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Integrating multiple genetic detection methods to estimate
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Abstract. Spatial capture–recapture models can produce unbiased estimates of population density, but
sparse detection data often plague studies of social and territorial carnivores. Integrating multiple types of
detection data can improve estimation of the spatial scale parameter (r), activity center locations, and density.
Noninvasive genetic sampling is effective for detecting carnivores, but social structure and territoriality could
cause differential detectability among population cohorts for different detection methods. Using three observa-
tion models, we evaluated the integration of genetic detection data from noninvasive hair and scat sampling
of the social and territorial coyote (Canis latrans). Although precision of estimated density was improved, par-
ticularly if sharing r between detection methods was appropriate, posterior probabilities of r and posterior
predictive checks supported different r for hair and scat observation models. The resulting spatial capture–re-
capture model described a scenario in which scat-detected individuals lived on and around scat transects,
whereas hair-detected individuals had larger r and mostly lived off of the detector array, leaving hair but not
scat samples. A more supported interpretation is that individual heterogeneity in baseline detection rates (k0)
was inconsistent between detection methods, such that each method disproportionately detected different
population cohorts. These findings can be attributed to the sociality and territoriality of canids: Residents may
be more likely to strategically mark territories via defecation (scat deposition), and transients may be more
likely to exhibit rubbing (hair deposition) to increase mate attraction. Although this suggests that reliance on
only one detection method may underestimate population density, integrating multiple sources of genetic
detection data may be problematic for social and territorial carnivores. These data are typically sparse, model-
ing individual heterogeneity in k0 and/or rwith sparse data is difficult, and positive bias can be introduced in
density estimates if individual heterogeneity in detection parameters that is inconsistent between detection
methods is not appropriately modeled. Previous suggestions for assessing parameter consistency of r between
detection methods using Bayesian model selection algorithms could be confounded by individual heterogene-
ity in k0 in noninvasive detection data. We demonstrate the usefulness of augmenting those approaches with
calibrated posterior predictive checks and plots of the posterior density of activity centers for key individuals.

Key words: abundance; Canis; coyote; data integration; density; hair sampling; individual heterogeneity; noninvasive
sampling; scat sampling; social; spatial capture–recapture; territorial.
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INTRODUCTION

Accurately and precisely estimating wildlife
demographic parameters is critical to conserva-
tion and management decision-making. Popula-
tion density is an invaluable parameter because
it can inform spatial relationships between popu-
lations and ecological conditions, thereby permit-
ting comparisons among populations of the
same species that occupy different habitats or
landscapes (Royle et al. 2014). By using the spa-
tial patterns of detections, accounting for individ-
ual heterogeneity in detection probability that
arises due to the juxtaposition of animal home
ranges and detector locations, and explicitly
modeling space use, spatial capture–recapture
analytical methods can produce efficient and
unbiased estimates of population density (Efford
et al. 2004, Royle et al. 2009). An important
property of spatial capture–recapture methods is
that detection probability is directly linked to the
distance between an animal’s activity center (i.e.,
home range center) and detectors via a spatial
scale parameter (r), which is related to the extent
of space use (i.e., home range or territory; Royle
et al. 2014). Accuracy and precision of density
estimates inherently depend on reliable estima-
tion of r, which requires sufficient spatial recap-
tures, or instances of single individuals being
detected at multiple locations (Royle et al. 2009,
2014, Efford and Mowat 2014). Detection data
produced by a single sampling method are often
sparse, however, which can erode accuracy and
precision of parameter estimates or possibly pre-
vent density estimation entirely. To overcome
this issue and improve the estimation of r, activ-
ity center locations, and population density,
recent studies have integrated data from >1
detection method. Examples include combining
photos from camera trapping and DNA from
scat sampling (Gopalaswamy et al. 2012, Soll-
mann et al. 2013c), photos from camera trapping
and telemetry data from radio-collars (Sollmann
et al. 2013a, b, Linden et al. 2017), and telemetry
data from radio-collars and DNA from hair sam-
pling (Royle et al. 2013, Tenan et al. 2017).

Nevertheless, caution is warranted when inte-
grating multiple sources of detection data in spa-
tial capture–recapture models. The detection
function that these models use to convert detec-
tion locations to population density is a product

of both animal space use and individuals’ behav-
ioral interaction with detectors (Royle et al.
2014). Thus, r estimates between types of detec-
tion data should be tested for consistency to
avoid biasing density estimates (Popescu et al.
2014, Tenan et al. 2017). For instance, estimates
of r between hair trapping and radio-collar
telemetry data from brown bears (Ursus arctos)
were found to be inconsistent (Tenan et al. 2017),
whereas r estimates between camera trapping
and telemetry data from fishers (Pekania pennanti)
were congruous (Popescu et al. 2014). Even if r
parameters between detection methods cannot
be shared because of inconsistency, integrating
multiple types of detection data should still
improve estimates of animals’ activity centers
and the precision of density estimates (Gopalas-
wamy et al. 2012, Sollmann et al. 2013a, b, c,
Tenan et al. 2017). However, because data from
multiple detection methods may not be indepen-
dent if detectors are co-located (i.e., >1 detection
method at similar spatial locations), dependence
between detection methods, if present, must be
accounted for to mitigate parameter estimate
bias (Clare et al. 2017).
Social and territorial carnivores, such as canids

(Canis sp.), occur at multiple trophic levels and
can have considerable effects on both herbivores
and other carnivores (Berger et al. 2008, Levi and
Wilmers 2012, Letnic and Ripple 2017). Wide-
ranging movements, crypticism, and general
avoidance of humans render many canid species
challenging to study and manage, particularly
those that are regionally or globally imperiled
and necessitate conservation intervention (Boi-
tani et al. 2004). North American gray wolves
(Canis lupus), Mexican gray wolves (C. l. baileyi),
and red wolves (C. rufus) are federally endan-
gered in parts of the United States, whereas coy-
otes (C. latrans) have expanded range and
present a number of management challenges in
both wildland and urban environments, includ-
ing hybridization with wolves (Kays et al. 2009,
Bohling and Waits 2011). Reliably estimating
population density and abundance of wolves
and coyotes is imperative to their conservation
and management, but these species are notori-
ously difficult to detect. Although camera trap-
ping is perhaps the most widely used method for
noninvasively detecting wildlife (Foster and
Harmsen 2012), the lack of individually unique
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natural markings (e.g., pelage spotting or strip-
ing) on wolves, coyotes, and other canids typi-
cally precludes individual identification from
photographs. In contrast, noninvasive genetic
sampling that capitalizes on the ecological and
behavioral characteristics of canids has become
an efficient framework for detecting and individ-
ually identifying animals. Both coyotes and
wolves tend to be highly territorial and strategi-
cally defecate to mark and communicate territory
extents to conspecifics (Rothman and Mech 1979,
Gese and Ruff 1997, Barja and List 2014); there-
fore, collecting scat samples along travel routes
or at rendezvous sites has proven effective
(Stansbury et al. 2014, Morin et al. 2016, Piaggio
et al. 2016, L�opez-Bao et al. 2018). Furthermore,
rubbing in odorous materials, such as carcasses
of dead wildlife, is a natural behavioral response
of canids (Ryon et al. 1986, Martin and Farge
1988, Heffernan et al. 2007), and collecting hair
from lured ground-based rub pads has been used
to detect both wolves and coyotes (Ausband
et al. 2011).

Noninvasive genetic sampling does have disad-
vantages, however, including DNA degradation
in scat and hair samples that can reduce the total
number of detections and spatial recaptures
(Waits and Paetkau 2005, Long et al. 2008, Morin
et al. 2016). Cohorts of a population may also
have differential defecation rates, particularly at
locations commonly used to mark and communi-
cate territories among conspecifics. For example,
alpha coyotes and wolves often strategically defe-
cate at a higher rate along travel routes, such as
roads and trails, and near territory boundaries
than betas, juveniles, and nomadic transients
(Rothman and Mech 1979, Barrette and Messier
1980, Wells and Bekoff 1981, Gese and Ruff 1997,
Allen et al. 1999). In theory, this should introduce
individual heterogeneity in baseline detection
probability (k0), which could cause underestima-
tion of population density in spatial capture–
recapture studies that rely solely on scat
sampling. Hair samples tend to have higher DNA
amplification success rates than scat samples
because hair sampling methods snag multiple
hairs that collectively contain more DNA than
scat (Waits and Paetkau 2005, Long et al. 2008).
Few capture–recapture studies have attempted
noninvasive hair sampling of coyotes or wolves,
but those that have either collected too few

samples or required multiple years of sampling to
obtain sufficient sample sizes for parameter esti-
mation, potentially violating model assumptions
(e.g., population closure; Ausband et al. 2011,
Stansbury et al. 2014, Mumma et al. 2015). Conse-
quently, employing only scat or only hair sam-
pling can cause deficiencies that may preclude
reliable estimation of demographic parameters.
Potential exists for improving estimates of r,
activity center locations, and population density
by integrating detection data from simultaneous
scat and hair sampling, but the effectiveness of
this combination remains unexplored for canids
and other social and territorial carnivores in the
spatial capture–recapture framework.
Herein, we build on prior spatial capture–

recapture studies that integrated multiple sources
of detection data by extending this work to non-
invasive genetic sampling of social and territorial
carnivores. We explicitly evaluated the appropri-
ateness of combining genetic detection data from
hair and scat sampling of a common social and
territorial carnivore, the coyote, to improve preci-
sion of estimated r, activity center locations, and
population density, using a combination of pos-
terior inference, posterior predictive checks, and
posterior density plots of activity center loca-
tions. The ecological and behavioral characteris-
tics of coyotes overlap that of multiple other
social and territorial canids (Moehlman 1989),
rendering the species a useful model for investi-
gating this approach.

MATERIALS AND METHODS

Study area
Our study area was centered on the U.S. Fish

and Wildlife Service’s Southwest Louisiana
National Wildlife Refuge (NWR) Complex in
Louisiana, USA, which encompassed Sabine,
Lacassine, and Cameron Prairie NWRs (Fig. 1).
All lands interspersed between said Refuges
were privately owned, some by resource extrac-
tion companies. The dominant private land use
was agriculture, primarily rice prairies and
domestic cattle operations. The study area was in
the West Gulf Coastal Plain physiographic
region, bordered to the south by the Gulf of Mex-
ico, and was largely comprised of forested wet-
lands, coastal prairies, cheniers, and freshwater,
brackish, and saltwater marshes (Mac et al.
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1998). The climate was humid subtropical; aver-
age monthly precipitation was 12.8 cm; and
average monthly temperature was 20.3°C (Mac
et al. 1998). Given the low elevation (0–6 m asl)
and proximity to the Gulf of Mexico, an exten-
sive network of levees existed that were designed
to divert flood waters away from agricultural
lands and human population centers. These
levees served as efficient travel routes for terres-
trial vertebrates (e.g., white-tailed deer [Odo-
coileus virginianus] and bobcat [Lynx rufus]).

Noninvasive scat and hair sampling
We established a total of ~127 km of scat sam-

pling transects along gravel and dirt roads, hik-
ing trails, and levees. We first cleared all scat
from all transects immediately prior to imple-
menting sampling to equalize the expected base-
line detection rates across sampling occasions
(Morin et al. 2016). We then surveyed all tran-
sects every seven days to collect fecal DNA sam-
ples from detected scat, recorded Universal
Transverse Mercator coordinates for each scat,
and removed all sampled scat from transects to
prevent double-sampling. Fecal DNA was
obtained by collecting a ~0.5 cm3 portion of the

exterior of each scat using tweezers that were
sterilized between sample collections via flame
from a lighter to prevent cross-contamination
(Stenglein et al. 2010). Each fecal DNA sample
was placed in an individually labeled collection
tube that contained 1.4 mL of DETS buffer to
mitigate DNA degradation (Stenglein et al. 2010,
Lonsinger et al. 2015).
Following the methods and recommendations

developed by Ausband et al. (2011) for hair
sampling both coyotes and wolves, we used
ground-based rub pads to noninvasively collect
hair samples. We constructed each rub pad by
securing three carpet-tack strips to 30.5 9 15.2 cm
plywood board that was 1.3 cm thick; all rub pads
were constructed ~60 d prior to sampling and
were stored away from human activity to mini-
mize the potential influence of human scent on
detection. We placed a total of 98 rub pads at ~1.0-
km intervals along the scat sampling transects,
and we secured each rub pad to the ground using
six galvanized nails of size 4 d (3.81 cm long). To
elicit a rubbing response, we placed ~5.0 mL of a
1:1 mixture of Government Call (O’Gorman’s,
Broadus, Montana, USA) and Canine Call (Car-
man’s, New Milford, Pennsylvania, USA) lure on

Fig. 1. Locations of 98 hair rub pads (yellow circles) and ~127 km of scat transects (solid black lines) relative to
the U.S. Fish and Wildlife Service’s (USFWS) Sabine, Cameron Prairie, and Lacassine National Wildlife Refuges
(NWR; gray shaded areas). Universal Transverse Mercator coordinates are presented on the axes, and agriculture
(brown shaded areas), open water (light blue shaded areas), and forest–shrub cover (green shaded areas) from
2011 National Land Cover Database data (Homer et al. 2015) are presented for context.
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the exposed surface of each rub pad (Ausband
et al. 2011); to avoid a fossorial response that
could cause removal or displacement of rub pads
by animals, we did not place lure underneath or
on the ground surrounding rub pads. We checked
and re-lured each rub pad every seven days and
collected hair samples using tweezers that were
sterilized between sample collections via flame
from a lighter; we also sterilized nails on carpet-
tack strips between collections using flame. We
placed collected hair samples in individually
labeled paper coin envelopes, which we stored in
silica desiccant to remove moisture and prevent
DNA degradation (Stenglein et al. 2010, Ausband
et al. 2011).

Scat and hair sampling occurred simultane-
ously for eight consecutive seven-day sampling
occasions from December 2015 to February 2016.
Thus, we sampled during the winter coyote
breeding season when the probability of detec-
tion should have been highest (Long et al. 2008).
Because the majority of transects were located in
areas that were closed to vehicular access by the
public, we did not apply correction factors that
may be needed for scat transect sampling that
occurs in areas subjected to high scat removal
rates (Lonsinger et al. 2016).

Laboratory genetic analyses
Our laboratory analyses of hair and scat sam-

ples were nearly identical to those used by Aus-
band et al. (2011) and Morin et al. (2016),
respectively. Briefly, we analyzed samples at the
Laboratory for Ecological, Evolutionary and Con-
servation Genetics at University of Idaho (Mos-
cow, Idaho, USA), which had facilities dedicated
to analyzing low-quality, low-quantity DNA sam-
ples. We used a mitochondrial DNA fragment
analysis to identify species of origin for each scat
and hair sample (De Barba et al. 2014). We
attempted to generate genotypes for all samples
confirmed as originating from coyotes using the
following nine microsatellite loci that were multi-
plexed together: CXX.377, CXX.172, CXX.173,
CXX.250, CXX.109, CXX.200, AHT121, AHT103,
and CXX.20 (Ostrander et al. 1993, Holmes et al.
1995, Mellersh et al. 1997). The multiplex con-
tained 0.06 lmol/L of CXX.377, 0.07 lmol/L of
CXX.172, CXX.173 and CXX.250, 0.13 lmol/L
of CXX.109, 0.16 lmol/L of CXX.200, 0.20
lmol/L of AHT121, 0.60 lmol/L of AHT103,

0.71 lmol/L of CXX.20, 19 Qiagen Multiplex PCR
Kit Master Mix, 0.59 Q solution, and 1 lL of
DNA extract in a 7 lL reaction volume. The ther-
mal profile for the multiplex PCR was 94°C for
10 min followed by 13 cycles of a 63°C annealing
temperature, touching down by 0.8°C each cycle,
followed by 25 cycles at an annealing temperature
of 55°C, and ending with a final extension of 60°C
for 30 min. We used a sex identification marker to
determine sex (Seddon 2005); this PCR contained
0.10 lmol/L of DBX and 0.07 lmol/L of DBY, 19
Qiagen Multiplex PCR Kit Master Mix, 0.59 Q
solution, and 2 lL of DNA extract in a 7 lL reac-
tion volume. The thermal profile for the sex iden-
tification PCR was 94°C for 10 min followed by
13 cycles of a 62°C, touching down by 0.4°C each
cycle, followed by 27 cycles at an annealing tem-
perature of 57°C, and ending with a final exten-
sion of 60°C for 30 min.
Up to four and six PCR replicates were per-

formed for the hair and scat samples, respec-
tively, that consistently amplified after initial
screening. We used the genotype screening and
sample quality assessment methods described by
Adams and Waits (2007) and Stenglein et al.
(2010). We used GenAlEx v6.501 (Peakall and
Smouse 2012) to calculate probability of identity
for siblings (PID(sibs)), or the probability that sib-
lings shared the same genotype by chance, for
the nine microsatellite loci. Results indicated that
five loci were sufficient to differentiate between
individuals (PID(sibs) = 0.0082). We conducted a
matching analysis in GenAlEx 6.501, and we con-
sidered samples as originating from the same
individual if they matched at ≥5 loci.

Spatial capture–recapture and integration of
detection data
Although the 98 hair rub pads had fixed loca-

tions for the duration of sampling, scat samples
were detected at non-fixed locations along tran-
sects. Therefore, we discretized scat transects at
500-m intervals to create 264 scat detectors that
were assigned the mean coordinates of each
interval (Royle et al. 2014, Morin et al. 2016); this
discretization distance was determined by
sequentially reducing the resolution from
1000 m until the density estimate stabilized (esti-
mates using 250- and 500-m intervals were
nearly identical). Each scat sample was then
assigned to the scat detector location that

 ❖ www.esajournals.org 5 October 2018 ❖ Volume 9(10) ❖ Article e02479

MURPHY ET AL.



represented the transect interval from which the
sample was collected. We defined Yh and Ys to be
the hair (h) and scat (s) encounter histories,
respectively, which consisted of the number of
unique detections at each detector for each indi-
vidual across the K = 8 sampling occasions. The
encounter histories were of size n 9 Jh and
n 9 Js, where n was the number of individuals
detected via hair and/or scat sampling, and Jh

and Js were the number of hair and scat detec-
tors, respectively. We defined Xh and Xs to be the
matrices containing the Universal Transverse
Mercator coordinates of hair and scat detectors,
respectively.

We estimated population density using ordi-
nary spatial capture–recapture models (Royle
et al. 2014), except we explored three different
observation models: scat-only (SO), a combined
scat and hair model that shared r between detec-
tion methods (SH1), and a combined scat and hair
model with separate r for each detection method
(SH2). We initially fit the SO model with sex-spe-
cific detection function parameters and found that
point estimates were nearly identical between
sexes (Appendix S1: Table S1); therefore, we
pooled sexes for all model fitting. We did not con-
sider sharing k0 since there was no obvious reason
to expect the two detection methods would have
the same baseline detection rate. For each obser-
vation process, we assumed that detections of
individuals at each location occurred following
ymij ~ Binomial(pmij , K), for m2{h,s} (hair, scat) after
reducing any individual by trap by occasion
counts >1 to binary detection events. Note that
the i index was shared between the method-speci-
fic encounter histories, so individuals that were
detected by both methods had detections stored
in the same row of each encounter history and
individuals not detected by one method had a
row of all zeros. We also assumed that the detec-
tion probability of an individual at a detector
depended on the distance between an individual’s
activity center and the detector location following
a hazard half-normal detection function: pm(si,
xmj ) = 1 � exp(–h(si, xmj )), where hm(si, xmj ) = k0

exp(–
kSi�xmj k2

ð2rmÞ2 ). We defined the scat-specific detec-

tion function parameters to be ks0 and rs, the hair-
specific detection function parameters to be kh0
and rh, and the combined (shared) spatial scale
parameter to be rc. For the process model, we

used the typical assumption that N activity cen-
ters, si, i = 1,. . ., N, were distributed uniformly
across a continuous state space, S, such that
si ~ Uniform(S). The extent of S was defined by
buffering the array of combined hair and scat
detectors (union of Xh and Xs) by 6 km, or ~3r,
which resulted in a total estimation area of
3733 km2.
We implemented a Bayesian model fitting

framework in the R statistical software (v3.5.0; R
Core Team 2018) using spatial capture–recapture
Markov chain Monte Carlo (MCMC) algorithms
with data augmentation to estimate population
size (N) and density, the latter of which was calcu-
lated as N/A, where A is the area of the state space
(Royle et al. 2009, 2014). The level of data aug-
mentation varied fromM = 450 to 650, depending
on the magnitude of uncertainty in population
size when using each observation model, where
M is the maximum possible number of individu-
als in the population (Royle et al. 2014). We ran
three chains of length 30,000 for each model and
discarded the first 5000 as burn-in, except for the
SH2 model, for which we ran six chains of length
30,000 with the first 5000 discarded as burn-in.
We used the posterior mode for point estimates
and the 95% highest posterior density for credible
intervals. We compared the precision of the three
models using the coefficient of variation (CV),
defined as the posterior standard deviation
divided by the posterior mode. Although Tenan
et al. (2017) described a Bayesian model selection
algorithm for testing parameter consistency, we
only had two parameters to compare, and thus,
we assessed the consistency of rh and rs using
the posterior of rh [ rs. We assumed indepen-
dence between the partially co-located detection
methods (98 of the 264 scat transect intervals con-
tained a hair rub pad) in the SH1 and SH2 obser-
vation models (contra Clare et al. 2017) because
we did not observe any instances of both scat and
hair samples from the same individual occurring
during the same sampling occasion in the same
scat transect interval, which would be expected to
occur if positive dependence existed between
detection methods (see Results).
We assessed the goodness of fit of our models

using Bayesian P-values (Robins et al. 2000)
from four test statistics. First, we used the fol-
lowing Freeman-Tukey-based test statistics des-
cribed by Royle et al. (2014) for both the hair
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and scat observation models conditional on s,
the activity centers, and z, the vector indicating
which individuals are estimated to be in the
population on each MCMC iteration. T1 tested
the fit of the individual 9 detector frequencies,
summed over all individuals and detectors; T2
tested the fit of individual-level detection fre-
quencies, summed over all individuals for a sin-
gle metric of individual-level lack of fit; and T3
tested the fit of the detector-level detection fre-
quencies, summed across detectors for a single
metric of detector-level lack of fit. Second,
because fewer individuals than expected were
detected by both methods (n = 3) based on the
detection function parameter estimates (see
Results), we used the test statistic T4, the number
of individuals detected by both methods condi-
tional on s and z, to calculate a Bayesian P-value
for Pr(T4 ≤ 3). Because Bayesian P-values are
generally conservative (Robins et al. 2000), we
calculated calibrated Bayesian P-values by com-
paring the observed P-value to the expected
P-value distribution when simulating from the
fitted model (Hjort et al. 2006). Due to the com-
putational intensity of generating the expected
P-value distributions, we limited their size to 96
replications for each SO, SH1, and SH2.

Data, R code for MCMC algorithms, and R
code for posterior predictive check algorithms
are provided in Data S1. To aid in diagnosing
lack of fit, we created two-dimensional plots of
the summed posterior density of the activity cen-
ter locations for individuals that were only
detected by the hair rub pads. We excluded one
individual in the plots because it was recorded
on a smaller section of the detector array (Sabine
NWR), further away from the section where the
other individuals were detected (Cameron
Prairie and Lacassine NWRs), which rendered
the posterior densities difficult to visualize due
to spatial extent. We used a kernel density esti-
mator with a 500-m bandwidth to create poste-
rior density plots via the R package MASS
(Venables and Ripley 2002).

RESULTS

Noninvasive scat and hair sampling
We collected 335 fecal samples from scat tran-

sects and 204 hair samples from rub pads. Of
those, 244 fecal samples (72.2%) and 107 hair

samples (52.4%) either failed to yield sufficient
mitochondrial DNA for species identification
(n = 320) or were from a species other than coy-
ote (bobcat [n = 29], domestic cat [Felis silvestris
catus, n = 1], and domestic dog [C. l. familiaris,
n = 1]). Among the remaining 94 fecal samples
and 97 hair samples, 40 (42.5%) and 81 (83.5%),
respectively, contained insufficient nuclear DNA
for amplification of all nine microsatellite loci.
This resulted in 22 (13M:9F) unique individuals
that were detected 54 times via scat transects
(median = 1 detection/individual, range = 1–12),
and 13 (8M:5F) unique individuals that were
detected 16 times (median = 1 detection/individ-
ual, range = 1–3) at 14 different rub pads (14.3%
of all rub pads); three individuals (1M:2F) were
detected by both scat transects and hair rub
pads. Thus, we acquired 70 total detections of 32
(20M:12F) unique individuals; however, we dis-
carded one female that was detected only once
by a single hair rub pad because the rub pad
identifier was not recorded at the time of collec-
tion. A post hoc chi-square test indicated the sex
ratio of detected individuals was not signifi-
cantly different from 1:1 (v21 = 2.00; P = 0.16).
After reducing individual by trap by occasion
counts >1 to binary detections, there were 49
total scat and 15 total hair detection events. The
scat samples provided 24 spatial recaptures from
10 individuals (5M:5F) and the hair samples pro-
vided three spatial recaptures from two individ-
uals (1M:1F).

Spatial capture–recapture and integration of
detection data
Density estimates from the SO, SH1, and SH2

observation models were 5.49 (95% CI = 3.67–
9.67), 9.37 (95% CI = 5.68–14.20), and 8.17 (95%
CI = 4.79–12.64) individuals/100 km2, respec-
tively (Table 1). Integrating hair detections with
scat detections improved precision of the density
estimate when r was shared (SH1; CV declined
from 0.29 to 0.23), but to a lesser extent when a
method-specific r was estimated (SH2; CV
declined from 0.29 to 0.25). The posterior proba-
bility of rh [ rs was 0.89, supporting the
hypothesis that the hair detection r was larger
than the scat detection r. The ks0 point and inter-
val estimates most similar to those from model
SO were from model SH2, suggesting that sharing
r between detection methods in SH1 introduced
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negative bias into ks0 and positive bias into esti-
mated density. The primary mechanism driving
down the SH1 estimate of ks0 was that the smaller,
shared rc estimate moved the activity centers of
the individuals that were only detected by hair
rub pads closer to the scat transects, where they
were not detected (Fig. 2). In contrast, model SH2
estimated rh to be larger than rs, which allowed
the activity centers of the hair-only detected indi-
viduals to shift further away from the detectors,
thereby increasing estimated ks0, but not to the
same magnitude as in model SO, perhaps still
positively biasing the density estimate. Although
r estimates were similar between models SO and
SH1, the shared rc estimate in SH1 likely intro-
duced bias into kh0, which was substantially lower
in SH2 that had separate r parameters (0.012 vs.
0.003, respectively), further suggesting that the
shared rc estimate in SH1 was inconsistent with
the hair detection data.

Calibrated Bayesian P-values were generally
quite different than the observed Bayesian
P-values (Table 2), primarily because of the non-
uniform distribution of expected Bayesian
P-values (Appendix S1: Figs. S1–S4). Calibrated
Bayesian P-values did not indicate lack of fit of
model SO; however, evidence existed for lack of
fit at the individual level for both scat and hair
detections and at the detector level for hair detec-
tions in model SH1. Model SH2 had similar evi-
dence for lack of fit as model SH1, except at the
individual level for hair detections, which did
not support lack of fit and suggested that sepa-
rate r parameters for each observation process
improved fit for the hair detection model. Lack
of fit was supported in T4, the statistic quantify-
ing the number of individuals detected by both
methods in both SH1 and SH2, indicating that
the observing of three or fewer individuals by
both methods was unlikely to occur by random
chance if SH1 or SH2 was true.

DISCUSSION

Reliable and precise estimation of demo-
graphic parameters for terrestrial carnivores is
challenging yet critical to their conservation and
management. We found that the precision of
population density estimated by spatial capture–
recapture models for a social and territorial
carnivore was slightly improved when two non-
invasive genetic detection data types were inte-
grated (SH1). Further, if our DNA amplification
success rate for hair samples had been higher,
thereby increasing the number of detections, pre-
cision of the density estimate likely would have
improved more. Using the posterior probabilities
of rh and rs and posterior predictive checks for
each observation process, we found support for
differing r parameters between scat and hair
observation models (SH2). This was largely influ-
enced by the nine individuals that were detected
via hair rub pads but not scat transects. In model
SH1, the activity centers of those individuals
were located too close to the scat transects for
their lack of detection via scat to be likely,
whereas the larger r for the hair detection pro-
cess in model SH2 allowed their activity centers
to be estimated further from the co-located scat
transects, where their lack of detection via scat
was more likely (Fig. 2). Because these nine

Table 1. Spatial capture–recapture model parameter
estimates, lower and upper bounds of 95% credible
intervals, and coefficients of variation (CV), from
three observation models.

Model and
parameter Estimate Lower Upper CV

SO
ks0 0.019 0.011 0.032 0.30
rs 1512 1275 2234 0.17
N 205 137 361 0.29
D 5.49 3.67 9.67 0.29

SH1
ks0 0.013 0.009 0.024 0.30
kh0 0.011 0.006 0.022 0.42
rc 1590 1256 2048 0.13
N 349 211 529 0.23
D 9.37 5.68 14.20 0.23

SH2
ks0 0.017 0.009 0.030 0.34
kh0 0.003 0.001 0.019 1.99
rs 1497 1250 2085 0.14
rh 2468 1020 4897 0.45
N 305 178 471 0.25
D 8.17 4.79 12.64 0.25

Notes: Models were scat-only (SO), combined scat and hair
with shared spatial scale of the detection function parameter
(SH1), and combined scat and hair with method-specific spa-
tial scale of the detection function parameter (SH2). Estimated
model parameters were baseline detection rate (k0), spatial
scale of the detection function (r), population size (N), and
population density (D). Estimates of r and D are in meters
and individuals per 100 km2, respectively. Superscripts
denote combined (c), hair-only (h), and scat-only (s) detection
function parameters.
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individuals represent the majority of individuals
detected via hair rub pads, model SH2 describes
a scenario in which the individuals detected via
scat lived on and around transects, but the
majority of individuals detected via hair
mostly lived off of the detector array and had
larger r, so the latter could come onto the detec-
tor array and leave hair samples but not scat
samples.

A second explanation for these patterns is indi-
vidual heterogeneity in k0 for one or both

detection methods. In the presence of individual
heterogeneity in k0, spatial capture–recapture
models will generally estimate an averaged but
positively biased k0 (Royle et al. 2014). This
pushes the activity centers of the lower k0i indi-
viduals further away from the detector array or
into holes in the array where no detectors exist
and those individuals are less likely to be
detected, thereby accommodating their lower
than expected observed detection rate (sensu
Murphy et al. 2017). If individual heterogeneity

Table 2. Bayesian P-values from posterior predictive checks of scat transect and hair rub pad observation
models.

Model P-value T1 Scat T1 Hair T2 Scat T2 Hair T3 Scat T3 Hair T4

SO Observed 0.47 0.32 0.15
Calibrated 0.62 0.48 0.37

SH1 Observed 0.50 0.52 0.01� 0.17 0.14 0.29 0.03�

Calibrated 0.53 0.43 <0.01�� 0.08 0.03� 0.27 <0.01��

SH2 Observed 0.49 0.54 0.08 0.15 0.17 0.22 0.06
Calibrated 0.27 0.89 <0.01�� 0.65 0.04� 0.83 0.02�

Notes: We evaluated fit of individual 9 detector frequencies (T1), individual frequencies (T2), detector frequencies (T3), and
the number of individuals detected by both sampling methods (T4; P-value is the probability ≤3 observed). Models were scat-
only (SO), combined scat and hair with shared spatial scale parameter (SH1), and combined scat and hair with method-specific
spatial scale parameter (SH2). Asterisks denote statistically significant values (�P < 0.05, ��P < 0.01, ���P < 0.001).

Fig. 2. Activity center posteriors for individuals that were only detected by hair rub pads at Cameron Prairie
and Lacassine National Wildlife Refuges, USA (Fig. 1), for the scat-only model (SO), the combined scat and hair
detections with shared r model (SH1), and the combined scat and hair detections without shared r model (SH2).
For model SO, eight random individuals were selected because we could not definitively identify which unde-
tected individuals in model SO were those that were only detected by the hair rub pads. Hair rub pads are
denoted by black crosses, the rub pads at which hair samples were collected from the eight individuals are
denoted by orange crosses, and Universal Transverse Mercator coordinates are presented on the axes. The area of
high posterior mass (dark blue) corresponds to one individual detected three times by the hair rub pads, with the
remainder of the posterior mass corresponding to the other seven individuals that each had single detections.
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in k0 is only present in one detection method or
is method-specific (e.g., the low kh0 individuals
were not identical to the low ks0 individuals), the
low k0i individuals for one detection method can-
not be moved further from the trapping array
without sacrificing fit of the other observation
model. Therefore, when combining multiple
types of structured noninvasive detection data,
inconsistencies in individual heterogeneity
between detection methods can introduce nega-
tive bias, rather than the typical positive bias, in
the averaged k0 estimate. This successively intro-
duces positive bias in density estimates, which is
the opposite of what occurs if using a single
detection method (Royle et al. 2014).

Tension between the inconsistent individual
heterogeneity in k0 can be partially alleviated by
estimating method-specific r parameters, which
allows the activity centers of individuals with
low k0 for one detection method to be moved fur-
ther away from the trapping array where they
will be less likely to be detected by the method
that has the smaller r. Thus, robustly testing for
parameter consistency between multiple types of
structured detection data (e.g., Tenan et al. 2017)
may be difficult when individual heterogeneity
in k0 exists, which is likely prevalent in many
types of noninvasive detection data. For terres-
trial carnivores that have large spatial require-
ments, these data will often be too sparse to
investigate models with independent or nega-
tively correlated individual heterogeneity in k0
between sampling methods, leaving us without a
method to reliably combine multiple types of
noninvasive detection data.

We found two forms of evidence that favored
the hypothesis that individual heterogeneity in
k0 was inconsistent between detection methods
over the hypothesis that the methods had differ-
ent r parameters. First, the SO model that
excluded the hair detections did not indicate lack
of fit (Table 2), whereas both models SH1 and
SH2, which had method-specific parameters,
demonstrated lack of fit in the scat detection pro-
cess. Configuring individual activity centers to
be consistent with the hair detections essentially
made them less consistent with the scat detec-
tions, even if r was not shared. Second, the Baye-
sian P-value for the number of individuals that
should have been detected by both methods was
significant (<0.01 and 0.02 in models SH1 and

SH2, respectively), indicating that we detected
fewer individuals than expected by both meth-
ods under the respective model assumptions.
The only plausible explanation for this result that
we are aware of is that one cohort of the popula-
tion was more susceptible to detection by the
hair rub pads and another cohort was more sus-
ceptible to detection via scat transects. Thus,
inconsistent individual heterogeneity in k0 was a
more convincing explanation for the patterns in
our data than each detection method having a
separate r.
Both explanations for the patterns that we

observed, either method-specific r or differential
individual heterogeneity in k0, can be attributed
to the ecology and behavior of social and territor-
ial canids. Similar to wolves, coyotes form packs
of alpha pairs, betas, and offspring that establish
and defend territories (i.e., residents; Moehlman
1989). These resident individuals typically have
smaller home ranges and movements than do
nomadic transients, who are solitary and non-ter-
ritorial (Kamler and Gipson 2000, Kamler et al.
2005). Scent-marking serves to communicate ter-
ritories among conspecifics, and resident coyotes
and wolves strategically mark via urination and
defecation at higher rates than do transients,
with alpha pairs often exhibiting the highest
defecation rates among all cohorts (Rothman and
Mech 1979, Gese and Ruff 1997, Barja and List
2014). In contrast, rubbing behavior by canids
has been attributed to mate attraction and early
courtship, suggesting that rubbing in odorous
materials would be advantageous to transients
who are actively seeking mates (Ryon et al. 1986,
Martin and Farge 1988, Heffernan et al. 2007).
Therefore, we speculate that scat sampling may
be more likely to detect territorial alpha pairs
and other residents, whereas hair sampling may
be more likely to detect transients, which would
cause the inconsistent individual heterogeneity
between detection methods that we found. Given
transient individuals have larger home ranges
and may be more likely to leave hair samples
because of their non-territoriality, this could
explain why r would be estimated larger for the
hair observation process. If true, we should
expect that previous spatial capture–recapture
studies that relied solely on scat transect sam-
pling of coyotes, wolves, and other social and ter-
ritorial canids may have underestimated total
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population density and abundance due to poten-
tially strong individual heterogeneity in k0.

The correct model to describe all of these
effects would be one with a finite mixture (Pled-
ger 2000) explaining transient versus resident
status, with the transients having a larger r,
lower ks0, and higher kh0, and the residents having
a smaller r, higher ks0, and lower kh0. An alterna-
tive model to describe differing space use
between residents and transients is the model
developed by Royle et al. (2016) that allows indi-
vidual activity centers to move between sam-
pling occasions; however, the data requirements
to distinguish between these two models for dif-
ferential space use are likely much larger than
typically available, especially if resident versus
transient status is unknown and must be esti-
mated. Given that the model with individual
heterogeneity in r can approximate the model
with a subset of activity centers being transient,
except for the dependence structure between
observations (Royle et al. 2016), we chose to
frame the discussion of differential space use in
this manner.

A primary limitation of our study was the loss
of both scat and hair detections as a consequence
of samples containing insufficient DNA. Theoret-
ically, evidence for differential individual hetero-
geneity in k0 could possibly have been induced
by individual heterogeneity in DNA amplifica-
tion rates rather than the aforementioned ecolog-
ical and behavioral characteristics, although we
are unaware of any mechanisms that could
directly cause this. The loss of potential detec-
tions because of DNA degradation is likely simi-
lar to randomized subsampling, to which spatial
capture–recapture models appear to be much
more robust compared to traditional non-spatial
capture–recapture models (Augustine et al. 2014,
Murphy et al. 2016). Nevertheless, successful
DNA amplification and individual identification
rates from fecal samples are often low because
the composition of scat includes waste that can
inhibit PCR (Long et al. 2008, Lonsinger et al.
2015). The proportion of our fecal samples that
could not be species-typed or genotyped (83.9%)
were comparable to that reported by Morin et al.
(2016), but were higher than reported by Gulsby
et al. (2016), Lonsinger et al. (2015), and Mumma
et al. (2015) despite our collection and storage
methods being identical to those studies.

Although based on a small sample size, Ausband
et al. (2011) also reported higher DNA amplifica-
tion and individual identification success rates
for hair samples collected via rub pads than we
observed (7.8%), and we used identical sampling
and storage methods. We also analyzed our scat
and hair samples at the same laboratory dedi-
cated to low-quality, low-quantity DNA samples
that was used by Ausband et al. (2011), Lon-
singer et al. (2015), Mumma et al. (2015), and
Morin et al. (2016).
Amplification and PCR success rates are typi-

cally highest for scat and hair samples that are
collected in very cold and dry climates because
warmth and moisture can rapidly degrade DNA
(Murphy et al. 2007, Brinkman et al. 2010, Lon-
singer et al. 2015). Although we conducted sam-
pling during the coldest winter months, average
temperature during sampling at the southerly
latitude of our study area was still warm com-
pared to other regions of North America (11°C,
range: 5–16°C; NOAA 2017). Our study area also
had a subtropical climate that was characterized
as being among the most humid areas of North
America (average annual relative humid-
ity = 75.9%) and incurred regular precipitation
(�x = 7.49 cm/week during sampling, SE = 2.29;
NOAA 2017). Because our sample storage and
laboratory methods were identical to other stud-
ies that achieved higher DNA amplification suc-
cess, we posit that the warm, humid climate and
wet conditions of our study area caused rapid
DNA degradation in samples (Gulsby et al.
2016). Although we checked each rub pad every
seven days, more frequent checks may be neces-
sary in areas of similar climatic conditions. Sam-
pling scat transects at more frequent intervals
would be unlikely to provide the same benefit,
however, because scat accumulation rates along
travel routes are slow for coyotes, wolves, and
other carnivores that are highly mobile and
occupy landscapes at low densities (Lonsinger
et al. 2015).
Our results and those of previous studies col-

lectively demonstrate that sparse detection data
from noninvasive genetic sampling of social and
territorial canids is a prevalent issue that results
in generally poor parameter estimate precision
(Stansbury et al. 2014, Bozarth et al. 2015, Morin
et al. 2016). Assuming the detection patterns that
we observed were produced by method-specific
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r parameters (i.e., model SH2), we obtained esti-
mates of coyote density and abundance that were
more precise than reported by other studies that
also used spatial capture–recapture models
(Bozarth et al. 2015, Morin et al. 2016), but were
nonetheless poorer than desirable. Uncertainty in
k0 and r could be substantially reduced and pre-
cision improved by integrating telemetry data
from radio-collars, which has been shown to
improve the effectiveness of sparse noninvasive
detection data (Tenan et al. 2017). Both Mexican
gray wolves and red wolves are annually radio-
monitored and attempts to estimate their popula-
tion densities and abundances have either failed
because of sparse detection data or resulted in
imprecise and possibly biased estimates (Adams
et al. 2003, Piaggio et al. 2016, Seamster et al.
2016, Hinton et al. 2017). Employing noninvasive
genetic sampling while simultaneously collecting
telemetry data could have considerable promise
for improving demographic estimates of those
and other carnivores that exhibit high degrees
of sociality and territoriality. Spatial partial iden-
tity models that probabilistically link spatial
detections of partial individuality to improve
precision of spatial capture–recapture density
estimates (Augustine et al. 2018a) have been
recently extended to incorporate partial geno-
types from noninvasive genetic detection data
(Augustine et al. 2018b). We obtained partial
genotypes (≥1 <9 amplified loci) for 16 scat and
21 hair samples, data that could be incorporated
to improve parameter estimate precision if those
genotypes are reliable or if appropriate error pro-
cesses are accounted for (e.g., genotyping error;
Wright et al. 2009). Nonetheless, we caution that
if the patterns we observed were indeed caused
by inconsistent individual heterogeneity in k0, as
postulated, then combining multiple types of
noninvasive genetic detection data may be prob-
lematic for social and territorial carnivores. These
data are typically sparse, modeling individual
heterogeneity in k0 with sparse detection data is
difficult, and positive bias can be introduced in
density estimates if individual heterogeneity is
not appropriately modeled.
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