IL Washington IA 
2007 Fremont IA Morris KS 

 
2009 Chickasaw IA Howard IA 

2007 Seward KS Ford KS 
 

2009 Greene IA Boone IA 
2007 Lenawee MI Ionia MI 

 
2009 Pottawattamie IA Cass NE 

2007 St. Clair MI Licking OH 
 

2009 Redwood MN Clay IA 
2007 Jackson MN Nobles MN 

 
2009 Waseca MN McLeod MN 

2007 Buchanan MO Douglas KS 
 

2010 Madison IL St. Charles MO 
2007 Boone NE Webster NE 

 
2011 Putnam IN Hocking OH 

2007 Buffalo NE Wayne OH 
 

2015 Stutsman ND Nobles MN 
2007 Dakota NE Owen IN 
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Table 4.5 State Best Match Treated-Control County Pairs 

 
Treated Control 

  
Treated Control 

ProdYear County State County State 
 

ProdYear County State County State 
2002 Grant SD Gregory SD 

 
2007 Fillmore NE Clay NE 

2003 Kearney NE Phelps NE 
 

2007 Gage NE Jefferson NE 
2003 Brookings SD Yankton SD 

 
2007 Madison NE Knox NE 

2003 Turner SD Miner SD 
 

2007 Perkins NE Frontier NE 
2003 Winnebago WI Outagamie WI 

 
2007 Valley NE Webster NE 

2004 Crawford IL Massac IL 
 

2007 McLean ND McHenry ND 
2004 Cerro Gordo IA Marshall IA 

 
2007 Stark ND Pierce ND 

2004 Des Moines IA Lee IA 
 

2007 Spink SD Todd SD 
2004 Osceola IA Lyon IA 

 
2007 Juneau WI Marquette WI 

2004 Worth IA Winnebago IA 
 

2007 Rock WI Lincoln WI 
2004 Gove KS Smith KS 

 
2008 Henry IL Knox IL 

2004 Hitchcock NE Webster NE 
 

2008 Putnam IL Union IL 
2004 Merrick NE Polk NE 

 
2008 St. Clair IL McHenry IL 

2004 Lincoln SD Hamlin SD 
 

2008 Madison IN Delaware IN 
2005 Crawford IA Marion IA 

 
2008 Randolph IN DeKalb IN 

2005 Webster IA Boone IA 
 

2008 Wabash IN Huntington IN 
2005 Wright IA Humboldt IA 

 
2008 Wells IN Adams IN 

2005 Anderson KS Crawford KS 
 

2008 Butler IA Franklin IA 
2005 Blue Earth MN Brown MN 

 
2008 Delaware IA Bremer IA 

2005 Chippewa MN Brown MN 
 

2008 Dickinson IA Humboldt IA 
2005 Kandiyohi MN Rice MN 

 
2008 Mitchell IA Humboldt IA 

2005 Saline MO Chariton MO 
 

2008 O'Brien IA Emmet IA 
2005 Columbia WI Green Lake WI 

 
2008 Plymouth IA Lyon IA 

2006 Buena Vista IA Carroll IA 
 

2008 Republic KS Ness KS 
2006 Fayette IA Grundy IA 

 
2008 Rice KS Rooks KS 

2006 Hamilton IA Grundy IA 
 

2008 Otter Tail MN Rice MN 
2006 Story IA Grundy IA 

 
2008 Carroll MO Randolph MO 

2006 Phillips KS Rooks KS 
 

2008 Furnas NE Red Willow NE 
2006 Calhoun MI Jackson MI 

 
2008 Hall NE Scotts Bluff NE 

2006 Audrain MO Ray MO 
 

2008 Holt NE Butler NE 
2006 Dawson NE Colfax NE 

 
2008 Morrill NE Sheridan NE 

2006 Davison SD Yankton SD 
 

2008 Cass ND Adams ND 
2006 Dunn WI Taylor WI 

 
2008 Richland ND McHenry ND 

2007 Ogle IL DeKalb IL 
 

2008 Darke OH Miami OH 
2007 Cass IN Lawrence IN 

 
2008 Marion OH Crawford OH 

2007 Grant IN Delaware IN 
 

2008 Putnam OH Tuscarawas OH 
2007 Jasper IN Pulaski IN 

 
2008 Seneca OH Ashland OH 

2007 Jay IN Adams IN 
 

2008 Edmunds SD McPherson SD 
2007 Adams IA Humboldt IA 

 
2008 Jefferson WI Waupaca WI 

2007 Floyd IA Bremer IA 
 

2009 Ford IL Edgar IL 
2007 Fremont IA Page IA 

 
2009 Chickasaw IA Bremer IA 

2007 Seward KS Ford KS 
 

2009 Greene IA Boone IA 
2007 Lenawee MI Hillsdale MI 

 
2009 Pottawattamie IA Cass IA 

2007 St. Clair MI Lapeer MI 
 

2009 Redwood MN Meeker MN 
2007 Jackson MN Murray MN 

 
2009 Waseca MN McLeod MN 

2007 Buchanan MO St. Francois MO 
 

2010 Madison IL McHenry IL 
2007 Boone NE Nance NE 

 
2011 Putnam IN Parke IN 

2007 Buffalo NE Red Willow NE 
 

2015 Stutsman ND Foster ND 
2007 Dakota NE Thayer NE 
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Table 4.6 State Population Match Treated-Control County Pairs 

 
Treated Control 

  
Treated Control 

ProdYear County State County State 
 

ProdYear County State County State 
2002 Grant SD Butte SD 

 
2007 Fillmore NE Clay NE 

2003 Kearney NE Antelope NE 
 

2007 Gage NE Saunders NE 
2003 Brookings SD Lawrence SD 

 
2007 Madison NE Scotts Bluff NE 

2003 Turner SD Custer SD 
 

2007 Perkins NE Frontier NE 
2003 Winnebago WI Outagamie WI 

 
2007 Valley NE Webster NE 

2004 Crawford IL Hancock IL 
 

2007 McLean ND Mercer ND 
2004 Cerro Gordo IA Marshall IA 

 
2007 Stark ND Williams ND 

2004 Des Moines IA Marshall IA 
 

2007 Spink SD Fall River SD 
2004 Osceola IA Adair IA 

 
2007 Juneau WI Lincoln WI 

2004 Worth IA Pocahontas IA 
 

2007 Rock WI Racine WI 
2004 Gove KS Logan KS 

 
2008 Henry IL Knox IL 

2004 Hitchcock NE Webster NE 
 

2008 Putnam IL Pulaski IL 
2004 Merrick NE Jefferson NE 

 
2008 St. Clair IL McHenry IL 

2004 Lincoln SD Meade SD 
 

2008 Madison IN Johnson IN 
2005 Crawford IA Poweshiek IA 

 
2008 Randolph IN Decatur IN 

2005 Webster IA Jasper IA 
 

2008 Wabash IN Huntington IN 
2005 Wright IA Lyon IA 

 
2008 Wells IN Decatur IN 

2005 Anderson KS Greenwood KS 
 

2008 Butler IA Cass IA 
2005 Blue Earth MN Crow Wing MN 

 
2008 Delaware IA Jackson IA 

2005 Chippewa MN Koochiching MN 
 

2008 Dickinson IA Clay IA 
2005 Kandiyohi MN Itasca MN 

 
2008 Mitchell IA Humboldt IA 

2005 Saline MO Henry MO 
 

2008 O'Brien IA Page IA 
2005 Columbia WI Sauk WI 

 
2008 Plymouth IA Bremer IA 

2006 Buena Vista IA Carroll IA 
 

2008 Republic KS Barber KS 
2006 Fayette IA Buchanan IA 

 
2008 Rice KS Cloud KS 

2006 Hamilton IA Allamakee IA 
 

2008 Otter Tail MN Rice MN 
2006 Story IA Dubuque IA 

 
2008 Carroll MO St. Clair MO 

2006 Phillips KS Rooks KS 
 

2008 Furnas NE Sheridan NE 
2006 Calhoun MI Jackson MI 

 
2008 Hall NE Scotts Bluff NE 

2006 Audrain MO Adair MO 
 

2008 Holt NE Cheyenne NE 
2006 Dawson NE Scotts Bluff NE 

 
2008 Morrill NE Sheridan NE 

2006 Davison SD Yankton SD 
 

2008 Cass ND Burleigh ND 
2006 Dunn WI Monroe WI 

 
2008 Richland ND Williams ND 

2007 Ogle IL Marion IL 
 

2008 Darke OH Ashland OH 
2007 Cass IN Steuben IN 

 
2008 Marion OH Knox OH 

2007 Grant IN Howard IN 
 

2008 Putnam OH Williams OH 
2007 Jasper IN Washington IN 

 
2008 Seneca OH Ashland OH 

2007 Jay IN Orange IN 
 

2008 Edmunds SD Gregory SD 
2007 Adams IA Ringgold IA 

 
2008 Jefferson WI Wood WI 

2007 Floyd IA Poweshiek IA 
 

2009 Ford IL Marshall IL 
2007 Fremont IA Adair IA 

 
2009 Chickasaw IA Cass IA 

2007 Seward KS Franklin KS 
 

2009 Greene IA Keokuk IA 
2007 Lenawee MI Midland MI 

 
2009 Pottawattamie IA Black Hawk IA 

2007 St. Clair MI Jackson MI 
 

2009 Redwood MN Meeker MN 
2007 Jackson MN Murray MN 

 
2009 Waseca MN Kanabec MN 

2007 Buchanan MO Jasper MO 
 

2010 Madison IL Winnebago IL 
2007 Boone NE Clay NE 

 
2011 Putnam IN Dearborn IN 

2007 Buffalo NE Scotts Bluff NE 
 

2015 Stutsman ND Walsh ND 
2007 Dakota NE Red Willow NE 
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Table 4.7 State RUCC Match Treated-Control County Pairs 

 
Treated Control 

  
Treated Control 

ProdYear County State County State 
 

ProdYear County State County State 
2002 Grant SD Yankton SD 

 
2007 Fillmore NE Clay NE 

2003 Kearney NE Phelps NE 
 

2007 Gage NE Saline NE 
2003 Brookings SD Butte SD 

 
2007 Madison NE Scotts Bluff NE 

2003 Turner SD McCook SD 
 

2007 Perkins NE Frontier NE 
2003 Winnebago WI Outagamie WI 

 
2007 Valley NE Webster NE 

2004 Crawford IL Massac IL 
 

2007 McLean ND Kidder ND 
2004 Cerro Gordo IA Wapello IA 

 
2007 Stark ND Williams ND 

2004 Des Moines IA Lee IA 
 

2007 Spink SD Todd SD 
2004 Osceola IA Emmet IA 

 
2007 Juneau WI Sawyer WI 

2004 Worth IA Pocahontas IA 
 

2007 Rock WI Racine WI 
2004 Gove KS Smith KS 

 
2008 Henry IL Woodford IL 

2004 Hitchcock NE Webster NE 
 

2008 Putnam IL Pulaski IL 
2004 Merrick NE Howard NE 

 
2008 St. Clair IL McHenry IL 

2004 Lincoln SD Custer SD 
 

2008 Madison IN Washington IN 
2005 Crawford IA Poweshiek IA 

 
2008 Randolph IN Decatur IN 

2005 Webster IA Wapello IA 
 

2008 Wabash IN Huntington IN 
2005 Wright IA Humboldt IA 

 
2008 Wells IN Whitley IN 

2005 Anderson KS Greenwood KS 
 

2008 Butler IA Audubon IA 
2005 Blue Earth MN Nicollet MN 

 
2008 Delaware IA Jackson IA 

2005 Chippewa MN Beltrami MN 
 

2008 Dickinson IA Humboldt IA 
2005 Kandiyohi MN Crow Wing MN 

 
2008 Mitchell IA Humboldt IA 

2005 Saline MO Howard MO 
 

2008 O'Brien IA Emmet IA 
2005 Columbia WI Oconto WI 

 
2008 Plymouth IA Bremer IA 

2006 Buena Vista IA Carroll IA 
 

2008 Republic KS Ness KS 
2006 Fayette IA Buchanan IA 

 
2008 Rice KS Ellsworth KS 

2006 Hamilton IA Allamakee IA 
 

2008 Otter Tail MN Brown MN 
2006 Story IA Grundy IA 

 
2008 Carroll MO Randolph MO 

2006 Phillips KS Ellsworth KS 
 

2008 Furnas NE Harlan NE 
2006 Calhoun MI Jackson MI 

 
2008 Hall NE Howard NE 

2006 Audrain MO Randolph MO 
 

2008 Holt NE Box Butte NE 
2006 Dawson NE Colfax NE 

 
2008 Morrill NE Sheridan NE 

2006 Davison SD Yankton SD 
 

2008 Cass ND Oliver ND 
2006 Dunn WI Taylor WI 

 
2008 Richland ND Walsh ND 

2007 Ogle IL Marion IL 
 

2008 Darke OH Guernsey OH 
2007 Cass IN Henry IN 

 
2008 Marion OH Crawford OH 

2007 Grant IN Jackson IN 
 

2008 Putnam OH Guernsey OH 
2007 Jasper IN Washington IN 

 
2008 Seneca OH Ashland OH 

2007 Jay IN Adams IN 
 

2008 Edmunds SD McPherson SD 
2007 Adams IA Wayne IA 

 
2008 Jefferson WI Wood WI 

2007 Floyd IA Humboldt IA 
 

2009 Ford IL Williamson IL 
2007 Fremont IA Adair IA 

 
2009 Chickasaw IA Cass IA 

2007 Seward KS Ford KS 
 

2009 Greene IA Boone IA 
2007 Lenawee MI Ionia MI 

 
2009 Pottawattamie IA Jones IA 

2007 St. Clair MI Lapeer MI 
 

2009 Redwood MN Beltrami MN 
2007 Jackson MN Beltrami MN 

 
2009 Waseca MN McLeod MN 

2007 Buchanan MO Jasper MO 
 

2010 Madison IL McHenry IL 
2007 Boone NE Webster NE 

 
2011 Putnam IN Dearborn IN 

2007 Buffalo NE Dodge NE 
 

2015 Stutsman ND Pierce ND 
2007 Dakota NE Dixon NE 
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Table 4.8 Midwest Best Match Treated-Control County Pairs, LT25k 
 

 
Treated Control 

  
Treated Control 

ProdYear County State County State 
 

ProdYear County State County State 

2002 Grant SD Montgomery IA 
 

2007 Fillmore NE Clay NE 

2003 Kearney NE Clay NE 
 

2007 Gage NE Nodaway MO 

2003 Turner SD Hutchinson SD 
 

2007 Perkins NE Frontier NE 

2004 Crawford IL Fulton IN 
 

2007 Valley NE Howard NE 

2004 Osceola IA Watonwan MN 
 

2007 McLean ND Box Butte NE 

2004 Worth IA Audubon IA 
 

2007 Stark ND Barton KS 

2004 Gove KS Florence WI 
 

2007 Spink SD Clark SD 

2004 Hitchcock NE Harding SD 
 

2008 Putnam IL Osage MO 

2004 Merrick NE Howard NE 
 

2008 Butler IA Franklin IA 

2005 Crawford IA Carroll IA 
 

2008 Delaware IA Winneshiek IA 

2005 Wright IA Humboldt IA 
 

2008 Dickinson IA Dickinson MI 

2005 Anderson KS Crawford KS 
 

2008 Mitchell IA Humboldt IA 

2005 Chippewa MN Brown MN 
 

2008 O'Brien IA Emmet IA 

2005 Saline MO Clark IL 
 

2008 Plymouth IA Monona IA 

2006 Buena Vista IA Carroll IA 
 

2008 Republic KS Franklin IL 

2006 Fayette IA Bremer IA 
 

2008 Rice KS Forest WI 

2006 Hamilton IA Warren IL 
 

2008 Carroll MO Montgomery IA 

2006 Phillips KS Rooks KS 
 

2008 Furnas NE Norton KS 

2006 Dawson NE Custer NE 
 

2008 Holt NE Cloud KS 

2006 Davison SD Yankton SD 
 

2008 Morrill NE Smith KS 

2007 Jay IN Huntington IN 
 

2008 Richland ND Wilkin MN 

2007 Adams IA Worth MO 
 

2008 Edmunds SD Clark SD 

2007 Floyd IA Bremer IA 
 

2009 Ford IL Poweshiek IA 

2007 Fremont IA Page IA 
 

2009 Chickasaw IA Bremer IA 

2007 Seward KS Ford KS 
 

2009 Greene IA Boone IA 

2007 Jackson MN Watonwan MN 
 

2009 Redwood MN Murray MN 

2007 Boone NE Webster NE 
 

2009 Waseca MN McLeod MN 

2007 Dakota NE Osceola MI 
 

2015 Stutsman ND Barnes ND 
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Table 4.9 Midwest Population Match Treated-Control County Pairs, LT25k 
 

 
Treated Control 

  
Treated Control 

ProdYear County State County State 
 

ProdYear County State County State 
2002 Grant SD Mitchell KS 

 
2007 Fillmore NE Clay NE 

2003 Kearney NE Clay NE 
 

2007 Gage NE Nodaway MO 

2003 Turner SD McCook SD 
 

2007 Perkins NE Frontier NE 

2004 Crawford IL Fulton IN 
 

2007 Valley NE Harlan NE 

2004 Osceola IA Adair IA 
 

2007 McLean ND Mercer ND 

2004 Worth IA Van Buren IA 
 

2007 Stark ND Lawrence SD 

2004 Gove KS Logan KS 
 

2007 Spink SD Burt NE 

2004 Hitchcock NE Clark KS 
 

2008 Putnam IL Sullivan MO 

2004 Merrick NE Clay NE 
 

2008 Butler IA Newton IN 

2005 Crawford IA Poweshiek IA 
 

2008 Delaware IA Clayton IA 

2005 Wright IA Winnebago IA 
 

2008 Dickinson IA Clay IA 

2005 Anderson KS Dawes NE 
 

2008 Mitchell IA Humboldt IA 

2005 Chippewa MN Union IA 
 

2008 O'Brien IA Clay IA 

2005 Saline MO Perry IL 
 

2008 Plymouth IA Todd MN 

2006 Buena Vista IA Carroll IA 
 

2008 Republic KS Thayer NE 

2006 Fayette IA Buchanan IA 
 

2008 Rice KS Forest WI 

2006 Hamilton IA Carroll IL 
 

2008 Carroll MO Howard MO 

2006 Phillips KS Rooks KS 
 

2008 Furnas NE Norton KS 

2006 Dawson NE Jackson IA 
 

2008 Holt NE Emmet IA 

2006 Davison SD Yankton SD 
 

2008 Morrill NE Polk NE 

2007 Jay IN Fulton IN 
 

2008 Richland ND Kanabec MN 

2007 Adams IA Ringgold IA 
 

2008 Edmunds SD Clark SD 

2007 Floyd IA Poweshiek IA 
 

2009 Ford IL Madison IA 

2007 Fremont IA Jefferson NE 
 

2009 Chickasaw IA Union IA 

2007 Seward KS Osceola MI 
 

2009 Greene IA Howard IA 

2007 Jackson MN Watonwan MN 
 

2009 Redwood MN Clay IA 

2007 Boone NE Polk NE 
 

2009 Waseca MN Fountain IN 

2007 Dakota NE Owen IN 
 

2015 Stutsman ND Nobles MN 
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Table 4.10 Midwest RUCC Match Treated-Control County Pairs, LT25k 
 

 
Treated Control 

  
Treated Control 

ProdYear County State County State 
 

ProdYear County State County State 

2002 Grant SD Cloud KS 
 

2007 Fillmore NE Clay NE 

2003 Kearney NE Phelps NE 
 

2007 Gage NE Nodaway MO 

2003 Turner SD McCook SD 
 

2007 Perkins NE Frontier NE 

2004 Crawford IL Fulton IN 
 

2007 Valley NE Kiowa KS 

2004 Osceola IA Emmet IA 
 

2007 McLean ND Dade MO 

2004 Worth IA Lac qui Parle MN 
 

2007 Stark ND Barton KS 

2004 Gove KS Logan NE 
 

2007 Spink SD Clark SD 

2004 Hitchcock NE Webster NE 
 

2008 Putnam IL Elk KS 

2004 Merrick NE Howard NE 
 

2008 Butler IA Warren IN 

2005 Crawford IA Carroll IA 
 

2008 Delaware IA Allamakee IA 

2005 Wright IA Humboldt IA 
 

2008 Dickinson IA Clay IA 

2005 Anderson KS Henry MO 
 

2008 Mitchell IA Humboldt IA 

2005 Chippewa MN Barton KS 
 

2008 O'Brien IA Emmet IA 

2005 Saline MO Clark IL 
 

2008 Plymouth IA Woodbury IA 

2006 Buena Vista IA Carroll IA 
 

2008 Republic KS Thayer NE 

2006 Fayette IA Buchanan IA 
 

2008 Rice KS Linn MO 

2006 Hamilton IA Warren IL 
 

2008 Carroll MO Montgomery IA 

2006 Phillips KS Neosho KS 
 

2008 Furnas NE Knox NE 

2006 Dawson NE Custer NE 
 

2008 Holt NE Cloud KS 

2006 Davison SD Yankton SD 
 

2008 Morrill NE Smith KS 

2007 Jay IN Huntington IN 
 

2008 Richland ND Wilkin MN 

2007 Adams IA Worth MO 
 

2008 Edmunds SD Clark SD 

2007 Floyd IA Poweshiek IA 
 

2009 Ford IL Washington IA 

2007 Fremont IA Morris KS 
 

2009 Chickasaw IA Howard IA 

2007 Seward KS Ford KS 
 

2009 Greene IA Boone IA 

2007 Jackson MN Nobles MN 
 

2009 Redwood MN Clay IA 

2007 Boone NE Webster NE 
 

2009 Waseca MN McLeod MN 

2007 Dakota NE Owen IN 
 

2015 Stutsman ND Nobles MN 
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Table 4.11 State Best Match Treated-Control County Pairs, LT25k 
 

 
Treated Control 

  
Treated Control 

TreatYear County State County State 
 

TreatYear County State County State 

2002 Grant SD Gregory SD 
 

2007 Fillmore NE Clay NE 

2003 Kearney NE Phelps NE 
 

2007 Gage NE Jefferson NE 

2003 Turner SD Miner SD 
 

2007 Perkins NE Frontier NE 

2004 Crawford IL Massac IL 
 

2007 Valley NE Webster NE 

2004 Osceola IA Lyon IA 
 

2007 McLean ND McHenry ND 

2004 Worth IA Winnebago IA 
 

2007 Stark ND Pierce ND 

2004 Gove KS Smith KS 
 

2007 Spink SD Todd SD 

2004 Hitchcock NE Webster NE 
 

2008 Putnam IL Union IL 

2004 Merrick NE Polk NE 
 

2008 Butler IA Franklin IA 

2005 Crawford IA Marion IA 
 

2008 Delaware IA Bremer IA 

2005 Wright IA Humboldt IA 
 

2008 Dickinson IA Humboldt IA 

2005 Anderson KS Crawford KS 
 

2008 Mitchell IA Humboldt IA 

2005 Chippewa MN Brown MN 
 

2008 O'Brien IA Emmet IA 

2005 Saline MO Chariton MO 
 

2008 Plymouth IA Lyon IA 

2006 Buena Vista IA Carroll IA 
 

2008 Republic KS Ness KS 

2006 Fayette IA Grundy IA 
 

2008 Rice KS Rooks KS 

2006 Hamilton IA Grundy IA 
 

2008 Carroll MO Randolph MO 

2006 Phillips KS Rooks KS 
 

2008 Furnas NE Red Willow NE 

2006 Dawson NE Colfax NE 
 

2008 Holt NE Butler NE 

2006 Davison SD Yankton SD 
 

2008 Morrill NE Sheridan NE 

2007 Jay IN Adams IN 
 

2008 Richland ND McHenry ND 

2007 Adams IA Humboldt IA 
 

2008 Edmunds SD McPherson SD 

2007 Floyd IA Bremer IA 
 

2009 Ford IL Edgar IL 

2007 Fremont IA Page IA 
 

2009 Chickasaw IA Bremer IA 

2007 Seward KS Ford KS 
 

2009 Greene IA Boone IA 

2007 Jackson MN Murray MN 
 

2009 Redwood MN Meeker MN 

2007 Boone NE Nance NE 
 

2009 Waseca MN McLeod MN 

2007 Dakota NE Thayer NE 
 

2015 Stutsman ND Foster ND 
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Table 4.12 State Population Match Treated-Control County Pairs, LT25k 
 

 
Treated Control 

  
Treated Control 

ProdYear County State County State 
 

ProdYear County State County State 
2002 Grant SD Butte SD 

 
2007 Fillmore NE Clay NE 

2003 Kearney NE Antelope NE 
 

2007 Gage NE Saunders NE 

2003 Turner SD Custer SD 
 

2007 Perkins NE Frontier NE 

2004 Crawford IL Hancock IL 
 

2007 Valley NE Webster NE 

2004 Osceola IA Adair IA 
 

2007 McLean ND Mercer ND 

2004 Worth IA Pocahontas IA 
 

2007 Stark ND Williams ND 

2004 Gove KS Logan KS 
 

2007 Spink SD Fall River SD 

2004 Hitchcock NE Webster NE 
 

2008 Putnam IL Pulaski IL 

2004 Merrick NE Jefferson NE 
 

2008 Butler IA Cass IA 

2005 Crawford IA Poweshiek IA 
 

2008 Delaware IA Jackson IA 

2005 Wright IA Lyon IA 
 

2008 Dickinson IA Clay IA 

2005 Anderson KS Greenwood KS 
 

2008 Mitchell IA Humboldt IA 

2005 Chippewa MN Koochiching MN 
 

2008 O'Brien IA Page IA 

2005 Saline MO Henry MO 
 

2008 Plymouth IA Bremer IA 

2006 Buena Vista IA Carroll IA 
 

2008 Republic KS Barber KS 

2006 Fayette IA Buchanan IA 
 

2008 Rice KS Cloud KS 

2006 Hamilton IA Allamakee IA 
 

2008 Carroll MO St. Clair MO 

2006 Phillips KS Rooks KS 
 

2008 Furnas NE Sheridan NE 

2006 Dawson NE Scotts Bluff NE 
 

2008 Holt NE Cheyenne NE 

2006 Davison SD Yankton SD 
 

2008 Morrill NE Sheridan NE 

2007 Jay IN Orange IN 
 

2008 Richland ND Williams ND 

2007 Adams IA Ringgold IA 
 

2008 Edmunds SD Gregory SD 

2007 Floyd IA Poweshiek IA 
 

2009 Ford IL Marshall IL 

2007 Fremont IA Adair IA 
 

2009 Chickasaw IA Cass IA 

2007 Seward KS Franklin KS 
 

2009 Greene IA Keokuk IA 

2007 Jackson MN Murray MN 
 

2009 Redwood MN Meeker MN 

2007 Boone NE Clay NE 
 

2009 Waseca MN Kanabec MN 

2007 Dakota NE Red Willow NE 
 

2015 Stutsman ND Walsh ND 
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Table 4.13 State RUCC Match Treated-Control County Pairs, LT25k 
 

 
Treated Control 

  
Treated Control 

ProdYear County State County State 
 

ProdYear County State County State 
2002 Grant SD Yankton SD 

 
2007 Fillmore NE Clay NE 

2003 Kearney NE Phelps NE 
 

2007 Gage NE Saline NE 

2003 Turner SD McCook SD 
 

2007 Perkins NE Frontier NE 

2004 Crawford IL Massac IL 
 

2007 Valley NE Webster NE 

2004 Osceola IA Emmet IA 
 

2007 McLean ND Kidder ND 

2004 Worth IA Pocahontas IA 
 

2007 Stark ND Williams ND 

2004 Gove KS Smith KS 
 

2007 Spink SD Todd SD 

2004 Hitchcock NE Webster NE 
 

2008 Putnam IL Pulaski IL 

2004 Merrick NE Howard NE 
 

2008 Butler IA Audubon IA 

2005 Crawford IA Poweshiek IA 
 

2008 Delaware IA Jackson IA 

2005 Wright IA Humboldt IA 
 

2008 Dickinson IA Humboldt IA 

2005 Anderson KS Greenwood KS 
 

2008 Mitchell IA Humboldt IA 

2005 Chippewa MN Beltrami MN 
 

2008 O'Brien IA Emmet IA 

2005 Saline MO Howard MO 
 

2008 Plymouth IA Bremer IA 

2006 Buena Vista IA Carroll IA 
 

2008 Republic KS Ness KS 

2006 Fayette IA Buchanan IA 
 

2008 Rice KS Ellsworth KS 

2006 Hamilton IA Allamakee IA 
 

2008 Carroll MO Randolph MO 

2006 Phillips KS Ellsworth KS 
 

2008 Furnas NE Harlan NE 

2006 Dawson NE Colfax NE 
 

2008 Holt NE Box Butte NE 

2006 Davison SD Yankton SD 
 

2008 Morrill NE Sheridan NE 

2007 Jay IN Adams IN 
 

2008 Richland ND Walsh ND 

2007 Adams IA Wayne IA 
 

2008 Edmunds SD McPherson SD 

2007 Floyd IA Humboldt IA 
 

2009 Ford IL Williamson IL 

2007 Fremont IA Adair IA 
 

2009 Chickasaw IA Cass IA 

2007 Seward KS Ford KS 
 

2009 Greene IA Boone IA 

2007 Jackson MN Beltrami MN 
 

2009 Redwood MN Beltrami MN 

2007 Boone NE Webster NE 
 

2009 Waseca MN McLeod MN 

2007 Dakota NE Dixon NE 
 

2015 Stutsman ND Pierce ND 
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Table 4.14  Selection Variable Categories 
Growth Rate Earnings Growth Rate and Population Growth Rate 

Spatial Structure Population, Population Density, Corn Production, Corn Acres and 
Soybean Production 

Economic Structure Real Per Capita Earnings, Farm Real Cash Receipts,  
Employment, Farm Earnings Share, Manufacturing Earnings Share, 
and Retail Earnings Share 
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Table 4.15  Selection Variables List (Ethanol Biorefinery, 2001) 
Growth Variables           
  VarName   VarDescription       
  POPG9695   Population growth between 1995 to 1996   
  POPG9796   Population growth between 1996 to 1997   
  POPG9897   Population growth between 1997 to 1998   
  POPG9998   Population growth between 1998 to 1999   
  POPG0099   Population growth between 1999 to 2000   
  RPEG9695   Real Per Capita Earnings growth between 1995 to 1996 
  RPEG9796   Real Per Capita Earnings growth between 1996 to 1997 
  RPEG9897   Real Per Capita Earnings growth between 1997 to 1998 
  RPEG9998   Real Per Capita Earnings growth between 1998 to 1999 
  RPEG0099   Real Per Capita Earnings growth between 1999 to 2000 
                
Spatial Structure Variables 

   
  

  VarName   VarDescription       
  POP2000   Population in 2000 

  
  

  POPDEN00   Population Density in persons per square mile in 2000 
  CORN96   Corn production in 1996 (production=yield*harvested_acres) 
  CORN97   Corn production in 1997 

 
  

  CORN98   Corn production in 1998 
 

  
  CORN99   Corn production in 1999 

 
  

  
CORN00 
CORNAC00   

Corn production in 2000 
Corn acres in 2000 

 
  

  SOY96   Soybean production in 1996 
 

  
  SOY97   Soybean production in 1997 

 
  

  SOY98   Soybean production in 1998 
 

  
  SOY99   Soybean production in 1999 

 
  

  SOY00   Soybean production in 2000 
 

  
                
Economic Structure Variables 

   
  

  VarName   VarDescription       

  

RPCE2000 
FMRCR00 
EMPLY00   

Real Per Capita Earnings in 2000 
Farm real cash receipts in 2000 
Employment in 2000   

  FRMSH00   Farm earnings as a percentage of total earnings in 2000 
  MFGSH00   Manufacturing earnings as a percentage of total earnings in 2000 
  RETSH00   Retail trade as a percentage of total earnings in 2000 
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Table 4.16  Data Description 
Variable Name Abbv. VarName Definitions 
Growth Variables 

 
              

Real Per Capita Earnings Growth RPEG Real per capita earnings growth at the county level. 
Population Growth POPG Population growth rate for a county. 

Spatial Structure Variables    
Corn Production CORN Total production of corn in bushels at a county level. 
Corn Acres CORNAC Corn acres harvested. 
Soybean Production SOY Total production of soybeans in bushels at a county level. 
Population POP Total number of residents in a county. 
Population Density POPDEN Total number of residents in a county divided by the land area of the county. 

Economic Structure Variables                 
Real Per Capita Earnings RPCE Real per capita earnings uses BEA's per capita net earnings (net earnings by place of 

residence/population) and deflates by CPI2010 to convert into real per capita earnings. 

Farm Real Cash Receipts-Crops FMRCR Farm real cash receipts uses BEA’s Cash receipts from crops and deflates by CPI2010 to 
convert into real cash receipts from crops. 

Employment EMPLY The BEA employment series for local areas comprises estimates of the number of jobs, full-
time plus part-time, by place of work. Full-time and part-time jobs are counted at equal 
weight. BEA's estimates of local area employment consist of the number of wage and salary 
jobs, sole proprietorships, and general partners. 

Farm Share of Earnings FRMSH Farm earnings divided by farm earnings + non-farm earnings.  If farm earnings are negative, 
it is eliminated from the denominator since it decreases the denominator which can produce 
large negative values for farm share of earnings. 

Manufacturing Share of Earnings MFGSH Manufacturing earnings divided by farm earnings + non-farm earnings.  If farm earnings are 
negative, it is eliminated from the denominator. 

Retail Share of Earnings RETSH Retail earnings divided by farm earnings + non-farm earnings.  If farm earnings are negative, 
it is eliminated from the denominator. 
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Table 4.17  Summary Statistics (Selection Variables & Dependent Variable) 
      Summary Statistics (1995 to 2016)   

  Abbv. VarName Unit Minimum 1st Quartile Mean Median 3rd Quartile Maximum Source 

Growth Variables 
         Real Per Capita Earnings 

Growth RPEG % -27.2596 -0.0232 0.0212 0.0132 0.0502 11.1207 BEA/FRED 

Population Growth POPG % -0.1477 -0.0059 0.0005 0.0000 0.0064 0.1935 BEA 

Spatial Structure Variables                   

Corn Production CORN Bu 0 1,283,025 9,298,395 5,823,500 13,899,000 77,224,000 USDA 

Corn Acres CORNAC Acres 0 11,800 62,264 46,400 93,900 394,000 USDA 

Soybean Production SOY Bu 0 287,000 2,432,899 1,768,500 3,924,750 21,586,000 USDA 

Population POP # 421 8,441 62,281 19,946 43,568 5,373,418 BEA 

Population Density POPDEN #/sq. mi. 0.47 13.05 122.81 33.04 80.59 5,957.39 BEA/Census 

Economic Structure Variables                   

Real Per Capita Earnings RPCE $ -4,887 17,220 21,216 20,353 24,092 106,726 BEA/FRED 

Farm Real Cash Receipts-Crops FMRCR $ 0 21,454 65,495 49,796 91,501 690,121 BEA/FRED 

Employment EMPLY # 226 4,256 37,220 9,995 23,646 3,513,899 BEA 

Farm Share of Earnings FRMSH % -1.8293 0.0081 0.1002 0.0414 0.1487 0.8764 BEA 
Manufacturing Share of 
Earnings MFGSH % -0.0024 0.0633 0.1660 0.1473 0.2425 0.6854 BEA 

Retail Share of Earnings RETSH % 0 0.0532 0.0750 0.0711 0.0912 0.7099 BEA 
Note:  Detailed source information is listed in Table 4.21. 
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Table 4.18  Summary Statistics (DID Model Dependent Variable) 
 

Midwest Population Match Treated-Control County Group   Summary Statistics for Data used in DID Regression Model 

Varible County Time   Minimum 1st Quartile Mean Median 3rd Quartile Maximum Std. Dev. 

lrpce1 Treated Before 
 

9.6437 9.8634 9.9590 9.9621 10.0710 10.2069 0.1582 

lrpce1 Treated After 
 

9.7571 9.9300 10.0471 10.0311 10.1721 10.4741 0.1651 

lrpce1 Control Before 
 

9.5484 9.8255 9.9127 9.8970 10.0096 10.2838 0.1612 

lrpce1 Control After 
 

9.5122 9.8408 9.9417 9.9520 10.0695 10.2513 0.1712 

lrpce2 Treated Before   9.6437 9.8624 9.9545 9.9619 10.0701 10.2069 0.1560 

lrpce2 Treated After 
 

9.5405 9.9505 10.0917 10.0991 10.2233 10.5837 0.1983 

lrpce2 Control Before 
 

9.5484 9.8250 9.9086 9.8955 10.0026 10.2838 0.1598 

lrpce2 Control After   9.4797 9.8175 9.9457 9.9578 10.0537 10.3557 0.1792 

lrpce3 Treated Before 
 

9.6437 9.8624 9.9545 9.9619 10.0701 10.2069 0.1560 

lrpce3 Treated After 
 

9.7088 10.0298 10.1899 10.1886 10.3255 10.7087 0.2373 

lrpce3 Control Before 
 

9.5484 9.8250 9.9086 9.8955 10.0026 10.2838 0.1598 

lrpce3 Control After 
 

9.5376 9.8685 9.9969 9.9854 10.1110 10.5613 0.2112 

lrpce4 Treated Before   9.6437 9.8624 9.9545 9.9619 10.0701 10.2069 0.1560 

lrpce4 Treated After 
 

9.7957 10.0706 10.2318 10.1747 10.3596 10.8920 0.2585 

lrpce4 Control Before 
 

9.5484 9.8250 9.9086 9.8955 10.0026 10.2838 0.1598 

lrpce4 Control After   9.5752 9.9084 10.0408 10.0302 10.1982 10.5308 0.2190 

lrpce5 Treated Before 
 

9.6437 9.8624 9.9545 9.9619 10.0701 10.2069 0.1560 

lrpce5 Treated After 
 

9.7895 10.0371 10.2322 10.2353 10.3787 11.0382 0.2480 

lrpce5 Control Before 
 

9.5484 9.8250 9.9086 9.8955 10.0026 10.2838 0.1598 

lrpce5 Control After   9.5608 9.9131 10.0536 10.0720 10.2031 10.4783 0.2134 
Note 1:  lrpcex = Natural log of real per capita earnings and where x represents number of years after treatment 
Note 2:  For lrpce1, there are N=56 observations.  For lrpcex where x= 2 to 5, there are N=55 observations. 
Note 3:  Data is pooled and aligned around the treatment year.  Matched county data with  less than 25,000 in population and time period from 2001 to 2016. 
Note 4:  Source:  Burearu of Economic Analysis (county level per capita earnings) and FRED (CPI-2010) 
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Table 4.19  Rural-Urban Continuum Codes (USDA-ERS)  
Metropolitan Counties             

Code Description 
     

  
1 Counties in metro areas of 1 million population or more 
2 Counties in metro areas of 250,000 to 1 million population 
3 Counties in metro areas of fewer than 250,000 population 

  
       

  
Nonmetropolitan Counties 

     
  

4 Urban population of 20,000 or more, adjacent to a metro area 
5 Urban population of 20,000 or more, not adjacent to a metro area 
6 Urban population of 2,500 to 19,999, adjacent to a metro area 
7 Urban population of 2,500 to 19,999, not adjacent to a metro area 
8 Completely rural or less than 2,500 urban population, adjacent to a metro area 
9 Completely rural or less than 2,500 urban population, not adjacent to a metro area 
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Table 4.20  List of Data Movies 
File Name Contents 
MidwestCornChoropleth.mp4 Corn choropleth (1995-2017) 
MidwestCornYield.mp4 Corn yield choropleth (1995-2017) 
MidwestSoybeanChoropleth.mp4 Soybean choropleth (1995-2017) 
MidwestEthanolBiorefineryLocations.mp4 Biorefinery Locations (2000-2016) 
MidwestTreatedControlMatch_RUCC.mp4 Midwest Matched Counties (2001-2015) 
StateTreatedControlMatch_BestMatch.mp4 State Matched Counties (2001-2015) 
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Table 4.21  Data Sources and Internet Links 
United States Department of Agriculture (USDA) 

  
 

National Agricultural Statistics Service (NASS) 
  

 
Economic Research Service (ERS) 

   
  

• General Agricultural Information: 
    

   
https://www.usda.gov 

    
  

• Midwest County Corn & Soybean Acreage, Yield and Production:   

   
https://www.nass.usda.gov/Quick_Stats/Lite/index.php 

 
  

• 2013 Rural-Urban Continuum Codes:   
   

   
https://www.ers.usda.gov/data-products/rural-urban-continuum-codes/ 

          Renewable Fuels Association (RFA):   
    

  
• General Ethanol Industry Information: 

   
   

https://ethanolrfa.org/ 

    
  

• Biorefinery Locations: 
     

   

https://ethanolrfa.org/resources/biorefinery-
locations/ 

  
  

• Ethanol Industry Outlook Publication: 
   

   
https://ethanolrfa.org/resources/publications/outlook/ 

  
  

• Archive Information on RFA: 
    

   
https://web.archive.org/web/*/ethanolrfa.org 

  
          United States Census Bureau 

    
  

• U.S. Maps 
      

   
https://www.census.gov/quickfacts/table/PST045215/00 

 
  

• U.S. County Area (File: GCT-PH1-Geography-United States) 
 

   
https://www.census.gov 

    
          United States Bureau of Economic Analysis (BEA) 

  
  

• General Information: 
     

   
http://www.bea.gov 

     

  

• County Level Data (per capita earnings, employment, population, 
manufacturing earnings, farm earnings, retail earnings, etc.) 

 
   

https://www.bea.gov/itable/index_regional.cfm 

  
          FRED/OECD: 

      
  

• Consumer Price Index (CPI or CPI2010): 
   

   
https://fred.stlouisfed.org/series/CPALTT01USA661S 

 
          Google Earth: 

      
  

• Mapping Biorefinery Locations 
    

  
• Extract Latitude & Longitude Data (based on address information) 

  

https://www.nass.usda.gov/Quick_Stats/Lite/index.php
https://ethanolrfa.org/
https://ethanolrfa.org/resources/biorefinery-locations/
https://ethanolrfa.org/resources/biorefinery-locations/
https://ethanolrfa.org/resources/publications/outlook/
https://www.census.gov/quickfacts/table/PST045215/00
https://www.census.gov/
http://www.bea.gov/
https://www.bea.gov/itable/index_regional.cfm
https://fred.stlouisfed.org/series/CPALTT01USA661S
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4.12 Figures in Chapter 4 

Figure 4.1 Flint Hills Resources, Iowa Falls, Iowa (105 mgy) 
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CHAPTER 5. EMPIRICAL RESULTS AND DISCUSSION 

The research hypothesis is tested using six difference-in-differences (DID) 

models with various combinations of control variables.  An analysis of the DID models’ 

residuals is presented to demonstrate that the residuals have mostly normal distribution 

characteristics.  A robustness check is performed against all control groups to more fully 

understand the variation in results and how it might affect acceptance or rejection of the 

null hypothesis.  Employment and employment rate impacts are examined using means 

comparisons.  An employment multiplier is derived based on average ethanol biorefinery 

employment and the expansion of new employment in treated counties over the five year 

period after treatment.  Exploratory analysis is presented using the full treated county 

data set to examine whether significant results can be obtained by including large 

population treated counties.  Additional exploratory analysis is presented on initial plant 

capacity versus treated county population. 

 

5.1 Research Hypothesis Results and Discussion 

5.1.1 Parallel Trend Assumption and Treatment Response 

First, the parallel trend must be established in the pre-treatment period to satisfy 

the identification criteria of Section 3.2.1.1.  Figure 5.1 through Figure 5.6 show the 

parallel trend for real per capita earnings in the pre-treatment period prior to treatment for 

all treated counties with populations less than 25,000.  In each graph, the treated group is 

the same data, but the control groups are based on the matching by region (Midwest 

[MW] or State) and the secondary matching of Best Match, Population Match, and 

RUCC.  Data points for the treated and control group counties are plotted adjacent to the 
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vertical time lines and slightly offset so that the two groups of points do not overlap.  In 

the period prior to treatment (t=0), the parallel trend does have a slight bump in the 

treated county data at period t-3, but otherwise seems to recover prior to treatment.  As an 

additional note, the graphs are using real per capita earnings as the plotted variable, 

whereas the dependent variable in the regression model is the natural log of real per 

capita earnings.  Since all the data are on the same order of magnitude, a log 

transformation of the data will still produce similar scaled treated and control group 

characteristic curves, but the larger values will be slightly more compressed than the 

smaller values which tends to produce earnings data patterns that are more symmetric 

about the means.  Overall, there does not seem to be any reason to reject the parallel trend 

in the data prior to treatment. 

After treatment (t=0), the graphs in Figure 5.1 through Figure 5.6 show a 

noticeable response in the treated group.  Though the treatment response for the treated 

group is the same in all of the graphs, the graphs in Figure 5.4 through Figure 5.6 show 

that the State control groups are more influenced by the treatment than the Midwest 

control groups shown in Figure 5.1 through Figure 5.3.  It was anticipated that State 

control groups might be more susceptible to spillover effects; therefore, matching over 

the entire Midwest region could produce more robust control groups (i.e. control groups 

less affected by the treatment).  Furthermore, the Midwest control groups seem to be 

more stable in the post-treatment period.  Thus, in the opinion of this researcher, the 

Midwest control groups are the best selection for testing the null hypothesis of this 

research. 
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5.1.2 Empirical Results 

Two approaches will be used to test the hypothesis of this research.  First, the 

hypothesis will be tested over different regression models based on controlling for state 

effects, time effects and spillover effects.  Also, these models will be tested over time 

from one year after treatment to five years after treatment to capture the treatment 

response relative to the control group.  In this first approach, only one control group will 

be used to evaluate the hypothesis which is based on the Midwest Population Match 

control group as shown in Figure 5.2.  Second, an appropriate model will be selected 

from the first approach to evaluate the hypothesis against all control groups, shown in 

Figure 5.1 through Figure 5.6, over the five year period of time after treatment.  The 

second approach provides a robustness check for the average treatment effect on the 

treated (ATOT) parameter over the period of time after treatment. 

There were 119 new ethanol biorefineries that started operations in the U.S. 

Midwest from 2001 to 2015, but only 97 qualified as treatment events for the counties 

where they reside.  Due to the population restrictions imposed by the research hypothesis 

where rural is defined as counties with populations less than 25,000, the set of eligible 

treated counties reduces to 56 counties.  Based on the treatment response discussion in 

Section 5.1.1, the Midwest control groups had the most stable control groups which seem 

minimally affected by spillover effects as opposed to the State control groups.  Since all 

three Midwest control groups seem to have fairly similar curves after treatment on the 

treated counties, the Midwest population match control group will be used to evaluate the 

null hypothesis. 



 

85 
 

 The six regression models used in the hypothesis test are based on Equation 3.1 

with various sets of control variables (state fixed effects, time fixed effects and spillover 

effects) and using the Midwest population match control group.  Results for the average 

treatment effect on the treated (ATOT) one year after treatment are shown in Table 5.1.  

The dependent variable is the natural log of real per capita earnings which is abbreviated 

as lrpce1 where the numerical index represents the number of years after treatment.  In 

the results, ATOT represents the growth rate in real per capita earnings from the base 

year (year before treatment) to the first year after treatment relative to a control group.  In 

five of the six models, ATOT had a one-sided significance of at least 10% except for 

Model 5 which used all of the control variables and was not significant.  As expected, the 

models with the spillover control variables had higher growth rates as explained in 

Section 3.2.8 except for Model 5 where the time fixed effects affected the ATOT 

parameter.  The growth rates vary over the models from 5.53% to 7.63% (uncorrected) or 

5.69% to 7.93% (corrected6) over the two year period7.  An interpretation of this growth 

rate is that Midwest counties with newly operational ethanol biorefineries from 2001 to 

2015 and with populations less than 25,000 grew, on average, at an annual growth rate 

between 2.84% to 3.96% (corrected) relative to matched control counties with similar 

population levels for the two year period which spans from the year-end of the base year, 

immediately before the treatment year, to one year after the treatment year. 

 Regression results for two years after treatment are shown in Table 5.2.  ATOT 

results are significant for all models at a 5% level except for Model 5 which is only 

                                                 
6 Growth rates are corrected using 100*(exp(uncorrected rate) – 1) as described in Wooldridge (2016). 
7 The two year period covers the treatment year and the first year after treatment.  In other words, the 
treatment effect, in this case, is measured relative to the year-end observation in the base year (year before 
treatment) to the year-end observation of the first year after the treatment year which is two years. 
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significant at a 10% level.  The average treatment effect on the treated varies from 10% 

to 12% (uncorrected) growth rate over the three year period (from year-end base year to 

two years after the treatment year).  Three years after treatment, ATOT is significant at a 

1% level for all models shown in Table 5.3 and varies in value from 14.7% to 19.6% 

(uncorrected) growth rate over the four year period (from year-end base year to three 

years after the treatment year).  Similarly, four and five years after treatment results are 

shown in Table 5.4 and Table 5.5, respectively, in which all models show ATOT is 

estimated at a 1% significance level.  Growth rates in the fourth year after treatment 

varied from 14.5% to 18.3%.  In the fifth year after treatment, ATOT varied between 

13.3% and 18.9% across the models.  These results can be viewed over time after 

treatment by graphing the maximum and minimum ATOT growth rates (uncorrected) as 

shown in Figure 5.7.  Up until three years after treatment, there is upward movement in 

the growth rate, but declines after the third year.  This data was transformed by simple 

averaging over the appropriate period to produce the maximum and minimum average 

annual growth rates (uncorrected) as shown in Figure 5.8.  Using the annual growth rates 

over the respective period, it is much clearer that there is growth in the first three-years 

after treatment and it appreciably declines in the fourth and fifth years after treatment. 

 Though the preceding DID model results are based on one control group, the 

significance of the ATOT parameter across several models and over time suggest that the 

null hypothesis should be rejected in favor of the alternative hypothesis.  Thus, treated 

counties with newly operational ethanol biorefineries and populations less than 25,000 

did experience economic benefits relative to similar counties without ethanol 



 

87 
 

biorefineries.  This hypothesis will continue to be tested across all control groups in 

Section 5.1.4. 

 

5.1.3 Residual Analysis on the Empirical Models 

Normal qq-plots are used to assess the normality of the residuals for the models 

discussed in Section 5.1.2.  The residuals of the models presented in Table 5.1 through 

Table 5.5 are shown in Figure 5.9 through Figure 5.13, respectively.  The normal qq-plots 

of the residuals for Model 1 through Model 6 in each table are shown in Panel A through 

Panel F, respectively, as displayed in Figure 5.9 through Figure 5.13.  Overall, most of 

the residuals follow a normal distribution (as demonstrated by the clustering of residuals 

along the red qq-line) though some residuals in the tails do show significant deviation 

from the normal distribution.  Despite the deviation in the tails, the residuals are 

sufficiently normally distributed such that the standard errors of the DID econometric 

models are essentially normally distributed.  Thus, the error structure of the econometric 

DID models allows the hypothesis test to be evaluated based on the approach discussed in 

CHAPTER 3. 

 

5.1.4 Robustness Check (ATOT Consistency over Control Groups) 

Since using a single control group could produce misleading results, the 

hypothesis test should be analyzed over all control groups to test the robustness of the 

acceptance of the alternative hypothesis.  Based on the multi-model analysis in the 

Section 5.1.2, the most naïve8 DID model (Model 1), without control variables, was 

selected for evaluation across control groups.  The naïve DID model was selected for 
                                                 
8 A naïve DID model refers to a basic difference-in-difference model without additional control variables. 
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several reasons.  First, its ATOT coefficients were consistently the smallest coefficients 

of all the models and this robustness check is essentially a test of the lower bounds of 

growth associated with testing the hypothesis.  Second, the Bayesian Information Criteria 

(BIC) consistently ranked the naïve DID model as the best model out of the six models 

examined and the F-statistics were significant for all years after treatment.  Finally, most 

of the other models produced lower p-values for the ATOT coefficient and this 

robustness test is essentially testing the significance of the lower bound and how that 

changes over time.  Thus, the naïve DID model was the best selection for this analysis. 

In this robustness check, the natural log of real per capita earnings is the 

dependent variable and is abbreviated as lrpcex where the x index represents the year 

after treatment.  Again, the population for the treated counties is limited to less than 

25,000 in this analysis.  The regression results are shown in Table 5.6 through Table 5.10 

where each table presents the results across all control groups for a particular year after 

treatment.  In Table 5.6 (one year after treatment), two Midwest control groups had 10% 

significance levels on the ATOT coefficients, but the other four models were not 

significant.  The lower coefficients for the State control groups (2.36% to 3.88%) was 

expected based on the control group graphs in Figure 5.4 through Figure 5.6 relative to 

the Midwest control group graphs in Figure 5.1 through Figure 5.3.  Thus, these results 

bring into question whether the null hypothesis can be rejected for the period one year 

after treatment.  Table 5.7 shows the results for two years after treatment.  Midwest 

control groups are significant at the 5% and 1% level with ATOT values in the range 

from 9.08% to 10.8%.  State control groups were significant at 10% and 5% with values 

in the range of 6.3% to 8.64%.  Results three years after treatment are shown in Table 5.8 



 

89 
 

with two results having 5% significance and four results at 1% significance.  In Table 5.9, 

the results are still strong for the Midwest control groups at the 1% significance level, but 

the State control groups significance levels deteriorate to 10% and 5% for four years after 

treatment.  Table 5.10 shows the results for five years after treatment where there are two 

results with 1% significance, two results with 5% significance, one result with 10% 

significance and one result that is not significant.  

 There are several key aspects of the robustness test that are worth noting.  Over all 

years after treatment, the ATOT coefficients for the State control groups have smaller 

values in any particular year after treatment relative to the ATOT coefficients for the 

Midwest control groups.  There are potentially two main causes for this difference.  First, 

the Midwest control groups were selected from a larger pool of potential control counties 

and thus, better matches were obtained for the Midwest control groups.  Second, the State 

control groups (in-state matches) potentially suffer from greater spillover effects due to a 

more limited pool of potential control counties.  It is the spillover effects that seem to be 

reflected in the upward movement of the State control group graphs in Figure 5.4 through 

Figure 5.6. 

 The results of the robustness test can be summarized as follows.  One year after 

treatment, the regression results for ATOT only show weak significance for two control 

groups; therefore, the null hypothesis cannot be rejected for this case.  There is moderate 

support through marginal and strong significance levels for ATOT in rejecting the null 

hypothesis for two, four and five years after treatment.  Finally, the strongest support for 

rejecting the null hypothesis occurs three years after treatment when ATOT has 

significance levels of 1% and 5% across all control groups.  Thus, in four out of five 
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periods after treatment, the null hypothesis can be rejected in favor of the alternative 

hypothesis which states that ethanol biorefineries did have positive economic impacts on 

the counties where they were located relative to control counties without ethanol 

biorefineries. 

 One important lesson for testing several periods after treatment is that significant 

results for the variable of interest did not occur until two years after treatment and 

became stronger in the third year after treatment.  So, studies that only test one period 

after treatment may actually miss a statistically significant response that is not observed 

until several years after the treatment.  Another point is that the control groups may 

eventually start responding to the treatment after some period of time; especially, if the 

treatment has spillover effects that can have economic ripple effects through contiguous 

counties. 

 

5.1.5 Treated County Year-over-Year Growth 

The results from Section 5.1.2 can be presented in year over year changes in 

growth as shown in Table 5.11.  The top table shows the values from Section 5.1.2 which 

are the growth rates over the period evaluated in the DID model and the bottom table 

shows the corrected year over year growth rates.  The treatment period (t) and first year 

after treatment (t+1) growth rates are estimates based on the DID model results for one 

year after treatment.  This is calculated by correcting the 7.60% (max) results and then 

dividing by two9.  Other results are calculated by taking the difference between the DID 

model results for the consecutive periods and then correcting that value to obtain the year 

                                                 
9 This includes the treatment year and the first year after treatment which is two years relative to the base 
year (year just prior to the treatment year). 



 

91 
 

over year growth rate.  Also, the (max, min) values in the year over year growth table 

match up with (max, min) values in the uncorrected growth table even though the values 

may not represent a max or a min in the year over year growth table. 

 In Table 5.11, it is clear that growth occurred for the first three years after 

treatment for the treated counties, but growth diminished significantly and became 

negative four years after treatment.  This is exactly what is shown in Figure 5.1 through 

Figure 5.3 where the treated group response seemed to hit a peak four years after 

treatment while the control groups continued a slow rise in their response over time. 

 

5.1.6 Employment Impacts 

For many years, counties throughout the U.S. Midwest have seen population 

declines with associated employment level declines, but somewhat stable employment 

rates.  Thus, it is hypothesized that a new ethanol biorefinery in a county would stabilize 

or slightly increase employment, at least in the short-run.   For this analysis, only treated 

counties with less than 25,000 in population are examined for any potential employment 

effects.  The Midwest and State population match control groups will be used for 

comparison purposes, since comparing on similar population levels is the only approach 

that makes sense in this analysis.   

In Figure 5.14, the treated counties with populations less than 25,000 are 

compared to the Midwest population match control group.  There is a good parallel trend 

in the pre-treatment period.  In the post-treatment period, the treated counties seem to be 

mostly stable with some employment gains overall; whereas, the control group had 

employment loses after the treatment event (t=0).  The mean values used in the graph are 
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shown in Table 5.12 under the Employment table.  This clearly shows that the treated 

counties gained employment on average from 7476 in the base year (t-1) to 7687 five 

years after treatment. Control county employment declined on average from 7138 in the 

base year to 6969 five years after treatment.  The difference between the treated mean 

and the parallel trend assumption is an employment increase of 380 more positions for 

the treated counties, on average, in the five year period after treatment.  It should be 

noted that the parallel trend assumption represents the treated group’s response in the 

absence of treatment.  In the Employment Rate10 table, the treated counties employment 

rate increased from 59.9% to 62.1% from the base year to five years after treatment, 

respectively.  Thus, there are employment gains, on average, in the treated counties after 

treatment and the counterfactual control group response showed employment declines 

which seems in-line with regional trends.  

In Figure 5.15, the treated counties with populations less than 25,000 are 

compared to the State population match control group.  On average, the treated group 

means track the control group means up to one year after treatment; then, the control 

group has relatively strong employment gains over the next four periods.  Treated and 

control group means are shown in Table 5.13 in the Employment table.  The treated 

counties had average employment gains of 211 from base year to five years after 

treatment while the control counties had average employment gains of 960 over the same 

period.  In the Employment Rate table, treated and control counties increased their 

employment rate from the base year to five years after treatment by about the same 

amount.  Additionally, the Population table shows that treated counties declined in 

population by about 235 on average while control counties gained in population by 128 
                                                 
10 County employment rate is calculated as total county employment divided by total county population. 
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on average.  One possibility for the rise in employment in the State control group is that 

there could have been a gradual increase in part-time jobs which have the same weight in 

employment numbers with the Bureau of Economic Analysis (BEA: refer to Table 4.16 

for definition of Employment).  Further, the jobs could have been related to seasonal 

workers who benefitted from opportunities associated with spillover effects from treated 

counties, but this is just speculation.  As discussed previously, State control groups were 

suspected of benefitting from spillover effects, since the State control groups’ real per 

capita earnings had a positive response several years after the treatment was applied on 

the treated counties.  

This investigation into employment effects had somewhat mixed results.  As 

expected, treated counties with populations less than 25,000 showed, on average, an 

increase in employment and an increase in the employment rate after treatment.  In the 

Midwest control group case, employment in the control counties declined on average 

which was hypothesized might occur.  For the State control group case, employment 

levels began to rise two years after treatment and continued until five years after 

treatment.  What happened in the State control group case is not known with certainty 

though some thoughts were presented with the findings.  Based on the increased 

employment finding associated with the State control group, this gives more credence to 

using the Midwest control groups as the preferred counterfactual for validation of the 

main hypothesis of this dissertation. 
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5.1.7 Employment Multiplier 

An employment multiplier is calculated based on the treated county employment 

gains (direct, indirect and induced) shown in Table 5.12 relative to the average 

employment of an ethanol biorefinery.  Since ethanol biorefineries generally employ 

between 40 to 65 people based on plant size, an average estimate of 50 employees is used 

to represent the typical ethanol biorefinery.  Table 5.14 shows the employment multiplier 

calculated for the treatment year (time = 0) through five years after treatment.   The 

employment multiplier varies from 1.46 in the treatment year to 7.6 five years after 

treatment.  These results are similar to the results in Low and Isserman (2009) where their 

modeling showed employment multipliers ranging from 2.8 to 6.411 depending on the 

location and size of the ethanol plant.  The employment multiplier results show that there 

are indirect and induced employment gains for any county with a new ethanol biorefinery 

beyond just the direct employment gains from the jobs at the plant. 

 

5.2 Exploratory Analysis and Discussion 

5.2.1 Revisit Research Hypothesis with All Eligible Treated Counties 

In an effort to explore more insights into the data, a naïve DID regression was run 

for the full set of treated counties (97) against all control groups with no treated county 

population limits.  Parallel trend and treatment response graphs are shown in Figure 5.16 

through Figure 5.21 for the six control groups.  The parallel trend prior to treatment 

seems reasonable in all the graphs.  Treatment response in these graphs is not as strong as 

for the rural analysis with treated county populations less than 25,000.  Based on the less 

prominent treatment response, the DID regression model will be run for the period three 
                                                 
11 These values are calculated based on modeled job estimates from Table 7 of Low and Isserman (2009). 
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years after treatment which was the optimal period for a highly significant ATOT 

coefficient in the rural treated county case. 

Regression results for all the treated counties across all control groups and three 

years after treatment are shown in Table 5.15.  There are five ATOT coefficients with 

significance levels of 5% and one coefficient with a significance level of 10%.  ATOT 

coefficients range from 5.99% to 8.98% which is quite lower than the values of 10.2% to 

14.7% found in the rural treated county analysis.  These lower values are expected since 

for any given economic impact associated with an ethanol biorefinery that economic 

impact will diminish on a per capita basis in large population counties which means its 

economic impact is more difficult to detect in large population counties.  Also, the 

ethanol biorefinery economic impact in large population communities can be masked by 

other more dominant economic activities. 

 

5.2.2 Treated County Population versus Biorefinery Initial Capacity 

Another exploratory question is whether an ethanol biorefinery’s initial capacity 

had a significant economic impact that varied based on the population level of the treated 

county.  It can be hypothesized that high capacity ethanol biorefineries might have a 

significant economic impact in high population counties, but should definitely have a 

significant economic impact in low population counties.  Also, low capacity ethanol 

biorefineries are unlikely to have a significant economic impact in large population 

counties, but could have a significant economic impact in low population counties. 

For this analysis, the population break point was set at 25,000 which separated the 

low population treated counties from the high population treated counties.  For the 
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ethanol biorefinery initial capacity, a break point was set at 55 mgy to separate the low 

capacity biorefineries from the high capacity biorefineries.  The break points were set to 

balance, as best as possible, the number of treated counties divided into the four sectors 

to be tested.  The treated counties in each sector are:  22 (low population, high capacity), 

34 (low population, low capacity), 20 (high population, low capacity), and 21 (high 

population, high capacity).  In the analysis, a DID regression model with state fixed 

effects control variables was selected to test this exploratory question.  The dependent 

variable is the natural log of real per capita earnings (lrpcex) where x is the index that 

represents the year after treatment and the counterfactual control group is the Midwest 

population match counties.  Also, the average treatment effect on the treated (ATOT) is 

represented by the delta symbol (𝛿𝛿) and is presented with the standard error (se) when a 

particular sector has a significant result. 

Results of the capacity versus population analysis are shown in the two-by-two 

diagrams of Figure 5.22 for each year after treatment.  For high population treated 

counties, there are no significant results for any capacity level at any period of time after 

treatment.  Also, there are no significant results for the first year after treatment, but one-

sided test p-values are provided which give some indication of the regression model 

results.  Low capacity ethanol biorefineries had significant results from two years after 

treatment through five years after treatment with significance levels better than 5%.  High 

capacity ethanol biorefineries only have significant results in the fourth and fifth years 

after treatment and their growth rates are lower than for the low capacity plants. 

It is not clear why high capacity ethanol biorefineries economic impact was much 

smaller than low capacity ethanol biorefineries in low population counties.  One 
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speculative thought is that low capacity plants are sufficient in size to demand a majority 

of the county’s corn production output and that high capacity plants contribute more to 

spillover effects.  Another speculative thought is that low capacity plants are more likely 

to be locally owned which can benefit the local community whereas high capacity plants 

have corporate structures where the plant’s profits are exported out of the community and 

have less local impact.  An investigation into the ownership of the low capacity ethanol 

biorefineries in low population areas found that 13 of the 34 were locally owned.  Thus, 

local ownership could have had an impact on the results.  A deeper dive into these 

questions could form a basis for future research. 

 

5.3 Threats to Internal Validity 

5.3.1 SUTVA I – No Interference 

The Stable Unit Treatment Value Assumption (SUTVA) is defined by Imbens and 

Rubin (2015) as, “the treatment applied to one unit does not affect the outcome for the 

other units.”  Essentially, this is a concern about spillover effects which can bias the 

estimate of the treatment effect.  It is clear that spillover effects do occur in this analysis 

since feedstock production is not exclusively contained within a treated county and 

ethanol biorefineries are not necessarily centered within a treated county’s border which 

can lead to asymmetrical spillovers into contiguous counties.  Though spillover indicator 

variables are applied in some of the DID models, these are relatively crude instruments 

for controlling for spillover effects and may not fully correct for the bias in the treatment 

effect estimate. 
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Let’s examine what happens when there are spillover effects occurring associated 

with an ethanol biorefinery’s operation in a treated county.  The primary source of 

spillovers is through corn production in neighboring counties which is supplied as 

feedstock to the treated county’s ethanol biorefinery.   Thus, there are three dynamic 

aspects to consider.  First, not all corn production is captured by the treated county.  In 

one sense, this leads to an underestimation of the treatment effect since not all production 

is captured by the treated county.  In another sense, the treated county is likely producing 

the majority of corn production and this is the treatment effect being captured but can 

vary across treated counties.  Second, what if one of the contiguous counties becomes a 

control county match?  In this case, the control county’s economic performance is higher 

than it would have been without the treatment in a contiguous treated county.  Thus, this 

will tend to put a downward bias on the treatment effect since the counterfactual control 

county has a higher economic level of performance than it would have had without the 

spillover effect.  Third, what if one of the contiguous counties becomes another treated 

county?  In the short run, this will lead to greater demand for limited corn supply; thus, 

elevating local prices.  In the long run, producers will respond by more intensively 

increasing their corn production.  This would also spatially shift the spillover patterns 

around the ethanol biorefinery.  In this case, the impact on the ATOT is likely to be 

positive by capturing more local economic activity and may produce a less biased 

underestimation of ATOT for the treated county. 

On average, positive spillovers from a treated county will lead to an 

underestimation of the ATOT (lower economic performance in the treated county than 

would have occurred without spillover).  Additionally, positive spillovers into a control 
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county will contribute to an underestimation of the ATOT (higher economic performance 

in the control county than would have occurred without spillover). Thus, any analysis 

without control variables to capture spillover effects will most likely underestimate 

ATOT on the treated unit (county). 

 

5.3.2 SUTVA II – No Hidden Variations of Treatments 

There are variations in treatments that are not fully considered in this analysis.  

For instance, the capacity of the ethanol biorefinery directly relates to feedstock demand 

from the local community and surrounding communities.  Large capacity biorefineries 

can create large spillover effects outside of their county of residence due to the large 

quantity of feedstock required for production.  Small capacity refiners could pull a major 

percentage of their feedstock demand from the local community or county; thus, creating 

less of a spillover effect.  Though these variations are not necessarily hidden, the 

information would be extremely difficult to obtain which essentially makes it virtually 

hidden.  Another potentially hidden variation is the efficiency of each individual ethanol 

biorefinery.  It is expected that each plant’s cost structure and efficiency will be fairly 

similar across the industry due to the competitive nature of the ethanol industry.   

 

5.3.3 Selection on Observables into Treatment 

Selection into treatment could be influenced by observable characteristics of the 

treated counties.  The main result from this situation is that average treatment on the 

treated (ATOT) and average treatment on the control (ATOC) are most likely not equal.  

The ATOC is a potential outcome on the control group if the control group was given a 
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treatment.  ATOC cannot be assessed in this analysis, since it is a concept more 

understood in randomized control trials (RCT) where subjects can be randomly selected 

to be either in the treated or control group (equivalent control groups).  In a RCT, the 

parameter of interest would be the average treatment effect (ATE), since ATOT and 

ATOC are expected to be equal.  Thus, ATOT is the parameter of interest in this 

dissertation and is most likely greater than ATE.  This threat should not bias the ATOT 

parameter, but limits or completely eliminates what can be said about ATE unless 

observable characteristics are modeled in the econometric analysis. 

 

5.3.4 Population Statistics versus Sample Statistics (Assumption) 

In population statistics, means are known with certainty.  Therefore, a difference 

between two means is also known with certainty.  In sample statistics, samples are 

randomly drawn from a population distribution and are used to calculate an estimate of 

the population mean with an associated standard error for the estimated mean. The 

sample distribution for the mean is essentially normal based on the Central Limit 

Theorem.  So, for this dissertation, there are three major concerns about using population 

data as if it were sample data.  First, it is obvious that the data is representative of the 

population since it is mostly population data.  Therefore, a sample statistics approach to 

the data is valid since the data is a representative sample.  Second, the data used as a 

dependent variable should have the form of a normal distribution.  This is accomplished 

by taking the natural log of the real per capita earnings variable, since earnings generally 

have a log-normal distribution.  Third, the residuals of the regression models should have 

a normal distribution.  The QQ-plots in Figure 5.9 through Figure 5.13 show that the 
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residuals have mostly normal distribution characteristics with some deviations in the tails.  

Thus, using a sample statistics approach is valid for this analysis. 
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5.4 Tables in Chapter 5 

 

Table 5.1 Ln(RPCE) One Year after Treatment, Treated Population < 25,000  

  (1) (2) (3) (4) (5) (6) 
  lrpce1 lrpce1 lrpce1 lrpce1 lrpce1 lrpce1 
Treated 0.0464 0.0289 0.0209 0.0145 0.0157 0.0464 

 
(0.0302) (0.0384) (0.0293) (0.0367) (0.0369) (0.0285) 

       After 0.029 -0.00591 0.029 0.00293 -0.0257 -0.00347 

 
(0.0314) (0.0378) (0.0275) (0.0334) (0.0349) (0.0331) 

       ATOT (δ) 0.059° 0.0763° 0.059° 0.0689° 0.0553 0.059° 
  (0.0438) (0.0580) (0.0403) (0.0523) (0.0529) (0.0419) 

       Spillover Effects No Yes No Yes Yes No 

       State Fixed Effect No No Yes Yes Yes No 

       Time Fixed Effects No No No No Yes Yes 

       Constant 9.913*** 9.913*** 9.949*** 9.945*** 9.845*** 9.837*** 
  (0.0215) (0.0217) (0.0250) (0.0258) (0.0637) (0.0149) 
R-squared 0.0870  0.1240  0.2620  0.2830  0.3770  0.2070  
adj. R-squared 0.074 0.095 0.216 0.224 0.288 0.154 
BIC -156.6 -144.2 -150.2 -135 -107.1 -128.8 
F 6.953 4.307 27.78 43.71 55.89 82.49 
N 224 224 224 224 224 224 
Standard errors in parentheses 
° p<0.10, * p<0.05, ** p<0.01, *** p<0.001 
Note 1:  One-sided p-values for ATOT.  All other variables are two-sided p-values. 
Note 2:  Control group = Midwest Population Match 

   Note 3:  lrpce1 = natural log of real per capita earnings; 1 year after treatment 
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Table 5.2 Ln(RPCE) Two Years after Treatment, Treated Population < 25,000  
 

  (1) (2) (3) (4) (5) (6) 
  lrpce2 lrpce2 lrpce2 lrpce2 lrpce2 lrpce2 
Treated 0.0459 0.0231 0.0213 0.0135 0.0161 0.0459 

 
(0.0301) (0.0381) (0.0293) (0.0375) (0.0380) (0.0290) 

       After 0.0371 -0.00161 0.0371 0.00786 -0.0198 0.000931 

 
(0.0324) (0.0388) (0.0277) (0.0339) (0.0408) (0.0400) 

       ATOT (δ) 0.100* 0.120* 0.100* 0.111* 0.112° 0.100* 
  (0.0470) (0.0687) (0.0429) (0.0643) (0.0679) (0.0461) 

       Spillover Effects No Yes No Yes Yes No 

       State Fixed Effect No No Yes Yes Yes No 

       Time Fixed Effects No No No No Yes Yes 

       Constant 9.909*** 9.909*** 9.974*** 9.970*** 9.885*** 9.837*** 
  (0.0215) (0.0218) (0.0254) (0.0262) (0.0561) (0.0151) 
R-squared 0.1390  0.1760  0.3170  0.3340  0.3830  0.2080  
adj. R-squared 0.127 0.148 0.274 0.278 0.296 0.158 
BIC -127.2 -115.1 -123.9 -108.2 -70.85 -91.42 
F 10.06 9.17 62.25 136.6 33.41 18.49 
N 220 220 220 220 220 220 
Standard errors in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
Note 1:  One-sided p-values for ATOT.  All other variables are two-sided p-values. 
Note 2:  Control group = Midwest Population Match 

   Note 3:  lrpce2 = natural log of real per capita earnings; 2 years after treatment 
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Table 5.3 Ln(RPCE) Three Years after Treatment, Treated Population < 25,000 
  (1) (2) (3) (4) (5) (6) 
  lrpce3 lrpce3 lrpce3 lrpce3 lrpce3 lrpce3 
Treated 0.0459 0.0231 0.0189 0.00954 0.0112 0.0459 

 
(0.0370) (0.0381) (0.0300) (0.0378) (0.0390) (0.0297) 

       After 0.0883* 0.0399 0.0883** 0.0497 0.0182 0.0651 

 
(0.0370) (0.0442) (0.0308) (0.0383) (0.0535) (0.0575) 

       ATOT (δ) 0.147** 0.196** 0.147** 0.188** 0.192** 0.147** 
  (0.0524) (0.0777) (0.0488) (0.0741) (0.0710) (0.0512) 

       Spillover Effects No Yes No Yes Yes No 

       State Fixed Effect No No Yes Yes Yes No 

       Time Fixed Effects No No No No Yes Yes 

       Constant 9.909*** 9.909*** 9.956*** 9.953*** 9.819*** 9.837*** 
  (0.0262) (0.0218) (0.0263) (0.0269) (0.0860) (0.0155) 
R-squared 0.2360  0.2660  0.3680  0.3850  0.4790  0.3070  
adj. R-squared 0.226 0.242 0.328 0.333 0.403 0.259 
BIC -79.28 -66.33 -66.81 -51.41 -28.68 -41.17 
F 22.29 12.97 21.73 35.89 14.88 20.48 
N 220 220 220 220 220 220 
Standard errors in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
Note 1:  One-sided p-values for ATOT.  All other variables are two-sided p-values. 
Note 2:  Control group = Midwest Population Match 

   Note 3:  lrpce3 = natural log of real per capita earnings; 3 years after treatment 
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Table 5.4 Ln(RPCE) Four Years after Treatment, Treated Population < 25,000 
  (1) (2) (3) (4) (5) (6) 
  lrpce4 lrpce4 lrpce4 lrpce4 lrpce4 lrpce4 
Treated 0.0459 0.0231 0.0154 0.00162 0.00587 0.0459 

 
(0.0387) (0.0381) (0.0309) (0.0384) (0.0385) (0.0295) 

       After 0.132*** 0.0683 0.132*** 0.0805* 0.0935 0.163* 

 
(0.0387) (0.0428) (0.0314) (0.0370) (0.0758) (0.0826) 

       ATOT (δ) 0.145** 0.183** 0.145** 0.172** 0.151** 0.145** 
  (0.0547) (0.0723) (0.0508) (0.0674) (0.0643) (0.0520) 

       Spillover Effects No Yes No Yes Yes No 

       State Fixed Effect No No Yes Yes Yes No 

       Time Fixed Effects No No No No Yes Yes 

       Constant 9.909*** 9.909*** 9.939*** 9.932*** 9.829*** 9.837*** 
  (0.0274) (0.0218) (0.0263) (0.0272) (0.0764) (0.0154) 
R-squared 0.2750  0.3270  0.4040  0.4400  0.5380  0.3810  
adj. R-squared 0.265 0.304 0.367 0.393 0.468 0.336 
BIC -59.99 -54.75 -49.32 -41.54 -19.04 -30.31 
F 27.26 12.81 18.97 31.52 76.81 22.23 
N 220 220 220 220 220 220 
Standard errors in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
Note 1:  One-sided p-values for ATOT.  All other variables are two-sided p-values. 
Note 2:  Control group = Midwest Population Match 

   Note 3:  lrpce4 = natural log of real per capita earnings; 4 years after treatment 
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Table 5.5 Ln(RPCE) Five Years after Treatment, Treated Population < 25,000 
  (1) (2) (3) (4) (5) (6) 
  lrpce5 lrpce5 lrpce5 lrpce5 lrpce5 lrpce5 
Treated 0.0459 0.0231 0.0127 -0.00616 0.00264 0.0459 

 
(0.0378) (0.0381) (0.0307) (0.0384) (0.0386) (0.0287) 

       After 0.145*** 0.082 0.145*** 0.0960* 0.183 0.262* 

 
(0.0378) (0.0440) (0.0308) (0.0378) (0.1060) (0.1160) 

       ATOT (δ) 0.133** 0.189** 0.133** 0.176** 0.151** 0.133** 
  (0.0534) (0.0760) (0.0493) (0.0679) (0.0633) (0.0497) 

       Spillover Effects No Yes No Yes Yes No 

       State Fixed Effect No No Yes Yes Yes No 

       Time Fixed Effects No No No No Yes Yes 

       Constant 9.909*** 9.909*** 9.939*** 9.932*** 9.829*** 9.837*** 
  (0.0267) (0.0218) (0.0260) (0.0264) (0.0514) (0.0150) 
R-squared 0.2860  0.3390  0.4210  0.4610  0.5690  0.4200  
adj. R-squared 0.276 0.317 0.384 0.416 0.501 0.374 
BIC -70.55 -66.06 -62.74 -57.04 -36.03 -46.24 
F 28.81 16 15.54 21.64 12.99 25.43 
N 220 220 220 220 220 220 
Standard errors in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
Note 1:  One-sided p-values for ATOT.  All other variables are two-sided p-values. 
Note 2:  Control group = Midwest Population Match 

   Note 3:  lrpce5 = natural log of real per capita earnings; 5 years after treatment 
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Table 5.6 Ln(RPCE1) Robustness: Treated with Populations < 25,000 
Control Group 

Matching 
Midwest State 

Best Match RUCC Pop Match Best Match Pop Match RUCC 

 
lrpce1 lrpce1 lrpce1 lrpce1 lrpce1 lrpce1 

Treated 0.0377 0.0299 0.0464 0.0283 0.049 0.0606* 

 
(0.0295) (0.0290) (0.0302) (0.0320) (0.0306) (0.0296) 

       After 0.0436 0.0273 0.029 0.0645 0.0564 0.0493 

 
(0.0297) (0.0277) (0.0314) (0.0346) (0.0339) (0.0316) 

       ATOT (δ) 0.0445 0.0607° 0.059° 0.0236 0.0317 0.0388 
  (0.0426) (0.0412) (0.0438) (0.0462) (0.0457) (0.0439) 

       _cons 9.921*** 9.929*** 9.913*** 9.931*** 9.910*** 9.898*** 

 
(0.0206) (0.0199) (0.0215) (0.0240) (0.0221) (0.0207) 

       adj. R-sq 0.065 0.065 0.074 0.048 0.065 0.085 
BIC -169 -184 -156.6 -133.3 -138.2 -155.7 
F 6.037 5.726 6.953 4.906 6.622 8.221 
N 224 224 224 224 224 224 
Standard errors in parentheses 
° p<0.10, * p<0.05, ** p<0.01, *** p<0.001 
Note 1:  One-sided p-values for ATOT.  All other variables are two-sided p-values. 
Note 2:  lrpce1 = natural log of real per capita earnings; 1 year after treatment 
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Table 5.7 Ln(RPCE2) Robustness: Treated with Populations < 25,000 
Control Group 

Matching 
Midwest State 

Best Match RUCC Pop Match Best Match Pop Match RUCC 

 
lrpce2 lrpce2 lrpce2 lrpce2 lrpce2 lrpce2 

Treated 0.0378 0.0292 0.0459 0.0329 0.0474 0.0573 

 
(0.0293) (0.0290) (0.0301) (0.0309) (0.0306) (0.0298) 

       After 0.0464 0.0287 0.0371 0.0741* 0.0611 0.0507 

 
(0.0295) (0.0286) (0.0324) (0.0320) (0.0366) (0.0316) 

       ATOT (δ) 0.0908* 0.108** 0.100* 0.063° 0.076° 0.0864* 
  (0.0451) (0.0445) (0.0470) (0.0467) (0.0500) (0.0464) 

       _cons 9.917*** 9.925*** 9.909*** 9.922*** 9.907*** 9.897*** 

 
(0.0204) (0.0199) (0.0215) (0.0226) (0.0223) (0.0211) 

       adj. R-sq 0.125 0.124 0.127 0.109 0.109 0.14 
BIC -145.4 -151.4 -127.2 -129.4 -99.77 -132.1 
F 9.376 8.944 10.06 8.679 9.735 11.15 
N 220 220 220 220 220 220 
Standard errors in parentheses 
° p<0.10, * p<0.05, ** p<0.01, *** p<0.001 
Note 1:  One-sided p-values for ATOT.  All other variables are two-sided p-values. 
Note 2:  lrpce2 = natural log of real per capita earnings; 2 years after treatment 
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Table 5.8 Ln(RPCE3) Robustness: Treated with Populations < 25,000 
Control Group 

Matching 
Midwest State 

Best Match RUCC Pop Match Best Match Pop Match RUCC 

 
lrpce3 lrpce3 lrpce3 lrpce3 lrpce3 lrpce3 

Treated 0.0378 0.0292 0.0459 0.0329 0.0474 0.0573 

 
(0.0293) (0.0290) (0.0301) (0.0309) (0.0306) (0.0298) 

       After 0.0938** 0.0925** 0.0883* 0.133*** 0.122** 0.106** 

 
(0.0328) (0.0331) (0.0357) (0.0346) (0.0414) (0.0360) 

       ATOT (δ) 0.142** 0.143** 0.147** 0.102* 0.114* 0.129** 
  (0.0504) (0.0506) (0.0524) (0.0516) (0.0564) (0.0525) 

       _cons 9.917*** 9.925*** 9.909*** 9.922*** 9.907*** 9.897*** 

 
(0.0204) (0.0199) (0.0215) (0.0226) (0.0223) (0.0211) 

       adj. R-sq 0.231 0.223 0.226 0.222 0.2 0.234 
BIC -95.73 -94.41 -79.28 -85.66 -46.81 -77.78 
F 18.4 17.82 18.59 18.77 18.95 20.18 
N 220 220 220 220 220 220 
Standard errors in parentheses 
° p<0.10, * p<0.05, ** p<0.01, *** p<0.001 
Note 1:  One-sided p-values for ATOT.  All other variables are two-sided p-values. 
Note 2:  lrpce3 = natural log of real per capita earnings; 3 years after treatment 
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 Table 5.9 Ln(RPCE4) Robustness: Treated with Populations < 25,000 
Control Group 

Matching 
Midwest State 

Best Match RUCC Pop Match Best Match Pop Match RUCC 

 
lrpce4 lrpce4 lrpce4 lrpce4 lrpce4 lrpce4 

Treated 0.0378 0.0292 0.0459 0.0329 0.0474 0.0573 

 
(0.0293) (0.0290) (0.0301) (0.0309) (0.0306) (0.0298) 

       After 0.134*** 0.125*** 0.132*** 0.189*** 0.187*** 0.168*** 

 
(0.0355) (0.0351) (0.0366) (0.0370) (0.0480) (0.0396) 

       ATOT (δ) 0.143** 0.152** 0.145** 0.0887° 0.0901° 0.109* 
  (0.0540) (0.0538) (0.0547) (0.0550) (0.0630) (0.0568) 

       _cons 9.917*** 9.925*** 9.909*** 9.922*** 9.907*** 9.897*** 

 
(0.0204) (0.0199) (0.0215) (0.0226) (0.0223) (0.0211) 

       adj. R-sq 0.264 0.258 0.265 0.265 0.221 0.262 
BIC -65.54 -67.7 -59.99 -57.5 1.844 -43.63 
F 22.72 21.91 22.73 24.8 23.59 25.1 
N 220 220 220 220 220 220 
Standard errors in parentheses 
° p<0.10, * p<0.05, ** p<0.01, *** p<0.001 
Note 1:  One-sided p-values for ATOT.  All other variables are two-sided p-values. 
Note 2:  lrpce4 = natural log of real per capita earnings; 4 years after treatment 
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Table 5.10 Ln(RPCE5) Robustness: Treated with Populations < 25,000 
Control Group 

Matching 
Midwest State 

Best Match RUCC Pop Match Best Match Pop Match RUCC 

 
lrpce5 lrpce5 lrpce5 lrpce5 lrpce5 lrpce5 

Treated 0.0378 0.0292 0.0459 0.0329 0.0474 0.0573 

 
(0.0293) (0.0290) (0.0301) (0.0309) (0.0306) (0.0298) 

       After 0.156*** 0.148*** 0.145*** 0.193*** 0.202*** 0.171*** 

 
(0.0343) (0.0341) (0.0359) (0.0379) (0.0488) (0.0434) 

       ATOT (δ) 0.121* 0.130** 0.133** 0.085° 0.0759 0.107* 
  (0.0523) (0.0522) (0.0534) (0.0547) (0.0628) (0.0587) 

       _cons 9.917*** 9.925*** 9.909*** 9.922*** 9.907*** 9.897*** 

 
(0.0204) (0.0199) (0.0215) (0.0226) (0.0223) (0.0211) 

       adj. R-sq 0.28 0.274 0.276 0.27 0.227 0.25 
BIC -79.53 -80.85 -70.55 -59.91 0.339 -29.07 
F 25.49 24.61 24.74 26.05 25.48 26.28 
N 220 220 220 220 220 220 
Standard errors in parentheses 
° p<0.10, * p<0.05, ** p<0.01, *** p<0.001 
Note 1:  One-sided p-values for ATOT.  All other variables are two-sided p-values. 
Note 2:  lrpce5 = natural log of real per capita earnings; 5 years after treatment 
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Table 5.11 Corrected Growth Rates Year over Year 
 

Uncorrected Growth Rates over Period (%) 
Growth t t+1 t+2 t+3 t+4 t+5 Time 

Max 
 

7.60 12.00 19.60 18.30 18.90 
 Min 

 
5.50 10.00 14.70 14.50 13.30 

 
        
        Corrected Growth Rates for Year over Year Growth (%) 

Growth t t+1 t+2 t+3 t+4 t+5 Time 
Max 3.95 3.95 4.50 7.90 -1.29 0.60 

 Min 2.83 2.83 4.60 4.81 -0.20 -1.19 
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Table 5.12 Employment Treated-Control Groups Means (Midwest) 
 

 
Employment 

 
Year after Treatment 

  t-1 0 1 2 3 4 5 
Treated Mean 7476 7538 7529 7509 7534 7586 7687 
Control Mean 7138 7127 7078 7069 7006 6964 6969 
Parallel Trend Assumption 7476 7465 7416 7408 7344 7302 7307 
Treated Mean - Parallel Trend 0 73 113 101 190 284 380 
Note:  Midwest Population Match Control Group.  Means are simple averages. 

        
        
 

Employment Rate 

 
Year after Treatment 

  t-1 0 1 2 3 4 5 
Treated Mean 0.5990 0.6072 0.6099 0.6088 0.6118 0.6164 0.6214 
Control Mean 0.5844 0.5847 0.5838 0.5857 0.5847 0.5853 0.5871 
Parallel Trend Assumption 0.5990 0.5993 0.5985 0.6003 0.5994 0.6000 0.6017 
Treated Mean - Parallel Trend 0.0000 0.0079 0.0115 0.0085 0.0124 0.0165 0.0196 
Note 1:  Midwest Population Match Control Group.  Means are simple averages. 
Note 2:  County Employment Rate = County Employment/County Population 
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Table 5.13 Employment Treated-Control Groups Means (State) 
 

 
Employment 

 
Year after Treatment 

  t-1 0 1 2 3 4 5 
Treated Mean 7476 7538 7529 7509 7534 7586 7687 
Control Mean 7434 7511 7519 7569 7739 8088 8394 
Parallel Trend Assumption 7476 7553 7561 7611 7781 8130 8436 
Treated Mean - Parallel Trend 0 -15 -32 -102 -248 -544 -749 
Note:  State Population Match Control Group.  Means are simple averages. 

        
        
        
 

Employment Rate 

 
Year after Treatment 

  t-1 0 1 2 3 4 5 
Treated Mean 0.5990 0.6072 0.6099 0.6088 0.6118 0.6164 0.6214 
Control Mean 0.5845 0.5892 0.5897 0.5912 0.5941 0.5990 0.6034 
Parallel Trend Assumption 0.5990 0.6038 0.6043 0.6057 0.6087 0.6135 0.6179 
Treated Mean - Parallel Trend 0.0000 0.0034 0.0057 0.0030 0.0031 0.0029 0.0034 
Note 1:  State Population Match Control Group.  Means are simple averages. 
Note 2:  County Employment Rate = County Employment/County Population 

        
        
        
 

Population 

 
Year after Treatment 

  t-1 0 1 2 3 4 5 
Treated Mean 12509 12483 12435 12272 12258 12250 12274 
Control Mean 12656 12628 12625 12672 12688 12733 12784 
Parallel Trend Assumption 12509 12481 12478 12525 12540 12586 12637 
Treated Mean - Parallel Trend 0 2 -43 -253 -283 -336 -363 
Note:  State Population Match Control Group.  Means are simple averages. 
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Table 5.14 Employment Multiplier (Midwest) 
 

 
Year after Treatment 

  t-1 0 1 2 3 4 5 
Employment Multiplier   1.46 2.25 2.03 3.79 5.68 7.60 
Note 1:  Midwest Population Match Control Group. 
Note 2:  Assumes the ethanol biorefineries under study have an average of 50 employees. 
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Table 5.15 Ln(RPCE3) Robustness:  All Treated Counties 
Control Group 

Matching 
Midwest State 

Best Match RUCC Pop Match Best Match Pop Match RUCC 

 
lrpce3 lrpce3 lrpce3 lrpce3 lrpce3 lrpce3 

Treated 0.0382 0.0268 0.0419 0.0358 0.0312 0.0445 

 
(0.0224) (0.0231) (0.0225) (0.0232) (0.0230) (0.0232) 

       After 0.0573* 0.0426 0.0425 0.0724** 0.0577* 0.0535* 

 
(0.0246) (0.0265) (0.0254) (0.0262) (0.0283) (0.0271) 

       ATOT (δ) 0.0750* 0.0897* 0.0898* 0.0599°  0.0746* 0.0789* 
  (0.0378) (0.0390) (0.0383) (0.0389) (0.0403) (0.0395) 

       _cons 9.934*** 9.946*** 9.930*** 9.937*** 9.941*** 9.928*** 

 
(0.0159) (0.0169) (0.0161) (0.0170) (0.0168) (0.0171) 

       adj. R-sq 0.099 0.086 0.103 0.092 0.082 0.097 
BIC -185.8 -160.8 -174.9 -164.5 -136.3 -151.8 
F 11.9 10.28 12.24 11.61 10.86 12.13 
N 384 384 384 384 384 384 
Standard errors in parentheses 
° p<0.10, * p<0.05, ** p<0.01, *** p<0.001 
Note:  One-sided test p-values for ATOT.  All other variables are two-sided test p-values. 
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5.5 Figures in Chapter 5 

 

 

 

Figure 5.1  Parallel Tread and Treatment Response (MW-Best Match, Pop<25k) 
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Figure 5.2  Parallel Tread and Treatment Response (MW-Pop Match, Pop<25k) 
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Figure 5.3  Parallel Tread and Treatment Response (MW-RUCC, Pop<25k) 
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Figure 5.4  Parallel Tread and Treatment Response (State-Best Match, Pop<25k) 
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Figure 5.5  Parallel Tread and Treatment Response (State-Pop Match, Pop<25k) 
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Figure 5.6  Parallel Tread and Treatment Response (State-RUCC, Pop<25k) 
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Figure 5.7  Max and Min Growth Rates (Period after Treatment) 
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Figure 5.8  Max and Min Average Annual Growth Rates (Period after Treatment) 
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Figure 5.9  Normal QQ-Plot for lrpce1 DID Model Residuals 
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Figure 5.10  Normal QQ-Plot for lrpce2 DID Model Residuals 
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Figure 5.11  Normal QQ-Plot for lrpce3 DID Model Residuals 
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Figure 5.12  Normal QQ-Plot for lrpce4 DID Model Residuals 
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Figure 5.13  Normal QQ-Plot for lrpce5 DID Model Residuals 
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Figure 5.14  Employment Parallel Trend & Response (MW-Pop Match, Pop<25k) 
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Figure 5.15  Employment Parallel Trend & Response (ST-Pop Match, Pop<25k) 
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Figure 5.16  Parallel Trend and Treatment Response (Midwest-Best Match MD) 
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Figure 5.17  Parallel Trend and Treatment Response (Midwest-Population Match) 
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Figure 5.18  Parallel Trend and Treatment Response (Midwest-RUCC) 
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Figure 5.19  Parallel Trend and Treatment Response (State-Best Match MD) 
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Figure 5.20  Parallel Trend and Treatment Response (State-Population Match) 
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Figure 5.21  Parallel Trend and Treatment Response (State-RUCC) 
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Figure 5.22  Population versus Initial Capacity Diagrams 
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CHAPTER 6. CONCLUSIONS AND IDEAS FOR FUTURE RESEARCH 

6.1 Conclusions 

This dissertation examined the economic impact of ethanol biorefineries on rural 

counties and found that treated rural counties, on average, economically benefitted from 

significant growth in real per capita earnings that exceeded real per capita earnings 

growth for a several sets of control counties (counterfactuals).  Six difference-in-

differences (DID) models using a Midwest population match control group with different 

combinations of control variables (spillover effects, state fixed effects, and time fixed 

effects) produced mostly significant results for the average treatment on the treated 

(ATOT) coefficient over the period from one year after treatment to five years after 

treatment. A robustness check across all six control groups showed variations in the level 

and significance of growth, but only results for one year after treatment had multiple 

models that failed to reject the null hypothesis.  The second and third years after 

treatment showed positive growth in real per capita earnings for the treated counties 

relative to the control groups.  In the fourth and fifth years after treatment, the treated 

counties, on average, did not have real per capita earnings growth while the control group 

counties began to show signs of growth.   

 Treated county employment increased by 211 jobs, on average, over a five year 

period after treatment.  In the Midwest population match control group, employment 

dropped, on average, 161 jobs over the same five year period after treatment.  Thus, 

treated counties added new jobs and avoided the loss of jobs which effectively means that 

380 jobs, on average, are attributable to an ethanol biorefinery being located in a rural 

county up to five years after treatment.  This translates into an employment multiplier 
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effect for treated counties of 1.46 in the year of treatment and rises to 7.6 five years after 

treatment assuming direct employment of 50 employees at the ethanol biorefinery.   In a 

comparison with the State population match control group, there is an unexplained rise in 

the control group’s employment numbers.  Based on this unexplained rise in State control 

county employment, no conclusion can be drawn from these results.  The employment 

rate in the rural treated counties increased by 2.2% over the five year period after 

treatment which is slightly better than the two control groups used in this comparison. 

 Exploratory research showed that ethanol biorefineries with initial production 

capacity of 55 mgy or less had greater economic impact on rural treated counties than 

ethanol biorefineries with higher initial capacities.  A deep dive into the data found that 

13 of the 34 low capacity ethanol biorefineries were locally owned.  This could be one 

reason for the more significant rural impact, but a more thorough investigation is required 

to fully understand this situation. 

 A review of the threats to internal validity was presented.  Though there are 

several violations of treatment assumptions for quasi-experiments (primarily, spillover 

effects), a logical evaluation of these violations seemed to indicate that any model 

evaluation would find an underestimate of the parameter of interest relative to the true 

value.  Therefore, it can be debated on whether the spillover indicator variables properly 

captured the spillover effects and whether the significant ATOT results found in those 

models represents a close approximation of the true value.  In some sense, it could still be 

an underestimation of the true value. 

 Overall, strong results were presented which clearly suggest that in two to the five 

years after treatment the null hypothesis can be rejected in favor of the alternative 
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hypothesis.  Though there was only growth in the first three years after treatment relative 

to the control groups, the gap in real per capita earnings only closed slightly with the 

control groups in the fourth and fifth years after treatment.  Based on the slowed growth 

in the treated group and the rise in growth of the control group, there are potentially two 

interacting events working in the fourth and fifth year after treatment.  For the treated 

group, it may be experiencing regression to the mean.  The underlying factors that are 

forcing this regression to the mean could be ethanol biorefinery plant efficiency and 

excess corn production.  Excess corn production is probably the major factor since it will 

drive down corn prices which will impact the local economy.  For the control groups, 

they could be experiencing the benefit that a rising tide lifts all ships (eventually, but 

perhaps by not the same amount).  This may be counterintuitive, but more of the 

economic benefits of the treated counties may start to flow in the direction of the control 

counties in the fourth and fifth years after treatment (lagged impact).  Regardless, longer 

term research is required to more fully understand these events. 

This dissertation demonstrated that positive rural economic development impacts 

did occur as part of the Renewable Fuel Standard (RFS) which drove the expansion of the 

ethanol fuel industry in the U.S. Midwest.  Counties in the U.S. Midwest treated with an 

ethanol biorefinery experienced, on average, positive growth in real per capita earnings 

and increases in employment relative to a Midwest population match control group.  

Thus, the rural economic development impacts proposed by the RFS have been 

confirmed by the research performed in this dissertation.  Though the initial economic 

impacts may seem to be short-lived, it is anticipated that the direct, indirect, and induced 

effects will drive the U.S. Midwest economy toward a new balanced-growth equilibrium. 
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6.2 Ideas for Future Research 

6.2.1 Explore Employment Growth in State Control Counties 

It was discovered that State control county matches (counterfactuals) for counties 

with populations less than 25,000 had a significant increase in employment relative to the 

treated counties.  Since this result is counterintuitive especially when compared to the 

Midwest control counties, an investigation into this issue would help to provide insight 

into why this occurred.  

 

6.2.2 Explore Large Capacity Ethanol Biorefineries in Rural Counties 

The exploratory analysis on capacity versus treated county population showed 

that ethanol biorefineries with lower initial production capacities had a greater impact on 

treated rural counties than did ethanol biorefineries with large initial production 

capacities.  This seems counterintuitive and a more thorough investigation should provide 

a greater understanding of this result. 

 

6.2.3 Longer Term Study 

A longer term study could reveal whether the gap between treated and control 

counties earnings continued to widen or whether it began to converge.  The results in this 

analysis show that the treated county earnings growth began to slow dramatically in the 

fourth year after treatment and that control county earnings began to rise.  A study of 10 

to 15 years after treatment could reveal a new parallel gap forming between the treated 

and control groups. 
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6.2.4 Apply Panel Data Techniques 

Panel data models might present another approach for determining the parameters 

of interest associated with the hypothesis in this research.  This approach could 

potentially identify unique treatment effects based on the underlying characteristics of the 

treated county. 

 

6.2.5 Synthetic Control Groups 

Often, only one set of controls is used to assess whether a quasi-experimental 

analysis of the treatment effect was significant.  This dissertation shows that the overall 

treatment effect can vary relative to the control groups depending on the criteria used in 

the matching process.  Synthetic control groups attempt to form equivalent control groups 

as opposed to the non-equivalent control groups used in this dissertation.  It would be 

interesting to see how well the synthetic control groups actually match the treated groups 

and whether by using a synthetic control group method it might reduce the impact 

associated with spillover effects at least in the control group. 

 

6.2.6 Coarsened Exact Matching 

Coarsened exact matching is another control group matching algorithm proposed 

by Iacus, King, and Porro (2008).  It primarily reduces the imbalance in covariates 

between treated and control groups and as a result claims to improve estimation of causal 

effects. 
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6.2.7 Spatial Difference in Differences 

Spatial analysis has been improving over recent years due to the continued 

improvement in computational speed.  GeoDa software can run spatial econometric 

analysis on well-defined spatial problems.  The problem often arises of how to handle the 

analysis when there is a temporal dimension.  Work by Jean Dubé and Diègo Legros 

(2012, 2014b) and Jean Dubé et al. (2014a, 2017) are advancing spatial econometrics 

techniques which could enable this problem to be solved by those techniques in the 

future. 
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APPENDICES 

A 1. MAHALANOBIS DISTANCE METRIC MIDWEST 

################################################################################# 
#                                                                                                                                                            
#                   Midwest Ethanol Biorefinery Analysis:                        
#                   Mahalanobis Distance Calculations to                         
#                   match Treatment with Control Counties                        
#                   for all Midwest counties.                                    
#                                                                                
#                            By: Scott W. Hall                                   
#                            January 4, 2019                                     
#                                                                                
#                                                                                
################################################################################# 
# Load Required libraries 
 
library(plyr)       # access to empty function 
library(rJava)      # Used to read/write xlsx files 
library(xlsx)       # Used to read/write xlsx files 
 
 
# Set working directory to Selection Variables directory 
 
path <- "C:/Users/ScottH/Documents/MidwestData/" 
sv <- paste(path,"SV", sep="") 
setwd(sv) 
 
# Setup State arrays:  Used to extract state data, indexing and writing output. 
 
state.abv <- c("IL", "IN", "IA", "KS", "MI", "MN", "MO", "NE", "ND", "OH", "SD", "WI") 
state.full <- c("Illinois", "Indiana", "Iowa", "Kansas", "Michigan", "Minnesota",  
            "Missouri", "Nebraska", "NorthDakota", "Ohio", "SouthDakota", "Wisconsin") 
 
# All county data are aligned by state (and fips id) in all relevant data files 
# State Breaks by row #:  Illinois[1,102], Indiana[103,194], Iowa[195, 293], Kansas[294,398], 
#     Michigan[399,481], Minnesota[482,568], Missouri[569,683], Nebraska[684,776], 
#     North Dakota[777,829], Ohio[830,917], South Dakota[918,983], Wisconsin[984,1055] 
# state.breaks represent the start row of each state's data + last overall value to close out set 
 
state.breaks <- c(1,103,195,294,399,482,569,684,777,830,918,984,1056) 
 
# Set initial production years to be analyzed (also known as treatment years) 
 
prod.year <- c(2001:2015) 
 
# Load Midwest Datasets (13 csv files plus a Midwest counties file) 
 
temp <- read.csv("Midwest_POP.csv", header=TRUE) 
Pop <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_PopGrowthRate.csv", header=TRUE) 
PopG <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_PopDensityLA.csv", header=TRUE) 
PopDen <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_RPEG.csv", header=TRUE) 
RPEG <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_RPCE.csv", header=TRUE) 
RPCE <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_Corn.csv", header=TRUE) 
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corn <- as.matrix(temp[,-c(2:3)]); rm(temp) 
temp <- read.csv("Midwest_Soy.csv", header=TRUE) 
soy <- as.matrix(temp[,-c(2:3)]); rm(temp) 
temp <- read.csv("Midwest_FRMSH.csv", header=TRUE) 
frmsh <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_MFGSH.csv", header=TRUE) 
mfgsh <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_RETSH.csv", header=TRUE) 
retsh <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_FMRCR.csv", header=TRUE) 
fmrcr <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_CornAcres.csv", header=TRUE) 
cornAC <- as.matrix(temp[,-c(2:3)]); rm(temp) 
temp <- read.csv("Midwest_EMPLY.csv", header=TRUE) 
emply <- as.matrix(temp[,-c(2:4)]); rm(temp) 
mw.counties <- read.csv("Midwest_Counties.csv", header=TRUE) 
rucc <- read.csv("Midwest_RUCC.csv", header=TRUE) 
 
# change working directory to output directory 
output <- paste(path,"OutputMidwest", sep="") 
setwd(output) 
 
# Load Treated Counties and pre-2001 counties with biorefineries and other 
# counties to be excluded from the control counties list 
# treated.list defines path to Ethanol Biorefinery file; mw.treated reads file 
treated.list <- paste(path, "Biorefinery/TreatedBiorefineryLocations_Final.csv", sep="") 
mw.treated <- read.csv(treated.list, header=TRUE, sep=",") 
 
# Extract selected columns from the ethanol biorefinery master list  
mw.eth <- mw.treated[,c(1,4,10,5)]   # Columns extracted (Fips, County, State, ProdYear) 
attach(mw.eth) 
mw.eth <- mw.eth[order(Fips),]  # Order rows by Fips value 
detach(mw.eth) 
 
# qq is the master data matrix with all selection variable information 
# for the pre-treatment period prior to first production. 
# Dimension qq array (1055 = all counties, 29 = # of selection variables) 
 qq = array(0, dim=c(1055,29)) 
 
# Dimension Variance-Covariance Matrix (s) & Inverse Matrix (sinv) 
 s = array(0, dim=c(29,29)) 
 sinv = array(0, dim=c(29,29)) 
 
# Loop to fill qq-matrix for each time period (Treatment Year), calculate var-cov matrix and inverse 
for (i in 1:15) {     
 
 
  # eth.full = Extract Treated countes based on Treatment Year (initial production year) 
  # Test if dataframe is empty (i.e. no Treated Counties); if so, next i (year). 
  # If Statement is used to trap any year without a new biorefinery (empty set)  
  # and then skip to next year. 
 
  if (empty(subset(mw.eth, ProdYear == prod.year[i]))) { 
    next 
  } 
   
  eth.full <- subset(mw.eth, ProdYear == prod.year[i]) 
   
  # Fill qq matrix with data from input files for a particular treatment year (prod.year[i]) 
  # The index i is used to step through the longitudinal data set for each treatment year. 
   
 qq[,] = cbind(PopG[,(1+i):(5+i)],RPEG[,(1+i):(5+i)],Pop[,(6+i),drop=FALSE], 
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 PopDen[,(6+i),drop=FALSE],cornAC[,(6+i),drop=FALSE],corn[,(1+i):(5+i)], 
 soy[,(1+i):(5+i)],RPCE[,(6+i),drop=FALSE],frmsh[,(6+i),drop=FALSE], 
 mfgsh[,(6+i),drop=FALSE],retsh[,(6+i),drop=FALSE],fmrcr[,(6+i),drop=FALSE], 
 emply[,(6+i),drop=FALSE]) 
 
# qq is a character matrix -> convert into a numeric matrix  
 class(qq) <- "numeric" 
# Population is in q[,11] for each county; find counties with pop>200,000 (these will be excluded) 
 popgt200k <- which(qq[,11]>200000) 
  
  # qq matrix can be ill-conditioned for var-cov inverse calculations 
  # Indexing Corn & Soybean Production and Corn Arces resolves the inverse problem 
 # where the Max value during the 5 year pre-conditioning period is set to be 100 
 # and all other values are set relative to the Max value. 
  # Convert Corn Production into an Index over the 5 year period [columns 14:18] 
 cornmax = max(qq[,14:18])/100 
 qq[,14:18] = qq[,14:18]/cornmax 
 
  # Convert Soybean Production into an Index over the 5 year period [columns 19:23] 
 soymax = max(qq[,19:23])/100 
 qq[,19:23] = qq[,19:23]/soymax 
  
  # Convert Corn Acres into an Index to rescale this variable [column 13] 
 cornACmax = max(qq[,13])/100 
 qq[,13] = qq[,13]/cornACmax 
  
 
# Catch matrix ill-conditioning due to high population areas (eliminate pop > 200k) 
# Only include data for counties with pop < 200k in qq matrix to form iq2 matrix.  
# Calculate Variance-Covariance Matrix 
 
 iq2 = array(0, dim=c(1055-length(popgt200k),29)) 
 iq2[,]=qq[qq[,11]<200000,] 
 s[,] = var(iq2[,]) 
 
# Calculate Variance-Covariance Matrix Inverse 
 sinv[,] = solve(s[,]) 
 
# Initialize Mahalanobis Distance Metric array for all counties in US Midwest 
 
md=array(0,dim=c(1055,1055)) 
 
# Calculate full MD matrix for all Midwest counties against all Midwest counties 
for (m in 1:1055) { 
 for (n in 1:1055) { 
  x1=qq[m,]  # County m of state.abv[st.index] in prod.year[i] 
  x2=qq[n,]  # County n of state.abv[st.index] in prod.year[i] 
  xd=x1-x2   # Difference 
  md2= t(xd) %*% sinv[,] %*% xd    # Mahalanobis distance squared between Counties m and n 
  md[m,n] = sqrt(md2)              # Mahalanobis distance matrix (fill matrix) 
 } 
} 
 
# Setup array of counties to index column for MD Control county extraction 
# First, set county and state information as character to insure proper matching 
# Reminder:  eth.full contains all treated counties for a particular prod.year[i] 
eth.full$County <- as.character(eth.full$County) 
eth.full$State <- as.character(eth.full$State) 
 
# Extract county names for a particular state & treatment period defined by the MD matrix 
md.names <- as.character(mw.counties$GeoName) 
md.states <- as.character(mw.counties$State) 
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md.Fips <- mw.counties$GeoFIPS 
 
# Create county indexed on midwest level data to extract column(s) from MD matrix 
# First, extract treatment county names for in a particular year[i] 
county.eth <- eth.full$Fips 
 
# Second, assess number of counties and then dynamically dimension the county.index array 
ci.length=max(1,length(eth.full$Fips)) 
county.index <- array(0,dim=c(ci.length)) 
 
# Loop to fill the county.index array with numerical location of treatment counties 
# Explanation:  md.names contains all county names for a particular State[j] and is in the exact order 
# as the county data in the data files.  By using the 'which' command on a treatment county 
# against md.names, it extracts the numerical location of that treatment county within md.names 
# which facilitates the extraction of that column (treatment county) from the MD matrix   
# along with the MD calculations against all other counties in the state. 
for (k in 1:length(county.eth)) { 
county.index[k] <- which(county.eth[k] == md.Fips) 
} 
 
# Assign column and row names to facility sorting in Excel 
colnames(md) <- paste(md.names,md.states,sep="_") 
rownames(md) <- paste(md.names,md.states,sep="_") 
 
# Extract all treated county columns in prod.year[i] from the Mahalanobis Distance Matrix 
treat.county <- cbind(md[,county.index, drop=FALSE],rucc) 
 
# Output all treated counties with their list of matches from the MD matrix into an Excel Workbook 
# Sheets are organized by year of treatment (ie "Treated_2005") 
 
filename <- "Treatment_Control_Midwest.xlsx" 
sheet <- paste("Treated", prod.year[i],sep="_") 
write.xlsx2(treat.county, filename, sheetName=sheet, col.names=TRUE, 
           row.names=TRUE, append=TRUE, showNA=FALSE) 
 
 
}         # Close bracket:  i indexed for-loop (Treatment Year)
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 A 2. MAHALANOBIS DISTANCE METRIC IN-STATE 

################################################################################# 
#                                                                                
#                   Midwest Ethanol Biorefinery Analysis:                        
#                   Mahalanobis Distance Calculations to                         
#                   match Treatment with Control Counties                        
#                   within each State.                                           
#                                                                                
#                            By: Scott W. Hall                                   
#                            January 4, 2019                                     
#                                                                                
################################################################################# 
# Load Required libraries 
 
library(plyr)       # access to empty function 
library(rJava)      # Used to read/write xlsx files 
library(xlsx)       # Used to read/write xlsx files 
 
# Set working directory to Selection Variables directory 
 
path <- "C:/Users/ScottH/Documents/MidwestData/" 
sv <- paste(path,"SV", sep="") 
setwd(sv) 
 
# Setup State arrays:  Used to extract state data, indexing and writing output. 
 
state.abv <- c("IL", "IN", "IA", "KS", "MI", "MN", "MO", "NE", "ND", "OH", "SD", "WI") 
state.full <- c("Illinois", "Indiana", "Iowa", "Kansas", "Michigan", "Minnesota",  
            "Missouri", "Nebraska", "NorthDakota", "Ohio", "SouthDakota", "Wisconsin") 
 
# All county data are aligned by state (and fips id) in all relevant data files 
# State Breaks by row #:  Illinois[1,102], Indiana[103,194], Iowa[195, 293], Kansas[294,398], 
#     Michigan[399,481], Minnesota[482,568], Missouri[569,683], Nebraska[684,776], 
#     North Dakota[777,829], Ohio[830,917], South Dakota[918,983], Wisconsin[984,1055] 
# state.breaks represent the start row of each state's data + last overall value to close out set 
 
state.breaks <- c(1,103,195,294,399,482,569,684,777,830,918,984,1056) 
 
# Set initial production years to be analyzed (also known as treatment years) 
 
prod.year <- c(2001:2015) 
 
# Load Midwest Datasets (13 csv files plus a Midwest counties file) 
 
temp <- read.csv("Midwest_POP.csv", header=TRUE) 
Pop <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_PopGrowthRate.csv", header=TRUE) 
PopG <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_PopDensityLA.csv", header=TRUE) 
PopDen <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_RPEG.csv", header=TRUE) 
RPEG <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_RPCE.csv", header=TRUE) 
RPCE <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_Corn.csv", header=TRUE) 
corn <- as.matrix(temp[,-c(2:3)]); rm(temp) 
temp <- read.csv("Midwest_Soy.csv", header=TRUE) 
soy <- as.matrix(temp[,-c(2:3)]); rm(temp) 
temp <- read.csv("Midwest_FRMSH.csv", header=TRUE) 
frmsh <- as.matrix(temp[,-c(2:4)]); rm(temp) 
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temp <- read.csv("Midwest_MFGSH.csv", header=TRUE) 
mfgsh <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_RETSH.csv", header=TRUE) 
retsh <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_FMRCR.csv", header=TRUE) 
fmrcr <- as.matrix(temp[,-c(2:4)]); rm(temp) 
temp <- read.csv("Midwest_CornAcres.csv", header=TRUE) 
cornAC <- as.matrix(temp[,-c(2:3)]); rm(temp) 
temp <- read.csv("Midwest_EMPLY.csv", header=TRUE) 
emply <- as.matrix(temp[,-c(2:4)]); rm(temp) 
mw.counties <- read.csv("Midwest_Counties.csv", header=TRUE) 
rucc <- read.csv("Midwest_RUCC.csv", header=TRUE) 
 
# change working directory to output directory 
output <- paste(path,"OutputState", sep="") 
setwd(output) 
 
# Load Treated Counties and pre-2001 counties with biorefineries and other 
# counties to be excluded from the control counties list 
# treated.list defines path to Ethanol Biorefinery file; mw.treated reads file 
treated.list <- paste(path, "Biorefinery/TreatedBiorefineryLocations_Final.csv", sep="") 
mw.treated <- read.csv(treated.list, header=TRUE, sep=",") 
 
# Extract selected columns from the ethanol biorefinery master list  
mw.eth <- mw.treated[,c(1,4,10,5)]   # Columns extracted (Fips, County, State, ProdYear) 
attach(mw.eth) 
mw.eth <- mw.eth[order(Fips),]  # Order rows by Fips value 
detach(mw.eth) 
 
# qq is the master data matrix with all selection variable information 
# for an initial production year of a biorefinery 
# Dimension qq array (1055 = all counties, 29 = # of selection variables) 
 qq = array(0, dim=c(1055,29)) 
 
# Dimension Variance-Covariance Matrix (s) & Inverse Matrix (sinv) 
 s = array(0, dim=c(29,29)) 
 sinv = array(0, dim=c(29,29)) 
 
# Loop to fill qq-matrix for each time period (Treatment Year), calculate var-cov matrix and inverse 
for (i in 1:15) {     
 
  # eth.full = Extract Treated countes/states based on Treatment Year (initial production year) 
  # Test if dataframe is empty (i.e. no Treated Counties); if so, next i (year). 
  # If Statement is used to trap any year without a new biorefinery (empty set) 
  # and then skip to next year. 
 
  if (empty(subset(mw.eth, ProdYear == prod.year[i]))) { 
    next 
  } 
   
  eth.full <- subset(mw.eth, ProdYear == prod.year[i]) 
   
  # Fill qq matrix with data from input files for a particular treatment year (prod.year[i]) 
  # The index i is used to step through the longitudinal data set for each treatment year. 
   
 qq[,] = cbind(PopG[,(1+i):(5+i)],RPEG[,(1+i):(5+i)],Pop[,(6+i),drop=FALSE], 
 PopDen[,(6+i),drop=FALSE],cornAC[,(6+i),drop=FALSE],corn[,(1+i):(5+i)], 
 soy[,(1+i):(5+i)],RPCE[,(6+i),drop=FALSE],frmsh[,(6+i),drop=FALSE], 
 mfgsh[,(6+i),drop=FALSE],retsh[,(6+i),drop=FALSE],fmrcr[,(6+i),drop=FALSE], 
 emply[,(6+i),drop=FALSE]) 
 
# qq is a character matrix -> convert into a numeric matrix  
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 class(qq) <- "numeric" 
# Population is in q[,11] for each county; find counties with pop>200,000 (these will be excluded) 
 popgt200k <- which(qq[,11]>=200000) 
  
# st.unique = unique states vector for a particular treatment year (ProdYear[i]) 
# Or lists a state only once even if that state had multiple new biorefineries 
# in a particular treatment year 
 st.unique <- unique(eth.full$State) 
  
# st.level = length of unique state array and loop on this value 
 st.levels <- length(st.unique) 
  
 for (j in 1:st.levels) { 
 
    
  # Use state index to extract data from qq matrix.  Since states are not aligned 
  # in the st.unique array, must align referencing through State arrays which are  
  # defined in alignment with the data. 
 st.index <- which(st.unique[j]==state.abv) 
 
  # md.index = number of counties in the state being analyzed (used to dimension MD matrix) 
 md.index <- state.breaks[st.index+1]-state.breaks[st.index] 
  
 # Dynamically define iq (number of counties in each state is different) 
 # iq subsets the qq matrix (Midwest data) into state specific data  
  iq = array(0, dim=c(md.index,29)) 
   
 iq[,] = as.numeric(qq[state.breaks[st.index]:(state.breaks[st.index+1]-1),]) 
 
  # iq matrix can be ill-conditioned for var-cov inverse calculations 
  # Indexing Corn & Soybean Production and Corn Arces partially resolves the inverse problem 
 # where the Max value during the 5 year pre-conditioning period is set to be 100 
 # and all other values are set relative to the Max value. 
  # Convert Corn Production into an Index over the 5 year period [columns 14:18] 
 cornmax = max(iq[,14:18])/100 
 iq[,14:18] = iq[,14:18]/cornmax 
 
  # Convert Soybean Production into an Index over the 5 year period [columns 19:23] 
 soymax = max(iq[,19:23])/100 
 iq[,19:23] = iq[,19:23]/soymax 
  
  # Convert Corn Acres into an Index to rescale this variable [column 13] 
 cornACmax = max(iq[,13])/100 
 iq[,13] = iq[,13]/cornACmax 
  
 
# Eliminate high population areas greater than 200,000  
# iq2 extracts all state-counties with population less than 200,000 from the iq (state matrix) 
# Calculate Variance-Covariance Matrix 
 
 iq2 = array(0, dim=c((md.index-length(which(iq[,11]>=200000))),29)) 
 iq2[,]=iq[iq[,11]<200000,]      # all counties with pop < 200,000 
 s[,] = var(iq2[,]) 
 
# Calculate Variance-Covariance Matrix Inverse 
 sinv[,] = solve(s[,]) 
 
# Dynamically dimension Mahalanobis Distance array 
# reminder:  md.index <- state.breaks[st.index+1]-state.breaks[st.index] 
md=array(0,dim=c(md.index,md.index)) 
 
# Calculate full MD matrix for within state counties against within state counties 
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for (m in 1:md.index) { 
 for (n in 1:md.index) { 
  x1=iq[m,]  # County m of state.abv[st.index] in prod.year[i] 
  x2=iq[n,]  # County n of state.abv[st.index] in prod.year[i] 
  xd=x1-x2   # Difference 
  md2= t(xd) %*% sinv[,] %*% xd    # Mahalanobis distance squared between Counties m and n 
  md[m,n] = sqrt(md2)  }           # Mahalanobis distance matrix (fill matrix) 
} 
 
# Setup array of counties to index column for MD Control county extraction 
# First, set county and state information as character to insure proper matching 
# Reminder:  eth.full contains all treated counties for a particular prod.year[i] 
eth.full$County <- as.character(eth.full$County) 
eth.full$State <- as.character(eth.full$State) 
 
# Extract county names for a particular state & treatment period defined by the MD matrix 
md.names <- as.character(mw.counties$GeoName[state.breaks[st.index]:(state.breaks[st.index+1]-1)]) 
 
# eth.st = Counties with ethanol biorefineries for a particular state[j] in a particular year[i] 
# Essentially, eth.st extracts only the treatment counties (rows) associated with a particular 
# State (column array in eth.full) in prod.year[i] 
eth.st <- subset(eth.full, State == st.unique[j]) 
 
# Create county indexed on state level data to extract column(s) from MD matrix 
# First, extract treatment county names for particular state[j] in a particular year[i] 
county.eth <- eth.st$County 
 
# Second, assess number of counties and then dynamically dimension the county.index array 
ci.length=max(1,length(county.eth)) 
county.index <- array(0,dim=c(ci.length)) 
 
# Loop to fill the county.index array with numerical location of treatment counties 
# Explanation:  md.names contains all county names for a particular State[j] and is in the exact order 
# as the county data in the data files.  By using the 'which' command on a treatment county 
# against md.names, it extracts the numerical location of that treatment county within md.names 
# which facilitates the extraction of that column (treatment county) from the MD matrix   
# along with the MD calculations against all other counties in the state. 
for (k in 1:length(county.eth)) { 
county.index[k] <- which(county.eth[k] == md.names) 
} 
 
# Assign column and row names to facility sorting in Excel 
colnames(md) <- md.names 
rownames(md) <- md.names 
 
# Extract RUCC codes by state 
st.rucc <- rucc[state.breaks[st.index]:(state.breaks[st.index+1]-1),] 
 
# Extract all treated county columns for state[j] in prod.year[i] from the Mahalanobis Distance Matrix 
# cbind with RUCC information to assist with matching in post-processing 
treat.county <- cbind(md[,county.index, drop=FALSE],st.rucc) 
 
# Output all treated counties with their list of matches from the MD matrix into an Excel Workbook 
# Sheets are organized by state and year of treatment (ie IA_2005) 
filename <- "Treatment_Control_State.xlsx" 
sheet <- paste(st.unique[j], prod.year[i],sep="_") 
write.xlsx2(treat.county, filename, sheetName=sheet,col.names=TRUE, 
           row.names=TRUE, append=TRUE, showNA=FALSE) 
 
 }       # Close bracket:  j indexed for-loop (State) 
}         # Close bracket:  i indexed for-loop (Treatment Year) 
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