
University of Kentucky
UKnowledge

Chemistry Faculty Publications Chemistry

11-6-2018

Intranasal Rapamycin Ameliorates Alzheimer-Like
Cognitive Decline in a Mouse Model of Down
Syndrome
Antonella Tramutola
Sapienza University of Rome, Italy

Chiara Lanzillotta
Sapienza University of Rome, Italy

Eugenio Barone
Sapienza University of Rome, Italy

Andrea Arena
Sapienza University of Rome, Italy

Ilaria Zuliani
Sapienza University of Rome, Italy

See next page for additional authors

Right click to open a feedback form in a new tab to let us know how this document benefits you.Follow this and additional works at: https://uknowledge.uky.edu/chemistry_facpub

Part of the Chemistry Commons, Diseases Commons, and the Neuroscience and Neurobiology
Commons

This Article is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Chemistry Faculty
Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Repository Citation
Tramutola, Antonella; Lanzillotta, Chiara; Barone, Eugenio; Arena, Andrea; Zuliani, Ilaria; Mosca, Luciana; Blarzino, Carla;
Butterfield, D. Allan; Perluigi, Marzia; and Domenico, Fabio Di, "Intranasal Rapamycin Ameliorates Alzheimer-Like Cognitive Decline
in a Mouse Model of Down Syndrome" (2018). Chemistry Faculty Publications. 148.
https://uknowledge.uky.edu/chemistry_facpub/148

http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fchemistry_facpub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fchemistry_facpub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fchemistry_facpub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/chemistry_facpub?utm_source=uknowledge.uky.edu%2Fchemistry_facpub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/chemistry?utm_source=uknowledge.uky.edu%2Fchemistry_facpub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/chemistry_facpub?utm_source=uknowledge.uky.edu%2Fchemistry_facpub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=uknowledge.uky.edu%2Fchemistry_facpub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/813?utm_source=uknowledge.uky.edu%2Fchemistry_facpub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=uknowledge.uky.edu%2Fchemistry_facpub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=uknowledge.uky.edu%2Fchemistry_facpub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/chemistry_facpub/148?utm_source=uknowledge.uky.edu%2Fchemistry_facpub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Authors
Antonella Tramutola, Chiara Lanzillotta, Eugenio Barone, Andrea Arena, Ilaria Zuliani, Luciana Mosca, Carla
Blarzino, D. Allan Butterfield, Marzia Perluigi, and Fabio Di Domenico

Intranasal Rapamycin Ameliorates Alzheimer-Like Cognitive Decline in a Mouse Model of Down Syndrome

Notes/Citation Information
Published in Translational Neurodegeneration, v. 7, 28, p. 1-22.

© The Author(s). 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons
Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated.

Digital Object Identifier (DOI)
https://doi.org/10.1186/s40035-018-0133-9

This article is available at UKnowledge: https://uknowledge.uky.edu/chemistry_facpub/148

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://uknowledge.uky.edu/chemistry_facpub/148?utm_source=uknowledge.uky.edu%2Fchemistry_facpub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages


RESEARCH Open Access

Intranasal rapamycin ameliorates Alzheimer-
like cognitive decline in a mouse model of
Down syndrome
Antonella Tramutola1†, Chiara Lanzillotta1†, Eugenio Barone1,2, Andrea Arena1, Ilaria Zuliani1, Luciana Mosca1,
Carla Blarzino1, D. Allan Butterfield3, Marzia Perluigi1* and Fabio Di Domenico1*

Abstract

Background: Down syndrome (DS) individuals, by the age of 40s, are at increased risk to develop Alzheimer-like
dementia, with deposition in brain of senile plaques and neurofibrillary tangles. Our laboratory recently demonstrated
the disturbance of PI3K/AKT/mTOR axis in DS brain, prior and after the development of Alzheimer Disease
(AD). The aberrant modulation of the mTOR signalling in DS and AD age-related cognitive decline affects crucial
neuronal pathways, including insulin signaling and autophagy, involved in pathology onset and progression. Within
this context, the therapeutic use of mTOR-inhibitors may prevent/attenuate the neurodegenerative phenomena. By our
work we aimed to rescue mTOR signalling in DS mice by a novel rapamycin intranasal administration protocol (InRapa)
that maximizes brain delivery and reduce systemic side effects.

Methods: Ts65Dn mice were administered with InRapa for 12 weeks, starting at 6 months of age demonstrating, at
the end of the treatment by radial arms maze and novel object recognition testing, rescued cognition.

Results: The analysis of mTOR signalling, after InRapa, demonstrated in Ts65Dn mice hippocampus the inhibition of
mTOR (reduced to physiological levels), which led, through the rescue of autophagy and insulin signalling, to reduced
APP levels, APP processing and APP metabolites production, as well as, to reduced tau hyperphosphorylation. In
addition, a reduction of oxidative stress markers was also observed.

Discussion: These findings demonstrate that chronic InRapa administration is able to exert a neuroprotective effect on
Ts65Dn hippocampus by reducing AD pathological hallmarks and by restoring protein homeostasis, thus ultimately
resulting in improved cognition. Results are discussed in term of a potential novel targeted therapeutic approach to
reduce cognitive decline and AD-like neuropathology in DS individuals.

Keywords: mTOR, Autophagy, Rapamycin, Down syndrome, Alzheimer disease, APP, Tau, Oxidative stress

Background
Down syndrome (DS) is the most common genetic cause
of intellectual disability due to total or partial triplication
of chromosome 21 (trisomy 21) [1]. The increased risk to
develop Alzheimer-like dementia in DS individuals is be-
coming a key issue to manage the extension of the lifespan
of DS population. Indeed, if from one side the improved
quality of life and the longer life expectancy are significant

achievements of both social and medical care, the overall
increase of mean age of DS individuals is associated with
an elevated risk to develop age-associated disorders,
among which Alzheimer disease (AD) [2]. The neuro-
pathological conditions of DS subjects are complex and
involve: deposition of senile plaques and neurofibrillary
tangles, dysfunctional mitochondria, defective neurogen-
esis, increased oxidative stress and altered proteostasis [3].
Approximately two-thirds of individuals with DS develop
dementia and brain pathological hallmarks in their 50s,
but severity varies significantly among DS population [1].
The triplication of amyloid precursor protein (APP) is
considered the major pathological event in both AD and

* Correspondence: marzia.perluigi@uniroma1.it;
fabio.didomenico@uniroma1.it
†Antonella Tramutola and Chiara Lanzillotta contributed equally to this work.
1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo
Moro 5, 00185 Rome, Italy
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Tramutola et al. Translational Neurodegeneration            (2018) 7:28 
https://doi.org/10.1186/s40035-018-0133-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s40035-018-0133-9&domain=pdf
http://orcid.org/0000-0002-2013-209X
mailto:marzia.perluigi@uniroma1.it
mailto:fabio.didomenico@uniroma1.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


DS with AD, but it is likely that several other triplicated
genes contribute to the neurodegenerative process [2, 4–
6]. Our previous studies investigated the molecular mech-
anisms responsible for early onset of AD in DS, focusing
attention on the mechanisms that lead to the impairment
of protein quality control (PQC) pathways, including the
ubiquitin proteasome system (UPS) and autophagy [7, 8].
We showed, in the frontal cortex from DS individuals be-
fore and after development of AD neuropathology, that
key components of the PQC are irreversibly oxidatively
modified resulting in aberrant protein functionality [7, 9].
In agreement, we observed, in young DS subjects, the
early accumulation of polyubiquitinylated proteins before
the appearance of AD symptoms [10, 11]. These data sug-
gest that impairment of protein degradative system may
play a crucial role in the early accumulation of amyloid
beta (Aβ) and tau toxic protein aggregates, thus accelerat-
ing the neurodegenerative process. Collecting studies sug-
gest that, in AD brain and animal models thereof, the
reduced autophagy is strongly associated with the hyper-
activation of the PI3K/AKT/mTOR axis, leading to the ac-
cumulation of protein aggregates [12, 13]. In the central
nervous system (CNS), mTOR and its downstream signal-
ling pathways are involved in synaptic plasticity, memory
retention, neuroendocrine regulation, puberty, and neur-
onal recovery [14–16]. Dysregulation of the mTOR path-
way is emerging as a leitmotif in a large number of human
diseases, including cancer, metabolic syndromes, and
neurological disorders. In the last decade, great attention
has been dedicated to the role of mTOR in the develop-
ment of AD. mTOR hyperactivity is observed in AD
brains from human and mouse models, and strong evi-
dence demonstrated that alterations of mTOR may be one
of the leading events contributing to the formation of
toxic aggregates during AD pathology [17–20]. Recent
studies from our laboratory and others employing speci-
mens from DS individuals and DS mouse models con-
firmed that aberrant mTOR signalling is an early
degenerating event in the brain that contributes to accel-
eration of Aβ and tau deposition and to the development
of AD-like cognitive decline [7, 9, 13, 21, 22]. In particular,
we investigated the status of the PI3K/AKT/mTOR path-
way in the frontal cortex from DS autopsy cases without
AD neuropathology (typically under the age of 40 years)
and DS with AD neuropathology [13]. Our results showed
the hyperactivation of the PI3K/AKT/mTOR axis in the
brains of subjects with DS with or without AD pathology
in comparison to healthy individuals. These data were as-
sociated with decreased autophagosome formation and in-
creased levels of Aβ and p-tau.
These findings represent a strong rationale to test

therapeutic strategies aimed to restore the functionality
of PQC or prevent its gradual loss. Among drug candi-
dates, mTOR inhibitors led to enormous interest as

potential AD-modifying agents [20, 23–28], thus repre-
senting an appealing potential approach against neuro-
degeneration. Evidence showing the positive effects on
memory of orally administered rapamycin demonstrated
the concomitant reduction, of AD pathological markers,
including Aβ and tau levels, in Tg mouse models of AD
[16, 19, 27, 29–32]. In the present work, we employed a
novel therapeutic strategy using rapamycin, a selective in-
hibitor of mTOR, delivered by intranasal route in order to
avoid peripheral accumulation. Our treatment supports
the pathological role of aberrant mTOR/autophagy axis in
DS mice and propose/confirm mTOR as a valuable target
to prevent/slow the development of AD-related cognitive
decline in DS as well as in the general population.

Methods
Mouse colony
Ts65Dn (B6EiC3Sn a/A-Ts(1716)65Dn/J), a well-established
mouse model of DS, carries a reciprocal translocation that
is trisomic for approximately 104 genes (56%) on Mmu16,
from Mrpl39 to the distal telomere, with homologues on
HSA21. Mice were generated by repeatedly backcrossing
Ts65Dn trisomic females with (B6EiC3SnF1/J) F1 hybrid
males. The parental generations were purchased from
Jackson Laboratories (Bar Harbour, ME, USA). These
breeding pairs produce litters containing both trisomic
(Ts65Dn) and euploid (Eu) offsprings. The pups were ge-
notyped to determine trisomy using standard PCR, as de-
scribed by Reinoldth [33]. In addition, the recessive retinal
degeneration 1 mutation (Pdebrd1), which segregates in
the colony and results in blindness in homozygotes, was
analyzed for all trisomic animals used in the present study
by standard PCR. Animals expressing the mutant gene
were excluded from the behavioral studies. Mice were
housed in clear Plexiglas cages (20 × 22 × 20 cm) under
standard laboratory conditions with a temperature of
22 ± 2 °C and 70% humidity, a 12-h light/dark cycle and
free access to food and water. Littermates were spliced
among age groups to avoid littermates/dam-specific ef-
fects. Mice characteristics are reported in Table 1. Mice
were sacrificed by cervical dislocation. Trunk blood was
collected from the site where the animal was decapitated.
Animals were perfused with saline and one brain hemi-
sphere was dissected for immunochemical analysis while
the other brain hemisphere was fixed and collected for im-
munofluorescence staining. All the experiments were per-
formed in strict compliance with the Italian National
Laws (DL 116/92), the European Communities Council
Directives (86/609/EEC). Experimental protocol was ap-
proved by Italian Ministry of Health authorization n°
1183/2016-PR. All efforts were made to minimize the
number of animals used in the study and their suffering.
All samples were flash-frozen and stored at − 80 °C until
utilization.
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InRapa treatment
6-month old Ts65Dn mice and euploid were adminis-
tered intranasal rapamycin (InRapa; Rapamune, Pfizer,
New York, NY, USA) and Vehicle (Veh; saline with 1%
DMSO) for 12 weeks. Mice were divided in 4 experi-
mental groups euploid and Ts65Dn treated with vehicle
or rapamycin (n = 10 per group). The treatment was
conducted 3 times per week, with a dose of 0.1 μg/μl of
rapamycin solution or vehicle (Fig. 1) in 10 μl (1 μg/
mouse). The treatment was well tolerated and no change
in body weight or in the consumption of drinking water
was observed. The rapamycin dose was chosen from a
dose-response pilot study performed before the treat-
ment. In the dose–response treatment the animals were
divided in three groups (n = 6 per group) and treated
with 0.01, 0.05, 0.1 and 0.2 μg/μl of rapamycin. Our data
demonstrated that the dose of rapamycin administered
during the treatment, 0.1 μg/μl, was able to partially in-
hibit mTOR (Ser2448) phosphorylation in mice hippo-
campus and frontal cortex (see Additional file 1).
Rapamycin distribution in brain and plasma was investi-
gated before treatment by UPLC-MS analysis. Briefly 6
euploids mice were treated by single intranasal delivery
of rapamycin, with the dose of 1 μg/mouse (0.05 mg/Kg/
mouse), or by single intraperitoneal injection (i.p.) with
the dose of 50 μg/mouse (2.5 mg/kg/mouse). 4 h after
the treatment brain and blood were collect for analysis.
In particular, for plasma isolation blood was collected in
presence of EDTA and then centrifuged at 3000×g for
15 min at 4 °C.

Ultra-performance/pressure liquid chromatography- mass
spectrometry (UPLC-MS) analysis
For the quantification of rapamycin in brain and plasma,
a UPLC-MS analysis method was utilized. Collected bio-
logical specimens were prepared as follows. Brain sam-
ples (≈100 mg) were homogenized by 20 strokes of a
Wheaton tissue homogenizer using 200 μl of a lysis buf-
fer (30 mM Tris-HCl, 0.1 M NaCl, pH 7.4). Further
homogenization was obtained through sonication of the
samples for 10 s 3-times in ice. Homogenized brain and
isolated plasma (100 μl) samples were then purified
using an Ostro™ Pass-through Sample Preparation Plate
(Waters) to remove proteins and phospholipids, by fol-
lowing the instructions provided by the manufacturer.
The samples were finally dried under vacuum at low
temperature. The residue was resuspended in 50 μl of
water/acetonitrile (20:80) and 40 μl were injected onto
the instrument. Chromatographic separation was per-
formed on a Waters Acquity H-Class UPLC system
(Waters, Milford, MA, USA), including a quaternary
solvent manager (QSM), a sample manager with flow
through needle system (FTN), a photodiode array de-
tector and a single-quadruple mass detector with elec-
trospray ionization source (ACQUITY QDa). The
column was a Zorbax Eclipse-Plus C8 (4.6 × 50 mm,
1.8 μm particle size). The mobile phase was composed
of a 5 mM ammonium formate aqueous solution
(Solvent A) and 0.1% formic acid in methanol (Solvent B).
A gradient elution program was performed starting with
30% solvent A and 70% solvent B for 3 min, up to 100% B

Table 1 Mouse samples characteristics and experimental use

Treatment Genotyping n Gender
(m/f)

Weight
(AVG ± SD)

Pde6b Experimental Use (n)

Behavioral Tests WB IF Q-PCR

Vehicle Eu 10 6/4 31.5 ± 7.2 0 10 8 4 6

Ts65Dn 10 5/5 25.7 ± 3.2 0 10 8 4 6

InRapa Eu 10 6/4 31.8 ± 6.8 0 10 8 4 6

Ts65Dn 10 6/4 28.9 ± 5.6 0 10 8 4 6

Fig. 1 Schematic of InRapa treatment. 6-month old Ts65Dn mice and euploid (Eu) were administered with intranasal rapamycin (InRapa; Rapamune,
Pfizer) 1 μg/mouse and Vehicle (Veh; saline with 1% DMSO) for 90 days total. At day 77 cognitive tests (NOR and RAM) has been initiated while at day
90 mice has been sacrificed to perform PCR, IHC and WB on collected brain samples
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in 3 min, followed by 2 min at 100% B. The column was
re-equilibrated to 30% A/70% B for 4 min. In these condi-
tions rapamycin has a retention time of 5.4 min. Mass
spectrometric detection was set in the positive electro-
spray ionization mode using nitrogen as nebulizer gas.
Analyzes were performed in Total Ion Current (TIC)
mode in the mass range 400–1000 m/z. Capillary voltage
was 0.8 kV, cone voltage 30 V, ion source temperature
120 °C and probe temperature 600 °C. QDa analysis de-
tected the presence of rapamycin adducts with potassium,
sodium and ammonium ions ([M +K]+m/z = 952.45, [M
+Na]+m/z = 936.45, [M +NH4]

+m/z = 931.45). The quan-
tification of rapamycin adducts was performed by auto-
matic peak area integration using a dedicated software
(Empower3). A calibration curve was plotted using differ-
ent amounts of rapamycin (0.5 pmoles to 200 pmoles),
treated with the same procedure used for the samples.
The curves (11 data points in duplicate) were linear with
an R2 value of ≈ 1.00.

Novel object recognition (NOR)
The Novel Object Recognition (NOR) task is used to
evaluate cognition, particularly recognition memory, in
rodent models of CNS disorders. All experimental
groups (Eu Veh, Ts65Dn Veh, Eu InRapa and Ts65Dn
InRapa) were involved in the test procedures. This test is
based on the spontaneous tendency of rodents to spend
more time exploring a novel object than a familiar one.
The task procedure consists of three phases: habituation,
familiarization, and test phase. In the habituation phase
at 1st day, each animal is allowed 10 min to freely ex-
ploring the open-field arena (50 cm deep × 30 cm widths
× 30 cm height) in the absence of objects. During the
familiarization phase on the 2nd day, a single animal is
placed in the open-field arena containing two identical
objects (two balls), for 10 min. To prevent coercion to
explore the objects, rodents are released against the cen-
ter of the opposite wall with its back to the objects. The
experimental context is not drastically different during
the familiarization and the test phase. In the test phase
after 24 h, the animal is returned to the open-field arena
with two objects, one is the familiar object and the other
is novel (ball + plastic brick) [34, 35]. The discrimination
index and preference index percentage are recorded.
Discrimination index (DI), allows discrimination be-
tween the novel (TN) and familiar (TF) objects [DI
= (TN − TF)/(TN + TF)]. The preference index (PI) is a
ratio of the amount of time spent exploring any one of
the two objects in training phase (A, B) or the novel one
in test phase (C) over the total time spent exploring both
objects, i.e., A, B or C/(A, B + C) × 100 (%) in the test
phase. Therefore, a preference index above 50% indicates
novel object preference, below 50% familiar object pref-
erence, and 50% no preference [35].

Radial arms maze (RAM)
The Radial Arms Maze is composed of a central octag-
onal platform with eight arms extending from it like the
spokes of a wheel [36]. All animals were familiarized
with the maze for 3 days before training (Eu Veh,
Ts65Dn Veh, Eu InRapa and Ts65Dn InRapa; n = 10).
On these 3 days, they were placed in the maze for
10 min and could eat food rewards that were scattered
throughout the maze. In our protocol, the version of the
task was an alternated- baited maze procedure, where
mice had to learn to visit only all the baited arms. Mice
were given daily training sessions (one trial per session)
over a 9-day period and day 10th was considered a Test
Day. A daily training session started with the animal
placed in the central area, once the mouse explored the
baited arm and came back into the central area, the trial
was ended. For all groups, a trial ended when one of the
following conditions was reached: (i) the animal visited
all baited arms, or (ii) the trial lasted for more than
10 min. The maze was cleaned with absorbing paper be-
tween each animal to minimize the olfactory intra-maze
cues. We evaluated the total number of working mem-
ory errors (WME), reference memory errors (RME) and
latency to finish a trial made by the animals with respect
to the training sessions. Distance travelled between
groups have been recorded and analyzed showing no sig-
nificant differences (Additional file 2).

RNA extraction and quantitative real-time RT-PCR
RNA was extracted from the frozen hippocampus in the
all groups (n = 6/group) using Tissue Total RNA Kit ac-
cording to manufacturer’s instructions (Fisher Molecular
biology, Rome, Italy). RNA was quantified using the Bios-
pec Nano spectrophotometer (Shimadzu, Columbia, MD,
USA), and RNA was reverse transcribed using the cDNA
High Capacity kit (Applied Biosystems, Foster City, CA,
USA), including reverse transcriptase, random primers
and buffer according to manufacturer’s instructions. The
cDNA was produced through a series of heating and an-
nealing cycles in the MultiGene OPTIMAX 96-well Ther-
mocycler (LabNet International, Edison, NJ, USA). Real
time PCR (Q-PCR) using the following cycling conditions:
35 cycles of denaturation at 95 °C for 20 s; annealing and
extension at 60 °C for 20 s, using the SensiFAST™ SYBR®
No-ROX Kit (Bioline, London, UK). PCR reactions were
carried out in a 20 μl reaction volume in a CFX Connect
Real Time PCR machine (Bio-Rad Laboratories, Hercules,
CA, USA). Primers used for the evaluation of gene expres-
sion are reported in Table 2. Relative mRNA concentra-
tions were calculated from the take-off point of reactions
(threshold cycle, Ct) using the comparative quantification
method performed by Bio-Rad software and based upon
the ΔΔCt method. Ct values for GAPDH expression
served as a normalizing signal [37].
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Sample preparation for Western blot and immunofluorescence
Brain tissues of Ts65Dn and euploid mice (n = 8 per
group) after treatment were sagittally divided in right
and left hemispheres. The right portion was used for Im-
munofluorescence studies and the left portion was used
for molecular biology studies. For western blot and slot
blot, the left-hippocampus were thawed in RIPA buffer
(pH 7.4) containing 50 mM Tris-HCl (pH 7.4), 150 mM
NaCl, 1% NP-40, 0.25% sodium deoxycholate,1 mM
EDTA, 0,1% SDS, 1 mM PMSF, 1 mM NaF and 1 mM
Na3VO4. Brains were homogenized by 20 strokes of a
Wheaton tissue homogenizer. All the samples homogen-
ate was centrifuged at 14,000×g for 10 min to remove
cellular debris. The supernatant was extracted to deter-
mine the total protein concentration by the BCA
method (Pierce, Rockford, IL, USA).

Western blot
For Western blot, 30 μg of proteins were prepared by add-
ing in 2X Laemmli Buffer (Bio-Rad Laboratories,
Hercules, CA, USA). The sample was heated at 100 °C for
10 min. Electrophoresis was performed on the samples
using a Criterion TGX Stain-Free 4–15% 18-well gel in a
Criterion large format electrophoresis cell (Bio-Rad La-
boratories, Hercules, CA, USA) in TGS Running Buffer
(Bio-Rad Laboratories, Hercules, CA, USA), for 60 min at
100 V. Immediately after electrophoresis, the gel was
placed on a Chemi/UV/Stain-Free tray and then placed
into a ChemiDoc MP imaging System (Bio-Rad Labora-
tories, Hercules, CA, USA) and UV-activated based on
the appropriate settings with Image Lab Software (Bio-Rad
Laboratories, Hercules, CA, USA). For gels that would be
later used in blotting, the software-selected activation time
was 45 s. Following electrophoresis and gel imaging, the
proteins were transferred via the TransBlot Turbo
semi-dry blotting apparatus (Bio-Rad Laboratories,
Hercules, CA, USA) onto a nitrocellulose membrane.
After transfer, the blot was imaged using the ChemiDoc
MP imaging system using the Stain-Free Blot settings.
This total protein signal was used as the basis for total
protein normalization. Membranes were blocked with 3%
of bovine serum albumin (SERVA Electrophoresis GmbH,
Heidelberg, Germany) and incubated over night at 4 °C
with primary antibody. An additional table shows the
antibody details (see Additional file 3). All the membranes
were incubated for 1 h at room temperature with
secondary antibody horseradish peroxidase-conjugated
anti-rabbit, anti-mouse or anti-goat IgG (1:5000, Sigma–
Aldrich, St Louis, MO, USA). The blot was then imaged
via the ChemiDoc MP imaging system using the Chemilu-
minescence settings. Subsequent determination of relative
abundance via total protein normalization was calculated
using Image Lab 6.0 software (Bio-Rad Laboratories,
Hercules, CA, USA).

Slot blot
For the analysis of total 3-nitrotyrosine (3-NT) and
4-hydroxy-2-nonenal (HNE)-bound protein levels, 10 μl
of hippocampus homogenate were incubated with 10 μl of
Laemmli buffer containing 0.125 M Tris base pH 6.8, 4%
(v/v) SDS, and 20% (v/v) glycerol. The resulting samples
(250 ng per well) were loaded onto a nitrocellulose mem-
brane with a slot-blot apparatus under vacuum pressure.
The membrane was blocked for 2 h with a solution of 3%
(w/v) bovine serum albumin in PBS containing 0.01%
(w/v) sodium azide and 0.2% (v/v) Tween 20 and incu-
bated respectively with primary antibodies anti-HNE
(Alpha diagnostic, San Antonio, TX, USA) and anti-3NT
(Santa Cruz Biotechnology, Dallas, TX, USA) for 2 h at
RT. Membranes were washed and incubated with
anti-rabbit or mouse IgG alkaline phosphatase secondary
antibodies (Sigma-Aldrich, St Louis, MO, USA) for 1 h at
room temperature. The membrane was developed with
Sigma fast tablets (5-bromo-4-chloro-3-indolyl phos-
phate/nitroblue tetrazolium substrate [BCIP/NBT sub-
strate], Sigma-Aldrich, St Louis, MO, USA). Membranes
were dried and the image was acquired using ChemiDoc
XP image system and analyzed using Image Lab software
(Bio-Rad Laboratories, Hercules, CA, USA).

Immunofluorescence
Brains were removed and immersed in 4% paraformalde-
hyde for 24 h at 4 °C. Fixed brains were cryoprotected in
successive 48 h with a solution of 20% sucrose and
0.02% NaN3 at 4 °C. Brains were frozen on a
temperature-controlled freezing stage, coronal sectioned
(20 μm) on a sliding cryostat (Leica Biosystems, Wetzlar,
Germany), and stored in a solution of PBS containing
0.02% NaN3 at 4 °C. Brain sections were mounted on
glass slide. Once dried, sections were blocked with a so-
lution containing 10% normal goat serum, 0.02% NaN3,
and 0.2% Triton X-100 in TBS. Slides were then
incubated overnight at 4 °C with following antibodies:
p(Ser 2448)-mTOR (mouse 1:500), p(Ser416)-tau (rabbit
1:500), amyloid-β (B-4) (rabbit 1:500) (Bio-Rad Laborator-
ies, Hercules, CA, USA; Santa Cruz Biotechnology, Dallas,
TX, USA). Slides were then washed with TBS and then in-
cubated with Alexa Fluor -488 nm and -594 nm secondary
antibodies (Invitrogen Corporation, Carlsbad, CA, USA)
at 1:1500 for 2 h at room temperature. Slides were then
washed again and incubated with DAPI (1:10.000). One
slide per group was stained omitting primary antibodies to
establish nonspecific background signal. Cover slips were
placed using a drop of Fluorimount (Sigma-Aldrich, St
Louis, MO, USA).
All slides were imaged using Zeiss AXio (Carl Zeiss,

Oberkochen, Germany). All immunolabeling acquisition
intensities, field sizes, and microscopy settings were kept
consistent across all images. Images were analyzed using
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ImageJ. Image montages for Figures were collated in Il-
lustrator and Photoshop Cs6 (Adobe System, San Josè,
CA, USA) software programs and were based upon cells
that most closely approximated the group means.

Experimental size and statistical analysis
Behavioural tests (NOR and RAM) were performed using
10 mice per group (Ts65Dn Veh and Rapa; Eu Veh and
Rapa). Q-PCR was achieved one time with cDNA from 6
mice per group (Ts65Dn Veh and Rapa; Eu Veh and
Rapa). Each immunoblot experiment was performed at
least three times using 8 samples per group. Immunohis-
tochemistry analyzes were performed using at least 10 sec-
tions per brain of 4 mice per group. Details on sample size
are summarized in Table 1). All statistical analyses were
performed using a non-parametric one-way ANOVA with
post hoc Bonferroni t-test. Further to determine how our
data are affected by genotype (DS), treatment (InRapa)
and their interaction we accomplished a two-way ANOVA
analysis (data are reported in a table as Additional file 4).
Data are expressed as mean ± SD per group. All statistical
analyzes were performed using Graph Pad Prism 7.0 soft-
ware (GraphPad, La Jolla, CA, USA).

Results
Intranasal delivery reduces peripheral rapamycin
concentration
To test the advantage of intranasal delivery in comparison
to intraperitoneal (i.p.) injection, we treated mice once by
the intranasal route, with the dose of 1 μg/mouse
(0.05 mg/Kg/mouse), and by i.p. 50 μg/mouse (2.5 mg/kg/
mouse) as previously reported [20]. To note, InRapa dose
is about 50-times lower than i.p injection dose. After 4 h
of treatment we sacrificed mice and analyzed brain and
plasma, from InRapa and i.p. treated animals, by
UPLC-MS, to evaluate rapamycin distribution. Our ana-
lysis demonstrates that InRapa treated mice showed a
brain concentration of rapamycin of 5.0 ± 1.0 ng/g after
4 h, while the plasma concentration was 6.7 ± 1.3 ng/ml
(see Additional file 5). In contrast, animals treated by i.p.
injection showed a rapamycin brain concentration of 11.1
± 1.7 ng/g and a plasma concentration of 890.5 ± 98.1 ng/
ml (see Additional file 5). Collectively, our data demon-
strate that rapamycin delivered by intranasal route reached
a therapeutic brain concentration comparable to that ob-
tained by i.p. injection but with an extremely lower distri-
bution at plasma level. Therefore, these results, coupled
with the analysis by WB of mTOR inhibition in liver and
heart tissue, which showed no changes between Ts65Dn
rapamycin and vehicle treated groups (see Additional file
6), suggest that InRapa delivery might not yield consistent
side effects in peripheral organs.

InRapa improves cognitive performances in Ts65Dn mice
To evaluate the effects of InRapa treatment on cognitive
performances mice were subjected before the end of the
treatment to hippocampal-based tasks, novel object rec-
ognition test (NOR) and eight-arms radial arms maze
test (RAM), to test spatial learning and working mem-
ory, at first, to assess memory status differences between
treated (InRapa) and untreated (Veh) animals, we per-
formed the NOR tests. Our data show that Eu animals,
both vehicle and rapamycin treated groups, demonstrate
a PI above 50%, while Ts65Dn mice treated with vehicle
exhibit a PI slightly below 50% as result of hippocampal
alterations. Interestingly, InRapa treatment is able to re-
cover PI in Ts65Dn mice (increased about 70%; p = 0.04)
and present a significant difference with Ts65Dn Veh
mice, suggesting a recovery of hippocampal functions
after InRapa administration (Fig. 2a). In addition, the im-
pairment of cognition in Ts65Dn Veh is demonstrated
by the significant reduction of DI (20%; p = 0.08)
(Fig. 2b) when compared to Eu Veh, while Ts65Dn InRapa
group, demonstrate increased DI in comparison with
Ts65Dn Veh group (about 20%, p = 0.019). The analysis of
data by two-way ANOVA demonstrate that PI values are
not affected by genotype or treatment variables, while
their interaction account for the 17.90% (p < 0.024) of the
total variance. As far as DI results, genotype significantly
account for the 25.92% (0.0016) of the total variance, while
InRapa treatment do not affect data. The interaction be-
tween genotype and treatment significantly account for
the 21.02% (0.0039) of the total variance.
The effects of InRapa on the working and reference

memory was further evaluated by the radial arm maze
(RAM) test. In 9 days of trial and in the test-day (day
10) we measured three different parameters (i) the time
that all mice spend to reach all the 4 beads (Latency,
min) (Fig. 2c, d); (ii) the reference memory errors, entry
to an empty arm (Fig. 2e, f ); (iii) the working memory
errors, repeat entries to arms of the maze already visited
(Fig. 2g, h). At day 1 all the mice spent an equal time to
reach the beads and they showed no significant differ-
ences in latency and reference memory errors. At the
day 10 Ts65Dn Veh showed poor acquisition ability,
measured as increased in latency (50%, p = 0.0015) and
as well as in working (80%, p = 0.042) and reference
(40%, p = 0.021) memory compared to Eu Veh group.
On the other hand, the number of errors (working and
reference memory) and the latency was lowest for Eu
Veh, Eu InRapa and Ts65Dn InRapa groups and this ef-
fect was persistent during testing and was evident espe-
cially at day 10. Indeed, if the attention is focused on
day 10 (considered as Test Day), Ts65Dn treated with
InRapa showed a decreased latency (45%; p = 0.07) as
show in Fig. 2d and reference memory errors (40%,
p = 0.013) (Fig. 2h) compared to Ts65Dn Veh. A
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decreasing trend (not significant) for working memory
errors (50%; p = 0.12) was evident in Ts65Dn treated
with InRapa (Fig. 2f ) compared to Ts65Dn Veh. These
results showed a partial recovery in cognition for
Ts65Dn treated with InRapa. The analysis of RAM re-
sults by Two-way ANOVA show that genotype

significantly account for the 35.71% (p = 0.0004) and
the 21.71% (0.0034) of the total variance of latency and
reference memory results, respectively, while InRapa
treatment significantly account for the 20.91%
(p = 0.0039) of the total variance of reference memory re-
sults. The interaction between genotype and treatment

Fig. 2 InRapa improves cognitive performances in TS65Dn mice. Panel a and b represent data of the novel object recognition test. Values shown
in the bar graph are in (a) Preference index and in (b) Discrimination index (data presented are mean ± SEM n = 10/ group). Statistical significance
was determined using one–way ANOVA and post hoc Bonferroni t-test (*p < 0.05, **p < 0.01). Panels from c to h represent Radial Arm Maze (RAM)
results for our treatment groups of treatment. The red and black triangles are data from Ts65Dn mice treated with InRapa and Veh solution. The blue
filled circles are data from Eu mice treated with InRapa and the empty circle are data from Eu mice treated with Veh solution. Panel c represents the
latency of the mice on each trial (one trial per day). Panel d represents bar diagram showing latency during the test day (day 10). Panel e represents
the working memory errors committed by mice on each trial (one trial per day). Panel f represents bar diagram showing working memory error
during the test day (day 10). Panel g represents the reference memory errors committed by mice on each trial (one trial per day). Panel h represents
bar diagram showing reference memory error during the test day (day 10) values shown in the bar graph are the mean of 10 samples per each group
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significantly account for the 13.45% (0.0171) of the total
variance of reference memory data only.
The results obtained by NOR and RAM tests demon-

strate a significant effect of InRapa in Ts65Dn group
compared to Veh group, supporting that a targeted rapa-
mycin treatment is able to partially restore memory in
Ts65Dn mice.

InRapa decreases mTOR hyperactivation and induces
autophagy
We recently showed a pathological mTOR hyper-activation
in Ts65Dn mice at 6 months of age compared with eu-
ploid controls [22]. Since long-term mTOR activation
leads to neuronal dysfunction and cell death, we
hypothesized that inhibition of p-mTOR in Ts65Dn mice
would ameliorate the detrimental effects of chronic
over-activation. Overall, our data show that intranasal de-
livery of the mTOR inhibitor rapamycin was able to target
and modulate mTOR kinase activity in the hippocampus
(Fig. 3 A-D) without affecting body weight as reported in
Table 1. In particular, the biochemical analysis performed
in the four groups of comparison demonstrate at first that
Ts65Dn Veh mice compared with Eu Veh mice show an
increase of mTOR phosphorylation at Ser2448 (69%;
p = 0.036) (Fig. 3d). Similarly, p-mTOR (Ser2448) staining
in the neuronal layer of CA3 in Ts65Dn mice Veh is sig-
nificantly increased compared with Eu mice treated with
Veh (101%; p = 0.021) (Fig. 3a.1–5, B). The administration
of InRapa in Ts65Dn mice is able to partially decrease
mTOR phosphorylation at Ser2448 in comparison with
Ts65Dn Veh mice (82%; p = 0.014) rescuing the activity of
mTORC1 to physiological levels as demonstrated by the
comparison with Eu mice (Fig. 3d). Such results are
confirmed by IF analysis that show a decrease of p-mTOR
in Ts65Dn mice after InRapa of about 98% (p = 0.002)
(Fig. 3a.5–7, B). Accordingly, the analysis of dentate gyrus,
by IF, demonstrate a trend of increase of mTOR phos-
phorylation in Ts65Dn mice Veh compared to euploids,
which decrease after the treatment. The two-way ANOVA
analysis of mTOR phosphorylation data show that geno-
type accounts for the 12.46% of the total variance (p =
0.022), while InRapa treatment significantly accounts for
the 20.38% of the total variance, no significant interaction
between the two factor is present. Results on the reduced
mTOR activation in Ts65Dn treated with rapamycin are
confirmed also by real-time PCR. Indeed, Ts65Dn Veh
mice compared with Eu Veh mice show a significant in-
crease of mTOR gene expression (30%; p = 0.024); in
contrast, rapamycin administration is able to decrease the
mTOR gene expression in Ts65Dn by 30% (p = 0.019) and
this reduction is comparable to Eu groups (Fig. 3h). How-
ever, alteration in mTOR gene expression do not yield
changes in protein levels between groups. Rapamycin is
considered a strong and specific inhibitor of mTORC1

activity, mTORC2 was originally considered insensitive to
rapamycin administration. However, prolonged treatment
with rapamycin also was shown to be able to inhibit
mTORC2 [38]. Our analysis of mTORC2 activity, indexed
by phosphorylation of mTOR at Ser2481, show no alter-
ation between Eu and Ts65Dn mice either with or without
InRapa administration (10.3% p = 0.8 and 21.9% p = 0.23
respectively), supporting the low sensitivity of mTORC2
to rapamycin treatment (Fig. 3d).
mTORC1 is directly involved in regulating the activity

of two components of the protein synthesis machinery,
including the ribosomal S6 kinase 1 (S6 K1) and the
eukaryotic translation initiation factor 4E-BP1. Active
mTORC1 leads to the phosphorylation of p70S6K at
Thr389, which in turn can exert its kinase activity on
the S6 ribosomal protein, involved in protein translation
[8]. Our data show, that hyperphosphorylated mTORC1
lead to the hyperphosphorylation of p70S6K in Ts65Dn
mice compared to Eu animals (57%; p = 0.0002), while
InRapa, despite an increase of protein levels, is able to
reduce p70S6K activation to Eu values, suggesting the
full restoration of the mTOR pathway (90%; p = 0.0007)
(Fig. 3e). The two-way ANOVA analysis shows that
genotype do not significantly account for the total vari-
ance of p-P70S6K, while InRapa treatment significantly
accounts for the 53.30% (p < 0.0001). The interaction be-
tween genotype and treatment accounts for the 21.14%
of the total variance (p < 0.001).
In parallel, mTORC1 is a negative regulator of autoph-

agy by directly phosphorylating and suppressing the kin-
ase complex Ulk1/Atg13/FIP200 required to promote
autophagosome formation [39]. Autophagy plays a crucial
role in the removal of toxic/aggregated proteins, such as
Aβ and p-tau aggregates, and damaged organelles. The al-
teration of autophagy is reported in various neurodegener-
ative and lysosomal storage disorders and has been
extensively demonstrated in DS [39–42]. A common mo-
lecular marker to evaluate the rate of autophagosome for-
mation is represented by the ratio of the isoform II to
isoform I of LC3, a microtubule associated protein, in-
volved in phagophore elongation and closure [43]. Our
results support the idea that, mTORC1 hyper-phosphoryl-
ation lead to decreased autophagosome formation as ob-
served by reduced LC3 II (33%; p = 0.04) and also, its gene
expression (about 50%; p = 0.07) in Ts65Dn mice (Veh)
compared with Eu animals. InRapa treatment in Ts65Dn
was able to rescue the LC3 II protein levels, as demon-
strated by its increase about 27% (p = 0.012) when com-
pared to Ts65Dn Veh mice, therefore retrieving autophagy
function to physiological condition (Eu Veh) (Fig. 3F). The
two-way ANOVA analysis shows that genotype signifi-
cantly accounts for the 17.38% (p < 0.034) of the total vari-
ance of p-P70S6K, while treatment has not significant
effect (p = 0.067). The interaction between genotype and
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treatment accounts for the 35.12% (p < 0.001) of the
total variance.
In addition, this result is supported by an increasing

trend (not significant, p = 0.09) for LC3 gene expression
in Ts65Dn treated with rapamycin (Fig. 3I). So far, the
molecular levels of Beclin1, involved in autophagosome
induction, and of Atg7, Atg5 and Atg12/Atg 5 complex,
involved in autophagosome elongation, are currently

employed as further indices of autophagy induction [43].
We show a significant reduction in Ts65Dn Veh mice
compared to Eu Veh for both Atg7 levels (26%;
p = 0.043) and Atg5/Atg12 complex levels (25%;
p = 0.0038) (Fig. 3G). InRapa treatment in Ts65Dn was
able to recover the alteration of these autophagy-related
markers to levels observed in euploid animals, despite
Atg7 levels. Indeed, we found a 22% (p = 0.0097) increase

Fig. 3 InRapa recovers mTOR hyperactivation and induce autophagy. (a 1–8) Representative immunofluorescent images showing p-mTOR(Ser2448)
signal in the CA3 region of the hippocampus from euploid mice treated with Veh and InRapa (A1–4), and Ts65Dn mice treated with Veh and InRapa
(A5–8). DAPI (blue) was used to identify cell nuclei. Scale bar represent 20 μm. (b) Quantification of fluorescence signal. (c) Representative WB showing
hippocampal p-mTOR (Ser 2448,2481) and mTOR total protein levels, p-P70S6K and P70S6K total protein levels, Atg5, Atg7, Beclin, LC3II protein levels.
(d) Quantification of panel C showing mTOR protein levels, p-mTOR (Ser2448)/mTOR ratio and p mTOR (Ser2481)/mTOR ratio. (e) Quantification of
panel C showing P70S6K and p-P70S6K/ P70S6K ratio. (f) Quantification of panel C showing LC3II and Beclin protein levels. (g) Quantification of panel
C showing Atg5, Atg7 protein levels and quantification of the complex Atg5-Atg12. (h-j) Quantification of mRNA levels of mTOR (h), LC3 (i) and Beclin
(j) analyzed by RT-PCR analysis. Densitometry values shown in the bar graph are the mean of 8 (WB) and 6 (RT-PCR) samples per each group normalized
per total load and are given as percentage of Eu Veh, set as 100%. (*p< 0.05, **p< 0.01, ***p< 0.001)
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in Ts65Dn mice InRapa compared with Ts65Dn Veh for
Atg12/Atg5 complex levels and a 68% (p = 0.08) trend of
increase in Ts65Dn mice InRapa compared with Ts65Dn
Veh for Atg5 protein levels (Fig. 3g). The analysis of
Atg12/Atg5 complex data by two-way ANOVA show, as
well as for LC3 II, that genotype significantly accounts for
the 10.27% (p < 0.0065) of the total variance, while treat-
ment has not significant effects (p = 0.086). The inter-
action between genotype and treatment accounts for the
52.76% of the total variance (p < 0.001). No alterations of
Beclin1 were observed both in gene expression and pro-
tein (Fig. 3J). Therefore, intranasal treatment by inhibiting
mTOR phosphorylation allowed the recovery of
autophagy-related markers alterations to the levels ob-
served in Eu animals.

InRapa reduces aberrant APP levels and APP processing
The DS population demonstrate that the early accumu-
lation of Aβ peptide plays a key toxic role in the brain
resulting in AD-like cognitive decline [1, 2, 5, 44, 45].
Aβ is the product of the proteolytic cleavage of APP,
which, among the triplicated genes in DS, is considered
the most toxic candidate that contributes to the patho-
genesis of AD in DS individuals. The overexpression of
APP in DS was shown by previous studies in both
humans and mouse samples [4–6, 46]. We analyzed the
hippocampus of Ts65Dn and Eu mice after InRapa treat-
ment to investigate changes in APP gene expression,
APP protein levels and its metabolites, and Aβ peptide
levels. At first, we employed the IF technique with the
anti-Aβ (B4) antibody, which recognize both Aβ pep-
tides and APP gene product. This analysis shows an in-
crease of fluorescence in Ts65Dn mice compared to Eu
mice (Veh groups) in the CA3 region (90%, p = 0.014;
Fig. 4a.1–5, B) and in the dentate gyrus (53%, p = 0.08).
While InRapa treatment decreases the levels of about
103% (p = 0.0017; Fig. 4a.5–8, B) in the CA3 region and
of about 55% (p = 0.027, Additional file 7) in the dentate
gyrus. In order to evaluate the contribution of APP or
Aβ to IF signal changes, we performed a WB analysis
using a different array of antibodies (Fig. 4b). The spe-
cific analysis of APP shows, as expected, an increase
(26%; p = 0.025) in Ts65Dn mice compared to eu-
ploids but a restoration of the signal (32% reduction;
p = 0.0065) in the same animals after InRapa treatment
(Fig. 4d). The analysis of Aβ oligomers (at 25 and 50 kD)
demonstrated an increase in Ts65Dn mice (about 50% and
30% respectively; p = 0.06 and p = 0.048), which was sig-
nificantly reduced by InRapa treatment (70% p = 0.035
and 40% p = 0.029) (Fig. 4f). These data are particularly in-
triguing since previous studies showed conflicting results
about increased Aβ levels in Ts65dn mice at any age
[47–49]. In order to investigate whether the decrease of
APP protein levels after InRapa treatment were associated

with reduced gene expression, we performed RT-PCR
analysis demonstrating the same trend observed by IF and
WB analysis: a 90% increase (p = 0.08) in Ts65Dn mice
Veh compared to Eu Veh, while a 102% reduction
(p = 0.031) in Ts65Dn after InRapa administration
(Fig. 4g). The two-way ANOVA analysis of Aβ data
show that InRapa treatment account for the 14.67%
(p < 0.0192) of the total variance of Aβ 25 kD oligomers
and for the 15.59% (0.0097) of the total variance of Aβ 50
kD oligomers.
Interactions account for the 15.50% (0.0164) and the

26.53% (0.0011) of the total variance of Aβ oligomers at
25 and 50 kD respectively.
The APP processing can follow two different pathways

that produce either non-amyloidogenic or amyloidogenic
peptides. The non-amyloidogenic pathway is controlled
by α-secretases and lead to the formation of s-APPα and
α-CTF, while the amyloidogenic pathways lead to the
formation of s-APPβ and β-CTF, which can be furtherly
cleaved by γ secretase to form Aβ [50]. The analysis of
APP processing products demonstrates, in accordance
with APP overexpression, the increased formation of
α-CTF (29%; p = 0.030) and β–CTF peptides (23%; p =
0.048) in Ts65Dn compared to Eu mice treated both
with Veh solution. The increased expression of α-CTF
and β–CTF, as observed for total APP levels, was recov-
ered significantly by InRapa administration in Ts65Dn
mice of about 31% (p = 0.029) and 29% (p = 0.018), re-
spectively, when compared to Ts65Dn Veh (Fig. 4D).
The two-way ANOVA analysis demonstrate that geno-
type account significantly for the 17.20% (p < 0.0064),
the 13.74% (p = 0.0103) and the 26.95% (p < 0.0001) of
the total variance of App, App α-CTF and App β-CTF
respectively, while InRapa treatment account for the
29.58% (p = 0.0006), the 20.98% (p = 0.0021) and the
40.05% (p < 0.0001) of the total variance of App, App
α-CTF and App β-CTF. The interaction between genotype
and treatment is significant only for App α-CTF that ac-
count for the 14.42% (p = 0.0088) of the total variance.
In addition, the levels of β-secretase (BACE1), the

rate-limiting enzyme in β–CTF and Aβ generation, were
reduced after rapamycin treatment, in both Ts65Dn and
Eu animals, suggesting that its expression is susceptible
to rapamycin administration in a strain-independent
manner (Fig. 4E). The two-way ANOVA analysis demon-
strated indeed that InRapa treatment account for the
49.83% (p < 0.0001) of the total variance.

InRapa modulates tau hyper-phosphorylation and the
expression of tau kinases
To further investigate the efficacy of InRapa treatment
to reduce AD-related pathological features in DS ani-
mals, we examined tau hyper-phosphorylation and the
activation of the main kinases involved in its aberrant
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phosphorylation. The Ts65Dn mice show increased
phosphorylation of tau on Ser416 (70%; p = 0.027) com-
pared with Eu (Fig. 5d). InRapa treatment on Ts65Dn
mice, despite showing a slight increase of levels of tau
proteins, demonstrate a robust decrease of tau phos-
phorylation, in Ser416, when compared to the same
mouse strain treated with Veh (80%; p = 0.011) (Fig. 5d).
Similarly, p-tau (Ser416) staining in the neuronal layer
of CA3 (Fig. 5a.1–5, B) and dentate gyrus (Additional
file 7) are increased in Ts65Dn Veh mice compared with
Eu Veh (45%, p = 0.033 and 106%, p = 0.002). InRapa ad-
ministration in Ts65Dn mice demonstrates the reduction
of tau hyper-phosphorylation in Ts65Dn mice both CA3
(90%, p = 0.015; Fig. 5a.5–8, B) and dentate gyrus (95%,

p = 0.004; Additional file 7) regions. The two-way
ANOVA analysis of p-tau demonstrated that InRapa
treatment, only account for the 16.64% (p = 0.0184) of
the total variance. Several proteins are involved in tau
phosphorylation, such as GSK3β and DYRK1A, that
function as direct kinases of tau, or RCAN1 that operate
through the inhibition of calcineurin [51–55]. Akt is
known to directly regulate GSK3β by phosphorylation of
its inhibitory serine residue (Ser9). GSK3β kinase activity
on tau phosphorylation, relies on protein levels and on
the balance between the phosphorylation of its activatory
(Tyr216) and inhibitory (Ser9) residues. GSK3β expres-
sion levels were higher in Ts65Dn cases compared to the
appropriate Eu treated with Veh (20%; p = 0.017). With

Fig. 4 InRapa reduces APP expression levels, APP metabolites and APP processing. (a 1–8) Representative immunofluorescent images showing
APP/Aβ (B-4) signal in the CA3 region of the hippocampus from euploid mice treated with Veh and InRapa (a.1–4), and Ts65Dn mice treated with
Veh and InRapa (A.5–8). DAPI (blue) was used to identify cell nuclei. Scale bar represent 20 μm. (b) Quantification of fluorescence signal. (c)
Representative WB showing total hippocampal levels of APP (full and B-4), BACE1, Aβ oligomers (25 and 50 kDa) and β and α CTF. (d) Quantification of
panel C showing APP, β and α CTF and BACE1 levels. (e) Quantification of panel C showing BACE1 levels. (f) Quantification of panel C showing Aβ
oligomers (25 and 50 kDa) levels. (g) Quantification of mRNA levels of APP analyzed by RT-PCR analysis. Densitometry values shown in the bar graph
are the mean of 8 (WB) and 6 (RT-PCR) samples per each group, normalized per total load and given as percentage of Eu Veh, set as 100%
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regard to GSK3β phosphorylation, we show slight but
not significant increase of Ser9 and decrease of, while
InRapa administration was able to improve GSK3β kin-
ase activity by increasing Tyr216 and decreasing Ser9
phosphorylation (20% p = 0.038 and 25% p = 0.031)
(Fig. 5e). The two-way ANOVA analysis of GSK3β phos-
phorylation levels show that InRapa treatment account for

the 16.33% (p = 0.03) and the 27.60% (0.041) of the total
variance of Ser9 and Tyr216 respectively.
As previously noted, tau phosphorylation could be in-

duced directly or indirectly by DYRK1A and RCAN1,
which are both encoded on chromosome 21. DYRK1A is
expressed in fetal and adult brain and target tau at dif-
ferent serine residues, leading to its aberrant

Fig. 5 InRapa decreases tau hyper-phosphorylation and expressions of tau kinases. (a 1–8) Representative immunofluorescent images showing
tau phosphorylation at Ser416 signal in the CA3 region of the hippocampus from euploid mice treated with Veh and InRapa (a.1–4), and Ts65Dn
mice treated with Veh and InRapa (a.5–8). DAPI (blue) was used to identify cell nuclei. Scale bar represent 50 μm. (b) Quantification of fluorescence
signal (c) Representative WB showing hippocampal p-tau (Ser416), total tau levels, GSK3β levels and phosphorylation (Tyr216 and Ser9), DYRK1A, CDK5
and RCAN1 protein levels. (d) Quantification of panel C showing levels of tau and p-tau (Ser416)/tau ratio in Eu and Ts65Dn mice treated with InRapa
and Veh. (e) Quantification of panel C showing GSK3β, p-GSK3β (Ser9)/GSK3β ratio and p-GSK3β (Tyr216)/GSK3β ratio (f) Quantification of panel C
showing levels of RCAN1, DYRK1A and CDK5 total protein levels. Densitometry values shown in the bar graph are the mean of 8 (WB) samples per
each group normalized per total load, and given as percentage of Eu Veh, set as 100%
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phosphorylation. Tau hyper-phosphorylation occurring
in the brain from both Ts65Dn mice and DS subjects
correlates with DYRK1A hyperactivation [56]. Our data
confirm the over expression of DYRK1A in Ts65Dn mice
(19%; p = 0.035) due to Chr16 triplication, however this
condition was not restored by InRapa administration,
(Fig. 5f ). DYRK1A data are affected by genotype, which
account for the 13.62% of the total variance. Moreover,
RCAN1 (regulator of calcineurin 1) is able to control tau
dephosphorylation through the regulation of calcineurin.
Increased RCAN1 levels result in decreased calcineurin
activity and tau hyperphosphorylation. Our data report,
as expected, the overexpression of RCAN1 in Ts65Dn
Veh compared with Eu Veh (118%; p = 0.004), while
InRapa treatment was able to reduce RCAN1 expression
levels of Ts65Dn about 79% (% p = 0.03) when compared
to Ts65Dn Veh (Fig. 5F). The two-way ANOVA analysis
of RCAN1 levels show that genotype treatment account
for the 21.52% (p = 0.0033) of the total variance. In
addition, CDK5 promotes p-tau accumulation in DS [57].
Increased levels of CDK5 was previously reported in the
brains of young Ts65Dn [58], however our data show no
significant alterations of CDK5 in Ts65Dn mice compared
with Eu in both InRapa and Veh groups (Fig. 5f).

InRapa leads to the recovery of mTOR upstream signalling
mTORC1 is regulated upstream by positive inputs such
as growth factors, hormones, chemokines, nutrients
(e.g., glucose or amino acids), and cell energy status
(ATP/AMP ratio). The regulation of mTORC1 by
growth factors mainly involves insulin, which binds to
insulin receptor (IR) and triggers the activation of the in-
sulin receptor substrate 1 (IRS1). The phosphorylation
of IRS1 on its activatory (Tyr632) or inhibitory (Ser307)
residue modulates PI3K activation, which is negatively
regulated by PTEN, a phosphatase protein and tensin
homolog [8]. PI3K activation lead to increased PIP3 levels
that recruit Akt, to the membrane, where the latter is acti-
vated by phosphorylation of Thr308 and Ser473 residues.
In turn, Akt positively regulates mTORC1 activity. More-
over, through a negative-feedback mechanism, mTORC1/
p70S6K mediates the inhibitory phosphorylation of IRS1
on a serine residue uncoupling the PI3K/Akt axis from in-
sulin receptor signals [8].
The analysis of mTOR upstream signalling regulation

shows no differences in levels and phosphorylation of
PI3K (subunit p85; Tyr508) and increased levels of Akt
in Ts65Dn Veh compared to Eu Veh (40%; p = 0.022),
but no differences in phosphorylation (Ser473) between
all groups (Fig. 6b, c). Intriguingly, increased p-PTEN
(Ser380/Thr382/383)/PTEN was found to be statistically
significant in Ts65Dn InRapa compared with Ts65Dn
Veh (37%; p = 0.049) suggesting that despite decreased
expression, PTEN activation is induced by InRapa,

perhaps to better promote a correct regulation of the
signal (Fig. 6d). The two-way ANOVA analysis show that
genotype and interaction account for the 42.93%
(p < 0.0001) and for the 14.22% (p = 0.005) of the total
variance of Akt.
The analysis of the foregoing member of IRS1 pathway

demonstrates that, despite increased protein levels of
IRS1 in Ts65Dn mice compared to Eu (45%; p = 0.049), a
trend of inactivation in Ts65Dn mice, as indexed by de-
creased phosphorylation of its activation residue
(Tyr632) and increased phosphorylation of its inhibitory
residue (Ser307), is shown. Rapamycin delivered intrana-
sally is able to reduce the inhibition (exerted by
mTORC1 and p70S6K) on IRS1 by increasing its activa-
tion residue of phosphorylation (80%; p = 0.03) and de-
creasing its inhibitory phosphorylation (52%; p = 0.012)
in Ts65Dn InRapa compared to Ts65Dn Veh animals
(Fig. 6e). The two-way ANOVA analysis of IRS1 phos-
phorylation levels show that InRapa treatment account
for the 62.94% (p < 0.001) and the 13.89% (0.0476) of the
total variance of Ser307and Tyr632, respectively.
The AMP-activated protein kinase (AMPK) is a key

energy sensor and regulates cellular metabolism to
maintain energy homeostasis. AMPK is an upstream sig-
nal of mTOR and its activation results in the inhibition
of mTOR signalling, thereby suppressing protein synthe-
sis, which is an important pathway by which AMPK
conserves cellular energy during low energy states. In
turn, prolonged mTOR hyper-phosphorylation on
Ser2448 reduces AMPK activation [59]. Ts65Dn mice, in
the presence of mTOR hyperphosphorylation, do not
show increased pAMPK/AMPK signal, while InRapa
treatment was able to reactivate AMPK as indexed by
increased activatory phosphorylation on Thr172, of
about 30% (p = 0.02) (Fig. 6f ).

InRapa increases the expression levels of STX 1A and
PSD95 synaptic proteins
Prenatal and early post-natal synaptic defects have been
largely documented several brain regions including the
neocortex, hippocampus and cerebellum of fetuses with
Down’s syndrome and of mouse models of the disease
[60–64]. Decreased numbers of presynaptic and postsyn-
aptic terminals were previously observed during devel-
opment in Ts65Dn hippocampus and Ts65Dn dentate
gyrus has been shown to have a reduced number of neu-
rons and deficient LTP [60, 65, 66]. To determine
whether InRapa treatment result in the rescue of synapse
failure, we examined the expression levels of syntaxin1A
(STX1A) and PSD 95 in euploid and Ts65Dn mice.
STX1A is neuronal plasma membrane protein that be-
longs to the soluble N-ethylmaleimide-sensitive factor
attachment protein receptor (SNARE) family and is
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involved in vesicle trafficking, docking and/or fusion, play-
ing a key role in neurotransmitter release. PSD 95, a
membrane-associated guanylate kinase, is the major scaf-
folding protein in the excitatory postsynaptic density
(PSD) and a potent regulator of synaptic strength. Thought
the phosphorylation of 4EBP1 and p70S6K mTOR is able
to regulates protein synthesis, influencing the expression
of synaptic proteins. Our results show for STX1A expres-
sion a significant decrease in Ts65Dn Veh compared to eu-
ploid animals (35%, p = 0.0137), which is partially rescued
(20%, ns) after rapamycin administration (Fig 7a-b). As far

as PSD 95 we demonstrate a trend of decrease for its ex-
pression levels in Ts65Dn Veh mice compared to euploid
Veh (18%, ns), while rapamycin treatment induces the
overexpression of PSD 95 in both Ts65Dn (50%, p = 0.045)
and Euploids (22%, ns) (Fig. 7c-d). Our results are in line
with previous studies showing reduced levels of synaptic
protein in Ts65Dn mice and their induction after
disease-modifying treatment leading to improved cogni-
tion [67–69]. Intriguingly, the two-way anova analyses of
PSD95 show indeed that the treatment account for the
37.7% (p = 0.0077) of the total variance.

Fig. 6 InRapa recovers mTOR upstream signalling. a Representative WB showing hippocampal p-IRS (Ser307), p-IRS1 (Tyr632) and total IRS1 levels,
p-PI3K(Tyr508) and total PI3K levels, p-AKT (Ser473) and total AKT levels, and p-PTEN (Ser380/Thr382/383) and total PTEN, p-AMPK (Ser172) and
total AMPK. b Quantification of panel a showing hippocampal levels of PI3K and p-PI3K(Tyr508)/PI3K ratio. c Quantification of panel a showing
AKT and p-AKT(Ser473)/AKT ratio. d Quantification of panel a showing levels of PTEN and p-PTEN (Ser380/Thr382/383)/PTEN ratio. e Quantification
of panel a showing p-IRS1 (Ser307), p-IRS1 (Tyr632) and total IRS1 levels in Eu and Ts65Dn mice treated with InRapa and Veh. f Quantification of
panel a showing AMPK and p-AMPK(Thr172)/AMPK ratio. Densitometry values shown in the bar graph are the mean of 8 samples per each
group, normalized per total load and given as percentage of Eu Veh, set as 100%
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InRapa modulates protein oxidative damage and Lys63
poly-ubiquitinylation
Previous studies by our group and others demonstrated
that in DS brain alteration of autophagy is associated
with increased oxidative stress (OS), which plays an im-
portant role in DS neuropathology [7, 9, 13, 22, 70].
However, the link between OS and autophagy is intri-
cate, and increasing evidence suggests that the mTOR/
autophagy axis plays a dual role in the cellular response
to OS [71, 72] . We evaluated the levels of two protein
oxidation markers, 4-hydroxy-2-nonenal protein adducts
(HNE) and protein-bound 3-nitrotyrosine (3-NT) in the
hippocampus of Ts65Dn and Eu. We found a significant
elevation of total 3-NT levels in Ts65Dn mice compared
with Eu treated with Veh (28%; p = 0.021), and such in-
crease was reduced with InRapa treatment (23%;
p = 0.06) (Fig. 8a). Further, a trend of increased HNE ad-
ducts to proteins was observe between Eu Veh and
Ts65Dn Veh, and treatment with InRapa was able to sig-
nificantly reduce such increase (43%; p = 0.015) (Fig. 8a).
The two-way ANOVA analysis of 3NT levels show that
genotype significantly account for the 31.05% (p = 0.0007)
of the total variance, while if we consider protein-bound
HNE levels InRapa treatment and interaction account for
the 47.01 (p < 0.0001) and for the 7.19% (p = 0.043) of the
total variance, respectively.
We also investigated the status of the ubiquitin-

dependent proteolysis pathway through analysis of total
protein poly-ubiquitinylation and the levels of chain
linkage Lys48, considered to be a key signal for prote-
asome degradation, and chain linkage Lys63, known to
have a role in protein degradation through the
autophagy-lysosomal system [73]. However, we showed

that Lys63 protein poly-ubiquitinylation might have a
primary role in protein signalling in addition to protein
degradation [10]. With regards to total protein
poly-ubiquitinylation, no significant alteration was ob-
served between DS and Eu animals with and without
rapamycin treatment (Fig. 8c). However, if we discrimin-
ate the lysine residue of poly-ubiquitinylation we
observed increased levels of Lys63 poly-ubiquitinylated
proteins in Ts65Dn Veh mice compared to Eu Veh (13%;
p = 0.024), which are reduced in Ts65Dn InRapa com-
pared to Veh (24%; p = 0.0012) (Fig. 8c). No significant
changes were detected, among groups, for Lys48
poly-ubiquitinylated proteins. The two-way ANOVA
analysis of Lys63 poly-Ub levels demonstrate that
InRapa treatment and interaction account for the 32.71
(p = 0.0001) and for the 20.84% (p = 0.0013) of the total
variance, respectively.

Discussion
In the last decades, a significant increase of life expect-
ancy has been observed in DS individuals due to im-
provement in health care. However, improved lifespan in
DS is associated with an increased incidence of develop-
ing AD-like dementia [2, 74]. The triplication of APP
represents a strong evidence on the influence of HSA21
trisomy in the progression to AD-like cognitive decline
in DS population. In addition, the triplication of tau ki-
nases, such as DYRK1A and RCAN1, which act in paral-
lel with aberrant mTOR pathway activation, contributes
to increased tau phosphorylation and NFT formation
[72, 75, 76]. The exact mechanisms by which triplication
of genes on HSA21 lead to the early onset of AD in DS
population remain still to be fully elucidated.

Fig. 7 InRapa increases the levels of PSD95 and STX1A synaptic proteins. a Representative WB showing hippocampal PSD95 levels. b Quantification of
panel a showing hippocampal the expression levels of PSD95. c Representative WB showing hippocampal STX1A levels. d Quantification of panel c
showing levels of STX1A. Densitometry values shown in the bar graph are the mean of 8 samples per each group, normalized per total load and given
as percentage of Eu Veh, set as 100%
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Previous studies by our group and others demonstrated
the hyper-activation of mTOR pathway in human brain
from DS population and in Ts65Dn mouse model of the
disease [13, 21, 22, 56, 77]. mTOR hyper-activation was
found to be strongly associated with reduced autophago-
some formation (most likely leading to impaired autoph-
agy induction), increased Aβ deposition and increased tau
hyper-phosphorylation. Data collected by our studies sup-
port the key role of aberrant mTOR signalling in mediat-
ing the early progression of AD in DS population. Within

this frame, the rescue of mTOR signalling by the adminis-
tration of rapamycin, which has been previously tested in
AD mouse models demonstrating favorable outcomes [19,
27, 29–31, 78–81], represents a potentially valuable thera-
peutic strategy. Indeed, evidence obtained by the Oddo
and Galvan laboratories [19, 31] corroborated the positive
effects of mTOR inhibition on hippocampal memory res-
cue in AD mice. In particular, the authors reported that
chronic oral rapamycin treatment was able to prevent cog-
nitive loss in two different transgenic mouse models of

Fig. 8 InRapa reduces protein oxidative damage and K63 poly-ubiquitinylation. In panel a are shown the total hippocampal protein-bound 3-NT
and HNE of Ts65Dn mice and Eu treated with Veh and InRapa analyzed by slot blot assay. In panel b are shown the hippocampal total poly-ubiquitin,
poly-ubiquitin Lys63 and poly-ubiquitin Lys48 levels analyzed by Western blot. In panel c the quantification of panel b is reported. Densitometry values
of each lane is the result of the sum of all the bands, analyzed by Image lab software as previously reported [10]. Graph values are the mean of 8
samples per each group, normalized per total load and given as percentage of Eu Veh, set as 100%
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AD, 3xTg-AD and J20, if given before robust plaque and
tangle deposition. Memory improvement was associated
with reduced Aβ levels and tau-aggregation, as well as
microglial activation [19, 31]. Based on these evidences,
the initiation of an early treatment schedule is necessary
to achieve brain protection in DS individuals, known to be
at high risk of developing AD-like dementia. Moreover,
the use of the intranasal route for the delivery of rapamy-
cin to the brain holds a great potential as a non-invasive
practical approach that circumvents systemic alterations
and permits to maximal drug concentrations in the CNS,
thereby avoiding the rapamycin-related immunosuppres-
sant effects in the periphery [82–85]. This issue is particu-
larly critical in DS pathological phenotypes, since trisomic
individuals show depletion of immune system and
lymphopenia [86–89]. In this scenario, by UPLC-MS ana-
lysis we were able to demonstrate that intranasal adminis-
tration of rapamycin concentrated the drug in the CNS,
where it exerted its inhibitory effects by reducing hippo-
campal mTORC1 hyper-phosphorylation of about 50%,
while, as expected, no effects were observed in peripheral
organs analyzed. Of note, the rapamycin dosage delivered
to the hippocampus of Ts65Dn was selected to not abolish
mTOR activation but to rescue the signal at physiological
levels, thus abrogating the pathological increase of mTOR
and p70S6K phosphorylation along with the reduction of
autophagy.
The restoration of mTORC1 activity after treatment

demonstrated a significant effect on cognitive perform-
ance in Ts65Dn mice as indexed by RAM and NOR tests.
Indeed, the RAM test revealed that mice were able to im-
prove reference and working memory after rapamycin
treatment. As well, the NOR test showed the improve-
ment of mice preference index supporting the recovery of
novelty-discriminating ability after rapamycin administra-
tion. Further, we suggest that the improved cognition,
exerted by InRapa, is associated with the rescue of synap-
tic abnormalities previously observed in DS [60, 69].
Therefore, as previously proven in AD, our data support
the capability of rapamycin, if delivered chronically and in-
tranasally before consistent brain damage, to improve
memory and reduce cognitive decline in DS mice [31]. In
order to understand the mechanisms leading to improved
cognition after InRapa treatment we investigated the sta-
tus of downstream targets of mTOR and the pathological
features of AD-like neurodegenerative process.
Human and mouse studies suggest that APP is dosage

sensitive as a function of aging and of brain regionalism
[4, 6, 46, 50]. In contrast, Aβ accumulation becomes sig-
nificant in humans only in the second/third decade of life,
with some exceptions in a few childhood post- mortem
observations [2, 75, 76]. Moreover, published data on Aβ
peptides levels in the brain of Ts65Dn mice are conflict-
ing. This discrepancy might depend on the diversity of

techniques, brain area analyzed and age of the samples.
We observed an increase of Aβ oligomers at 25 and 50 kD
only, while previous studies focused on the identification
of plaques, which are formed only at a very late stage of
the disease. Within this scenario, our data suggest a pri-
mary role for APP and its processing in the neurodegener-
ative process occurring in DS [33, 47, 49, 50, 90]. Indeed,
in Ts65Dn mouse, which develops AD-like neuronal
endosomal pathology, the increase of APP-αCTF and
APP-βCTF between 6 and 12 months of age is likely to
underlie the failure of NGF-mediated trophic support [6],
and contribute to cognitive failure. Our analysis shows in-
creased levels of APP in Ts65Dn mice at 9 months of age
both in total hippocampus as well as in the CA3 region,
together with the increased APP metabolites APP-αCTF
and APP-βCTF. InRapa administration is able to signifi-
cantly reduce APP levels in the hippocampus of Ts65Dn
mice and to decrease APP metabolites, suggesting the
re-establishment of proper APP processing. Surprisingly,
we also observed increased Aβ oligomers in Ts65Dn mice
and the reduction of such increase due to InRapa treat-
ment. Two main mechanisms can be directly involved in
the reduction of APP, APP metabolites and Aβ in Ts65Dn
mice after rapamycin treatment: i) the reduction of APP
gene expression; ii) the rescue of protein synthesis/degrad-
ation pathways; ii) the restoration of key signalling
pathways, including BACE1, PI3K/Akt, GSK-3β, AMPK
and IRS1, that regulate APP processing products forma-
tion/clearance [8, 12, 14, 39, 72, 91] . Our data show, as
expected, the increase of APP mRNA in Ts65Dn mice as a
result of trisomy that demonstrate a significant decrease
after InRapa treatment. In general, mTORC1 inhibition by
rapamycin results in a reduction in global mRNA, indeed
mTOR is able to bind a number of transcription factors
(e.g. STAT3; PGC1α) that can regulate the expression of a
broad range of target genes, comprising mTOR itself,
whose aberrant modulation is known to be involved in
neurodegeneration [92]. In agreement, our data supports
a role for rapamycin in the down-regulation of APP tran-
scription process. The transcription factor ETS2, encoded
on Chr21, was demonstrated to transactivate the APP pro-
moter, leading to its overexpression [93]. Previous studies
revealed that the expression levels of ETS2 can be modu-
lated by the mTOR pathway; therefore, rapamycin-in-
duced mTOR inhibition, through the reduction of ETS2
levels, might reduce APP overexpression levels [94].
Besides, it is indeed equally important to highlight the sig-
nificant increase of autophagosome formation observed in
Ts65Dn mice after InRapa treatment. Our data demon-
strate that mTOR inhibition lead to increased LC3II and
Atg 12/5 levels supporting a crucial role for rapamycin in
restoring the aberrant control of mTOR on autophagy.
The observed induction of autophagosome formation in
rapamycin treated DS mice is associated with the
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reduction of toxic aggregates burden and misfolded/oxi-
dized proteins accumulation. Therefore, our results are in
agreement with previous studies demonstrating that
rapamycin-dependent stimulation of autophagy is likely
one of the principal mechanisms by which the reduction
of toxic protein aggregates, comprised of Aβ, aberrantly
expressed APP and APP metabolites, is achieved in the
brains of Tg-AD mice [18, 19, 23, 26, 31, 40, 79, 95]. Fur-
thermore, the analysis of molecular pathways involved in
APP processing demonstrated that rapamycin lead to the
reduction of BACE1 levels and to the recovery of IRS1 sig-
naling. Conversely, we obtained conflicting results con-
cerning PI3K/Akt and GSK3β that suggest their modest
involvement in APP metabolite reduction. The increased
BACE1 activation is required for the cleavage of APP and
the production of the neurotoxic Aβ peptide during neu-
rodegeneration, as demonstrated in AD mice and in our
DS model [4, 5]. On one side we could suppose that the
reduction of BACE1 levels, observed after InRapa treat-
ment, could be most likely related with the reduction of
the APP substrate, accomplished by re-balanced synthe-
sis/degradation. However, because such reduction is ob-
served in both Ts65Dn and Eu mice, it is tempting to
presume a close interaction between rapamycin/ mTOR
and BACE1. The direct interaction of mTOR with IRS1
have been previously demonstrated and was shown to be
deeply involved in the development of AD [13, 20, 21, 96–
98]. Indeed, the failure of energy metabolism associated
with the increase of brain insulin resistance are
well-recognized contributors to AD neurodegeneration
[96, 97, 99]. Our previous studies demonstrated that
mTOR hyperphosphorylation and the subsequent overac-
tivation of p70S6K kinase activity target IRS1 by increas-
ing the phosphorylation on its inhibitory serine residues,
which lead to the inactivation of the protein. Such effects
contribute to the uncoupling of IRS1 from PI3K/Akt sig-
nalling and to the development of brain insulin resistance
[13]. The rescue of mTOR signalling in Ts65Dn mice after
InRapa leads to reduced IRS1 inhibitory phosphorylation
sites; therefore, a proper insulin signalling is reinstated that
contributes to decreased metabolic failure and conceivably
reduced APP processing products in DS [84, 97, 100, 101].
As noted above, AMPK signalling is a major inducer of

autophagy associated with the reduction of energy metab-
olism [59]. The loss of sensitivity of AMPK activation to
cellular stress impairs metabolic regulation, increases oxi-
dative stress and reduces autophagic clearance. Recent
studies confirmed that the responsiveness of AMPK to
different insults is clearly suppressed in aged tissues dur-
ing mTOR overactivation. In line with this proposed sce-
nario, AMPK signal is dampened in Ts65Dn mice.
Intriguingly, the inhibition of mTOR, by InRapa treat-
ment, lead to increased phosphorylation of AMPK on its
activatory residue rescuing signalling induction.

Noteworthy, previous reports demonstrated that AMPK
activation is able to induce autophagy by also phosphoryl-
ating Ulk1, beyond inhibiting mTOR signalling [102].
The sequence of pathological mechanisms of DS neuro-

degeneration in Ts65Dn mice include aberrant tau phos-
phorylation, associated with the increased activation state
of different tau kinases. Among these, DYRK1A and
RCAN1 encoded on HSA21, and GSK3β and CDK5 seem
to have a prominent role in tau hyper-phosphorylation oc-
curring in the brain of AD and DS subjects [72].
Substantial evidence supports the critical role of mTOR

in tau-related pathological progress in DS. A number of
studies sustain that the activation of mTOR signalling pro-
motes tau hyper-phosphorylation, while its inhibition pre-
vents this phenomenon [27–29, 32, 95]. In particular, the
mechanisms by which altered mTOR signalling lead to
tau hyper-phosphorylation include the aberrant regulation
of tau kinases and the reduction of autophagy. Ts65Dn
mice after InRapa treatment demonstrate a robust and
significant reduction of tau phosphorylation in the hippo-
campus, both total and CA3 region-specific. The reduc-
tion is associated with significantly decreased expression
of RCAN1 and with a trend of decreased DYRK1A levels.
No alteration is shown for CDK5 in Ts65Dn prior or after
the treatment, while an opposite trend is reported for
GSK3β, as previously reported also in human studies [13].
Despite the reduction of tau kinases, lowered levels of
hyperphosphorylated tau cannot be observed after InRapa
administration without the increase of autophagosome
formation, which play a key role in the clearence of intra-
cellular toxic tau aggregates. These results suggest that
rapamycin is able to reduce the degree of tau phosphoryl-
ation by modulating the expression of certain tau kinases,
and to improve hyperphosphorylated tau degradation
through the induction of autophagy [103–105].
A further intriguing outcome observed after InRapa

treatment is represented by the reduction of protein oxi-
dative damage in Ts65Dn mice. Increased oxidative stress
is a characteristic feature of DS neuropathology in humans
and mice [3, 74, 106]. Data collected in DS human brain
indicated that oxidative damage targeted specific compo-
nents of the proteostasis network, resulting in dysfunc-
tional activation of autophagy and the ubiquitin
proteasome system [7, 9, 70]. Previous studies by our la-
boratory demonstrated that the chronic increase of OS in
Ts65Dn mice with aging, in parallel with reduced autoph-
agy, leads to the accumulation of total protein-bound
HNE and protein nitration levels [22]. Therefore, a vicious
cycle that involves the prolonged failure of protein degrad-
ation systems and the chronic build-up of oxidized protein
may exist in DS. The rescue of mTOR activity, by InRapa
treatment, likely induces the autophagy-driven degrad-
ation of oxidized proteins as demonstrated through the
decrease of total protein-bound HNE levels and total
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protein nitration. In addition, studies on DS human brain
reported that the accumulation of oxidative damage is
coupled with increased levels of poly-ubiquitinylated pro-
teins, prior to and after the development of AD [10]. Des-
pite, Ts65Dn did not recapitulate the same profile of
protein poly-ubiquitinylation observed in humans an in-
crease in poly-Lys63 ubiquitinylation levels were observed.
These data suggest that impairment of the proteasome
system in Ts65Dn mice is less pronounced compared with
humans, supporting the concept that the failure of protein
degradation is related to the impairment of the autophagy
pathway rather than to the impairment of the UPS. Note-
worthy, InRapa treatment was able to reduce the
poly-ubiquitinylation of Lys63 residues supporting the res-
toration of autophagy and implying a certain degree the
crosstalk between mTOR and UPS.

Conclusions
Overall, we demonstrated that rapamycin, administered
for 3 months by intranasal route, led to improved cogni-
tion in DS mice with no effects at peripheral organs. The
favorable outcomes of rapamycin treatment seem to rely
on its ability to rescue molecular pathways associated with
aberrant mTOR phosphorylation, whose alteration accel-
erate the age-related neurodegenerative process and in-
crease the risk of AD development in DS. Therefore,
InRapa treatment represents an attractive therapeutic
strategy to reduce the early development of neuropathol-
ogy in DS population and delay the onset of AD. At final,
this therapeutic strategy may be also translated to different
neuronal disorders that share, as a common pathological
mechanism, the alteration of mTOR/autophagy axis.
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