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Manganese-enhanced magnetic resonance imaging (MEMRI) rose to prominence in
the 1990s as a sensitive approach to high contrast imaging. Following the discovery
of manganese conductance through calcium-permeable channels, MEMRI applications
expanded to include functional imaging in the central nervous system (CNS) and other
body systems. MEMRI has since been employed in the investigation of physiology in
many animal models and in humans. Here, we review historical perspectives that follow
the evolution of applied MRI research into MEMRI with particular focus on its potential
toxicity. Furthermore, we discuss the more current in vivo investigative uses of MEMRI
in CNS investigations and the brief but decorated clinical usage of chelated manganese
compound mangafodipir in humans.

Keywords: manganese, MEMRI, MRI, mangafodipir, CNS imaging

INTRODUCTION

The use of manganese and similar paramagnetic contrast agents began shortly after the
development of magnetic resonance imaging (MRI). Manganese (II) chloride is the most
commonly utilized manganese species for manganese-enhanced MRI (MEMRI). Though MEMRI
has been widely employed in imaging studies of various investigative directions, the primary focus
of this review will be the role of functional MEMRI in the nervous system beginning with a brief
historical introduction.

History
Some of the earliest work into MRI was performed by Paul Lauterbur in 1973 (Lauterbur, 1973).
This work contributed to the basis of nuclear magnetic resonance (NMR) and MRI studies as
they exist today and resulted in Lauterbur receiving the 2003 Nobel Prize in Physiology and
Medicine with Peter Mansfield. Lauterbur et al. (1980) showed that manganese enhanced magnetic
images by shortening proton relaxation time, and soon manganese contrast grew into a common
imaging staple in living systems. Early uses of manganese contrast were aimed at delineating
normal and abnormal tissue. For example, early studies used manganese MRI to study ischemic
myocardium in dogs (Brady et al., 1982; Goldman et al., 1982), cerebral edema in cats (Shirakuni
et al., 1985) and human tumor xenografts inmice (Ogan et al., 1987). The discovery of paramagnetic
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enhancement in MRI also lead to research into other
paramagnetic contrast agents including gadolinium (Couet
et al., 1984; Runge et al., 1984; Fornasiero et al., 1987).

Lin and Koretsky (1997) first demonstrated manganese
contrast can be used as a noninvasive, direct measurement
of neuronal function. Lin and Koretsky (1997) administered
manganese chloride via a peripheral intravenous injection and
reported imaging enhancement in stimulated brain regions
not affected by changes in blood flow, strongly supporting
MEMRI as a direct functional imaging measure. The major
advantage of Lin and Koretsky’s (1997) novel application
of manganese enhancement was the ability to measure
neuronal function in vivo. However, this initial application of
MEMRI was limited by the need to co-administer mannitol
to disrupt the blood-brain barrier. Subsequent studies have
refined MEMRI to visualize neuronal activity. A recent study
demonstrated that with a sufficiently strong magnetic field
(17.1T), MEMRI can be used to visualize action potentials
in individual Aplysia buccal neurons (Svehla et al., 2018).
Following the discovery that radioactive manganese transports
along neural tracts in a microtubule-dependent fashion (Sloot
and Gramsbergen, 1994), Koretsky’s group used manganese
as a non-radioactive neuronal connection tracer (Pautler
et al., 1998). Manganese-enhanced tract tracing has since
been used in conjunction with techniques such as diffusion
tensor imaging (DTI) to study brain region connectivity and
validate tractography studies (Lin et al., 2001; Knosche et al.,
2015).

Today, MEMRI is used in three major types of MRI protocols:
anatomic studies, functional studies and tractography studies.
In the case of anatomic studies, manganese functions much
like gadolinium or other paramagnetic contrast agents, and
such studies will not be a major focus of this review. In
contrast, unique properties of manganese compared to other
paramagnetic agents (which will be discussed in more detail
in section ‘‘Pharmacodynamics’’ of this review) allow MEMRI
to provide information about the function and connectivity
of brain regions. Specific instances of these studies will be
discussed in regard to specific fields of study in section
‘‘MEMRI in CNS imaging’’ of this review. The ability to perform
anatomical, functional and connectivity studies with a single
technique has allowed MEMRI to be used to describe dynamic
systems in vivo. A series of studies from the Van der Linden
group used several different types of manganese enhanced
MRI protocols to describe the song generation and control
in songbirds (Van der Linden et al., 2002; Tindemans et al.,
2003, 2006; Van Meir et al., 2004). This demonstrates how all
three major types of MEMRI applications can be used to study
a single topic. Van der Linden et al. (2004) group developed a
technique to allow long term study of a single anatomical region
(repeated dynamic MEMRI) through the use of a permanent
cannula.

These types of studies can be performed via other types of
MRI experiments such as blood-oxygen level dependent (BOLD)
contrast or DTI/diffusion kurtosis imaging (DKI). While these
types of studies are more widely used, they are less direct
measurements of activity/connectivity in the brain thanMEMRI.

MEMRI should not be seen as a replacement for other types
of MRI studies but rather as another tool to provide a more
complete understanding of in vivo brain function. One study that
compared functional measurements obtained via BOLD imaging
and MEMRI found that the techniques produce consistent
results, demonstrating the potential for them to be used in
conjunction (Duong et al., 2000).

MRI Background
A basic understanding of the principles underlying manganese
and other paramagnetic contrast agents aids in understanding
their enhancement ofmagnetic images.MRI depends on the spin,
charge and magnetism of specific atomic nuclei, particularly 1H
but also 31P, 23Na, 19F and 13C (Jackson et al., 2005). Application
of an external magnetic field reorients these species’ axes of
spin approximately with the axis of the field. Each species has
a unique frequency of rotation around the magnetic field, termed
precession (Figure 1). Since precession is linearly proportional
to the strength of the magnetic field, stronger applied magnetic
fields produce greater precession, resulting in higher signal-to-
noise ratios (SNR). For this reason, the strength of the magnetic
field defines the resolution of MR imaging.

Under the main magnetic field force (B0) and a secondary
set of field gradients, each nucleus rotates so it reorients itself
with the field, adopting either an aligned or anti-aligned state
(Jackson et al., 2005). Most nuclei reside in the lower energy
aligned state with a smaller proportion populating the high
energy anti-aligned state. The difference in these populations
is the basis of NMR. These aligned and anti-aligned systems
absorb electromagnetic energy from a third magnetic force

FIGURE 1 | Visual demonstration of precession. Redrawn from Figure 2 of
Jackson et al. (2005). The nucleus’s axis of rotation (dotted line) does not
exactly align with the magnetic field B0 (solid line). As the nucleus rotates
around the B0, it also spins on its own axis. The frequency with which the
nucleus rotates around B0, termed the precession, is inherent to each species
and scales linearly with the strength of the magnetic field.

Frontiers in Aging Neuroscience | www.frontiersin.org 2 December 2018 | Volume 10 | Article 403

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Cloyd et al. MEMRI: Overview and CNS Applications

(the radiofrequency (RF) pulse), which briefly equalizes the
two nuclear alignment states. As the applied perturbation
resolves, the energy emitted is detected by a receiver coil and
interpreted to generate the MRI. The gradient fields and RF
pulse can be altered to suit the needs of the current experiment.
A single scan protocol includes repeated RF pulses in rapid
succession.

A major variable measured in MR experiments is relaxation
time, defined as the time required to reestablish equilibrium
between alignment states. Relaxation time is divided into the
spin-lattice (T1) relaxation time and the spin-spin (T2) relaxation
time. T1 represents the time required for the axis of the nucleus
to realign with the main field in the z-direction. A sample
with a longer T1 time requires a slower rate of RF pulses to
allow for recovery between pulses. T2 is based on changes in
the rates of rotation that occur following termination of the
RF pulse. When nuclei are aligned in the same plane, they
initially rotate in phase with each other. After the pulse is
removed, the nuclei begin rotating at different rates and the
amount of time required for the nuclei to lose phase is the T2
relaxation time (Jackson et al., 2005). A single scan protocol
measures either T1 or T2. In either case, the signal intensity
of the final image is determined by the relaxation time. Both
relaxation times are determined by a number of intrinsic and
environmental factors, and of particular note, the T1 is influenced
by the presence of paramagnetic species as discovered by Paul
Lauterbur’s group in 1980. Paramagnetic agents cause the nuclei
to realign more rapidly resulting in shortening of the T1 time,
which increases the signal intensity on MR images (Mendonça-
Dias et al., 1983).

MEMRI vs. BOLD
Currently, the most common method used for function MR
imaging is BOLD. BOLD uses paramagnetic deoxygenated
hemoglobin as a natural contrast agent to measure changes in
cerebral blood oxygenation (Ogawa et al., 1990). Oxygenated
hemoglobin is non-paramagnetic; therefore, under normoxic
conditions, the arterial flow does not contribute to the MR
signal acquired by BOLD imaging. Under normal conditions,
essentially all of the deoxyhemoglobin in the venous circulation
is generated by local tissue metabolism. As a result, BOLD signal
provides a measure of total metabolism of brain regions.

While both BOLD and MEMRI allow functional MRI, each
technique has strengths and weaknesses that must be considered
when designing experiments. One major advantage of BOLD
over other types of contrast-enhanced MRI protocols is that it
does not require administration of exogenous contrast agents
(Ogawa et al., 1990). It provides a rapid assessment of regional
and global brain metabolism without exposing the patient or
animal to potentially harmful contrast agents. Given concerns
over the potential toxicity of chronic manganese exposure
(discussed more in section ‘‘Toxicity’’), BOLD may be preferable
for long-term studies requiring repeated exposure to manganese.

The BOLD signal is an aggregate of the metabolism of all
the cells in the region and therefore the relative contributions
of neurons cannot be distinguished from that of glia or other
cells. Furthermore, BOLD implementation is complicated during

conditions of generalized hypoxia in the area of interest because
of the presence of paramagnetic deoxyhemoglobin in the arterial
blood supply (Michaely et al., 2012; Taylor et al., 2015; Wang
et al., 2017). Similarly, disruptions in regional hemodynamics
caused by tumors or arteriovenous malformations can produce
artifacts on BOLD (Zaca et al., 2014). In contrast, manganese
enhancement is much more specific for neuronal activity and the
signal is less susceptible to contributions from non-neuron cells
(discussed in section ‘‘Mechanism of Entry and Dispersion of
Manganese’’). Whereas BOLD indirectly measures brain activity
through changes in metabolism, MEMRI directly measures
activity through changes in calcium dynamics.

PHARMACODYNAMICS

As with any contrast agent, manganese is influenced and
limited by how the body alters it (pharmacokinetics) and how
it alters the body (pharmacodynamics). The pharmacokinetic
properties of manganese were recently reviewed elsewhere (Chen
et al., 2018). To understand the toxic limitations of manganese,
potential administration routes into the body, and downstream
applications, it is critical to first understand the biological
mechanism of action and transport of manganese.

Mechanism of Entry and Dispersion of
Manganese
Out of all paramagnetic contrast agents used as MRI contrasts,
manganese has unique application capabilities based on its ability
to form a divalent cation with an ionic radius similar to that
of calcium. The ability of manganese ions to impede calcium
transportation has been recognized since the 1960s (Hubbard
et al., 1968), although the precise mechanism (now known to be
due to competition for transport) would not be recognized until
later. Understanding of the biological mechanisms of manganese
developed in conjunction with advances in its uses for imaging
purposes, beginning in the early 1980s when its accumulation
(Hunter et al., 1980), permeability (Ribalet and Beigelman, 1980)
and calcium channel competition (in cardiac tissue; Payet et al.,
1980), in nerve terminals (Kita et al., 1981) was discovered.
The passage of manganese ions through calcium channels was
further supported by the prevention of Mn2+-induced changes
in nerve terminal activity caused by administration of the
calcium channel blockers verapamil (Narita et al., 1990) and
later diltiazem, which was found to suppress MEMRI changes
following forepaw stimulation in rats (Lu et al., 2007). These
studies by Narita et al. (1990) and Lu et al. (2007) as well as
others (Carlson et al., 1994) support the hypothesis that the
primary entry point for manganese into neurons is through
L-type calcium channels; though other studies from as early as
1987 (Mayer and Westbrook, 1987) show evidence manganese
may also transverse through other channel types such as NMDA
and AMPA receptors.

For example, Itoh et al. (2008) studied the effects of
NMDA modulation on MEMRI signal and found drug-induced
activation of NMDA receptors increased signal intensity while
non-competitive antagonism of the receptors reduced signal
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intensity, suggesting NMDA receptors play a role in facilitating
manganese transport. They found no changes associated with
AMPA modulation. A later study by Hankir et al. (2012) further
supported the hypothesis that manganese can pass through
NMDA receptors, with contrasting evidence suggesting that
AMPA receptors mediate manganese enhancement in certain
brain structures. However, the two studies used substantially
different dosages of AMPA receptor antagonist NBQX (Hankir
et al., 2012 used a dose of approximately 40 mg/kg compared
to the 10 mg/kg dose used by Itoh et al., 2008), possibly
accounting for differences between the two studies. Given
this difference, it seems plausible that AMPA receptors do
contribute to the transport of manganese through the blood
brain barrier, but the role is smaller than that of the NMDARs.
Recent work has supported the role of NMDARs in controlling
blood brain barrier permeability (Vazana et al., 2016), however
the reliance on NMDA of manganese penetrance into the
brain was not studied. Though the exact mechanism of
calcium channel entry of manganese into the brain is not
understood, it is this capacity that facilitates the usage of
manganese as a more direct functional imaging method in
MEMRI.

Recently, the Turnbull group showed that manganese uptake
is also mediated by the divalent metal transporter, DMT1
(Bartelle et al., 2013). By inducing DMT1 expression, Bartelle
et al. (2013) achieved MEMRI signal in cell populations (human
embryonic kidney, glioma and melanoma) that would not
normally be susceptible to manganese enhancement. After this
finding, Turnbull’s group induced expression of the bacterial
manganese-binding protein MntR in mammalian cells to
increase signal enhancement (Bartelle et al., 2015). Expression
of MntR, which can be targeted to the Golgi apparatus,
endoplasmic reticulum, or cytosol, increases intracellular
manganese concentration by preventing efflux of manganese
from cells. This paradigm allows for any tissue type to potentially
be specifically enhanced via MEMRI. For example, transplanted
cells expressing DMT1 can be effectively tracked via MEMRI
(Lewis et al., 2015). Future development of the DMT1 MRI
reporter system will likely lead to more widespread use.
While the role of DMT1 presents potential new avenues
for MEMRI, it also adds additional variables to the system
that must be studied further to clearly understand the extent
to which MEMRI measures calcium dynamics from L-type
calcium channels separate from other types of ion channels and
transporters.

Nearly 30 years following the discovery that manganese
impedes calcium dynamics, evidence of intracellular manganese
trafficking in vesicles by a microtubule-dependent mechanism
was reported in a series of studies (Sloot and Gramsbergen,
1994; Pautler et al., 1998; Takeda et al., 1998). Functionally,
this mechanism allows the usage of MEMRI for neuronal tract
tracing, a crucial investigative method when considering the
methods of manganese administration (discussed later in this
section). By nature of being packaged into vesicles similar
to neurotransmitters, manganese transports trans-synaptically
following fusion of its carrier vesicle with the axon terminal
membrane (Serrano et al., 2008). Synaptic manganese is then

taken up by the post-synaptic neuron as discussed previously
through any of a number of potential calcium-permeable
channels or receptors and is then repackaged for further
transport propagation. For these mechanistic similarities of
manganese and calcium, manganese provides valuable tools for
imaging applications but may be limited by substantial toxicity.

Toxicity
Along with other organ system toxicity, excessive manganese
exposure is particularly neurotoxic. These neurotoxic effects
include dystonia, impaired speech and poor cognition, and they
have been shown to be a particular threat to the developing
central nervous system (CNS) throughout childhood (Zoni and
Lucchini, 2013; Bjørklund et al., 2017; Lao et al., 2017). Adults are
less susceptible to manganese toxicity than children1, although
neurotoxic (Olanow, 2004; Bowler et al., 2016; Schuh, 2016) and
carcinogenic/teratogenic (Gerber et al., 2002) effects have been
documented following moderate chronic exposure in adults.
Manganism, the classic picture of chronic manganese toxicity in
humans, is characterized by motor deficits that closely resemble
Parkinson’s disease (PD) in the early stages (Andruska and
Racette, 2015). Animal studies have supported the adverse effect
findings of chronic manganese exposure. Further neurotoxic
potential of manganese is extensively reviewed elsewhere (Chen
et al., 2015).

Systemic Administration of Manganese
For imaging studies, manganese solutions are most commonly
administered via injections. Koretsky’s early experiments used
25% D-mannitol to break the blood-brain barrier and increase
penetration of manganese into the brain (Lin and Koretsky,
1997). Later studies by Koretsky and others determined that
MEMRI can be performed in animals with an intact blood-
brain barrier, although generally more time and a larger dose
of manganese is required to achieve similar enhancement, as
demonstrated in Figure 2 (Watanabe et al., 2002; Aoki et al.,
2004; Lee et al., 2005; Yu et al., 2005; Kuo et al., 2006).
These initial experiments advanced the usage of manganese
as a systemically-injected contrast agent for widespread use in
imaging.

In the context of MEMRI, the toxicity threshold of
manganese remains contested. Since MEMRI studies typically
involve a single exposure of moderate to high doses of
manganese, these differ from previously described reports on
chronic or repeated exposures (Takács et al., 2012; Okada
et al., 2016). A study by Eschenko et al. (2010a) looked
for signs of toxicity following a single low (0.1 mmol/kg,
16 mg/kg) or high (0.5 mmol/kg, 80 mg/kg) dosage subcutaneous
injection of manganese chloride. While the group found no
histopathologic differences at either dose, moderate synaptic
and motor behavior deficits were observed in rats at the
higher dose. Another study by the same group found the
synaptic and motor deficits persisted through 1 week following
exposure (Eschenko et al., 2010b). These and other studies

1Agency for Toxic Substances and Disease Registry, Manganese,
https://www.atsdr.cdc.gov/toxprofiles/tp151-c2.pdf
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FIGURE 2 | Signal intensity depends on dose and time. Adapted with
permission from Lee et al. (2005). Scans performed in mice with intact
blood-brain barrier showing the dependence of signal enhancement on
(A) dose and (B) time. (A) Manganese produces global enhancement that
scales with dose. Enhancement is most significant in the hippocampus,
interpeduncular nucleus, pituitary, and olfactory bulb. (B) Enhancement of
signal increases over time as demonstrated in the olfactory bulb (ONL,
olfactory nerve layer; GL, glomerular layer; ML, mitral cell layer).

(Liu et al., 2004; Alaverdashvili et al., 2017) use ranges
at or lower than doses typically used for MEMRI, raising
concern over potential toxicity and confounding effects of
MEMRI.

Other studies found little to no neurotoxicity in mice after
single intraperitoneal (IP) doses of manganese chloride at
66 mg/kg (Fontaine et al., 2017), or short-term repeated IP
injection in rats reaching final doses of 60 mg/kg (Galosi
et al., 2017). To date, many studies have investigated
alternative administration paradigms (see next section),
alternative manganese-containing compounds (discussed
in section ‘‘Mangafodipir’’) and co-administration of
additional compounds (Alahmari et al., 2015; Johnson
et al., 2018) to mitigate any potential toxic effects of
manganese in MEMRI and still retain useful imaging
enhancement.

Fractionated and continuous infusion doses of manganese
have been investigated as systemic administration routes that
limit toxic effects and exposure for imaging studies. Many studies
have noted sufficient manganese enhancement of imaging from
fractionated doses, often with no to mild and reversible side
effects identified (Bock et al., 2008b; Grünecker et al., 2010;

Galosi et al., 2017). One study by Bock et al. (2008a) found
fractionated doses of manganese in a non-human primate model
has increased longevity of manganese in the brain, notably in
the visual cortex and basal ganglia, compared to the rat brain
following a similar administration. The authors suggest this
species difference may be similar across all mammals, suggesting
fractionated dosages may be a viable method in humans
using similar manganese-based agents. Similarly, continuous IP
infusion of manganese was also found to reduce toxicity relative
to a single dose while retaining imaging enhancement (Eschenko
et al., 2010a).

Sepúlveda et al. (2012) reported pumps implanted
subcutaneously achieve comparable results to fractionated
dosing, which allows less invasive implementation of continuous
manganese delivery. A more recent study by Vousden et al.
(2018) has shown that continuous infusion of manganese via
subcutaneous pumps achieves image enhancement without
affecting spatial learning or memory. However, this study
reported severe and dose-dependent skin ulcerations at the
site of implantation in most of the manganese treated mice,
whereas control IP injected and saline treated mice did not
develop such adverse effects. The authors suggest ulceration
may develop due to manganese-induced itching, but this does
not sufficiently explain why ulceration has not occurred in
more studies investigating subcutaneous manganese pumps.
Poole et al. (2017) compared the two methods and found that
continuous infusion produced less toxic effects than fractionated
injections. However, as this study was published prior to the
Vousden et al. (2018) study, it does not consider skin ulcerations.
To date, no study has systematically compared fractionated
or continuous injection administration of manganese which
considers all currently known adverse effects.

The contention on the toxicity threshold and systemic
injection method of manganese highlights the importance in
considering previous studies along with the chosen animal
model, administration route and dose in determining
experimental parameters of manganese for MRI studies. A
review from Koretsky’s group demonstrates the variability in
dosing and routes of administration used in the first years of
modern MEMRI research as summarized in Figure 3 (Silva
et al., 2004). If possible, piloting toxicity studies on a per-study
basis may provide the only truly sufficient data on toxicity until
further investigations reveal consistent thresholds.

Localized Administration and Applications
As a viable alternative to systemic routes of manganese
administration, a variety of non-systemic administration
methods are also successfully used to limit any potential toxic
effects. Perhaps the most common non-injection route for
manganese exposure is through oral administration. Early
studies of oral administration showed sufficient bioavailability
of manganese for imaging studies in livers of rats following
manganese chloride feeding (Cory et al., 1987). Digested
manganese is circulated through and filtered out by the hepatic
portal system (i.e., the first past effect), severely reducing
systemic distribution of manganese and limiting potential
toxicity (Hauser et al., 1994). More recently, oral administration

Frontiers in Aging Neuroscience | www.frontiersin.org 5 December 2018 | Volume 10 | Article 403

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Cloyd et al. MEMRI: Overview and CNS Applications

FIGURE 3 | Toxicity data and common doses used in early manganese-enhanced magnetic resonance imaging (MEMRI) experiments. Adapted with permission from
Silva et al. (2004). (A) Summary of toxic manganese doses and associated effects as reported on the MSDS. (B) Manganese doses used in several early MEMRI
studies in rats and mice. With some exceptions, the dose of manganese used in imaging studies is much lower than the accepted toxic level.

of manganese chloride has been used as an effective and
well-tolerated agent for hepatic and hepatobiliary imaging
(Leander et al., 2010; Albiin et al., 2012; Marugami et al.,
2013). Although manganese removal from the blood is highly
efficient, its sensitivity as a contrast agent still facilitates
imaging studies in non-privileged body compartments following
oral administration (Jacobs et al., 2012). To date, no studies
recorded successful MEMRI of CNS structures after oral
manganese administration, although manganese reportedly
accumulates to levels sufficient to enhance T1 weighted
images in patients with cholestatic disease (Ikeda et al.,
2000). Given the importance of manganese penetration
into the CNS for proper imaging described by Lee et al.
(2005), it is still unknown whether oral administration of
manganese produces sufficient, safe exposure for clinical
MEMRI studies.

One potential method for CNS MEMRI is intranasal
administration, which was first reported to deliver manganese to
the brains of pike (Tjälve et al., 1995) and rats (Tjälve et al., 1996)
sufficient for enhanced imaging. More commonly used today

for olfactory imaging studies (Cross et al., 2006; Lehallier
et al., 2012b), nasal instillation of manganese reportedly also
sufficiently enhances visual cortex imaging in rats (Fa et al.,
2010). Though nasal instillation of manganese bypasses the
need for systemic administration and may reduce the risk of
toxicity, an unintended byproduct is significant nonspecific
enhancement (Pautler et al., 1998; Cross et al., 2004).
However, later reports suggest this nonspecific enhancement
may be reduced with experimental tradeoffs (Chuang and
Koretsky, 2009). Additionally, olfactory impairment may occur
at doses higher than typically required for imaging (Lehallier
et al., 2012a) and moderate inflammation was reported
following nasal instillation of manganese solutions (Foster et al.,
2018), highlighting potential limitations for its use in CNS
MEMRI.

As in the olfactory system, the visual system lends itself to
relatively non-invasive methods of manganese administration.
Intravitreal injections enhance the retina and visual pathways
without the need for systemic administration of manganese.
Although intravitreal injection of manganese may result in loss of
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retinal ganglion cell density at relatively low doses (Thuen et al.,
2008), smaller doses provide good enhancement without major
signs of damage to retina or other ocular structures (Lindsey
et al., 2013).

Topical application of manganese has been investigated as an
alternative to intravitreal injection. Topically applied manganese
resulted in strong enhancement of ocular structures and the
superior colliculus without diffusing into the vitreous space
(Sun et al., 2011). The authors posit that the manganese
may absorb into the iris and enter the capillary circulation
to reach the retina. This hypothesis is supported by the
fact that the enhancement was attenuated when retinal
ischemia was induced by increasing the intraocular pressure.
No adverse changes were observed in the mice 1 week
after topical administration of manganese. Similarly, in Sun
et al. (2012) the authors administered topical manganese
biweekly or monthly in groups of mice. While they found
significant retinal ganglion loss and corneal thickening in
the biweekly treatment paradigm, no adverse effects were
observedwhenmanganese was appliedmonthly. This was further

supported by a later study (Liang et al., 2015) and suggests
long-term MEMRI is possible with topical administration of
manganese.

Other methods of administration of manganese by bypassing
the blood brain barrier into the CNS have been investigated,
stemming from early experiments of injections directly into
cerebrospinal fluid (CSF). The earliest application of direct
CSF injections involved stereotaxic injection of manganese
chloride into the lateral ventricles of rats (Wan et al.,
1991). Later, a similar experiment by Liu et al. (2004)
achieved measurable enhancement of brain parenchyma 24–96 h
following injection of manganese chloride into the cisterna
magna (Figure 4). Liu et al. (2004) injected mice with
the analogous paramagnetic contrast agent GdDTPA and
found no parenchymal enhancement suggesting that the
described effect was dependent on cellular uptake of manganese
(described in section ‘‘Mechanism of Entry and Dispersion of
Manganese’’). Remarkably, transcranial injection of manganese
chloride showed detectable manganese signal in the brain
parenchyma within 2 h of administration (Roth et al.,

FIGURE 4 | Intrathecal injection of manganese chloride. Adapted with permission from Liu et al. (2004). (A) Injection scheme for intrathecal manganese injection.
(B) Serial images show the spread of enhancement from the ventricles throughout the cortex, subcortex, and cerebellum.
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2014). More recently, the Koretsky group expanded upon
this technique by showing that manganese penetrates into
underlying brain structures when applied transcranially by
passing through brain suture lines (Atanasijevic et al., 2017).
While transcranial application of manganese for MEMRI
requires further optimization before widespread use, its potential
in relatively noninvasiveMEMRI studies are becoming extremely
valuable.

Effect of Blood Brain Barrier Permeability
Poor blood-brain barrier permeability has been a major obstacle
in MEMRI studies of the CNS. Several MEMRI protocols
call for chemical (Lin and Koretsky, 1997; Lu et al., 2010)
or mechanical (Howles et al., 2012) disruption of the blood-
brain barrier to improve penetration of manganese into the
CNS. The integrity of the blood-brain barrier has a significant
effect on the penetrance of manganese into the CNS, and
because of this several studies have used manganese to evaluate
changes in blood-brain barrier permeability (Fitsanakis et al.,
2006; Grillon et al., 2008; Nischwitz et al., 2008). It may be
advisable to evaluate animals for blood-brain barrier damage to
eliminate potential confounding variables that could arise from
differential penetrance of manganese into the CNS as this could
result in apparent differences in MEMRI signal. Furthermore,
animals with possible blood-brain barrier dysfunction should be
monitored more closely for signs of manganese-related injury as
they are more likely to reach toxic accumulation of manganese in
the brain.

MEMRI IN CNS IMAGING

One major application of MEMRI is functional imaging of
the CNS. The technique has been applied to a variety of
CNS pathologies including traumatic brain injury, epilepsy,
neurodegeneration and pain. Additionally, MEMRI has been
used heavily in studies of the olfactory and visual systems. These
areas of study are by no means mutually exclusive, and recurrent
patterns will emerge between areas of MEMRI implementation
that may suggest future avenues for investigation.

Traumatic Brain Injury
Traumatic brain injury (TBI) is a serious threat to health,
contributing to 30% of all injury related deaths in the
United States according to the CDC2. Glutamate increases
sharply in animal models following acute TBI (Palmer et al.,
1993), a finding that’s been supported in human studies
(Brown et al., 1998; Yamamoto et al., 1999; Ruppel et al.,
2001). Excitotoxicity leads to activation of voltage-gated
calcium channels, increasing intracellular calcium concentration
(Young, 1992). High intracellular calcium concentrations play a
significant role in cell injury and death (Trump and Berezesky,
1995). As discussed previously, manganese influx can occur

2Centers for Disease Control and Prevention, TBI: Get the Stats on Traumatic
Brain Injury in the United States, https://www.cdc.gov/traumaticbraininjury/get
_the_facts.html [Accessed March 12, 2018].

concurrently with calcium influx, which allows MEMRI to
monitor changes in calcium dynamics after TBI.

The first study to apply MEMRI to TBI measured changes
after diffuse TBI in rats (Cernak et al., 2004). Subsequent studies
found varying patterns of signal enhancement following TBI,
which is potentially due to disturbances in the blood-brain
barrier (Bouilleret et al., 2009; Rodriguez et al., 2016). Talley
Watts et al. (2015) found that manganese-enhanced images
showed crescent-shaped areas of hyperintensity at the impact
site corresponding to areas of reactive gliosis, a finding that
was further supported by positive GFAP staining. Comparisons
between these studies are difficult due to inherent differences
in the particular models of TBI employed, but despite these
differences, MEMRI is effective to measure changes in brain
function after injury. Of particular note, one study by Tang et al.
(2011) usedMEMRI to successfully track migration and function
of human neural stem cells implanted in rats after TBI. They went
on to show that this activity was attenuated by treatment with the
calcium channel blocker diltiazem, which supports the findings
of Lu et al. (2007) discussed previously.

Epilepsy
Epilepsy is a neurological condition characterized by recurrent
seizures. It is estimated to affect 50 million people worldwide3.
In humans, temporal lobe epilepsy (TLE) is the most common
type of focal epilepsy (Asadi-Pooya et al., 2017). Status epilepticus
(SE), defined as a seizure lasting more than 30 min, is a medical
emergency that can result in significant morbidity and mortality
(Cherian and Thomas, 2009). Currently, electroencephalogram
(EEG) is the most commonly used modality for monitoring
epilepsy, and MRI plays a crucial role during diagnosis (Rüber
et al., 2018).

One of the most consistent features of TLE and SE in
human and animal models is mossy fiber sprouting in the
dentate gyrus of the hippocampus beginning in the first week
following epileptogenesis and continuing to develop for months
after (Mathern et al., 1995; Smith and Dudek, 2001; Scharfman
et al., 2003; Shetty et al., 2003). Nairismägi et al. (2006)
showed in vivo MEMRI evidence of mossy fiber sprouting
following drug-induced SE in rats, which was later confirmed
via histopathology. This finding has since been replicated in
multiple models of TLE and SE (Immonen et al., 2008; Malheiros
et al., 2012) and studies have used MEMRI to detect focal edema,
neuronal death and astrocyte proliferation in the hippocampus
of rats as a result of sustained seizure activity (Hsu et al.,
2007; Malheiros et al., 2014). One study found a negative
correlation between hippocampus signal intensity and seizure
frequency, suggesting a role forMEMRI in preclinical assessment
of epileptogenesis severity in future studies (Dedeurwaerdere
et al., 2013).

Sudden unexplained death in epilepsy (SUDEP) is a
major concern for people with epilepsy, and it accounts
for approximately 15% of epilepsy related deaths (Tomson
et al., 2016). As the name suggests, SUDEP is difficult to

3World Health Organization, Epilepsy Fact Sheet. http://www.who.int/news-
room/fact-sheets/detail/epilepsy [Accessed March 12, 2018].
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predict although seizure frequency is positively correlated
to risk. Recently, MEMRI was used to show changes in an
audiogenic seizure mouse model consistent with human
SUDEP (Kommajosyula et al., 2017). This model develops
tonic seizures leading to respiratory arrest that is fatal
without resuscitation. MEMRI performed during seizure-
induced respiratory arrest showed increased signal intensity
in regions of the superior colliculus, periaqueductal gray
and amygdala, brain regions previously implicated in
SUDEP in humans (Mueller et al., 2014; Tang et al., 2014;
Wandschneider et al., 2015). Future studies will be needed to
better adapt MEMRI to the study of SUDEP, but continued
efforts may provide better risk stratification and preventative
measures.

Neurodegeneration
Neurodegenerative diseases are a debilitating class of conditions
involving progressive brain atrophy and loss of cognitive and/or
motor function. This class comprises tauopathies (including
Alzheimer’s disease (AD) and frontotemporal dementia), PD,
Lewy body disease, amyotrophic lateral sclerosis (ALS) and
Huntington’s disease. Despite years of ongoing research, the
prognosis for patients diagnosed with these conditions is
generally poor. To date, studies have explored the role of
MEMRI in context of tauopathies, PD and ALS. No studies are
currently available describing the use of MEMRI to investigate
Huntington’s disease or Lewy body disease; however, given the
relative youth of the field and the rapid expansion over the
past two decades, future research may find utility of MEMRI in
studying these conditions.

Alzheimer’s Disease and Other Tauopathies
AD, the most common cause of dementia, is part of the class
of related diseases termed tauopathies (Bertram and Tanzi,
2005). These diseases vary widely in geographic involvement
and symptomatic presentation, but all share underlying tau
pathology as a basis for neurodegeneration. Tau protein is
classically involved with stabilizing microtubules and loss of
tau function mediates axonal degeneration in many tauopathy
cases (Kneynsberg et al., 2017). Confirmed diagnoses for
tauopathies cannot be made until post-mortem examination
confirms histopathology. This major obstacle in the diagnosis
of tauopathies compounds with the problem that appropriate
therapies for one type of tauopathy likely will not be effective for
another (Coughlin and Irwin, 2017), establishing the importance
of identifying the tauopathy as early as possible.

The first application of MEMRI for research into tauopathies
quantified differences in axonal transport (Smith et al., 2007).
In this study, it was shown that MEMRI could detect decreased
rates of axonal transport in the Swedish mutant APP mouse, a
model of AD characterized by secondary tau pathology. Many
other studies have since used MEMRI to show impairments
or therapy-related improvements in axonal transport in mouse
models of AD or tauopathies (Massaad et al., 2010; Smith
et al., 2010, 2011; Gallagher et al., 2012; Wang et al., 2012;
Majid et al., 2015; Saar et al., 2015). MEMRI has also been
used to demonstrate axonal deficits in the olfactory pathways of

tau-transgenic JNPL3 (Bertrand et al., 2013) and rTg4510 (Majid
et al., 2014) mouse models. Further supporting these findings,
Fontaine et al. (2017) showed broad changes in neuronal function
in preclinical rTg4510 mice following systemic administration of
manganese. With detectable changes in the asymptomatic stage
of the disease, these studies highlight the potential application of
MEMRI in preclinical identification of tau pathology in vivo.

Parkinson’s Disease
PD is the second most common neurodegenerative condition
(Bertram and Tanzi, 2005) and involves the progressive loss
of dopaminergic neurons in the substantia nigra leading to a
characteristic pattern of impaired movement (Hughes et al.,
1992). Neurological manifestations of PD include cognitive
impairment, impulse control disorders and circadian rhythm
dysfunction (Mantovani et al., 2018; Marques et al., 2018; Weil
et al., 2018; Weintraub et al., 2018).

Initiation and control of movement relies on close
communication between the basal ganglia and substantia
nigra (Lanciego et al., 2012). Manganese deposits in the basal
ganglia (Nelson et al., 1993; Fredstrom et al., 1995; Nagatomo
et al., 1999), and this is the basis for motor deficits associated
with manganese toxicity as previously discussed and may explain
the relative paucity of studies employing MEMRI to investigate
PD.

The earliest study to use MEMRI in the context of PD
supported previous observations that interhemispheric cortical
connectivity observed in humans and rats is mediated through
the basal ganglia (Pelled et al., 2007). Direct injection of
manganese chloride into the subthalamic nucleus in rat of the
6-hydroxydopmaine model of PD reveals impaired transport of
manganese throughout the basal ganglia-substantia nigra circuit
indicating impaired axonal transport (Soria et al., 2011). In
addition to establishing connectivity between brain regions in
PD, two recent studies highlighted the potential for MEMRI in
monitoring response to novel therapeutics (Olson et al., 2016;
Weng et al., 2016).

Amyotrophic Lateral Sclerosis
ALS is characterized by progressive degeneration of upper
(cortical) and lower (spinal) motor neurons leading to
generalized weakness (Peters and Brown, 2015). Patients
gradually become weaker and succumb to respiratory failure.
The current standard therapy for ALS is riluzole, which appears
to slow progression of the disease, as well as physical and speech
therapy and respiratory support4. While the exact etiology of
ALS is currently unknown, deficits in axonal transport have been
identified (Collard et al., 1995).

To date, only one study could be found which applied
MEMRI to ALS (Jouroukhin et al., 2013). In this study,
davunetide was shown to slow disease progression in a mouse
model of ALS, thereby increasing the speed of axonal transport
and protecting against neuronal loss. Davunetide functions

4National Institute of Neurological Disorders and Stroke, Amyotrophic Lateral
Sclerosis (ALS) Fact Sheet. https://www.ninds.nih.gov/Disorders/Patient-
Caregiver-Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet
[Accessed March 13, 2018].

Frontiers in Aging Neuroscience | www.frontiersin.org 9 December 2018 | Volume 10 | Article 403

https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet
https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Cloyd et al. MEMRI: Overview and CNS Applications

by stabilizing microtubules, thereby preventing colchicine-
mediated degradation (Jouroukhin et al., 2013; Magen and
Gozes, 2013). Interestingly, davunetide was previously evaluated
for therapeutic effects in the tauopathy progressive supranacular
palsy, although it ultimately proved to be ineffective for this
use. Given the common involvement of axonal deficits and the
overlap between therapeutic approaches, one could expect more
studies to employ MEMRI in the context of ALS in the future.

Pain
Chronic pain is a complex condition that causes significant
loss of quality of life in approximately 7%–8% of adults
worldwide5. Neuropathic pain, which arises from damage to
the somatosensory system, takes many forms including central
neuropathic pain, polyneuropathy, post-amputation pain and
HIV-associated neuropathy. For many years, opioid analgesics
have been the standard therapy for chronic pain. Given the
current rates of opioid abuse facing the United States, there
is a significant effort to develop alternate approaches to treat
chronic pain (Downes et al., 2018; Morad et al., 2018).
Furthermore, pain is known to adversely affect the mental
health of affected patients (Goesling et al., 2018). One aspect of
chronic pain that complicates development of a comprehensive
therapeutic approach is thatmany of the pathways underlying the
development and maintenance of pain are not well understood.

The earliest studies to use MEMRI in a pain-related
setting examined the use of acupuncture for analgesia (Chiu
et al., 2001). After showing changes in brain activity after
acupuncture via MEMRI, Chiu et al. (2001) compared activation
patterns between electroacupuncture at points associated with
analgesic or non-analgesic properties (Chiu et al., 2003). While
acupuncture at either site was associated with activity in the
somatosensory cortex and hypothalamus, acupuncture at the
analgesic site also increased activation in the periaqueductal
gray and median raphe nucleus; these regions specifically
involved in the processing of pain. This study was the
first to demonstrate the use of MEMRI in identifying pain
pathways.

Later, Yang et al. (2011) published the first report to use
MEMRI to study pain specifically. After injecting manganese
chloride into the thalamus, electrical current was applied to the
forepaw of a rat to induce pain. Subsequent imaging showed
the strong activation in the anterior cingulate and midcingulate
cortex, areas that were previously well-established in pain
processing. This study also identified the ventral medial caudate-
putamen and nucleus accumbens as possible components of
pain processing circuitry. Pain-induced activation in each of
these areas was attenuated by pretreatment with morphine.
Recently, Sperry et al. (2017) performed similar imaging in
perfused brains, allowing much longer scan times to improve
resolution.

Since Yang et al. (2011) first used MEMRI to map pain
circuits, the technique has been used in several studies of pain.
MEMRI has proved effective for studying irritant injection

5International Association for the Study of Pain. Fact Sheets. https://www.iasp-
pain.org/Advocacy/Content.aspx?ItemNumber=3934 [Accessed March 14, 2018].

(Devonshire et al., 2017; Sperry et al., 2017), nerve injury
(Behera et al., 2013; Jeong and Kang, 2018) and thermal (Lei
et al., 2014) models of pain. Interestingly, in an investigation
into the difference between processing of neuropathic pain and
pathological itching using MEMRI, Jeong et al. (2016) found
differences in processing for each stimulus in the limbic systems.
However, further studies are needed to better describe this
process.

Olfactory System
MEMRI studies have long been employed for use in studying
the olfactory system, owing largely to the ease with which
manganese can be applied via the nasal mucosa. The first study
to demonstrate tract tracing via MEMRI were performed in
the olfactory bulb after nasal instillation of manganese (Pautler
et al., 1998). As previously described, tract tracing requires
introduction of manganese solutions to specific regions of the
CNS, typically via intracranial or intravitreal injection. The
olfactory receptors in the nasal mucosa project directly to the
olfactory bulb, allowing tract tracing in this region with a less
invasive route of administration. Pautler and Koretsky (2002)
later showed region specific activation in the mouse olfactory
bulb in response to aerosolized urine odorants. Subsequent work
used the rodent olfactory system to refine the process of tract
tracing (Lehallier et al., 2011).

Since these early reports many additional reports have used
MEMRI to map circuits in rodent olfactory systems. Chen
et al. (2007) observed differences in activation patterns between
unconditioned arousal (lemon) and fear (fox) odorant stimuli.
Work from the Koretsky lab found specific activation patterns in
the olfactory bulb corresponding to different odorants achieving
resolution of individual glomerular cells (Chuang et al., 2009,
2010). Gutman et al. (2013) combined MEMRI with DTI and
found the imagingmodalities compatible and complementary for
the purpose of tracing neural circuits.

MEMRI studies of the olfactory system have also been used in
disease-specific context. Several studies showed deficits in axonal
transport in the olfactory bulb of neurodegenerative mice, as
previously described in the context of tauopathy (Smith et al.,
2007, 2010, 2011; Wang et al., 2012; Bertrand et al., 2013; Majid
et al., 2014; Saar et al., 2015) and ALS (Jouroukhin et al., 2013).
MEMRI has similarly shown changes in olfactory function in
animal models of cerebral palsy (Drobyshevsky et al., 2006,
2012), neuropsychiatric lupus (Kivity et al., 2010) and diabetes
(Sharma et al., 2010). Gobbo et al. (2012) used MEMRI to
study the effects of glutamate excitotoxicity in the olfactory
bulb, modeling a possible mechanism of atrophy associated with
diseases such as AD or stroke. These studies demonstrate the
utility ofMEMRI to detect neuronal changes in the olfactory bulb
that may represent disease specific processes or broader changes
in neuronal function.

Visual System
As discussed previously (section ‘‘Localized Administration
and Applications’’), the visual system lends itself to relatively
noninvasive methods of manganese administration. Historically,
MEMRI was first used to study the mapping of the visual
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pathway from retina to superior colliculus (Watanabe et al., 2001;
Figure 5). With this study supporting the theoretical role of
MEMRI in visual system further investigations have delved into
the structure, function and tractographical details and diseases in
a variety of animal models.

Mapping the Visual System
Following successful mapping of the visual system by Watanabe
et al. (2001), studies used manganese to show finely-tuned
changes in functional differences of the visual system. For
example, Bissig and Berkowitz (2009) showed systemic
manganese administration and visual stimulation revealed
discrete layer-specific changes in function in the visual cortex of
rats.

Subsequent research by Chan et al. (2011b, 2014) and Chan
and Wu (2012) expanded these previous studies to assess
neuroarchitecture and functional relationships in the rat visual
system using a variety of manganese injection techniques. They
first investigated visual system development and found faster
axonal transport of manganese in the developing rats, attributed
to higher permeability of the blood-ocular and blood-brain
barriers in the immature rat (Chan et al., 2011a).With an increase
in detectable projections from both the retina and visual cortex
following enucleation, this study demonstrates the ability of
MEMRI to not onlymap the visual system, but also to detect finer
neuroplastic changes. Other studies have since demonstrated the
ability of MEMRI to detect sensory system-wide neuroplastic
changes (Tang et al., 2017a,b).

Chan et al. (2014) conducted additional experiments to
more fully characterize the normally functioning rat visual
system. They partially transected the optic nerve near the optic

FIGURE 5 | Manganese enhanced tracing of the rat visual system. Adapted
with permission from Watanabe et al. (2001). Enhancement of the visual
pathway 24 h after intravitreal injection of manganese. Images were collected
in the (A) horizontal and (B) coronal planes. 1 = left retina, 2 = left optic nerve,
3 = optic chiasm, 4 = right optic tract, 5 = right lateral geniculate nucleus,
6 = right brachium of the superior colliculus, 7 = right pretectal region,
8 = right superior colliculus, 9 = right suprachiasmatic nucleus, 10 = left
suprachiasmatic nucleus, 11 = right dorsal geniculate nucleus, 12 = right
ventral lateral geniculate nucleus, 13 = right olivary pretectal nucleus,
14 = right nucleus of the optic tract, 15 = superficial part of the superficial gray
layer of the left superior colliculus.

head to show retinotopic attenuation of signal in the superior
colliculus. Later studies further expanded the connectivity
work previously performed, using varied injection techniques
(intravitreal, intracortical, subcortical) to provide more detailed
descriptions of the connections between parts of the visual system
(Chan and Wu, 2012).

Retinal Structure and Function
Another area of vision-related research that has benefitted greatly
from application of MEMRI is the study of retinal function. The
first application of MEMRI to the retina measured differences
in ion demand between light- and dark-adapted rats (Berkowitz
et al., 2006), an application which has since been replicated
(De La Garza et al., 2012). Subsequent studies from Berkowitz
and colleagues provided in vivo descriptions of ion regulation
through the visual cycle (Berkowitz et al., 2009b), activity of
channelrhodopsin-2 (Ivanova et al., 2010) and horizontal cell
inhibitory signaling (Berkowitz et al., 2015b). These experiments
establishedMEMRI as a sensitive technique capable of producing
in vivo resolution of retinal layers to establish biochemical
understandings.

Additional studies have demonstrated that MEMRI can be
used to study degenerative pathology associated with the retina.
Berkowitz and colleagues used MEMRI to show changes in
retinal ion demand in models of ocular injury (Berkowitz
et al., 2007a), retinopathy of prematurity (Berkowitz et al.,
2007b) and retinal thinning (Berkowitz et al., 2008). Nair et al.
(2011) showed layer resolution and lamina-specific structures
in degenerating rat retina, which highlighted the potential for
disease monitoring via MEMRI. This potential was further
expanded when another group used MEMRI to show the effects
of prophylactic retinylamine therapy in a mouse model of retinal
degeneration (Schur et al., 2015).

Optic Nerve Injury and Regeneration
In addition to investigating the retina, MEMRI can be applied
to study injury and regeneration of the optic nerve. The
capacity for MEMRI studies to detect injury-related changes
in optic nerve function has been well-established (Ryu et al.,
2002; Thuen et al., 2005) and MEMRI can be used in
conjunction with DTI to provide more detailed evaluation
(Thuen et al., 2009). Work from Sandvig et al. (2011) used
MEMRI to monitor optic nerve regeneration in four different
animal models longitudinally. Shortly after, they showed
evidence that transplanted olfactory ensheathing cells mediate
repair and remyelination in damaged optic nerves (Sandvig
et al., 2012). Additional studies have further demonstrated
the use of MEMRI in assessing optic nerve injury and repair
(Haenold et al., 2012; Fischer et al., 2014; Yang et al.,
2016).

Diabetic Retinopathy
Diabetes is a chronic, systemic condition characterized by
persistent high blood sugar associated with a variety of negative
conditions including heart disease, stroke, kidney failure,
peripheral neuropathy and impaired vision or blindness6. Ocular

6Centers for Disease Control and Preventions, At a Glance 2016: Diabetes.
https://www.cdc.gov/diabetes/library/factsheets.html [Accessed March 15, 2018].
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manifestations of diabetes, particularly diabetic retinopathy, are
a leading cause of visual impairment and preventable blindness
worldwide (Lee et al., 2015). Diabetic retinopathy can be
detected reliably via fundoscopic examination; however, due
to the asymptomatic early stages and limited ophthalmologic
care in developing nations, many cases remain undiagnosed
until permanent damage has occurred (Viswanath andMcGavin,
2003).

MEMRI has been suggested as a viable method to study
the processes associated with the development of diabetic
retinopathy and to monitor therapeutic responses. For example,
manganese-enhanced imaging shows in vivo ion dysregulation
(Berkowitz et al., 2009a) and oxidative stress (Berkowitz et al.,
2015a) in diabetic mice, providing potential mechanistic insight
into the disease. Furthermore, MEMRI detects changes in retinal
function 14 days after induction of hyperglycemia, earlier than
any previous time point in literature (Muir et al., 2015). In
addition to studying disease progression, MEMRI has been used
to assess several potential therapeutic approaches for diabetic
retinopathy (Berkowitz et al., 2007c, 2012; Giordano et al., 2015).

Glaucoma
Glaucoma is a group of related diseases that result in abnormally
high intraocular pressure. Left untreated, the high pressure can
damage the optic nerve, leading to permanent impairment or loss
of vision7. Like diabetic retinopathy, glaucoma is a major cause
of vision loss worldwide (Tham et al., 2014). The prevalence of
glaucoma increases with age and the number of people affected
by glaucoma is projected to double by 2040. Therefore, continued
research is necessary to adapt to the increasing health challenges
faced by an increasingly aged population.

Though limited in number, the studies employing MEMRI
nevertheless demonstrate a role for MEMRI in assessing
glaucoma pathology. Studies using MEMRI identified impaired
axonal transport in glaucomatous eyes of rats compared to
normal prior to the development of changes in retinal thickness
(Chan et al., 2007, 2008; Calkins et al., 2008). Data collected
via MEMRI suggest the development of glaucoma may be more
complicated than previously thought (Fiedorowicz et al., 2018).
Therefore, more research in this field will be required to better
understand progression of the disease as well as the optimal
methods to study it in vivo.

Auditory System
The first studies to use MEMRI in the study of the auditory
system came from the Turnbull group. They generated the first
tonotopic map of the inferior colliculus, showing functional
changes associated with varying degrees of hearing loss (Yu
et al., 2005). Subsequent studies applied MEMRI to describe
development and plasticity of the auditory system (Yu et al.,
2007) and to examine the effect of frequency and amplitude on
auditory processing in the inferior colliculus (Yu et al., 2008). In
these studies, manganese was administered to mice immediately
before a sound exposure experiment. Because neuronal activity

7National Eye Institute, Facts About Glaucoma. https://nei.nih.gov/health/
glaucoma/glaucoma_facts [Accessed March 16, 2018].

correlates with manganese uptake, this paradigm allows for brain
responses to be encoded away from the noisy environment of
theMRI scanner. Manganese in the stimulated brainstem regions
persisted long enough to allow the activation pattern to be
measured 24 h later.

MEMRI studies of the auditory system can be performed
following intratympanic injection of manganese chloride.
Analogous to the tracing of the visual pathways performed by
Thuen et al. (2005), intratympanic administration of manganese
produces sequential enhancement of the auditory system from
cochlea to inferior colliculus (Lee et al., 2012). Subsequent work
found that auditory pathway tracing is sensitive to changes in the
frequency and amplitude of the sound stimulus (Jin et al., 2013)
and this mapping technique had been applied to disease models
(Jung et al., 2014).

In addition to mapping the auditory system, MEMRI has
been used to study auditory disorders including hearing loss and
tinnitus. Using MEMRI, Gröschel et al. (2011) identified changes
in calcium-dependent activity in the central auditory system
associated with noise-induced, age-related (Gröschel et al., 2014)
and drug-induced hearing loss (Gröschel et al., 2016), thereby
providing novel insights into these conditions and suggesting
that multiple mechanisms may produce similar symptoms across
different modalities of hearing loss. MEMRI studies have also
demonstrated abnormal neuronal function in animal models
of tinnitus. Brozoski et al. (2007) measured hyperactivity in
brain regions including the cochlear nucleus, inferior colliculus,
cerebellar paraflocculus and amygdala. This study was the first
to identify abnormal cerebellar function associated with tinnitus.
A follow-up study attributed the tinnitus-related hyperactivity to
abnormal NMDA activity, demonstrating the NMDA blockade
improves symptoms (Brozoski et al., 2013). These studies from
Brozoski et al. (2007, 2013) described a previously unidentified
interaction between the paraflocculus and cochlear nucleus as
a necessary component of noise-induced tinnitus. Subsequent
work has expanded these findings to include drug induced
models of tinnitus and implicated additional brain regions in
the pathology (Holt et al., 2010; Muca et al., 2018). Consistent
with previous work, these studies strongly implicate brain
stem structures (particularly the inferior colliculus) in the
development of tinnitus and found no tinnitus-related changes
in function in the auditory cortex.

MANGAFODIPIR

Chelated manganese compounds such as mangafodipir
(MnDPDP, Teslascan) provide an alternative to potentially toxic
manganese chloride solutions for use in clinical applications
of MEMRI. Mangafodipir is prepared by chelating ionic
manganese with the organic ligand fodipir (Rocklage et al.,
1989) producing a complex metabolized in humans to release
manganese ions for enhancement in MR imaging studies (Toft
et al., 1997a,b). Mangafodipir was first used to show ischemia
associated with myocardial infarctions (Pomeroy et al., 1989;
Saeed et al., 1989), but its primary usage has been as a contrast
for hepatobiliary imaging (Rofsky and Weinreb, 1992). Its use
expanded considerably since FDA approval in 1997.
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Animal Studies With Mangafodipir
Quickly following its original intended use, mangafodipir
substantially enhanced hepatobiliary imaging without significant
toxicity. Studies in rats evaluating its toxicity for MEMRI
reported toxicity at high doses but with a high therapeutic
index (Elizondo et al., 1991). A later study showed that
mangafodipir was not associated with injection site or dermal
hypersensitivity reactions (Larsen and Grant, 1997), which
is in contrast to later studies of manganese injections. The
potential negative ionotropic effects of manganese in the heart
were balanced by a release of catecholamines triggered by
MnDPDP in vivo (Jynge et al., 1997). Furthermore, unlike
manganese chloride, mangafodipir does not cause higher levels
of manganese accumulation in the brain in animals with
biliary obstruction compared to control (Grant et al., 1997b). It
should be noted, however, that mangafodipir induced skeletal
abnormalities in fetal rats, suggesting teratogenicity (Grant et al.,
1997a).

For the purposes of imaging, the major differences observed
between MEMRI studies with manganese chloride and
mangafodipir is the time to maximal enhancement. The
slow release of manganese during mangafodipir metabolism
compared to solutions of manganese chloride produces a more
gradual rise in manganese concentration (Ni et al., 1997) with
no loss of enhancement (Southon et al., 2016). A later study of
retinal function after systemic mangafodipir administration and
MEMRI detected changes in retinal function consistent with
previous studies done with manganese chloride (Tofts et al.,
2010).

Human Studies With Mangafodipir
The use of mangafodipir in human MRI studies began
shortly following successful animal imaging studies
and focused on tumor and lesion identification in the
hepatobiliary system. The first use of mangafodipir MEMRI
in human subjects demonstrated enhancement of the
liver parenchyma within 15 min of intravenous injection
without major adverse effects (Lim et al., 1991). The most
commonly reported effect of mangafodipir injection is
facial flushing and warmth and minor adverse events
including nausea, headache, elevated blood pressure and
accelerated heart rate (Lim et al., 1991; Wang et al.,
1997b).

Several stage II clinical trials and other studies have shown
mangafodipir-enhanced MRI to be effective for identifying
tumors and metastases in the human hepatobiliary system
(Bernardino et al., 1991, 1992; Rummeny et al., 1991, 1997;
Hamm et al., 1992; Wang et al., 1997a). The sensitivity
of mangafodipir enhanced MRI is highest for tumors or
hepatocellular origin (Aicher et al., 1993; Rofsky et al., 1993; Vogl
et al., 1993).

Following these successful studies, several stage III
clinical trials compared mangafodipir enhanced MRI with
human-approved contrast agents and found that it improved
identification of hepatocellular carcinoma (Kettritz et al., 1996)
and detection of focal lesions (Diehl et al., 1999) over gadolinium
based contrasts, but no difference was found in the ability to

detect liver metastases or other masses (Kettritz et al., 1996;
Schima et al., 1997).

Other studies have compared mangafodipir-enhanced MRI
with other methods of clinical imaging modalities such as
computed tomography (CT). Several have reported greater
efficacy of mangafodipir enhanced MRI to contrast enhanced
CT imaging for detection of hepatocellular lesions (Bartolozzi
et al., 2000; Federle et al., 2000; Oudkerk et al., 2002).
Mangafodipir-enhanced MRI has additionally shown similar
accuracy for diagnosis and staging of pancreatic cancer
compared to contrast enhanced CT, but neither modality
demonstrated a clear advantage (Rieber et al., 2000; Romijn et al.,
2000).

Non-imaging Uses of Mangafodipir
Despite these promising clinical trials, mangafodipir was
removed from the European market in 20128 due to poor sales
and is similarly listed as discontinued by the FDA9. We found
limited evidence of non-marketing related reasons behind these
regulatory decisions. However, research using mangafodipir has
been ongoing. Two metabolites of mangafodipir, MnPLED and
ZnPLED, have exhibit antioxidant properties through actions
mimicking superoxide dismutase (SOD) in rats (Brurok et al.,
1999). When donor rats were pretreated with MnDPDP before
liver transplant, the recipient experienced reduced ischemic
injury after transplantation (Ben Mosbah et al., 2012). Later
studies in humans reportedmangafodipir administration reduces
cardiac injury associated with chemotherapy (Yri et al., 2009)
and post-myocardial infarction reperfusion (Karlsson et al.,
2015).

Recently, the efficacy of mangafodipir as an adjunct
to chemotherapy has been established. In culture,
co-administration of mangafodipir with the anti-cancer
drugs oxaliplatin or 5-fluorouracil resulted in increased killing
of mouse colon cancer cells and improved survival of human
leukocytes ex vivo (Alexandre et al., 2006). The mechanisms of
this differential targeting are unclear, but the authors speculate
that the increased oxidative stress at baseline in the cancer cells
compared to normal is a contributing factor. A preliminary
trial in human subjects similarly preserved leukocyte counts
during treatment with oxaliplatin and 5-fluorouracil (Karlsson
et al., 2012a). Calmangafodipir, a derivative complex of
mangafodipir in which some of the manganese is replaced
by calcium, exhibits a greater degree of myelo-preservation
while still enhancing antitumor effects (Karlsson et al., 2012b).
Two additional studies show that mangafodipir reduces the
occurrence of oxaliplatin-induced peripheral neuropathy in
human patients (Coriat et al., 2014; Karlsson et al., 2017)
and is an active area of interest. Future studies are needed to
better characterize how mangafodipir and related compounds
interact with anti-cancer therapies, but current research shows
promise.

8European Medicines Agency, Public statement on Mangafodipir, EMA/486286/
2012 (London, UK, 2012)
9U.S. Food and Drug Administration, FDA approved drug products: Teslascan.
https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.
process&ApplNo=020652. [Accessed March 22, 2018].

Frontiers in Aging Neuroscience | www.frontiersin.org 13 December 2018 | Volume 10 | Article 403

https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020652
https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020652
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Cloyd et al. MEMRI: Overview and CNS Applications

CONCLUSION

Manganese provides useful enhancement of MR images
by nature of its paramagnetic properties. Augmented by
having cell permeability like that of calcium, manganese
application for MRI provides unique functional imaging
capacities. Over the last 40 years, research using applied
MEMRI has delved into the structure, function and
tractography in a wide variety of investigative areas. In
the CNS, the functional component of MEMRI provides
unique insight into the cellular mechanisms of brain disorders
and neurodegenerative diseases like AD. Concerns over
the toxicity and administrative methods of manganese
in vivo have spurred the use of manganese-chelated
compounds such as mangafodipir for MEMRI clinically,
though no recorded studies have reported uses in human
CNS imaging. Current applications show renewed promise
of manganese- and chelated MEMRI usage for research
questions.
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