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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Manufacturing Engineering Society International Conference 
2017. 
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract 

Balancing trade-offs between production cost and holding cost is critical for production and operations 
management. Utilization of a production line affects production cost, which relates to makespan, and work-in-process 
(WIP) inventories in a production line affect holding cost, which relate to flowtime. There are trade-offs between two 
objectives, to minimize makespan and to minimize flowtime. Without addressing trade-off balancing issues in flow 
shop scheduling, WIP inventories are still high in manufacturing, generating unnecessary holding cost. However, 
utilization is coupled with WIP inventories. Low WIP inventory levels might lower utilization and generate high 
production cost. Most existing constructive heuristics focus only on single-objective optimization. In the current 
literature, the NEH heuristic proposed by Nawaz, Enscore, and Ham (1983) is the best constructive heuristic to 
minimize makespan, and the LR heuristic proposed by Liu and Reeves (2001) is the best to minimize flowtime. In 
this paper, we propose a current and future deviation (CFD) heuristic to balance trade-offs between makespan and 
flowtime minimizations. Based on 5400 randomly generated instances, 120 instances in Taillard’s benchmarks, and 
one-year historical records of operating room scheduling from University of Kentucky HealthCare (UKHC), our CFD 
heuristic outperforms the NEH and LR heuristics on trade-off balancing, and achieves the most stable performances 
from the perspective of statistical process control (SPC). 
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1. Introduction 

Permutation flow shop production is widely used in 

automobile industry, such as assembly lines. The 
objective of production and operations management on 
flow shop production scheduling is to improve the 
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Permutation flow shop production is widely used in 

automobile industry, such as assembly lines. The 
objective of production and operations management on 
flow shop production scheduling is to improve the 
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efficiency of manufacturing system [1]. Minimization 
of makespan and minimization of flowtime are two 
fundamental criteria in flow shop scheduling, because 
many other performance measures are derived out 
from them, such as improving utilization of production 
lines, meeting due dates, reducing lateness or earliness, 
reducing work-in-process inventories, smoothing 
material flows in supply chains, etc. 

Makespan is defined as the completion time at 
which the last job leaves the production line. 
Minimization of makespan suggests maximization of 
utilization, because utilization of one machine in a 
production line equals to the sum of processing times 
or workload divided by its makespan. Flowtime is 
defined as the total completion time of all jobs, and it 
affects WIP inventory levels. Production cost and 
holding cost directly relate to utilization of a 
production line and WIP inventory levels between 
machines, respectively [1, 2]. As both production cost 
and holding cost are important to production and 
operations management in manufacturing, production 
scheduling should minimize makespan and minimize 
flowtime simultaneously to achieve multi-objective 
optimization, especially for production planning in a 
long run. 

Both minimization of makespan and minimization 
of flowtime are NP-complete for permutation flow 
shop production scheduling [3, 30]. Thus, it is difficult 
to obtain optimal solutions to a general n-job m-
machine problem within acceptable computation time. 
Moreover, it has been proved that both minimizations 
are not consistent with each other [4], which means 
that minimizing one completion time does not 
necessarily minimize the other. Currently, few 
heuristics address such a relationship of inconsistency 
between minimizations of makespan and flowtime, 
and provide effective and efficient solutions to trade-
off balancing in flow shop production scheduling. 

Given the inconsistency between minimizations of 
makespan and flowtime, and to achieve stable 
production performance, we propose a current and 
future deviation (CFD) heuristic to balance trade-offs 
between makespan and flowtime minimizations in 
permutation flow shop scheduling. First of all, we 
derive out the lower and upper bounds of completion 
time for each job j on each machine i. Then, we 
calculate the deviations from lower bound to minimize 
the flow time and deviations from the upper bound to 
minimize the makespan. Consequently, in the initial 
sequence, we assign higher weights to current 
deviations generated by jobs in the head than those 

generated by jobs in the tail of the sequence. 
Furthermore, we adopt the insertion technique to 
improve the solution qualities. 

The structure of the rest paper is organized as 
follows: in section 2, we provide the literature review 
about the existing heuristics for single objective and 
multi-objective. In section 3, the problem description 
is provided. The derivations of lower and upper bound 
and CFD heuristic are presented in section 4. Section 5 
shows the results of computational experiment based 
on small-scale instances, classic Taillard’s benchmark 
[5] and historical data from University of Kentucky 
HealthCare (UKHC). The conclusions and future work 
are discussed in section 6. 

2. Literature Review 

This section provides the literature review on 
permutation flow shop scheduling based on makespan 
minimization, min(Cmax), flowtime minimization, 
min(∑Cj), multi-objective optimization. In general, 
there are two types of methods to generate the solutions 
for flow shop production scheduling: one is the exact 
methods and heuristics. For example, the branch and 
bound (B&B) method is a typical example of exact 
methods. However, it is extremely time consuming for 
exact methods to generate optimal solutions, and thus, 
it is impractical to use them even for medium-size 
problems. Therefore, constructive heuristics and/or 
meta-heuristics are preferred for production 
scheduling in industry. Literature review focuses on 
constructive heuristics in flow shop production 
scheduling, since the computation time of meta-
heuristics is much longer than that of constructive 
heuristics, and both types of heuristics provide near-
optimal solutions.  

2.1 Review of makespan minimization objective 

Minimization of makespan for permutation flow 
shop scheduling problem has been proved to be NP-
complete for a m-machine flow shop [6]. From 
Johnson’s algorithm [7], the optimal solution of 
makespan can be obtained with O(n*log n) for two-
machine flow shop. Campbell et al. proposed CDS 
heuristic [8], which m machines were regrouped as m-
1 artificial two-machines flow shops. Then, apply the 
Johnson’s algorithm to solve these m-1 two-machine 
flow shop problems, and the sequence with minimum 
makespan is selected as the final solution. In 1965, a 
heuristic is proposed by Palmer based on the concept 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2018.07.005&domain=pdf
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efficiency of manufacturing system [1]. Minimization 
of makespan and minimization of flowtime are two 
fundamental criteria in flow shop scheduling, because 
many other performance measures are derived out 
from them, such as improving utilization of production 
lines, meeting due dates, reducing lateness or earliness, 
reducing work-in-process inventories, smoothing 
material flows in supply chains, etc. 

Makespan is defined as the completion time at 
which the last job leaves the production line. 
Minimization of makespan suggests maximization of 
utilization, because utilization of one machine in a 
production line equals to the sum of processing times 
or workload divided by its makespan. Flowtime is 
defined as the total completion time of all jobs, and it 
affects WIP inventory levels. Production cost and 
holding cost directly relate to utilization of a 
production line and WIP inventory levels between 
machines, respectively [1, 2]. As both production cost 
and holding cost are important to production and 
operations management in manufacturing, production 
scheduling should minimize makespan and minimize 
flowtime simultaneously to achieve multi-objective 
optimization, especially for production planning in a 
long run. 

Both minimization of makespan and minimization 
of flowtime are NP-complete for permutation flow 
shop production scheduling [3, 30]. Thus, it is difficult 
to obtain optimal solutions to a general n-job m-
machine problem within acceptable computation time. 
Moreover, it has been proved that both minimizations 
are not consistent with each other [4], which means 
that minimizing one completion time does not 
necessarily minimize the other. Currently, few 
heuristics address such a relationship of inconsistency 
between minimizations of makespan and flowtime, 
and provide effective and efficient solutions to trade-
off balancing in flow shop production scheduling. 

Given the inconsistency between minimizations of 
makespan and flowtime, and to achieve stable 
production performance, we propose a current and 
future deviation (CFD) heuristic to balance trade-offs 
between makespan and flowtime minimizations in 
permutation flow shop scheduling. First of all, we 
derive out the lower and upper bounds of completion 
time for each job j on each machine i. Then, we 
calculate the deviations from lower bound to minimize 
the flow time and deviations from the upper bound to 
minimize the makespan. Consequently, in the initial 
sequence, we assign higher weights to current 
deviations generated by jobs in the head than those 

generated by jobs in the tail of the sequence. 
Furthermore, we adopt the insertion technique to 
improve the solution qualities. 

The structure of the rest paper is organized as 
follows: in section 2, we provide the literature review 
about the existing heuristics for single objective and 
multi-objective. In section 3, the problem description 
is provided. The derivations of lower and upper bound 
and CFD heuristic are presented in section 4. Section 5 
shows the results of computational experiment based 
on small-scale instances, classic Taillard’s benchmark 
[5] and historical data from University of Kentucky 
HealthCare (UKHC). The conclusions and future work 
are discussed in section 6. 

2. Literature Review 

This section provides the literature review on 
permutation flow shop scheduling based on makespan 
minimization, min(Cmax), flowtime minimization, 
min(∑Cj), multi-objective optimization. In general, 
there are two types of methods to generate the solutions 
for flow shop production scheduling: one is the exact 
methods and heuristics. For example, the branch and 
bound (B&B) method is a typical example of exact 
methods. However, it is extremely time consuming for 
exact methods to generate optimal solutions, and thus, 
it is impractical to use them even for medium-size 
problems. Therefore, constructive heuristics and/or 
meta-heuristics are preferred for production 
scheduling in industry. Literature review focuses on 
constructive heuristics in flow shop production 
scheduling, since the computation time of meta-
heuristics is much longer than that of constructive 
heuristics, and both types of heuristics provide near-
optimal solutions.  

2.1 Review of makespan minimization objective 

Minimization of makespan for permutation flow 
shop scheduling problem has been proved to be NP-
complete for a m-machine flow shop [6]. From 
Johnson’s algorithm [7], the optimal solution of 
makespan can be obtained with O(n*log n) for two-
machine flow shop. Campbell et al. proposed CDS 
heuristic [8], which m machines were regrouped as m-
1 artificial two-machines flow shops. Then, apply the 
Johnson’s algorithm to solve these m-1 two-machine 
flow shop problems, and the sequence with minimum 
makespan is selected as the final solution. In 1965, a 
heuristic is proposed by Palmer based on the concept 
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of ‘slop index’ [9], which the solution is generated by 
decreasing order of SI. Gupta [10] proposed a revised 
function of SI, and the author showed that the new 
proposed heuristic obtained better performance than 
Palmer’s. 

The famous NEH heuristic was proposed by Nawaz 
et al. in 1983 [11]. NEH heuristic has two different 
phases: initial sequence is generated by sorting jobs 
according to non-increasing order of total processing 
times on all machines. In second phase, select first two 
jobs from the initial sequence to create a partial 
sequence with minimum makespan value. Then, insert 
the next job one by one from initial sequence in orders 
into all possible locations of current partial sequence 
and select the partial sequence with minimum 
makespan. Repeat the insertion step until all jobs are 
removed from the initial sequence. In the work of Ruiz 
[12], they evaluated 25 existing heuristics and the 
results show that the NEH heuristic is the best heuristic 
for Taillard’s benchmarks. Meanwhile, the frame of 
NEH heuristic has been applied in many existing 
heuristics for different objectives. Kalczynski and 
Kamburowski proved that NEH was the best 
constructive heuristic for permutation flow shop 
scheduling problem [13]. 

2.2 Review of flowtime minimization objective 

Minimization of flowtime is also NP-complete for 
permutation flow shop scheduling [31], and has been 
studied for several decades. Ho and Chang [14] and 
Rajendran and Chauduri [15] proposed several 
different effective heuristics for flowtime objective.  

In 1993, Rajendran proposed a heuristic to 
minimize the flowtime, named as Raj [16]. In this 
heuristic, the jobs are sequenced according to the 
ascending order of Tj, where , 
where pj,i is the processing time of job j on machine i. 
Then select the first job as the partial sequence, and 
insert the rest job one by one into all possible location 
of the partial sequence. From the computational 
results, the Raj heuristic can obtain better solutions 
than heuristics proposed by Ho and Chang [14] and 
Rajendran and Chauduri [15]. 

WY heuristic, proposed by Woo and Yim [17], also 
applied the insertion strategy of NEH heuristic. The 
difference of WY heuristic is that the initial sequence 
is not required, which means the insertion phase has to 
be applied to each unscheduled job. Then the partial 
sequence with minimum flowtime is selected. 

According to the experiment result, the performance of 
WY is the best among CDS, NEH and Raj on mean 
flowtime objective.  

In 2003, LF heuristic presented by Framinan [18] 
combined the insertion method of NEH and forward 
pair-wise exchange. The pair-wise exchange method 
was applied on the partial sequence that exchange any 
two jobs from insertion phase, and the new partial 
sequence is selected if a better performance is 
obtained. LF heuristic is better than WY on flowtime 
minimization objective. 

In 2009, Laha and Sarin revised the LF heuristic, 
denote as LF-LS [19]. In this heuristic, the interchange 
method was modified, and the authors proved that the 
performance of LF heuristic is improved if the new 
exchange method was applied. However, for LF and 
LF-LS, the computational complexity is increased by 
one order because of the pair-wise step. 

Liu and Reeves presented LR heuristic in their work 
[20]. An index function was developed, which 
considered the effect of idle time and the expect 
completion time of unscheduled jobs. The final 
solution was generated by sequencing jobs following 
ascending order of index function value. In their work, 
the author showed that LR heuristic outperformed 
existing heuristics, such as Ho and Chang [14] and WY 
[17]. From the literature, the LR is the best constructive 
heuristic to minimize flowtime with the computational 
complexity of O(n3m). 

2.3 Review of multi-objective minimization 

The heuristic proposed by Ho and Chang [14], they 
claimed that the performance of proposed heuristic is 
better than other existing heuristics on makespan, 
flowtime and total idle time minimization. Framinan 
et al. [21] developed a multi-objective heuristic to 
minimize the makespan and flowtime, and the NEH 
insertion method was applied. In this heuristic, a 
function Y = w* Cmax (n/2) + (1-w)* ∑Cj was 
developed, and the partial sequence with minimum Y 
is selected as current partial sequence. They compared 
the proposed heuristic with other existing heuristics, 
such as WY and R94 [22] and R95 [23]. The results 
show that the performance of the heuristic is better 
than others. However, in their work, Ho heuristic [24] 
can obtain better solutions than Framinan’s heuristic 
when the flowtime minimization objective is given a 
large weight. 
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Furthermore, a lot of evolutionary algorithms were 
developed to solve the flow shop scheduling problem. 
For example, Varadharajan and Rajendran [25] 
applied the simulated annealing (SA) algorithm to 
minimize flowtime and makespan. Sayadi et al. [26] 
combine the firefly metaheuristic and local search 
method to solve the makespan minimization problem 
in permutation flow shop. However, the computation 
time of meta-heuristic is much longer than those of 
constructive heuristics.  

For more details about trade-off balacning in flow 
sho shop scheduling and in manufacturing systems, we 
refer readers to [31, 32]. 

3. Problem description 

In a permutation flow shop, n jobs must be 
processed on m machines, and follow the same order 
from the first machine to the last machine. Each 
machine can only process one job at the same time, 
pre-emption is not allowed, and setup times are 
included in processing times. In order to describe the 
problem, the following notation are used in this paper: 

n The number of jobs 
m The number of machines 

pj,i 
The processing time of job j on 
machine i 

Cj,i 
The completion time of job j on 
machine i 

LBj,i The lower bound of Cj,i. 
UBj,i The upper bound of Cj,i. 

DevUB
j,i The deviation of Cj,i from the UBj,i 

DevLB
j,i The deviation of Cj,i from the LBj,i

The calculation method of makespan and flowtime 
for permutation flow shop is discussed as follows. As 
the all jobs are prepared to be processed on first 
machine, there is no idle time on first machine and the 
completion time for each job on each machine can be 
generated by following equations: 
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4. CFD heuristic 

The proposed CFD heuristic consists of two phases: 
the initial sequence is generated based on the 
deviations from lower bound and upper bound. In the 
second phase, we applied the insertion technique to 
further improve the solutions. In this section, we first 
introduce the calculation of lower and upper bounds, 
then the initial sequence generation is given, and at 
last, the procedure of the CFD heuristic is discussed. 

4.1 Lower and upper bound generation 

The sequence-independent lower and upper bounds 
for machine i are calculated based on the minimum 
and maximum idle time on machine i respectively. The 
minimum idle time (minIT) on machine i can be 
obtained by a fast flow from machine i-1 and a slow 
flow out of machine i. Moreover, the maximum idle 
time (maxIT) on machine i are generated by a slow 
flow from machine i-1 and a fast flow out of machine 
i. Therefore, the calculation method of minimum and 
maximum idle time is introduced as follows: 
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where LB0,i= LBj,0= 0 and UB0,i= UBj,0= 0. The ������� 
and ������� are the processing time of jth job on machine 
i that follow the decreasing and increasing order of 
processing time of all jobs on machine i. In addition, 
according to the equation 6 to 11, the lower bound 
(LBj,i) and upper bound (UBj,i) can be computed by 
following equations: 
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of ‘slop index’ [9], which the solution is generated by 
decreasing order of SI. Gupta [10] proposed a revised 
function of SI, and the author showed that the new 
proposed heuristic obtained better performance than 
Palmer’s. 
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minimize the makespan and flowtime, and the NEH 
insertion method was applied. In this heuristic, a 
function Y = w* Cmax (n/2) + (1-w)* ∑Cj was 
developed, and the partial sequence with minimum Y 
is selected as current partial sequence. They compared 
the proposed heuristic with other existing heuristics, 
such as WY and R94 [22] and R95 [23]. The results 
show that the performance of the heuristic is better 
than others. However, in their work, Ho heuristic [24] 
can obtain better solutions than Framinan’s heuristic 
when the flowtime minimization objective is given a 
large weight. 
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constructive heuristics.  
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included in processing times. In order to describe the 
problem, the following notation are used in this paper: 

n The number of jobs 
m The number of machines 

pj,i 
The processing time of job j on 
machine i 

Cj,i 
The completion time of job j on 
machine i 

LBj,i The lower bound of Cj,i. 
UBj,i The upper bound of Cj,i. 

DevUB
j,i The deviation of Cj,i from the UBj,i 

DevLB
j,i The deviation of Cj,i from the LBj,i

The calculation method of makespan and flowtime 
for permutation flow shop is discussed as follows. As 
the all jobs are prepared to be processed on first 
machine, there is no idle time on first machine and the 
completion time for each job on each machine can be 
generated by following equations: 
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4. CFD heuristic 

The proposed CFD heuristic consists of two phases: 
the initial sequence is generated based on the 
deviations from lower bound and upper bound. In the 
second phase, we applied the insertion technique to 
further improve the solutions. In this section, we first 
introduce the calculation of lower and upper bounds, 
then the initial sequence generation is given, and at 
last, the procedure of the CFD heuristic is discussed. 

4.1 Lower and upper bound generation 

The sequence-independent lower and upper bounds 
for machine i are calculated based on the minimum 
and maximum idle time on machine i respectively. The 
minimum idle time (minIT) on machine i can be 
obtained by a fast flow from machine i-1 and a slow 
flow out of machine i. Moreover, the maximum idle 
time (maxIT) on machine i are generated by a slow 
flow from machine i-1 and a fast flow out of machine 
i. Therefore, the calculation method of minimum and 
maximum idle time is introduced as follows: 
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where LB0,i= LBj,0= 0 and UB0,i= UBj,0= 0. The ������� 
and ������� are the processing time of jth job on machine 
i that follow the decreasing and increasing order of 
processing time of all jobs on machine i. In addition, 
according to the equation 6 to 11, the lower bound 
(LBj,i) and upper bound (UBj,i) can be computed by 
following equations: 
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4.2 Initial sequence generation 

In the CFD heuristic, the jobs are divided into two 
groups: scheduled job set (S) and unscheduled job set 
(U). Because the CFD heuristic aims to balance the 
trade-off between the makespan and flowtime, there 
are two different types of current and future deviation 
are developed: (1) For makespan objective, we 
minimize the deviation from upper bound, because it 
less likely generate idle time on previous machines; 
(2) For flowtime objective, we minimize the deviation 
from lower bound, which can generate small idle times 
on previous machines, depending on the value of 
completion time on previous machines. The steps of 
initial sequence generation are shown as follows: 
Step 1:  
Set location index k=1. Set  and 

. 
Step 2:  
Select the jth job, denote as J[j] in U (j=1,…,n-k+1), and 
insert into kth position of S. Then we calculate the 
average processing time (AvePi) on each machine of 
the jobs in U except the J[j]. We generated n-k artificial 
jobs with AvePi as the processing time of each artificial 
job on each machine. These artificial jobs are 
temporarily appended to S from (k+1)th to nth in S. 
Step 3:  
Computed the completion times (Cji) of { } by 
applying the equation (1) to (3). Then, the current and 
future deviations for each objective can be generated 
by following equations: 

 
(14) 

  (15) 

 
(16) 

 
(17) 

  (18) 

  (19) 

The total deviation (TD) can be obtained by the 

following equation: 
 (20) 

Where the α is the preference factor (α=0:0.1:1) for 
two objectives which is obtained from decision 
makers. Then the job J[j] with minimum value of total 
deviation (TDj) will be selected and inserted to kth 
location of S. 
Step 4:  
Remove the select job J[j] from the U. If k<n-1, set 
k=k+1 and go to step 2. If k=n-1, append the remaining 
job in U to S, and save the S as initial sequence {π}. 

 
The reasons for the development of weighting 

factors (m-i+1 in equations 14-17, n-k+1 for current 
deviations and n-k for future deviations in equation 18-
19) are explained as follows: 
 From equations 14-17, the deviations generated 

on early machines have greater effects than those 
generated on later machines [27]. Therefore, the 
m-i+1 shows the decreasing effects as the 
machine number increases. 

 Because the completion times of current job are 
fixed, we assign larger weight (n-k+1) on current 
deviations than future deviations [28, 29]. In 
addition, since the future deviation is generated by 
all unscheduled jobs, we divide future deviations 
by (n-k) to balance the effects between current and 
future deviations. 

4.3 CFD heuristic 

We use technique of insertion to further improve 
the initial solutions. Since our CFD heuristic is 
designed for balancing the trade-off between 
makespan and flowtime, we introduce the preference 
factor α into our insertion scheme. The steps of the 
CFD heuristic are presented as below: 
Step 1:  
Generate the initial sequence (π) using the initial 
sequence generation method from section 4.2. 
Step 2: 
Set k=2. Select the first two jobs from π to create a new 
k-jobs partial sequence . Then exchange the 
position of these two jobs, and calculate the value of 
RIV in the following equations for two candidate 
partial sequences: 
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where ���� and ����� are makespan and flowtime for 
���. The candidate partial sequence with minimum 
RIV is selected as current partial sequence ���. 
Step 3: 
Set k=k+1, choose kth job from initial sequence and 
insert to all k possible locations of ���. Calculate the 
RIV value for k candidate sequences. Update the ��� 
by the candidate sequence with minimum RIV. 
Step 4: 
If k<n, go to Step 3, otherwise output the current 
partial sequence ��� as the final solution. 
 

The computational complexity of our CFD 
heuristic is determined by the insertion phase in Step 
3. Hence, the CFD heuristic has the same 
computational complexity as the NEH and LR 
heuristics, which is ������. 
5. Computational results 

In the computational experiment, we compared our 
CFD heuristic with the NEH and LR heuristics on 
makespan (α=1) minimization, flowtime (α=0) 
minimization, and trade-off (α=0.5) minimization 
objectives based on random small-scale instances and 
Taillard’s benchmark. Besides, we use the statistical 
process control to verify our CFD heuristic is better 
than the other two on historical OR data at UKHC.  

5.1 Case Studies on Various Instances 

We test our CFD heuristic on both small-scale and 
large-scale instances. The processing times for small-
scale instances are randomly generated following the 
uniform distribution in [1, 99]. For small-scale 
instances, the number of jobs is 5, 6, 7, 8, 9, 10, and 
the number of machines is 3, 5, 7, 9, 11, 13, 15, 17, 19. 
Thus, there are 54 combinations. For each 
combination, 100 cases are randomly generated. 
Totally, we have 5400 instances for small-scale.  

For large-scale instances, classic Taillard’s 
benchmarks are used to test the performances of 
heuristics for flow shop scheduling, consisting of 120 

instances in 12 combinations, where the number of 
jobs is 20, 50, 100, 200 or 500, and the number of 
machines is 5, 10 or 20. In each combination, there are 
10 instances. 

We have three criteria to evaluate the performances 
of heuristics in the following equations: 
  Average relative percent deviation (ARPD) for 

makespan: 

ARPD� � 1
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����� �
�
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  Average relative percent deviation (ARPD) for 
flowtime: 
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  Trade-off value: 
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where the Ci and SCi are makespan and flowtime for 
ith instance. For small cases, MinCi and MinSCi are 
optimal solutions obtained by enumeration method. 
For Taillard’s benchmark, MinCi and MinSCi are the 
best solutions for the ith instance generated from three 
compared heuristics. N is the number of instances for 
each combination. N is 100 for small-scale instances 
but 10 for large-scale instances. β is the preference 
factor to evaluate the trade-off value, changing from 0 
to 1 with the step of 0.1. 
 
Table 1. ARPDs (%) of three heuristics for makespan 
and flowtime (S for small-scale and L for large-scale) 

CFD NEH LR 
ARPD S L S L S L 
Cmax 

(α=1) 1.3 3.5 1.3 3.3 11.1 12.5 

ΣCj 
(α=0) 1.1 1.2 6.6 8.2 1.4 0.5 

From the Table 1, for small-scale instances, we can 
see that the CFD heuristic has the smallest ARPD of 
1.3% on makespan minimization, which is same as the 
NEH heuristic. For flowtime minimization, the CFD 
generates the smallest ARPD of 1.1%, better than the 
LR heuristic’s 1.4%.  

In large-scale instances, the CFD heuristic can 
obtain 3.5% of ARPD on makespan minimization 
objective, slightly larger than NEH heuristic of 3.3%. 
The LR has the worst ARPD of 12.5% on the 
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In the CFD heuristic, the jobs are divided into two 
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(U). Because the CFD heuristic aims to balance the 
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are two different types of current and future deviation 
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minimize the deviation from upper bound, because it 
less likely generate idle time on previous machines; 
(2) For flowtime objective, we minimize the deviation 
from lower bound, which can generate small idle times 
on previous machines, depending on the value of 
completion time on previous machines. The steps of 
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Set location index k=1. Set  and 
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Step 2:  
Select the jth job, denote as J[j] in U (j=1,…,n-k+1), and 
insert into kth position of S. Then we calculate the 
average processing time (AvePi) on each machine of 
the jobs in U except the J[j]. We generated n-k artificial 
jobs with AvePi as the processing time of each artificial 
job on each machine. These artificial jobs are 
temporarily appended to S from (k+1)th to nth in S. 
Step 3:  
Computed the completion times (Cji) of { } by 
applying the equation (1) to (3). Then, the current and 
future deviations for each objective can be generated 
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two objectives which is obtained from decision 
makers. Then the job J[j] with minimum value of total 
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Remove the select job J[j] from the U. If k<n-1, set 
k=k+1 and go to step 2. If k=n-1, append the remaining 
job in U to S, and save the S as initial sequence {π}. 

 
The reasons for the development of weighting 

factors (m-i+1 in equations 14-17, n-k+1 for current 
deviations and n-k for future deviations in equation 18-
19) are explained as follows: 
 From equations 14-17, the deviations generated 

on early machines have greater effects than those 
generated on later machines [27]. Therefore, the 
m-i+1 shows the decreasing effects as the 
machine number increases. 

 Because the completion times of current job are 
fixed, we assign larger weight (n-k+1) on current 
deviations than future deviations [28, 29]. In 
addition, since the future deviation is generated by 
all unscheduled jobs, we divide future deviations 
by (n-k) to balance the effects between current and 
future deviations. 

4.3 CFD heuristic 

We use technique of insertion to further improve 
the initial solutions. Since our CFD heuristic is 
designed for balancing the trade-off between 
makespan and flowtime, we introduce the preference 
factor α into our insertion scheme. The steps of the 
CFD heuristic are presented as below: 
Step 1:  
Generate the initial sequence (π) using the initial 
sequence generation method from section 4.2. 
Step 2: 
Set k=2. Select the first two jobs from π to create a new 
k-jobs partial sequence . Then exchange the 
position of these two jobs, and calculate the value of 
RIV in the following equations for two candidate 
partial sequences: 
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where ���� and ����� are makespan and flowtime for 
���. The candidate partial sequence with minimum 
RIV is selected as current partial sequence ���. 
Step 3: 
Set k=k+1, choose kth job from initial sequence and 
insert to all k possible locations of ���. Calculate the 
RIV value for k candidate sequences. Update the ��� 
by the candidate sequence with minimum RIV. 
Step 4: 
If k<n, go to Step 3, otherwise output the current 
partial sequence ��� as the final solution. 
 

The computational complexity of our CFD 
heuristic is determined by the insertion phase in Step 
3. Hence, the CFD heuristic has the same 
computational complexity as the NEH and LR 
heuristics, which is ������. 
5. Computational results 

In the computational experiment, we compared our 
CFD heuristic with the NEH and LR heuristics on 
makespan (α=1) minimization, flowtime (α=0) 
minimization, and trade-off (α=0.5) minimization 
objectives based on random small-scale instances and 
Taillard’s benchmark. Besides, we use the statistical 
process control to verify our CFD heuristic is better 
than the other two on historical OR data at UKHC.  

5.1 Case Studies on Various Instances 

We test our CFD heuristic on both small-scale and 
large-scale instances. The processing times for small-
scale instances are randomly generated following the 
uniform distribution in [1, 99]. For small-scale 
instances, the number of jobs is 5, 6, 7, 8, 9, 10, and 
the number of machines is 3, 5, 7, 9, 11, 13, 15, 17, 19. 
Thus, there are 54 combinations. For each 
combination, 100 cases are randomly generated. 
Totally, we have 5400 instances for small-scale.  

For large-scale instances, classic Taillard’s 
benchmarks are used to test the performances of 
heuristics for flow shop scheduling, consisting of 120 

instances in 12 combinations, where the number of 
jobs is 20, 50, 100, 200 or 500, and the number of 
machines is 5, 10 or 20. In each combination, there are 
10 instances. 

We have three criteria to evaluate the performances 
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where the Ci and SCi are makespan and flowtime for 
ith instance. For small cases, MinCi and MinSCi are 
optimal solutions obtained by enumeration method. 
For Taillard’s benchmark, MinCi and MinSCi are the 
best solutions for the ith instance generated from three 
compared heuristics. N is the number of instances for 
each combination. N is 100 for small-scale instances 
but 10 for large-scale instances. β is the preference 
factor to evaluate the trade-off value, changing from 0 
to 1 with the step of 0.1. 
 
Table 1. ARPDs (%) of three heuristics for makespan 
and flowtime (S for small-scale and L for large-scale) 

CFD NEH LR 
ARPD S L S L S L 
Cmax 

(α=1) 1.3 3.5 1.3 3.3 11.1 12.5 

ΣCj 
(α=0) 1.1 1.2 6.6 8.2 1.4 0.5 

From the Table 1, for small-scale instances, we can 
see that the CFD heuristic has the smallest ARPD of 
1.3% on makespan minimization, which is same as the 
NEH heuristic. For flowtime minimization, the CFD 
generates the smallest ARPD of 1.1%, better than the 
LR heuristic’s 1.4%.  

In large-scale instances, the CFD heuristic can 
obtain 3.5% of ARPD on makespan minimization 
objective, slightly larger than NEH heuristic of 3.3%. 
The LR has the worst ARPD of 12.5% on the 
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makespan minimization. For flowtime minimization 
objective, the LR has the smallest ARPD of 0.5%. The 
CFD generates the ARPD of 1.2% while the NEH 
heuristic obtains the worst ARPD of 8.2%. 

(a) Trade-off value (%) for small-scale instances 

(b)Trade-off value (%) in large-scale instances 

Fig.1. Trade-off value of the CFD (0.5), NEH and LR heuristics 

In order to balance the trade-off between makespan 
and flowtime, we set α=0.5. As shown in Fig. 1, we 
compared CFD (α=0.5) with NEH and LR heuristics.  

From Fig. 1(a), in small-scale instances, as the β 
value changes, the CFD (α=0.5) heuristic has the most 
stable performance and the smallest value of average 
trade-off value, which is 3.03, while the NEH and LR 
generate 3.92 and 6.27, respectively. In addition, when 
the β changes from 0.2 to 0.6, the performances of the 
NEH and LR heuristics are dominated by the CFD 
(α=0.5) heuristic on trade-off minimization objective. 

From Fig. 1(b), in large-scale instances, the CFD 
(α=0.5) heuristic has the most stable performance and 
generates the minimum average trade-off value which 
is 4.45, while the NEH and LR generate 5.78 and 6.50, 
respectively. Furthermore, when β changes from 0.4 to 
0.7, the performance of CFD (α=0.5) heuristic can 
dominate the other two heuristics. 

5.2 Statistical Process Control 

To validate our CFD (α=0.5) heuristic for operating 
room (OR) scheduling across the perioperative 
process, we carry out case studies on historical OR 
data from University of Kentucky HealthCare, which 
consists of around 30,000 cases in a year from 2013 to 
2014. Excluding the data from the weekend and 
holidays, we have more than 28,000 cases in 260 days 
for a year. Utilization of the perioperative process and 
patient flow time across the perioperative process are 
used to evaluate performances of OR scheduling 
methods. The relative performances of the NEH, LR, 
CFD (α=0.5) and UKHC are provided in Table 2. 

Table 2. Utilization (%) and Patient Flow (mins) 
  NEH LR CFD 

(0.5) UKHC 

Util Avg. 89.35 87.82 89.14 88.15 

 StD 3.6 3.4 3.5 3.3 

PF Avg. 560.68 542.35 553.23 612.25 

 StD 43.6 42.6 43.0 56.6 

 
In Table 2, we can see that CFD (α=0.5) heuristic 

can achieve a perioperative process with the utilization 
of 89.14% higher than UKHC’s 88.15%, with the 
patient flow time of 553.23 minutes lower than 
UKHC’s 612.25 minutes. 

From the process utilization perspective in Fig. 2, 
we can see that a higher average utilization can be 
achieved by our CFD (α=0.5) heuristic. In the R-chart, 
the CFD (α=0.5) heuristic can generate small variation 
ranges without any points out of control limits. 
However, for the UKHC, there is a point above the 
upper control limit (UCL) in R-chart. 

From the patient flow perspective in Fig. 3, we can 
see that our CFD (α=0.5) heuristic can achieve an 
average patient flow of 553.23 time units, which is 
smaller than that of 612.25 for UKHC. The 
improvement is (612.2-553.2)/553.2 = 10.66%, which 
indicates that potentially additional 2980 patients 
could be served in a year if our CFD (α=0.5) heuristic 
was used for OR scheduling. In the R-chart, the 
variation of patient flow achieved by our CFD (α=0.5) 
heuristic is smaller than that achieved by UKHC, in 
terms of a narrower range between upper and lower 
control limits for the CFD (α=0.5) heuristic than that 
for UKHC.  
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Such an improvement on the averages of 
performance measures for utilization and patient flow 
time indicate better trade-off balancing for OR 
scheduling, and small variation ranges suggest that the 
process performance is more stable, which release the 
burden of OR management.  

 

 
(a) Xbar-R chart of utilization values for CFD (0.5) 

 
(b) Xbar-R chart of utilization values for UKHC

Fig.2. Xbar-R charts of utilization for CFD (0.5) and UKHC 

 
(a) Xbar-R chart of Patient flow values for CFD (0.5) 

 
(b) Xbar-R chart of Patient flow for UKHC 

Fig.3. Xbar-R charts of patient flow for CFD (0.5) and UKHC 

6. Conclusion 

Permutation flow shop scheduling is widely 
applied in the industry. Generally, makespan and 
flowtime are related to utilization and work-in-
process, respectively. Most existing heuristics focus 
on either makespan minimization or flowtime 
minimization. The minimization of makespan and 
flowtime has partially proved to be inconsistent. In 
order to balance the trade-off between makespan and 
flowtime, we proposed our CFD heuristic. 

In the CFD heuristic, we first generate the lower 
and upper bounds. Then, we proposed an initial 
sequence generation method based on the deviations 
from lower or upper bounds. To further improve the 
solutions, we applied insertion method to the initial 
sequence. Through the computational experience, our 
CFD heuristic obtains the best performance of 
makespan, flowtime, and trade-off minimization 
objective on small-scale problems. For Taillard’s 
benchmark, our CFD (α=0.5) heuristic has the best 
performance on trade-off balancing objective. 
Besides, using the statistical process control, our CFD 
(α=0.5) heuristic can achieve better performance than 
UKHC on the trade-off balancing. 

In addition to trade-offs between completion times 
as performance measures based on averages, that is, 
the “first-order” effects, variation of performanc 
measures is also important for trade-off balancing to 
achieve sustainable operations management in 
manufacturing systems, based on the “second-order” 
effects, for example, completion time variance (CTV). 
Our future research will focus on balancing trade-offs 
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makespan minimization. For flowtime minimization 
objective, the LR has the smallest ARPD of 0.5%. The 
CFD generates the ARPD of 1.2% while the NEH 
heuristic obtains the worst ARPD of 8.2%. 

(a) Trade-off value (%) for small-scale instances 

(b)Trade-off value (%) in large-scale instances 

Fig.1. Trade-off value of the CFD (0.5), NEH and LR heuristics 

In order to balance the trade-off between makespan 
and flowtime, we set α=0.5. As shown in Fig. 1, we 
compared CFD (α=0.5) with NEH and LR heuristics.  

From Fig. 1(a), in small-scale instances, as the β 
value changes, the CFD (α=0.5) heuristic has the most 
stable performance and the smallest value of average 
trade-off value, which is 3.03, while the NEH and LR 
generate 3.92 and 6.27, respectively. In addition, when 
the β changes from 0.2 to 0.6, the performances of the 
NEH and LR heuristics are dominated by the CFD 
(α=0.5) heuristic on trade-off minimization objective. 

From Fig. 1(b), in large-scale instances, the CFD 
(α=0.5) heuristic has the most stable performance and 
generates the minimum average trade-off value which 
is 4.45, while the NEH and LR generate 5.78 and 6.50, 
respectively. Furthermore, when β changes from 0.4 to 
0.7, the performance of CFD (α=0.5) heuristic can 
dominate the other two heuristics. 

5.2 Statistical Process Control 

To validate our CFD (α=0.5) heuristic for operating 
room (OR) scheduling across the perioperative 
process, we carry out case studies on historical OR 
data from University of Kentucky HealthCare, which 
consists of around 30,000 cases in a year from 2013 to 
2014. Excluding the data from the weekend and 
holidays, we have more than 28,000 cases in 260 days 
for a year. Utilization of the perioperative process and 
patient flow time across the perioperative process are 
used to evaluate performances of OR scheduling 
methods. The relative performances of the NEH, LR, 
CFD (α=0.5) and UKHC are provided in Table 2. 

Table 2. Utilization (%) and Patient Flow (mins) 
  NEH LR CFD 

(0.5) UKHC 

Util Avg. 89.35 87.82 89.14 88.15 

 StD 3.6 3.4 3.5 3.3 

PF Avg. 560.68 542.35 553.23 612.25 

 StD 43.6 42.6 43.0 56.6 

 
In Table 2, we can see that CFD (α=0.5) heuristic 

can achieve a perioperative process with the utilization 
of 89.14% higher than UKHC’s 88.15%, with the 
patient flow time of 553.23 minutes lower than 
UKHC’s 612.25 minutes. 

From the process utilization perspective in Fig. 2, 
we can see that a higher average utilization can be 
achieved by our CFD (α=0.5) heuristic. In the R-chart, 
the CFD (α=0.5) heuristic can generate small variation 
ranges without any points out of control limits. 
However, for the UKHC, there is a point above the 
upper control limit (UCL) in R-chart. 

From the patient flow perspective in Fig. 3, we can 
see that our CFD (α=0.5) heuristic can achieve an 
average patient flow of 553.23 time units, which is 
smaller than that of 612.25 for UKHC. The 
improvement is (612.2-553.2)/553.2 = 10.66%, which 
indicates that potentially additional 2980 patients 
could be served in a year if our CFD (α=0.5) heuristic 
was used for OR scheduling. In the R-chart, the 
variation of patient flow achieved by our CFD (α=0.5) 
heuristic is smaller than that achieved by UKHC, in 
terms of a narrower range between upper and lower 
control limits for the CFD (α=0.5) heuristic than that 
for UKHC.  
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Such an improvement on the averages of 
performance measures for utilization and patient flow 
time indicate better trade-off balancing for OR 
scheduling, and small variation ranges suggest that the 
process performance is more stable, which release the 
burden of OR management.  

 

 
(a) Xbar-R chart of utilization values for CFD (0.5) 

 
(b) Xbar-R chart of utilization values for UKHC

Fig.2. Xbar-R charts of utilization for CFD (0.5) and UKHC 

 
(a) Xbar-R chart of Patient flow values for CFD (0.5) 

 
(b) Xbar-R chart of Patient flow for UKHC 

Fig.3. Xbar-R charts of patient flow for CFD (0.5) and UKHC 

6. Conclusion 

Permutation flow shop scheduling is widely 
applied in the industry. Generally, makespan and 
flowtime are related to utilization and work-in-
process, respectively. Most existing heuristics focus 
on either makespan minimization or flowtime 
minimization. The minimization of makespan and 
flowtime has partially proved to be inconsistent. In 
order to balance the trade-off between makespan and 
flowtime, we proposed our CFD heuristic. 

In the CFD heuristic, we first generate the lower 
and upper bounds. Then, we proposed an initial 
sequence generation method based on the deviations 
from lower or upper bounds. To further improve the 
solutions, we applied insertion method to the initial 
sequence. Through the computational experience, our 
CFD heuristic obtains the best performance of 
makespan, flowtime, and trade-off minimization 
objective on small-scale problems. For Taillard’s 
benchmark, our CFD (α=0.5) heuristic has the best 
performance on trade-off balancing objective. 
Besides, using the statistical process control, our CFD 
(α=0.5) heuristic can achieve better performance than 
UKHC on the trade-off balancing. 

In addition to trade-offs between completion times 
as performance measures based on averages, that is, 
the “first-order” effects, variation of performanc 
measures is also important for trade-off balancing to 
achieve sustainable operations management in 
manufacturing systems, based on the “second-order” 
effects, for example, completion time variance (CTV). 
Our future research will focus on balancing trade-offs 
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between the averages and their variance by using the 
CFD concept, especically about adaptive produciton 
control for stochastic problems. 
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