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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Manufacturing Engineering Society International Conference 
2017. 
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract 

Increased complexity in product design, strict regulations and a changing market make risk assessment critical for successful 
operations. Failure in responding quickly to raw material shortages, downtimes, deteriorating equipment conditions or other 
operational issues can prove to be an expensive affair. A company-wide risk assessment includes both external and internal 
operations. However, external/supplier risk assessment has been of major interest. Even though the scope of risk assessment at the 
production line level is not as broad as it is at the supply chain level, assessing risk would help recognize vulnerable areas of the 
production line, which would in turn help reduce damage caused when risk events occur. In this research, a method for production 
line risk assessment is proposed by considering operational risks affecting the line. Operational risks and their causal relationships 
are represented using Bayesian Belief Networks (BBN). The impact of these risks is observed using a simulation model of the 
production line using System Dynamics (SD) approach. The combination of BBN and SD assists in developing a versatile 
methodology, which can capture the dynamic causal mechanisms in a complex system, the uncertainties amongst risk events and 
the long-term impact of operational risks on the production line. 
 
© 2018 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of NAMRI/SME. 

Keywords: Risk Assessment; Bayesian Belief Networks; System Dynamics. 

1. Introduction 

Increased complexity in products to be 
manufactured, strict regulations and a continuously 
changing market have led to an increase in risks 

affecting the manufacturing sector. Moreover, 
companies are willing to take some extra risk to 
survive and succeed in an increasingly competitive 
market. Often, production capacities and capabilities 
are quoted aggressively in order to get the job. Under 
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survive and succeed in an increasingly competitive 
market. Often, production capacities and capabilities 
are quoted aggressively in order to get the job. Under 
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such circumstances, failure to respond quickly to raw 
material shortages, downtimes, deteriorating 
equipment conditions or other operational risks could 
prove to be an expensive affair. This makes a 
company-wide risk assessment of critical value. Such 
a practice gives a holistic view of the risks affecting a 
company and provides opportunities to mitigate them. 
In addition, ISO 31000 encourages companies to adopt 
risk-based decision-making and requires them to 
develop a ‘Risk Profile’ [1].  

The scope of a company-wide risk assessment 
includes both internal and external operations. 
However, external/supplier risk assessment has drawn 
overwhelming attention compared to 
internal/production line risk assessment. William et. al 
[2] identified this trend when only 3 research studies 
regarding manufacturing risk assessment were found 
compared to several in the field of supply risk 
assessment. Even though the scope of risk assessment 
is much narrower with internal operations, it is still of 
significant importance as it would give a company an 
edge over its competitors, within the industry, by 
ensuring financial strength, quality of goods and 
services and customer satisfaction. Therefore, 
objectives of the research presented in this paper are 
to:  

1. Develop a methodology to evaluate 
production line risk, which can capture the dynamic 
nature of risk events and their relationships with each 
other.  

2. Assess the impact on the production line, 
upon exposure to risk events, over a period.  

The remainder of the paper is organized as follows. 
Section 2 presents a brief summary of the literature 
review and identifies gaps in research. Section 3 
provides details on the Production Line Risk 
Assessment (PLRA) methodology developed by 
combining Bayesian Belief Networks (BBN) and 
System Dynamics (SD). The application of 
methodology to a production line case study is also 
presented in this section. Results and discussion are 
presented in Section 4 where the effectiveness of the 
methodology in assessing the behavior of the 
production line system is examined. A summary of the 

paper and future work is described in the conclusions 
section. 

2. Literature review 

Since production line risk assessment is a less 
explored field, published literature in supply chain risk 
assessment was also reviewed. Quantitative risk 
assessment was the prime focus of the research. Bustad 
& Bayer [3] presented a risk management process at 
Coca Cola Enterprises through the Hazard and 
Operability (HAZOP) method. They identified risks 
impacting the industry and these risks were assessed 
using risk-appetite matrix. This approach is good for 
creating awareness and could work as a quick 
overview of the risks impacting the production line. 
However, the HAZOP method is mostly qualitative 
and cannot account for the uncertainty due to the 
complexity in the system.  

Alternatively, the Fault Tree approach of assessing 
the reliability of the production line was demonstrated 
in [4, 5]. This approach gives an insight into the events 
resulting in a failure event. However, it is deterministic 
and does not capture the interdependencies between 
the risk events, as it depends on logical operators. 

Bayesian Belief Networks (BBN) is a good tool to 
calculate the likelihood of the risk events as it captures 
both the interdependencies between risk events and 
uncertainty in likelihood. Unlike fault trees, BBN 
make use of Node Probability Tables (NPT), which 
capture the complex inter-dependent relationships 
between events in an efficient manner. BBN models 
have been used as a risk assessment tool in various 
fields. Fault diagnosis in a hydropower plant using 
BBN was discussed by Chaur & Sou [6], supply chain 
risk analysis using BBN was demonstrated by 
Badurdeen et. al [7] and additional case studies were 
presented in Amundson et. al [8].  Badurdeen et. al [7] 
outlined a well-structured method for Supply Chain 
Risk Assessment (SCRA) by linking the risk drivers to 
the performance measures. This model captures the 
uncertainty within the system in an effective way.  
However, risk events are not static in nature. Risk 
events evolve with time and the BBN models, when 
applied to a static data set, fail to capture this dynamic 
behavior. Thus, BBN models alone may not be able to 
capture the impact of these risk events over a period.  

Dynamic causal relations can be modelled well 
using simulation tools such as System Dynamics (SD). 
SD is a powerful tool comprising of stocks and flows. 
Stocks represent levels, which can be used to represent 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2018.07.010&domain=pdf
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such circumstances, failure to respond quickly to raw 
material shortages, downtimes, deteriorating 
equipment conditions or other operational risks could 
prove to be an expensive affair. This makes a 
company-wide risk assessment of critical value. Such 
a practice gives a holistic view of the risks affecting a 
company and provides opportunities to mitigate them. 
In addition, ISO 31000 encourages companies to adopt 
risk-based decision-making and requires them to 
develop a ‘Risk Profile’ [1].  

The scope of a company-wide risk assessment 
includes both internal and external operations. 
However, external/supplier risk assessment has drawn 
overwhelming attention compared to 
internal/production line risk assessment. William et. al 
[2] identified this trend when only 3 research studies 
regarding manufacturing risk assessment were found 
compared to several in the field of supply risk 
assessment. Even though the scope of risk assessment 
is much narrower with internal operations, it is still of 
significant importance as it would give a company an 
edge over its competitors, within the industry, by 
ensuring financial strength, quality of goods and 
services and customer satisfaction. Therefore, 
objectives of the research presented in this paper are 
to:  

1. Develop a methodology to evaluate 
production line risk, which can capture the dynamic 
nature of risk events and their relationships with each 
other.  

2. Assess the impact on the production line, 
upon exposure to risk events, over a period.  

The remainder of the paper is organized as follows. 
Section 2 presents a brief summary of the literature 
review and identifies gaps in research. Section 3 
provides details on the Production Line Risk 
Assessment (PLRA) methodology developed by 
combining Bayesian Belief Networks (BBN) and 
System Dynamics (SD). The application of 
methodology to a production line case study is also 
presented in this section. Results and discussion are 
presented in Section 4 where the effectiveness of the 
methodology in assessing the behavior of the 
production line system is examined. A summary of the 

paper and future work is described in the conclusions 
section. 

2. Literature review 

Since production line risk assessment is a less 
explored field, published literature in supply chain risk 
assessment was also reviewed. Quantitative risk 
assessment was the prime focus of the research. Bustad 
& Bayer [3] presented a risk management process at 
Coca Cola Enterprises through the Hazard and 
Operability (HAZOP) method. They identified risks 
impacting the industry and these risks were assessed 
using risk-appetite matrix. This approach is good for 
creating awareness and could work as a quick 
overview of the risks impacting the production line. 
However, the HAZOP method is mostly qualitative 
and cannot account for the uncertainty due to the 
complexity in the system.  

Alternatively, the Fault Tree approach of assessing 
the reliability of the production line was demonstrated 
in [4, 5]. This approach gives an insight into the events 
resulting in a failure event. However, it is deterministic 
and does not capture the interdependencies between 
the risk events, as it depends on logical operators. 

Bayesian Belief Networks (BBN) is a good tool to 
calculate the likelihood of the risk events as it captures 
both the interdependencies between risk events and 
uncertainty in likelihood. Unlike fault trees, BBN 
make use of Node Probability Tables (NPT), which 
capture the complex inter-dependent relationships 
between events in an efficient manner. BBN models 
have been used as a risk assessment tool in various 
fields. Fault diagnosis in a hydropower plant using 
BBN was discussed by Chaur & Sou [6], supply chain 
risk analysis using BBN was demonstrated by 
Badurdeen et. al [7] and additional case studies were 
presented in Amundson et. al [8].  Badurdeen et. al [7] 
outlined a well-structured method for Supply Chain 
Risk Assessment (SCRA) by linking the risk drivers to 
the performance measures. This model captures the 
uncertainty within the system in an effective way.  
However, risk events are not static in nature. Risk 
events evolve with time and the BBN models, when 
applied to a static data set, fail to capture this dynamic 
behavior. Thus, BBN models alone may not be able to 
capture the impact of these risk events over a period.  

Dynamic causal relations can be modelled well 
using simulation tools such as System Dynamics (SD). 
SD is a powerful tool comprising of stocks and flows. 
Stocks represent levels, which can be used to represent 
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inventories, cash reserves, etc. Flows determine the 
quantity of stock that is moving from one location to 
another. Simulation of a model of a system 
demonstrates the change in stocks and flows over a 
period. The SD approach has been applied in the field 
of risk assessment. Risk analysis using SD on a new 
product development process was demonstrated by 
Dehghanbaghi & Mehrjerdi [9] to study the impact of 
risk events on performance metrics like sales, 
production, government support and raw materials. 
Similarly, a risk management process in NASA’s 
shuttle launching system was studied by Dulac et. al 
[10] to capture the dynamic nature of risk and its 
impact on the shuttle launch. SD models could capture 
the impact of risk events on the system; however, SD 
models have difficulty in representing relationships 
between risk events due to their subjective nature. 
Therefore, combining SD and BBN can prove to be an 
effective way to capture both probabilistic exposure to 
risk events and transient impact over time. Mohaghegh 
[11] demonstrated the combination of SD and BBN for 
Socio-Technical Risk analysis. The model is capable 
of capturing dynamic nature of variables within the 
system through SD and BBN captures inter-
relationships and uncertainty in risk events. 

While production line risk assessment has been 
addressed before, most of the methods used provide 
only a limited perspective, often using qualitative and 
deterministic information. Integrating capabilities 
offered by different tools can provide a more versatile 
approach to evaluate risks at the production line level. 

3. Methodology 

ISO 31000:2015 [1] defines Risk Assessment as a 
3-step process: 

(1) Risk Identification  
(2) Risk Analysis 
(3) Risk Evaluation 

The methodology followed for each of these steps 
for this research is described in the sections below. 
 
3.1 Risk Identification 
 

Identifying risks is one of the most crucial steps for 
risk assessment. Badurdeen et. al [7] presented a 
comprehensive supply chain risk taxonomy. In their 
work, the ‘Organizational risks’ cluster includes 
several risks impacting the organization and the 

‘Operating risks’ sub-cluster consists of risks relevant 
at the production line level. These risks, listed in the 
risk taxonomy, may or may not impact a specific 
production line but they serve as a guide during the risk 
identification phase.  

Alternatively, conventional techniques like 
brainstorming, questionnaires, incident investigation, 
auditing and inspection and HAZOP (Hazard and 
Operability Studies) could be used for risk 
identification. 

The influence of these risk events is assessed by 
studying how they affect variation of Key Performance 
Indicator (KPI). KPIs describe the overall performance 
of the production line succinctly. Analysing KPI 
graphs helps understand the behaviour of the system 
and allow management to take further action.     
 
3.2 Risk Analysis 
 

Most techniques for risk analysis fail to capture the 
dynamic and interdependent nature of risk events and 
their impact on the production line. In this research, a 
combination of BBN and SD is used to develop a more 
versatile tool for risk analysis.  

Pearl [12] defines BBNs as directed acyclic graph, 
which consist of nodes/variables and arcs connecting 
dependent nodes.  These relationships amongst nodes 
are defined through conditional probabilities.  

BBNs are fundamentally based on the Bayes’ 
theorem that can be stated as follows: 

 
( | )* ( )( | )

( )
P C Pt P PtP Pt C

P C
  

                                                                          (1)  
      

where, ( | )P Pt C is the conditional probability of 
occurrence of parent node ( )Pt given that child node 
( )C occurs. Alternatively, ( | )P C Pt is the probability 
of 𝐶𝐶 given 𝑃𝑃𝑃𝑃 occurs. 

For risk assessment using BBN, each risk event is 
considered as a node and the complex relationships 
between these risk events is captured through 
conditional probabilities. A node probability table 
(NPT) is associated with each node/risk event as 
shown in Fig. 1. This table defines relationship 
between the child node and its parent nodes using 
conditional probabilities. 
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Fig 1: Node Probability Table -BBN 

 
Fig. 2 shows the representation of BBN risk model 

in SD. Parent risk event 1 (RE1) and risk event 2 (RE2) 
are connected to child risk event 3 (RE3) using arcs. 
Likelihood of each risk event and their conditional 
probabilities are represented as a variable.   
 

 
Fig. 2: Representing BBN in System Dynamics. 

 
For the child nodes, conditional probabilities are 

calculated using the chain rule application of Bayes’ 
theorem. For example, the probability of risk event 3 
(P(RE3)) can be computed as below: 

 
( 3) ( ( 3) | 1, 2)* ( 1)* ( 2))

( ( 3) |~ 1,~ 2)*(1 ( 1))*(1 ( 2)))
( ( 3) |~ 1, 2)*(1 ( 1))* ( 2))
( ( 3) | 1,~ 2)* ( 1)*(1 ( 2)))

P RE P RE RE RE P RE P RE
P RE RE RE P RE P RE

P RE RE RE P RE P RE
P RE RE RE P RE P RE


  

 
 

     

                                                       (2) 
  

SD facilitates modelling of a production line 
through stocks and flows. Stocks are accumulations of 
system variables, similar to inventories. These 
stocks/inventories are controlled through flows, 
similar to production rates. Rehab [13] demonstrates 
an effective method to the construction and analysis of 
a Lean manufacturing system using SD. This method 
could be used in construction of production line model. 
Fig.3 depicts a production line model consisting of 
three workstations through which raw material gets 
processed. Raw materials and work in process (WIP) 

at each station are represented as stocks. Procurement 
rate and production rates at each station are flows that 
control the quantity of stocks. The BBN model 
calculates the likelihood of child risk events based on 
their causal relationships with parent nodes and the 
prior probabilities entered. Based on this likelihood of 
child risk event, severity of risk event is calculated. 
Likelihood is the probability of occurrence of risk and 
severity is the severity of this risk in terms of loss in 
performance or resources. We assume proportionality 
between likelihood and severity of risk events. This 
relationship is captured through the use of a lookup 
function or table function. and can be developed with 
expert opinion. The relationship can be entered in the 
form of table function by associating a severity (in 
terms of production loss) with a likelihood range. For 
example, when P(RE3) is between 0 to 0.1, severity of 
risk event 3 is 200 parts. Similarly, when P(RE3) is 
between 0.2-0.3 then severity of risk event 3 is 250 
parts. BBN risk model is connected to the SD 
production line model through a production line 
variable. The production line variable is impacted by 
both the likelihood and severity of risk event. Equation 
(3) shows the calculation of risk event impact using the 
“PULSETRAIN”, an in-built Vensim function that 
relates the impact frequency (1/P(RE)) and severity of 
risk event: 
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PULSE is a Vensim function that returns 1 starting 
at time start and lasting for interval width. Equation 4 
describes the math behind PULSE function. 
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A train of repeated pulses is known as PULSETRAIN 
function. 
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inventories, cash reserves, etc. Flows determine the 
quantity of stock that is moving from one location to 
another. Simulation of a model of a system 
demonstrates the change in stocks and flows over a 
period. The SD approach has been applied in the field 
of risk assessment. Risk analysis using SD on a new 
product development process was demonstrated by 
Dehghanbaghi & Mehrjerdi [9] to study the impact of 
risk events on performance metrics like sales, 
production, government support and raw materials. 
Similarly, a risk management process in NASA’s 
shuttle launching system was studied by Dulac et. al 
[10] to capture the dynamic nature of risk and its 
impact on the shuttle launch. SD models could capture 
the impact of risk events on the system; however, SD 
models have difficulty in representing relationships 
between risk events due to their subjective nature. 
Therefore, combining SD and BBN can prove to be an 
effective way to capture both probabilistic exposure to 
risk events and transient impact over time. Mohaghegh 
[11] demonstrated the combination of SD and BBN for 
Socio-Technical Risk analysis. The model is capable 
of capturing dynamic nature of variables within the 
system through SD and BBN captures inter-
relationships and uncertainty in risk events. 

While production line risk assessment has been 
addressed before, most of the methods used provide 
only a limited perspective, often using qualitative and 
deterministic information. Integrating capabilities 
offered by different tools can provide a more versatile 
approach to evaluate risks at the production line level. 

3. Methodology 

ISO 31000:2015 [1] defines Risk Assessment as a 
3-step process: 

(1) Risk Identification  
(2) Risk Analysis 
(3) Risk Evaluation 

The methodology followed for each of these steps 
for this research is described in the sections below. 
 
3.1 Risk Identification 
 

Identifying risks is one of the most crucial steps for 
risk assessment. Badurdeen et. al [7] presented a 
comprehensive supply chain risk taxonomy. In their 
work, the ‘Organizational risks’ cluster includes 
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‘Operating risks’ sub-cluster consists of risks relevant 
at the production line level. These risks, listed in the 
risk taxonomy, may or may not impact a specific 
production line but they serve as a guide during the risk 
identification phase.  

Alternatively, conventional techniques like 
brainstorming, questionnaires, incident investigation, 
auditing and inspection and HAZOP (Hazard and 
Operability Studies) could be used for risk 
identification. 

The influence of these risk events is assessed by 
studying how they affect variation of Key Performance 
Indicator (KPI). KPIs describe the overall performance 
of the production line succinctly. Analysing KPI 
graphs helps understand the behaviour of the system 
and allow management to take further action.     
 
3.2 Risk Analysis 
 

Most techniques for risk analysis fail to capture the 
dynamic and interdependent nature of risk events and 
their impact on the production line. In this research, a 
combination of BBN and SD is used to develop a more 
versatile tool for risk analysis.  

Pearl [12] defines BBNs as directed acyclic graph, 
which consist of nodes/variables and arcs connecting 
dependent nodes.  These relationships amongst nodes 
are defined through conditional probabilities.  

BBNs are fundamentally based on the Bayes’ 
theorem that can be stated as follows: 

 
( | )* ( )( | )

( )
P C Pt P PtP Pt C

P C
  

                                                                          (1)  
      

where, ( | )P Pt C is the conditional probability of 
occurrence of parent node ( )Pt given that child node 
( )C occurs. Alternatively, ( | )P C Pt is the probability 
of 𝐶𝐶 given 𝑃𝑃𝑃𝑃 occurs. 

For risk assessment using BBN, each risk event is 
considered as a node and the complex relationships 
between these risk events is captured through 
conditional probabilities. A node probability table 
(NPT) is associated with each node/risk event as 
shown in Fig. 1. This table defines relationship 
between the child node and its parent nodes using 
conditional probabilities. 
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Fig 1: Node Probability Table -BBN 

 
Fig. 2 shows the representation of BBN risk model 
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Fig. 2: Representing BBN in System Dynamics. 
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similar to production rates. Rehab [13] demonstrates 
an effective method to the construction and analysis of 
a Lean manufacturing system using SD. This method 
could be used in construction of production line model. 
Fig.3 depicts a production line model consisting of 
three workstations through which raw material gets 
processed. Raw materials and work in process (WIP) 

at each station are represented as stocks. Procurement 
rate and production rates at each station are flows that 
control the quantity of stocks. The BBN model 
calculates the likelihood of child risk events based on 
their causal relationships with parent nodes and the 
prior probabilities entered. Based on this likelihood of 
child risk event, severity of risk event is calculated. 
Likelihood is the probability of occurrence of risk and 
severity is the severity of this risk in terms of loss in 
performance or resources. We assume proportionality 
between likelihood and severity of risk events. This 
relationship is captured through the use of a lookup 
function or table function. and can be developed with 
expert opinion. The relationship can be entered in the 
form of table function by associating a severity (in 
terms of production loss) with a likelihood range. For 
example, when P(RE3) is between 0 to 0.1, severity of 
risk event 3 is 200 parts. Similarly, when P(RE3) is 
between 0.2-0.3 then severity of risk event 3 is 250 
parts. BBN risk model is connected to the SD 
production line model through a production line 
variable. The production line variable is impacted by 
both the likelihood and severity of risk event. Equation 
(3) shows the calculation of risk event impact using the 
“PULSETRAIN”, an in-built Vensim function that 
relates the impact frequency (1/P(RE)) and severity of 
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nature of risk events through the production line 
model. Usually, KPIs are the system variables that 
trigger a response variable. In the example, RE3 
impacts the production line variable (related to 
production rate at station 1). The impact of risk events 
on the production line is monitored at the station 3 
through a KPI. When the KPI value 
increases/decreases beyond a certain limit, it is setup 
to initiate a risk management (RM) process. The RM 
reduces the likelihood of the RE3. Equation 5 shows 
how P(RE2) is impacted by RM.  A residual risk is 
associated with the risk event, which can be 
determined by the use of data and/or expert judgement. 
P(RM) drives P(RE2) such that when P(RM) is 0, 
P(RE2) remains unchanged and when P(RM) is 1, 
P(RE2) is equal to residual risk. 
 

( 2) ( 2)*(1 ( ))
(Re _ * ( ))

P RE P RE P RM
sidual risk P RM
 


 

                                                                            (5) 
 
This change in value of P(RE2) is reflected on 

P(RE3) and thus, establishing a feedback loop.  
 

 
Fig. 3: Interaction between BBN and SD model. 

 
3.3 Risk Evaluation 

 
The impact of risk events on the production line 

KPIs is examined for risk evaluation. KPIs give a 
holistic idea about the behaviour of the system and aids 
management in decision-making.  

In addition, SD provides a platform to analyze the 
system under several scenarios. Evaluating the system 
under several scenarios, realistic and far-fetched, can 
help gain further insight into the behavior of the system 
and enable companies to prepare for radical or extreme 
situations.   

4. Case Study 

The automotive industry is one of the most 
competitive and risky industries in the manufacturing 
sector. Here, we use a case study from the automotive 
industry to demonstrate the application of the proposed 
method.    

A growing supplier of precision metal components 
and assemblies using fineblanking technology was 
considered for risk assessment. The company operates 
at several locations across the globe including USA, 
Canada, Mexico and China.  

One of the divisions in USA specializes in 
producing several kinds of engine plates and 
transmission parts, which are supplied to major 
automobile manufacturers. The company name and 
other information is withheld due to confidentiality 
reasons. One of the major and strategically important 
customer’s products, Engine Plates, were selected for 
this application. Data regarding the process routing and 
production capacities were acquired using internal 
company database. 

The process routing for producing engine plates, is 
as follows: 

1. Fineblanking operation at 1600-ton press. 
(Production capacity: 3000 - 3750 parts/day) 

2. Drilling station. (Production capacity: 2520 - 
2700 parts/day) 

3. Tapping and Countersink station. 
(Production capacity: 2380 - 2550 part/day) 

4. Grinding operation. (Production capacity: 
1680 - 1800 parts/day) 

5. Belt-sand and Brush Operation. (Production 
capacity: 7000 - 7500 parts/day) 

6. Inspection and Packing operations. 
(Production capacity: 1850 - 2025 parts/day) 

7. Shipping (Capacity: 5500 parts/day) 

 

4.1 Case Study- Risk Identification 
 

A Risk Network map of risks impacting the 
production line was developed with the help of 
industry personnel. General operational risks identified 
by Badurdeen et. al [7] were referred during this phase.  

Manufacturing disruptions or delays are the primary 
risks impacting production line. New product testing 
(NPT), procurement time delays (PTD) and OEE 
factors related risks (OEE) are the major risk events 
leading to the manufacturing delay (MD) risk. Raw 

P(RE3) Severity of Risk
Event 3

Production Line
variable

Raw
Materials

WIP at
Station 1

WIP at
Station 2

WIP at
Station 3Procurement

rate
Production

rate at station
1

Production
rate at Station

2

Production
rate at Station

3

KPI

P(risk
management)

P(RE1) P(RE2)

6 Author name / Procedia Manufacturing 00 (2018) 000–000 

material shortages (RMS), caused by poor supplier 
relationship (PSR), and delivery problems (DP) are the 
major risk events leading to procurement time delay 
(PTD) risk event.  

Impact of risk events were considered at the 
fineblanking station and grinding station. Fineblanking 
station was strategically targeted as it is the first stage 
of the production line and has the highest value 
addition. Grinding station was selected as it is the 
bottleneck station and affects the overall throughput of 
the production line.    

 
 

 

4.2 Case Study - Risk Assessment 
 

Vensim, an SD software, was used to develop the 
BBN and production line models.  

Causal Loop Diagram (CLD) is an effective method 
for defining system variables and boundaries. CLD 
represents the cause & effect relationship between 
system variables, which acts as a useful tool while 
developing the Stock & Flow model. Fig.4 shows a 
CLD of the case study. Cause-effect relationship 
between risk events from BBN model and production 
line variables from production line SD model are 
represented.

 

 
Fig. 4: Causal loop diagram- Case study 

 
 

Based on CLD, BBN and production line SD 
models are developed. 

BBN model consists of risks identified in step1. The 
likelihood of independent risk events and causal 
relationships between risk events is represented in Fig. 
5. Conditional probabilities of each risk event are 
connected using an expression based on equation (2). 
 

 
Fig.5: BBN risk model – Case study. 

 
Fig.6 displays the prior probabilities fed into the BBN 
risk model. Data required to construct these tables 
were obtained by utilizing resources within the 
company (managers). 
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nature of risk events through the production line 
model. Usually, KPIs are the system variables that 
trigger a response variable. In the example, RE3 
impacts the production line variable (related to 
production rate at station 1). The impact of risk events 
on the production line is monitored at the station 3 
through a KPI. When the KPI value 
increases/decreases beyond a certain limit, it is setup 
to initiate a risk management (RM) process. The RM 
reduces the likelihood of the RE3. Equation 5 shows 
how P(RE2) is impacted by RM.  A residual risk is 
associated with the risk event, which can be 
determined by the use of data and/or expert judgement. 
P(RM) drives P(RE2) such that when P(RM) is 0, 
P(RE2) remains unchanged and when P(RM) is 1, 
P(RE2) is equal to residual risk. 
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material shortages (RMS), caused by poor supplier 
relationship (PSR), and delivery problems (DP) are the 
major risk events leading to procurement time delay 
(PTD) risk event.  

Impact of risk events were considered at the 
fineblanking station and grinding station. Fineblanking 
station was strategically targeted as it is the first stage 
of the production line and has the highest value 
addition. Grinding station was selected as it is the 
bottleneck station and affects the overall throughput of 
the production line.    

 
 

 

4.2 Case Study - Risk Assessment 
 

Vensim, an SD software, was used to develop the 
BBN and production line models.  

Causal Loop Diagram (CLD) is an effective method 
for defining system variables and boundaries. CLD 
represents the cause & effect relationship between 
system variables, which acts as a useful tool while 
developing the Stock & Flow model. Fig.4 shows a 
CLD of the case study. Cause-effect relationship 
between risk events from BBN model and production 
line variables from production line SD model are 
represented.
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5. Conditional probabilities of each risk event are 
connected using an expression based on equation (2). 
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risk model. Data required to construct these tables 
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Fig.6: Prior probabilities-BBN risk model 

 
 

This is followed by developing the SD production 
line model as shown in Fig. 7. Each workstation has a 
production capacity, which is the maximum output at 
the workstation without considering risk events and 
WIP constraints. Production Capacities follow a 
Normal distribution, varying between the limits 
mentioned in the process routing, obtained through 
comprehensive time studies performed on several 

operators. In addition, data from previous time studies 
performed by the sales & accounting departments, for 
business planning purposes, were included. Actual 
production rate at each station depends on the 
minimum of WIP quantity at the station and capable 
production rate (production capacity). Work-In-
Progress (WIP) at each station is computed based on 
the difference between entry and exit production rates 
at that station.  

Inspection and packing station involves quality 
check. Defective products are reworked and 
introduced back to the production line. Defects 
percentage was obtained through the quality reports at 
the inspection station.  

Demand follows a Normal distribution obtained 
from demand forecasts calculated by the sales 
department. Demand fulfilment rate is equal to the 
shipment rate. Order backlog is based on the difference 
between demand fulfilment rate and demand. Delay in 
delivery is equal to order backlog divided by demand 
fulfilment rate. Revenue is the difference between 
revenue made from sales and lost sales.   

This production line model could also be considered 
as the baseline model. Baseline model produces results 
similar to the business plan for the year and what the 
industry personnel expect to see without any risks.

 

 
Fig.7: Production line SD model – Case study 

 
The baseline production model was then connected 

to the BBN model for risk assessment as shown in Fig. 
8. Manufacturing delay risk likelihoods (fineblanking 
and grinding), calculated from BBN model, forms the 
basis for impact frequency at the fineblanking and 

grinding stations. Severity of risk events were 
estimated with the help of industry personnel. Since 
the scope of risk assessment is at the production line 
level, proportionality is estimated between severity of 
risk events and risk likelihood.  
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Fig.8: Interaction between BBN and SD model – Case Study 

 
The dynamic nature of risk events is captured 

through risk management variable as shown in Fig. 9. 
Risk management likelihood depends on the delay in 
delivery. A proportional relationship is defined 
between risk management and “Delay in delivery” 
performance indicator. This risk management variable 
mitigates or reduces the likelihood of OEE factors 
related risks using equation 4. The model is then 
simulated for 400 days and the behaviour of the system 
is monitored. 
 

 
Fig. 9: Feedback loop from SD to BBN model – Case Study 

 
4.3 Case Study – Risk Evaluation 
 

The company was interested in understanding the 
impact of variations in the OEE risk and response time 
on the Fineblanking and grinding stations. Table 1 
presents 16 what-if scenarios that were modelled. 
Table 2 shows the data used for the ‘Normal’ and 
‘High’ scenarios for each station. 
 
Table 1: Case Study Scenarios 

S.No. 
Fineblanking station Grinding station 

OEE risk Response 
time OEE risk Response 

time 
1 Normal Normal Normal Normal 
2 High Normal Normal Normal 
3 High Delayed Normal Normal 
4 Normal Delayed Normal Normal 
5 Normal Normal High Normal 
6 Normal Normal High Delayed 
7 Normal Normal Normal Delayed 
8 Normal Delayed Normal Delayed 

9 High Normal High Normal 
10 High Normal High Delayed 
11 High Delayed High Delayed 
12 Normal Delayed High Delayed 
13 Normal Delayed High Normal 
14 High Normal Normal Delayed 
15 High Delayed Normal Delayed 
16 High Delayed High Normal 

Table 2: Variables used in simulation 
    Normal High 

Fineblanking 
Station 

OEE risk mean: 0.5 mean: 0.75 
Response 
time 1 week  1 month 

Grinding 
Station 

OEE risk mean: 0.42 mean: 0.75 

Response 
time 1week 1 month 

 

5. Results 

Delivery performance has become important to 
Original Equipment Manufacturers (OEMs) and their 
suppliers as customers are inclined towards 
manufacturers/service providers having reduced lead 
times. Hence, “Delay in delivery” performance metric 
was chosen to compare between scenarios and analyze 
system’s behaviour.  
 
5.1 Scenarios analysis – delay in delivery KPI 

 
The baseline model shows no delay in delivery, thus 

leading to maximum revenue. The cumulative revenue 
generated is $4.132 million over a period of 400 days. 
Scenarios analysis revealed some interesting aspects 
about the system’s behavior which otherwise would 
have been neglected. Fig. 10 displays the performance 
of the line under a few scenarios (selected based on the 
trend observed) through “Delay in delivery” 
performance metric. Some of the interesting 
observations are: 

a) Scenario 1, in Fig. 10(a), has a higher delay 
in delivery when compared to scenario 2, in Fig. 10(b), 
despite having a lower risk impacting the line. With a 
higher risk at the fineblanking station in scenario 2, the 
delay in delivery is quite high initially. This high delay 
results in a higher risk response likelihood and this in 
turn results in an increased risk mitigation. Due to the 
increased risk mitigation, “Delay in delivery”, in 
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Fig.6: Prior probabilities-BBN risk model 
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performed by the sales & accounting departments, for 
business planning purposes, were included. Actual 
production rate at each station depends on the 
minimum of WIP quantity at the station and capable 
production rate (production capacity). Work-In-
Progress (WIP) at each station is computed based on 
the difference between entry and exit production rates 
at that station.  

Inspection and packing station involves quality 
check. Defective products are reworked and 
introduced back to the production line. Defects 
percentage was obtained through the quality reports at 
the inspection station.  

Demand follows a Normal distribution obtained 
from demand forecasts calculated by the sales 
department. Demand fulfilment rate is equal to the 
shipment rate. Order backlog is based on the difference 
between demand fulfilment rate and demand. Delay in 
delivery is equal to order backlog divided by demand 
fulfilment rate. Revenue is the difference between 
revenue made from sales and lost sales.   

This production line model could also be considered 
as the baseline model. Baseline model produces results 
similar to the business plan for the year and what the 
industry personnel expect to see without any risks.

 

 
Fig.7: Production line SD model – Case study 

 
The baseline production model was then connected 

to the BBN model for risk assessment as shown in Fig. 
8. Manufacturing delay risk likelihoods (fineblanking 
and grinding), calculated from BBN model, forms the 
basis for impact frequency at the fineblanking and 

grinding stations. Severity of risk events were 
estimated with the help of industry personnel. Since 
the scope of risk assessment is at the production line 
level, proportionality is estimated between severity of 
risk events and risk likelihood.  
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Fig.8: Interaction between BBN and SD model – Case Study 

 
The dynamic nature of risk events is captured 

through risk management variable as shown in Fig. 9. 
Risk management likelihood depends on the delay in 
delivery. A proportional relationship is defined 
between risk management and “Delay in delivery” 
performance indicator. This risk management variable 
mitigates or reduces the likelihood of OEE factors 
related risks using equation 4. The model is then 
simulated for 400 days and the behaviour of the system 
is monitored. 
 

 
Fig. 9: Feedback loop from SD to BBN model – Case Study 

 
4.3 Case Study – Risk Evaluation 
 

The company was interested in understanding the 
impact of variations in the OEE risk and response time 
on the Fineblanking and grinding stations. Table 1 
presents 16 what-if scenarios that were modelled. 
Table 2 shows the data used for the ‘Normal’ and 
‘High’ scenarios for each station. 
 
Table 1: Case Study Scenarios 

S.No. 
Fineblanking station Grinding station 

OEE risk Response 
time OEE risk Response 

time 
1 Normal Normal Normal Normal 
2 High Normal Normal Normal 
3 High Delayed Normal Normal 
4 Normal Delayed Normal Normal 
5 Normal Normal High Normal 
6 Normal Normal High Delayed 
7 Normal Normal Normal Delayed 
8 Normal Delayed Normal Delayed 

9 High Normal High Normal 
10 High Normal High Delayed 
11 High Delayed High Delayed 
12 Normal Delayed High Delayed 
13 Normal Delayed High Normal 
14 High Normal Normal Delayed 
15 High Delayed Normal Delayed 
16 High Delayed High Normal 

Table 2: Variables used in simulation 
    Normal High 

Fineblanking 
Station 

OEE risk mean: 0.5 mean: 0.75 
Response 
time 1 week  1 month 

Grinding 
Station 

OEE risk mean: 0.42 mean: 0.75 

Response 
time 1week 1 month 

 

5. Results 

Delivery performance has become important to 
Original Equipment Manufacturers (OEMs) and their 
suppliers as customers are inclined towards 
manufacturers/service providers having reduced lead 
times. Hence, “Delay in delivery” performance metric 
was chosen to compare between scenarios and analyze 
system’s behaviour.  
 
5.1 Scenarios analysis – delay in delivery KPI 

 
The baseline model shows no delay in delivery, thus 

leading to maximum revenue. The cumulative revenue 
generated is $4.132 million over a period of 400 days. 
Scenarios analysis revealed some interesting aspects 
about the system’s behavior which otherwise would 
have been neglected. Fig. 10 displays the performance 
of the line under a few scenarios (selected based on the 
trend observed) through “Delay in delivery” 
performance metric. Some of the interesting 
observations are: 

a) Scenario 1, in Fig. 10(a), has a higher delay 
in delivery when compared to scenario 2, in Fig. 10(b), 
despite having a lower risk impacting the line. With a 
higher risk at the fineblanking station in scenario 2, the 
delay in delivery is quite high initially. This high delay 
results in a higher risk response likelihood and this in 
turn results in an increased risk mitigation. Due to the 
increased risk mitigation, “Delay in delivery”, in 
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scenario 2, in the latter part of simulation is much 
lower when compared to that of scenario 1    

b) Contrary to observation (a), scenario 1 and 
scenario 5 show a different trend. Scenario 5 shows a 
higher delay in delivery despite having a higher risk 
response likelihood. The reason for this is that the 
grinding station is the bottleneck process and any 
manufacturing delay at the grinding station is tough to 
compensate for. 

c) Scenario 5 shows a higher delay in delivery 
than in case of scenario 9 despite having a high risk at 
just the grinding station. In scenario 9, a higher risk at 
both fineblanking and grinding stations results in a 
higher “Delay in delivery” initially. This results in an 
increase in risk response likelihood and thus leads to 
risk mitigation. Hence, a lower delay in delivery is 
seen towards the latter part of simulation in scenario 9. 

 
  

(a) Delay in delivery – Scenario 1 (b) Delay in delivery – Scenario 2 

 
 

 

 

(c) Delay in delivery – Scenario 5 (d) Delay in delivery – Scenario 9 
Fig.  10: Delay in delivery – scenarios analysis

Almost all delay in delivery was due to the low 
difference between demand and demand fulfilment 
rate. A delay in delivery was bound to occur during a 
risk event. Most of the production delays occurring 
during a risk event were carried until the end of 
simulation period. However, industrialists have several 
action plans to recover production losses. Overtime is 
the most common way of resolving this issue.  
 
5.2 Effect of overtime on scenarios 
 

Extra capacity (through overtime) was added to a 
few scenarios, which were selected based on initial 

results, and simulated for 400 days. Overtime of 7.5 
hours/day, 3.75 hours/shift, when the delay in delivery 
exceeds 1.5 days. An overtime cost was associated 
with the revenue equation.  

Extra capacity added was deterministic in nature in 
order to simplify the case. Fig. 11 displays the results 
of this experiment. 

a) Scenario 1: As seen in Fig. 11(a), 
performance of production line improves and delay in 
delivery stays under one day for the majority of 
simulation period. Cumulative revenue shows an 
increase of $650,000 with added capacity. 
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b) Scenario 5: As seen in Fig. 11(b), extra 
capacity is added during the initial phase of the 
simulation period when a high risk was affecting the 
line. Cumulative revenue increases form $3.73 million 
to $3.75 million when extra capacity (overtime) is 
utilized. 

c) Scenario 11: As seen in Fig. 11 (c), scenario 
11 also shows a significant improvement in 
performance with added capacity and aggressive risk 

response. Cumulative revenue increases from -$1.4 
million to $3.719 million.  

d) Scenario 16: As seen in Fig. 11(d), extra 
capacity is utilized several times initially. Risk 
response and extra capacity reduce the delay in 
delivery to a huge extent. There is no delay in delivery 
after 130th day. Cumulative revenue increases from 
$1.735 million to $3.936 million. 

  

(a) Impact of added capacity on scenario 1 (b) Impact of added capacity on scenario 5 

  

(c) Impact of added capacity on scenario 11 (c) Impact of added capacity on scenario 16 
Fig. 11: Impact of added capacity on scenarios 

 
 
6. Conclusions 
 

The proposed PLRA methodology provides a 
versatile technique to assess the impact of risks 
affecting production line performance. The BBN 
model captures relationships between risk events and 
calculates their likelihoods. The dynamic nature of this 
BBN model is captured by combining it with SD 
production line model. The impact of risk events on the 
production line is examined through various KPIs. 

Comparing the production line model (affected by 
risks) to the baseline model shows a “Delay in 
delivery” of 1.5-2 days resulting in a loss in revenue of 
almost $900,000. Further, analyzing several scenarios 
enables understanding numerous key aspects of the 
system’s behavior. 

These results not only confirm the importance of 
risk assessment at the production line level but also act 
as a great reference for production planning and risk 
management units. The likelihood of risk exposure is 
well captured through BBN and the impact of risks on 
production line KPIs like delay in delivery, demand 
fulfilment rate and revenue through SD. This 
combined approach of SD-BBN bridges the research 
gaps identified with the current techniques of risk 
assessment.  

Future work would include an extended risk 
taxonomy at the production line level and adding back 
propagation capability. Back propagation is one of the 
key features of BBN, which help calculate the 
likelihood of parent nodes based on the likelihood of 
child node, thus identifying the root cause.  
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rate. A delay in delivery was bound to occur during a 
risk event. Most of the production delays occurring 
during a risk event were carried until the end of 
simulation period. However, industrialists have several 
action plans to recover production losses. Overtime is 
the most common way of resolving this issue.  
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Extra capacity (through overtime) was added to a 
few scenarios, which were selected based on initial 

results, and simulated for 400 days. Overtime of 7.5 
hours/day, 3.75 hours/shift, when the delay in delivery 
exceeds 1.5 days. An overtime cost was associated 
with the revenue equation.  

Extra capacity added was deterministic in nature in 
order to simplify the case. Fig. 11 displays the results 
of this experiment. 

a) Scenario 1: As seen in Fig. 11(a), 
performance of production line improves and delay in 
delivery stays under one day for the majority of 
simulation period. Cumulative revenue shows an 
increase of $650,000 with added capacity. 
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The proposed PLRA methodology provides a 
versatile technique to assess the impact of risks 
affecting production line performance. The BBN 
model captures relationships between risk events and 
calculates their likelihoods. The dynamic nature of this 
BBN model is captured by combining it with SD 
production line model. The impact of risk events on the 
production line is examined through various KPIs. 

Comparing the production line model (affected by 
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delivery” of 1.5-2 days resulting in a loss in revenue of 
almost $900,000. Further, analyzing several scenarios 
enables understanding numerous key aspects of the 
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risk assessment at the production line level but also act 
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management units. The likelihood of risk exposure is 
well captured through BBN and the impact of risks on 
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key features of BBN, which help calculate the 
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