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ABSTRACT OF DISSERTATION 

 

 

 

ANTHELMINTIC RESISTANCE IN EQUINE PARASITES: MECHANISMS AND 

TREATMENT APPROACHES 

Anthelmintic resistance of parasites infecting livestock animals is a global 
problem resulting in decreased animal welfare and production losses. Horses are not 
exempt from this issue as wide-spread anthelmintic resistance exists among the equine 
cyathostomins and Parascaris spp. Of the three drug classes available for treating equine 
intestinal helminths anthelmintic resistance, defined as less than 90-95% drug efficacy, 
exist to all three. New pharmaceutical control regimens and the elucidation of parasite 
drug response mechanisms are needed.  

Two studies were carried out evaluating combination deworming regimens. A 
population of cyathostomins with known resistance to the benzimidazole (BZ) and 
pyrimidine drug classes maintained in a herd of Shetland ponies was used. Fecal egg 
counts were performed every two weeks and used to evaluate drug efficacy. The first 
study evaluated the combination of a BZ and pyrimidine drug for four consecutive 
treatments, and compared the individual drug efficacies before and after combination use. 
The first combination treatment exhibited an additive effect at 76.6%, but the subsequent 
three combination treatments decreased to approximately 40%. There was no significant 
difference between the initial and final efficacies of individual drugs (BZ, p=0.4421; 
pyrimidine, p=0.8361). It appears the combination treatment selected for double-drug 
resistant adult parasites. The timeframe of this study (1 year) and the one year lifespan of 
adult cyathostomins prevented observations of combination treatment on subsequent 
generations, however given the sustainability of resistance in this cyathostomin 
population, it seems unlikely efficacy would improve over time. The second study 
examined the combination of a BZ drug with a macrocyclic lactone (ML) drug. This 
parasite population was 100% naïve to the ML drug class. This study was carried out in a 
similar manner to the first, except only two combination treatments were given. ML 
exhibited 100% efficacy when it was used alone, or in combination. The initial and final 
BZ efficacy did not significantly differ (p=0.9890). In summary, the results described 
herein do not support the use of combination treatments where resistance is prevalent, but 
more long term studies are needed to fully understand the long-term effects on 
subsequent generations.  

The in vitro maintenance of Parascaris spp. provides opportunity for various 
molecular analyses. An objective motility scoring assessment allowed for continuous 
monitoring of worm viability. In this study, several saline solutions, nutrient 
supplements, environmental conditions, and Roswell-Park Memorial Institute medium 
1640 (RPMI-1640) were evaluated for the longevity and viability of adult Parascaris 



     
 

spp. Overall, RPMI-1640 resulted in better longevity (168 hours) and significantly better 
viability (p<0.0001) than any of the other saline solutions with or without nutrient 
supplementation. These findings were later used to identify response mechanisms of adult 
Parascaris spp. to in vitro drug exposure. Oxibendazole at 10 µg/mL for 24 hours and 
ivermectin at 1 µg/mL for three hours were employed, and worms were used for 
transcriptomic analyses to identify drug response mechanisms. The top four genes which 
were significantly different between drug treated and control groups were: cyp4504C1, 
sup-9, frmd4a, and klhdc10. It is hypothesized that cyp4504C1 and klhdc10 are drug 
detox mechanisms, while sup-9 and frmd4a may be indirect response related to the drug 
effects. Their expression was further evaluated using quantitative RT-PCR, however 
there was no significant difference in any gene expression between groups. It should be 
noted that there are several limitations associated with the qPCR method, and the lack of 
significance should not rule out the possible involvement of these genes and more 
research on drug response mechanisms is needed.  

In summary, there is very little research regarding combination deworming in 
horses, and their current use is largely due to some success for ruminant parasites, but the 
current work summarized herein does not support their use. Finally, until now the lack of 
in vitro methods for equine helminths has significantly delayed the elucidation of drug 
response mechanisms. This was the first whole-transcriptome approach for any ascarid 
parasite and uncovered proteins with possible involvement in drug metabolism or 
compensate for the toxic effects Overall, the research surrounding anthelmintic resistance 
in livestock helminths, particularly in horses, is lacking and the resistance crisis demands 
further investigation. 
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CHAPTER 1.  INTRODUCTION 

1.1 Helminth parasites of horses 

As grazing animals, horses are continuously infected with a variety of intestinal 

helminths. Most notably, these include nematodes belonging to the super families 

Strongyloidea (strongyles), Ascaroidea (ascarids), Oxyuroidea (pinworms), Rhabditoidea 

(threadworm), Habronematidae (stomach worm) and Trichostrongyloidea (stomach 

worm, lung worm), and cestodes belonging to the Anoplocephalinae family. By way of 

arthropod intermediate hosts (flies/mosquitoes), horses are also at risk for infection by the 

super families Spiruroidea and Filarioidea. For the purpose of this literature review, only 

helminth parasites with strong evidence of anthelmintic resistance will be discussed in 

detail, namely the Strongyloidea and Ascaroidea.   

1.2 Lifecycles and pathogenicity 

1.2.1 Strongyloidea 

Equine strongyle parasites are ubiquitous among grazing horses and are further 

classified into two sub-families, the Strongylinae (large strongyles) and Cyathostominae 

(small strongyles) (Lichtenfels et al., 2008). Over 50 species make up the 

Cyathostominae sub-family, while the Strongylinae consist of 14 species across 5 genera 

(Strongylus, Oesophagodontus, Triodontophorus, Bidentostomum, and Craterostomum). 

Aside from the size differences emphasized by the subfamilies’ epithet, the large globular 

buccal capsule differentiates the Strongylinae from the Cyathostominae, which have less 

prominent buccal capsules. (Lichtenfels et al., 2008). All horses, regardless of age, are at 

risk for strongyle infections and it is apparent that horses are unable to mount complete 

immunity to these parasites (Klei, 2000). 

All equine strongyle parasites undergo a direct life cycle consisting of free-living 

stages (Figure 1.1). Adult parasites reside in the lumen of the cecum and large intestine 

where they undergo sexual reproduction. Female worms lay eggs which are shed with the 

horse’s feces into the environment. All species undergo three larval development stages 

during the environmental phase. The first stage larva (L1) develops within the egg, 
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hatches, and subsequently matures into the second (L2) and third (L3) stage, otherwise 

known as the infective stage. Under favorable environmental conditions, strongyles can 

reach the infective stage as soon as 3-4 days after being expelled by the horse (Nielsen et 

al., 2007). Horses become infected upon ingesting the L3 larva during grazing. Following 

ingestion, the larva molt to the L4 and L5 stage, where some species require extensive 

migration through various host tissues. Adult worms reside in the lumen of the large 

intestine as sexually mature adults (Ogbourne and Duncan, 1985). 

Those belonging to the genus Strongylus are the only strongylids to undergo 

extra-intestinal migration through the horse during development from the L3 to adult 

stage. These include S. vulgaris, S. edentatus, and S. equinus. Strongylus vulgaris is 

considered to be the most pathogenic nematode parasite infecting horses (Kester, 1975; 

Drudge, 1979) and will be the only Strongylus species mentioned herein. Following 

ingestion, migrating larvae reside within the cranial mesenteric artery (CMA) and its 

associated branches causing thickening of the arterial walls and emboli/thrombi 

formation (Duncan and Pirie, 1975). The lack of blood flow causes intestinal infarction 

which has been associated with peritonitis (Pihl et al., 2018), painful, agitated colic, and 

death (Duncan and Pirie, 1975; Drudge, 1979). The larvae develop to the L5 stage within 

the CMA, before migrating via the blood stream to the submucosa of the large intestine. 

The larvae emerge and reside in the lumen of the intestine for the remainder of their 

existence.  The pre-patent period for S. vulgaris is 5.5-7 months (Ogbourne and Duncan, 

1985). Traditional deworming regimens implemented treatments as often as every 4 

weeks in order to eliminate this parasite (Duncan, 1982). Although its prevalence and 

associated disease incidences have been significantly reduced (Herd, 1990), several 

studies report the presence of S. vulgaris on managed horse farms around the world 

(Nielsen et al., 2012, Singh et al., 2016; Salas-Romero et al., 2017; Lyons et al., 2014; 

Scare et al., 2018a). 

The Cyathostominae have less extensive migration. Once ingested, the infective 

larvae encyst into the submucosa lining of the large intestine as the early L3 (EL3) stage 

(Love et al., 1999). Within the cyst, maturation continues to the late L3 stage (LL3) and 

then the L4 stage. Upon development into the L4, the larva ruptures the cyst and returns to 

the intestinal lumen, a process known as excystment. In the lumen, the larva matures into 
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the L5 and adult stage. During the encysted stage, some larvae may undergo arrested 

development at the EL3 stage (Eysker et al., 1984). Gibson (1953) and Smith (1976a,b) 

have reported arrested stages to persist for at least two years. The horse’s immune 

response is thought to drive the arrestment process, as evidence of the arrested stages are 

not found in foals or horses naïve to cyathostomin infection (Reinemeyer et al., 1988; 

Chapman et al., 2002, 2003; Nielsen and Lyons, 2017). A large accumulation of larvae 

and mass excystment can cause the disease larval cyathostominosis. This disease process 

is characterized by watery diarrhea, dehydration, hypoproteinemia, and ventral edema 

(Love et al., 1999). In acute forms, this disease is fatal in 50% of cases (Reid et al., 

1995). Deworming with an adulticidal treatment to remove the luminal cyathostomins has 

been known to ‘trigger’ mass excystment of the encysted larvae, seemingly to replace the 

recently removed luminal population (Reid et al., 1995). Younger horses (1-4 years old) 

and those recently dewormed are also at a higher risk for disease (Reid et al., 1995). 

While most infections do not manifest with clinical signs, the disease is more frequently 

reported in Europe (Giles et al., 1985; Love et al., 1992; Mair, 1993; Reilly et al., 1993; 

Mair, 1994; Mair and Pearson, 1995; Reid et al., 1995; Van Loon et al., 1995; Mair et al., 

2000). Some reports also exist in Iran (Oryan et al., 2015), Canada (Peregrine et al., 

2006; Wobeser and Tataryn, 2009; Zakrajsek, 2017), and the United States (Lyons et al., 

2000). 

1.2.2 Ascaroidea 

Parascaris spp. are pathogenic and pervasive parasites that are most commonly 

found in horses <2 years of age (Clayton, 1986). Two species belong to this genus 

namely P. equorum and P. univalens, however it is suggested that the latter is the most 

prevalent (Nielsen et al., 2014; Martin et al., 2018). Regardless of species, infection 

occurs when foals ingest infective eggs containing a larva (Figure 1.2). The eggs, 

surrounded by a proteinaceous coat, hatches and upon reaching the small intestine, the 

newly emerged second-stage larvae penetrate the lining of the small intestine. The larvae 

travel to the liver where they remain for one week (Clayton and Duncan, 1979a). Next, 

the larvae migrate to the lungs via pulmonary circulation (Clayton and Duncan, 1979a). 

Larval emergence from the local arterioles and capillaries into the alveoli causes 
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edematous and hemorrhagic inflammation. At this stage of infection, foals may present 

clinically with coughing and nasal discharge (Clayton and Duncan, 1978; Clayton, 1980). 

Approximately 2-4 weeks post-infection, the larvae are coughed up and swallowed only 

to return to the alimentary tract where they mature into dioecious adults within the small 

intestine. Parascaris spp. do not attach to the intestinal wall; instead they ingest digested 

feed competing with the host for nutrients (Clayton and Duncan, 1979a). This stage of 

infection can cause stunted growth, diarrhea, rough hair-coat, and impaction colic 

(Clayton and Duncan, 1978; Clayton, 1980; Cribb et al., 2006). Females lay eggs which 

are shed in the foals’ feces, contaminating the environment and thus repeating the 

infection cycle. Patent infections occur within 79-110 days post-infection (Lyons et al., 

1976; Clayton and Duncan, 1978; 1979a,b). In general, horses acquire immunity to 

Parascaris spp. infections by one year of age (Clayton and Duncan, 1979b; Fabiani et al., 

2016), with adult worm burdens peaking around five months of age (Fabiani et al., 2016). 

Foals’ tendency to orally explore their environment and coprophagic behavior 

coupled with the prolific nature of the worms put foals at a high risk for infection. 

Prevalence of this parasite infecting foals (<1 year old) have been reported up to 83% 

(Laugier et al., 2012; Relf et al., 2013; Armstrong et al., 2014; Fabiani et al., 2016).Worm 

burdens reaching over 4,000 individuals in the small intestine following experimental 

infections have been reported (Lyons et al., 1976, 1996; Clayton and Duncan, 1979a), 

however a 16 year retrospective study examining 83 foal necropsies naturally infected 

with parasites found them to harbor <1,000 Parascaris spp. in the small intestine (Fabiani 

et al., 2016). Although ascarid impaction is the cause of <0.5% foal colics requiring 

surgery, the prognosis beyond one year is poor, and has been associated with recent 

deworming (Southwood et al., 1996; Cribb et al., 2006; Tatz et al., 2012). 

1.2.3 Other equine helminth parasites 

Three tapeworms infect horses, they are Anoplocephala perfoliata, A. magna, and 

Anoplocephaloides mamillana, but the former is the most common (Nielsen, 2016). 

Regardless of species, all equine tapeworms require an intermediate host, the oribatid 

pasture mite. The mite ingests tapeworm eggs that are present in the horse’s feces. Inside 

the mite, the egg develops into the infective stage, known as the cysticercoid. Both mite 
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and cysticercoid are passively ingested by the horse during grazing. Some differences do 

exist between species, where A. perfoliata immature stages and adults reside at the ileo-

cecal junction and attached to the cecum whereas A. magna and A. mamillana are found 

attached to the small intestine (Nielsen, 2016). Gravid proglottids, or body segments 

containing eggs, are released from the tapeworm. The proglottid is presumed to 

disintegrate as it passes through the digestive tract, and eggs are expelled with the horse’s 

feces. Unlike strongyles and Parascaris spp., eggs are not excreted uniformly throughout 

the horse’s feces (Nielsen, 2016). Some case reports have identified associations between 

tapeworm infection with colic, intussusception, and cecal rupture (Nielsen, 2016). Case-

control studies further support this association as the horses that were diagnosed with 

various diseases processes (i.e. ileocecal colic, ileal impaction) were more likely to have 

a tapeworm infection (Nielsen, 2016). 

The equine pinworm, Oxyuris equi, is first deposited into the environment with 

the horse’s feces and the larva develops within the egg. The infective L3 stage residing 

inside the egg is ingested. The L3 invade the mucosal lining of the cecum and ventral 

colon where they develop in to the L4 stage. The L4 excyst and continue development to 

the adult stage within the lumen. The adult worms are generally found in the dorsal 

colon. Female worms travel to the rectum of the horse and deposit eggs around the 

perianal region (Reinemeyer and Nielsen, 2014). Pinworms elicit mild pathology, such as 

localized inflammation during the larval encystment process, and perianal irritation may 

occur following egg deposition (Reinemeyer and Nielsen, 2014). 

Strongyloides westeri, a rhabditid parasite, is common in young foals (<4 months 

of age; Lyons, 1994), but rarely causes clinical disease. It has three routes of 

transmission, lactogenic transmission of L3 larvae (Lyons et al., 1973), percutaneous 

penetration of L3 larvae, or ingestion of L3 larvae (Lyons, 1994). This parasite is also 

unique in that it can complete its entire lifecycle outside of the host, and only females are 

known to be parasitic. It is also one of the parasites that horses seemingly develop 

protective immunity to and adult horses are rarely found shedding eggs. 

1.3 Diagnosis of equine intestinal helminths 

Coprological examination for parasite eggs or larvae is the most commonly used 

method for characterizing intestinal helminth infections in horses (Nielsen et al., 2016). It 
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is important to note that coprological detection is only representative of patent infections, 

but in most cases the pathogenicity of strongyle infections is caused by the migrating 

larval stages rather than adults (Duncan and Pirie, 1975; Love et al., 1999). There are 

some methods available for diagnosing the larval stages, as well as molecular based 

techniques. 

1.3.1 Fecal egg counts 

Numerous techniques are available for performing a fecal egg count (FEC), 

however in most cases they all follow the same general procedure. A small sample of 

fresh fecal material of known quantity is homogenized with a specified volume of 

flotation media. When passive flotation of the eggs is implemented, then a small sub-

sample of the fecal slurry is loaded into a slide or counting chamber, and the sample is 

allowed to rest for 5-10 minutes for the eggs to float to the surface and subsequently be 

identified and quantified by microscopic examination (MAFF, 1986; Cringoli et al., 

2017). Other techniques implement active flotation using a centrifuge. Here, the fecal 

slurry is poured into a conical tube, a cover slip placed on top, and centrifugation forces 

the eggs to the surface of the sample and make contact with the cover slip. The coverslip 

is then placed on a glass slide for identification and quantification of the eggs (Stoll, 

1930; Egwang and Slocombe, 1982). Still, a recent technique does not rely on flotation at 

all, but rather a series of washes and filtering steps, and then utilizes image analysis for 

automatic identification and quantification of eggs (Slusarewicz et al., 2016; Scare et al., 

2017). 

While FECs can be used to identify a variety of equine helminth egg types, they 

are most commonly used to characterize strongyle infections, and for evaluating 

anthelmintic efficacy. It is important to note that the eggs of all equine strongyles are 

virtually identical, and cannot be differentiated to the sub-family, genus, or species to 

which they belong. Furthermore, a crucial concept to acknowledge is that a horse’s FEC 

is not linearly correlated to their worm burden (Nielsen et al., 2010). Because strongyle 

infections are a commonality among grazing horses and do not reflect infection burden, 

the use of a FEC as clinical diagnostic tool is limited and instead it is recommended as a 

tool to guide parasite control programs (Nielsen et al., 2016; ESCCAP, 2018; Rendle et 
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al., 2019). Their implementation in control regimens is discussed in detail in section 

1.3.1and use for evaluating anthelmintic efficacy in section 1.6.2. 

Because of the lack of standardization in FEC methodology and the number of 

FEC methods currently available, it is important to consider each techniques accuracy, 

precision, sensitivity, and specificity. These parameters are being increasingly considered 

when selecting a method (Levecke et al., 2012; Godber et al., 2015; Noel et al., 2017; 

Scare et al., 2017; Paras et al., 2018; Went et al., 2018). The definitions for precision and 

accuracy are best illustrated using a bulls-eye target. Accuracy describes how close the 

obtained value (i.e. observed FEC) is to the true/known value (actual number of eggs in a 

sample). Consider throwing a dart at a target, your accuracy is how close you are to the 

bulls-eye. Precision describes how replicable repeated FECs are, regardless of the true 

count. This is relatable to how close together all of your darts are on the target, regardless 

of their relation to the bulls-eye. Sensitivity is the ability of the test to give a positive 

result, given the sample is indeed positive. Specificity is the ability of the test to give a 

negative result, given the sample is indeed negative. A low sensitivity results in a high 

false negative rate, while a low specificity results in a high false positive rate.  

These statistics are largely attributed to sample preparation and the method 

employed, flotation medium used (if any), operator dependency, egg loss during sample 

preparation, and uneven egg distribution within the feces (Vidyashankar et al., 2012). 

Some techniques, such as the Cornell-Wisconsin (Egwang and Slocombe, 1982), the Stoll 

(Stoll, 1930), and the FLOTAC (Cringoli et al., 2010) utilize a centrifugation step. This 

serves to concentrate the eggs and improve egg recovery (Lester et al., 2014). However, 

even when both the Cornell-Wisconsin and FLOTAC techniques involved centrifugation 

and had a detection limit of 1 EPG, variation in precision between techniques still existed 

and was affected by the size of the subsample volume examined (i.e. coverslip, size of 

flotation chamber); Levecke et al., 2012). Despite the lower detection limit, some reports 

recognize the tendency for the Cornell-Wisconsin to have lower accuracy than other 

methods (Bosco et al., 2018; Paras et al, 2018). The equipment and time requirement of 

these centrifuge-based techniques often deter their routine use in diagnostic facilities. 

Other methods, such as the McMaster (MAFF, 1986) and Mini-FLOTAC (Cringoli et al., 

2017) rely on passive (‘table top’) flotation which occurs within the egg counting 
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chambers. Currently, the McMaster method is the standard technique for evaluating FECs 

as recommended by the AAEP (Nielsen et al., 2016) despite several studies proving the 

Mini-FLOTAC to be more accurate and/or precise (Godber et al., 2015; Lima et al., 

2015; Scare et al., 2017; Noel et al., 2017). Flotation media vary in specific gravity, 

where heavier eggs (i.e. Trichuris spp.) require a higher specific gravity (David and 

Lindquist, 1982), but more delicate ova (i.e. Strongyloides spp., Giardia spp.) can be 

distorted by these solutions making diagnosis near impossible. Differences in the specific 

gravity of common equine intestinal parasite eggs has also been reported (Norris et al., 

2018), but it is still common practice to utilize a single flotation method for routine 

equine parasite diagnostics and FECs. Operator dependency also largely influences the 

outcome of the FEC (McCoy et al. 2005; Vidyashankar et al., 2012). Finally, precision 

has been regarded as the most important parameter when evaluating a FEC method as the 

largest source of variability is attributed to the variation between subsamples and 

repeated counts (Carstensen et al., 2013). Variation between repeated counts must be 

minimized in order for drug efficacy by the fecal egg count reduction test (FECRT, 

described in section 1.6.2) to be appropriately evaluated and avoid the incorrect 

interpretation of variation as a change in drug efficacy (Vidyashankar et al., 2012). 

Therefore, it is important to employ the use of replicate counts to obtain an EPG average 

rather than relying on a single FEC (Vidyashankar et al., 2012; Lester et al., 2014). 

1.3.2 Larval cultures 

As previously mentioned, the eggs of equine strongyles cannot not be 

differentiated on a FEC, but culturing the eggs to induce hatching and development to the 

L3 stage can provide some further differentiation. This is achieved via a coproculture 

(fecal culture) followed by the Baermann technique and microscopic larval identification 

(Henriksen and Korsholm, 1983). 

The methodology of coprocultures has been described by Henriksen and 

Korsholm (1983). Briefly, a sub-sample of freshly collected feces is mixed with tap water 

to achieve a ‘dough-like’ consistency. The sample is then suspended on a piece of cheese 

cloth within a home-made humidity chamber consisting of two plastic cups. The sample 

is incubated at room temperature at 24˚C for approximately two weeks and moistened 
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with tap water as needed. Subsequently, the sample is transferred to a Baermann 

apparatus for 12-48 hours for larval recovery. The Baermann apparatus is essentially a 

wine glass with small basin in the stem. The larvae’s swimming nature coupled with 

gravity pull the larvae into the basin allowing for easy harvest. Larvae that have 

developed to the L3 stage can be morphologically identified by their number and shape of 

intestinal cells, and the length of the larvae. Those belonging to the Strongylinae sub-

family can be identified to species, except for Triodontophorus spp. which is only 

identifiable to the genus at this stage. Of the 50+ species belonging to the cyathostomin 

sub-family, the majority can only be characterized as a cyathostomin, but a few can be 

further identified to genus (Poteriostomum spp.) or species (Oesophagodontus robustus, 

Gyalocephalus capitatus) (Russel, 1948). Trichostrongylus axei, the stomach worm of 

horses, ruminants, pigs, and humans, can also be identified.  

The Baermann technique alone is also used to recover live larvae, such as the 

equine lungworm, Dictyocaulus arnfieldi, from fecal samples (Mair, 1987). The same 

principles mentioned above are applied, except fecal culturing is not necessary prior to 

using the Baermann because the lifecycle of this parasite produces larvae in the feces 

instead of eggs. Live, immature cyathostomin larvae (L4) which have recently excysted 

from the intestinal mucosa can also be harvested in this manner and may be indicative of 

larval cyathostominosis (Olsen et al., 2003). 

As previously mentioned, this technique is primarily used to diagnose the 

presence of the pathogenic S. vulgaris on a farm. However, one limitation is that this 

method only reflects patent infections, and the pathogenic stage of S. vulgaris are the 

migrating larvae which cannot be diagnosed with this technique. In most cases, S. 

vulgaris is diagnosed at the farm level, as horses housed together are under the same 

infection pressure, and this can be used to guide anthelmintic treatments of the herd 

(Nielsen et al., 2016). This is discussed further in section 1.4. It is important to note that 

the negative predictive value is reportedly only 0.37, and false-negative results are likely 

to occur (Nielsen et al., 2010). Therefore, a technique capable of identifying the larval 

stages would be preferred, and is further described in section 1.3.4. 
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1.3.3 Molecular diagnostics 

The use of molecular based diagnostic techniques for equine helminths is limited. 

At present, only five methods exist. An rDNA-based PCR method (Drögemüller et al., 

2004a) is described for detecting the equine tapeworm, Anoplocephala perfoliata, in the 

feces. This method has a detection sensitivity of 500 femtograms, but only 0.5-1 g of 

fecal material can be used without risk of diluting the DNA due to increasing the volume 

of reagents. This small amount of feces would likely decrease the sensitivity of this 

method under field conditions as equine tapeworm eggs are not uniformly distributed in 

the feces (see section 1.2.3), and sensitivity was only marginally better than traditional 

coprological examination methods (Traversa et al., 2008). Later, a multiplex PCR assay 

was developed capable of identifying the DNA of all three equine tapeworms (A. 

perfoliata, A. magna, and Anoplocephaloides magna). The assay can detect the DNA 

from whole worms, and from pure or mixed species infections from eggs in the feces. It 

has a detection limit of 50 EPG and uses five grams of feces (Bohórquez et al., 2015), 

which does not provide an advantage over most FEC methods. Regarding strongyles, 

there is a PCR-ELISA capable of detecting six cyathostomin species (Hodgkinson et al., 

2003, 2005), and a reverse line blot assay has been developed and validated for detecting 

21 species of cyathostomins and all three Strongylus species (Traversa et al., 2007a, 

Cwiklinski et al., 2012). However, these molecular methods only provide qualitative 

results and cannot provide information on the proportion of each species present within 

the sample. Lastly, a Strongylus vulgaris specific PCR has been described and validated 

for the detection and semi-quantification of S. vulgaris DNA present in a fecal sample 

(i.e. parasite eggs; Nielsen et al., 2008). 

1.3.4 ELISA methods 

A serum antibody ELISA (Proudman and Trees, 1996a,b; Kjaer et al., 2007) and 

saliva antibody ELISA (Lightbody et al., 2016) are available for detecting the tapeworm 

infections in horses, however it should be noted that horses can remain antibody positive 

for up to five months after treatment (Proudman and Trees, 1996b). Both tests are 
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commercially available in Europe. A Strongylus vulgaris specific serum antibody ELISA 

has been validated for detecting the pathogenic migrating larval stages present in the 

CMA and its associated branches (Andersen et al., 2013), but this technique is not 

available commercially. 

1.3.5 Other diagnostic methods 

It is important to note that while equine tapeworms (Anoplocephala perfoliata) and 

pinworms (Oxyuris equi) are intestinal helminths, the presence of their eggs in feces is 

sporadic. Because of the irregular release of tapeworm eggs from the proglottids their 

presence in a sub-sample examined for diagnostic purposes produces variable results 

regarding sensitivity. Increasing the amount of feces examined and use of flotation 

enhanced by centrifugation can greatly improve the diagnostic sensitivity (Meana et al., 

1998; Slocombe, 2004; Tomczuk et al., 2014). Pinworm eggs are not excreted in the 

horse’s feces, but rather deposited around the perianal region of the horse and therefore 

rarely found in the feces unless eggs happen to make contact with feces as they are 

deposited, or the sample is rectally collected and eggs get onto the collector’s glove. A 

more practical diagnostic technique is to stick a piece of scotch-tape on the perianal 

region and subsequently microscopically examine it for pinworm eggs (Reinemeyer and 

Nielsen, 2014). 

1.4 Control of equine parasites 

Historically, it was recommended to treat horses every 4-6 weeks in order to 

suppress parasite egg output and pasture contamination, thus reducing the risk of clinical 

disease. This was known as the interval-dose program (Drudge and Lyons, 1966; 

Duncan, 1982). As new drugs came to market, they were recommended for use in a 

rotational deworming manner, where horses were still treated every 4-6 weeks (Duncan, 

1982). Traditionally, S. vulgaris was the target parasite and the treatment intensity was an 

attempt to eliminate this parasite (Drudge and Lyons, 1966). However, the frequent 

anthelmintic treatments led to substantial anthelmintic resistance by other parasites to all 

three of the available drug classes for equine use (Peregrine et al., 2014), which is further 



12 
 

discussed in section 1.7 The wide-spread anthelmintic resistance status, particularly 

harbored by cyathostomins and Parascaris spp., has led to new approaches for parasite 

control. These approaches are presented in various guideline papers, namely the 

American Association of Equine Practitioners (AAEP) Parasite control guidelines 

(Nielsen et al., 2016), the European Scientific Counsel for Companion Animal Parasites 

(ESCCAP) A guide to the treatment and control of equine gastrointestinal parasite 

infections (ESCCAP, 2018), and the UK-Vet Equine deworming: a consensus on current 

best practice (Rendle et al., 2019). It is important to note that parasite epidemiology 

varies with regional climatic conditions, and should be considered when implementing a 

control program. Horse age is also an important component because horses gain some 

immunity to intestinal helminths which is largely influenced by age and previous 

exposure. All of the aforementioned guidelines incorporate biological and pharmaceutical 

control methods. Most of the recommendations are echoed between the guidelines, and 

these commonalities are outlined below. 

1.4.1 Biological control 

The importance and means of biological control are primary considerations for 

parasite control guidelines. Limiting the abundance of parasite infective stages in the 

environment, otherwise known as the infective pressure, and disruption of the parasitic 

lifecycle will directly decrease the number of parasites available for infection. There are 

several components of effective biological control, including manure removal and pasture 

hygiene, proper manure composting, pasture resting and/or mixed-species grazing, low 

stocking density, and quarantining new animals. (Nielsen et al., 2016; ESCCAP, 2018; 

Rendle et al., 2019).  

Timely manure removal (i.e. before development of the infective stage) from 

stalls and pastures has proven beneficial in the control of cyathostomin parasites (Herd, 

1986a,b; Corbett et al., 2014), but it can be very labor intensive. Pasture vacuum 

technology does exist and has proven an efficient method for pasture hygiene and 

parasite control, but is also very costly (Herd, 1986b). The collected manure must also be 

properly disposed of and not spread back onto the pasture. Manure composting has been 

shown to kill the parasite environmental stages for equine strongyles and Parascaris spp. 
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when internal compost pile temperatures reached approximately 35-55˚C (Gould et al., 

2013). Frequent pasture rotation to disrupt the strongyle lifecycle has been shown to 

reduce strongyle FECs when implemented on at least a monthly basis (Relf et al., 2013). 

Mixed or alternate grazing is when another species, such as sheep, cattle, or goats, reside 

on the pasture with the horses, or are turned out onto the paddocks after the horses have 

grazed it. This method is useful in disrupting parasite lifecycles, but is only effective if 

the different hosts do not share the same parasites. It has been proven to reduce strongyle 

egg shedding in horses, but did increase the infection prevalence of Trichostrongylus 

axei, a common parasite of ruminants not normally found infecting horses (Eysker et al., 

1983). In cattle, high stocking rates leading to over-grazed pastures are directly 

associated with increased signs of parasitism due to high parasite infection pressure and 

decreased nutritional status (Bransby, 1993). No studies have directly examined these 

effects in horses, but maintaining lower stocking density is still encouraged. Finally, 

horses new to the farm especially those with an unknown deworming history, are 

recommended to be dewormed with a purge dewormer (i.e. moxidectin) and then 

quarantined for 3-4 days before allowed turnout with the other horses. This is to reduce 

the transmission risk of parasites that are considered more pathogenic, such as S. 

vulgaris. 

 Because foals are subject infection by other parasite species typically absent from 

adult horses (i.e. S. westeri and Parascaris spp.), it is recommended to only turn foals out 

onto a ‘clean’ pasture and to rotate the pastures annually between foal crops. Parascaris 

spp. eggs are known to remain infective on pasture for more than a single grazing season, 

and maintaining foals on the same pasture for consecutive years will continually increase 

the infection pressure for the subsequent foal crops. Parascaris spp. eggs are surrounded 

by a sticky proteinaceous coat allowing them to reside on vertical surfaces. Proper farm 

hygiene can help reduce the risk of transmission. Foals are also at risk for infection by S. 

westeri, which can be transmitted vertically through the mare’s milk (Lyons et al., 1973). 

In general, foals are not at risk of serious clinical disease from S. westeri infection, but 

proper hygiene, deworming the mare prior to foaling, can help reduce transmission. 



14 
 

1.4.2 Pharmaceutical control 

At present, there are four drug classes approved and available in for the control of 

equine helminth parasites namely, the benzimidazoles (BZ), pyrimidines, and 

macrocyclic lactones (ML), while the fourth drug class, praziquantel, is effective only 

against the equine tapeworm (Anoplocephala perfoliata). As opposed to anthelmintic use 

in other species, equine formulations are only available for oral administration (Nielsen et 

al., 2016). Because the focus of this literature review is anthelmintic resistance, the 

praziquantel drug class will not be covered herein as there is no evidence of anthelmintic 

resistance against it. 

1.4.3 Control regimens 

While biological regimens can offer effective parasite control, the regular 

implementation of the aforementioned techniques is cumbersome and rarely implemented 

frequently enough for adequate control. Therefore, chemotherapy is often used to 

supplement. However, due to the anthelmintic resistance crisis, the AAEP, ESCCAP, and 

the UK-Vet equine parasite control guidelines recommend a balance of reduced treatment 

frequency while still preventing clinical disease. Horse age is a major contributor to 

parasite management practices, and therefore parasite management for adult horses will 

be described separately from foals/weanlings/yearlings. 

1.4.3.1 Parasite control for adult horses 

Strongyles are the primary focus of parasite control of adult horses, where 

cyathostomins are known to make up 99-100% of the total worm burden (Nielsen et al., 

2010). Because of the high levels of anthelmintic resistance among cyathostomin 

populations and the high prevalence of infection, the overarching goal is not to eradicate 

a horse’s cyathostomin burden, but rather to limit the infection pressure in the 

environment, maintain anthelmintic efficacy by decreasing the total number of treatments 

given on a farm, and prevent clinical disease. These strategies can be classified as 

selective-therapy, strategic-based deworming, or a combination of the two. 



15 
 

1.4.3.2 Selective therapy 

Selective therapy regimens focus on decreasing the overall pasture contamination 

level of strongyle parasites by targeting high-egg shedding horses with anthelmintic 

treatments. Individual horse egg shedding levels are determined by a FEC, and horses are 

subsequently categorized as a low, medium, or high egg shedder. The thresholds are 

arbitrary, but in general most leading experts consider low egg shedders as 0-200 EPG, 

medium shedders as 201-500 EPG, and high shedders as >500 EPG. Healthy horses 

generally maintain a consistent egg shedding level throughout their adult life (Döpfer et 

al., 2004; Nielsen et al., 2006; Wood et al., 2013), but horses can switch egg shedding 

categories and therefore FECs are recommended on an annual basis. Under the selective 

therapy regime, it is recommended to treat low-egg shedding horses only once to twice a 

year, whereas moderate and high egg shedding horses should be treated 3-4 times per 

year. The parasite control guidelines recommend that all treatments be given around the 

grazing season when environmental conditions favor larval development on the pasture 

and infection pressure is the highest. Only drugs with known efficacy on the given farm 

should be used, and in most cases a ML drug is the most appropriate choice. As discussed 

in section 1.6.2, drug efficacy can be monitored using FECRT. It is recommended for at 

least one annual treatment to target tapeworms, bots, and encysted cyathostomins. For 

tapeworms, the guidelines suggest to give this treatment in the late fall or early winter 

when the transmission period for tapeworms has ended. 

1.4.3.3 Strategic deworming 

Strategic deworming can take on many different definitions of approaches that 

one considers ‘strategic,’ however the most common definition requires the maintenance 

of horses based on their age and the current season/region. Foals and young horses (<5 

years old) are considered as a group and their control regimens is described in the section 

below. Healthy, adult horses (>5 years old) are also considered as a group. Strategic 

deworming seeks to decrease the overall infection pressure by treating all adult horses 3-

4 times per year with an effective dewormer. 
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1.4.3.4 Parasite control regimens for foals, weanlings and 

young horses 

Young horses, including foals, weanlings, and yearlings, require a different 

parasite management approach because Parascaris spp. is considered ubiquitous among 

foals, and yearlings are presumed to be high strongyle egg shedders.  It is recommended 

to give the first anthelmintic treatment around two months of age to remove immature 

stages of Parascaris spp. and prevent an immediate high worm burden. A BZ drug is the 

drug of choice as it does not have a paralytic mode of action (see section 1.5.1). Paralytic 

drugs, when given in the presence of a high Parascaris spp. worm burden, have been 

associated with impaction colic of the small intestine (Southwood et al., 1996; Cribb et 

al., 2006; Tatz et al., 2012).  It is suggested for foals to be treated again around the time 

of weaning, and to use a FEC to determine if the target parasite is Parascaris spp. or 

strongyles and justify the choice of drug class to ensure effective treatment. The last two 

treatments are given at nine and 12 months of age targeting strongyles. Similar to the 

adult horses, it is recommended for foals to receive a treatment for tapeworms around 9-

12 months of age. Yearlings are assumed to have minimal immunity to strongyle 

infections, and are considered high-egg shedders and at a higher risk for parasitic disease. 

Therefore, the guidelines suggest for yearlings to receive 3-4 treatments targeting 

strongyles, and to monitor their egg–shedding status thereafter. Only drugs that have been 

previously determined efficacious on that farm should be used. If the efficacy status is 

unknown, a macrocyclic lactone drug is recommended as it is considered the most 

efficacious (see section 1.7.1).   

1.5 Anthelmintic drug classes 

1.5.1 Benzimidazoles 

1.5.1.1 Formulations and uses 

The BZ drug class, the first broad spectrum anthelmintic with high efficacy, was 

introduced in 1961 (Brown et al., 1961). Since its introduction, numerous BZs have been 
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developed, including but not limited to, thiabendazole, mebendazole, cambendazole, 

oxibendazole (OBZ), luxabendazole, parabendazole, albendazole sulphoxide, 

fenbendazole (FBZ), oxfendazole, flubendazole, febantel, netobimin, thiophanate, and 

triclabendazole (McKellar and Scott, 1990; Martin, 1997). Febantel and netobimin are 

considered pro-benzimidazoles, meaning that they are converted to the active drugs, FBZ 

and albendazole, respectively, once metabolized in the animal (McKellar and Scott, 1990; 

Martin, 1997). The drugs used, routes of administration, targeted parasite species, and 

efficacies vary across the domestic animal host. Preparations vary by species and drug 

formulation, but include drenches (oral suspension), pastes, powder, capsules, granules, 

pour on, pellets, boluses, and intra-ruminal injectors (McKellar and Scott, 1990).  

For equine intestinal parasites, the efficacies have been evaluated for 

mebendazole (8.8 mg/kg; Colglazier et al., 1977; Drudge et al., 1974), cambendazole (20 

mg/kg; Colglazier et al., 1977), FBZ (5, 15, 30, and 60 mg/kg; Colglazier et al., 1977; 

Drudge et al., 1975; Duncan et al., 1977; McBeath et al., 1978), albendazole (2.5, 5, and 

10 mg/kg; Colglazier et al., 1977; Drudge et al., 1984), OBZ (10 mg/kg and many other 

dosages; Kates et al., 1975; Drudge et al., 1979, 1981, 1984; Tolliver et al., 1993), 

oxfendazole (many dosages; Lyons et al., 1977; Tolliver et al., 1993), thiabendazole (44 

mg/kg; Drudge et al., 1984), and febantel (6, 12, and 24 mg/kg; Drudge et al., 1984). The 

majority of these drugs were considered efficacious against luminal stages of large 

strongyles, cyathostomins, Parascaris spp., and O. equi. However, FBZ (5 mg/kg) 

exhibited variable efficacy against Parascaris spp. and immature O. equi (Drudge et al., 

1975). Oxibendazole (10 mg/kg) also reduced the number of S. westeri eggs found in the 

feces (Drudge et al., 1981). Oxfendazole and FBZ were reported efficacious against T. 

axei and D. arnfeldi, respectively, whereas mebendazole was effective against both 

(McKellar and Scott, 1990). None of the aforementioned drugs exhibited efficacy against 

Gasterophilus spp. or A. perfoliata. Only elevated dosages of FBZ exhibited some 

larvicidal efficacy, where 7.5 mg/kg administered for five consecutive days reduced the 

number of encysted cyathostomins by 95.3% (Duncan et al., 1998). Single dosages of 30 

or 60 mg/kg exhibited some efficacy against migrating large strongyles (Duncan et al., 

1977) and 10 mg/kg has also reduced the number of migrating Parascaris spp. by 99.8% 

(Vandermyde et al., 1987). Presently, only OBZ (10 mg/kg) and FBZ single dose (5 
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mg/kg) or a five-day regimen 10 mg/kg/day is available for equids in the United States 

(Nielsen et al., 2016). 

1.5.1.2 Mode of action 

The mode of action of BZs is to disrupt microtubule polymerization (Lacey, 

1988). Microtubules are composed of heterodimers consisting of α- and β- tubulin 

subunits. Microtubules are considered to have a ‘+’ and ‘-’ end, where polymerization 

occurs at the ‘+’ end. Growth occurs in a conveyor-belt mechanism, where heterodimers 

dissociate from the microtubules at the ‘-’ end and then are added back to the ‘+’ end 

(Mandelkow and Mandelkow, 1990). The BZ binds to nematode β-tubulin preventing 

microtubule polymerization resulting in shortening of the molecule (Dawson et al., 1984; 

Lacey, 1988, Martin, 1997). Microtubules are essential components for cellular structure, 

the mitotic spindle, and for transporting molecules across the cell membrane. The 

inhibition of microtubule formation disrupts cell structure and energy metabolism 

essentially causing cellular disequilibrium and leading to parasite death (Lacey, 1988; 

Martin, 1997). 

1.5.2 Cholinergic agonists 

1.5.2.1 Formulations and uses 

The cholinergic agonists can be further divided into three subgroups, namely the 

imidazothiazoles which consists only of levamisole, the tetrahydropyrimidines 

(pyrimidines, PYR) which consists of pyrantel, morantel, and oxantel, and lastly the 

amino-acetonitrile derivatives consisting of only monepantel (Martin, 1997; Abongwa et 

al., 2017; Lecová et al., 2014). Levamisole was brought to market in 1970 and is widely 

used in livestock, but is not marketed for use in horses or small animals. Monepantel is 

the newest cholinergic agonist drug. It acts on a different nAChR sub-family than the 

other cholinergic agonists (Lecová et al., 2014) and is proven to be effective against 

ruminant parasitic nematodes resistant to other anthelmintics (Kaminsky et al., 2011). 

Monepantel is not marketed for use in horses.  
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The only cholinergic agonist marketed for equine use is pyrantel, which was 

developed following the construction of the intermediate compound, 

tetrahydropyrimidine (Austin et al., 1966; McFarland et al., 1972). Pyrantel exists in 

three salt formulations, including pamoate (embonate), hydrochloride, and tartrate, but 

only pamoate (embonate) and tartrate are used in horses (Sheehan et al., 2016; 

Reinemeyer, 2016). Pyrantel is poorly absorbed across the intestinal wall, which 

increases safety margins and luminal efficacy, but prevents the opportunity for larvicidal 

efficacy (Gokbulut et al., 2001).  

Pyrantel pamoate (embonate) is available for horses as both a suspension and 

paste formulation (6.6mg/kg) (Reinemeyer, 2016). The suspension is labeled for removal 

of S. vulgaris and cyathostomins (Reinemeyer, 2016) with 100% efficacy (Lyons et al., 

1974; Slocombe and Smart, 1975; Boersema et al., 1996). It is also labeled against S. 

edentatus (Reinemeyer, 2016), but with efficacy <90% (Lyons et al., 1974). The paste 

formulation removed S. vulgaris, S. edentatus, and small strongyles at 100% efficacy 

(Drudge et al., 1984). Luminal stages of Parascaris spp. have been sufficiently reduced 

by the suspension (Lyons et al., 1974) and paste formulation (Reinemeyer et al., 2010a). 

Both formulations are labeled for the control of pinworms where the oral suspension 

administered by stomach tube has exhibited 100% efficacy against the L4 and adult stages 

present in the lumen (Lyons et al., 1974). Later, Reinemeyer et al. (2010b) found 

administration of the paste formulation at double the labeled dose (13.2mg/kg) to reduce 

adult and L4 pinworms by >90%. Administration of a double-dose (13.2 mg/kg) is also 

effective against A. perfoliata (Lyons et al., 1989).  

Pyrantel tartrate (2.64 mg/kg) is administered as a daily feed additive to horses 

and serves as prophylactic rather than therapeutic treatment (Reinemeyer, 2016). It was 

effective against large strongyles and cyathostomins (Lyons et al., 1974) and both 

luminal immature and adult stages of Parascaris spp. (Valdez et al., 1995). It is also 

labeled for efficacy against immature and adult pinworms, but studies report <90% 

efficacy when given at the labeled dose (2.64 mg/kg) as a daily feed additive for 30 days 

(Valdez et al., 1995), or at an elevated dose (7.2 mg/kg, 4.6 mg/kg) via stomach tube 

(Lyons et al., 1974). Valdez et al. (1995) also reported pyrantel tartrate to effectively 

eliminate luminal stages of Parascaris spp. Pyrantel tartrate has prevented accumulation 
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of S. vulgaris larvae present in the CMA (Reinemeyer et al., 2014), but is still labeled for 

larvicidal efficacy. Efficacy against equine tapeworms is also reported (Greiner and Lane, 

1984; Lyons et al., 1997), but label claims have not been made. 

Morantel exists as two salt formulations, namely morantel citrate and morantel 

tartrate. Morantel citrate is only available in Australia for porcine and small ruminant 

parasites (Reinemeyer, 2016). In the United States, morantel tartrate is only marketed for 

use in cattle and goats. Australia and New Zealand have approved morantel tartrate for 

use in horses as a paste or pelleted feed additive, and it exhibits very similar efficacies to 

that of pyrantel pamoate (Reinemeyer, 2016). Oxantel only exhibits efficacy against the 

canine whipworm (Howes, 1972; Rim et al., 1975). 

1.5.2.2 Mode of action 

Drugs of the cholinergic agonists drug class act as agonists of the nicotinic 

acetylcholine receptors (nAChR). These neurotransmitters are present at the 

neuromuscular junction of the parasite’s somatic and pharyngeal muscle cells. The drug, 

coupled with the natural ligand, acetylcholine, opens this ligand-gated ion channel for an 

extended period of time allowing an increased flow of cations (Na+ and Ca2+). The influx 

of cations causes depolarization of the neuronal cell membranes and causing paralysis of 

the parasite rendering them unable to swim against peristalsis and subsequently expelled 

by the host (Harrow and Gration et al., 1985; Aceves et al., 1970; Aubry et al., 1970; 

Robertson and Martin, 1993).  

Three nAChR subtypes have been identified, namely the L-subtype which is most 

sensitive to levamisole and pyrantel, the N-subtype conferring most sensitivity to 

nicotine, oxantel, and methyridine, and lastly the B-subtype which is most sensitive to 

bephenium (Martin et al., 2004; Levandoski et al., 2005; Qian et al., 2006). Regardless, 

nAChRs consist of five subunits, which may be homomeric or heteromeric, and subunit 

composition varies across nematode species. Subunit composition affects the binding 

properties of the receptor resulting in varying sensitivities to the anthelmintic agonists 

(Robertson et al., 2000; Bartos et al., 2006; Williamson et al., 2009; Boulin et al., 2011; 

Buxton et al., 2014; Sloan et al., 2015; Duguet et al., 2016; Whittaker et al., 2016; 

Blanchard et al., 2018). Additionally, genetic diversity among subunit orthologues of 
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different species exist (Neveu et al., 2010). The ligand-binding site occurs at the junction 

of two adjacent receptor subunits (Hibbs and Gouaux, 2011). The junctions are further 

individualized by the presence of aromatic residues which select different ligands, or 

anthelmintic drugs (Beene et al., 2004; Habibi et al., 2018). A glycine at position 153 

(Rayes et al., 2004) is necessary for levamisole sensitivity, while pyrantel requires a 

glutamine at position 57 in addition to the glycine at 153 (Bartos et al., 2006) on subunit 

unc-38 and unc-63. The residues present also differ across animal species (Lynagh and 

Pless, 2014). These variations present further challenges for studying drug pharmacology 

and anthelmintic resistance mechanisms (Kotze et al., 2014), but also allow for the 

possibilities of combination deworming to combat anthelmintic resistance by targeting 

receptors with alternative subunit compositions (Qian et al., 2006; Buxton et al., 2014).  

In C. elegans, 29 nAChR subunits and 32 nAChR-like subunits are described 

(Jones et al., 2007), and it is well established that the alpha subunits UNC-38, UNC-63, 

LEV-8, non-alpha subunits UNC-29 and LEV-1 (Fleming et al., 1997; Richmond and 

Jorgensen, 1999; Culetto et al., 2004; Towers et al., 2005; Boulin et al., 2008), coupled 

with three ancillary proteins (UNC-50, UNC-74, and RIC-3; Boulin et al., 2008) form the 

L-nAChR. Contrastingly, the levamisole insensitive receptor (N-subtype) is a 

homopentamer, consisting of only ACR-16 subunits (Touroutine et al., 2005).  

Neveu et al. (2010) characterized the sequences of unc-38, unc-63, lev-1, and unc-

29 in three strongylid parasites infecting small ruminants (H. contortus, T. circumcincta 

and T. colubriformis) and found high sequence similarity to the C. elegans and A. 

caninum (canine strongylid) orthologues. Diversity of the unc-29 orthologue (L-nAChR) 

was identified in the ruminant parasites, where both H. contortus and T. circumcincta had 

four gene copies, and three genes were found for T. colubriformis (Neveu et al., 2010). 

Furthermore, the LEV-8 subunit is missing in several parasite species (Williamson et al., 

2007; Neveu et al., 2010; Blanchard et al., 2018), including the small ruminant parasite 

H. contortus (Neveu et al., 2010; Laing et al., 2013). However, a closely related subunit, 

ACR-8 was identified in the L-nAChR of H. contortus (Fauvin et al., 2010) and later 

found to also be present in C. elegans, but not functionally necessary for the receptor 

(Hernando et al., 2012). The ACR-8 subunit is able to form a functional receptor when 

co-expressed with homolog subunits from H. contortus (Hco-unc-38, Hco-unc-63, and 



22 
 

Hco-unc-29; Boulin et al., 2011) and the swine strongyle, Oesophagostomum dentatum 

(Ode-unc-38, Ode-unc-63, and Ode-unc-29; Buxton et al., 2014) in the Xenopus oocyte 

expression system. Both receptors were highly sensitive to levamisole, but not pyrantel or 

nicotine. Removal of the ACR-8 subunit resulted in sensitivity to pyrantel and nicotine, 

but not levamisole (Boulin et al., 2011; Buxton et al., 2014). The role of ACR-8 in 

levamisole sensitivity was confirmed in O. dentatum and revealed to be necessary for 

increased receptor calcium permeability upon levamisole binding (Buxton et al., 2014). 

Contrastingly, for A. suum only the unc-38 and unc-29 genes are necessary to form a 

levamisole sensitive receptor in the Xenopus oocyte system (Williamson et al., 2009). 

Finally, the lev-1 homologue is reportedly missing in H. contortus, T. circumcincta, and 

T. colubriformis (Neveu et al., 2010).  

While both levamisole and pyrantel target the same receptor subtype (L-nACh), 

their mode of action and binding properties are different and heavily dependent upon 

subunit composition and residues (Bartos et al., 2006; Habibi et al., 2018).  This 

summary illustrates the complexity of cholinergic receptors and drug sensitivity across 

different species, and the limitations for making conclusions based on the C. elegans 

model. More studies are needed to explore the preferential binding sites and subunit 

compositions of pyrantel in parasitic nematodes. 

1.5.3 Macrocyclic lactones 

1.5.3.1 Formulations and uses 

The MLs can be subdivided into the avermectins and milbemycins (Davies and 

Green, 1986), where the former group consists of avermectin (Stapley and Woodruff, 

1982), ivermectin (IVM; Campbell, 1983), eprinomectin (Shoop et al., 1996), doramectin 

(Goudie et al., 1993), and selamectin (Banks et al., 2000), and the latter consists of 

milbemycin oxime and moxidectin (MOX; McKellar and Benchaoui, 1996). Avermectin 

was the first to be discovered in 1979 (Burg et al., 1979; Egerton et al., 1979), followed 

shortly by IVM, a derivative of avermectin (Campbell, 1983). The milbemycins were 

originally used as insecticides and milbemycin oxime was the first anthelmintic 

developed (Takiguchi et al., 1983). Moxidectin was then developed as a derivative of 

nemadectin, a fermentation product of milbemycin oxime (Carter et al., 1988). The 
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avermectins and milbemycins are considered to have a wide-safety margin as they have 

high potency and require only micrograms of drug to achieve desirable efficacy as 

opposed to the milligrams required of other drug classes (Shoop et al., 1995; McKellar 

and Benchaoui, 1996). The term ‘endectocide’ was coined upon the development of the 

MLs and discovery of efficacy against both endo- and ecto- parasites for both 

avermectins (Campbell, 1981; Geary and Moreno, 2012) and milbemycins (Ranjan et al., 

1992; Williams et al., 1992; Webb et al., 1991; Lyons et al., 1992; Stansfield and Hepler, 

1991).  

In general, the MLs are available for use in livestock and companion animals, and 

are available as chewable tablets, liquid suspensions, drenches, boluses, injectable, pour-

on/topical, paste, and oral gel (Vercruysse and Rew, 2002). Macrocyclic lactones 

(selamectin, IVM, MOX, milbemycin oxime) are the only drugs used for the prevention 

of heartworm in cats and dogs (Wolstenholme et al., 2015). In the United States, the only 

MLs approved for horses are IVM (paste, 0.2 mg/kg) and MOX (gel, 0.4 mg/kg). 

Abamectin is also available for horses in Australia and New Zealand, and IVM in a liquid 

suspension is available in Canada. Both IVM and MOX have exhibited efficacy against 

luminal cyathostomins and large strongyles (Torbert et al., 1982; Xiao et al., 1994; Costa 

et al., 1998), Parascaris spp. (Torbert et al., 1982; French et al., 1988; Lyons et al., 

1992), and O. equi (Torbert et al., 1982; Lyons et al., 1992; Reinemeyer et al., 2010b). 

They were reported to be efficacious against migrating stages of S. vulgaris (Slocombe 

and McCraw, 1981; Lyons et al., 1992; Monahan et al., 1995) and Parascaris spp. 

(French et al., 1988; Monahan et al., 1995). Only MOX is labeled for larvicidal efficacy 

against encysted cyathostomins (Xiao et al., 1994; Reinemeyer et al., 2015; Bellaw et al., 

2018). Specifically, in Australasia, Europe, and South America, MOX is marketed for 

efficacy against all encysted stages, whereas it is not labeled for efficacy against EL3s in 

North America. Larvicidal efficacies at 2-3 weeks post-treatment for the EL3 and LL3/L4 

stages have been respectively reported at 0% and 62.6% (Xiao et al., 1994), 63.6% and 

85.3% (Reinemeyer et al., 2015), and 73.8% and 74.6% (Bellaw et al., 2018). These 

findings indicate some differences in anthelmintic susceptibilities depending on the stage 
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of development and study design, however, further studies are warranted to elucidate the 

reasons behind this phenomenon. 

 
1.5.3.2 Mode of action 

Macrocyclic lactones act on glutamate-gate chloride (GluCl) channels, in either a 

direct manner or to potentiate the effects of the natural ligand, glutamate (Martin, 1997; 

Wolstenholme, 2012; Abongwa et al., 2017). These channels are specific to invertebrates 

and are highly expressed in nematode sensory and motor neurons making them excellent 

drug targets. They regulate locomotion, feeding behavior, and mediate sensory inputs 

(Wolstenholme, 2012). Ivermectin is also known to influence nematode reproduction and 

fecundity (Wolstenholme, 2012). The exact location of drug-neuronal interaction is 

unknown, but some evidence suggests that drug action may exist on major neurons 

located in the parasite amphids. Amphids are sensory organs used by nematodes to gather 

information about their environment, such as changes in the chemical surroundings 

(Guerreror and Freeman, 2004). The GluCl channel is a homologous pentamer, consisting 

of either α or β subunits (Cully et al., 1994). The α channel is IVM sensitive (Cully et al., 

1994). Six GluCl genes have been identified in C. elegans, namely glc-1, glc-2, glc-3, 

glc-4, avr-14, and avr-15, where both avr-14 and avr-15 can produce at least eight 

additional subunits through alternative splicing events (Yates et al., 2003). While avr-14 

and glc-2 are present in all GluCl gene families of parasitic nematodes studied, but the 

presence of other and additional genes varies between species (Wolstenholme, 2012). 

This variability complicates the unveiling of drug and resistance mechanisms. The 

gamma-aminobutryic acid (GABA) receptors are a secondary target of MLs (Martin, 

1997; Yates et al., 2003; Prichard et al., 2012).  

Macrocyclic lactone binding to the GluCl and GABA receptors causes an influx 

of chloride ions (Cl-) into the cell leading to hyperpolarization, or negative membrane 

potential. This inhibits neurotransmission leading to flaccid paralysis and subsequent 

expulsion of the parasite with peristalsis (Martin, 1997; Wolstenholme, 2012). Binding is 

essentially irreversible (Wolstenholme, 2011, 2012). These receptors are also known to 

be present on the pharyngeal muscle of Ascaris suum and application of IVM inhibits 
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pharyngeal pumping (Brownlee et al., 1997). It is interesting that inhibition of the 

pharyngeal muscle requires much lower concentrations of IVM than the drug 

concentrations needed to observe effects on the somatic musculature. This observation 

has been reported in A. suum (Brownlee et al., 1997), Haemonchus contortus (Geary et 

al., 1993), and C. elegans (Avery and Horvitz, 1990).  

While all MLs are hydrophobic molecules consisting of a 16-member macrocyclic 

lactone ring, there are several differences between the structures of avermectins and 

milbemycins (Prichard et al., 2012), most notably is the presence of a disaccharide group 

at carbon-13 of avermectins (Davies and Green, 1986). This structural difference affects 

the affinity for the GluCl receptors; three of the proposed binding sites for IVM are not 

available for MOX. It is known that MOX requires a higher concentration than IVM to 

achieve the same anthelmintic efficacy (Ardelli et al., 2009; Prichard et al., 2012), which 

is reflected by the different labelled dosages for horses (0.2 mg/mL for IVM and 0.4 

mg/mL for MOX). Both drug groups are highly lipophilic and readily absorbed into the 

fat of the host awarding them some larvicidal efficacy, but MOX is known to have higher 

concentrations in fat tissues than IVM (McKellar and Benchaoui, 1996) which is 

associated with MOX having persistent efficacy up to 2-3 weeks post treatment 

(Vercruysse et al., 1998). 

1.6 Anthelmintic resistance 
1.6.1 General overview of anthelmintic resistance 

As previously discussed, anthelmintic resistance is an ever-increasing problem 

affecting parasites of small animals, livestock, and horses. Despite it being a world-wide 

issue, the definition of resistance is debated as some consider it as total drug failure while 

others define it as any decrease in efficacy, or perhaps when the maximum dose is no 

longer effective (James et al., 2009). It is widely accepted that anthelmintic resistance 

developed as a consequence of frequent treatment regimens, and is exasperated by the 

current failure to condemn these traditional practices and implement new routines (Van 

Wyk, 2001). Furthermore, the lack of knowledge pertaining to the pharmacological 

properties of anthelmintic drugs and misinterpretation of their interactions with host-

related factors leads to incorrect use (Lanusse et al., 2014). 
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Historically, it was proposed that the genes driving resistance were present at low 

levels in susceptible populations, but were associated with a fitness loss (Prichard, 1990). 

Fitness loss is commonly represented by a decrease in fecundity to represent a decrease in 

the overall heredity of the resistance alleles. However, under the selection of anthelmintic 

treatment, worms harboring these genetics had a genetic advantage and the resistance 

alleles within the population would increase in frequency (Prichard, 1990).  Recent work 

suggests that there are many possible mechanisms at work, which may occur 

concurrently. Some of these theories are that mutations may occur spontaneously and 

provide an advantage at the time of treatment, resistance is due to recurrent mutations, or 

the so-called ‘resistance gene’ is brought in from another source due to animal trafficking 

(Gilleard and Beech, 2007). These genetic changes may be due to heritable changes at the 

genetic/epigenetic level following drug exposure, and/or due to changes in the drug-target 

interactions (James et al., 2009). More specifically, it is theorized that resistance occurs 

by a mutation or deletion of an amino acid in the target gene, due to a reduction in the 

number of target receptors, decreased affinity of the drugs to the receptor, and/or perhaps 

the absence of bioactivating enzymes (Abongwa et al., 2017). Biochemical mechanisms 

may include insufficient intracellular drug concentrations, cellular defense mechanisms 

which neutralize the drugs’ toxic effects and/or increase the concentration of drug 

antagonists, and/or altered availability and structure of the target receptors (Martin and 

Robertson, 2007; Lanusse et al., 2014). Drug efflux mechanisms involving ATP-binding 

cassette transport proteins, such as P-glycoproteins (Pgps), multi-drug resistance proteins, 

and breast-cancer resistance proteins have also been identified (Kotze et al., 2014). 

Regarding the different drug classes available, it is unknown if anthelmintic resistance is 

spread between the actives within the same drug class, known as side resistance, or if the 

mechanisms are shared between different drug classes, otherwise known as cross 

resistance (Abongwa et al., 2017). Overall, the conflicting conclusions about resistance 

mechanisms suggest that resistance is a complex quantitative trait and the multiple loci 

involved likely have an additive effect, otherwise known as a quantitative trait locus 

(Gilleard, 2013; Kotze et al., 2014). 

1.6.2 Diagnosis of anthelmintic resistance 

1.6.2.1 Critical test 
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This method begins with the treatment of animals, then recovery of parasites 

expelled from the host in the feces for the following for 5-7 days (Drudge et al., 1963, 

1974, 1975, 1979b, 1984). Subsequently, animals are necropsied, and the larvae and adult 

parasites are enumerated allowing the direct evaluation of the drug effects on the parasite 

burden. In this method, each animal serves as its own control allowing for a smaller 

sample size than other methods. It is, however, very labor and time intensive. It is 

obviously not an option for production farms as it requires the elimination of numerous 

animals (Drudge et al., 1963, 1974, 1975, 1979b, 1984; Johansen, 1989). 

1.6.2.2 Controlled anthelmintic efficacy test 

This in vivo technique is considered the gold standard method for determining 

anthelmintic efficacy. Animals are infected with known susceptible isolates or an isolate 

with suspect resistance. The animals are treated and necropsied for enumeration of 

parasites. The known time of infection allows for determining drug efficacy against the 

various parasite stages by necropsying at different time points. A dose response rate can 

also be established by testing a range of drug dosages. As expected, this procedure 

requires highly skilled personnel, and requires a substantial amount of resources (i.e. 

money, animals, time) (Johansen, 1989). A major limitation of this method is the 

requirement of pure isolates. Attempts for maintaining an isolate of cyathostomins have 

yet to be successful, and therefore the only method used for equine cyathostomins is 

natural infection and drug efficacies are evaluated in this way. 

1.6.2.3 Fecal egg count reduction test 

The fecal egg count reduction test (FECRT) is commonly used for evaluating 

drug efficacy against a variety of livestock helminths, and it is the only recommended 

method for in vivo anthelmintic efficacy evaluations in horses (Matthews et al., 2012; 

Nielsen et al., 2016; ESCCAP, 2018; Rendle et al., 2019). In horses, the FECRT is only 

useful for strongyles and Parascaris spp. It is not recommended for efficacy evaluations 

for other equine helminths because of their unevenly distributed egg shedding. Currently, 
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no standardized approach for performing a FECRT exists, but the following summary is 

based upon the common recommendations given by the AAEP (Nielsen et al., 2016); 

ESCCAP (ESCCAP, 2018), UK-Vet (Rendle et al., 2019), and the World Association for 

the Advancement of Veterinary Parasitology (WAAVP; Coles et al., 1992). 

In general, fecal samples are collected pre-treatment and 10-14 days post-

treatment. Drug efficacy is determined by the percent reduction in eggs present in the 

feces, and there are variety of methods for performing this calculation. The number of 

animals used and their current egg shedding level must also be considered for appropriate 

efficacy representation. Presently, the recommendations are to evaluate 6-10 horses with 

FECs >200 EPG on any given farm, and drug resistance is interpreted at the farm level. 

Each drug class has a reduction threshold for it to be considered efficacious. The AAEP 

(Nielsen et al., 2016), UK-Vet (Rendell et al., 2019), and WAAVP (Coles et al., 1992) 

provide percent reduction thresholds for diagnosing drug resistance in strongyle 

populations. In general, a percent efficacy <90% for the BZ, <95% for the MLs, and <85-

90% for the PYR (Nielsen et al., 2016; Rendell et al., 2019) is considered indicative of 

resistance. These recommendations are primarily made based on equine strongyles, but 

resistance evaluation for Parascaris spp. generally follows the same guidelines 

(Osterman-Lind and Christensson, 2009; Armstrong et al., 2014; Martin et al., 2018) 

while others report a general decrease in egg shedding or drug efficacy (Craig et al., 

2007; Slocombe et al., 2007; Lyons et al., 2008a; Molento et al., 2008). 

The FECRT formula is as follows: 

𝐹𝐸𝐶𝑅𝑇
𝑝𝑟𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐹𝐸𝐶𝑠 𝑝𝑜𝑠𝑡 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐹𝐸𝐶𝑠

𝑝𝑟𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐹𝐸𝐶𝑠
𝑥100% 

 

This formula can be applied in a ‘herd-based’ approach where the herd total pre-

treatment and total post-treatment EPG values are calculated and then implemented into 

the formula. Or, it can be applied in an ‘individual-based’ approach where the percent 

efficacy is calculated for each animal and then a mean efficacy for the entire herd is 

obtained. The first method provides equal weight for each egg counted whereas the 

second method gives equal weight to each animal. It must be noted that when using the 
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second method, some animals may present with a ‘negative efficacy’ which could bias 

the end result. 

1.6.2.4 Egg reappearance period 

The egg reappearance period (ERP) is defined as the amount of time it takes for 

parasite eggs to begin reoccurring in the feces following anthelmintic treatment (Sangster 

et al., 1999; Nielsen et al., 2016). Shortened ERPs are considered evidence of emerging 

resistance before a decrease in efficacy has been observed (Sangster et al., 1999), but can 

only be defined when initial efficacy is 100% (i.e. egg disappearance) (Nielsen et al., 

2016). However, ERPs are only practical when the original ERP was known at the time 

of drug development. Most notably, the ERP is implemented for ML drugs. 

Presently, an established definition of how to determine the ERP does not exist. 

Several researchers define it as the number of weeks it takes for egg counts to reach 

>10% of the pre-treatment EPG (Borgsteede et al., 1993; von Samson-Himmelstjerna et 

al., 2007a; Rossano et al., 2010; Larsen et al., 2011; van Doorn et al., 2014; Relf et al., 

2014; Kooyman et al., 2016; Rosanowski et al., 2017; Tzelos et al., 2017). Other 

investigators are less conservative and use a threshold of 20% the pre-treatment EPG 

(Nielsen et al., 2016; Kyvsgaard et al., 2011). Osterman-Lind et al. (2007) described the 

ERP as when the herd mean exceeded 100 EPG. Finally, others consider the ERP when 

the first egg is observed in the feces after treatment (Little et al., 2003; Lyons et al., 

2008b; Molento et al., 2008; Relf et al., 2014; Tzelos et al., 2017). 

1.6.2.5 Egg hatch assay 

The egg hatch assay is based on the viability of strongyle eggs, and is only used to 

evaluate BZ efficacy (Le Jambre, 1976; Muchiut et al., 2018). Thiabendazole is most 

commonly used because of its high water solubility. Serial concentrations of BZ are used 

and eggs isolated from the feces are incubated within the well plate. The percentage of 

eggs that hatch per concentration is calculated. Control samples must also be performed 

in order to correct for natural egg mortality. It is important that eggs are from freshly 
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collected samples and used within three hours of collection or stored in a manner to 

prevent embryonation as embryonated eggs are less sensitive to the drugs and will cause 

variability in the results (Le Jambre, 1976; Coles et al., 2006). Additionally, this test does 

not allow for the differentiation between strongyle genera and/or species as all strongyle 

eggs are virtually identical. The EHA is commonly used for evaluating small ruminant 

parasites, mostly Haemonchus contortus (Coles et al., 2006). Variable results are reported 

for the reliability of this assay and detecting BZ resistance in cyathostomins, and 

therefore it remains to be validated. Furthermore, because of the wide-spread BZ 

resistance in equine strongyles, this assay provides little benefit as this drug class is rarely 

used for treatment (Matthews et al., 2012). 

1.6.2.6 Larval development assay 

The larval development assay evaluates anthelmintic efficacy of the BZ, 

levamisole (only used in ruminants), and ML drug classes (Muchiut et al., 2018) based on 

the ratio of development from egg to L3 between susceptible and resistant isolates. A 

liquid-based test using Earle’s balanced salt solution supplemented with yeast and 

bacteria (Hubert and Kerboeuf, 1992) and agar-based test (Gill et al., 1995; Coles et al., 

2006) are used. The agar-based test is commercially available (DrenchRite®). Eggs are 

isolated and placed on agar in micro-well plates provided with water, nutrient, and anti-

mycotics. Serial dilutions of the drug are added to the wells. The well-plates are 

incubated at room temperature for six days to facilitate hatching and larval development. 

Subsequently, the number of larvae are enumerated (Gill et al., 1995). This test allows for 

the comparison of multiple drug classes, and some genera and species differentiation, 

which can provide information for which genera/species are harboring anthelmintic 

resistance (Coles et al., 2006; Matthews et al., 2012). This assay has been successfully 

used for nematodes infecting small ruminants (Gill et al., 1995; Coles et al., 2006; Kaplan 

et al., 2007; Howell et al., 2008), and cattle (Demeler et al., 2010b), but unreliable for 

detecting ML resistance in field strains of O. circumcincta (Lloyd, 1998; Besier, 1998; 

Palmer et al., 1998). Recently, it has been proven to be a better indicator of avermectin 

resistance in Cooperia spp. and H. contortus than other in vitro assays described below 

(George et al., 2018).  
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Several studies have examined the application of the larval development assay for 

detecting anthelmintic resistance in cyathostomins. Pook et al. (2002) found a relatively 

strong correlation (-0.704) between the assay using thiabendazole and in vivo efficacy of 

OBZ by FECRT, whereas Tandon and Kaplan (2004) were unable to detect the resistance 

ratio for BZ due to the lack of BZ susceptible cyathostomin populations. A confirmed 

threshold for diagnosing cyathostomin OBZ resistance using this assay has not been 

determined. This assay does not assess pyrantel resistance, and one might assume that 

levamisole efficacy evaluations using this assay would translate to pyrantel in vivo 

efficacy because the drugs are in the same drug-class. However, Tandon and Kaplan 

(2004) confirmed that the levamisole assay does not provide comparable results to 

pyrantel resistance in field-based FECRT studies. In fact, Osterman-Lind et al. (2005) 

used modified assay plates impregnated with pyrantel. Comparisons between pyrantel 

and levamisole plates did not identify a significant correlation. Therefore, extrapolations 

between these two drugs cannot be made.  Finally, it was also concluded that consistency 

between replicates provided substantial variability in the assay (Tandon and Kaplan, 

2004), and overall larval development is poor where even as many as a quarter of the 

larvae cease development for unknown reasons (Osterman-Lind et al., 2005). Without a 

pre-determined threshold established for cyathostomin BZ resistance, and the assay not 

being designed for use with pyrantel, the larval development assay does not appear useful 

for cyathostomin resistance in its current form. 

1.6.2.7 Larval feeding inhibition assay 

The larval feeding inhibition assay is useful for detecting anthelmintic resistance 

against IVM and levamisole in some species of trichostrongylids infecting small 

ruminants. This method observes the feeding habits of first stage larva by detecting their 

intestinal fluorescence after being fed E. coli mixed with fluorescein (Álvarez-Sánchez et 

al., 2005). Resistant isolates required a significantly higher drug concentration to inhibit 

feeding than susceptible isolates (Álvarez-Sánchez et al., 2005). To date, no published 

studies have applied this technique to equine cyathostomins, but preliminary experiments 

show wide variation in feeding activities between isolates (Matthews et al., 2012). 
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1.6.2.8 Larval migration inhibition assay 

The larval migration inhibition assay is used for evaluating the ability of L3 larvae 

to move through a migration apparatus (i.e. mesh filter) following anthelmintic exposure 

(Boisvenue et al., 1983; Wagland et al., 1992; Kotze et al., 2006). It is useful for 

detecting resistance to MLs (Kotze et al., 2006), LVM (Wagland et al., 1992) and 

thiabendazole (Muchiut et al., 2018). The larvae are incubated with the anthelmintic prior 

to relocation onto the migration apparatus, and anthelmintic exposure is continued 

throughout the allotted time larvae are given to migrate, which varies from 2-72 hours. 

Subsequently, larvae which moved through the mesh filter and presumed to be resistant 

are enumerated. The percent of larvae which migrated in the treated and control groups 

are compared (Kotze et al., 2006). It is very effective for identifying IVM resistant H. 

contortus, even in mixed-species infections where some species are ML sensitive, but it 

did not identify resistant strains of T. circumcincta and T. colubriformis (Kotze et al., 

2006). However, according to Demeler et al. (2013c) the larval migration inhibition assay 

is a better indicator for MOX resistance in all three of these species than the larval 

development assay. This method has previously been optimized for use with ruminant 

nematodes of susceptible and resistant isolates (Demeler et al., 2010a,b), and Zhao et al. 

(2017) reported success for several drug classes against various isolates of A. suum 

larvae.  

A few studies have evaluated the application of the larval migration inhibition 

assay using IVM with cyathostomins. First, van Doorn et al. (2010) used this assay to 

identify cyathostomin larvae that were either sensitive or resistant to IVM. The larvae 

before and after drug selection were determined to species using the reverse-line blot 

assay, and it was evident that a shift in the species composition had occurred following 

drug selection. Therefore, it must be considered if the resistance is due to true lack of 

efficacy, or the variation of drug tolerance by the cyathostomin species examined. Later, 

McArthur et al. (2015) found significant differences in the drug concentrations to inhibit 

migration between IVM resistant and IVM susceptible cyathostomin populations. The 

authors also noted that larval storage time before use in the assay and the time since the 
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last anthelmintic was administered to the equids introduced sources of variability that 

must be considered when performing this assay (McArthur et al., 2015). Most recently, 

Beasley et al. (2017) optimized the larval migration inhibition assay to increase the 

migration success of control larvae. This study found that an increase in temperature to 

37˚C and an increase in incubation time to 24 hours significantly improved the migration.  

Analysis of replicates provided adequate repeatability when they were from the same 

batch of larvae and processed on the same day. Variability increased with the age of the 

sample. Overall, the IC95 values were more stable than the IC50 (Beasley et al., 2017). It 

appears that this assay may be the most favorable in vitro technique of the 

aforementioned methods for assessing resistance, but several considerations must be 

taken into account and validation of this method in comparison to in vivo susceptible and 

resistant populations still needs to be completed. 

1.6.2.9 Motility assays 

Several assays examining the motility of adult parasites as an assessment of 

anthelmintic sensitivity have been developed, but the majority of these are labor intensive 

and subject to operator variability. Such methods have been developed for H. contortus 

(Eguale et al., 2007a,b; O’Grady and Kotze) Ancylostoma duodenale, Trichuris trichuria, 

Ascaris lumbricoides (Hu et al., 2013), Necator americanus (Richards et al., 1995; Hu et 

al., 2013), Ancylostoma caninum (Richards et al., 1995), and A. suum (Dmitryjuk et al., 

2014). The WormAssay (Marcellino et al., 2012) combats the variability and tediousness 

of the previous motility assays. It is a high-throughput system utilizing a camera and 

computer software program to create objective, quantitative motility scores for 

macroparasites. The technique utilizes microtiter plates varying from 6-96 wells allowing 

evaluation of multiple samples in a single reading. Similarly, the Worminator was later 

developed by Storey et al. (2014), but focuses on the evaluation of microparasites. None 

of these techniques have been evaluated for equine parasites. While the WormAssay is 

designed for macroparasites, the microtiter plate size limitations prevent its application 

for the large adults of Parascaris spp. 
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1.6.2.10 Diagnosis of anthelmintic resistance: Summary 

In regards to equine parasites, more studies are needed to evaluate and optimize 

the utility of these methods. This is especially complicated by the 50+ species of 

cyathostomins, and the differing drug sensitivities between species. Overall, the FECRT 

remains the most applicable method for evaluating drug resistance in vivo without 

sacrificing the animal. 

1.7 Prevalence of anthelmintic resistance 

1.7.1 Anthelmintic resistance of equine helminths 

1.7.1.1 Anthelmintic resistance in Parascaris spp. 

As described above, Parascaris spp. is the most pathogenic parasite infecting 

foals. Decades of routine treatment has resulted in significant anthelmintic resistance. 

Presently, Parascaris spp. has wide-spread resistance to the ML drug class, and cases of 

failed efficacy to the PYR and BZ drug classes exist providing early indications of 

resistance. A thorough summary of anthelmintic resistance reports in the literature for 

Parascaris spp. can be found in Table 1.1 

1.7.1.2 Anthelmintic resistance in cyathostomins 

Cyathostomins are well known for their wide-spread resistance to the BZ drug 

class, and resistance to the PYR is becoming more common. While the ML drug class 

still exhibits acceptable efficacy, shortened ERPs have been reported and are considered 

evidence for developing resistance. A thorough summary of literature reports on 

anthelmintic resistance and shortened ERPs for cyathostomins can be found in Table 1.2.  

As previously described, administration of a double-dose (10 mg/kg) of FBZ for 

five consecutive days exhibits some larvicidal efficacy against the encysted (EL3, 

LL3/L4) stages of cyathostomins (Vandermyde et al., 1987). As described in section 

1.2.1, the cyathostomin larvae encyst into the mucosal wall of the large intestine where 

they mature to the L4 stage (Eysker et al., 1984). Killing the encysted stages using a drug 
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with larvicidal efficacy will help decrease the risk of disease associated with mass 

excystment. Reduction in the efficacy of FBZ (10 mg/kg for five days) against luminal 

and encysted stages has been reported (Lyons and Tolliver, 2003; Lyons et al., 2007; 

Rossano et al., 2010; Reinemeyer et al., 2015; Bellaw et al., 2018). Failure to remove the 

encysted larvae and/or immature larvae (L4) within the lumen will likely affect the ERP, 

as has been demonstrated by the failure to IVM to remove immature luminal stages 

(Lyons et al., 2009). This introduces a new challenge when observing the emergence of 

resistance based on ERP and/or determining anthelmintic efficacy against adults. The 

exact rate of development from encysted stages or luminal immature L4 to patent 

infections are not known, and introduces variability for determining accurate efficacy. 

1.7.1.3 Anthelmintic resistance in other equine parasites 

As described above, diagnosis of the equine pinworm, O. equi, can be particularly 

challenging and provides difficulties for diagnosing resistance. As described by 

Reinemeyer and Nielsen (2014) there have been numerous anecdotal reports of reduced 

ML efficacy against pinworms. This topic has been somewhat controversial as the 

FECRT does not suffice for diagnosing resistance, MLs were never deemed 100% 

effective at the labeled dosages (Reinemeyer and Nielsen, 2014), and not all studies carry 

out the recommended method of the critical test (Drudge and Lyons, 1977; Reinemeyer et 

al., 2010b). Nonetheless, the number of reports of failed ML efficacy against O. equi is 

increasing, and currently exists in the United States (Lyons et al., 2009; Reinemeyer, 

2012), New Zealand (Rock et al., 2013), Germany (Wolf et al., 2014), Brazil (Felippelli 

et al., 2015) and France (Sallé et al., 2016). Additionally, there have been anecdotal 

reports for treatment failure against some equine stomach worms, Habronema spp., 

which are known to aberrantly infect open wounds via the fly intermediate host. 

Persistent infection prevents healing of the wound as deposited larvae continuously 

inflame the wound. Oral administration of IVM is common treatment, but several 

veterinarians have reported lack of efficacy. 
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1.7.2 Anthelmintic resistance in small ruminant helminths 

There are numerous gastrointestinal nematodes (GIN) infecting small ruminants, 

most notably are those belonging to the genera Haemonchus, Teladorsagia, 

Trichostrongylus, Cooperia, and Oesophagostomum. The clinically and economically 

most important GIN infecting small ruminants are Haemonchus contortus, Ostertagia 

spp., and Trichostrongylus axei, all of which reside in the abomasum, as well as those 

dwelling in the small intestine, namely Trichostrongylus spp., Nematodirus spp., and 

Cooperia spp. (Vlassoff and McKenna, 2010). Parasite control regimens have relied 

heavily on anthelmintics, which inevitably led to overuse and anthelmintic resistance 

(Kaplan, 2004). Anthelmintic resistance has resulted significant economic losses due to 

GIN depleting meat, milk, and fiber production (Fitzpatrick, 2013; Kenyon et al., 2017; 

Craig, 2018).  

As reviewed by Kaplan (2004), H. contortus was the first GIN among livestock 

and horse parasites to develop anthelmintic resistance. Shortly after the introduction of 

BZs in 1961, reports of decreased efficacy began as early as 1964. The same trend was 

observed upon introduction of dewormers from the cholinergic agonists and ML drug 

classes where resistance was noted within ten years of the drugs being brought to market. 

By the 1990s, H. contortus had gained resistance to all three major anthelmintic drug 

classes, and multi-drug resistant strains are reported (Kaplan, 2004; Wolstenholme et al., 

2004). Resistance developed at an alarming rate among H. contortus populations and is 

now considered a world-wide issue. Resistance harbored by sheep GIN to all three drug 

classes has been reported in Australia (Playford et al., 2014), Canada (Falzon et al., 

2013), Europe (Papadopoulos et al., 2012), Ireland (McMahon et al., 2013), New Zealand 

(Waghorn et al., 2006; Hodgson and Mulvaney, 2017), the United States (Howell et al., 

2008; Crook et al., 2016), and numerous other countries of the American continent 

(Torres-Acosta et al., 2012). Multi-drug resistant strains exist for other GIN species as 

well, including T. circumcincta and T. colubriformis (Papadopoulos et al., 2012; Torres-

Acosta et al., 2012; Geurden et al., 2014). Within the last 30 years, two new 

anthelmintics, monepantel and derquantel, have been brought to market for control of 

GIN in sheep. Within two years, resistance reports of sheep GIN to monepantel began to 
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surface, first in New Zealand (Scott et al., 2013), then Uruguay (Mederos et al., 2014), 

the Netherlands (Van den Brom et al., 2015), Brazil (Cintra et al., 2016; Ciuffa et al., 

2017), Australia (Sales and Love, 2016; Lamb et al., 2017), and the United Kingdom 

(Hamer et al., 2018). Derquantel exists only in combination with abamectin and initially 

achieved >99% reduction of strongyle eggs in sheep (Geurden et al., 2012). Currently, 

only one report of reduced efficacy for this combination against sheep GIN exists, where 

treatment resulted in 93% total strongyle egg reduction following FECRT and 90% 

reduction in H. contortus following coproculture and larval identification (Sales and 

Love, 2016). 

1.7.3 Anthelmintic resistance in cattle helminths 

Similar to the sheep and goat industry, cattle producers are at a significant risk for 

economic loss due to GIN infections and rely heavily on the use of anthelmintics for 

parasite control (Sutherland and Leathwick, 2011). The most clinically relevant GINs of 

cattle include Ostertagia ostertagia, Cooperia spp., Haemonchus placei, 

Trichostrongylus spp. and Oesophagostomum spp. (Vercruysse and Dorny, 1999). 

Emergence of anthelmintic resistance among cattle GIN occurred more slowly than in 

small ruminants, but nevertheless it has become a world-wide issue (Sutherland and 

Leathwick, 2011). While O. ostertagi is considered the most pathogenic GIN (Bairden 

and Armour, 1981), treatment regimens have been focused on Cooperia spp. as it is the 

dose-limiting species for efficacious ML treatment and now harbors substantial resistance 

(Sutherland and Leathwick, 2011). Sutherland and Leathwick (2011) reviewed numerous 

cases of resistance to all drug classes among cattle GIN, and it should be noted that the 

reports described in the current section are not an exhaustive representation.  

Initial reports of AR among cattle GIN were attributed to the survival of Cooperia 

spp. following ML treatment, which has been documented in the United States (Gasbarre 

et al., 2009; Edmonds et al., 2010; Gasbarre, 2014), Brazil (Borges et al., 2015; Felippelli 

et al., 2014), Europe (Geurden et al., 2015), the United Kingdom (Bartley et al., 2012), 

New Zealand (Waghorn et al., 2006), South America (Suarez and Cristel, 2007), 

Australia (Lyndal-Murphy et al., 2009), and numerous other countries (Sutherland and 
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Leathwick, 2011). Later, it was also discovered that O. ostertagi (Edmonds et al., 2010; 

Geurden et al., 2015; Waghorn et al., 2016) and H. placei (Soutello et al., 2007; Costa 

Mdo et al., 2011; Borges et al., 2015) were surviving ML treatment as well. Resistance is 

not limited to the ML drug class; several reports exist of cattle GIN populations harboring 

resistance to BZ drugs (Sutherland and Leathwick, 2011; Furtado et al., 2016b). Although 

fewer in number, reports of resistance to levamisole are emerging among mixed GIN 

species populations in Mexico (Becerra-Nava et al., 2014), O. ostertagi in Australia 

(Rendell, 2010; Cotter et al., 2015), Trichostrongylus spp. in Ireland (McMahon et al., 

2013) and New Zealand (Mason and McKay, 2006). Finally, multidrug resistance to all 

three drug classes has been documented in Haemonchus spp., Ostertagia spp., and 

Cooperia spp. (Sutherland and Leathwick, 2011). 

1.7.4 Anthelmintic resistance in small animal helminths 

Presently, the only helminths of domestic cat and dogs harboring resistance are 

the canine hookworm, Ancylostoma caninum, and the heartworm, Dirofilaria immitis. 

Resistance reports to pyrantel by A. caninum are limited and appear to be isolated to the 

Australasia region (Jackson et al., 1987; Hopkins et al., 1989; Hopkins and Gyr, 1991 

Kopp et al., 2007, 2008a). The limited diagnoses may not be a true reflection of the 

resistance status, but rather reflected limited surveillance opportunities as the FECRT is 

not a reliable method for A. caninum (Kopp et al., 2007, 2008a) and true efficacy 

evaluations require the sacrifice of animals (Kopp et al., 2008b). The same reasoning is 

true for the lack of surveillance for other hookworms (A. brasiliense, A. tubaeforme) and 

ascarids (Toxocara spp.) infecting companion animals (Kopp et al., 2008b). Presently, 

there are no reports of decreased anthelmintic efficacy with the ML or BZ drug classes 

against these intestinal helminths.  

The topic of anthelmintic resistance among D. immitis to the ML drug class is a 

matter of great debate in the parasitology community. Arguments in support of this 

include that MLs are the only drugs used against this parasite, and it is recommended that 

all dogs be administered year-round prevention. This places a heavy selection pressure on 

D. immitis (Wolstenholme et al., 2015). Because heartworm preventatives act against the 
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L3 larvae and not the adult or microfilaria stages (McCall et al., 2004), it is possible for 

L3s harboring resistance genetics to survive to adulthood and produce microfilariae. The 

microfilariae may harbor the genetics for resistance, assuming it is heritable, and 

contribute resistance alleles to the population (Bowman, 2012). Another problem is that 

circulating microfilariae require a higher dose of ML drug than the L3 stage and 

subsequently what is provided for prophylactic treatment, therefore microfilariae existing 

in a dog on prophylactic treatment is continuously exposed to sub-lethal doses of ML, 

which places selection-pressure on the parasite for resistance. The microfilariae can then 

be transmitted to another host via mosquitoes and may mature into potentially resistant L3 

stages. Presently, it is unknown if the resistance status of microfilariae translates to 

resistance of the L3 stage and vice-versa (Bowman, 2012). However, others previously 

argued that the risk for anthelmintic resistance in D. immitis was unlikely (Prichard, 

2005) due to the perfect (100%) efficacy required by the FDA for drug approval 

(Hampshire, 2005), the opportunity for a large refugia population in feral dogs and 

coyotes (Prichard, 2005), and the long (7 month) life cycle.  

Nonetheless, reports of failed efficacy and resistant cases do exist (Hampshire, 

2005), but it was later suspected that this may be due to a lack of owner compliance and 

improper prophylactic administration (Atkins et al., 2014, Drake and Wiseman, 2018). 

Laboratory studies have confirmed the presence of ML-resistant strains by evaluating 

motility of the infective L3 (Evans et al., 2013), in vitro monitoring of the motility of the 

circulating microfilariae (Geary et al., 2011; Storey et al., 2014), and identification of 

molecular mechanisms (Bourguinat et al., 2011, 2015; Ballasteros et al., 2018). Recently, 

however, Evans et al. (2017) and Maclean et al. (2017) have indicated that the motility 

assays for the L3 and microfilariae, respectively, are not good indicators of ML-

resistance. In vivo studies under laboratory conditions remain the gold standard of 

detection (Geary et al., 2011; Blagburn et al., 2011; Snyder et al., 2011; Pulaski et al., 

2014). The sacrifice of animals, long life-cycle of the parasite, requirement of the 

mosquito intermediate host, and financial expense hinder the progression of resistance 

studies in D. immitis (Wolstenholme et al., 2015). The conflicting views and urgent need 

for effective preventative treatment warrant future research focused on this field. 
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1.7.5 Anthelmintic resistance in other domestic animals 

The BZ drugs are heavily relied on for the control of parasitic nematodes in 

poultry. Presently, only one report of anthelmintic resistance exists in the United States, 

where resistance to FBZ was found in Ascaridia spp. and H. gallinarum infecting 

chickens and turkeys (Yazwinski et al., 2013). The lack of reports may not reflect the true 

prevalence of resistance, but is likely affected by the absence of guidelines for identifying 

resistance in poultry nematodes (Coles et al., 1992). 

The common swine parasites (Ascaris suum, Trichuris suis, Oesophagostomum 

spp.) can be largely controlled through proper sanitization and environmental control 

practices coupled with anthelmintic treatment (ivermectin, pyrantel, levamisole, 

fenbendazole; Roepstorff et al., 2011). Only a few reports of resistance exist, all of which 

are based upon the swine nodular worm, Oesophagostomum spp. Resistance to pyrantel 

citrate (Roepstorff et al., 1987; Bjørn et al., 1990) and levamisole (Bjørn et al., 1990) 

have been reported in Denmark, whereas resistance to levamisole and flubendazole exists 

in Germany (Gerwert et al., 2002). The limited number may be due to the lack of 

surveillance as these parasites do not cause near the pathology as ruminant parasites. 

However, the high number of carcass condemnations due to parasite infections warrant 

further investigation (Roepstorff et al., 2011). 

1.8 Mechanisms of anthelmintic resistance 

1.8.1 General overview 

The mechanisms driving anthelmintic resistance in parasitic nematodes are poorly 

understood. Parasitic nematodes make challenging research subjects as the lifecycles 

cannot be completed in vitro and maintenance of specific stages in vitro compromises 

their viability (Geary et al., 1999). Nematode parasite populations are largely 

heterogenous resulting in varying drug responses causing resistance to develop quickly, 

and variations are found between isolates (James et al., 2009). They also have a high 

capacity to develop new mutations when under selection, have complex population 

structures with geographically distributed mutations (Gilleard, 2013), and their extensive 
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genetic diversity leads to varying drug responses (James et al., 2009; Prichard et al., 

2012). The lack of genetic resources due to limited finances and large genomes with 

tendencies for high polymorphisms present further challenges for advancing knowledge 

in the parasitology field (Gilleard, 2013), however recent advances in annotated genomes 

and transcriptomes are creating more opportunities for study (Coghlan et al., 2019). 

Alternatively, C. elegans has been used as a model organism for in vitro studies of 

anthelmintic resistance and drug mechanisms (Grant, 1992; Kwa et al., 1995; Yan et al., 

2012; Burns et al., 2015). Likewise, the extensive knowledge base for H. contortus makes 

it the primary model parasitic nematode for both in vitro and in vivo studies (Gilleard, 

2013). However, one must bear in mind that the results obtained from lab isolates are not 

consistently found in field derived isolates (Beech et al., 2011; Kotze et al., 2014). 

Because of the limited knowledge, gene studies for better understanding AR 

mechanisms are generally focused on the presumed drug targets and the few identified 

resistance mechanisms which limits the possibilities for characterizing novel mechanisms 

(Gilleard, 2013). In order to identify mechanisms of anthelmintic resistance, the 

assembled and annotated genome for the parasite of interest must first be generated, then 

identify genome-wide genetic markers, and characterize the variation between field and 

lab strains as their sensitivity to anthelmintics and environmental fitness differ (Beech et 

al., 2011). Currently, there are 31 published and 45 draft genomes of parasitic helminths 

(Coghlan et al., 2019). Developing a better understanding of anthelmintic resistance will 

aid in delaying the rate of resistance of the current drug classes, developing methods for 

monitoring resistance, and identifying new drug targets (Yan et al., 2012), as well as 

further understanding of parasite defense mechanisms to xenobiotics, diagnostic methods 

for resistance, and the effects of combination drug regimens on resistant populations 

(Kotze et al., 2014). 

Described in the sections below it will be become apparent that resistance 

mechanisms are most clearly understood for the BZ drug class, and less so for the 

cholinergic agonists and ML. Across the drug classes, studies have focused largely on 

single nucleotide polymorphisms (SNPs), altered receptor subunit expression, changes in 
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the drug-receptor binding site, and non-specific mechanisms such as drug efflux and 

metabolism.  

A SNP can change the amino acid and alter the affinity of a drug for its target 

receptor (James et al., 2009). A large focus of this research has been to characterize the 

SNP differences between resistant and susceptible parasite populations, and identify a 

loss of polymorphism in genes of interest following drug selection (Gilleard, 2013). 

Furthermore, it is likely that the SNPs are only present after resistance is established, 

leaving limited to no opportunity for further anthelmintic preservation (James et al., 

2009). Single nucleotide polymorphisms can be detected by restriction enzyme digestion, 

sequencing of a PCR product, pyrosequencing, and diagnostic PCR primers which 

overlap the SNP of interest (Beech et al., 2011). Some of these methods have been 

implemented in resistance mechanism studies and are described below.  

Changes in ligand-gated ion channels, such as the L-nACh and GluCl channels, 

can be identified using the patch-clamp technique (Sakmann and Neher, 1984). The flow 

of ions, or lack thereof, through a channel is measured which provides insight to the 

channel’s functionality and response to a ligand, such as an anthelmintic. This method 

can be performed as the whole cell (multi-channel) or single-channel level. A glass 

micropipette is placed onto the cell membrane, and applied suction sucks a small amount 

of membrane into the pipette to create a seal.  The patch-clamp measures the membrane 

potential, or electrical current, that occurs as a result of the flow of ions through the 

channel. This can be performed under various conditions and provide insight to the 

channel mean open-time, probability of channel opening, and the number of receptors 

present (Sakmann and Neher, 1984). Studies using this technique are described below. 

Once changes in the receptors have been identified, other molecular methods, such as 

PCR or western blot, can be used to identify the changes within the receptor and its 

subunits.  

Non-specific resistance mechanisms describe generalized drug efflux or 

metabolism pathways. The ABC transporters are commonly investigated for drug efflux 

properties, and consist of numerous proteins, but those most commonly associated with 

drug resistance are the Pgps. Of the drug metabolizing enzymes, one of the most 
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commonly investigated families is the cytochrome P450 monooxygenases (CYP) due to 

their ability to confer insecticide resistance (Ffrench-Constant et al., 2004). Originally, it 

was assumed these enzymes were not present in nematodes (Barrett, 1998), but the work 

outlined below provides ample evidence of their existence and function in several 

parasitic nematodes. These drug efflux proteins and metabolizing enzymes are commonly 

studied in vitro using functional inhibitors, such as verapamil for Pgps and piperonyl 

butoxide for CYPs. Other methods include transgenic expression of parasite Pgps in 

model organisms, such as C. elegans. Implementation of these techniques for 

understanding resistance mechanisms are described in more detail below. 

1.8.2 Mechanisms of benzimidazole resistance 

The first case of resistance to the BZs was reported in 1964, just three years after 

their introduction to the market. To date, the mechanisms of anthelmintic resistance is 

most widely understood for the BZ drug class (von Samson-Himmelstjerna et al., 2007b). 

It is well established that a primary mechanism of BZ resistance is due to polymorphisms 

within the β-tubulin gene (von Samson-Himmelstjerna et al., 2007b; James et al., 2009; 

Beech et al., 2011; Abongwa et al., 2017). There are two isoforms of this gene, but most 

of the findings associated with resistance lie within isotype one. Three SNPs leading to 

amino acid changes have been identified in the β-tubulin isotype one gene (BEN-1). The 

most commonly identified SNP across numerous parasite species described below occurs 

at codon 200, where phenylalanine is changed to tyrosine (F200Y). Changes of both 

phenylalanine to tyrosine (F167Y) and phenylalanine to histidine (F167H) have been 

observed at codon 167 in BZ resistant nematode populations. Lastly, a SNP at 198 

changing glutamine to alanine (E198A) has been associated with BZ resistance (von 

Samson-Himmelstjerna et al., 2007b; James et al., 2009; Beech et al., 2011; Abongwa et 

al., 2017). These amino acid changes lead to structural alterations in the drug target 

which presumably decreases drug affinity (James et al., 2009; Furtado et al., 2016b), and 

may lead to improved microtubule stabilization (Kwa et al., 1995). 

1.8.2.1 Benzimidazole resistance mechanisms in strongylids of 

small ruminants 
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Because of the production losses and economic impacts caused by anthelmintic 

resistance in small ruminants, H. contortus has been the most widely studied nematode 

for BZ resistance and evidence for all aforementioned SNPs are reported in this species 

(von Samson-Himmelstjerna et al., 2007b). It is presumed that F200Y is a fundamental 

component for BZ resistant H. contortus populations (Kwa et al., 1994, 1995), as several 

studies report a strong correlation with its presence and BZ resistance (von Samson-

Himmelstjerna et al., 2009; Kotze et al., 2014). More recently, two other mutations were 

identified, F167Y (Silvestre and Cabaret, 2002) and E198A (Ghisi et al., 2007). 

Interestingly, one study found only the F200Y genotype to increase when selection 

pressure of repeated albendazole treatment at increasing dosages was applied, while the 

F167Y genotype decreased and no polymorphisms at codon 198 were identified (Barrère 

et al., 2012). It has been suggested that mutations at codons 200 and 167 are mutually 

exclusive (Mottier and Prichard, 2008). In contrast, Zhang et al. (2016) examined eight 

different geographical isolates of H. contortus and found the E198A polymorphism to 

occur more frequently than the F200Y, and F167Y was not detected in any of the 

populations. Furthermore, a study observing the effects of increasing thiabendazole 

concentrations on L3 larvae found the E198A allele to increase upon drug exposure, but 

the F200Y mutation frequency decreased (F167Y was not examined in this study). These 

two polymorphisms were not observed in the same individuals, suggesting that they are 

also mutually exclusive (Kotze et al., 2012).  

The F200Y polymorphism is also known to convey BZ resistance in other small 

ruminant trichostrongylid parasites, including T. circumcincta and T. colubriformis 

(Furtado et al., 2016b; Ramünke et al., 2016).  Ramünke et al. (2016) examined the 

prevalence of all three SNPs in several European countries, and only very low prevalence 

of polymorphisms at codon 198 for Trichostrongylus spp. and codon 167 for 

Teladorsagia spp. were reported. Avramenko et al. (2019) validated a new technique for 

SNP identification, deep amplicon sequencing. Using this method, the investigators 

explored the prevalence of all three SNPs in seven parasitic nematode species from ewes 

on 95 UK farms and lambs from 69 UK farms. Overall, the F200Y SNP was most 

commonly identified, and highest in T. circumcincta, while H. contortus had nearly equal 

prevalence of the F200Y and F167Y SNPs. 
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1.8.2.2 Benzimidazole resistance mechanisms in strongylids of 

cattle 

Polymorphisms related to resistance in cattle nematodes have also been reported, 

but reports are lacking likely due to the lower prevalence of resistance. BZ resistance in 

Cooperia oncophora has been associated with the F200Y polymorphism (Winterrowd et 

al., 2003; Demeler et al., 2013a) and E198A, but not F167Y (Demeler et al., 2013a). All 

three polymorphisms have been identified in BZ resistant Ostertagia ostertagi (Demeler 

et al., 2013a), while Encalada-Mena et al. (2014) did not find any changes in codons 167 

and 198 in H. placei populations. The F200Y SNP can accumulate at high levels in O. 

ostertagi populations within just one grazing season if inaccurate BZ doses are 

administered (Knapp-Lawitzke et al., 2015). 

Numerous molecular tests are available for identifying these SNPs in 

trichostrongylid nematodes, the majority of which are PCR-based (von Samson-

Himmelstjerna et al., 2007b). An allele-specific PCR was developed for the detection of 

the F200Y polymorphism of adult H. contortus and other small ruminant nematodes, and 

L3 larvae of mixed species (Silvestre and Humbert, 2000). The allele specific PCR for 

detecting the F200Y mutation is a more sensitive diagnostic method than the egg hatch 

assay for diagnosing BZ resistance (Čudeková et al., 2010). Later, RT-PCR technology 

was employed to genotype homo- and heterozygous individuals, and is capable of 

estimating resistant allele frequencies in pooled samples (Walsh et al., 2007). 

Amplification-refractory mutation system (ARMS) PCR utilizes four primers to detect 

both mutant and non-mutant alleles which reduces the risk of primer-template mismatch 

due to allelic differences. Likewise, four fragments are produced and can be distinguished 

between homozygous and heterozygous individuals (Niciura et al., 2012). Most recently, 

pyrosequencing technology has been employed and offers accurate allele frequencies 

from individual and pooled samples of trichostrongylids infecting small ruminants (Troell 

et al., 2003; Ramünke et al., 2016) and cattle (Demeler et al., 2013a). This method has 

proven useful for detection of polymorphisms at codons 167, 198, and 200 and is 

comparable with the FECRT and larval development assay (Barrére et al., 2013). 
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1.8.2.3 Benzimidazole resistance mechanisms in cyathostomins 

As previously mentioned, cyathostomins have substantial resistance to the BZ 

drug class. The challenge of detecting SNPs related to resistance is dramatically 

increased by the 50+ species of cyathostomins. Presently, the β-tubulin sequence is 

known for eight species (Pape et al., 1999; von Samson-Himmelstjerna et al., 2001; 

Drögemüller et al., 2004b; Lake et al., 2009). It was originally presumed that 

cyathostomins had only one isotype of this gene (Pape et al., 2002), but Clark et al. 

(2005) reports a second isotype. Still, the only evidence of SNPs associated with BZ 

resistance were present on isotype one. The F200Y was first identified in Cyclicocyclus 

nassatus (von Samson-Himmelstjerna et al., 2001) which promoted the development of 

an allele-specific primer capable of identifying this polymorphism in other cyathostomin 

species (von Samson-Himmelstjerna et al., 2002). Later, a TaqMan assay targeting the 

F200Y polymorphism in L3 and adults was developed (von Samson-Himmelstjerna et al., 

2003).  Most recently, Lake et al. (2009) developed a pyrosequencing assay for 

genotyping L3 cyathostomin larvae of unknown species at codon 200, however, further 

optimization of this method remains necessary. 

Several studies have reported the prevalence of the F200Y polymorphism in BZ 

resistant populations. Pape et al. (2003) reports a phenotypically FBZ resistant population 

where the majority was genotypically susceptible, but Drögemüller et al. (2004b) later 

identified the F167Y mutation in this same population. In contrast, Hodgkinson et al. 

(2008) reported a significantly higher frequency of the F200Y mutation in a FBZ and 

OBZ resistant population in comparison with a FBZ susceptible population.  Likewise, 

the F167Y codon was also identified at significantly higher frequencies in the FBZ 

population, however, no significant differences of this polymorphism were reported 

within the OBZ resistant population. Further examination of genotypes failed to identify 

‘double mutant’ cyathostomins (i.e. homozygous resistant alleles at both codon 167 and 

200) (Hodgkinson et al., 2008).  Most recently, Blackhall et al. (2011) reported the 

genotypes of six small strongyle species from BZ resistant and BZ susceptible 

populations. All specimens were examined for polymorphisms at codons 167, 198, and 

200. F167Y was found at a significantly higher frequency among the resistant population 
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than the susceptible, while F200Y was not significantly different between populations. 

No amino acid changes were identified at codon 198. Overall, cyathostomins have a 

higher frequency of the F167Y polymorphism than the F200Y, which contrasts the 

aforementioned studies of BZ resistance in trichostrongylids of small ruminants. This 

supports the speculation that there are likely other SNPs or entirely different mechanisms 

related to BZ resistance in cyathostomins. 

1.8.2.4 Benzimidazole resistance mechanisms in hookworms 

Reports of BZ resistance in hookworm populations of domestic cats and dogs 

(Ancylostoma spp.) is lacking, however the intense prophylactic treatment frequencies 

raise the concern of selecting for anthelmintic resistance alleles (Humphries et al., 2012). 

The lack of resistance allows for the opportunity to detect its presence before it becomes 

prevalent. Therefore, molecular tests have been developed. Real-time PCR assays are 

described for detecting mutations in A. caninum at codons 167 and 200 

(Schwenkenbecher et al., 2007), and 198 (Schwenkenbecher and Kaplan, 2009). Later, 

ARMS-PCR assays were developed for F200Y (Furtado and Rabelo, 2015a) and F167Y 

(Furtado and Rabelo, 2015b) for A. caninum, followed by a tetra primer ARMS-PCR 

assay for E198A (Furtado et al., 2016a). These methods have allowed numerous 

investigations of the aforementioned SNPs in various populations of A. caninum, 

however no polymorphisms at codon 167 (Furtado and Rabelo, 2015b; Schwenkenbecher 

and Kaplan, 2009) nor codon 198 (Schwenkenbecher and Kaplan, 2009; Furtado et al., 

2014; Furtado et al., 2016a) have been reported. One study did identify the F200Y 

mutation at a frequency of less than 1% (Furtado et al., 2014). Similarly, the F200Y 

polymorphism was not identified in the human hookworms, A. duodenale and N. 

americanus, even in areas were BZ resistance was suspected (Albonico et al., 2004), 

whereas Diawara et al. (2013) identified this polymorphism at a low frequency of 2.3% 

where the BZ drug was still considered efficacious. 

1.8.2.5 Benzimidazole resistance mechanisms of Ascaris 

species 



48 
 

While strongyle type parasites are known to have two β-tubulin isotypes, five 

isotypes have been identified in the ascarid parasites Ascaris suum and A. lumbricoides, 

both of which infect humans (Demeler et al., 2013b). Interestingly, there are very few 

one-to-one orthologs existing between the β-tubulin strongyle and ascarid isotypes 

(Demeler et al., 2013b). The F167Y polymorphism has been detected at frequencies 

between 40-97.7% where the majority of treatments were still considered efficacious 

(Diawara et al., 2013). In contrast, Krücken et al. (2017) reported reduced BZ activity 

against Ascaris spp., but did not identify any of the polymorphisms associated with BZ 

resistance. Benzimidazoles are also used extensively in poultry, however, few studies 

have examined current BZ efficacies. Tarbiat et al. (2017) found BZ treatment against 

Ascaridia galli in laying hens to be efficacious via the FECRT and larval development 

assay, and no polymorphisms at codons 167, 198, and 200 were found. 

1.8.2.6 Benzimidazole resistance mechanisms of Parascaris 

spp. 

Presently, no studies exist which examine these polymorphisms in Parascaris spp. 

1.8.2.7 Benzimidazole resistance mechanisms: Summary 

While it is widely accepted that these SNPs are associated with BZ resistance, 

little is known about the related mechanisms (Beech et al., 2011). It is speculated that the 

F200Y mutation aids in stabilization of the microtubules during polymerization (Kwa et 

al., 1995). To further complicate matters, the presence of a SNP in one species with 

known resistance may not convey resistance in other species. There is also conflicting 

evidence pertaining to the presence of these SNPs in field isolates of the same species 

with known resistance (James et al., 2009; Beech et al., 2011). This implies that while 

these SNPs may be causative of significant drug resistance, they are not they only 

mechanism and further research is warranted. Overall, it appears that the same 

polymorphisms that are associated with BZ resistance in strongyles, are not associated 

with BZ resistance in ascarid parasites, and other resistance mechanisms are likely at 

work. 
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1.8.3 Mechanisms of cholinergic receptor agonists resistance 

As described above, the anthelmintics belonging to the cholinergic receptor 

agonist group (i.e. levamisole, pyrantel, monepantel) act as agonists of the nAChR. Their 

binding increases the flow of cations into neuromuscular channels causing muscle 

contraction and paralysis. The varying composition of receptor subunits, genetic 

composition, and different binding-site residues between parasite species and ligand-

binding requirements complicate the elucidation of resistance mechanisms. Largely, 

resistance to this class of anthelmintics has been associated with decreased expression of 

the subunits and/or genetic mutations leading to non-functional subunits, such as 

truncated subunits (Whittaker et al., 2016). It is also unknown if particular subunits are 

involved with resistance mechanisms, and if resistant parasite isolates are capable of 

altering or replacing the subunits conferring anthelmintic sensitivity (Martin and 

Robertson, 2007). 

1.8.3.1 Cholinergic receptor agonists resistance mechanisms in 

strongylids of small ruminants 

Changes in expression patterns of the receptors and ancillary proteins between 

drug susceptible and resistant isolates have been obvious study targets. Initial 

investigations of levamisole resistance in small ruminant parasites identified reductions in 

the number of receptors when compared to susceptible parasites (Sangster et al., 1988). 

Neveu et al. (2007) identified a novel protein (HA17) that is highly expressed in 

numerous H. contortus resistant isolates from various geographical locations, but is 

weakly expressed in susceptible isolates. The function of this gene remains unknown. 

Sarai et al. (2014) found decreased expression of the ancillary proteins UNC-74, RIC-3, 

and UNC-50 in a resistant isolate of H. contortus. Neveu et al. (2010), however, 

examined the expression levels of the L-nAChR subunits in isolates for H. contortus, T. 

colubriformis, and T. circumcincta, and significant differences were not found between 

susceptible and resistant isolates. Non-specific drug resistance mechanisms have also 

been explored and are further described in section 1.8.4. Briefly, Raza et al. (2016) 
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observed the effects of in vitro levamisole exposure to a drug-susceptible and multi-drug 

resistant isolates of H. contortus larvae. An increase in expression of two Pgps (pgp-1 

and pgp-9.1) was identified in the resistant isolate. Contrastingly, a thorough gene 

expression evaluation of numerous Pgp genes failed to identify any consistent changes 

between resistant and susceptible isolates of H. contortus (Sarai et al., 2014). To further 

complicate matters, it is known that parasite life stage (i.e. larva vs adult; Sarai et al., 

2013) and drug selection method (i.e. in vitro larvae exposure vs. in vivo isolates; Sarai et 

al., 2014) influences the subunit expression patterns. 

Truncated isoforms have been a recent focus of levamisole resistance mechanism 

studies. A truncated form of the H. contortus acr-8 orthologue (Hco-acr-8b) was 

identified. The full gene (Hco-acr-8) was expressed in both resistant and susceptible 

isolates of H. contortus, but only the abbreviated form was found in resistant isolates 

(Fauvin et al., 2010). This suggests a novel role of truncated isoforms in resistance 

mechanisms. Similarly, Neveu et al. (2010) performed a thorough investigation of the 

cDNAs between levamisole resistant and susceptible isolates for H. contortus, T. 

colubriformis and T. circumcincta. The subunits unc-29, unc-28, lev-1, and unc-63 were 

expressed in all isolates, however, an additional yet truncated form of unc-63 was 

identified in levamisole resistant isolates of all three species (Neveu et al., 2010). Larval 

stages from a multi-drug resistant H. contortus isolate also had significantly higher 

expression of the truncated Hco-acr-8 subunit than the susceptible strain (Williamson et 

al., 2011). Furthermore, Rufener et al. (2009) identified truncated forms of the gene Hco-

mptl-1 in mutant lab isolates of H. contortus expressing reduced sensitivity to 

monepantel. It is hypothesized that the truncated isoforms may express a dominant 

negative effect on the parent subunit (Rufener et al., 2009). Presently, only one study has 

examined this hypothesis. The dominant negative effect of the Hco-acr-8 truncated 

isoform (Hco-acr-8b) was confirmed in the Xenopus oocyte model (Boulin et al., 2011) 

and in larvae of a triple-resistant H. contortus isolate when larvae were exposed to 

levamisole in vitro (Williamson et al., 2011). 

1.8.3.2 Cholinergic receptor agonists resistance mechanisms in 

Oesophagostomum dentatum 
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In levamisole resistant isolates of Oesophagostomum dentatum, resistance was 

associated with a decreased number of active channels, a lower probability of channel 

opening, and shorter channel open times when compared to an anthelmintic susceptible 

isolate when exposed to levamisole (Robertson et al., 1999). These changes would 

decrease the influx of cations and reduce the parasite’s risk of flaccid paralysis. A similar 

study was performed for pyrantel resistant isolates of O. dentatum where levamisole was 

also used for drug exposure (Robertson et al., 2000). Again, resistant isolates had a 

decreased number of active channels and a lower probability of channel opening, 

however, the channels of the pyrantel resistant isolate had a significantly longer mean 

open time than the levamisole resistant and susceptible isolates. Observations of channel 

conductance using the patch-clamp technique revealed that while the pyrantel resistant 

isolate consisted of the same subunit types at the susceptible isolates, the subunits were 

present at different proportions. Furthermore, the pyrantel resistant isolate included a 

subunit type that was not present in the levamisole resistant isolate. Therefore, it can be 

concluded that not only do the drug targets of anthelmintics within this drug class differ, 

but the mechanisms of resistance do as well (Robertson et al., 2000). Later, Romine et al. 

(2014) compared numerous genes associated with nAChR in levamisole resistant and 

susceptible isolates of O. dentatum. Specifically, two genes, acr-21 and acr-25, had 

increased expression in the resistant isolate, and decreased expression of unc-63. A 

number of SNPs were also identified as a difference between the two isolates. No 

truncated isoforms, as observed in small ruminant GIN, were identified in this study. 

1.8.3.3 Cholinergic receptor agonist resistance mechanisms of 

cyathostomins  

 Presently, no studies exist examining the resistance mechanisms of cyathostomins 

to this drug class. 

1.8.3.4 Cholinergic receptor agonists resistance mechanisms in 

hookworms 
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Presently, the only small animal helminth species known to harbor resistance 

against the PYR drug class is the canine hookworm, A. caninum. Kopp et al. (2009) 

performed transcriptional analyses on A. caninum isolates that exhibited either high or 

low levels of resistance. The highly resistant isolate had significantly lower expression 

levels of three receptor subunits orthologous to unc-29, unc-38, and unc-63 (aar-29, aar-

38, aar-63) than the isolate with low levels of resistance. Additionally, three additional 

subunits (AAR-8, AAR-15, AAR-19) had significantly higher expression in some of the 

highly-resistant isolates. This was the first study to associate the latter subunits with 

pyrantel activity. Unlike the case for BZ resistance, no SNPs were identified between the 

two populations (Kopp et al., 2009).  

1.8.3.5 Cholinergic receptor agonists resistance mechanisms of 

Ascaris species 

Although resistance to this drug class has not been identified for Ascaris species, 

Williamson et al. (2009) investigated the subunit composition of nAChR in the body wall 

muscle of A. suum. The investigators found that altering the proportion of subunits 

affects the binding site and sensitivity to the anthelmintics pyrantel, oxantel, and 

levamisole. 

1.8.3.6 Cholinergic receptor agonist resistance mechanisms of 

Parascaris species 

Presently, no studies exist examining the resistance mechanisms of Parascaris 

spp. to this drug class. 

1.8.3.7 Cholinergic receptor agonist resistance mechanisms: 

Summary 

The cholinergic receptor agonist drug class consists of a variety of drugs, and in 

many cases it is presumed that these drugs act in similar ways and therefore must have 

similar modes of action. The aforementioned evidence of altered binding sites and 

receptor subunit composition effecting drug sensitivity and resistance disproves these 
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assumptions. It was previously assumed that resistance to this drug class was due to 

changes in the expression of subunits or altered transcript products (Whittaker et al., 

2016). The compilation of references herein speaks to the complicated nature of 

anthelmintic resistance within this drug class and the likelihood of its polygenic nature. 

Further research is warranted, especially to examine the resistance mechanisms 

associated with decreased pyrantel sensitivity as resources are lacking. 

1.8.4 Mechanisms of macrocyclic lactone resistance 

As previously described, the MLs consist of the avermectins and milbemycins. 

They act on the GluCl and GABA receptors causing an influx of chloride ions (Cl-). The 

primary target, the GluCl, is a homo-pentamer consisting of alpha subunits. The alpha 

subunit genes vary between parasite species. Inhibition of motility and pharyngeal 

pumping is ensued, and the parasite is subsequently expelled by the host through 

peristalsis. Although within the same drug class, stark differences have been observed 

between the avermectins and milbemycins (see section 1.5.3, Prichard et al., 2012). 

Resistance mechanisms for this drug class have focused primarily on altered receptor 

subunit expression, mutations in the receptor-drug binding site causing changes in 

binding affinity, as well as non-specific mechanisms, such as drug efflux via ATP 

binding cassette transport proteins and drug uptake. The transport proteins of primary 

interest for ML resistance have been Pgps, multi-drug resistant associated proteins, and 

the breast cancer resistance proteins (Kotze et al., 2014; Whittaker et al., 2016). While 

numerous in vitro studies have been carried out, including utilization C. elegans, many of 

the findings fail to explain the extreme levels of resistance observed in field trials (Kotze 

et al., 2014). 

1.8.4.1 Macrocyclic lactone resistance mechanisms in 

strongylids of small ruminants 

Altered receptor subunits 
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Blackhall et al. (1998) examined the GluCl alpha subunit constructed by the glc-1 

gene between two susceptible and three drug selected isolates (two IVM, one MOX) of 

H. contortus. Significant differences in the frequency of five alleles were identified 

between the drug-selected and non-drug selected strains. The role of these 

polymorphisms with drug resistance mechanisms, if any, is unknown (Blackhall et al., 

1998). Dent et al. (2000) identified that point mutations within three alpha subunit genes, 

namely avr-14, avr-15 and glc-1, conferred IVM resistance in C. elegans. This was later 

confirmed by Ardelli et al. (2009). However, Ardelli et al. (2009) also noted that these 

same mutations led to only partial resistance to MOX, and this suggests that MOX may 

act on different receptors than IVM and/or have different modes of resistance 

mechanisms in C. elegans (Ardelli et al., 2009). Of these three subunit genes, only one 

(avr-14) is orthologous in H. contortus (McCavera et al., 2007). An amino acid 

substitution (L256F) in the avr-14 subunit gene is known to induce IVM resistance in H. 

contortus (McCavera et al., 2009).  Likewise, there is a subunit gene in H. contortus that 

is not present in C. elegans, that is HcoGluClα, and it is known to be IVM sensitive 

(McCavera et al., 2007). The differences in subunit presences between species introduce 

further challenges to elucidating the resistance mechanisms directly associated with the 

IVM-ligand receptors. As described above, the GABA-receptors are a secondary target of 

ML drugs. One study investigated these receptors for their role in ML resistance of H. 

contortus (Blackhall et al., 2003). This study identified a total of 13 alleles of the HG1 

GABA-receptor gene between IVM selected and non-selected isolates, some of which 

were differentially expressed between the different strains, however it remains unknown 

if these changes are a direct cause of the resistant phenotype (Blackhall et al., 2003). 

Redman et al. (2012) and Rezansoff et al. (2016) identified the microsatellite 

Hcms8a20 as a reliable marker linked to IVM resistance in separate backcrossing 

experiments utilizing the same parental strains. However, the mutation(s) conveying 

resistance which are linked to this microsatellite marker remain unknown.  

Drug uptake 

 

In C. elegans, the dyf (defective dye filling) gene family is responsible for amphid 

(chemosensory organ) development (Li et al., 2001; Heiman and Shaham, 2009). Dent et 
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al. (2000) found four alleles of dyf genes that constituted decreased uptake of dye from 

the environment and these C. elegans mutants also had low-level resistance to IVM. 

Urdaneta-Marquez et al. (2014) found that a dyf-7 gene rescued IVM sensitivity in a 

resistant strain, and dyf-7 mutants were selected for upon IVM exposure. Therefore, 

mutations in dyf-7 are suggested to be directly related to a ML resistance mechanism. 

More recently, Page (2018) confirmed the association between IVM resistance and dyf 

when numerous strains of IVM resistant C. elegans failed to intake dye via their amphid 

organs, and the dyf mutant C. elegans (dyf-3, dyf-4, dyf-7) had decreased sensitivity to 

IVM (Page, 2018). 

Studies of amphids in H. contortus noted structural changes between IVM 

susceptible and resistant isolates of H. contortus, where resistant isolates had degenerated 

amphids (Freeman et al., 2003; Guerrero and Freeman, 2004). Urdaneta-Marquez et al. 

(2014) further explored this in ML resistant H. contortus. Resistant and susceptible 

isolates derived from the same parental strain were sequenced and 15 SNPs characterized 

two highly divergent haplotypes, namely Hco_dyf-7(r) and Hco_dyf-7(s), respectively. 

Significantly fewer animals harboring the resistant haplotype were capable of dye uptake, 

supporting the role of reduced amphids in anthelmintic resistance. Finally, resistant 

haplotypes, identified by some, but not all of the 15 SNPs was consistently found at high 

frequencies in ML resistant H. contortus populations across five continents, while the 

susceptible haplotype was consistent with susceptible populations (Urdaneta-Marquez et 

al., 2014). In contrast, Elmahalawy et al. (2018) explored the prevalence of three SNPs in 

the Hco_dyf-7(r), previously identified by Urdaneta-Marquez et al. (2014), in field 

isolates identified to IVM resistant by FECRT, and did not find any significant 

differences in SNPs in larva harvested before and after IVM treatment. Another study 

found no association of the Hco_dyf-7(r) haplotype with IVM resistance in a backcross 

experiment (Rezansoff et al., 2016). Laing et al. (2016) also did not identify different 

haplotypes between IVM-treated and non-treated sheep farms in the UK.  

Furthermore, a genome-wide scan of SNPs in resistant and susceptible H. 

contortus strains was carried out by Luo et al. (2017). Several SNPs were identified that 

exhibited significant differences in allele frequencies between the two populations. Of 

these, the function of eight genes were recognized as potentially playing a role in ML 
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resistance, such as functioning as an IVM target receptor or participating in receptor 

formation. None of the candidate genes identified in previous studies, such as various 

ATP binding cassette transporters (described below) or dyf-7, were identified in this 

study (Luo et al., 2017). Mutations in the dyf-7 gene were not identified in a multi-drug 

resistant strain of T. circumcincta (Choi et al., 2017). The differences in these reports 

may be due to the known high genetic diversity of H. contortus populations, including 

laboratory isolates (Gilleard and Redman, 2016). 

Drug efflux and metabolism 

The association of protein transporters, especially Pgps, with anthelmintic 

resistance has been a popular research topic. P-glycoproteins serve as an efflux 

mechanism to transport toxic molecules, such as xenobiotics, across the cell membrane 

thus lowering their intracellular concentration (Higgins, 1992; Broeks et al., 1995). This 

prevents the drug from reaching its target site (Lanusse et al., 2014). However, a general 

consensus of their involvement in anthelmintic resistance mechanisms has not been 

reached (Lespine et al., 2012).  

The first report of Pgps associated with IVM resistance was in H. contortus in 

1998 (Xu et al., 1998). Similarly, Le Jambre et al. (1999) associated hc-pgp-1 with 

resistance in an IVM-selected strain of H. contortus. When a Pgp inhibitor, such as 

verapamil, was applied to ML resistant H. contortus strains, IVM sensitivity reversed 

(Molento and Prichard, 1999), confirming the role of Pgps in drug resistance. Currently, 

at least ten Pgp sequences have been identified in H. contortus (Williamson and 

Wolstenholme, 2012; Laing et al., 2013), and 14 identified in C. elegans (Sheps et al., 

2004). The role of Pgps as a protective mechanism has also been identified in C. elegans, 

where animals with inhibited Pgps were significantly more sensitive to IVM treatment 

(Janssen et al., 2013a). 

Probably the most consistently identified Pgp to be associated with ML resistance 

is PGP-2. Godoy et al. (2015a) proved the interaction of ML drugs with PGP-2, and PGP-

2 is unable to translocate fluorophores in the presence of drug due to its paralyzing 

effects. James and Davey (2009) identified increased expression of pgp-2 in an IVM 

resistant strain of C. elegans. Later, Yan et al. (2012) confirmed the necessity of this gene 
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in conferring IVM resistance in C. elegans through a gene knockout study using RNAi 

techniques. Both Lloberas et al. (2013) and Maté et al. (2018) reported increased 

expression of pgp-2 in a ML resistant strains of adult H. contortus exposed to IVM in 

vivo (Lloberas et al., 2013; Maté et al., 2018). Larvae obtained from a multi-drug 

resistant H. contortus strain showed increased expression of pgp-2 and pgp-9, but further 

in vitro drug exposure of this isolate produced inconsistent changes in Pgp expression 

levels (Williamson et al., 2011).  

Many other Pgp genes have been studied in small ruminant GIN, but results are 

inconsistent and sometimes contradictory (Williamson et al., 2011; Williamson and 

Wolstenholme, 2012; Rezansoff et al., 2016; David et al., 2018; Maté et al., 2018). Of 

course, the role of these transporters may not be limited to changes in expression levels. 

The presence of SNPs and allelic changes in these genes have associated with resistance 

in T. cicumcincta (Prichard and Roulet et al., 2007; Dicker et al., 2011a,b; Lespine et al., 

2012; Turnbull et al., 2018) and H. contortus (Blackhall et al., 1998; Prichard and Roulet 

et al., 2007; Williamson et al., 2011; Lespine et al., 2012).  

Differing interactions of Pgps between IVM and MOX exposure have been 

reported in H. contortus (Godoy et al., 2015a,b, 2016) and in a pig kidney epithelial cell 

line overexpressing Pgps (Lespine et al., 2007). Similar findings have been presented in 

C. elegans, where no significant differences were found in expression of pgp-2 between 

the IVM resistant and IVM susceptible strain of C. elegans when exposed to MOX 

(Bygarski et al., 2014). This suggests different mechanisms of anthelmintic resistance 

between the avermectin and milbeymicin groups, and may reflect the lower potency of 

MOX and the differences in molecular structures as described in section 1.5.3. 

Drug metabolizing enzymes are another non-specific mechanism presumably 

leading to ML resistance. The CYPs are known to confer insecticide resistance (Ffrench-

Constant et al., 2004), and treatment of C. elegans with anthelmintics has been associated 

with increased expression of enzymes in the cyp family (Laing et al., 2010, 2012). 

Currently, 23 CYP subfamilies have been described for C. elegans (Menzel et al., 2001), 

of which CYP31, CYP33, CYP34, and CYP35 have been identified as inducible 

following xenobiotic exposure (Menzel et al., 2001; Laing et al., 2010; Jones et al., 
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2013). In H. contortus, 73 partial CYP sequences were found, 68 of which were 

confirmed by PCR (Laing et al., 2015). Increased expression of cyps was found within 

adult worm intestine (Laing et al., 2015). Recently, Yilmaz et al. (2017) identified CYPs 

of the CYP34/35 subfamily having increased expression in a multi-drug resistant H. 

contortus isolate compared to a susceptible isolate. 

1.8.4.2 Macrocyclic lactone resistance mechanisms in 

strongylids of cattle 

Two subunits of the GluCl receptor from C. oncophora have been sequenced and 

identified to be highly similar the corresponding subunits of H. contortus and C. elegans 

(Njue et al., 2004a). Further investigation of two UK C. oncophora isolates, one being 

IVM resistant and the other IVM susceptible, identified significantly different 

frequencies in nine alleles of the gluclα3 subunit gene between the two populations. 

Later, Njue et al. (2004b) used the Xenopus oocyte expression system to model a 

GluClα3 homomeric channel and attributed differences in IVM sensitivity to be due to a 

single amino acid substitution (L256F) in the GluClα3 subunit. However, the L256F 

substitution was not present in neither resistant nor susceptible isolates of C. oncophora 

and O. ostertagi from Belgium (El-Abdellati et al., 2011). The resistant C. oncophora and 

O. ostertagi isolates showed a decreased expression of avr-14, and resistant C. 

oncophora also exhibited increased expression of glc-2. Some differences in expression 

were also noted between parasite life stages (El-Abdellati et al., 2011). 

As in H. contortus it is presumed that Pgps constitute drug efflux and play a role 

in ML resistance for GIN of cattle. Using the larval development assay, both Demeler et 

al. (2013d) and AlGusbi et al. (2014) restored IVM susceptibility in IVM resistant 

isolates of C. oncophora by applying the Pgp inhibitor, verapamil. The same finding was 

reported for O. ostertagi (AlGusbi et al., 2014). Interestingly, the addition of verapamil 

and IVM to IVM resistant C. oncophora during the larval migration inhibition assay 

increased IVM sensitivity even beyond that of the IVM susceptibility isolate. The 

different magnitude of responses between the two in vitro assays examined by AlGusbi et 

al. (2014) are likely due to fluctuations of drug uptake at different life stages (i.e. the 
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larval development assay observes L1, L2, and L3 whereas the larval migration inhibition 

assay utilizes only L3s). However, another study suggests that diminished development of 

T. circumcincta observed in the larval development assay may be caused by verapamil 

itself, and not IVM (Sargison et al., 2010). A CYP inhibitor, piperonyl butoxide, when 

co-administered with IVM, restored IVM sensitivity in IVM resistant larval isolates of C. 

oncophora in vitro (AlGusbi et al., 2014). The gene for pgp-9 has been identified in C. 

oncophora. Expression levels of this gene were examined between IVM-selected and 

non-selected isolates, however no significant differences were identified. Overall, it 

seems feasible to assume that non-specific mechanisms may also play a role for 

anthelmintic resistance in cattle GIN, but the exact contributors are unknown. 

1.8.4.3 Macrocyclic lactone resistance in Dirofilaria immitis 

As described above, the existence of anthelmintic resistance by the canine 

heartworm, D. immitis, to the ML drug class is a topic of great controversy, but reports of 

failed efficacies do exist and have been the driving force behind studies of these 

resistance mechanisms.  

An extensive study was undertaken to identify all the ion-channels existing in the 

current D. immitis genome, and any SNPs within (Mani et al., 2016b). Five genes 

encoding GluCl subunits were identified, namely glc-2, glc-3, glc-4, avr-14 and avr-15. 

Of these, SNPs were identified in glc-2, glc-4, and avr-14. Those in avr-14 and glc-2 

were predicted to change the secondary structure of the subunit. Polymorphisms in other 

GluCl channels were identified, such as gab-1, a GABA-gated ion channel. The 

polymorphism I20T was identified only in anthelmintic susceptible populations. The unc-

49 gene had a SNP (N57D) that was specific to populations with suspected resistance. As 

previously discussed, the GluCl channels are known targets of the MLs, and therefore it 

can be theorized that these mutations causing structural changes may alter the drug 

binding site and confer resistance (Mani et al., 2016b). 

The first study to examine Pgps in D. immitis was carried out by Bourguinat et al. 

(2011). In this study, they identified two SNPs located at positions 11 and 618 of a 

fragment orthologous to pgp-11 of several nematode species. The genotypes of these 
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SNPs were combined to identify the genotype of D. immitis isolates with lowered IVM 

susceptibility. The Pgp genotype with GG at both positions 11 and 618 (GG-GG) was at a 

significantly higher frequency in an isolate with decreased IVM susceptibility both in 

vivo and in vitro (Bourguinat et al., 2011). Later, a study sought to identify all of the Pgps 

within D. immitis and a total of five ATP-binding cassette transport genes were 

identified, three of which are Pgps, namely Dim-pgp-3, Dim-pgp-10, and Dim-pgp-11 

(Bourguinat et al., 2016). It has been identified that avermectins interact with the Dim-

pgp-11 and are capable of inhibitory effects in susceptible isolates, but the milbeymicin 

drugs exhibit a much weaker effect and act in a dose-dependent manner (Mani et al., 

2016a). Continuing with the trend of ML resistance, the mechanisms of ML resistance in 

D. immitis remain largely unknown. In order to better monitor and control resistant 

isolates of any parasite, markers of resistance need to be identified. This work has 

recently begun for D. immitis which identified 40 SNPs that differed between ML 

susceptible and resistant isolates (Bourguinat et al., 2015). 

1.8.4.4 Macrocyclic lactone resistance mechanisms in 

Parascaris species 

Despite the wide spread resistance of Parascaris spp. to the ML drug class, only 

two studies have examined this at the molecular level. Only two Pgps have been 

confirmed in Parascaris equorum, namely pgp-11 and pgp-16 (Janssen et al., 2013b). In 

the pgp-11 gene, three missense mutations have been identified in IVM resistant 

populations. Using 3D modelling, it is presumed that these amino acid substitutions occur 

near residues involved with drug binding sites. The pgp-11 was found to be more highly 

expressed in the worm intestine than other tissues, while pgp-16 was more highly 

expressed in body wall tissues. Despite these findings, differences in expression of these 

genes were not identified in parasite eggs isolated from farms with differing susceptibility 

status to IVM. Differences were also not identified between adult worms exposed to IVM 

in vitro and those without treatment (Janssen et al., 2013b). In contrast, worms isolated 

from a farm with suspected IVM resistance had an increased frequency of all three SNPs 

when compared to worms collected from farms with an unknown IVM treatment/status 

history (Janssen et al., 2013b). Later, Janssen et al. (2015) successfully expressed the 
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Parascaris spp. pgp-11 in a C. elegans model. In doing so, the ability of pgp-11 to 

decrease C. elegans susceptibility to IVM was discovered. Both studies provide support 

that Pgps, specifically pgp-11, are likely involved in anthelmintic resistance mechanisms 

for Parascaris spp., but it is unlikely that this is the sole mechanism conveying the 

extreme levels of ML resistance observed world-wide. 

1.8.4.5 Macrocyclic lactone resistance mechanisms in 

cyathostomins 

Resistance to the ML drug class among cyathostomin populations is not yet 

definite, but rather is considered emerging. Given the resistance status and the 50+ 

species of cyathostomins, it has been and continues to be a daunting task to identify 

potential mechanisms associated with the emergence of resistance. Only two putative 

Pgps have been identified across nine cyathostomin species (Drögemüller et al., 2004c). 

Later, Kaschny et al. (2015) transgenically expressed pgp-9 isolated from Cylicocyclus 

elongatus in a yeast assay. The investigators found pgp-9 to protect yeast from various 

fungicides, suggesting a drug efflux mechanism was at play. Recently, Peachey et al. 

(2017) confirmed the presence of pgp-9 in mixed species cyathostomin populations from 

an equine herd with heavy ML use and a herd naïve to anthelmintics. Larvae (L3) from 

both populations were exposed to IVM in vitro, and the cyathostomins with previous ML 

exposure had significantly higher expression of pgp-9 than the anthelmintic naïve 

population. The phenotypic characterization was confirmed using the larval migration 

inhibition assay and Pgp inhibitors. When a Pgp inhibitor was applied with IVM, the 

efficacy of IVM increased in the cyathostomin isolates from previous ML exposure. This 

suggests that pgp-9 can reduce sensitivity to IVM (Peachey et al., 2017). 

1.8.4.6 Macrocyclic lactone resistance mechanisms: Conclusion 

The majority of work for ML resistance has been focused on non-specific 

resistance mechanisms. The Pgps are continuously being extensively studied, but the 

evidence presented above suggests that their involvement varies between species and 

isolates. Additionally, the studies have focused largely on the avermectin group over the 
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milbemycins, and mostly on H. contortus and C. elegans. While this is a promising start, 

significant challenges exist that prevent broad assumptions from being made. As 

mentioned several times, the avermectins and milbemycins have structural differences 

that affect their binding affinities to the target receptors (Prichard et al., 2012). Evidence 

described above proves that these differences influence the drug-specific resistance 

mechanisms and extrapolations between the two drug groups should be interpreted with 

caution. Secondly, the majority of work presented herein involves H. contortus and C. 

elegans. Both of these nematodes are phylogenetically classified into clade V of the 

phylum nematoda (Blaxter et al., 1998), and therefore presumably have similar 

characteristics and some extrapolations regarding drug and anthelmintic resistance 

mechanisms between the two can be made. However, other parasites harboring ML 

resistance, such as Parascaris spp. and D. immitis are not closely related to these 

nematodes (Clade III). Although some similarities in ML resistance mechanisms have 

been identified, more studies are needed to elucidate the mechanisms for these parasites. 

1.9 Parasite management in the presence of anthelmintic resistance 

1.9.1 Refugia maintenance 

The rate of development for anthelmintic resistance is largely dependent upon the 

ability of parasites surviving treatment to genetically contribute to the next generation 

(Barnes et al., 1995). Refugia populations offer the opportunity to dilute the resistant 

alleles with the susceptible alleles. Refugia is defined as the portion of the parasite 

population left unexposed to anthelmintic treatment, and is recognized as a key 

component of herd based (i.e. livestock, equine) parasite control programs in order to 

preserve anthelmintic efficacy (Martin et al., 1981; Van Wyk, 2001; Waghorn et al., 

2008; Kaplan and Nielsen, 2010; Leathwick, 2012; Leathwick et al., 2012; Leathwick 

and Besier, 2014; Cornelius et al., 2016; Muchiut et al., 2018). Those, which escape 

treatment, include the environmental stages (i.e. larvae on pasture), migrating and 

encysted larvae within the host when a larvicidal drug is not used (i.e. encysted 

cyathostomins), and those within untreated animals (Van Wyk, 2001). Selective 

treatment approaches (see section 1.4.3) offer the opportunity to leave some animals 
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untreated, and thus leaving some parasites unexposed (Kenyon et al., 2009; Kaplan and 

Nielsen, 2010). Maintenance of refugia is presumably only effective when the refugia 

population largely consists of susceptible parasites in order to dilute the resistant alleles 

(Martin et al., 1981; Van Wyk, 2001; Muchiut et al., 2018), and the seasonal timing of 

treatments must be considered so that the environmental conditions favor larval 

development on pasture (Gaba et al., 2006, 2010). Several computer modelling and field 

studies have examined the impact of refugia on the development and persistence of 

resistance. These are described below. 

1.9.2 Computer modelling studies of refugia 

1.9.2.1 Modelling studies of small ruminant trichostrongylids 

A computer model developed by Gaba et al. (2006) emphasized the importance of 

implementing individual sheep parameters within the model, such as the unequal 

disbursement of egg shedding between the hosts. This approach highlighted the 

significant effect of refugia size on the development of anthelmintic resistance. The 

maintenance of refugia decreased the rate of resistance development when stocking 

densities were low, treatments were given outside of the dry season, and the overall 

number of treatments was reduced (Gaba et al., 2006). Similarly, a mathematical model 

found that treating only 20-30% of the flock when environmental conditions favored 

larval development resulted in a higher number of larvae in environmental refugia. This 

proposed treatment regimen predicted the frequency of resistance alleles to be below 

phenotypic detection (i.e. FECRT; Gaba et al., 2010). The influence of treatment 

frequency and proportion of sheep treated on resistance frequency was again examined 

by Laurenson et al. (2013). First, a short-term scenario evaluated the proportion of lambs 

treated in a single treatment throughout the grazing season. As expected, increasing the 

number of lambs treated reduced the refugia population on pasture and increased the 

resistance frequency by the end of the grazing season. In a second, but long-term (20 

years) simulation, the model predicted the resistance frequency when all, 50%, or 20% of 

lambs were treated. Even when 50% of the lambs were left untreated, the resistance 

frequency ended up being the same at the end of the 20 years as when all lambs were 

treated. However, the resistance frequency was reduced by over half when 80% of the 
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lambs were left untreated (Laurenson et al., 2013). Another modelling study examined 

the development of resistance in presence of refugia based on the number of lambs 

untreated in two different environments when two different drugs (99.99% or 97% 

efficacious) were used (Cornelius et al., 2016). When hot, dry summers were 

experienced, the rate of resistance significantly decreased as the portion of untreated 

animals increased when the lesser efficacious drug was used. When the more highly 

efficacious drug was used, resistance developed significantly slower when at least 10% of 

the animals were left untreated when compared to all animals treated. In the environment 

with high rainfall, no significant differences for either drug were found in the rate 

resistance when at least 10% of the animals were left untreated. This study confirms the 

necessity of parameters, such as environment and initial drug efficacy, when considering 

the number of susceptible parasites present in refugia and the overall effect on the rate of 

resistance development (Cornelius et al., 2016). Proper use of a new anthelmintic to 

achieve the maximum efficacious lifespan is an important topic of discussion. Leathwick 

(2012) has modelled different treatment regimens and refugia proportions to predict 

sustainability of a new drug. This model continues to emphasize the importance of 

refugia to delay the initial onset of anthelmintic resistance as low-refugia scenarios 

resulted in an increased rate of development. 

While the aforementioned studies provide useful information for the 

implementation of refugia and delaying resistance, they are assuming that resistance 

alleles are not already present in the population, and this is rarely the case. Other factors 

that must be considered when modelling the influence of refugia on resistance are the 

initial frequency of resistance alleles in a given population and the associated fitness loss 

of the parasite (see section 1.8.1). Leathwick (2013) accounted for these variables and the 

effect of refugia on resistance development. However, in this model refugia was not 

considered as the number of animals untreated according to physiological parameters, but 

rather as total number of eggs excreted onto the pasture. In all simulations of initial 

anthelmintic frequency and fitness loss, increasing the FEC output slowed the 

development of resistance (Leathwick, 2013). 

1.9.2.2 Modelling studies of equine parasites 
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Parascaris spp. offers a challenging perspective on refugia maintenance as this 

parasite is generally not present in horses beyond two years of age (Clayton, 1986), and it 

is recommended for foals to receive two treatments within their first six months of life 

(Nielsen et al., 2016; Reinemeyer and Nielsen et al., 2017; ESCCAP, 2018; Rendle et al., 

2019). Leathwick et al. (2017) modelled the effects of different treatment regimens on the 

rate of resistance development. Monthly treatments and use of a drug with larvicidal 

efficacy resulted in resistance more quickly than the when only two treatments were 

given. This is likely due to the minimized refugia population. The current 

recommendations are to provide foals with two treatments in their first six months of life 

(section 1.4.3). When treatments were given at two and five months of age resistance was 

delayed compared to treatments given at three and four months. The latter targets 

immature luminal stages and diminishes the possibility of egg shedding thus reducing the 

refugia population. Furthermore, the use of IVM as the first treatment also increased the 

rate of IVM resistance. The larvicidal efficacy of IVM prevented the development of 

patent worms and thus negated the opportunity of IVM-based refugia, again driving 

resistance. Overall, the timing of treatments must be considered in order to not 

completely diminish egg shedding as this will reduce the genetic contribution of 

susceptible parasites in refugia (Leathwick et al., 2017). 

Another recent modeling study examined the influence of treatment frequency, 

timing of treatments, and seasonality on anthelmintic resistance in cyathostomin parasites 

(Nielsen et al., 2019). While this exercise did not specifically focus on refugia 

maintenance, some of the regimens employed implemented the maintenance of refugia. 

Overall, this study found selective therapy implementing only two annual treatments to 

reduce the rate of resistance. In turn, the reduction of treatment frequency and reducing 

the number of animals treated reflects an increase in refugia. Furthermore, the seasonal 

timing of treatments also significantly impacted resistance development. When 

treatments were administered during the grazing season (i.e. climates favoring larval 

development), the rate of resistance increased compared to when treatments were given 

outside of the grazing season (i.e. when environmental conditions did not favor larval 

development). Resistant worms surviving treatment would primarily contribute to egg 

shedding and thus the environmental refugia population. If this occurs during favorable 
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environmental conditions, then resistant larval will dominate the refugia. If eggs are shed 

during unfavorable conditions, then obviously the resistant larval will be less likely to 

survive and contribute less to subsequent adult populations (Nielsen et al., 2019). Overall, 

the number and timing of treatments must be considered in order to support a refugia 

population with minimal resistant alleles. 

1.9.3 Field studies of refugia 

1.9.3.1 Field studies of small ruminant trichostrongylids 

Martin et al. (1981) published one of the first reports showing the direct 

association between the number of parasites in refugia and the rate of development for 

anthelmintic resistance. This was done by artificially infecting sheep with various 

numbers (0-10,000) of H. contortus larvae before and after anthelmintic treatment. The 

larvae after treatment represented the refugia population as they were not exposed to 

treatment. After six generations, results indicated that the rate of development for 

anthelmintic resistance was slower with larger refugia populations. A field study of four 

different treatment regimens for controlling trichostrongylids in sheep found targeted 

selective treatment (<2.2 treatments per year) or strategic deworming (2 treatments/year) 

approaches to maintain better IVM efficacy over a given period than regular drenching of 

the entire herd every four weeks. Presumably, this was likely due to the increased refugia 

population (Kenyon et al., 2013). Refugia maintenance is a large part of the ‘best practice 

parasite management program’ presented by Rhodes et al. (2011) to maintain 

anthelmintic efficacy on working sheep farms. Leathwick et al. (2015a) identified that 

implementation of this program resulted in an overall increase in anthelmintic efficacy 

over five years. While equal efforts in all areas of this program are important, the authors 

conclude that the increased efficacy is largely due to the use of combination 

anthelmintics in the presence of a large refugia population (Leathwick et al., 2015a).  

A great challenge to overcome is when resistance is established on a pasture and 

in the refugia population. Attempts can be made to reestablish susceptible parasites 

within the refugia population by administering effective treatment to remove the resistant 
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worms infecting the hosts, pasture resting allowing time for the infective stages to die, 

and/or by seeding a clean pasture with susceptible worms. The latter can be accomplished 

by infecting parasite-free animals with susceptible parasites and turning them out on the 

pasture, or by bringing in animals harboring parasites with known susceptibility (Muchiut 

et al., 2018). Muchiut et al. (2018) has summarized the studies employing this practice to 

date, where all have involved trichostongylids of sheep except one that examined 

Cooperia spp. of cattle. While a number of these studies were either not successful at all 

or limitedly sustainable, several reports were successful. One of the most important 

factors is to consider the length of time between introducing the susceptible parasites and 

re-evaluating the anthelmintic efficacy of the drug in question. For initial success, this 

may require at least two years to fully dilute out the resistant alleles in the refugia 

population (Muchiut et al., 2018). 

1.9.3.2 Field studies in equine parasites 

Currently, no studies exists examining the direct association between the presence 

and/or level of refugia and the rate of anthelmintic resistance development in equine 

strongyles. The implementation of refugia maintenance in equine herds is largely based 

on the evidence obtained from ruminant strongylid parasites. Evidence for managing 

resistance by reducing treatment intensity (frequency and number of animals treated), 

such as in selective treatment regimens, would seemingly increase the number of 

parasites in refugia. Therefore, the maintenance of a refugia population among equine 

strongyles is recommended by leading experts (Nielsen et al., 2016; ESCCAP, 2018; 

Rendle et al., 2019). Long-term studies are needed to evaluate the impact of selective 

deworming strategies on anthelmintic resistnace before direct conclusions can be made. 

1.9.4 Combination deworming 

Combination deworming in the current context is described as combining two or 

more drugs with different modes of action and targeting a single type of parasite 

(Leathwick et al., 2009). The theory is that parasites resistant to one of the compounds 
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will be removed by the other compound, and multi-drug resistant parasites will have a 

reduced ecological fitness and unable to pass their genetics onto future generations.  

When combining drugs there may be a risk or benefit for the associated drug-drug 

interactions. These interactions can be broadly classified into two types, pharmacokinetic 

(PK) and pharmacodynamic (PD) (Lanusse et al., 2014). Pharmacokinetic interactions 

occur when one drug affects the concentration of another drug at the target site. This is 

generally related to drug absorption, distribution, metabolism, and excretion. These 

interactions may occur at the host or target parasite level. Pharmacodynamic interactions 

refer to when one drug alters the receptor and/or effector responses of the other drug 

(Lanusse et al., 2014). The PD interactions can be further described as additive, 

synergistic, antagonistic, and indifference. In general, two drugs having different modes 

of action should result in either an additive or synergistic effect. By definition, an 

additive effect occurs when the combined effect is equal to the sum of the effects for each 

individual drug. A synergistic effect is when the combined effect is significantly greater 

than the sum of the individual drug effects. While a synergistic effect is the ideal 

achievement for combination anthelmintics, most studies report an additive effect 

(Lanusse et al., 2014). On the other hand, antagonistic effects may occur when one drug 

blocks the effects of the other drug. Some examples of these interactions include 

inhibition of drug metabolism, drug interactions at the site of drug efflux transporters, or 

inhibition or alteration of drug absorption (Lanusse et al., 2014). Understanding the drug 

interactions of a combination product is crucial prior to its implementation, however, 

elucidation of these mechanisms are not widely understood, and there are many unknown 

variables such as, anthelmintic resistance status/mechanisms present, seasonality of 

parasite infection, changes and presence of drug metabolites, and route of drug 

administration. Despite this, there are several combination products, containing 2-4 

different compounds available for ruminants and horses in South America, Australia, and 

New Zealand. There are no combination products available in the United States, but they 

are commonly used extra-label and in some cases even encouraged by parasitology 

experts, such as the American Consortium for Small Ruminant Parasite control (Kaplan, 

2017). 
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Furthermore, combination deworming is heavily dependent upon the maintenance 

of an adequate refugia population as described above (Leathwick, 2012) and is most 

beneficial when at least one of the actives is new to the population and/or exhibits 100% 

efficacy (Barnes et al., 1995; Leathwick, 2012). When resistance exists to both actives 

used (in a two active compound), then their use is not recommended as it will likely 

select for multi-drug resistant parasites (Lanusse et al., 2014). 

1.9.4.1 Modelling studies of combination deworming in 

ruminants 

The majority of modelling studies in ruminants have focused on helminths 

infecting sheep due to the major resistance crisis surrounding these hosts. Learmount et 

al. (2012) modelled UK sheep farms and the effects of introducing a new anthelmintic 

belonging to the spiroindole drug class, derquantel in combination with the ML, 

abamectin. The model assumed a minimum resistance allele frequency corresponding to 

near complete efficacy (99.9%) for derquantel, while abamectin was modelled having 

either a low resistance allele frequency with 95% initial efficacy, or a high allele 

frequency with only 50% efficacy. Anthelmintics were administered either individually 

in the traditional rotation method, or in combination. Furthermore, two farm management 

scenarios were examined. The first was to implement recommendations by the committee 

for the sustainable control of parasites in sheep (SCOPS) including increased refugia and 

decreasing treatment intensity, while the other farm did not maintain these practices. 

Over the course of 40 years, the model found that introducing a new drug in combination 

slowed the development of resistance to the new drug (derquantel) and slowed the rate of 

resistance to the current drug used (abamectin) regardless of initial resistance allele 

frequency or management style. It also found that implementation of SCOPs delayed 

resistance to both drugs compared to non-SCOPs management practices. Finally, the 

lower the initial level of resistance allele frequency, the slower resistance developed. A 

similar simulation study was performed by Leathwick (2012) modelling management 

practices implemented by New Zealand sheep farmers and the effects of introducing a 

new anthelmintic (monepantel or derquantel) in combination with abamectin. Again, the 

combination product greatly delayed the development of resistance to the new drug and 
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slowed the rate of resistance development to abamectin. Management scenarios which 

maintained an adequate refugia population further improved these results and provided 

more flexibility for the initial frequency of the abamectin resistance alleles in the 

population (Leathwick, 2012). The benefit of combination products and maintaining a 

refugia population was echoed again in a modelling study with levamisole and IVM, and 

this model was developed following findings of a field study which produced similar 

results (Leathwick et al., 2012). Later, Leathwick (2013) prepared a generalized model 

utilizing two drugs in order to demonstrate the association of different refugia 

proportions, levels of fitness loss associated with resistance alleles, and varying the initial 

frequency of resistance alleles in a given population. Again, regardless of all other 

variables, increasing the size of the refugia population slowed the development of 

resistance. The same conclusion was found when the drugs were used in combination 

rather than in annual rotation. A new finding was that the higher the fitness cost 

associated with the resistance alleles resulted in slower development of resistance, and 

this was more pronounced when a combination was used. It is suggested that this is 

because the combination leaves fewer resistant worms surviving treatment. In summary, 

the aforementioned modelling studies provide preliminary evidence supporting the use of 

combination deworming products against drug-resistant trichostrongylids infecting sheep. 

However, these benefits are largely dependent on the refugium size and preexisting 

factors, such as the current level of resistance. 

1.9.4.2 Field studies of combination deworming in ruminant 

parasites 

The first in vivo study examining the benefits of combination deworming against 

anthelmintic resistant sheep nematodes occurred just over four decades ago (Anderson et 

al., 1991). As previously described, combination treatments are most effective when at 

least one of the drugs administered are new to the parasite population of interest and/or 

have complete efficacy (Barnes et al., 1995; Leathwick, 2012). Therefore, release of the 

newest anthelmintic drug for treating sheep GIN, derquantel, a member of the spiroindole 

drug class, was released in combination with abamectin. This combination awarded 99.8-

100% efficacy against a variety of GIN infecting sheep of the hypobiotic larval stage, 
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fourth larval stage, and adult stages of both resistant and unknown status (Little et al., 

2011).  Later, Geurden et al. (2012) performed a controlled efficacy study and confirmed 

the ability of the derquantel-abamectin combination to totally (100%) reduce the worm 

burden following experimental infection with a MOX resistant isolate of T. cicumcincta. 

Single active MOX and abamectin provided only 12.4% and 71.8% reduction, 

respectively. This study also examined treatments against naturally acquired mixed-

nematode infections from farms harboring multi-drug resistance. The derquantel-

abamectin combination had 99.7% efficacy, while MOX and abamectin exhibited 42.6% 

and 96.9%, respectively (Geuerden et al., 2012). In contrast, George et al. (2012) 

determined the efficacy derquantel-abamectin combination against a ML resistant 

Teladorsagia spp. isolate to only reduce egg counts by 94.8% whereas monepantel single 

active and abamectin single active awarded 98.5% and 34%, respectively.  

Other work has explored the combination of anthelmintics when resistance 

already exists. Entrocasso et al. (2008) administered IVM and albendazole either 

individually or in combination against sheep GIN with resistance to both actives. When 

given intravenously, the combination had a FECR of 91.9%, compared to the 73.4% and 

79% efficacy of albendazole and IVM given alone, respectively. When albendazole was 

administered intraruminally it exhibited 43.5% efficacy, and IVM given subcutaneously 

had 79.8% efficacy, however the combination of these two drugs and the same routes of 

administration exhibited only 70.8% efficacy. The authors concluded that the decrease in 

albendazole efficacy was due to the inability for the drug to reach the target site at the 

necessary concentrations. Therefore, the proper route of administration of each drug class 

must be considered when using combination drugs (Entrocasso et al., 2008). Edmonds et 

al. (2018) explored the benefits of combination therapy against a known ML-resistant 

cattle GIN population. The combination consisted of an injectable ML drug with 28-day 

activity (doramectin) with an oral BZ (albendazole), which was presumed to still be 

efficacious. The combination was compared to an oral dose of doramectin only or a 100-

day extended release injectable ML (eprinomectin). Overall, the doramectin-albendazole 

combination exhibited higher FECR than the other groups where efficacy was maintained 

at 98.8% or higher until day 32 post-treatment. At 14-days post-treatment the doramectin 

and eprinomectin single actives were 47% and 71.3%, respectively. Combination 
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deworming against another IVM resistant cattle GIN population was targeted using the 

BZ drug, ricobendazole and levamisole. This was compared to IVM injectable single 

active, ricobendazole single active, and no treatment. At 21-days post treatment, the IVM 

only group had a FECR of only 18%, while the ricobendazole only was 96% and the 

ricobendazole-levamisole combination was 100%. Overall, combination deworming 

against ruminant parasites award a synergistic or additive effect, but several management 

practices must also be considered, such as route of administration, hygiene practices, and 

the proportion of parasites in refugia. The large majority of the aforementioned studies 

utilized an untreated control group to calculate the FECR which also provides a source of 

refugia.   

1.9.4.3 Modelling studies of combination deworming in equine 

parasites 

Currently, the only equine modelling study investigating combination deworming 

was against Parascaris spp. (Leathwick et al., 2017). The primary focus of this study was 

evaluating different treatment regimens and their effect on anthelmintic resistance. In the 

model, combination deworming with IVM, FBZ, and PYR significantly delayed the 

development of resistance when administered twice in the foal’s first year, however 

resistance to IVM developed more quickly than the other actives. This was likely due to 

the larvicidal efficacy of IVM resulting in minimal IVM-based refugia. However, even in 

the presence of IVM resistance, the use of IVM did not affect the efficacy of FBZ and 

PYR (Leathwick et al., 2017). Therefore, a combination of at least FBZ and PYR should 

be considered in future research for treatment against Parascaris spp. 

1.9.4.4 Field studies of combination deworming in equine 

parasites 

Presently, only four studies exist evaluating the in vivo effects of combination 

deworming against equine parasites. The first combination treatment evaluation in horses 

was by Rolfe and Dawson (1994). They utilized a combination of dichlorvos (an 

organophosphate not approved for use in horses), OBZ, and morantel tartrate to target 
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Parascaris spp. and suspected OBZ resistant strongyles. Against Parascaris spp., the 

combination demonstrated 98% efficacy at 14 days post-treatment. Against the 

strongyles, the combination had 99% efficacy at 14 days post-treatment, whereas 

morantel, dichlorvos, and OBZ had single active efficacies of 96%, 42%, and 84%, 

respectively (Rolfe and Dawson, 1994).  Later, Lyons et al. (2016) tested the combination 

of OBZ and PYR, and OBZ with piperazine (no longer marketed for use in horses) 

against Parascaris spp. and strongyles. Drug efficacies using the FECRT were not 

calculated in this study, but the number of horses positive/negative for each parasite 

before and after treatment was reported. The single active OBZ decreased the number of 

horses positive for Parascaris spp. by 100%, whereas PYR did not change the number of 

positive horses, and piperazine decreased the positive horses by approximately 50%. 

Similarly to the OBZ-single active, the OBZ-PYR and OBZ-piperazine combinations 

reduced the number of Parascaris spp. positive horses to zero. For the strongyle 

infections, the OBZ single active treatment failed to reduce the number of positive 

horses, whereas PYR single active decreased from three positive horses to two, and the 

piperazine single active reduced strongyle positive horses from 86% to 12%. The OBZ-

PYR combination reduced the strongyle positive horses from three to two, and the OBZ-

piperazine combination reduced the number of strongyle positive horses from 94% to 

15%. Wilkes et al. (2017) examined the efficacy of a single treatment of morantel-

abamectin combination against Parascaris spp. with known resistance to IVM and 

abamectin in foals in Australia. The combination provided >99% efficacy whereas an 

increase in ascarid egg counts followed the treatment with abamectin single active. IVM 

single active had an efficacy of only 49.71% (Wilkes et al., 2017). Another study 

examined a single treatment of OBZ-PYR combination against equine strongyles on 11 

different horse farms (Kaplan et al., 2014). On all farms, OBZ-single active exhibited 

>80% efficacy, but the majority of farms had >90% efficacy. For PYR-single active, six 

farms exhibited >90% efficacy and the other farms ranged from 46.4% to 89.7%. For the 

combination treatment, six farms exhibited >99% efficacy, and the other farms ranged 

from 90.0%-97.9%. The study showed that a single combination treatment can be 

beneficial when at least one of the actives is efficacious. Of all the aforementioned 

combination deworming studies, this was the only study to evaluate the additive effect 
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formula for predicting the efficacy of a combination anthelmintic based on the individual 

drug efficacies, and found it to be a reliable indicator of expected efficacy (Kaplan et al., 

2014). 

1.9.4.5 Combination deworming: Summary 

Overall, it appears that the results of computer modelling studies for combination 

deworming in ruminants is supported by the field data, in that combination deworming, 

when applied under appropriate conditions can be beneficial. In horses, the data is much 

more limited and studies exploring the common scenario of multi-drug resistant 

cyathostomins have not been done. In all cases, the field data of long-term studies with 

repeated combination deworming is lacking and more studies are needed to evaluate real 

long-term consequences. 
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Table 1.1 Reports of drug resistance in Parascaris spp. 
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Table 1.2 Reports of drug resistance and shortened egg reappearance periods in cyathostomins. Reports using fenbendazole (10 mg/kg, 5 days) are 
designated with an asterisk. 
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Figure 1.1 Illustration of the cyathostomin life cycle. (*EL3 may arrest). 
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Figure 1.2 Illustration of the Parascaris spp. life cycle 

 



 
 

CHAPTER 2. COMBINATION DEWORMING FOR THE CONTROL OF DOUBLE-

RESISTANT CYATHOSTOMIN PARASITES-SHORT AND LONG TERM 

CONSEQUENCES 

This research was originally published in Veterinary Parasitology 251, 112-118. 

2.1 Introduction 
 

Cyathostomins are clinically important helminth parasites of the horse, and 

typically comprise 99-100% of the total worm burden (Nielsen et al., 2010). The early 

third larval stage (EL3) can enter a hypobiotic state as they encyst into the mucosal lining 

of the large intestine (Eysker et al., 1984). Most horses do not exhibit signs of infection, 

however, the disease larval cyathostominosis may occur in rare cases. Simultaneous 

excystment of larvae from the mucosal lining of the cecum and colon can  result in an 

array of clinical signs, including weight loss, diarrhea, dehydration, subcutaneous edema, 

and pyrexia (Love et al., 1999; Peregrine et al., 2006). The disease has been reported fatal 

in 50% of diagnosed cases (Reid et al., 1995).  

Presently, there are three anthelmintic drug classes approved for controlling 

equine helminth parasites; the benzimidazoles, the tetrahydropyrimidines, and the 

avermectin/milbemycins (also known as macrocyclic lactones). Originally, parasite 

control regimens were based on frequent treatments with benzimidazole drugs, and 

development of additional drug classes resulted in the rotation between drug classes 

(reviewed by Kaplan and Nielsen, 2010; Nielsen, 2012). A proposed benefit warranting 

rotational deworming methods was to avoid over-exposure of a single drug-class to a 

parasite population in hopes of preventing anthelmintic resistance (Prichard et al., 1980), 

but this has not proved to be a sustainable approach. Unfortunately, the frequent use of 

anthelmintics has driven the development of anthelmintic resistance in cyathostomins. 

Resistance to the benzimidazole and tetrahydropyrimidine drug classes is reported world-

wide, and there are increasing reports of shortened egg reappearance periods and 

decreased efficacy following treatment with the macrocylic lactones (reviewed by 

Peregrine et al., 2014).  Furthermore, some cyathostomin populations are observed 

harboring multi-drug resistance (reviewed by Peregrine et al., 2014). 
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It was originally proposed that genes associated with anthelmintic resistance 

likely occurred at very low levels in a naïve parasite population, and therefore may be 

associated with an ecological fitness disadvantage (Prichard, 1990). Under the selection 

pressure of anthelmintic use, however, these genetic mutations would offer an advantage 

and worms surviving treatment allow for the resistance alleles to increase in frequency 

within the parasite population (Prichard, 1990). Recent work has established that 

anthelmintic resistance may arise in a population in one of four ways; (1) pre-existing 

alleles are present prior to anthelmintic exposure, (2) spontaneous mutations occur 

immediately before or at the time of anthelmintic exposure, (3) frequent mutation events 

may allow alleles to appear recurrently, or (4) resistant alleles may have arisen elsewhere 

and were brought into the population through host migration (Gilleard and Beech, 2007). 

Gastrointestinal nematodes of small ruminants, and likely horses as well, are presumed 

able to acquire resistance at such a high rate because of their high fecundity and ability to 

undergo rapid rates of nucleotide sequence evolution, contributing to a high level of 

genetic diversity (Blouin et al., 1995; Anderson et al., 1998; reviewed by Gilleard, 2013). 

The trichostrongylid nematodes of small ruminants, Haemonchus contortus and 

Teladorsagia circumcincta, have been the most widely studied species due to their high 

infection prevalence and the extremely high levels and rates of resistance to multiple 

anthelmintic actives. A recent study regarding the emergence of anthelmintic resistance 

among populations of these species supports the latter two theories mentioned above. 

This model proposes that resistance occurs from multiple independent mutations 

recurrently arising and are spread by host migration (Redman et al., 2015). 

It is interesting to note that even in the absence of a selection pressure, resistant 

alleles appear to remain within a cyathostomin population. Lyons et al. (2007) reported 

sustained resistance in a benzimidazole resistant cyathostomin population after remaining 

unexposed to anthelmintic treatment for 22 years. Another cyathostomin population, 

known as Population S, developed resistance to the benzimidazole drug class over a 18 

year period from repeated use of cambendazole for four years (Drudge et al., 1983) 

followed by treatment with oxibendazole for 14 years (Drudge et al., 1985a,b; Lyons et 

al., 1994). Lyons et al., 2001 reported that after the subsequent seven years, in which 



81 
 

pyrantel pamoate was used and pyrantel resistance was documented. The resistance to the 

benzimidazole drug class was unaffected despite the change in drug class use. 

 Computer modelling studies suggest that combination deworming, defined as 

using different drug actives to target the same parasite, may preserve drug efficacy and 

slow the development of resistance (Smith, 1990; Barnes et al., 1995; Leathwick, 2012). 

Leathwick (2012) used a computer model to observe the effects of combining a new 

active with an active to which resistance existed. They found the development of 

resistance to the new active to be delayed when used in combination, but this effect was 

decreased in scenarios with lower starting efficacies and in populations with low parasite 

refugia. Leathwick (2013) performed another modelling study to observe the rate of 

resistance development during 40 years of selection when sheep were treated with two 

drugs used in either annual rotation or in combination. Overall, the rate of resistance 

development was slowed when the drugs were used in combination. These results suggest 

that a combination of actives may increase the probability of killing parasites harboring 

the genetics for resistance to either one of the actives used. Furthermore, field studies 

performed in lambs infected with drug resistant trichostrongylids found a combination of 

multiple actives to have an additive effect (Bartley et al., 2004, 2005; Entrocasso et al., 

2008; Le Jambre et al., 2010). Combination deworming has been found to be most 

successful when resistance does not exist to either of the drug classes used. Modelling 

studies performed by Barnes et al. (1995) and Leathwick et al. (2012) found that 

combining drugs, when one or both are 100% effective, slows the rate of resistance.  

Once resistant alleles become prevalent in a population, however, this strategy is unlikely 

to be successful. Even with low levels of resistance, it is presumed that combining 

multiple actives may result in a synergistic effect (reviewed by Fleming et al., 2006). 

However, efficacy is unlikely to be beneficial once high frequency of resistant alleles to 

both actives are present (reviewed by Fleming et al., 2006; reviewed by Bartram et al., 

2012).Presently, combination treatments are increasingly recommended to combat 

anthelmintic resistance in nematodes infecting ruminants (Bartram et al., 2012; Geary et 

al., 2012; Ramos et al., 2016) and against equine nematodes (Scott et al., 2015). 

Combination products are currently marketed in New Zealand, Australia and South 

America. However, the lack of effective anthelmintic drug classes available for equine 
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cyathostomins questions whether combining actives would be effective against these 

parasites. To date, only one equine study has been performed evaluating combination 

therapy against cyathostomins. The results illustrated an additive effect against drug 

resistant cyathostomins after a single treatment with a combination of oxibendazole and 

pyrantel pamoate (Kaplan et al., 2014).  

Presently, it is unknown how repeated combination treatments will affect a 

cyathostomin population harboring double-drug resistance. The aims of this study were 

(1) to evaluate the combined drug efficacy of oxibendazole and pyrantel pamoate for 

treatment of a herd naturally infected with a cyathostomin population with known drug 

resistance to both actives; (2) to observe changes in the efficacies of the single actives 

after four repeated combination treatments; (3) to test the additive effect formula 

proposed by Bartram et al. (2012) for estimating the efficacy of a combination treatment; 

and (4) to characterize the strongyle population before and after treatment using 

coprocultures. 

2.2 Materials and Methods 

2.2.1  Ponies 

A band of 21 Shetland ponies housed at the University of Kentucky was used in 

this study. The herd consisted of 20 mares and 1 stallion, ranging from ages 3 to 20 years. 

The herd harbors a population of cyathostomin parasites with documented resistance to 

the benzimidazole and tetrahydropyrimidine drug classes, otherwise known as Population 

S (Lyons et al., 2003). The ponies are maintained outside year-round. During the warmer 

months (March to October), the ponies were kept in dry lot with restricted access to 

striped grazing and were provided grass hay, consisting of either timothy or orchard 

grass. During the winter months, the ponies continued to receive hay and also had access 

to pasture which was comprised of clover, blue grass, and an assortment of weeds. Salt 

and mineral blocks were available ad libitum. The research was conducted under the 

approval from the University of Kentucky’s Institutional Animal Care and Use 

Committee (IACUC) under protocol number 2012-1046. 
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2.2.2 Study design 

This study took place between April, 2015 and June 2016. All ponies were 

weighed on an electronic scale prior to each treatment and treated at 110% of their body 

weight every eight weeks. The 110% dosage was used to account for any drug loss that 

may have occurred during or following drug administration. Ponies were ranked by pre-

treatment fecal egg count (FEC) and blocked into groups of two. Within each block, 

ponies were randomly assigned to a single active treatment of either oxibendazole (OBZ) 

or pyrantel pamoate (PYR) for the first treatment. Fecal egg counts (FEC) were 

determined at the day of treatment and every two weeks post-treatment. Eight weeks 

later, the single active treatments were repeated with the groups reversed. Following this, 

all ponies received four combination treatments with both drugs, eight weeks apart. 

Before concluding the study, single active efficacies were determined again following the 

same protocol as before. A timeline of the study design can be found in Figure 2.1. Given 

this is the first study to examine repeated combination treatments in horses against 

cyathostomins, there are no current recommendations to guide the number of treatments. 

We chose to carry out the study over the course of 14 months, which allowed the 

examination of the single actives before and after the four consecutive combination 

treatments, and this is the reason why we chose this treatment interval. 

Fecal egg count reduction tests (FECRTs) were carried out at 2 week intervals to 

monitor anthelmintic efficacy using the following formula: 

 

𝐹𝐸𝐶𝑅𝑇
𝑝𝑟𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐹𝐸𝐶 𝑝𝑜𝑠𝑡 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐹𝐸𝐶

𝑝𝑟𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
 𝑥 100% 

 

The additive effect formula was used to compare the expected combination efficacy 

based on the single active efficacies to the observed combined drug efficacy (Bartram et 

al., 2012).  

FECR%A+B = 1 – [(1-FECR%A) x (1-FECR%B)] 
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2.2.3 Anthelmintics 

Paste formulations of oxibendazole (OBZ; Anthelcide EQ, Zoetis, Kalamazoo, 

MI, USA) and pyrantel pamoate (PYR; Strongid P, Zoetis, Kalamazoo, MI, USA) were 

used in this study to represent the benzimidazole and tetrahydropyrimidine drug classes, 

respectively. Anthelmintics were administered according to the labeled doses, at 10 

mg/kg bodyweight for OBZ and ad 6.6 mg base/kg bodyweight for PYR. Anthelmintics 

were prepared by weighing the dose on an electronic scale and placing in a second 

syringe for administration. 

2.2.4 Fecal egg counts 

All FECs in this study were performed in triplicate using the Mini-FLOTAC 

technique which has a detection limit of 5 eggs per gram (EPG) (Cringoli, et al., 2017). 

Samples were prepared as described by Noel et al. (2017). Briefly, 5 g of sample were 

placed in the Fill-FLOTAC and homogenized with 45 mL of glucose-NaCl flotation 

medium with a specific gravity of at least 1.24. The fecal slurry was loaded into both 

chambers of the Mini-FLOTAC slide and allowed to rest for 10 minutes to allow for 

adequate flotation of the eggs before being analyzed using a microscope. Three slides 

were prepared per sample and used to obtain an average egg count. 

2.2.5 Coprocultures, Baermann procedure, and larval identification 

Coprocultures were performed to characterize the strongyle population. Ten ponies 

were randomly selected using a random number generator (Random.org) to represent the 

pony herd, and only fecal samples collected at the time of treatment and at two weeks 

post-treatment were used for the coprocultures. The cultures were set up individually as 

described by Henriksen and Korsholm (1983) using 10 grams of feces.  The cultures were 

placed in an incubator at 24 ⁰C for 14 days and moistened with tap water every other day. 

Following incubation, the samples were then sedimented in a Baermann apparatus for 48 

hours at room temperature. After this, the sediment was collected and were stored at 4°C 

for no more than two weeks. For larval identification and counting, the pellet was re-



85 
 

suspended and placed into a nematode counting chamber (Chalex Corp. Ketchum, ID, 

USA). The slide was heated to 55°C for approximately 3 minutes in order to inactivate 

the larvae. All larvae present in the sample were then examined at 100X and identified to 

stage, genus, and species where applicable, as described by Russel (1948). 

 

2.2.6 Statistical analyses 

Using the triplicate counts, mean FECs were determined for each sample at all 

time points. Pre and post-treatment FECs were used to determine the percent strongyle 

fecal egg count reduction (FECR) at each time point, and any negative FECRs were 

replaced with 0%.  Individual pony FECRs were used to calculate a herd mean FECR, 

standard deviation, and 95% confidence intervals (α=0.05) at each time point. The mean 

OBZ FECR was calculated for Treatments 1 and 2 in 2015, and then again for Treatments 

7 and 8 in 2016. Likewise, mean PYR FECRs were also determined. These single active 

OBZ and PYR efficacies were used to estimate each pony’s predicted combination 

efficacy using the additive effect formula, and a herd mean predicted FECR was 

calculated.  

All statistical analyses were performed using SAS software (version 9.4, SAS 

Institute, Cary, North Carolina, USA). A mixed linear model analysis was used to 

compare the FECs following the single active treatments with OBZ and PYR before and 

after the four combination treatments. The FECs were first log-transformed to achieve a 

normal distribution. In the model, ‘Horse ID’ and ‘Year’ were kept as random variables, 

while ‘treatment’ and ‘weeks post-treatment’ were included as fixed effect categorical 

variables. Whenever the interaction term ‘Year*Treatment*Weeks post-treatment’ was 

found significant, a ‘least squares means’ analysis was used for a Tukey’s pair-wise 

comparison (α=0.05). A second mixed linear model analysis was used to compare the 

single active efficacies by analyzing FECRs. Here, ‘horse ID’ and ‘season’ were kept as 

random variables, and ‘Weeks post treatment’ was included as a fixed effect categorical 

variable. Whenever the interaction term ‘Year*Treatment*Weeks post-treatment’ was 

found significant, a ‘least squares means’ analysis was used for a Tukey’s pair-wise 

comparison (α=0.05). Efficacies of the combination treatments were evaluated using 
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combination therapy FECRs in a mixed linear model analysis. Again, ‘horse ID’ and 

‘season’ were kept as random variables, and ‘Weeks post treatment’ was included as a 

fixed effect categorical variable. Whenever the variable ‘weeks post treatment’ was found 

significant, a ‘least squares means’ analysis was used for a Tukey’s pair-wise comparison 

(α=0.05). Lastly, a mixed linear model analysis was carried out to compare FECR 

between the observed and predicted (additive effect formula) combination drug 

efficacies. Here, ‘Year’ and ‘Horse ID’ were kept as random variables, while ‘test’ 

(observed or predicted) was included as a fixed effect categorical variable. Whenever the 

variable ‘test’ was found significant, a ‘least squares means’ analysis was used for a 

Tukey’s pair-wise comparison (α=0.05). In all analyses, all covariates were kept in the 

model regardless of p-value. 

 

2.3 Results 

All treatment efficacies determined at two weeks post treatment are presented in 

Appendix 1. 

2.3.1 Single active treatments 

Fecal egg counts for the single active treatments occurring before (2015) and after 

(2016) the four combination treatments are presented in Figure 2.2A. Overall, the 2015 

pre-treatment (time point 0) FECs were significantly higher than the 2016 pre-treatment 

FECs for both treatment groups (p<0.0001). Figure 2.2B shows the efficacy of the single 

active treatments occurring before (2015) and after (2016) the combination treatments.  

No significant differences were found at two weeks post-treatment between treatment 

groups within the same year (2015, p=1.0000; 2016, p=1.000), nor within the same 

treatment group between different years (OBZ, p=0.4421; PYR, p=0.8361).   

2.3.2 Combination treatments 

The percent efficacies of the four combination treatments (Treatments 3, 4, 5, and 

6) are presented in Figure 2.3. The efficacy at 2 weeks post-treatment of the first 
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combination treatment was not significantly different from the single active starting 

efficacies of OBZ (p=0.8588) and PYR (p= 0.5537). The FECR for the first combination 

treatment was significantly greater than the second (p=0.0454), third (p=0.0318), and 

fourth (p=0.0372) combination treatments.  The observed efficacies of the first 

(Treatment 3) and fourth (Treatment 6) combination treatments and the corresponding 

additive effect formula predicted efficacies are presented in Figure 2.4. There was no 

significant difference between the observed and predicted efficacies for the first 

combination treatment (Treatment 3) (p=0.9592). The predicted efficacy of the fourth 

combination treatment (Treatment 6), however, was significantly greater than the 

observed efficacy (p=0.0058). 

2.3.3 Larval identification 

Larval counts from the coprocultures are presented in Table 2.1. Strongylus 

edentatus was the only large strongyle species found and represented less than 1% of the 

larvae identified from the pre-treatment samples of Treatment 1 and 2. All other strongyle 

larvae were identified as within the sub-family cyathostominae.  

2.4 Discussion 

This study is the first to evaluate the efficacy of a combination of anthelmintics 

targeting cyathostomin parasites over the course of repeated treatments. The results 

suggest that this approach may not be sustainable against cyathostomins with resistance 

already developed to both actives included in the combination. This is important as 

benzimidazole and pyrantel resistance is widely reported in cyathostomin populations 

across the world (reviewed by Peregrine et al., 2014).  

The successful use of combined actives for slowing the development of resistance 

was previously observed in sheep parasites when a novel anthelmintic was introduced in 

combination with a pre-existing drug class (Leathwick, 2012). This method is not 

possible for equine helminths as new anthelmintics have not been developed in the last 30 

years. Leathwick (2012) further concluded that the benefits of combination deworming 

were depleted in scenarios where drug resistance to both actives already existed. The 
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single active starting efficacies used in this study were 60% (Figure 2.2B), which is not 

an unusual occurrence found on horse farms around the world, and their combination did 

not offer a sustained additive effect (Figure 2.3). Rather, the efficacy of the latter three 

treatments dropped significantly and remained consistent as seen in Figure 2.3. As 

previously mentioned, this cyathostomin population (Population S) has a long history of 

drug resistance to both actives used in this study (Lyons et al., 2003). It is important to 

note that the study presented here is different from previous studies regarding 

combination therapy in small ruminants (Barnes et al., 1995; Entrocasso et al., 2008; 

Leathwick, 2012) in three ways; 1) resistance was well established to both of the actives 

used in this study, 2) a selection pressure was implemented due to the four treatments 

administered with 8-week intervals, and 3) all ponies were treated at every time point 

minimizing parasite refugia.  In a simulation study evaluating anthelmintic treatment 

regimens against sheep nematodes over 40 simulation years, Leathwick et al. (2013) 

reported increased efficacies of combination treatments compared to using the same 

actives in annual rotation. The greatest effect, however, was seen when initial starting 

efficacies were high and a portion of the parasite population was kept in refugia. As 

previously discussed, cyathostomin parasites encyst into the mucosal lining where they 

may enter a hypobiotic state before maturing into the fourth larval stage (L4) (Eysker et 

al., 1984). Effective removal of luminal stages following deworming has been associated 

with recruitment of L4 larvae into the intestinal lumen (Love et al., 1999). Since neither 

of the actives examined in this study possess larvicidal efficacy, the encysted stages in 

principle remained in refugia and protected from the deworming treatment. The 

permanently present adult luminal burden, however, likely prevented this refugia 

population from entering the luminal stage. Without this event, the encysted burden did 

not provide a source of refugia within the time frame of this study.  Thus, it is presumed 

that the reduced efficacies observed in this study allowed for a substantial adult worm 

burden to persist, and possible effects of parasite refugia to be minimal or absent in this 

study.” 

In the present study, the predicted efficacy of the final combination treatment was 

significantly greater than the observed efficacy. This is surprising since the predicted 

efficacy is calculated based on the final two single active efficacies. Given the fact that 
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the additive effect formula was an accurate predictor of the first combination treatment 

efficacy, one would have expected that the final single active efficacies would be even 

lower since the observed efficacy of the last combination treatment was a mere 40.67%, 

as shown in Figure 2.4. Adult cyathostomins in the intestinal lumen are presumed to have 

a maximum life span of one year, so it is possible that a new pool of adults were recruited 

from the mucosal walls towards the end of the study,  which took place over the course of 

14 months. It is plausible that the adult burden was gradually replaced somewhere 

between the last combination treatment, and the subsequent re-evaluation of the single 

active efficacies.  This could potentially explain two observations made in this study:  1) 

The consistent observed efficacies of the second, third, and fourth combination treatment 

(Treatments 3-6), as the luminal adult cyathostomin burden likely remained relatively 

unchanged, and 2) The apparent discrepancy between the low observed efficacy of the 

last combination treatment (Treatment 6), and the somewhat higher single active 

efficacies observed subsequently. Furthermore, given the fact that OBZ and PYR 

resistance has remained unchanged in the population for decades during times of both 

intense or no selection pressure, we speculate that the resistant alleles may arise from 

recurrent mutations and/or spontaneous mutations occurring near the time of treatment, as 

proposed by Gilleard and Beech, 2007. 

 The initial drug efficacies observed in this study are similar to those found on 

managed horse farms (reviewed by Peregrine et al., 2014), and 8 week treatment intervals 

are also a common component of treatment regimens (Smith et al., 2000; Earle et al., 

2002; O’Meara and Mulcahy, 2002; Robert et al., 2015), and the presented results suggest 

that combination therapy applied in the present treatment regimen is not sustainable.  

Future studies including an active with larvicidal activity and maintaining a larger refugia 

population are necessary to further examine the utility of alternative combination 

treatment regimens. Future studies including an active with larvicidal activity and 

maintaining a larger population in refugia are necessary to further examine the utility of 

combination treatment regimens. Treatment with a larvicidal active will remove the 

encysted and luminal stages allowing new parasites being ingested from the environment 

to infect the horse and be present in both the encysted and luminal stages. This new 
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infection will allow for an effect of keeping parasites in refugia, by leaving a proportion 

of the herd untreated, for example. 

We do not believe an interaction between the two actives administered affected 

the results as they act on different physiological components of the parasites. The 

benzimidazole drug class affects the worms by acting as a blocking agent for 

microtubules. This hinders glucose absorption, and essentially slowly starves the 

parasites. The pyrantel drug class, on the other hand, works as an inhibitor of 

acetylcholinesterase, a neurotransmitter molecule. This causes near immediate paralysis 

of the worms allowing them to be expelled by peristalsis (reviewed by Martin, 1997). 

Additionally, if there were drug interactions at play, we would expect to see consistent 

results reflecting their interaction at each combination treatment, which we did not. The 

initial additive effect suggests the removal of susceptible and single-drug resistant 

worms, while the subsequent decrease in efficacy suggest survival of multi-drug resistant 

worms.  

In summary, this study illustrated that combination of single actives with starting 

efficacies below 70% resulted in an initial increase in efficacy, followed by a significant 

decrease over the subsequent three treatments. The use of combination anthelmintic 

therapy for the control of double resistant cyathostomin populations needs further 

evaluation to determine if it can be recommended as an effective viable approach for 

equine parasite control.  



 
 

Table 2.1Total larval counts (percent of total number of larvae recovered) following coprocultures of ten individual samples collected 
at pre- and two weeks post-treatment. Treatments were with oxibendazole (10 mg/kg) and pyrantel pamoate (6.6 mg base/kg). 
Numbers 1-8 represent the type treatment given (i.e. single active or combination of actives)a. 
 

 

)

  1  
(Pre) 

1  
(Post) 

2  
(Pre) 

2 
(Post) 

3  
(Pre) 

3 
(Post) 

4 
(Pre) 

4 
(Post) 

5  
(Pre) 

5 
(Post) 

6 
(Pre) 

6 
(Post) 

7  
(Pre) 

7 
(Post) 

8  
(Pre) 

8 
(Post) 

Total Larvae  2355  2188  5362  61  240  409  2280  254  640  287  1037  473  571  4255  1512  3062 
 

Cyathostominae  2166 
(92%) 

2021 
(92.4%) 

5216 
(97.3%) 

58 
(95%) 

239 
(99.6%) 

403 
(98.5%) 

2257 
(99%) 

249 
(98%) 

640 
(100%) 

287 
(100%) 

1037 
(100%) 

473 
(100%) 

564 
(98.8%) 

4253 
(99.9%) 

1509 
(99.8%) 

3054 
(99.7%) 

L1 Strongyles  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

L2 Strongyles  129 
(5.5%) 

123 
(5.62%) 

123 
(2.3%) 

3 
 (5%) 

1 
 (0.4%) 

6 
(1.5%) 

23 
(1%) 

5 
 (2%) 

0  0  0  0  7  
(1.2%) 

2  
(0.1%) 

3 
(0.02%) 

8  
(0.3%) 

Strongylus 
edentatus 

8 
(0.33%) 

0  2 
(0.04%) 

0  0  0  0  0  0  0  0  0  0  0  0  0 
 

Strongylus 
vulgaris 

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

Gyalocephalus 
capitatus 

14 
(0.59%) 

22  
(1%) 

6 
(0.11%) 

0  0  0  0  0  0  0  0  0  0  0  0  0 

Poteriostomum 
spp. 

38 
(1.6%) 

22  
(1%) 

15 
(0.28%) 

0  0  0  0  0  0  0  0  0  0  0  0  0 

a Treatments 1 and 2 were the initial single active treatments, while Treatments 7 and 8 were the final single active treatments. Treatments 3‐6 were a combination of 
the two actives 



 
 

 
 
 

 
Figure 2.1 A pictorial representation of the study design. Fecal egg counts (FECs) occurred bi-weekly for 8 weeks following each 
treatment. For the single active treatments (Treatments 1, 2, 7, and 8), the ponies were divided into two groups. For the combined 
active treatments (Treatments 3, 4, 5, and 6) all ponies were treated. The treatments used in this study were oxibendazole at 10 mg/kg 
body weight and pyrantel pamoate at 6.6 mg base/kg bodyweight.



 
 

 
 

 
Figure 2.2 A graphical representation showing the effects of single active treatments with 
either oxibendazole (OBZ) or pyrantel pamoate (PYR).  Figure A shows fecal egg counts 
as eggs per gram (EPG) pre- and post-treatment with either (OBZ) or (PYR).  Figure B 
shows the percent efficacies of the single active treatments calculated using the Fecal Egg 
Count Reduction Test. The 2015 treatments occurred prior to exposure of the 
combination therapy, while the 2016 treatments occurred after the final combination 
treatment. The error bars represent 95% confidence intervals (α=0.05).  



94 
 

 
Figure 2.3 . A graphical representation of the percent efficacies of the four combination 
treatments of oxibendazole and pyrantel pamoate (Treatments 3-6) calculated using the 
Fecal Egg Count Reduction Test (FECRT). The error bars represent 95% confidence 
intervals (α=0.05). Asterisks indicate significant differences at each time point between 
Treatment 3 and all other treatments. 
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Figure 2.4. A graphical representation of the observed and predicted percent efficacies of 
the combination treatments of oxibendazole and pyrantel pamoate. The initial predicted 
efficacy was calculated using the efficacies of the initial single active treatments and 
corresponds with the first combination treatment (Treatment 3). The final predicted 
efficacy was calculated using the efficacies of the final single active treatments and 
corresponds with the final combination treatment (Treatment 6). The error bars represent 
95% confidence intervals (α=0.05). Asterisks indicate significant differences between 
Treatment 6 and the final predicted efficacy. 



 
 

 
 

CHAPTER 3. DEALING WITH DOUBLE TROUBLE: COMBINATION 

DEWORMING WITH MOXIDECTIN AND OXIBENDAZOLE AGAINST 

DOUBLE-DRUG RESISTANT CYATHOSTOMINS TO MACROCYCLIC 

LACTONES 

3.1 Introduction 

 Cyathostomins are the most prevalent (Herd, 1990) and abundant (Nielsen et al., 

2010) helminth parasite infecting horses, and can cause the disease larval 

cyathostominosis. Most horses do not show clinical signs of infection, but the disease has 

been reported to be fatal in 50% of cases (Reid et al., 1995).  Presently, three anthelmintic 

drug classes are available for treating equine cyathostomins, namely the benzimidazoles 

(BZ), tetrahydropyrimidines (TP), and the macrocyclic lactones (ML) which on the 

Northern Hemisphere are comprised of ivermectin (IVM) and moxidectin (MOX), where 

the latter exhibits larvicidal efficacy (Nielsen et al., 2016). Cyathostomins have wide-

spread resistance to the BZ and resistance to the TP drug class is common, and some 

farms report multi-drug resistance (Peregrine et al., 2014). Reports of shortened egg-

reappearance periods (ERP) following ML treatment exist, indicating that resistance is 

developing to this last remaining drug class (Peregrine et al., 2014).  

 Combination deworming, or the simultaneous administration of two drugs with 

different modes of action targeting the same parasite, is proposed as an alternative 

method for parasite control (Leathwick and Hosking, 2009), and has proven useful 

against trichostrongylid parasites in sheep (Bartley et al., 2004, 2005; Entrocasso et al., 

2008; Le Jambre et al., 2010). Combination products are most sustainable for parasite 

control and preserving anthelmintic efficacy when little or no resistance exists to the drug 

classes combined (Barnes et al., 1995; Leathwick, 2012), and is heavily dependent upon a 

large refugia population, or a portion of the parasites that are not exposed to treatment 

(Leathwick, 2012). The maintenance of refugia provides a source of susceptible alleles to 

dilute resistant alleles (Leathwick et al., 2012, Muchiut et al., 2018). It is also 
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hypothesized that resistant worms have ecological disadvantages, otherwise known as 

fitness loss, in comparison to drug susceptible worms (Prichard et al., 1980). Resistance 

develops more slowly when a greater fitness loss is associated with resistance 

(Leathwick, 2013). Single-drug resistant worms would be targeted by the opposite drug, 

while multi-drug resistant worms would have such an extreme fitness loss that they 

would not be capable of passing on these alleles. Collectively, these studies suggest that 

combining a new and presumably effective drug in combination with a drug, to which 

resistance exists, may 1) decrease the rate of resistance development to the new drug, 

and/or 2) improve the efficacy of the drug to which resistance already exists by reducing 

the number of individuals carrying the resistant genotype by use of the effective drug. 

 Despite minimal scientific evidence, combination products are marketed for 

cyathostomin treatment in some countries and used off label in others (Bartram et al., 

2012; Scott and Pomroy, 2015; Lyons et al., 2016; Wilkes et al., 2017). Kaplan et al. 

(2014) found an additive effect for drug efficacy against equine cyathostomins when 

oxibendazole (OBZ) and pyrantel (PYR) were used in combination for a single treatment, 

where the starting efficacies were >80% for both drugs. In contrast, Scare et al. (2018a) 

observed the effects of repeated combination treatments of OBZ and PYR against a 

cyathostomin population with known resistance to both the BZ and TP drug classes 

(Lyons, 2003). Starting efficacies of each drug were much lower in the latter study than 

those reported by Kaplan et al. (2014). Scare et al. (2018) reported the first combination 

treatment to demonstrate an additive effect with an efficacy of 76%, however, three 

subsequent combination treatments resulted in significantly lower efficacies around 40%. 

Thus, this study suggested that combination treatments using actives with low starting 

efficacies is not a sustainable approach for cyathostomin control.  

 Resistance exists to all actives available for equine use , and it is unknown if 

combining an active to which resistance exists with a new active would provide any 

benefit for control against drug-resistant equine cyathostomins. The purpose of this study 

is to observe the effects of OBZ combined with MOX to target a cyathostomin population 

(Population S) harboring resistance to the BZ drug class, but has never before been 

exposed to an ML drug. Specifically, the aims were to 1) evaluate the efficacy of MOX 

against a cyathostomin population with established resistance to both BZ and TP 
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products, 2) evaluate the efficacy of a combination of MOX and OBZ over the course of 

two consecutive treatments against this cyathostomin population, and 3) evaluate OBZ 

efficacy before and after administering the two consecutive combination treatments.   

 

3.2 Materials and Methods 
3.2.1 Ponies 

A band of 20 Shetland ponies housed at the University of Kentucky that was 

originally established in 1974 was used in this study. The herd currently consists of 20 

mares, ranging from ages 5 to 23 years. The herd harbors a population of cyathostomin 

parasites, otherwise known as Population S, with documented resistance to the BZ and 

TP drug classes, (Lyons et al., 2003). The ponies are maintained outside year-round. 

During the warmer months (March to October), the ponies were kept in a dry lot with 

restricted access to striped grazing and were provided grass hay, consisting of either 

timothy or orchard grass. Hay was continuously provided during the winter months in 

addition to pasture access. Salt and mineral blocks were available ad libitum. The 

research was conducted under the approval from the University of Kentucky’s 

Institutional Animal Care and Use Committee (IACUC) under protocol number 2012-

1046. 

3.2.2 Study Design 

 This study took place between August 2016 and December 2018.  Fecal samples 

were collected at the time of each treatment and every two weeks thereafter. Ponies were 

weighed on an electronic scale prior to each treatment and anthelmintics were orally 

administered at 110% of their body weight. Treatments were administered when ten 

ponies exceeded 100 eggs per gram (EPG) or at 40 weeks post treatment. A total of five 

treatments were administered and all ponies received the same treatments. In order to 

establish the single active baseline efficacies, all ponies were first treated with OBZ on 

June 21, 2016 and then with MOX on August 24, 2016. All ponies were then 

administered a combination of MOX and OBZ for treatments three and four, which 
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occurred on March 28, 2017 and January 4, 2018, respectively. All ponies received OBZ 

for the fifth treatment on October 8, 2018 to observe any potential changes in its efficacy 

after the combination treatments. Drug efficacies were determined every two weeks by 

the fecal egg count reduction (FECR) test using the following formula: 

𝐹𝐸𝐶𝑅
𝑝𝑟𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐹𝐸𝐶𝑠 𝑝𝑜𝑠𝑡 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐹𝐸𝐶𝑠

𝑝𝑟𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐹𝐸𝐶𝑠
𝑥100% 

The FECR test was performed in two ways, 1) using the individual horse pre- and post-

treatment FECs and then calculating the mean efficacy, and 2) using the total herd pre- 

and post-treatment FECs. Egg reappearance periods were determined when the total herd 

efficacy was <85% calculated by the latter method. 

3.2.3 Anthelmintics 

A paste formulation of OBZ (Anthelcide EQ, Zoetis, Kalamazoo, MI, USA) and a 

gel formulation of MOX (Quest, Zoetis, Kalamazoo, MI, USA) were used in this study to 

represent the BZ and ML drug classes, respectively. Anthelmintics were administered 

according to the labeled doses, at 10 mg/kg bodyweight for OBZ and at 0.4 mg/kg 

bodyweight for MOX. Anthelmintics were prepared by weighing the dose on an 

electronic scale and placing in a second syringe for administration to eliminate the 

existence of air bubbles within syringes. 

3.2.4 Fecal egg counts 

 The Mini-FLOTAC technique, with a detection limit of 5 EPG, was used to 

perform all FECs in this study (Cringoli et al., 2017). Counts were performed in triplicate 

to obtain a mean egg count. Samples were prepared as described by Noel et al. (2017). 

Briefly, 5 g of feces homogenized within the Fill-FLOTAC containing 45 mL of glucose-

NaCl flotation medium with a specific gravity of at least 1.24. Both chambers of the 

Mini-FLOTAC slide was filled with the fecal slurry and allowed to rest for 10 minutes to 

allow for adequate flotation before microscopic examination and enumeration.  
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3.2.5 Coprocultures, Baermann procedure, and larval identification 

 To characterize the strongyle population, ten ponies were randomly selected using 

a random number generated (Random.org) and fecal samples were collected for 

coproculture and subsequent larval identification. Only fecal samples collected at the 

time of treatment and at two weeks post-treatment were used. The cultures were set up 

individually as described by Henriksen and Korsholm (1983) using 10 grams of feces.  

The cultures were placed in an incubator at 24 ⁰C for 14 days and moistened with tap as 

needed. Subsequently, samples were placed in a Baermann apparatus for 48 hours at 

room temperature for sedimentation. After this, the sediment was collected and were 

stored at 4°C and processed within two weeks. The harvested larvae were placed in a 

nematode counting chamber (Chalex Corp. Ketchum, ID, USA). The slide was heated to 

55°C for approximately 3 minutes in order to inactivate the larvae. All larvae present in 

the sample were then examined at 100X and identified to stage, genus, and species where 

applicable, as described by Russel (1948). 

3.2.6 Statistical analyses 

 Using the triplicate counts, mean FECs and 95% confidence intervals (α=0.05) 

were determined for each sample at all time points using Microsoft Excel 2016 

(Redmond, WA, USA). Drug efficacies were determined at each timepoint using the two 

FECRT methods as previously described in section 2.2.  

 Further statistical analyses were performed using SAS software (version 9.4, SAS 

Institute, Cary, North Carolina, USA). The individual horse FECs and FECR tests were 

used for these analyses. Any negative efficacies were replaced with 0%, and horses that 

had 0 EPG pre-treatment were excluded from the FECR analyses. All FECs and FECR 

tests were first log-transformed to achieve a normal distribution. All statistical analyses 

were interpreted at α=0.05. Because the shortest treatment interval was 30 weeks when 

ten horses reached the >100 EPG threshold, the analyses run did not include data beyond 

30 weeks for the other treatments.  
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3.2.6.1 Analyses for fecal egg counts 

Two mixed linear models with repeated measures over time were used to evaluate 

individual horse FECs pre- and post-treatment. In both models, the terms ‘replicate’ and 

‘date’ were kept as random effects. The first model evaluated FECs following the single 

active MOX treatment and both combination treatments, while the second evaluated 

FECs following the two OBZ treatments. The categorical variables for both models were 

‘treatment,’ ‘weeks post-treatment,’ and an interaction term of ‘weeks post treatment’ 

and ‘treatment.’ Whenever the interaction term of ‘treatment’ and ‘weeks post-treatment’ 

was found significant, a ‘least squares means’ analysis was used for a Tukey’s pairwise 

comparison (α=0.05).  

3.2.6.2 Analyses for efficacies 

Two mixed linear models with repeated measures over time were used to evaluate 

the drug efficacies per horse. ‘Date’ was kept as the random effect for both models. The 

first model compared the efficacies of MOX and the two combination treatments, and the 

second model compared the efficacies of the two OBZ treatments. For both models, the 

terms ‘treatment,’ ‘weeks post-treatment,’ and the interaction term ‘weeks post treatment’ 

and ‘treatment’ were the categorical variables. Whenever the interaction term ‘weeks post 

treatment’ and ‘treatment’ was found significant, a ‘least squares means’ analysis was 

used for a Tukey’s pairwise comparison (α=0.05).  

3.3 Results 
3.3.1 Fecal egg counts 

The mean strongyle egg counts prior to each treatment were higher at the 

beginning of this study and declined over the subsequent treatments, however these 

differences were not significant (Fig. 3.1 and Table 3.1).  

Fecal egg counts at two weeks post-treatment following MOX and both 

combination treatments were 0 EPG. The ERPs and associated efficacies can be found in 
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Table 3.2. Both OBZ treatments resulted in significantly lower FECs at two weeks post-

treatment (p<0.0001, Table 3.1).  

3.3.2 Anthelmintic efficacy 

The efficacy of MOX alone and both combination treatments were 100% (Fig. 

3.1). The efficacy of the first and last single active OBZ treatments were 46.7% and 

40.1%, respectively, and these were not significantly different (p=0.9890) (Table 3.1). 

There were no significant differences between the MOX and combination treatments at 

any common timepoint.  

3.3.3 Larval counts 

Larval counts from the coprocultures are presented in Table 3.3. Anytime MOX 

was used, whether alone of in combination, the larval counts were reduced to zero. On 

the other hand, larval counts increased after the first OBZ treatment, and only decreased 

76.7% after the final OBZ treatment. 

3.4 Discussion 

 Within the time frame of this study, the combination of MOX and OBZ did not 

provide evidence of an improved control regimen against cyathostomins with substantial 

BZ drug resistance compared to when either active was used alone. Moxidectin was 

100% efficacious throughout all treatments it was used (Fig. 3.1). Given the long-term 

resistance status of Population S cyathosomins to the BZ and TP drug classes, it appears 

that these resistance mechanisms did not affect the efficacy of MOX and no evidence of 

cross resistance was observed. The use of MOX for three treatments over a 22 month 

period did not affect the efficacy of OBZ, which did not change significantly over the 

course of the study (Table 3.1). 

The ERP estimates for the three treatments using MOX were variable, ranging 

from 12 to 18 weeks (Fig. 3.1). Historic ERPs reported for MOX were between 16 and 22 

weeks (Jacobs et al., 1995; Demeulenaere et al., 1997; DiPietro et al., 1997), but a couple 

aspects must be considered. First of all, previous studies lacked concensus in 
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methodology used for determining ERP, and secondly the Population S ponies utilized in 

the present study demonstrated moderate to low fecal egg counts and a declining trend 

over the course of the study. The latter may well be a consequence of efficacious MOX 

treatments and lowered reinfection pressure which was also influenced by the grazing 

restrictions the ponies were under.  However, low starting egg counts are likely to add 

variability to the ERP determination, which could explain the findings made in this study. 

Seasonality is also known to significnatly affect strongyle egg shedding, and this likely 

added a source of variability to the ERPs as well (Chapman et al., 2003; Wood et al., 

2012). 

Combining OBZ with MOX did not appear to affect efficacy. This was expected, 

as starting efficacy was already 100%. A measurable effect would have been expected, if 

OBZ had been combined with another active with a starting efficacy of less than 100%. 

Although the last combination treatment had longer ERP than the two previous 

treatments, more studies are needed to investigate whether OBZ can positively affect 

ERP. If such an effect is real, it might be due to changes in cyathostomin species 

composition effected by the OBZ treatment, and this could be investigated further using 

molecular identification of cyathostomin species present.  

Finally, we did not observe any significant changes in OBZ efficacy after the two 

combination treatments. There are several possible reasons for this. First of all, it may 

well be that just two combination treatments administered over the course of one year are 

far from enough to affect single active efficacy. For example, Leathwick (2013) 

performed a simulation model over 40 years of selection in order to see the effects of 

combination treatments where the initial frequency of resistance was high. Secondly, BZ 

resistance has existed within this population since the 1970s (Lyons et al., 2003), and 

although the MOX treatments would remove all luminal stages and also exhibit larvicidal 

efficacy, a considerable proportion of encysted larvae would still survive every treatment. 

The next generation of adults in the intestinal lumen would be recruited from these 

surviving mucosal larvae, which all would carry genetic alleles conferring OBZ 

resistance.  Again, this study only involved two combination treatments, which is 

unlikely to be enough to observe any shifts in OBZ efficacy over time. The long ERP 

following MOX treatment and the general trend towards lowering egg count levels over 
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time necessitated very long treatment intervals (30 weeks or more), which must have 

slowed down any selection process, should it have occurred. Nevertheless, this study 

speaks to the challenges of sustainable control programs due to the hypobiotic stages, and 

evidence for combination deworming in other parasite species can not be extrapolated to 

managing multi-drug resistant cyathostomins. For future studies, it may be of value to 

substitute MOX with ivermectin as the expected ERP would be considerably shorter, 

allowing for more treatments within a given year.  

Furthermore, the benefits of combination treatments are contingent upon the size 

of the refugia population (Leathwick et al., 2012) . Regarding cyathostomins, there are 

three possible sources of refugia, which are the free-living environmental stages, luminal 

stages in untreated horses, and the encysted stages when a larvicidal drug is not used. In 

this study, the refugia population was minimal as all ponies received treatment 

simultaneously, and MOX provides some larvicidal efficacy. While this situation is not 

ideal, this study modeled similar situations on managed horse farms in the United States 

where it is common practice to treat all horses simultaneously for general prevention 

(Nielsen et al., 2018; Scare et al., 2018b). While it is proposed that anthelmintic 

resistance may be associated with a fitness loss (Prichard et al., 1980), this study 

continues to support the finding that double-drug resistant cyathostomins do not appear to 

be affected by any apparent fitness loss as resistance is maintained even in the absence of 

selection pressure by the BZ drug class (Lyons et al., 2003). 

In summary, this study did not identify any clear consequences of combining 

MOX and OBZ for treatment of a cyathostomin population with resistance to both 

benzimidazoles and pyrimidines. However, a shift of MOX ERP towards 18 weeks was 

noted during the study, which warrants further investigation. Similarly, it would be of 

value to evaluate the consequences of such combinations over longer time periods and 

allowing more treatments to fully establish what the outcomes may be. 
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Table 3.1 Results of OBZ treatments administered before (Treatment 1) and after 
(Treatment 5) a single MOX and two MOX/OBZ combination treatments. The top 
portion of the table shows results as the mean of individual pony FECs, and the bottom 
portion shows results of the FECRT. 95% confidence intervals are included in 
parenthesis (α=0.05). 
 

Mean of individual EPG 
 Initial  2 weeks PT 
Treatment 1-OBZ 447.8 (200.4-695.2)a 260.6 (125.2-396.1)a 

Treatment 5-OBZ 169.6 (31.7-307.5)b 110.3 (19.1-201.5)b 

Mean herd efficacy (FECRT) 
 2 weeks PT (%) 
Treatment 1-OBZ 46.7 
Treatment 5-OBZ 40.1 
Abbreviations: OBZ, oxibendazole; MOX, moxidectin; EPG, eggs per gram 
feces; PT, post treatment; FECRT, fecal egg count reduction test 
Superscript letters indicate significant differences between time points 
(α=0.05). 
 
 
 
 
Table 3.2 Egg reappearance periods following moxidectin single active and two 
combination treatments. The ERPs are defined when the mean herd efficacy was <85%. 
The actual percent efficacies are included in parentheses. 
 
Treatment Time of ERP in weeks 
MOX, single active 16 (67.2%) 
1st Combination Treatment (MOX/OBZ) 12 (80.4%) 
2nd Combination Treatment (MOX/OBZ) 18 (82.5%) 
Abbreviations: MOX, moxidectin; OBZ, oxibendazole; ERP, egg reappearance period 
 
 
 
 
 
 
 
 
 
 
  



 
 

 
Table 3.3Total larval counts (percent of total number of larvae recovered) following coprocultures of ten individual samples collected 
at pre- and two weeks post-treatment. Treatments were with oxibendazole (10 mg/kg), moxidectin (0.4 mg/kg), or a combination of 
the two. No strongylin species were encountered. 
 
  OBZ‐1  

(Pre) 
OBZ‐1
(Post) 

MOX
(Pre) 

MOX 
(Post) 

Combo‐1 
(Pre) 

Combo‐1 
(Post) 

Combo‐2 
(Pre) 

Combo‐2 
(Post) 

OBZ‐2
(Pre) 

OBZ‐2 
(Post) 

Total Larvae  1512  3062  1350  0  246  0  216  0  43  10 
Cyathostominae  1509  3054  1340  0  242  0  196  0  43  10 

L1 Strongyles  0  0  0  0  0  0  0  0  0  0 

L2 Strongyles  3  8  10  0  4  0  20  0  0  0 



 
 

 

Figure 3.1 Graphical representations of the single active moxidectin (MOX) treatment 
and the combination treatments of oxibendazole (OBZ) and MOX. Figure A shows fecal 
egg counts as eggs per gram (EPG). Error bars represent 95% confidence intervals 
(α=0.05). Figure B shows the percent efficacy of the treatments using the fecal egg count 
reduction (FECR) test calculated using the total herd fecal egg counts pre- and post-
treatment.



 
 

CHAPTER 4. LONG LIVE THE WORMS: METHODS FOR MAINTAINING AND 

ASSESSING THE VIABILITY OF INTESTINAL STAGES OF PARASCARIS SPP. 

IN VITRO 

This research was originally published in Parasitology 146, 685-693 (Cambridge 
University Press License #4593111392260). 

4.1 Introduction 

 Parascaris spp. is a clinically important helminth parasite infecting foals (Clayton 
and Duncan, 1978; Cribb et al. 2006; Tatz et al. 2012) with anthelmintic resistance 
reported world-wide (Peregrine et al. 2014). Anthelmintic resistance has not been 
described for other mammalian ascarid species. The ability to maintain gastro-intestinal 
helminths in vitro would enhance the experimental tractability of nematode parasites by 
facilitating the application of a range of molecular and biochemical tools and analyses in 
clinically relevant species.  Such an advance would prompt a paradigm shift in 
parasitology research permitting progress in key areas including evaluation of  
anthelmintics and natural products with anthelmintic properties, (Rapson et al. 1985; 
Brownlee et al. 1997; O’Grady and Kotze, 2004; Janssen et al. 2013b), application of 
transcriptomics to investigate the genetic mechanisms driving anthelmintic resistance 
(Janssen et al. 2013b), induction of RNAi interference for the identification of novel drug 
targets (McCoy et al. 2015), analysis of excretory and secretory products (Young et al. 
1995; Geldhof et al. 2000, Islam et al. 2004; Cribb et al. 2006; Burk et al. 2014; Thomas 
et al. 2016), and interrogation of host-parasite interactions (Kotze and McClure, 2001).  

 Most of the literature on in vitro culture and maintenance of ascarid parasites has 
focused on the pig nematode, Ascaris suum, where a variety of culture conditions have 
been employed.  Some reports describe in vitro maintenance of larval stages (Douvres 
and Urban, 1983, 1986), however the size and nutrient requirements of the intestinal 
stages introduce new challenges to in vitro maintenance.  Chehayeb et al. (2014) 
maintained adult A. suum collected from the small intestine of pigs for 24 hours in 
Locke’s solution where glucose was provided as the main nutrient. Weisblat and Russel 
(1976) described culturing A. suum in artificial perienteric fluid (APF), and Brownlee et 
al. (1997) maintained worms in APF for five days.  Islam et al. (2004) maintained adult 
A. suum under both aerobic and anaerobic conditions to observe changes in proteome 
expression patterns. Worms were maintained in Roswell Park Memorial Institute- 1640 
(RPMI-1640) medium, and viability was maintained in both systems for over two weeks. 
Dmitryjuk et al. (2014) sustained adult A. suum in Ascaris ringer’s solution (ARS) for 20 
hours without any nutrient, while McCoy et al. (2015) maintained A. suum for eight days 
in ARS without any nutrient. In contrast, only two studies have reported the in vitro 
maintenance of Parascaris spp. Burk et al. (2014) reported culturing of larval stages and 
maintenance of adult stages to investigate the production of excretory-secretory products. 
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In that study, two adult worms were maintained in RPMI-1640 medium at 37˚C for five 
days. Janssen et al. (2013b) maintained an undisclosed number of adult worms in APF for 
30 hours at 37˚C for in vitro ivermectin exposure. No attempts have been made to 
evaluate the requirements for long term in vitro maintenance of Parascaris spp. intestinal 
stages, nor to characterize their preferred environment and nutrient requirements. 

 In order to determine the optimum in vitro requirements and monitor the effects 
of in vitro drug exposure, it is necessary to ascertain helminth longevity and viability. In 
vitro evaluation of anthelmintic efficacy in adult worms has been done by determining 
worm longevity by classifying them on an alive or dead basis (Eguale et al. 2007a,b; Hu 
et al. 2013). While Hu et al. (2013) implemented a scoring system on a 0-3 scale to assess 
worm movement, it was still largely subjective and the results considered worms only on 
an alive (score 1-3) or dead (score 0) basis. Similarly, Richards et al. (1995), described a 
simple method to monitor drug sensitivity of Necator americanus and Ancylostoma 
caninum based on the observation of worm motility of treated versus control worms. 
Worms were characterized as either active or inactive after gentle prodding. Neither the 
method proposed by Hu et al. (2013) nor Richards et al. (1995) allows for the objective 
evaluation of worm viability over a series of time points. A similar subjective method 
was reported by Dmitryjuk et al. (2014) to monitor the effects of in vitro anthelmintic 
exposure to adult A. suum. Later, a motility assay was developed by O’Grady and Kotze 
(2004) that utilized a scoring system to monitor anthelmintic efficacy against 
Haemonchus contortus. While the scoring system allows one to observe a decline in 
viability over time, the definition of each score is subjective as scores are assigned based 
on the investigators definition of significant movement, and a set amount of time for each 
observation was not described. Marcellino et al. (2012) developed the WormAssay, a 
high throughput screening method to assess the anthelmintic efficacy against 
macroparasites based on motility. The WormAssay uses an open source computer 
software program and a camera to automatically assess worm movement and provide a 
quantitative measurement. Worms must be placed in microtiter plates, and the system is 
compatible with plates of either 6, 12, 24, 48, or 96 wells. The Parascaris species, 
however, are still too large for the well plates used in this system. Even the largest wells 
(6-well plate) measuring approximately 3.48 cm in diameter are not large enough for a 
mature Parascaris spp., which are commonly over 10 cm long (Clayton and Duncan, 
1978). The Worminator uses a similar method but is specifically designed for 
determining the motility of microscopic nematode stages (Storey et al. 2014).   

 The purpose of this study was to characterize appropriate in vitro conditions for 
maintaining intestinal Parascaris spp., and to establish a scoring system to monitor worm 
viability over several time points.   



110 
 

4.2 Materials and methods 
4.2.1 Parasite sources 

The study took place over the course of eight foal necropsies from October 2016 

to October 2017. The foals were born in a herd housed at the University of Kentucky that 

has not been treated with any anthelmintics since 1979 and has been documented to 

harbor a variety of equine parasites through natural infection (Lyons et al. 1990). The 

foals employed in the study consisted of five colts and three fillies. Foals were humanely 

euthanized when they reached 4.5-5 months old and subsequently necropsied. The 

research was conducted following approval from the University of Kentucky’s 

Institutional Animal Care and Use Committee (IACUC) under protocol number 2012-

1046. 

4.2.2 Study design 

 During the first phase of this study (necropsies 1-3) worms were monitored on an 

alive/dead basis in order to make initial observations on the necessary conditions for in 

vitro maintenance and nutrient requirements of Parascaris spp. specimens. The second 

phase (necropsies 4-8) commenced following the development of a scoring system to 

objectively assess the viability of Parascaris spp. specimens under various environmental 

and nutrient conditions.  

A variety of different media types, nutrient supplements and environmental 

conditions were examined (see Section 2.4.1 and 2.4.2). The number of worms evaluated 

for each media, nutrient and environmental condition (CO2 and platform rocker) is 

described in Table 4.1. 

4.2.3 Collection of Parascaris spp. 

 Following necropsy, the small intestine was detached from the stomach and 

cecum. The intestinal contents were milked out onto a 425µ mesh sieve. Room 

temperature (RT) tap water was slowly added to the sieve to dilute the contents to better 

visualize the worms. Intestinal stages of Parascaris spp. (adult and fourth larval stage, 

L4) specimens were recovered using a spay hook and placed in a container of RT media 
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of either ARS (see Table 4.2 for composition) (necropsies 1-6) or RPMI-1640 (R8758, 

Sigma-Aldrich, St. Louis, MO, US) (necropsies 7 and 8). The container was placed into a 

water bath maintained at 37˚C for transport to the laboratory. Worms were classified as 

adult or L4, and adult worms were further characterized by sex. Worms were considered 

adults when gonads were visible as white material in the mid-section of the worm. Males 

were differentiated from females by being smaller and having less gonad material than 

females, and occasionally presented with a curved hook in the tail. Immature worms (L4) 

did not have any visible gonad material. 

4.2.4 In vitro maintenance of Parascaris spp. 

Worms were maintained in vented TPP tissue culture flasks (300 cm2, MidSci, St. 

Louis, MO) containing 200 mL of the pre-assigned medium. Media were changed every 

12 hours. This was done by placing a cell strainer of 400 µm pore size (pluriSelect Life 

Science, Leipzig, Germany) over the mouth of the flask and allowing the old media to 

flow through while keeping the worms in the flask to limit handling and subsequent 

damage. New media, pre-warmed to 37˚C, were then added to the flask. The flasks were 

kept in the pre-determined incubator with or without CO2 (5%) supplementation at 37˚C.  

In the first phase of the study (necropsies 1-3) worms were maintained in groups 

of four or five, containing two males and at least one female and one L4 worm. In the 

second phase of the study (necropsies 4-8) a total of five worms were placed in each 

culture flask consisting of either two males, one female, and two immatures, or three 

males, one female, and one L4 worm. The variation in worm stage/sex within each cohort 

was due to the number of worms per category collected at each necropsy. 

4.2.4.1 Preparation of culture media 

 Media (ARS, APF, ARS 3x Tris, APF 2x NaCl, physiological saline (PS) 

(Hospira Inc, Lake Forest, IL, US), homemade physiological saline (HMPS), and RPMI-

1640; see Table 4.2) were freshly prepared, stored at 4˚C, and then warmed to 37˚C prior 

to adding to the culture flasks. Streptomycin (1mg /1L), Penicillin (1000 U/1L) and 
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Amphotericin-B (10 µg/1L) were added to all media types, except when Escherichia coli 

was added as a nutrient (see 2.4.2).  All media types were employed within 24 hours of 

preparation.  

4.2.4.2 Nutrient supplementation 

 A list of the nutrients and their respective concentrations can be found in Table 

4.2.  Escherichia coli OP50 (University of Kentucky) was prepared in the following 

manner. LB (lysogeny broth) (Miller formulation, ThermoFisher Scientific, Waltham, 

MA) and LB-agar (Fisher Scientific, Hampton, NH) were prepared according to the 

manufacturer’s instructions. Escherichia coli OP50 (University of Kentucky) were 

cultured in 15 mL of LB broth overnight at 37˚C in a shaking incubator at 225 rpm. 

Following incubation, cells were pelleted by centrifugation at 3220g for eight minutes. 

After centrifugation, the supernatant was decanted and pelleted. E. coli were re-

suspended in 15 mL of filter-sterilized culture media. Colony forming units (CFUs) were 

determined for the E. coli suspension by plating ten-fold serial dilutions to determine the 

starting culture concentration (i.e. input). The remaining suspension was equally divided 

and added to the assigned flasks. One flask was kept without worms as a control. Prior to 

the media changes, an aliquot of the media from the culture flasks, including the flask 

without worms, was plated to determine the final concentration (i.e. output) of surviving 

E. coli. 

4.2.4.3 Environmental conditions 

 The environmental conditions assessed were the use of a 5% CO2 incubator and 

platform rocker. The number of flasks assigned to each condition can be found in Table 

4.1. Pre-assigned flasks were placed in a 5% CO2 incubator at 37˚C for the entirety of 

their survival. Flasks assigned to the platform rocker (Hofer Scientific Instruments, San 

Francisco, CA model PR70) were maintained at approximately 60 rpm within the air-

only incubator at 37˚C for the entirety of their survival.  
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4.2.5 Longevity and viability assessment of Parascaris spp. 

For the first phase of the study (necropsies 1-3), worms were monitored on an 

alive or dead basis and the number of worms surviving per flask at each time point/media 

change was recorded (i.e. longevity). Worms were considered dead when they became 

flaccid and/or displayed signs of decay. Flaccidity was determined by placing the worm 

over a pair of forceps at midpoint and carefully lifting it out of the medium. If the worm 

draped loosely over the forceps and appeared as an acute angle, it was considered flaccid. 

Decay was noted visually and determined as breakdown of the exterior cuticle. The 

second phase of the study (necropsies 4-8) began with the development of an objective 

scoring system to monitor worm viability. Prior to each medium change, worm viability 

was assessed and awarded a score according to the descriptions in Table 4.3. Each worm 

was observed for 15 seconds for movement while remaining in the flask. If no movement 

occurred during the 15 second observatory period, forceps were used to gently stimulate 

the worm in an attempt to initiate movement. If still no movement was observed, the 

forceps were used to assess flaccidity and check for decay as previously described. Dead 

worms were removed from the flask and discarded.  

4.2.6 Statistical analyses 

4.2.6.1 Phase one: Longevity 

 For the first phase of the study (necropsies 1-3), a percent reduction in the number 

of worms in each flask was calculated at each time point. The final time of longevity was 

considered when all worms in a flask had died. Mean longevity with 95% confidence 

intervals (CI), and the range for media, nutrient, and incubator type were calculated using 

Microsoft Excel 2016 (Redmond, WA, USA). These values can be found in Table 4.4. 

Further statistical analyses were performed using SAS software (version 9.4, SAS 

Institute, Cary, North Carolina, USA). Here, four mixed linear models with repeated 

measures across time were constructed to determine which media, nutrient 

supplementation profile, and incubator type significantly affected worm longevity. 

‘Percent loss’ was the response variable for all analyses.  The first model assessed the 
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longevity of worms maintained in the different media types without nutrient 

supplementation or CO2 incubator. The covariates were ‘Time’ and the interaction term 

‘media ID*none’, where ‘none’ implied an air incubator and no nutrients were used. 

‘Necropsy date’ was kept as a random effect.  The second analysis was used to analyze 

the supplementation with glucose in all types of media because it was the only nutrient 

tested across all media types. The interaction term ‘Media ID*glucose’ was the covariate 

analyzed and ‘necropsy date’ was kept as the random effect. The third model examined 

worm longevity when maintained in ARS media supplemented with either glucose, 

gelatin, E. coli, yeast, FBS, cholesterol, or gelatin and glucose. ARS was the only 

medium supplemented with all the nutrients and therefore was the only medium 

examined in this model. ‘Nutrient’ and ‘time’ were the covariates examined. ‘Necropsy 

date’ and ‘CO2’ were kept as random effects. The fourth model examined the use of the 

CO2 incubator across all media and nutrient supplements. The covariates examined were 

‘time’ and ‘CO2’. ‘Necropsy date’, ‘Media ID’ and ‘nutrient’ were kept as random effects. 

The fifth analysis analyzed the stage (L4 or adult) and sex (adult worms only) over time, 

regardless of media, nutrients used, or the use of the CO2 incubator. The covariates 

analyzed were ‘stage’ and ‘sex’. ‘Media ID’ and ‘necropsy date’ were kept as random 

effects. Any time a significant covariate (α=0.05) was observed, a ‘least squares means’ 

analysis was performed for a Tukey’s pair-wise comparison. 

4.2.6.2 Phase two: Viability 

 For the second phase of the study (necropsies 4-8), the scoring system (see Table 

4.3) was used to monitor worm viability. Mean worm viability per flask at each time 

point was calculated. Worms that had died continued to receive a score of zero and were 

included in the mean calculation until all the worms within the same flask had died. Mean 

values and 95% confidence intervals (CI) were calculated using Microsoft Excel 2016 

(Redmond, WA, USA). The percent viability per flask was calculated in Microsoft Excel 

for each time point using the following formula, where ‘X’ refers to each time point: 

% 𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 100
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 𝑠𝑐𝑜𝑟𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑋

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑐𝑜𝑟𝑒
 100%  
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Further statistical analyses were performed using SAS software (version 9.4, SAS 

Institute, Cary, North Carolina, USA). Here, a total of six mixed linear models with 

repeated measures across time were performed to determine which media, nutrients, and 

environmental conditions significantly affected worm viability. For all models, ‘percent 

viability’ was the response variable. The first model assessed the viability of worms 

maintained in the different media without nutrient supplementation, CO2 incubator, or 

platform rocker. The covariates were ‘time’ and the interaction term ‘media ID*none’, 

where ‘none’ implied that no nutrients or environmental conditions were implemented. 

‘Necropsy date’ was kept as a random effect. The second model analyzed worm viability 

when maintained in one of the saline-based media (i.e. ARS, APF, ARS 3x Tris, APF 2x 

NaCl, PS, HM PS) with glucose compared to worm viability maintained in the same 

saline-based media without glucose. Glucose was the only nutrient added across all 

saline-based media types and therefore was the only nutrient analyzed in this model. The 

covariates examined were ‘time’ and the interaction term ‘media ID*glucose’.  ‘Necropsy 

date’ was kept as a random effect. The third model examined worm viability when 

maintained in APF media supplemented with either glucose, FBS, cholesterol, a 

combination of FBS and cholesterol, Tween only control, or as a no nutrient control. APF 

was the only medium supplemented with all the nutrients and therefore was the only 

medium examined in this model. ‘Nutrient’ and ‘time’ were the covariates examined. 

‘Necropsy date’ and ‘environment’ (i.e. CO2 incubator or platform rocker) were kept as 

random effects. The fourth model examined the use of the platform rocker and CO2 

incubator across all media and nutrient supplements. The covariates examined were 

‘time’ and ‘environment’. ‘Necropsy date’, ‘Media ID’ and ‘nutrient’ were kept as 

random effects. The fifth model analyzed the use of RPMI against all media, nutrients, 

and environmental conditions. The covariate tested was ‘RPMI,’ and ‘necropsy date’ was 

kept as random effect. The last model analyzed the stage (L4 or adult) and sex (adult 

worms only) over time, regardless of media, nutrients used, or the use of the CO2 

incubator or platform rocker. The covariates analyzed were ‘stage’ and ‘sex’. ‘Media ID’, 

and ‘necropsy date’ were kept as random effects. Any time a significant covariate 

(α=0.05) was observed, a ‘least squares means’ analysis was performed for a Tukey’s 

pair-wise comparison.  
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4.3 Results 

 A total of 212 cultures were performed and a total of 1045 Parascaris spp. worms 

were used. The number of cultures and worms per media type, nutrient supplementation, 

and environmental condition (incubator type and/or platform rocker) can be found in 

Table 4.2. 

4.3.1 Phase one: Longevity 

 For the first phase of the study pertaining to worm longevity (necropsies 1-3), a 

total of 210 worms were used consisting of 98 adult males, 54 adult females, and 58 L4s. 

During this phase of the study, the worms lived a maximum of 84 hours. The media type 

employed when considered without nutrient supplementation or CO2 did have a 

significant effect on worm longevity (p=0.0100), however the least squares means 

pairwise comparison did not identify any significant differences between media. ARS 

was the only media type significantly affecting worm viability with the addition of 

glucose. Worms maintained in ARS supplemented with glucose lived significantly longer 

than worms maintained in ARS alone (p<0.0001). There were no significant differences 

observed in any of the other media types supplemented with glucose compared to when 

glucose was not added. Regarding the various types of nutrient supplementation with the 

ARS media, worms maintained with glucose (p<0.0006) or a combination of glucose and 

gelatin (p<0.0001) had significantly better longevity than worms maintained without any 

nutrient. Worms maintained with glucose had significantly better longevity than worms 

maintained with E. coli (p=0.0008), yeast (p<0.0001), FBS (p=0.0013), or cholesterol 

(p=0.0279). Similarly, worms maintained with a combination of glucose and gelatin had 

significantly better longevity than those maintained with gelatin only (p=0.0484), E. coli 

(p<0.0001), yeast (p<0.0001), FBS (p<0.0001), or cholesterol (p=0.0008). The mean 

longevity, 95% confidence intervals, and range of longevity for the different nutrients and 

incubator type can be found in Table 4.4. The use of a CO2 incubator did not significantly 

affect worm longevity (p=0.2854). ‘Adult male (p=0.0021) and female (p<0.0001) 

worms had significantly better longevity than immature worms, however there was no 

significant difference between males and females (p=0.5780). The mean longevity, 95% 



117 
 

confidence intervals, and range of longevity for immatures, males, and females can be 

found in Table 4.4. 

4.3.2 Phase two: Viability 

 For the second phase of the study pertaining to worm viability (necropsies 4-8), a 

total of 835 worms were used, consisting of 350 adult males, 215 adult females, and 270 

L4s. The RPMI-1640 media resulted in significantly better worm viability than any of the 

other media (p<0.0001) (Figure 4.1). APF 2x NaCl had significantly better viability than 

ARS (p=0.0002). APF (p=0.0005), ARS 3x Tris (p=0.0169), and APF 2x NaCl 

(p<0.0001) had significantly better viability than the homemade physiological saline. The 

addition of glucose to the saline-based media did not significantly affect worm viability 

compared to those maintained in the saline-based media without glucose (p=0.3048). The 

addition of a nutrient to the APF medium did significantly decrease worm viability 

(p=0.0413), however the least squares means pairwise comparison did not identify any 

significant differences (Figure 4.2). The use of the platform rocker resulted in 

significantly better worm viability than worms maintained without the rocker (p=0.0305), 

while there were no significant differences in worm viability between the use of an air or 

CO2 incubator (p=1.0000) (Figure 4.3). Overall, worms maintained in RPMI-1640 had 

significantly better viability than worms maintained with any other method regardless of 

media, nutrient, or environmental condition (p<0.0001) (Figures 4.1 and 4.2). In regards 

to worm stage and sex, adult worms regardless of sex had significantly better viability 

than L4s (p<0.0001) and females had significantly better viability than males (p<0.0001) 

across all media types, nutrient supplementation, and environmental conditions. 

4.4 Discussion 

 This is the first study to determine the preferred in vitro conditions for the 

intestinal stages of Parascaris spp., and to describe a reliable and objective method for 

assessing their viability. Worm motility and the presence of muscle tone appears to be 

reliable indicator for assessing in vitro conditions. This study is the first to report a 

difference in in vitro worm viability for Parascaris spp. between L4 and adult stages, as 

well as between male and female adult worms.  
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Intestinal stages of Parascaris spp. must be active swimmers against the flow of 

intestinal contents in order to maintain their position in the host and avoid being expelled 

by peristalsis (Drudge and Lyons, 1983). Therefore, worm responses to in vitro 

conditions should be judged based on activity level, where a decrease in activity likely 

reflects a decrease in overall worm viability. Other scoring systems for gastrointestinal 

nematodes have been developed, but these did not provide strict parameters of movement 

per score (Richards et al. 1995; O’Grady and Kotze, 2004). While Parascaris spp. 

intestinal stages are not compatible with the current size restrictions of the WormAssay 

(Marcellino et al. 2012), a modification of this technique to accommodate larger 

macroparasites should be a target for future research. 

The use of RPMI-1640 media resulted in significantly better worm viability than 

all other media types regardless of nutrient supplementation and/or environmental 

condition (Figures 4.1 and 4.2). Worms lived a maximum of 168 hours in RPMI-1640 

(Figures 4.1 and 4.2), which is well above the 84 and 96 hours achieved in phase 1 and 

phase 2, respectively, with the addition of glucose (Table 4.3 and Figure 4.2). At this 

time, it is unknown which components of the RPMI-1640 media caused this 

improvement in viability and longevity, but it is likely due to the combination of vitamins 

and amino acids that were missing from the other media evaluated. This finding is in 

agreement with Urban et al. (1984) who found improved growth and survival of L4 A. 

suum when cultured in RPMI-1640 rather than a saline medium supplemented with 

glucose. 

The use of sugar (glucose or dextrose) as a nutrient is reported in several other 

studies maintaining adult stages of A. suum (Weisblat and Russel, 1976; Brownlee et al. 

1997; Chehayeb et al. 2014), and one study used dextrose for maintaining adult P. 

equorum (Janssen et al. 2013b). While it is assumed that sugar is necessary for the in 

vitro cultivation of Ascaris and Parascaris species, this had not previously been 

evaluated in a published study. In phases one and two of this study, Parascaris spp. 

survived a maximum of 84 and 96 hours, respectively, when glucose was added as a 

nutrient and it did not significantly affect worm viability. The success of the RPMI-1640, 

but not the glucose provides evidence that Parascaris spp. intestinal stages require 
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different and/or additional nutrients beyond glucose for sustainment in vitro. It is 

interesting that A. suum can be maintained for eight days in ARS without any nutrient 

supplementation (McCoy et al. 2015). In the current study, Parascaris spp. did not live 

more than 168 hours in any of the media regardless of the media type or nutrient 

provided. This may suggest that adult A. suum and Parascaris spp. worms have very 

different nutrient and metabolic requirements, however direct conclusions cannot be 

made at this time. A comparative study could be performed to determine the viability of 

Parascaris spp. and A. suum when supplemented with different nutrients, and analyses of 

the media after a nutrient has been provided could determine if the worms successfully 

ingested the nutrient. If so, the effectiveness of the worm to generate energy from the 

given nutrient could be assessed using metabolic techniques. Such findings would 

provide significant advances toward in vitro techniques of the parasitic stages.  

 Douvres and Urban (1983, 1986) described methods for culturing larval stages of 

Ascaris species utilizing various gaseous stages, including 5% CO2. Several studies 

report the maintenance of adult A. suum worms without CO2 (Weisblat and Russel, 1976; 

Brownlee et al. 1997; Chehayeb et al. 2014; McCoy et al. 2015).  Janssen et al. (2013b) 

maintained P. equorum adult worms without 5% CO2 while Burk et al. (2014) cultured 

second and third larval stages of P. equorum under 5% CO2 conditions, but not the adult 

worms. Based on these reports, it appears that adult worms may not require CO2, but this 

had not been specifically evaluated for Parascaris spp. The current study did not find the 

use of 5% CO2 to significantly affect worm longevity or viability (Figure 4.3). However, 

this study did not investigate the impact of CO2 on worms maintained in RPMI-1640 and 

this should be evaluated in future studies. 

 The use of a platform rocker for in vitro maintenance of ascarid parasites had not 

been evaluated prior to this study. In this study, the use of the rocker significantly 

improved worm viability (Figure 4.3), however no firm conclusions can be made at this 

time. The platform rocker could not be tested simultaneously with CO2 due to limited 

space in the incubator. Furthermore, this study did not evaluate RPMI-140 media with the 

use of the rocker, and this should be investigated in future studies. 
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  It is also known that nematodes are unable to synthesize cholesterol de novo 

(Dutky et al. 1967; Cole and Krusberg, 1968), however this study did not find the 

addition of cholesterol to improve worm longevity or viability. Additionally, the addition 

of FBS did not significantly improve viability. These findings are interesting because 

Urban et al. (1984) found the addition of cholesterol (50 µg/mL) and serum (10%) to 

RPMI-1640 to have an additive effect on the growth of L4 A. suum. Urban et al. (1984) 

also found that an increase in cholesterol concentration to 250 µg/mL from 50 µg/mL 

reversed this effect. While the aforementioned study examined the development of larval 

stages, it is possible that a similar scenario was observed in the current study where the 

Parascaris spp. intestinal stages were negatively impacted by the cholesterol 

concentration examined herein. Future studies should investigate varying concentrations 

of cholesterol to determine if there is an optimum concentration and/or a tolerance 

threshold.  

 The varying sample sizes between the nutrient trials are a limitation to this study, 

particularly in regards to the number of worms used for evaluating the RPMI-1640 media 

and the saline-based media supplemented with cholesterol, FBS, yeast, and E. coli (Table 

4.1). Variations occurred due to the number of worms harvested at each necropsy. While 

the results of this study clearly support the recommendation for using RPMI-1640 for 

maintaining intestinal stages of Parascaris spp., the conclusions should be interpreted 

with caution and warrant further investigation. The effects of stocking density and 

keeping male, female, and immature worms together would also provide interesting 

points for future studies. 

It is important to note that the in vivo immune responses exhibited by the foal 

prior to necropsy may also affect worm viability in vitro. Foals typically gain immunity 

to Parascaris spp. worms around nine months of age (Clayton and Duncan, 1979). Some 

response by the immune system to the present parasites is expected and it is unknown 

how the parasites were affected prior to harvest and culturing. This variability was 

controlled for by using foals which were all born into the same herd, and harvesting the 

worms when the foals were between 4.5-5 months of age which is the peak age for 
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Parascaris spp. burden (Fabiani et al. 2016) and thus minimizing the potential influence 

of host immunity. 

In summary, the scoring system proved to be a useful method for monitoring L4 

and adult worm viability in vitro, and should be considered for future studies. This study 

found RPMI-1640 media to significantly improve worm viability. The use of a 5% CO2 

incubator did not significantly affect worm viability, but a platform rocker significantly 

increased viability. The viability of adult worms was also significantly better than that of 

L4s. Further investigations should be performed to examine the effects of a platform 

rocker and CO2 incubator when RPMI-1640 is used as the culture media.  

 
  



 
 

Table 4.1 . Distribution of intestinal stages of Parascaris spp. specimens among the different media, nutrients, and environmental 
conditions (i.e. CO2 incubator, platform rocker) for in vitro maintenance. The number of worms is listed followed by the number of 
cultures in parenthesis. The top table is from phase one of the study (necropsies 1-3) for initial observations regarding worm longevity. 
The bottom table is from phase two of the study (necropsies 4-8) when worm viability was assessed. Cultures were kept at 37˚C. 

 

 

p

Medium  Nonea  Glucose 
(5 mM) 

Gelatin  Glucose 
& 

Gelatin* 

Cholesterol 
(50µg/mL) 

FBS 
(10%) 

E. coli 
OP50 

Yeast 
(1%) 

CO2 (5%) 
Incubator 

Glucose 
& CO2* 

Gelatin 
& CO2* 

Total*

ARS  30 (8)  28 (6)  10 (2)  8 (2)  15 (3)  15 (3)  10 (2)  15 (3)  17 (4)  4 (1)  5 (1)  140 (31) 
APF  10 (2)  5 (1)  0 0 0 0 0 0 0 0 0 15 (3)
ARS 3x Tris  10 (2)  10 (2)  0  0  0  0  0  0  0  0  0  20 (4) 
APF 2x NaCl  10 (2)  10 (2)  0  0  0  0  0  0  0  0  0  20 (4) 
PS  10 (2)  5 (1)  0  0  0  0  0  0  0  0  0  15 (3) 
Total  70 (16)  58 (12)  10 (2)  8 (2)  15 (3)  15 (3)  10 (2)  15 (3)  17 (4)  4 (1)  5 (1)  210 (45) 

 

Medium  Nonea  Glucose 
(5 mM) 

Cholesterol 
(50µg/mL) 

FBS 
(10%) 

Cholesterol 
& FBS* 

Tween 
(5%) 

control 

Platform 
rocker 

CO2 (5%) 
Incubator 

Glucose 
& CO2* 

Glucose 
& 

Rocker* 

Total*

ARS  25 (5)  35 (7)  0  0  0  0  15 (3)  10 (2)  5 (1)  5 (1)  85 (17) 
APF  65 (13)  195 (39)  60 (12)  60 (12)  30 (6)  20 (4)  15 (3)  90 (18)   85 (17)  5 (1)  505 (101) 
ARS 3x Tris  25 (5)  35 (7)  0  0  0  0  15 (3)  10 (2)  5 (1)  5 (1)  85 (17) 
APF 2x NaCl  15 (3)  35 (7)  0  0  0  0  15 (3)  5 (1)  5 (1)  5 (1)  70 (14) 
PS  10 (2)  15 (3)  0  0  0  0  5 (1)  0  0  0  30 (6) 
HM PS  10 (2)  10 (2)  0  0  0  0  5 (1)  0  0  0  25 (5) 
RPMI‐1640  35 (7)  0  0  0  0  0  0  0  0  0  35 (7) 
Total*  185 (37)  325 (65)  60 (12)  60 (12)  30 (6)  20 (4)  70 (14)  115 (23)  100 (20)  20 (4)  835 (167) 
a ‘None’ implies an air incubator and no nutrient was used.
* Nutrient combinations with other nutrients or environmental conditions were not included in the total values because these were already accounted for in the individual nutrient, 
CO2, and platform rocker columns. 
Abbreviations:  FBS, fetal bovine serum; ARS, ascaris ringers solution; APF, artificial perienteric fluid; ARS 3x Tris, ARS with triple Tris buffer concentration; APF 2x NaCl, APF with 
double NaCl concentration; PS, physiological saline (0.9% NaCl); HM PS, homemade physiological saline (0.9% NaCl); Roswell Park Memorial Institute‐ 1640, RPMI‐1640
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Table 4.2 Components of the media tested and nutrients provided for the in vitro maintenance for intestinal stages of Parascaris spp. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p p g pp

  Concentration of media components (mM) 

Media  NaCl  CaCl2  MgCl2  KCl  NaC2H3O2  C4H11NO3/Tris  pHc

ARSa  13.14  9.47 7.83 19.64 100 12.09 7.8

APFb  23  6  5  24  110  12.09  7.8 

ARS 3x Tris  13.14  9.47  7.83  19.64  100  36  7.8 

APF 2x NaCl  46  6  5  24  110  12.09  7.8 

PS  154  0  0  0  0  0  NA 

HM PS  154  0  0  0  0  0  NA 

RPMI‐1640d  ‐  ‐ ‐ ‐ ‐ ‐ NA

Nutrient  Concentration Manufacturer/Source 
(D+)‐Glucose monohydrate  5 mM  Acros organics, Fischer Scientific, Hampton, NH) 

Food grade unflavored gelatin  2 g/L  Kroger, Cincinnati, OH 

E. coli OP50  8.55E+10 CFU/mlg  University of Kentucky 

FBS  10%  Millipore Sigma, St. Louis, MO 

Cholesterole  50 µg/mLf Millipore, Sigma, St. Louis, MO 

Yeast 
Tween only controlh 

1%  BD Biosciences, San Jose, CA 

a McCoy et al., 2015 
b Weisblat and Russel, 1976 
cpH adjusted with Hydrochloric Acid, the pH was not adjusted for PS, HM PS, or RPMI‐1640 
d The components remained as provided by the manufacturer (Millipore Sigma, St. Louis, MO) 
e Prepared as at 0.1% stock solution in 5% aqueous Tween 80 (Bolla et al. 1972) 
f Urban and Douvres, 1984 
g Average number of CFU calculated from all input concentrations 
h Included not as a nutrient, but as a control because cholesterol was prepared by dissolving it in 5% aqueous Tween 80 (Bolla et al. 
1972). 
Abbreviations: ARS, Ascaris ringers solution; APF, artificial perienteric fluid; ARS 3x Tris, ARS with triple the Tris buffer concentration; 
APF 2x NaCl, APF with double the NaCl concentration; PS, physiologic saline; HM PS, homemade physiologic saline; RPMI, Roswell Park 
Memorial Institute; CFU, colony forming units 
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Table 4.3 Scoring system used to assess the in vitro viability of Parascaris spp. intestinal stages. Scores were assigned following 
individual observation for 15 seconds. 

 
 
 
 
 

observation for 15 seconds. 

Score  Description 

0  Dead, no movement observed independently nor when stimulated with forceps. Lack of muscle tone/flaccid over forceps 
when lifted out of the solution. Signs of decay may be present. 

1  No movement observed independently nor when stimulated with forceps. Muscle tone is apparent.
2  Movement only when stimulated with forceps.
3  Movement of head only without stimulation. 
4  1‐3 whole body movements without stimulation. 
5  4‐6 whole body movements without stimulation. 
6  7 or more whole body movements without stimulation.

 



 
 

 
 
 
 
 
Table 4.4 Mean longevity of intestinal stages of Parascaris spp. in vitro with various 
nutrients and CO2 incubator use, and of different stages and sex (necropsies 1-3). Worms 
were maintained in tissue culture flasks (300 cm2) in groups of four or five. All worms 
were kept in 200 mL of Ascaris ringer’s solution and incubated at 37˚C. The time of 
longevity was considered the hour when all worms in a flask were dead. Flasks were 
checked every 12 hours. 95% confidence intervals are included in parenthesis (α=0.05). 

 
 
 
 
 
 
 
 
 
 
 
 
 

p

Nutrient/Incubator  Mean Longevity (hours)  Range of longevity (hours) 
Nonea  42 (34.7‐49.3)  12‐60 
Glucose (5 mM)  72 (63.7‐80.3)  48‐84 
Gelatin  72 (63.7‐80.3)  60‐84 
Glucose & Gelatin  78 (69.7‐86.3)  72‐84 

Cholesterol (50 µg/mL)  56 (49.6‐62.4)  48‐60 
Fetal Bovine Serum (10%)  40 (33.6‐46.4)  36‐48 
E. Coli OP50  36  36 
Bacto Yeast Extract (1%)  36  36 
5% CO2 Incubator   67.2 (54.6‐79.8)  48‐84 
Glucose & CO2 Incubator  84  84 
Gelatin & CO2 Incubator  60  60 
Total  46 (42.4‐49.7)   

Stage/Sex  Mean Longevity (hours)  Range of longevity (hours) 
Immature  38 (34.9‐41.2)  12‐84 

Male  43 (3.3‐39.7)  24‐84 

Female  46.5 (42.3‐50.7)  24‐84 
a ‘None’ implies an air incubator and no nutrient was used. 
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Figure 4.1A graphical representation of mean viability of Parascaris spp. intestinal 

stages when maintained in various media types (ARS: Ascaris Ringer’s solution; 
APF: artificial perienteric fluid; ARS 3x Tris; ARS with triple the amount of Tris 
buffer; APF 2x NaCl: APF with double the amount of NaCl; PS: physiologic 
saline; HM PS: homemade physiologic saline, and RPMI: Roswell Park Memorial 
Institute). Error bars represent 95% confidence intervals (α=0.05). 

 
Figure 4.2A graphical representation of mean viability of Parascaris spp. intestinal 

stages when maintained in either artificial perienteric fluid (APF) medium only, 
APF medium supplemented nutrients (glucose, fetal bovine serum (FBS), 
cholesterol, cholesterol and FBS, tween), or Roswell Park Memorial Institute- 
1640 (RPMI-1640) medium only. Error bars represent 95% confidence intervals 
(α=0.05). 
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Figure 4.3A graphical representation of mean viability of Parascaris spp. intestinal 
stages maintained with environmental conditions of a platform rocker or a 5% CO2 
incubator across all media and nutrient types. ‘None’ implies stationary culture flasks in 
an air incubator. Error bars represent 95% confidence intervals (α=0.05). 
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CHAPTER 5. ASCARIDS EXPOSED: GENE EXPRESSION ANALYSIS OF 

ANTHELMINTIC NAÏVE PARASCARIS SPP. FOLLOWING IN VITRO DRUG 

EXPOSURE 

5.1 Introduction 
Ascarid parasites infect a variety of hosts, including humans (Ascaris 

lumbricoides Jourdan et al., 2018), swine (A. suum, Thamsborg et al., 2013), companion 

animals (Toxocara spp., Overgaauw and Nederland, 1997), poultry (Ascaridia galli, 

Kilpinen et al., 2005), and horses (Parascaris spp., Nielsen, 2016), where Toxocara spp. 

and A. suum can result in zoonotic transmissions. Infections are commonly associated 

with wasting disease in children (Jourdan et al., 2018), decreased productivity in 

livestock (Kilpinen et al., 2005; Thamsborg et al., 2013), and stunted growth and 

intestinal obstruction in companion animals (Overgaauw and Nederland, 1997; Nielsen, 

2016). This array of clinical diseases warrants the routine use of anthelmintics for 

therapeutic and preventative measures.  

Anthelmintic resistance is prevalent and of grave concern among strongylid 

parasite species (Kaplan, 2004), but the Ascarididae family has received less attention on 

this issue. Parascaris spp. is the only example of an ascarid parasite with major issues of 

anthelmintic resistance with world-wide drug resistance documented to the macrocyclic 

lactone drug class (ML; Peregrine et al., 2014) and case reports of treatment failure exist 

for the pyrantel and fenbendazole anthelmintics (Lyons et al., 2008, 2011; Armstrong et 

al., 2014; Martin et al., 2018). Only single case reports of failed anthelmintic efficacy 

exist for other ascarid species (Yazwinski et al., 2013; Krücken et al., 2017). The unique 

but troubling status of Parascaris spp. provides opportunity for identifying possible 

resistance mechanisms and/or alternative drug targets that could be extrapolated to other 

ascarid parasites before resistance levels rise to become a major problem.  

The mode of action of benzimidazole (BZ) drugs is to bind to parasite β-tubulin 

and interrupt microtubule formation, ultimately disrupting cell structure and energy 

metabolism processes (Lacey, 1988). It is widely accepted that BZ resistance is largely 

conferred through single nucleotide polymorphisms (SNP) leading to amino acid changes 
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within the β-tubulin gene (Beech et al., 2011), however the proportion at which these 

SNPs exist in resistant populations vary between ascarids and strongylids, between 

strongylid species, and between different isolates of the same species (Hodgkinson et al., 

2008; von Samson-Himmelstjerna et al., 2009; Diawara et al., 2013; Kotze et al., 2014; 

Avramenko et al., 2019). The conflicting and lacking evidence of BZ resistance in ascarid 

species demand further investigations. 

Presumably, ML drugs act as ligands for glutamate-gated chloride (GluCl) 

channels and gamma-aminobutyric acid (GABA) receptors (Martin, 1997). Binding 

causes an influx of chloride ions leading to hyperpolarization of the cellular membrane. 

This causes paralysis of the parasite, allowing expulsion from the host (Martin, 1997). 

Studies of ML resistance have focused on changes in receptor subunits (Blackhall et al., 

1998; Dent et al., 2000; McCavera et al., 2009), drug metabolism (AlGusbi et al., 2014; 

Yilmaz et al., 2017) and drug efflux mechanisms (Xu et al., 1998; Janssen et al., 2013b, 

2015; Chelladurai and Brewer, 2019). ATP-binding cassette transport proteins, such as P-

glycoproteins (Pgps) have been widely studied, including in Parascaris spp. (Janssen et 

al., 2013b, 2015; Chelladurai and Brewer, 2019), but findings are inconsistent between 

parasite species and isolates (Xu et al., 1998; Molento and Prichard, 1999; Lloberas et al., 

2013; AlGusbi et al., 2014; Maté et al., 2018). While it appears that Pgps may be 

associated with anthelmintic resistance, their exact role in resistance mechanisms has yet 

to be determined (Lespine et al., 2012). 

The inter- and intra-species variation of mechanisms associated with BZ and ML 

resistance presents challenges for elucidating how parasites gain anthelmintic resistance, 

devising methods for preventing or slowing the development of resistance, identifying 

genetic markers for diagnosing resistance, and identifying future drug targets which may 

evade these mechanisms. Leading researchers have suggested that studying drug 

responses at the transcriptomic level in known susceptible isolates will enhance the 

understanding of anthelmintic resistance (Beech et al., 2011; Kotze et al., 2014). Utilizing 

susceptible isolates may reduce challenges due to genetic variation as resistant isolates 

have increased genetic diversity (Beech et al., 2011; Kotze et al., 2014). Xenobiotic 

defense mechanisms and/or drug responses of parasites are not widely known, and it is 

uncertain if these defense mechanisms are naturally occurring or developed as a result of 
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drug selection and anthelmintic resistance. To date, no studies have examined the 

transcriptomic response of parasites belonging to the order Ascarididae following in vitro 

drug exposure. The unique albeit wide-spread ML resistance status of Parascaris spp. 

urges the need for uncovering this parasite’s response to xenobiotics, which may provide 

valuable insight to preserve anthelmintic efficacy for other ascarid species and beyond.  

The purpose of this study was to examine the responses at the transcriptomic level 

of drug susceptible adult Parascaris spp. to ivermectin (IVM), a ML drug to which 

resistance is widely established on managed horse farms, and to oxibendazole (OBZ), a 

drug that remains effective. 

5.2 Materials and methods 

5.2.1 Study design 

This study consisted of three parts. Part 1 was to perform in vitro drug exposures 

at varying concentrations and observe the worm responses. Part 1 ended with the 

determination of the sub-lethal concentration for each drug type and time point where 

worm viability decreased to approximately >25%. In Part 2, these pre-determined 

concentrations were used for in vitro drug exposure and worms were snap frozen at these 

designated time points. Subsequently, RNA sequencing and gene expression analysis was 

used to identify genes of interest in response to the drug exposures. In Part 3, the in vitro 

drug exposure was repeated with five worms per group. The previously identified genes 

of interest were further evaluated using qPCR. 

5.2.2 Parasite sources 

The study took place over the course of four foal necropsies from December 2017 

to September 2018. The foals were born in a herd housed at the University of Kentucky 

that has not been treated with any anthelmintics since 1979 and have been documented 

harboring a variety of equine parasites (Lyons et al. 1990). Foals were humanely 

euthanized following the American Veterinary Medical Association guidelines for the 

euthanasia of animals when they reached 4.5-5 months old and subsequently necropsied. 
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The research was conducted under the approval from the University of Kentucky’s 

Institutional Animal Care and Use Committee under protocol number 2012-1046. 

5.2.2.1 Collection of Parascaris spp. 

Collection of live worm specimens at necropsy occurred as previously described 

(Scare et al., 2018). Brief details are provided in Appendix 2. For Parts 2 and 3 of this 

study (see Supplementary Figure 5.1 in Appendix 2 and sections 2.6 and 2.7), additional 

worm specimens for in situ controls were obtained by leaving numerous worms within a 

30 cm section of the jejunum. Intestinal content was allowed to remain in the segment 

and both ends were tied shut with string. The segment was placed in a closed container 

and then into the water bath to maintain its temperature at 37˚C. The purpose of the in 

situ controls was to mimic the natural environment of the worms while minimizing 

disturbances. Therefore, this in situ control was used as a comparison for the in vitro non-

drug treated controls. 

5.2.3 In vitro maintenance and viability assessment of Parascaris spp. 

Worms for in vitro drug exposure were maintained in RPMI 1640 medium 

(R8758, Sigma-Aldrich, St. Louis, MO, US) within TPP tissue culture flasks (300 cm2, 

MidSci, St. Louis, MO) at 37 ˚C as described by Scare et al. (2018). Media were changed 

every 12 hours (Scare et al., 2018). Worm viability was assessed at regular time intervals 

(see section 2.5) using a motility-based objective scoring system on a 0-6 scale as 

previously described (Scare et al., 2018).  

5.2.4 Anthelmintics 

 
The anthelmintics employed in this study were powder formulations of ivermectin 

(IVM, 22,23-dihydroavermectin B1, Sigma-Aldrich, St. Louis, MO, USA) and 

oxibendazole (OBZ, methyl carbamate, Sigma-Aldrich, St. Louis, MO, USA).  Stock 

solutions of both drugs were individually prepared as described by Hu et al. (2013), 

where a concentration of 100 μg/mL was dissolved in 100% dimethyl sulfoxide (DMSO). 

Ten-fold serial dilutions were carried out using 10% DMSO to achieve concentrations of 
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0.1, 1.0, 10.0 and 100.0 μg/mL. These concentrations were based on previous studies 

using similar concentrations (Hu et al., 2013; Janssen et al., 2013b). 

Four mL of the prepared drug suspensions were added to the pre-assigned flasks 

containing 196 mL of RPMI-1640 media so that the final concentration of DMSO in the 

flask was 0.2% and the drug suspension was 1/50 of the final volume (Hu et al., 2013). 

Control flasks containing only 0.2% DMSO were also prepared. Worms were allowed a 

24-hour acclimation period before the anthelmintics were added. Drug treatments were 

applied at every medium change thereafter. 

5.2.5 Part 1: Initial assessment of parasite responses to in vitro drug exposure 

 Part 1 was dedicated to observing worm viability in response to in vitro drug 

exposure at varying concentrations of IVM and OBZ anthelmintics to determine optimal 

sub-lethal drug concentrations and length of exposure. Worms harvested from two 

necropsies on separate occasions were used to evaluate the effects of various anthelmintic 

concentrations over time. The number of worms evaluated for each drug concentration 

per necropsy can be found in Table 5.1. The time points that viability assessments 

occurred following each necropsy can be found in the supplementary files in Appendix 2.  

The drug concentrations and time points for future snap freezing and gene 

expression analysis (Parts 2 and 3) were determined when mean worm viability decreased 

by approximately >25%, but remained sub-lethal. The final determined duration of 

exposure was extended by two hours for IVM and 12 hours for OBZ to ensure that the 

decrease in viability was stable. 

5.2.6 Part 2: RNA-sequencing analysis 

In Part 2, a third drug trial was performed using worms harvested from a third 

necropsy and subsequently were used for RNA-seq analysis. Only adult worms were used 

due to the lack of immature worms present. Worms were maintained in vitro in groups of 

four, consisting of two adult males and two adult females. The drug exposure parameters 

determined from Part 1 were applied. One male and one female for each drug 
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treated/control group were used for further analysis. At the predetermined time points, 

these worms were snap frozen live in liquid nitrogen and kept at -80˚C until use. 

5.2.6.1 RNA isolation, library preparation, and RNA 
sequencing 

 Frozen whole worms were ground into a fine powder using a mortar and pestle 

while continuously adding small amounts of liquid nitrogen. Approximately 100 mg of 

worm powder was used for RNA isolation which was carried out using TRIzol RNA 

isolation reagent (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) according 

to the manufacturer’s instructions. Next, DNase treatment was performed (DNA-free 

DNA removal kit, Thermo Fisher Scientific, Waltham, MA, USA). RNA quantity and 

quality was determined at the University of Kentucky Genomics Core Lab using the 

Agilent bioanalyzer (Agilent, Santa Clara, CA, USA).  

RNA samples were sent to the University of Louisville CGeMM DNA Core 

Facility (http://louisville.edu/genetics/gemm-dna-facility-core) for library preparation and 

sequencing. Libraries were prepared with Illumina’s TruSeq stranded total RNA library 

kit (Illumina, San Diego, CA, USA) with Ribo-Zero Gold depletion. Libraries were 

sequenced using the NextSeq 500 High Output v2 75 cycles kit. Samples were run in 

1x75 base pair configuration, generating up to 400 million reads total, approximately 40 

million reads per sample. 

5.2.6.2 RNA-seq analysis and selection of genes of interest 

 Specific details pertaining to RNA-seq analysis can be found in the 

supplementary files in Appendix 2. Reads were aligned and annotated to the Parascaris 

univalens reference genome and transcriptome, respectively (Wang et al., 2017). 

Mapping statistics are shown in Appendix 2 in Supplementary Table 5.1. The RNA 

sequencing data from this study were deposited in the Gene Expression Omnibus (GEO, 

NCBI, NIH) database under study GSE129514.  

 Functional annotation of the differentially expressed genes based on gene 

ontology (biological process and molecular function) was performed using 

Pantherdb.org, a pathway analysis program (Mi et al., 2013; 2017). 
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Genes of interest were selected following initial RNA-seq analysis based on the 

comparison between all drug treated and all control worms. Selection criteria for 

candidate genes were as follows: significant differences (α=0.05) between all drug treated 

worms and all control worms, the differences in expression must show an obvious pattern 

between groups, and the candidate genes must not be significantly different between the 

in situ and in vitro control groups nor between worm sexes (i.e., differences did not occur 

due to in vitro maintenance nor worm sexes). Due to the higher number of candidate 

genes remaining, some selections were based on annotated gene function and those which 

may play a role in parasite drug metabolism/defense/drug efflux.  

5.2.7 Part 3: Further investigation of genes of interest with qPCR 

Part 3 of this study was used to further examine the expression patterns of the 

genes of interest on more worms harvested from a fourth necropsy and maintained in 

vitro under the same drug exposure conditions as in Part 2. A total of five males and five 

females were used for each drug treatment/control group. 

5.2.7.1 RNA-isolation and cDNA preparation 

RNA-isolation occurred as described in section 2.6.1. RNA concentrations were 

estimated using the Nanodrop 2000 (Thermo Scientific, Waltham, MA, USA). Reverse 

transcription PCR was performed to obtain cDNA according to the manufacturer’s 

instructions (SuperScript IV First-Strand cDNA Synthesis Reaction, Invitrogen, 

Carlsbad, CA, USA). 

5.2.7.2 Primer design and validation 

Presently, no validated endogenous controls for mRNA transcript levels exist for 

Parascaris spp. Housekeeping genes previously examined for stability in albendazole 

and ivermectin treated H. contortus (Lecová et al., 2015) were used, namely nuclear cap 

binding protein subunit two (ncbp) and RNA-polymerase RPABC1 large subunit (ama). 

The selection of these reference genes was based upon their stable expression (FPKM 

values) across all treated and control groups in Part 2 of this study. Actin was not used as 

a control because the mode of action of OBZ is to target tubulin, and it is possible that 

actin transcription would be affected by this treatment as well.  
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 Primers were designed using the online program NCBI Primer-BLAST, and 

manufactured by Invitrogen (Waltham, MA). Primer pairs were selected based on GC 

content and melting temperature. Primer sequences are listed in Supplementary Table 5.2 

in Appendix 2.  

 Specificity of primers were tested by performing real-time qPCR (Agilent 

Mx3000P qPCR System, Santa Clara, CA) with PowerUP SYBR Green Master Mix 

(ThermoFisher Scientific, Waltham, MA) according to the manufacturer’s instructions. 

Cycle parameters can be found in Appendix 2 in the supplementary files under the 

material and methods section. A disassociation curve analysis was performed to ensure 

product specificity. 

 

5.2.7.3 Quantitative real-time PCR 

qPCR analyses were performed using the ViiA 7 Real-Time PCR system 

(Applied Biosystems, Foster City, CA, USA) with SYBR green detection using PowerUP 

SYBR Green Master Mix (ThermoFisher Scientific, Waltham, MA) according to the 

manufacturer’s instructions. Each sample/primer combination was performed in 

duplicate. Pooled samples were used as positive controls and no-template (negative) 

controls were performed for each primer pair. Disassociation curve analysis was used to 

check for non-specific amplification. 

PCR products from all male drug treated and in vitro control worms were 

sequenced to confirm amplification specificity. Sanger sequencing was performed at the 

University of Kentucky Genomics Core Lab. Sequence alignments were performed using 

the NCBI nucleotide BLAST tool. 

5.2.8 Statistical analyses 

5.2.8.1 Part 1: Initial assessment of parasite responses to in 
vitro drug exposure 

Mean viability per flask of worms at each timepoint was calculated using the 

following formula (Scare et al., 2018):  
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% 𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 100
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 𝑠𝑐𝑜𝑟𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 ′𝑋′

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑐𝑜𝑟𝑒
 100%  

 Mean scores and 95% confidence intervals were determined using Microsoft 

Excel 2016 (Redmond, WA, USA).  Further statistical analysis was carried out using 

SAS software (version 9.4, SAS Institute, Cary, North Carolina, USA). Statistical 

analysis could only be carried out on worms harvested from the first necropsy because 

worms from the second necropsy were snap frozen before they had died (details provided 

in Appendix 2 in the supplementary files). Two mixed model analyses with repeated 

measures over time were performed to examine the effects of worm stage 

(immature/adult) and sex (male/female), and the effects of each drug (IVM or OBZ) at 

different concentrations (0.1, 1, or 10 μg/mL) on worm viability. The details for the 

covariates examined and random effects can be found in Appendix 2 in the 

supplementary file materials and methods section.  

A third mixed model analysis (without repeated measures) was performed to 

examine the effects of the different drug concentrations on the viability of each worm 

stage/sex, and to determine if changing the drug concentrations altered the viability of 

each stage/sex. The model details can be found in Appendix 2 in the supplementary file 

materials and methods section.  

For all three analyses described above, covariates identified as significant 

(α=0.05) were further examined in a ‘least squares means’ analysis for a Tukey’s 

pairwise comparison. 

5.2.8.2 Part 2: RNA-sequencing analysis 

Identification of differentially expressed genes was performed using a total of five 

one-way ANOVA analyses, using the Benjamini-Hochberg correction for false discovery 

rate (FDR P < 0.01). Analyses were performed using JMP software (JMP®, Version 13. 

SAS Institute Inc., Cary, NC, 1989-2019). The first four analyses ignored the influence of 

worm sexes. The first analysis considered all drug treated worms, regardless of drug 

used, versus all control worms, regardless of in situ or in vitro. The second analysis 

compared only the IVM-treated and IVM-control worms, and the third analysis compared 

only the OBZ-treated and OBZ-control worms. The fourth analysis compared all in vitro 
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controls to all in situ control worms. Finally, the fifth analysis ignored drug/control group 

and considered any differences between worm sexes. 

5.2.8.3 Part 3: Further investigation of genes of interest with 
qPCR 

 Fluorescence readings for each cycle (ΔRn) of all genes of interest per sample 

were corrected for variation in PCR efficiency using LinReg PCR analysis software 

(Ramakers et al., 2003) and corresponding Cq values were obtained. Mean Cq values 

were calculated for duplicate samples using Microsoft Excel 2016 (Redmond, WA, 

USA). The geometric mean for Cqs of the three housekeeping genes was calculated for 

each sample, and subsequently used to calculate the negative ΔCq for each gene of 

interest per sample using the following formula: 

𝛥𝐶𝑞 0 𝑚𝑒𝑎𝑛 𝑜𝑓 𝐺𝑂𝐼 𝐶𝑞 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝐻𝐾𝐺 𝐶𝑞  

 Negative ΔCq values were checked for normal distribution and subsequently 

normalized using JMP 13 software (JMP®, Version 13. SAS Institute Inc., Cary, NC, 

1989-2019). Further statistical analyses were performed in SAS software (version 9.4, 

SAS Institute, Cary, North Carolina, USA). Three mixed linear analyses were performed 

to analyze gene expression of each gene of interest in response to drug treatment, 

between worm sex, and between in situ and in vitro controls. Covariates identified as 

significant (α=0.05) were further examined in a ‘least squares means’ analysis for a 

Tukey’s pairwise comparison. The first model was used to analyze the influence of worm 

sex and the in situ verses in vitro environment. The second model was for a broad 

comparison between all drug treated and all control worms. The third model was more 

specific and examined direct comparisons between IVM treated and IVM controls, OBZ 

treated and OBZ controls, and IVM treated and OBZ treated.  

5.3 Results 

5.3.1 Part 1: Initial assessment of parasite responses to in vitro drug exposure 

 A graphical representation of worm viability following in vitro drug exposure can 

be found in Figure 5.1 A and B. Overall, IVM had a more immediate effect on worm 
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viability than OBZ, however there was some variability between worms harvested from 

the two necropsies.  

Neither worm stage nor sex had a significant influence on viability (p=0.1868). 

Between the two drug treatments, IVM (0.1 μg/mL) had significantly lower viability than 

the RPMI-1640 control worms at hours three and four. No other significant differences 

were found between groups for the other time points. 

When examining the influence of drug concentrations on the viability of each 

worm stage/sex, there was a significant decrease (p<0.0001) in viability of immature 

worms compared to female worms in OBZ (1 μg/mL). For all other drug concentrations, 

there were no significant differences in viability between immature and adult worms nor 

between male and female adult worms. For immatures (p=1.000), males (p=1.000), and 

females (p=0.9979), there was no significant difference in viability between the RPMI-

1640 (no drug control) and the DMSO 10% control, which indicates that the DMSO did 

not affect worm viability and any observed changes were due to the drug. This analysis 

was also used to determine if there were significant differences in viability between the 

different drug concentrations employed for each stage/sex group. These results and the 

corresponding p-values are outlined in Table 5.2.  For immatures, males, and females, all 

IVM concentrations resulted in significantly less viability than the control worms, except 

for females exposed to IVM (1 μg/mL) which was not significantly different from the 

control worms. There were no significant differences between the three IVM 

concentrations examined for each stage/sex of worms. However, the effects of the three 

different OBZ concentrations on each stage/sex of worms varied, but in general the 

immature worms were more susceptible to increasing OBZ concentrations, while the 

male and female adult worms showed a lesser change in viability in response to the 

changing concentrations. For immatures, males, and females, none of the three OBZ 

concentrations differed significantly from the control group.  

  Table 5.3 shows the time points at which worm viability decreased to >25% 

(sublethal) for each drug concentration which was used to determine the 

timepoints/concentrations used for RNA-seq analysis in Part 2. The optimal 

concentration of 10 μg/mL was determined for OBZ because the decrease in viability was 

consistent between the worms harvested from the two necropsies. The optimal 
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concentration of 1 μg/mL was determined for IVM because it appeared to have a more 

consistent decrease in worm viability after one hour than the other two concentrations 

(Figure 5.1 A and B). Viability had decreased >25% after 12 hours for OBZ (10 μg/mL) 

and after 1 hours for IVM (1 μg/mL). These time points were extended by two hours for 

IVM and 12 hours for OBZ to ensure a representative decrease in viability prior to snap 

freezing of worms for RNA-seq analysis (Part 2), and the final determined time points 

were three and 24 hours, respectively. 

5.3.2 Part 2: RNA-sequencing analysis 

Figure 5.2 illustrates the viability of the worms collected from the third necropsy 

and subsequently used for RNA sequencing. The total number of significant genes 

(α=0.01) for each of the group comparisons can be found in Table 5.4. Because of the 

sample size (1 male and 1 female worm per group), the comparison of all drug treated 

worms (n=4) versus all control worms (n=6) was used to select the genes of interest. The 

selected genes and associated p-values between all drug treated and control worms are 

displayed in Table 5.4. The genes of interest and stable expression of the house keeping 

genes between the treated and control groups are illustrated in Figure 5.3. There were no 

significant differences for any of the genes between the in situ and in vitro controls 

(p=0.9999; Fig. 5.3). Although the genes of interest were significantly different between 

all drug treated and control worms, they were not identified as significantly different 

when the groups were further divided between drug class (i.e. no significant differences 

between the specific OBZ and OBZ-control worms nor between the IVM and IVM-

control worms; Fig. 5.3). 

For the gene ontology (GO) analysis, the entire list of genes from the annotated 

genome (Wang et al., 2017) was initially used. Of these, 6% did not have a listed gene 

product and 24% were considered annotated as a ‘hypothetical protein,’ and were not 

included in the GO analysis. The following comparisons were made: all drug treated 

versus all controls, IVM 1 μg/mL versus IVM controls, and OBZ 10 μg/mL versus OBZ 

controls. The significantly different genes corresponding to these comparisons are listed 

as an additional file (Supplementary Data). Predicted biological processes and molecular 

function pathways are presented in Figure 5.4. Overall, it appears that treatment with 
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IVM reduced the number of categories for genes involved with molecular functions and 

biological processes. However, the categories of genes following OBZ treatment were 

similar to the gene categories representing all of the genes of the control worms. 

5.3.3 Part 3: Further investigation of genes of interest with qPCR 

Although the RNA-Seq data suggested differences in transcription of the genes of 

interest, qPCR did not reveal any significant differences for these genes between the 

treatment and control worms (0.7329; Fig. 5.5), between worm sex (p=0.0600; Fig. 5.5), 

nor between the in situ and in vitro controls (p=0.3265; Fig. 5.5). No differences were 

observed between each drug treated and the corresponding control group (Fig. 5.5; 

IVM/IVM control, p=1.0000; OBZ/OBZ control, p=0.8950). 

 Sequence information for the PCR products can be found in Appendix 2 in 

Supplementary Table 5.1. 

5.4 Discussion 

 This is the first study to examine the phenotypic and transcriptomic responses in 

anthelmintic-naïve Parascaris spp. following in vitro drug exposure.  The RNA-

sequencing analysis revealed a number of gene transcripts that were significantly 

different between the treated and control groups (Table 5.4). The selected genes exhibit 

functions in other organisms related to drug detoxification, coordinating muscle 

contraction, regulation of membrane potential, and microtubule polymerization. The lack 

of significant differences in expression levels of the genes of interest between the in situ 

and in vitro controls indicate that these differences were not due to the worms being 

under in vitro conditions, but represent changes due to drug exposure (Figure 5.3A). 

 The predicted biological functions and metabolic pathways illustrate the variety of 

processes (Fig. 5.4) that are presumably affected by anthelmintic exposure. At this time, 

it is unknown how the differentially expressed genes are influenced by in vitro drug 

exposure. We also cannot conclude if they would elicit the same response in vivo, or if 

they have a role in anthelmintic resistance mechanisms. Therefore, these genes should be 

considered in future investigations. The proportion of significant genes related to various 
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biological process and molecular functions differ between the IVM treated/control and 

OBZ treated/control comparisons. For the IVM comparison, the genes related to 

biological processes are only related to metabolic and cellular processes while those 

related to molecular function are defined as catalytic activity, binding, and molecular 

function regulation (Fig. 5.4). This is interesting given IVMs paralytic mode of action. 

The target receptors of IVM (GluCl and GABA channels) are highly expressed on motor 

and sensory neurons, which regulate nematode locomotion, feeding behavior, and 

mediate sensory inputs (Wolstenholme, 2012).  The predicted functions appear to be in 

agreement with the IVM mode of action, such as the disruption of feeding behavior may 

be related to changes in metabolic processes, and mediation of sensory inputs likely has 

some effect on cellular processes, catalytic activity, and regulation of molecular function. 

The BZ mode of action is primarily to disrupt energy metabolism and cell structure 

(Lacey, 1988). The pathway analysis resulted in a variety of genes, where those related to 

biological processes were primarily involved with localization, biological regulation, 

metabolic and developmental processes. The molecular function was dominated by genes 

related to binding and catalytic activity. The disruption of cellular structure is likely 

involved in localization, biological regulation, binding, and development processes. 

Likewise, it is not illogical to equate the disruption of energy metabolism with metabolic 

processes and catalytic activity. Overall, it can be speculated that the predicted gene 

ontology pathways have some relevance to the drug mode of action, and there are 

potential pathways involved with drug responses to be explored.    

  The selected genes of interest described herein have not been previously 

examined in any ascarid parasite following in vitro drug exposure. Interestingly, 

traditionally researched genes, such as p-glycoproteins (Janssen et al., 2013b, 2015; 

Chelladurai and Brewer, 2019) and the multi-drug resistant protein (Kotze et al., 2014), 

were not observed to be differentially expressed between drug exposed and control 

worms.  

 We identified a significant increase in cyp4504c1 in drug treated worms over 

control worms. Xenobiotic metabolism occurs via three phases. The first being oxidation, 

hydrolysis, or reduction of the drug, the second is a conjugation reaction of the substrate, 

and finally active transport of the conjugate through the membranes (Cvilink et al., 2009). 
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The cytochrome P450 (CYP450) enzyme family is a major contributor for phase one and 

often catalyzes monooxygenation of the drug substrate (Cvilink et al., 2009). Drug 

metabolism is necessary for bioactivation of the drug within the target organism, but it 

can also result in undesirable effects, such as detoxification (Feyereisen, 1999; Cvilink et 

al., 2009). The CYP450s are a highly complex albeit evolutionarily conserved gene 

family. While they are organized into families and subfamilies based on sequence 

similarities, the diversity of chemical reactions possible by a single enzyme prevent the 

exact function of a specific enzyme from being derived from the sequence (Feyereisen, 

1999). Elucidation of function is commonly theorized by the use of CYP450 inducers, 

such as phenobarbital, CYP450 inhibitors, such as carbon monoxide or piperonyl 

butoxide, or by the presence of possible metabolites (Feyereisen, 1999, Cvilink et al., 

2009).  CYP450s are a well-known driver for insecticide resistance (Feyereisen, 1999; 

ffrench-Constant et al., 2004; Li et al., 2007, Shi et al., 2015, 2016). They have also been 

shown to be up-regulated during starvation or stress and hypothesized to promote 

survival in Caenorhabditis elegans (McElwee et al., 2004), Drosophila variants (Dorszuk 

et al., 2012), and the cockroach, Blaberus discoidalis (Bradfield et al., 1991). Initially, 

CYP450s were presumably absent from nematodes (Barrett, 1998), however this is 

proven otherwise as 23 CYP subfamilies (Menzel et al., 2001) with over 80 genes have 

been identified in C. elegans (Menzel et al., 2001; Lindblom and Dodd, 2006), and 68 

have been confirmed in H. contortus (Laing et al., 2015), some of which have been 

associated with multi-drug resistance (Yilmaz et al., 2017). Several studies have reported 

the presumed activity of CYP450s in Haemonchus contortus following xenobiotic 

exposure in vitro (Kotze, 1997, 1999, 2000; Kotze et al., 2006, Alvinerie et al., 2001), 

and larval stages consistently exhibited increased activity over adults (Kotze, 1997, 1999, 

2000). It is suggested that the difference between larval and adult stages may be due to 

the lack of molecular oxygen available in the host’s intestine where the adult stages 

reside. Only one study has compared the enzyme activity between macrocyclic lactone 

susceptible and resistant strains, but there was no evidence for elevated CYP450 activity 

associated with resistance status (Kotze, 2000). The role of CYPs in drug metabolism and 

the potential involvement in AR has not yet been studied in Ascaris or Parascaris 

species. The RNA-sequencing analysis performed in this study revealed a significant 
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increase in expression of cyp4504c1. Given the evidence for drug metabolism by 

CYP450s in other organisms, the we hypothesize that this elevation occurred as a direct 

detoxification defense mechanism. This particular cyp450 gene (4c1) has only been 

described once in the literature, and it was elevated in B. discoidalis following starvation 

and suggested to be elevated as a stress response (Bradfield et al., 1991). Therefore, it is 

possible that the increased cyp450 expression may also be induced by a stress response 

elicited by the toxic anthelmintics. Finally, one must consider that the monooxygenase 

activity of CYP450 requires molecular oxygen to be present, and adult Parascaris spp. 

reside in the horse’s intestine where oxygen availability must be limited, and 

extrapolations for the CYP450 activity in vivo cannot be made at this time. 

 We identified a significant increase in gene expression of frmd4a for drug-treated 

worms over control worms. Ikenouchi and Umeda (2009) reported the FRMD4A protein 

to regulate epithelial cell polarity. In this context, polarity refers to the apical-basal 

orientation of epithelial cells which is mediated by cell-to-cell interactions. FRMD4A 

facilitates the interaction of two complexes (Arf-6 and PAR-complex) at the primordial 

adherens junctions which subsequently facilitates the formation of the fused junctions 

forming ‘belt-like’ adherens structures. FRMD4A was also found to be a binding-partner 

for cytohesin-1 at the primordial adherens junctions (Ikenouchi and Umeda, 2009). The 

primary function of adherens junctions is to mediate cell-to-cell contact which is 

necessary for many processes including cellular organization, locomotion, and 

communication. Disruption of these junctions interrupts these processes (Meng and 

Takeichi, 2009). Adheren junction formation is dependent upon the presence of actin 

molecules, although less is known about the association of microtubules with adherens 

junctions. However, microtubules have been observed near them (Meng and Takeichi, 

2009). Interestingly, Stehbens et al. (2006) noted that blocking microtubule 

polymerization toward adherens junctions will decrease the amount of E-cadherin, a 

necessary component of cellular junctions and proponent of organized cell-to-cell 

adhesion. Waterman-Storer et al. (2000) found that the assembly of filamentous actin (F-

actin) is both directly and indirectly dependent upon the polymerization and organization 

of microtubles. Therefore, disruption of the polymerization process will negatively affect 

the formation of these junctions (Waterman-Storer et al., 2000; Meng and Takelichi, 
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2009). The current study identified a significant increase in gene expression of frmd4a for 

drug-treated worms over control worms using RNA-seq analysis. Given the BZ mode of 

action is to disrupt microtubule formation (Lacey, 1988), it is possible that the increase in 

frmd4a was a direct result of microtubule depolymerization.  This may cause the 

degradation of cell-to-cell contact by preventing the assembly of actin filaments and 

subsequently adherens junctions in turn disrupting epithelial cell polarity. FRMD4A is a 

direct regulator of polarity and may have been responding to this disturbance. Further 

studies are needed to confirm if there is a direct association between the BZ mode of 

action and Parascaris spp. epithelial cell polarity. 

The gene sup-9 was significantly increased among drug treated worms compared 

to control worms. In C. elegans, SUP-9 is known to encode a two-pore domain potassium 

channel (K2P) expressed in body-wall muscle, vulva, and intestinal cells (Perez de la 

Cruz et al., 2003). It also has sequence similarity to the mammalian TASK-1 and TASK-

3 K2Ps (Perez de la Cruz et al., 2003). The TASK K2Ps are voltage and time dependent 

acid-sensitive channels. Although sup-9 is somewhat orthologous to the TASK K2Ps, it is 

known that sequence similarity does not always predict functionality (Lesage and 

Lazdunski, 2000). Nevertheless, the TASK K2Ps primarily function to regulate cellular 

resting membrane potential through the passive transport of potassium cations, and in 

general K2Ps are physiologically associated with neurotransmitters and neuronal-

muscular excitability (Lesage and Lazdunski, 2000). In C. elegans, SUP-9 is a proposed 

contributor of muscle contraction coordination, and forms a complex with SUP-10 and 

UNC-93 (Greenwald and Horvitz, 1980; Levin and Horvitz, 1993 Perez de la Cruz et al., 

2003). Gain of function mutants were observed having uncoordinated, sluggish 

movements and decreased egg shedding. (Greenwald and Horvitz, 1980; Levin and 

Horvitz, 1993). Perez de la Cruz (2003) propose that these effects are due to 

hyperpolarization of the cellular membrane caused by an efflux of potassium ions. 

Hyperpolarization is also caused by an influx of chloride ions and is the primary mode of 

action of ML drugs, which act on GluCl and GABA receptors (Martin, 1997). Perez de la 

Cruz (2003) demonstrated that inducing chloride ion influx via GABA receptors 

enhances the phenotypic effects of the K2P gain of function mutants, but that the 

mechanisms act independently of each other. According to the RNA-seq analysis carried 
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out in the present study, the gene sup-9 was significantly increased among drug treated 

worms compared to control worms. The relationship between GluCl receptors, the 

primary target of MLs, and SUP-9 in Parascaris spp. is unknown. However, given they 

have similar physiological effects due to hyperpolarization and SUP-9 functions to 

restore resting membrane potential, it is possible that ML treatment may affect the 

expression of sup-9, but no direct conclusions can be made at this time.  

It is presumed that anthelmintic treatment induces the presence of free-radicals 

and oxidative stress in the parasite (James et al., 2009). This is evidenced by several 

reports of increased antioxidant defense mechanisms in anthelmintic resistant parasites, 

which has been summarized by James et al. (2009) and includes cambendazole resistant 

(Kawalek et al., 1984) and IVM resistant (Sotirchos et al., 2008) H. contortus. In the 

current study, RNA-seq analysis identified a significant increase in kelch-domain 

containing protein 10 (klhdc-10) in drug treated worms over control worms. In 

Drosophila melanogaster, the protein slim is orthologous to the mammalian klhdc-10 

(Sekine et al., 2012) and has been identified as an inducer of oxidative stress-induced cell 

death. An obvious hypothesis is that Parascaris spp. experienced oxidative stress in 

response to drug exposure, which caused increased expression of klhdc-10.  

 As described above, the differences in gene expression for the genes of interest 

identified by RNA-seq analysis were small (<2 fold), but significant. However, the qPCR 

analysis did not identify significant differences in gene expression. There are several 

possible reasons for the discrepancy between the RNA-seq and qPCR results. First, it is 

possible that the qPCR method employed was unable to detect such minute changes in 

gene expression. Second, the effect of variations in viability on transcriptomic expression 

is unknown. Next, the worms used were harvested from two different foals and the 

immune responses exhibited by the foals could initiate unknown changes at the 

transcriptomic level. While qPCR provides a relatively quick comparison of gene 

expression, there are several sources of variability that should be considered, as described 

by Bustin and Nolan (2004). Finally, it should be noted that even minute changes in RNA 

expression have been associated with important biological functions (Laurent et al., 

2013). Therefore, while there was disagreement between the RNA-seq analysis and 
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qPCR results, the differences identified via RNA-seq and the gene of interest biological 

roles warrant future investigation.  

In summary, this study was the first to perform in vitro drug exposure on 

anthelmintic-naïve Parascaris spp. and observe drug effects both phenotypically and 

transcriptionally. The in vitro drug exposure system described herein provides a reliable 

reference for future analyses directed at elucidating anthelmintic resistance mechanisms 

and identifying future drug targets. The wide-spread resistance status of Parascaris spp. 

warrants further investigation of these topics, and continuation of this work may provide 

information regarding parasite drug metabolism, identifying new drug targets, and/or 

preserving the efficacy of current anthelmintics against ascarids parasites and beyond.  



 
 

 
 
 
Table 5.1 Number of Parascaris spp. worms used to observe responses to drug exposure in vitro for Part 1 of this study. Drugs were 
prepared in 10% DMSO. Worms were maintained in 200 mL RPMI-1640 media at 37˚C. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Necropsy 1  Necropsy 2  Total 

Drugs (μg/mL)  Males  Females Imm. Males Females Imm. Males  Females Imm.
IVM (0.1)  2  1  2  2  2  0  4  3  2 
IVM (1.0)  2  1 2 2 2 0 4  3 2
IVM (10.0)  2  1  2  2  2  0  4  3  2 
OBZ (0.1)  2  1 2 0 0 0 2  1 2
OBZ (1.0)  2  1 2 0 0 0 2  1 2
OBZ (10)  2  1  2  2  2  0  4  3  2 
OBZ (100)  0  0 0 2 2 0 2  2 0
RPMI‐1640 & DMSO (10%)   4  2  4  2  2  0  6  4  4 
RPMI‐1640   6  3 6 4 4 0 10  7 6

Abbreviations: IVM, ivermectin; OBZ, oxibendazole; Imm, immature worms; RPMI‐1640, Roswell Park 
Memorial Institute‐1640 medium; DMSO, dimethyl sulfoxide 
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Table 5.2 Results of the statistical analysis evaluating the mean percent worm viability between drug treated and control worms, and 
between different concentrations of the same drug. Results are shown for each worm stage/sex. 

 
 

g g /

Immature worms 
OBZ Comparison 1  OBZ Comparison 2 IVM Comparison 1 IVM Comparison 2

Control  Drug  Result  Drug 1  Drug 2  Result  Control  Drug  Result  Drug 1  Drug 2  Result 

RPMI‐1640 
OBZ 
(0.1 

μg/mL) 
NSD 

OBZ
(0.1 

μg/mL) 

OBZ 
(1 μg/mL) 

0.1 > 1 
(p=0.0049) 

RPMI‐1640 
IVM 
(0.1 

μg/mL) 

IVM < RPMI 
(p=0.0126) 

IVM
(0.1 

μg/mL) 

IVM 
(1 μg/mL) 

NSD 

RPMI‐1640 
OBZ 

(1 μg/mL) 
NSD 

OBZ 
(0.1 

μg/mL) 

OBZ 
(10 

μg/mL) 

0.1 > 10 
(p=0.0493) 

RPMI‐1640 
IVM 

(1 μg/mL) 
IVM < RPMI 
(p=0.0258) 

IVM 
(0.1 

μg/mL) 

IVM 
(10 

μg/mL) 
NSD 

RPMI‐1640 
OBZ 

(10 μg/mL) 
NSD 

OBZ 
(1 μg/mL) 

OBZ 
(10 

μg/mL) 
NSD  RPMI‐1640 

IVM 
(10 μg/mL) 

IVM < RPMI 
(p=0.0501) 

IVM 
(1 μg/mL) 

IVM 
(10 

μg/mL) 
NSD 

Male Worms 
OBZ Comparison 1  OBZ Comparison 2  IVM Comparison 1  IVM Comparison 2 

Control  Drug 1  Result  Drug 1  Drug 2  Result  Control  Drug 1  Result  Drug 1  Drug 2  Result 

RPMI‐1640 
OBZ 
(0.1 

μg/mL) 
NSD 

OBZ
(0.1 

μg/mL) 

OBZ 
(1 μg/mL) 

NSD  RPMI‐1640 
IVM 
(0.1 

μg/mL) 

IVM < RPMI 
(p<0.0001) 

IVM
(0.1 

μg/mL) 

IVM 
(1 μg/mL) 

NSD 

RPMI‐1640 
OBZ 

(1 μg/mL) 
NSD 

OBZ
(0.1 

μg/mL) 

OBZ
(10 

μg/mL) 
NSD  RPMI‐1640 

IVM 
(1 μg/mL) 

IVM < RPMI 
(p<0.0001) 

IVM
(0.1 

μg/mL) 

IVM
(10 

μg/mL) 
NSD 

RPMI‐1640 
OBZ 

(10 μg/mL) 
NSD 

OBZ 
(1 μg/mL) 

OBZ 
(10 

μg/mL) 
NSD  RPMI‐1640 

IVM 
(10 μg/mL) 

IVM < RPMI 
(p<0.0001) 

IVM 
(1 μg/mL) 

IVM 
(10 

μg/mL) 
NSD 

Female Worms 
OBZ Comparison 1  OBZ Comparison 2 IVM Comparison 1 IVM Comparison 2

Control  Drug 1  Result  Drug 1 Drug 2 Result Control Drug 1  Result Drug 1 Drug 2 Result

RPMI‐1640 
OBZ 
(0.1 

μg/mL) 
NSD 

OBZ
(0.1 

μg/mL) 

OBZ 
(1 μg/mL) 

1 > 0.1 
(p=0.0008) 

RPMI‐1640 
IVM 
(0.1 

μg/mL) 

IVM < RPMI 
(p=0.0224) 

IVM
(0.1 

μg/mL) 

IVM 
(1 μg/mL) 

NSD 

RPMI‐1640 
OBZ 

(1 μg/mL) 
NSD 

OBZ
(0.1 

μg/mL) 

OBZ
(10 

μg/mL) 
NSD  RPMI‐1640 

IVM 
(1 μg/mL) 

NSD 
IVM
(0.1 

μg/mL) 

IVM
(10 

μg/mL) 
NSD 

RPMI‐1640 
OBZ 

(10 μg/mL) 
NSD 

OBZ 
(1 μg/mL) 

OBZ
(10 

μg/mL) 
NSD  RPMI‐1640 

IVM 
(10 μg/mL) 

IVM < RPMI 
(p=0.0082). 

IVM 
(1 μg/mL) 

IVM
(10 

μg/mL) 
NSD 

Abbreviations: NSD, no significant difference; OBZ, oxibendazole, IVM, ivermectin, RPMI‐1640, Roswell Park Memorial Institute‐ 1640 medium
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Table 5.3 Timepoints and drug concentrations when the mean viability Parascaris spp. adult worms decreased by >25%, but remained 
sub-lethal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Necropsy 1  Necropsy 2 Hours of 
exposure 
used 

Necropsy 3 

Drug (μg/mL)  Viability 
Time 
(hours) 

Viability 
(%) 

Time 
(hours)

Viability at time 
of freezing 

OBZ (0.1)  36%  18  NA  NA  ‐  ‐ 
OBZ (1.0)  48%  6 NA NA ‐ ‐ 
OBZ (10.0)  50%  6 45% 12 24 22.22% 
OBZ (100.0)  NA  NA  41%  24  ‐  ‐ 
IVM (0.1)  42.3%  1 100% 1 ‐ ‐ 
IVM (1.0)  40%  1 75% 1 3 75% 
IVM (10.0)  30.4  1  40%  1  ‐  ‐ 

Abbreviations: OBZ, oxibendazole; IVM, ivermectin; NA, not applicable because 
worms were not maintained at this drug concentration for the corresponding 
necropsy. 
Dashes indicate that the drug concentration was not used for molecular analysis. 
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Table 5.4 The top part of the table shows the number of significant transcripts (α=0.01) based on FPKM values obtained from part two 
of this study. The bottom part of the table shows the genes of interest selected for further investigation in part three of this study. The 
target genes were selected based on the comparison between all treated (n=4) and all control worms (n=6). Drug treated worms had 
significantly higher expression than control worms (α=0.01). 
Comparison  Number of significant transcripts
In situ controls vs in vitro controls  115 
All treated vs. all controls  88
All males vs. All females   5756 
OBZ treated (10 μg/mL) vs. OBZ control  153 
IVM treated (1 μg/mL) vs. IVM control 57

Selected target genes   p‐value* 
Cytochrome P450 4C1 (cyp4504c1) 0.0008 
Ferm domain containing protein 4a (frmd4a) 0.0006 
Two‐pore potassium channel protein (sup‐9) 0.0004 
Kelch domain containing protein 10 (klhdc10)  0.0008 

Abbreviations: OBZ, oxibendazole; IVM, ivermectin 
*All target genes had significantly higher expression in drug treated worms than control worms. 

 



 
 

 

 
 
Figure 5.1 A graphical representation of mean worm viability following in vitro 
anthelmintic exposure. Both A and B are from Part 1 of this study in which initial 
observations about response to drug exposure were made. ‘A’ reflects worms obtained 
from the first necropsy and ‘B’ reflects worms obtained from the second necropsy. 
Control worms were maintained in RPMI 1640 medium only or with dimethyl sulfoxide 
(DMSO) which was used to prepare the anthelmintics. Error bars represent 95% 
confidence intervals (α=0.05). 
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Figure 5.2 A graphical representation of mean worm viability of worms used in Part 2 of 
this study, where those exposed to oxibendazole (OBZ) at 10 µg/mL for 24 hours and 
ivermectin (IVM) at 1 μg/mL for three hours were used for RNA-sequencing analysis. 
Control worms were maintained in RPMI 1640 medium only or with dimethyl sulfoxide 
(DMSO) which was used to prepare the anthelmintics. Error bars represent 95% 
confidence intervals (α=0.05). 
 
 



153 
 

 



154 
 

Figure 5.3 A graphical representation of select genes from the RNA-seq analysis 
performed in Part 2 of this study. The housekeeping genes are ama and ncbp.  A) in vitro 
versus in situ controls, B) all control worms versus all drug treated worms, where all 
genes of interest had significantly higher expression in the drug treated worms (α=0.01), 
C) ivermectin (IVM) treated (1 µg/mL), IVM control, oxibendazole (OBZ) treated (10 
µg/mL), and OBZ control. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure 5.4 A graphical representation of the gene ontology pathway analysis for significantly different genes (SDGs) between groups. 
From left to right: all genes, all drug treated worms versus all control worms, ivermectin (IVM) treated (1 µg/mL) versus IVM control, 
oxibendazole (OBZ) treated (10 µg/mL) versus OBZ control. The top row reflects biological processes (BP) and the bottom row 
reflects molecular functions (MF).  
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Figure 5.5 A graphical representation for gene expression analysis following quantitative 
real-time PCR (qPCR) from Part 3 of this study. A) in vitro versus in situ controls, B) all 
control worms versus all drug treated worms, C) ivermectin (IVM) treated (1 µg/mL), 
IVM control, oxibendazole (OBZ) treated (10 µg/mL), and OBZ control. No significant 
differences were identified for any qPCR analysis. 
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CHAPTER 6. DISCUSSION 

6.1 Discussion introduction 

Overall, the knowledge for combination treatment regimens and anthelmintic 

resistance mechanisms is lacking, particularly in equine parasites, and therefore these 

topics have been the focus of the current research. The discussion chapter is organized to 

first give a brief overview of the major findings described by the research presented 

herein. The subsequent sections offer detailed discussion of each chapter, including the 

major findings, explanations for the findings, future directions, and a brief conclusion. 

Finally, a generalized discussion regarding some of the significant questions in equine 

parasitology research is included. 

6.2 Overview of the major findings 

The first combination deworming study employing OBZ and PYR did not provide 

an additive effect beyond the first treatment. This is in contrast to findings and 

recommendations of ruminant parasites for reasons which will be discussed below. 

Regarding the second combination deworming study using OBZ and MOX, the results 

were somewhat expected given the full efficacy of MOX, and a longer-term study is 

needed to evaluate the impact on OBZ efficacy. The two studies provide a ground work 

for future field research and computer simulation studies. The evolving challenges from 

these studies speak to the complicated nature of cyathostomin biology and the 

sustainability of anthelmintic resistance. These topics are discussed further in the sections 

below.  

Regarding the in vitro maintenance of adult Parascaris spp., it seems that this 

ascarid species has different energy/nutritional demands compared to other ascarid 

species, and as a result was not possible to maintain in vitro for more than 5-7 days. 

There are several possibilities for optimizing the in vitro maintenance protocol, and these 

methods will be discussed below. The gene expression analysis following in vitro drug 

exposure revealed a number of significantly differentially expressed genes, however, 

none of the commonly studied drug efflux genes (section 1.8.4) had increased expression 
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in response to drug exposure. The selected genes of interest had functional applications 

that have yet to be explored in any ascarid parasite. The discussion will offer 

explanations for these differences, and how these findings will be useful in future studies. 

6.3 Combination deworming studies 

6.3.1 Major findings 

The lack of sustainable control was the primary finding of the OBZ-PYR 

combination deworming study. Several of the combination deworming studies involving 

ruminant parasites (section 1.9.4) found it to be a beneficial alternative treatment 

regimen, when employed under appropriate conditions. However, modelling studies 

revealed lowered efficacies of combination products in populations where resistance was 

highly prevalent (section 1.9.4), and this is in agreement with the current findings. 

Nevertheless, some countries market combination dewormers for small ruminant and 

ruminant parasites, and they are used off label in other areas of the world. Likewise, 

combination products for horses are also marketed, but with a significant lack of 

evidence. The results described herein (sections 2.3 and 3.3) do not support the use of 

combination treatment against double-drug resistant cyathostomins, when drug resistance 

is well established and both drugs have low efficacies.  

6.3.2 Explanations for findings 

There are several variables which may contribute to the current findings. First is 

the suspected sustainability of anthelmintic resistance in cyathostomin parasites. Two 

long-term studies have described the sustainability of BZ resistance in two historic 

cyathostomin populations, known as Population B (Lyons et al., 2007) and Population S 

(Lyons et al., 2001). Population B cyathostomins originated from a farm in central 

Kentucky with known resistance to phenothiazine, thiabendazole, piperazine, and 

pyrantel pamoate (Drudge and Elam, 1961; Drudge and Lyons, 1965; Drudge et al., 1988, 

1990). In 1966, Population B cyathostomins were established on a pasture at the 

University of Kentucky maintained in a herd of mixed light horses. This cyathostomin 

population was the subject of numerous efficacy studies, were resistance to variety of BZ 
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compounds, including thiabendazole, was reported, but albendazole and OBZ remained 

efficacious (Drudge et al., 1977, 1979, 1984, 1991; Tolliver et al., 1993). A subset of this 

population (maintained in a selection of horses from this herd, but moved to a new 

pasture) was left unexposed to anthelmintics for 22 years (1970-2001) before a final 

critical test of various anthelmintic compounds. Despite the lack of selection pressure for 

over two decades, the resistance status of thiabendazole and FBZ was unchanged (Lyons 

et al., 2007). Population S cyathostomins were established at the University of Kentucky 

in 1974 and maintained in a herd of Shetland ponies. Over an 18 year period, resistance 

to cambendazole (Drudge et al., 1983) and OBZ (Drudge et al., 1985b) developed as a 

result of continuous anthelmintic treatments. Subsequently, administration of BZ type 

drugs ceased, and only PYR drugs were used for the next seven years (1992-1999) to 

induce PYR resistance. Despite the removal of selection pressure with BZ drugs for 

seven years, resistance to OBZ was maintained (Lyons et al., 2001). The Population S 

cyathostomins are still maintained at the University of Kentucky Main Chance farm in a 

herd of ponies, and exhibit substantial resistance to OBZ and PYR. This population was 

used in both combination deworming studies described herein (Chapters 2 and 3). 

The two studies described above support the sustainability of BZ resistance in 

cyathostomins, even when the selection-pressure of drug treatment is removed. The 

sustainability factor also brings into question the ‘fitness loss’ theory proposed by 

Prichard (1990), as described in section 1.6. This theory is heavily relied upon in many 

combination deworming studies (section 1.9.4), but due to the lack of concrete and 

consistent knowledge of ‘resistance genes,’ the actual association of these with a fitness 

loss is unknown. Given the sustainability of resistance in cyathostomin parasites, it seems 

that this theory may not apply as they appear to pass on the genetics of resistance in a 

sustainable manner evidenced by the two long term studies described above (Lyons et al., 

2001, 2007). Secondly, the initial efficacy levels of OBZ and pyrantel were 66.7% and 

63.3%, respectively. As proposed by Learmount et al. (2012) and Leathwick (2012), the 

benefits of combination deworming are the greatest, when the resistance frequency to 

both drugs are low. Given the low starting efficacies of both actives used herein, one can 

presume the resistance alleles for both drugs are prevalent throughout Population S which 

may have negated the benefits of combination therapy. The portion of the population in 
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refugia is also attributed as a major factor of combination therapy success, as modeled by 

Leathwick et al. (2012) and Leathwick (2013). However, the benefits of refugia to 

increase drug efficacy or slow the rate of resistance have not been evaluated for 

cyathostomin parasites, and their complicated biology affects the impact of refugia. All 

ponies in this study were treated, leaving the environmental stages and encysted larval 

stages as the only source of refugia. It is unlikely that the impact of the environmental 

stages as a source of refugia was observed within the timeframe of this study (one year). 

Because the adult cyathostomin lifespan is presumed to be one year (Ogbourne, 1975; 

Reinemeyer et al., 1986; Leathwick et al., 2019) and newly ingested stages undergo a 

period of arrestment, it is unlikely that the newly ingested stages would be in the lumen 

and have contributed to egg shedding. However, because neither OBZ nor pyrantel 

exhibit larvicidal efficacy, the encysted stages may have served as a source of refugia 

upon being recruited to the lumen. Removal of luminal stages by anthelmintic treatment 

is known to trigger recruitment of the arrested stages. Given treatment occurred every 8 

weeks, it is likely that some of the arrested stages were recruited after each treatment. We 

can assume that the recruited population consisted of some fully susceptible individuals, 

single drug resistant worms, and double drug resistant worms.  This is evidenced by the 

initial additive effect (76%) followed by the consistent albeit lower efficacies (40-43%) 

of the second, third, and fourth combination treatments. The first combination treatment 

was more efficacious because it removed the susceptible and single-drug resistant worms, 

leaving only the worms resistant to both OBZ and PYR. However, because treatment 

triggered recruitment of arrested stages bring a mixture of susceptible/resistant worms, 

this explains why there was low, but continued efficacy for the subsequent treatments. 

This multi-drug resistant population was continually targeted, but failed to be totally 

removed, preventing the efficacy from increasing. It is possible that if this study was 

allowed to continue for another year, we may have seen another additive effect in 

efficacy as new adult worms would have repopulated the lumen, and the susceptible and 

single-drug resistant worms would have again been removed. However, a break in 

treatments would likely be necessary otherwise the multidrug resistant worms would 

remain and again dominate the luminal burden, which prevent an additive effect. Next, it 

is also possible that interactions occurred between the two drug classes used. Currently, 
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there are no studies examining potential PK and PD interactions of anthelmintics 

occurring within the horse or in equine parasites. Little is known about the specific drug 

targets in equine parasites, but they are presumed to be the same as those modeled in C. 

elegans and other organisms. It is possible that the one drug may inhibit the receptor or 

effector effects of the other drug, or perhaps their interaction may trigger or enhance non-

specific resistance mechanisms. These speculations of drug interactions show the limited 

knowledge available and support the need for future research in this area. The fact that 

these multi-drug resistant worms were already present in the population prior to this 

study makes one doubt that their resistance genetics are associated with a fitness loss, and 

it appears that they are capable of surviving and passing on the multi-drug resistant 

alleles to future generations. At this time, we conclude that combination deworming 

using OBZ and pyrantel is not a sustainable approach against OBZ-PYR resistant 

cyathostomins.  

These results led us to our next study surrounding the question of combining an 

efficacious drug, or a drug naïve to the parasite population (MOX), with another 

anthelmintic (OBZ). Again, the rules of a refugia population and limited resistance 

present within the population still apply for achieving the maximum benefits of 

combination therapy. However, Leathwick (2012) did conclude that even when one of the 

anthelmintics offer only 50% efficacy, it can still offer some benefit to slowing the 

development of resistance to the new drug. This is because there is still a 50% chance 

that the older drug will be able to remove worms which become resistant to the new drug. 

Unfortunately, no new drug classes have been developed for horses in the last 40 years, 

and all of the current drugs have confirmed or emerging resistance among cyathostomin 

populations worldwide. Therefore, the ability to combine a new drug into a combination 

product is problematic. However, the Population S cyathostomins were naïve to ML 

drugs, providing a unique opportunity to use MOX as a novel anthelmintic.  Therefore, 

the second combination deworming study targeted the Population S cyathostomins with 

MOX and OBZ, where the starting efficacy of OBZ was again low, at 46.7%. Moxidectin 

achieves some larvicidal efficacy against the arrested (EL3) stage that is most recently 

reported as 73.8% (Bellaw et al., 2018), however the efficacy in a naïve population is 

unknown. In this study, anytime MOX was used, alone or in combination, it awarded 
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100% reduction in FECs, which was not surprising given the naïve ML status of the 

population. Although this study was carried out for two years, it only provided enough 

time to administer two combination treatments by the time FECs were high enough for an 

efficacy evaluation (10 horses with an EPG >100). In both cases, this took at least 40 

weeks. This extended period between treatments was likely due to the perfect efficacy 

(100%) for removing the adult worms and the larvicidal efficacy of MOX, albeit 

incomplete. The total removal of adult worms removes the opportunity for any immediate 

egg shedding, and the ERPs were near or within historic reports of 16-22 weeks (DiPietro 

et al., 1997). Despite the high efficacy of MOX, the OBZ efficacies before and after 

combination treatment were not significantly different from each other. This finding may 

be due to the sustainability of BZ resistance, as evidenced by Population B (Lyons et al., 

2007) and Population S (Lyons et al., 2001) cyathostomin populations. Therefore, it 

would likely be decades before MOX would completely eliminate the BZ resistance 

alleles from the population. The current timeframe of the study did not allow us to 

determine if OBZ could be beneficial to delaying the resistance development to MOX. 

Emerging resistance to the MLs is reported (section 1.7.1) and it is not unlikely that with 

routine ML exposure, Population S would also develop resistance, but ML resistance has 

yet to be reported on any managed horse farm. Given the observed sustainability of BZ 

resistance, it can be presumed that the last observed BZ efficacy within this population 

would continue to decrease as BZ exposure continued.  

6.3.3 Comparison to other studies 

As mentioned in section 1.9.4, only four studies have observed the effects of 

combination deworming in horses, all of which utilized only a combination drug 

treatment. Two of these studies will not be discussed here because either it did not report 

treatment efficacies (Lyons et al., 2016) or was focused on Parascaris spp. rather than 

strongyles (Wilkes et al., 2017). Of the remaining studies, one used a triple combination 

that achieved 99% efficacy where two of the three actives were <85% efficacious (Rolfe 

and Dawson, 1994), and the other used a combination of OBZ and pyrantel, and achieved 

90-99% efficacy where one of the single actives used was not efficacious on a given farm 

(Kaplan et al., 2014). Both of these studies only observed one combination treatment, and 
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the results are in agreement with efficacy achieved by the first OBZ-pyrantel combination 

treatment of the current study presented in Chapter 2. This is not surprising given that a 

resistant cyathostomin population would consist of fully susceptible individuals, some 

harboring resistance to each single active, and possibly some individuals with multi-drug 

resistance. The use of the combination would remove all of the susceptible and single 

active resistant worms providing an increase in efficacy compared to when each drug was 

used alone. However, it is unknown how sustainable this treatment would have been on a 

given farm. This depends on the initial resistance allele frequencies (i.e. initial single-

active efficacies), farm management practices, refugia, modes of action, and potential 

drug interactions. Kaplan et al. (2014) used the same drug combination as described 

herein. Five of the eleven farms observed by Kaplan et al. (2014) had initial efficacies 

>90% for both single actives, and subsequently all of these farms achieved >99.3% 

efficacy for the combination treatment. Even the farms with the lowest single active 

efficacies had a combination efficacy >93.7%. The mean initial starting efficacies (OBZ, 

89.9%; pyrantel, 87.1%) in Kaplan et al. (2014) were much higher than those in the long-

term OBZ-pyrantel combination study (Chapter 2; OBZ, 66.7; pyrantel, 63.3%). Despite 

the differences in starting efficacies, both studies achieved an additive effect, as 

evidenced by the implementation of the additive effect formula, where Kaplan et al. 

(2014) achieved 97.2%, and the current study achieved 76.6%. The starting efficacies 

directly reflect the high and low combination efficacies observed, respectively. Because 

of the higher single-active efficacies in the former, it is possible that, in this scenario, 

subsequent combination treatments would have continued to achieve a high efficacy. 

However, given the likely presence of multi-drug resistant parasites, it is also possible 

that efficacy would have decreased and selected for multi-drug resistant worms. Given 

what we know about the sustainability of BZ resistance in cyathostomin populations, the 

latter outcome seems more likely. Finally, it must be considered that the Kaplan et al. 

(2014) study was actually conducted in 2004, and efficacy levels may have been higher 

than present day. If this was the case, then the combination therapy proposed may no 

longer be useful. Overall, more long-term studies are needed to evaluate the effects of 

combination deworming against cyathostomins where single-active efficacies are >85%. 
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Regarding the MOX-OBZ combination deworming study, this is the only study of 

equine cyathostomins using a ‘new’ anthelmintic (MOX), and therefore there are no other 

equine studies to which these results can be compared. There are some studies in 

ruminants evaluating combination therapies when one of the drugs is 100% efficacious 

and the other is considered ineffective (section 1.9.4). Overall, these studies found 

combination treatment to be beneficial. However, the majority of these studies employed 

drugs with mixed routes of administration and slow-release drugs. Currently, MOX is the 

only drug in horses considered to have extended persistence due to its water-soluble and 

lipophilic nature allowing it to quickly absorb into the horse’s fat and retain its maximum 

concentration (Pérez et al., 1999; Gokbulut et al., 2010a). This characteristic is 

responsible for the extended ERP of MOX compared to other equine anthelmintics. This, 

coupled with the larvicidal efficacy, explains the prolonged efficacy observed in the 

current study and why it took 40 weeks for egg counts to rise to an acceptable level for 

reevaluation. There are a variety of administration routes for anthelmintics in cattle 

(intravenously, intramuscular, per os, intraruminal, subcutaneous). In horses, however, 

anthelmintics are only available for oral use. The PKs of pour-on anthelmintics 

(subcutaneous route) have been investigated in horses, and resulted in lower maximum 

plasma concentrations and shorter persistence when compared to oral IVM (Gokbulut et 

al., 2010b; 2016). Interestingly, the intramuscular administration of IVM resulted in 

prolonged retention of the maximum plasma concentration and prolonged availability 

than when IVM was given orally (Perez de la Cruz et al., 2003). Unfortunately, IVM is 

not labeled for horses via intramuscular administration due to a history of infections and 

reactions at the injection site (McKellar and Benchaouli, 1996). Therefore, it is obvious 

that the route of administration affects drug bioavailability and efficacy. The multiple 

routes of administration available in cattle provide more opportunities for combination 

deworming. A combination of IVM and albendazole when given intravenously resulted 

in an efficacy of 91.9%, but when IVM was given subcutaneously and albendazole 

intraruminally, the combined efficacy decreased to 70.8%. Additionally, the extended 

release capabilities should also be considered. The combination of doramectin (28-day) 

with albendazole resulted in significantly higher efficacy for up to a month after 

treatment than the 100-day slow release eprinomectin given alone. As illustrated herein, 
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there are many opportunities for combining anthelmintics in cattle and results are largely 

affected by the route of administration. Currently, no studies have examined combination 

deworming combined with alternative administration routes in horses. Given the 

extended release properties of MOX, and the longer persistence of IVM when given 

intravenously, it would be interesting to examine their effects when provided in 

combination with other drugs. However, the risks associated with injections may dampen 

the market and successes that have been observed in cattle.  

Despite the success in the small ruminant industry, recommendation of 

combination deworming practices for equine parasites should not be extrapolated from 

the small ruminant GIN studies for several reasons.  First, this is complicated by the 

known variation in drug receptor composition and receptor sensitivity between parasite 

species (as described in sections 1.5.2 and 1.5.3). The other equine combination 

deworming studies described herein have examined only a single combination treatment. 

While these initially have provided an additive effect, the OBZ-pyrantel combination 

study presented here (Chapter 2) where multiple treatments were given proved it not to be 

sustainable under the described conditions. Secondly, we must consider the differences in 

biology of the parasites. The clinically important GINs of small ruminants are able to 

undergo hypobiosis, where the larvae arrest development within the host, usually at the 

L4 stage (Zajac, 2006). Generally, the period of hypobiosis is observed when 

environmental conditions are unfavorable for larval development and it would be 

unproductive for luminal stages to proliferate. Development of the hypobiotic stages 

resumes upon arrival of the next grazing season (Zajac, 2006). For cyathostomins, the 

hypobiosis phenomenon is different in that the larval stage undergoing hypobiosis is the 

EL3, and they can remain arrested for at least two years (Smith 1976a,b). Although the 

combination deworming of cyathostomins is largely to target the luminal stages and not 

the hypobiotic stages, the lengthy arrested development presumably plays a role in the 

development and sustainability of resistance. A third reason is the lack of implementation 

and evidence for refugia benefits. As mentioned several times previously, refugia are 

important components for GIN management of small ruminants, and have been supported 

by several modelling and field studies. This management practice may aid in delaying the 

development of resistance in small ruminant GIN, even when resistance to one of the 
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actives is high. Refugia are easier to implement on small ruminant farms than on equine 

farms as all of the animals are generally owned and/or managed by a single individual, 

and selected treatments based on FEC and/or clinical symptoms is a common practice. 

However, refugia maintenance is not a common practice on most managed horse farms. 

Horse owners tend to either synchronize deworming treatments in an ‘all or none’ 

approach, or tend to manage their personal horses on their own terms, leaving little to no 

benefit of refugia (Robert et al., 2015; Nielsen et al., 2018a; Scare et al., 2018a). 

Therefore, implementation of combination deworming under the appropriate 

management conditions to maximize the combination deworming benefits will be a 

challenge for the equine industry. Overall, given the presence of resistance to the BZ and 

PYR drug class on managed horse farms world-wide, combination therapy using these 

two compounds is not recommended. While the MOX and OBZ combination treatment 

provided perfect FEC reduction and suppressed egg counts for several months, currently 

it is unknown if the same effects would be observed on managed horse farms where the 

ERP following ML treatment is shortened. Therefore, this should be evaluated before 

recommendations are made. 

6.3.4 Future directions 

Because of the limited timeframe allotted for the MOX/OBZ combination 

deworming study, it would be of primary interest to extend this study. It is difficult to 

know exactly how long of a study would be needed to determine the benefits and 

consequences of this combination. A five year study would allow for five generations of 

cyathostomins to be observed, given the proposed one year adult lifespan and the 

observed 40 week period necessary for egg counts to reach appropriate levels for 

evaluation. However, the known two year (or longer) arrestment period would complicate 

this as these worms would harbor BZ resistant alleles. This would drastically reduce the 

implications for observing the effects of MOX treatment on BZ resistance, and one could 

argue that an even longer study would be necessary. However, given the expense for 

maintaining a herd of horses (even miniature ones) it is challenging to secure funding for 

long term studies. Nevertheless, it would also be interesting to carry out a long-term 

study to observe the rate of resistance development to MOX, but again this would be 
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plagued by financial maintenance. Therefore, computer modelling studies implementing 

different variables and projecting over several decades would be of use. Currently, a 

model for cyathostomins has been developed employing the dynamics of the free-

living/environmental stages (Leathwick et al., 2015b) and parasitic stages (Leathwick et 

al., 2019). Because the timeframes implemented in both of these studies were too short to 

observe long term effects on the population genetics, the details (horse age, 

seasonal/weather data, management practices, initial egg shedding levels, initial drug 

efficacies, anthelmintics used, treatment frequencies, etc) can be combined with the 

infection dynamics of the model. These parameters can be employed to predict the 

benefits and risks of combination therapy, and investigate the importance of refugia over 

several decades. These results would be useful to guide combination deworming 

recommendations to equine producers, and used as a baseline for future field studies. 

Another area of interest would be to observe genomic and transcriptomic differences 

between this double-drug resistant isolate and an anthelmintic naïve or susceptible 

isolate. However, such a study would be plagued by several challenges, such as the 50+ 

species of cyathostomins, the lack of pure isolates, and the genetic variation between 

isolates. 

6.3.5 Conclusions 

Overall, these studies emphasize the importance of not making equine parasite 

control regimens based off of findings in other species. The cyathostomin biology, 

particularly the prolonged period of larval arrestment, and the known sustainability of 

anthelmintic resistance introduce challenges that must be considered. The full effect of 

these factors, the influence of refugia, and the fitness loss theory remain largely unknown 

for cyathostomin parasites. It is clear that more long-term studies are needed to elucidate 

the influences on anthelmintic resistance and regimens for overcoming resistance. Based 

on these results, we conclude that combination deworming should not be implemented 

for double-drug resistant cyathostomins where initial efficacies are low, and combination 

therapy involving a new anthelmintic must be further evaluated on the longer-term under 

the conditions of managed horse farms. 
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6.4 In vitro maintenance of Parascaris spp. intestinal stages 

6.4.1 Major findings 

The primary conclusions obtained from the evaluation of the in vitro maintenance 

requirements of Parascaris spp. was that this ascarid species appears to have different 

nutritional demands and energy requirements than Ascaris suum. It was also interesting 

that implementation of a CO2 incubator did not improve longevity or viability. This study 

also established an objective motility based viability assessment, and determined that 

worm body muscle tone was a better indicator of worm death rather than a lack of 

observed movement. It also appears that assessing worm viability over time may be a 

better observatory measure as opposed to worms being dead/alive. 

6.4.2 Explanations for findings 

In the current study, the addition of glucose as a nutrient did not improve worm 

viability. The concentration employed was 5mM. It is possible that this concentration was 

too low and thus no benefit was observed. Still, the constant replenishment of fresh 

medium and glucose nutrient should have offered some initial increase in viability, but it 

is possible that the 12 hour assessment interval was too infrequent to observe a short-

lived improvement. Another possibility is that the worms are unable to metabolize 

glucose in its current form and perhaps an alternative, such as pyruvate, would be more 

suitable. However, the benefits of glucose as a nutrient cannot be ruled out, but rather it is 

plausible that glucose alone was not enough considering that RPMI-1640 medium, which 

contains glucose, offered significantly better longevity and viability than any other 

media/nutrient combination. RPMI-1640 contains glucose (11 mM) as a nutrient along 

with an array of inorganic salts, vitamins, glutathione (an antioxidant), and sodium 

bicarbonate (a pH regulator). While the current study did not explore the impact of these 

additional components on Parascaris spp. longevity and viability, it is evident that some 

or all of them play an important role in maintaining these parasites in vitro. Next, the 

implementation of a CO2 incubator also did not affect Parascaris spp. viability. Given 

that only the saline-based media were tested in the CO2 incubator it is possible that the 

influence of the gas was not evident due to the lack of sodium-bicarbonate in the media. 
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The use of a CO2 incubator is common practice in cell culture, because the media 

employed contain sodium bicarbonate as a pH regulator, which requires CO2. The pH 

levels of the saline-based media employed herein were adjusted using hydrochloric acid 

rather than continually maintained with sodium bicarbonate. Therefore, the full effects of 

a CO2 incubator were not evaluated, and this was a limitation of the study. This study 

also identified significant differences in longevity and viability between the immature 

and adult intestinal stages. We observed the immature worms to frequently have more 

rapid and constant movements than the adult worms (unpublished observations), but this 

was short lived as the immatures appeared to decline in viability more quickly than the 

adults. Therefore, it is plausible to speculate that the immature stages and their growing 

status have higher metabolism and increased energy/nutritional requirements than the 

adults. Finally, this study identified the degree of motility to be a useful indicator of 

worm viability. We often observed that even when worms were not moving that they 

were still alive, which was based on movement stimulated by gentle prodding or by the 

presence of muscle tone. Therefore, worms exhibiting a lack of movement at the time of 

observation should not simply be assumed dead, as was done in several other studies 

(section 4.1). Given the constant peristalsis of the small intestine (the infection site of 

adult Parascaris spp.), we presume that worm motility is very important to prevent worm 

expulsion by the host. Therefore, we can speculate that observed worm motility may 

reflect viability both in vitro and in vivo.   

6.4.3 Comparison to other studies 

As described in section 4.1, several studies have maintained adult stages of 

Ascaris suum in vitro. Most of these studies used a relatively simple saline-based 

medium, where glucose was intermittently provided as a nutrient. McCoy et al. (2015) 

kept adult A. suum alive in Ascaris Ringer’s Solution for 8 days without nutrient. 

However, when this medium was employed in the current study, Parascaris spp. lived a 

maximum of 60 hours (2.5 days) and an average of only 42 hours. A similar saline-based 

solution, artificial perienteric fluid, was capable of supporting adult A. suum for five days 

(Brownlee et al., 1997), whereas Parascaris spp. declined to <10% viability by 72 hours, 

and lived a maximum of 96 hours. Using RPMI-1640 medium, Islam et al. (2004) kept A. 
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suum alive for 2 weeks. However, Parascaris spp. was only capable of surviving for a 

maximum 168 hours (7 days). These stark differences in in vitro survivability between 

ascarid species may be due to several factors. First, we must acknowledge that the 

aforementioned studies did not evaluate worm viability in an objective manner, and most 

considered them only as dead or alive. From the current study, it is clear that the worm 

‘quality of life’ must be considered during evaluations because worms with decreased 

motility are likely decreasing in viability and research quality. Therefore, while these 

studies report extended longevity, the results should be interpreted with caution as worms 

that lived the longest may have been barely viable. Secondly, it seems obvious that 

Parascaris spp. has more nutrient demands than A. suum. Because RPMI-1640 was the 

most successful medium, it appears that Parascaris spp. may benefit from the additional 

components included in this medium, however, direct conclusions cannot be made at this 

time. It is also possible that Parascaris spp. has a higher metabolism than A. suum and 

perhaps the nutrient concentrations employed were not enough or were not provided in 

the appropriate metabolite form for absorption and utilization. Another point for 

consideration is the effect of the immune system. As described in section 1.2.2, horses 

generally gain full immunity to Parascaris spp. infections by one year of age, and this is 

dependent on age rather than exposure. Pigs also gain substantial immunity to A. suum 

(Taffs, 1964), but this is driven primarily by exposure (Urban and Tromba, 1982, 1984; 

Urban et al., 1988; Eriksen et al., 1992), and it is not uncommon to find A. suum in 

mature pigs (Eriksen et al., 1992; Mejer and Roepstorff, 2006; Katakam et al., 2016). The 

intense immune response exhibited by foals may compromise the ability for Parascaris 

spp. to survive in vitro before they are even removed from the foal. Foals passively 

receive protective antibodies from their mares (Burk et al., 2016), and we can speculate 

that worms are immediately under constant attack by the immune system. It is possible 

that parasites surviving to adulthood may already be damaged by the immune system, or 

perhaps exhibiting mechanisms to evade the host immune response. Overall, it is likely 

that the immune response may hinder the survivability of adult worms in vitro. We 

attempted to control for this by harvesting worms from younger foals (4.5-5 months of 

age), but currently the extent of the immune system effects are unknown.  
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6.4.4 Future directions 

The in vitro maintenance of Parascaris spp. intestinal stages provides vast 

opportunities to continue studying drug response mechanisms, comparisons in 

phenotypic/genotypic responses between resistant and susceptible isolates, 

immunological assays, collection and analysis of excretory/secretory products, and 

implementation of RNAi techniques. The parameters described herein may also prove 

beneficial in maintaining other ascarid species in vitro, such as Toxocara canis, T. cati, 

Ascaridia galli, and Ascaris lumbricoides. However, continued optimization of 

Parascaris spp. in vitro maintenance is warranted. There are several possible ways to 

explore the metabolic requirements of Parascaris spp. in vitro. One suggestion has been 

to decrease the maintenance temperature (normally at 37˚C) in order to slow worm 

metabolism (Dr. Richard Martin, personal communication). However, it is unknown what 

degree in temperature change would be optimal, or if a decrease would harm other 

physiological process, such as gene regulation and expression.  

Several studies also employed the use of glucose as a nutrient supplement, but 

none of the studies actually measured if this improved worm longevity or viability. While 

the addition of glucose to a saline based media did significantly improve longevity in the 

current study, it did not affect worm viability. Some preliminary work using an over-the-

counter medical grade glucometer to measure the concentration of glucose in the medium 

before and after a 12-hour period suggested that the worms were not consuming the 

glucose (Scare, unpublished data). However, the results were variable and it is unknown 

how accurate the glucometer is at reading glucose levels in a saline based medium. It 

would be interesting for studies to further explore the consumption of glucose and other 

energy metabolites (i.e. pyruvate) of various ascarid species. While the exact beneficial 

components of the RPMI-1640 media are unknown, one could easily test each individual 

component of the formulation and differentiate which are necessary for survival. 

However, perhaps it would be more time-worthy to determine what additional 

nutrients/components might further enhance the RPMI-1640 effects, such as the addition 

of fetal bovine serum. Immediately after harvest from necropsy, Parascaris spp. adult 

worms have been observed in vitro excreting/defecating what appears to be intestinal 
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content which they ingested from the lumen of the horse’s intestines (Scare, unpublished 

observations), and therefore it might be possible to collect these products and compare 

their components to horse small-intestinal digesta. This may provide some clues to what 

nutrients and compounds the worms are utilizing or discarding. The study described in 

Chapter 4, did not evaluate Parascaris spp. viability when maintained in RPMI-1640 and 

within a CO2 incubator due to a limited number of worms. As described in 4.1, studies 

report ascarid maintenance with and without a CO2 incubator, but none of these studied 

have assessed if it is a necessary component for in vitro maintenance. Most of these 

studies also used saline-based media, where the target pH was obtained using an acid, 

therefore it is unclear what benefits the investigators were hoping for by using the CO2 

incubator. Because of the sodium bicarbonate component of RPMI-1640 and its reliance 

on CO2 to regulate pH, it would be of primary interest to observe worm 

viability/longevity when maintained in RPMI-1640 and a CO2 incubator. Finally, it is 

unknown how the length of in vitro maintenance and observed worm viability 

affects/reflects physiologic processes, such as regulation of gene expression. This could 

be determined by observing the expression of some housekeeping genes in worms 

maintained in vitro for different lengths of time and in worms at different levels of 

viability. This would provide insight to how reliably motility represents viability. 

Another interesting comparison would be between in vitro maintained worms and worms 

harvested, but kept in situ and thus minimizing the impact of removal from the host and 

handling. This would provide insight to what physiological processes are disrupted by in 

vitro maintenance, and to what extent. 

6.4.5 Conclusions 

 Overall, maintaining parasitic nematodes in vitro is challenging and currently no 

study has reported successful lifecycle replication of an intestinal helminth in vitro. This 

practice is plagued by many challenges, such as the unknown nutritional requirements, 

cellular communications between parasites and between the host and parasites, 

immunological effects, environmental/gaseous requirements. Additionally, it is unknown 

how these parameters might differ between developmental stages and/or sex. The current 

study provided the first in vitro assessment of nutritional and environmental requirements 



174 
 

for any ascarid parasite. It is apparent that despite sharing a phylogenetic superfamily 

(Ascaroidea), Ascaris suum and Parascaris spp. may have different nutritional and 

energy requirements. Therefore, direct extrapolations from one ascarid species to another 

should be made with caution. The results of this study provide groundwork for future in 

vitro studies, although direct extrapolations for in vivo representation require further 

investigation.  

6.5 In vitro drug exposure of Parascaris spp. 

6.5.1 Major findings 

This study established an in vitro anthelmintic exposure protocol for adult 

Parascaris spp. Anthelmintics were prepared at varying concentrations to observe worm 

viability over time. An immediate finding was that worms responded more quickly to 

IVM treatment, regardless of concentration, than to OBZ treatment and there appeared to 

be some variation in viability following OBZ treatment. 

6.5.2 Explanations for findings 

 The current findings provide a baseline for future drug exposure trials, as 

Paracaris spp. response to drug exposure had never been examined. The initial drug 

concentrations used to observe drug exposure (0.1, 1.0, 10, 100 μg/mL) were selected 

based on previous studies employing in vitro drug exposure of A. suum L4 stage larvae 

(Hu et al., 2013) and adult Parascaris spp. (Janssen et al., 2013b), but these studies did 

not evaluate worm viability over time nor did these studies provide an explanation or 

reference for choosing these drug concentrations. This factor is further complicated by 

the fact that it is unknown how much active drug is reaching the parasite target site when 

inside the horse. Therefore, it was unknown how Parascaris spp. would respond. While it 

appears that the concentrations employed provided toxic effects on the worms, we must 

consider the possibility that perhaps these concentrations were either too low or too high 

to be therapeutically relevant. Additionally, the length of exposure may have been too 

long or too short. It is also unknown how well the viability scores reflect the toxic drug 

effects. The current study selected exposure length based on a sub-lethal decrease in 

viability, but presumably the worms begin responding to the drug immediately upon 
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exposure, whether this is phenotypically evident or not. The more immediate effect 

observed following IVM treatment than OBZ reflects the drugs’ mode of action. As 

described in section 1.5, IVM causes immediate paralysis of the worm, whereas OBZ 

serves to slowly disrupt microtubule polymerization and energy metabolism. The latter 

occurs more slowly. Therefore, the in vitro findings are in agreement with the expected 

mode of action. 

 Furthermore, there are several variables that must be considered before direct 

interpretation of the drug effects can be made. First, it is unknown how an active host 

immune response may affect the worms before or after drug exposure, and worm age 

may also have an effect. Worms that are hindered by the immune response would likely 

be more affected by the drugs, however it also might be possible that attack by the 

immune system may prime worm defense mechanisms and they may already be 

exhibiting some protective responses before drug exposure begins. Thus they may have a 

‘head start’ in protection. Worm age is another complicating factor. As described in 

section 4.3 immature (L4) worms had a significantly shorter lifespan and lower viability 

under in vitro conditions (without any drug exposure) than adult males and females, and 

may have a higher metabolism than adults. It is unknown if the metabolism would 

increase the worm’s ability to metabolize, detoxify, or pump out drugs, but differences in 

drug uptake based on life stage has been described in cattle GIN (El-Abdellati et al., 

2011; AlGusbi et al., 2014). However, significant differences in worm viability between 

immature stages and adults upon drug exposure were only found under one drug 

concentration (OBZ 1μg/mL), and therefore no overall conclusions regarding drug 

metabolism of different stages can be made at this time. Finally, the horse’s metabolism 

of the drug would influence the concentration and possibly the final substrate reaching 

the worm. Currently, these influences are unknown and cannot be reproduced in vitro. 

6.5.3 Future directions 

One of the most obvious next steps would be to optimize the in vitro drug 

exposure protocol by testing more drug concentrations. In the current protocol (section 

5.2), media was changed every 12 hours to remove excretory/secretory products. 

Therefore, fresh drugs and media were provided every 12 hours. This was because the 
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length of drug exposure to observe viability changes was unknown, particularly between 

drugs with differing mode of actions. However, repeated drug exposure at full strength 

likely does not reflect in vivo conditions when a horse is treated with an anthelmintic. 

Typically, a single treatment is given and presumably the concentration decreases over 

time as it gets metabolized by the horse, however the persistence varies based on the drug 

used. Therefore, it would be interesting to compare the results of one drug exposure 

(media changes every 12 hours, but no fresh drug added) to the current method. It would 

also be interesting to observe changes when drug was added in decreasing concentrations 

every 12 hours. Another study would be to explore differences in phenotypic responses 

between various ascarid species following the same drug exposure protocol, and parasites 

of the same species, but with different anthelmintic susceptible/resistant status. In 

conjunction with this, the differences in responses between immature and adult stages 

could also be explored. Perhaps one of the most interesting studies would be apply the 

amount of active drug reaching the target parasites in vivo when administered to the 

horse. Some studies have investigated the drug concentrations reaching the 

gastrointestinal tract and parasites of ruminants (Lifschitz et al., 2017), but less is known 

for horses and their parasites. Some work has investigated the systemic anthelmintic 

concentrations and fecal excretion in horses (Pérez et al., 2001, 2010; Gokbulut et al., 

2010a,b, 2016), and this would provide a starting point for estimating applicable in vitro 

drug concentrations. Future equine-based studies could mimic the work described by 

Lifschitz et al. (2017) to obtain more accurate estimations of drug concentrations within 

host intestinal tissues and various parasite tissues. Sublethal drug exposure is a known 

contributor to resistance. Therefore, some parallels may be made between in vitro and in 

vivo drug treatment studies that would lead to determining the optimum lethal drug 

concentrations reaching the parasite and then how much must be administered to the 

horse to achieve this goal. As previously mentioned, the host immune responses may 

affect worm responses to in vitro drug exposure. Because it is known that immunity to 

Parascaris spp. infections is driven by age rather than exposure, experimental infections 

of foals of different ages and immune status could be performed. Upon necropsy, worms 

would be harvested and maintained in vitro with and without drug exposure as described 

in section 4.2 to evaluate the effects on only worm viability (without drug exposure) and 
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to investigate if the immune response hinders or primes worm defense mechanisms upon 

drug exposure. Additionally, characterization of the host immune response could be 

performed using blood parameters and samples of the small intestinal wall for 

histopathology and differential expression of cytokines.  

6.5.4 Conclusion 

 Overall, the in vitro drug trial of Parascaris spp. provided an important starting 

point for future anthelmintic-based research, and has applications for other parasite 

species as well. However, nonetheless, results must be interpreted with caution as there 

are several factors contributing to in vivo drug exposure that currently cannot be 

controlled for. 

6.6 Gene expression analysis of adult Parascaris spp. following in vitro drug exposure 

6.6.1 Major findings 

This was the first study to investigate the effects of in vitro drug exposure on the 

whole transcriptome of adult Parascaris spp. worms. The predictive pathway analysis 

showed clear differences in the functionality of differentially expressed genes when 

worms were exposed to either IVM or OBZ. Upon closer examination of the genes 

between the drug treated and control group, four of the top significantly different genes 

also had functional implications, however the fold change difference was <2. Based on 

their annotated function, it appears that these genes may have been upregulated by the 

worms in direct response to drug exposure, and provide a basis for future investigations 

regarding their role in resistance and drug response mechanisms. Furthermore, the more 

commonly researched genes associated with resistance did not have a significant increase 

in expression.  

6.6.2 Explanations for findings   

The RNA-seq analysis revealed a number of differentially expressed genes 

between all drug treated worms and all control worms. Comparisons between individual 

drug treatments (IVM and OBZ) and the corresponding controls (IVM control and OBZ 

control) were not used for further analysis due to the small sample sizes, and this was a 
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limitation of the study. The small fold changes in gene expression levels may have 

occurred for a number of reasons; Laurent et al. (2013) discusses the biological 

importance of many genes with minute fold changes. Currently, it is unknown how the 

death of the host and in vitro conditions affect transcriptomic processes, as parasites may 

begin responding immediately to the death of their host. Although these worms were 

harvested within a few hours of euthanasia, it is possible that the lack of peristalsis and 

decrease in host body temperature may trigger a response in the parasites. Additionally, 

we don’t know how the in vitro conditions affect physiological process, such as 

transcriptomic processes. It is possible that the minute fold change differences between 

drug treated and control worms were because overall transcriptomic processes were 

deteriorating from in vitro conditions. Finally, the effects of the host immune response 

must always be considered. It is possible that protective mechanisms of the worm are 

shared between responses to immune system attack and drug treatments. At this time, 

Parascaris spp. responses to host immune responses remain unknown and further 

research on this speculation is needed. 

This was the first study to examine an ascarid population that was completely 

naïve to anthelmintics, and using susceptible worms reduces the genetic variability 

associated with resistant isolates. As described in section 1.8, parasites are opportunistic 

organisms and have the capability to quickly develop mutations when under selection 

pressure, such as anthelmintics which leads to varying drug response mechanisms 

between species and isolates of the same species (James et al., 2009; Gilleard, 2013). 

Therefore, using a susceptible isolate may reduce the variability associated with selection 

pressure. However, the absence of drug selection may not accurately reflect the resistance 

scenarios on managed horse farms. Furthermore, as described in section 1.5, the drug 

receptor subunits often vary between parasite species, making cross-species 

extrapolations challenging.  

The genes of interest were selected based on having significantly increased 

expression and functional application. The functionalities of these genes and proposed 

explanations for their increased expression are provided in detail in section 5.4, and thus 

will not be repeated here. Furthermore, the RNA-seq analysis described herein failed to 
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identify commonly implicated resistance genes, such as the Pgps and multidrug resistance 

genes. As described in section 1.8.4, the Pgps have been of significant focus in several 

resistance studies. While increased expression of Pgps has been associated with 

resistance in H. contortus and C. elegans, findings within other parasite species are 

inconsistent and contradictory. The lack of increased expression of Pgps in the drug 

treated groups may have occurred for three reasons. First, this may be because the 

parasite population used has not been subject to any anthelmintic selection pressure and 

perhaps development of increased expression occurs over time. Secondly, it must be 

noted that C. elegans and H. contortus are within the same phylogenetic clade (Clade III 

along with other strongylid species), however Parascaris spp. belongs to Clade V, and 

perhaps the phylogenetic distance promotes Parascaris spp. to implement other drug 

response mechanisms. Third, a study by Janssen et al. (2013b; described in 1.8.4) did not 

identify an increase in expression of Pgp genes between Parascaris spp. isolates that 

were presumably susceptible or resistant, nor when Parascaris spp. adults were exposed 

to IVM in vitro. Results described in the current study (Chapter 5) were in agreement 

with Janssen et al. (2013b). Additionally, Janssen et al. (2013b) identified three missense 

mutations in a P. equorum isolate that was presumably ML resistant. However, it must 

also be noted that the majority of specimens used by Janssen et al. (2013b) did not have a 

resistance status confirmed by a FECRT, but rather farms reported a lack of decreased 

egg shedding after treatment. Although the current study failed to identify increased 

expression of common resistance genes, such as Pgps, it does not mean that these genes 

are not involved in resistance mechanisms. Populations that have undergone routine 

anthelmintic treatment and thus selection pressure may have selected for overexpression 

of these genes. As suggested by Janssen et al. (2013b), the mechanisms of resistance may 

be related to mutations rather than expression levels. This was outside of the limitations 

of the current study as the population of worms used had not been under anthelmintic 

selection pressure, but should be observed in future studies. Overall, it is interesting that 

Parascaris spp. so far do not appear to increase Pgp expression in response to drug 

exposure, and there could be alternative mechanisms at work.  

Finally, we must consider the limitations of the annotated Parascaris spp. 

transcriptome (Wang et al., 2017).  In its current form, 30% of the listed gene IDs did not 
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have an associated gene name. This missing information may have crucial functions 

related to resistance and drug response mechanisms, and further supports the need for 

future transcriptomic work in the Parascaris species. 

6.6.3 Future directions 

The most logical next step would be to repeat this study on more worms, perhaps 

of different isolates, to validate the findings. It would be interesting to select worms from 

multiple populations with known resistance and susceptibility. Several studies of other 

parasite species have reported variations in findings between different isolates with the 

same anthelmintic sensitivity status, but the level of variation in Parascaris spp. isolates 

is unknown. As described in section 1.8.1, piperonyl butoxide is a known CYP450 

inhibitor. Exposing Parascaris spp. to drugs with and without the inhibitor may provide 

more evidence for the functional role of this gene as a drug response mechanism. A 

similar approach could be taken for Pgps, using the inhibitor verapamil. A more 

molecular approach would be to further investigate the selected genes of interest using 

the C. elegans model.  First, differential expression of these genes could be evaluated in a 

drug exposure trial to observe if this nematode responds in a similar way to Parascaris 

spp., both transcriptionally and phenotypically. Secondly, mutant strains of C. elegans 

could be used to determine if the Parascaris spp. gene rescues the phenotype. For 

example, given that the CYP450 enzymes are important drug detoxification mechanisms, 

a cyp450 knockout strain of C. elegans could be used to observe if a lack of this gene 

increases the drug toxic effects. Then, the C. elegans knockout could be transformed with 

the Parascaris spp. cyp450 gene to observe if it exhibits a rescue phenotype. As 

discussed later in section 6.8, despite the flexibility of the C. elegans model, one must 

keep in mind the associated challenges associated with applying this free-living nematode 

as a parasitic model.  

Aside from investigating gene function, the several influences exhibited by the 

host on the parasite likely introduce unknown sources of variability. Therefore, it would 

be of interest to determine how the in vitro conditions affect various physiological 

processes compared to in vivo conditions, and how the host immune system affects 

transcriptomic processes. Regarding the host’s drug metabolism on the worm responses, 
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it would be interesting to compare the transcripts of worms treated in vivo and in vitro. 

An obvious challenge would be obtaining worms from in vivo treatment before they died 

and RNA degraded.  Alternatively (or additionally), worms could be obtained from drug 

resistant isolates and used for both the in vivo and in vitro models. In this way, some in 

vivo worms would likely be surviving at the time of necropsy. Furthermore, an expansion 

of this would be to compare in vivo and in vitro worms from resistant and susceptible 

isolates. As described previously, the effect of immune responses on worm drug 

responses is unknown, and this could be further evaluated using experimental infections 

of foals with different ages. The differences could be explored both phenotypically and 

transcriptomically. Unfortunately, the aforementioned studies require the sacrifice of 

young horses which makes it challenging to obtain specimens, and of course is never an 

ideal scenario.  Finally, considering all of these influences, a common theme has been 

that results obtained from lab isolates are rarely also found in field isolates (Blackhall et 

al., 1998; Beech et al., 2011; Kotze et al., 2014). 

6.6.4 Conclusions 

This study provides the first whole-transcriptome analysis of adult Parascaris 

spp. worms in response to in vitro drug exposure. Based on functionality, four of the top 

six significantly different genes show potential involvement as drug response 

mechanisms. These genes have not been previously reported in any ascarids species in 

response to drug exposure and warrant further investigation.  

6.7 Differences of cyathostomin and Parascaris spp. infections  

One of the primary questions following the research described herein is if there are 

any cross extrapolations which can be made between the cyathostomin and Parascaris 

spp. study findings. It is possible that the cyathostomin family and the Parascaris genus 

may share similar resistance and drug response mechanisms, but there are several 

biological reasons that strongly support why direct extrapolations between cyathostomins 

and Parascaris spp. should not be made.  

First, the phylogenetic distance between equine cyathostomins and Parascaris spp. 

must be considered. Cyathostomins belong to Clade V, with all other strongylids, while 
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Parascaris spp. are within Clade III (Geary and Thompson, 2001; Hashmi et al., 2001; 

Gilleard, 2004). While there is a large amount of evolutionary conservation of nematode 

genes, there is a great amount of variation in the biology between different clades and the 

associated genetic variation is largely unknown (Gilleard, 2004). Therefore, the 

differences in cyathostomin and Parascaris spp. dynamics discussed below are likely 

driven by years of ecological adaptions, all of which should be carefully considered 

before generalizations are made. 

 There are several differences between the dynamics of cyathostomin and 

Parascaris spp. infections. First, as previously described, cyathostomins can infect horses 

of any age, while Parascaris spp. is primarily found in foals (<1 year of age). Perhaps 

what is most interesting is that the immunity obtained for Parascaris spp. is age driven 

rather than exposure driven. Clayton and Duncan (1979b) established experimental 

infections in foals at either 2-4 weeks of age or 6-12 months of age. Both age groups had 

foals raised under conditions of natural exposure (i.e. on pasture) or in a worm-free 

environment (i.e. concrete stall). The younger foals, regardless of rearing environment, 

established higher infections than the older foals, and there were no significant 

differences between the older foals reared under natural conditions or worm-free 

conditions. Overall, the younger foals had a higher rate of establishment and higher FECs 

than the older foals (Clayton and Duncan, 1979b). In contrast, the immune responses to 

cyathostomin infections, albeit incomplete, appear to be exposure driven which tends to 

be a function of age. The immune response to cyathostomin infections is most commonly 

observed by the number of encysted and arrested larvae, as immune responses are 

evidenced to play a primary role in the arrestment process (Poynter, 1969; Love et al., 

1999; Klei, 2000). Interestingly, studies report foals and parasite naïve horses having a 

shorter cyathostomin prepatent period (Smith 1976a,b), no evidence of larvae in arrested 

development (Reinemeyer et al., 1988; Chapman et al., 2002, 2003; Nielsen and Lyons, 

2017), and high adult worm burdens (Monahan et al., 1998; Chapman et al., 2002; 2003). 

These findings are in contrast to those of mature horses. As the horse matures, the 

cyathostomin exposure and subsequent immune responses increase. This results in a 

longer prepatent period (Smith, 1978) and increased numbers of encysted and arrested 

larvae (Monahan, 1998; Chapman et al., 2002, 2003). Therefore, it appears that immunity 
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to Parascaris spp. infections is more innate in nature, while the incomplete immunity to 

cyathostomins is driven by the acquired immune response. Currently, we can only 

speculate how the immune responses might influence anthelmintic resistance. In general, 

the Parascaris spp. immune response limits the patent infection to only a few months 

during the foal’s life, and this may limit the spread of resistant alleles in a given 

population. However, the life cycle and prolific nature permits multiple generations of 

Parascaris spp. to pass through a single foal. This, coupled with the hardiness of the eggs 

in the environment, may support the quick spread of resistant alleles through the parasite 

population, given the resistance is not associated with a fitness loss. However, 

historically it has been hypothesized that the high number of eggs in the environment 

would support a continuous refugia population, and this was recently supported by a 40-

year model simulation (Leathwick et al., 2017), but this is largely dependent upon the 

absence of resistance alleles in the refugia population. Finally, it is also unknown if 

Parascaris spp. exhibits protection mechanisms from the horse’s immune response that 

may also contribute to protection mechanisms from anthelmintics. Regarding 

cyathostomins, they can infect horses of all ages which greatly increases the opportunity 

for resistance to develop. However, it is presumed that the immune response causes the 

encysted stages to arrest, and the arrested stages can persist for at least two years. This, 

coupled with the one year life span of adult worms, slows down the lifecycle and passing 

of resistant alleles through subsequent generations. However, it should also be considered 

that the arrestment phase allows resistant alleles to persist in refugia (when non-larvicidal 

drugs are used), and may contribute to the gene pool for many subsequent generations. 

Overall, for both cyathostomins and Parascaris spp., there are several factors that must 

be considered for resistance, and more studies are needed to clarify the influence of the 

immune responses. 

 A second interesting point is that Parascaris spp. infections do not appear to be 

affected by seasonality (Fabiani et al., 2016), while cyathostomin infections are 

(Ogbourne, 1975; Eysker et al., 1990; Leathwick et al., 2015b, 2019; Nielsen and Lyons, 

2017). This includes cyathostomin larval development in the environment, arrestment, 

the excystment of arrested larvae, the number of adults in the lumen, and egg shedding. 

The environmental stages consist of the non-embryonated egg, the embryonated egg, and 
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the L1, L 2, and L 3 stage larva. These stages are affected differently by varying 

environmental conditions and this has been reviewed by Nielsen et al. (2007). In 

summary, the infective L3 has the most resistance to conditions of frost and excessive 

dryness, and some resistance to freeze/thaw cycles however, they are very susceptible to 

heat (temperatures ranging from 30-38˚C). Interestingly, the other stages are more 

resistant to high temperatures, but less resistant to the other environmental factors than 

the L3 stage. The hardiness of the L3 stage is attributed to the double-layered cuticle that 

surrounds the larva and is a characteristic unique to this stage. Some evidence also 

suggests that the cuticle may even offer protection in times of desiccation, if temperatures 

remain below the heat threshold (Nielsen et al., 2007). Overall, the ideal conditions for 

development are warm temperatures (25-33˚C) and humidity of at least 20%. Given these 

environmental constraints, the climatic region must be considered when focusing 

anthelmintic treatments around the grazing period (i.e. when larval development and 

infection pressures have peaked; Nielsen et al., 2017). On the contrary, the only 

environmental stage of Parascaris spp. is the egg. These eggs, within which the infective 

larva develops, has a reputation for being hardy as it is surrounded by a thick 

proteinaceous coat. They are found to remain viable under extreme temperature and 

chemical conditions. Parascaris spp. eggs have been reported viable up to 59˚C (Koudela 

and Bodeček; 2006; Rakhshandehroo et al., 2015) and some viability (77.3%) when 

frozen at -20˚C for 168 hours (Koudela and Bodeček, 2006). The eggs are also somewhat 

resistant to various chemicals, such as bleach and potassium dichromate, a reagent known 

to be highly toxic and corrosive (Rakhshandehroo et al., 2015). It is assumed that the 

eggs can survive on a pasture of years, or even decades, but no long-term studies have 

evaluated this claim. Overall, seasonal conditions more drastically affect the development 

of cyathostomins than Parascaris spp. This may be due to the seemingly delicate 

cyathostomin L1 and L2. 

 In mature horses with previous cyathostomin exposure, the number of arrested 

larvae (EL3) increases during periods when environmental conditions are unfavorable for 

larval development, such as excessive heat and desiccation, or extreme cold (Ogbourne, 

1975; Eysker et al., 1990; Chapman et al., 2003; Scháňková et al., 2014). Likewise, 

larvae tend to resume development and excyst as more favorable conditions arise 
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(Ogbourne, 1975; Eysker, 1990; Love et al., 1999; Chapman et al., 2003), and the 

maximum number of adults are found in the lumen during periods of moist, mild weather 

conditions (Ogbourne, 1975, 1976; Reinemeyer et al., 1986; Chapman et al., 2003). It 

should be noted that the fluctuations in the number of arrested larvae reflect the infection 

pressure as the seasons affect the development of the environmental stages. However, 

more studies are needed before direct conclusions can be made. Egg shedding is also 

affected by seasonality, however fluctuations may be less obvious depending on the 

climatic region. One study observed equine strongyle egg shedding on horses in the 

United Kingdom for one year and found distinct changes in egg shedding following 

seasonal changes (Wood et al., 2012). A recent study observed strongyle egg shedding in 

horses over one year in Kentucky (USA), and while fluctuations directly associated with 

seasons was not observed, the egg shedding was increased in the month of September 

(nearing the end of the grazing season), but was decreased in the month of May (at the 

very beginning of the grazing season; Steuer et al., in preparation). These results are 

likely due to regional climatic differences, where more northern climates (like the UK) 

have more distinct seasons than milder, southern regions of the United States (Nielsen et 

al., 2007). Regarding cyathostomin resistance, seasonality and climatic differences likely 

affect the rate of resistance development. In temperate regions the infection pressure is 

more consistent resulting in a continual intake of cyathostomins which would increase 

allele turnover and possibly cause a faster developmental rate of resistance. In contrast, 

regions where seasonal conditions hinder larval development and infection pressure 

decreases during certain times of the year may regularly disrupt allele turnover. 

Therefore, climatic regions should be considered when deciding when to administer 

anthelmintic treatment. Currently, in the United States, it is recommended to deworm 

horses around the grazing season to control for cyathostomins (Nielsen et al., 2016). 

Deworming during the grazing season reduces egg shedding and thus the infection 

pressure, however, worms surviving treatment (resistant worms) would then be the only 

worms contributing to egg shedding and subsequent generations, thus contributing to a 

faster rate of resistance. This has recently been modeled by Nielsen et al. (2019) and 

described in section 1.9.2. Regarding animal health and decreasing the immediate risk for 

disease, deworming during the grazing season seems plausible. However, regarding the 
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development of resistance, it may be more beneficial to deworm during seasons not ideal 

for larval development (hot/dry), that way eggs shed by resistant worms would be 

unlikely to contribute to the infection pressure. In any case, managing parasites on a short 

and long term basis is a delicate balance. 

  A third major point of difference is the larval development and adult lifespan of 

Parascaris spp. and cyathostomins. The maturation of Parascaris spp. in vivo is well 

documented, but cyathostomins undergo a period of arrested development that is poorly 

understood and may continue for at least two years. Regardless, the transcriptional 

changes that may occur between developmental stages for cyathostomins and Parascaris 

spp. is unknown. One similarity, however, is that it appears some anthelmintics affect the 

larval stages of both species. DiPietro et al. (1987) observed IVM to remove immature 

intestinal stages of Parascaris equorum, and later also reported IVM efficacy against the 

migrating stages in the liver and lungs (DiPietro et al., 1988). MOX and FBZ (double 

dose, five days) are labeled to exhibit some efficacy against encysted cyathostomins. The 

incomplete efficacy is likely due to insufficient bioavailability of the drug at the target 

site. Encysted stages that are exposed to sub-lethal levels may be triggered to exhibit 

detoxification mechanisms and evade future drug treatments. The adult lifespan is also an 

important factor for resistance. The life expectancy of the Parascaris adult is thought to 

be around 270 days (Mozgovoy, 1953 in Morand, 1996). Because of the arrested stage, 

the exact adult lifespan for cyathostomins is unknown, but it is presumed to be around 

one year. This is evidenced by seasonal fluctuations in the number of adult worms in the 

lumen (Ogbourne, 1975, 1976; Reinemeyer et al., 1986; Chapman et al., 2003), where 

more adults are found in the lumen when environmental conditions favor larval 

development on pasture (i.e. mildly warm temperatures, humidity), but begin to decrease 

when conditions are less favorable (i.e. excessive/prolonged heat and dryness). 

 Next, the stages affected by anthelmintic treatments are an important point for 

consideration. For migrating stages of Parascaris spp., IVM initially exhibited 100% 

efficacy against migrating larval stages (DiPietro et al., 1988) and was 98.2% efficacious 

against immature stages in the intestine (Austin et al., 1991), however the high levels of 

ML resistance (Table 1.2) make this a less than ideal treatment option today. The only 
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other larvicidal treatment is FBZ (FBZ (10 mg/kg for 5 days) which historically exhibited 

near perfect efficacy against migrating larvae in the lungs and was 99.8% effective 

against immature intestinal stages (Vandermyde et al., 1987). However, no recent studies 

have evaluated larvicidal efficacy for either drug class against Parascaris spp. larval 

stages. For encysted cyathostomins, only MOX (0.4 mg/kg) and FBZ (10 mg/kg for 5 

days) are labeled for larvicidal efficacy. In North America, MOX is only labeled for 

efficacy against the LL3/L4 stages, and not the EL3 stage. A recent study reported a 

decrease in larvicidal efficacy for the FBZ treatment, whereas MOX was 73.8% and 

74.6% efficacious against EL3 and LL3/L4 stages, respectively, which was within the 

range of original label claims of 50-100% (Reinemeyer et al., 2015; Bellaw et al., 2018). 

However, the ERP of MOX was 4 weeks, which is a drastic decrease compared to the 

original 16-22 weeks. The shortened ERP is speculated to be due to luminal L4 stages 

surviving treatment and quickly maturing to egg laying adults (Lyons et al., 2009, 2010; 

Rossano et al., 2010; Lyons and Tolliver, 2013; Reinemeyer et al., 2015; Bellaw et al., 

2018). Regardless, removing the larval stages eliminates it as a source of refugia and 

delays the opportunity for egg shedding into the environmental refugium as well. The 

lack of 100% efficacy of the ML drug class and FBZ 5-day regimen against larval stages 

of both Parascaris spp. and cyathostomins, has likely contributed largely to their 

development of anthelmintic resistance. Every treatment, a portion of larvae survive and 

it is unknown if they have simply not received a high enough drug concentration, and/or 

if perhaps they have superior detoxification mechanisms. Regarding the adult stages, all 

three drug classes marketed for equine parasites in the United States were initially 

effective against adult stages of cyathostomins and Parascaris spp. (section 1.5), 

however the increasing levels of resistance (Tables 1.1 and 1.2), complicate treatment 

regimens. Currently it appears that the cyathostomins are still affected by the drugs for 

which Parascaris spp. is resistant (ML class), whereas Parascaris spp. is still susceptible 

to the drugs for which cyathostomins are heavily resistant (BZ). Some reports of 

resistance to the PYR drug class exist for both.  

 As described in section 1.8, there is evidence for some shared non-specific 

resistance mechanisms between Parascaris spp. and cyathostomins. For example, Pgps 

have been associated with resistance or reduced drug sensitivity in both cyathostomins 
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and Parascaris spp. Two putative Pgp domains have been identified across several 

cyathostomin species (Drögemüller et al., 2004c), and Peachey et al. (2017) identified 

increased expression of Pgp-9 in cyathostomin populations subjected to routine ML 

exposure (Peachey et al., 2017). Pgp-11 and Pgp-16 have been characterized in 

Parascaris equorum, and mutations within Pgp-11 are associated with resistance (Janssen 

et al., 2013b). While the influence of Pgps are shared between cyathostomins and 

Parascaris spp. the currently identified Pgps are different, and it appears that 

mechanisms are as well (expression vs. sequence mutations). Additionally, mutations in 

Pgp-11 of D. immitis have also been identified and associated with decreased IVM 

susceptibility (Bourguinat et al., 2011a). This is particularly interesting as D. immitis (a 

filarial nematode) and Parascaris spp. are within the same phylogenetic clade (Clade III). 

Furthermore, cyathostomins harbor substantial BZ resistance (section 1.7.1), as do 

several small ruminant strongylid species (section 1.7.2). As described in section 1.8.2, 

mechanisms for resistance are most understood for the BZ drug class and commonly 

attributed to three polymorphisms in the β-tubulin gene. These associations are mostly 

based on findings in the small ruminant GIN (section 1.8.2). While F200Y appears to be 

the most common SNP in BZ resistant small ruminant GIN populations, the F167Y 

mutation is more commonly reported in resistant cyathostomins populations. In contrast, 

these polymorphisms do not appear to associate with resistance in Ascaris species 

(section 1.8.2).  

 Overall, the dynamics of cyathostomin and Parascaris spp. infections, such as life 

cycle, host immune responses, and seasonality, influence treatment regimens and the 

development of anthelmintic resistance. The phylogenetic distance between 

cyathostomins and Parascaris spp. is illustrated by the aforementioned biological 

differences, and is further evidenced by the variation in anthelmintic resistance 

mechanisms. Therefore, it does not appear useful or wise to make extrapolations between 

Parascaris spp. and cyathostomins. 

6.8 Challenges with using C. elegans as a parasitic model  

Given the heavy use of the free living, soil-dwelling nematode, C. elegans, as a 

model organism for parasitic nematodes, it is relevant to discuss the challenges associated 
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with its implementation. Perhaps the primary challenge of parasite research is the host 

dependency, and currently no life cycles of equine parasites can be replicated in vitro. 

Leading experts attempt to overcome these challenges by using the model organism C. 

elegans. Every gene in this nematode is characterized, and numerous mutant strains are 

available for study. Additionally, it can be maintained in vitro as pure isolates and has a 

fast replication rate. However, there are several points to consider before using C. elegans 

as a parasitic model and/or extrapolating results from studies to a particular parasite 

species (Geary and Thompson, 2001; Hashmi et al., 2001; Gilleard, 2004). First, one 

should consider the phylogenetic relationships involved. Caenorhabditis elegans belongs 

to the Clade V nematodes, as do all strongylids, however filariid and ascarid species 

belong to Clade III (Geary and Thompson, 2001; Hashmi et al., 2001; Gilleard, 2004). 

This relationship results in several differences that should be considered. For example, C. 

elegans resides in the environment as a free-living nematode, while parasites may live 

within the lumen of various host organs, and/or perhaps migrate within tissues or 

systems. Functionally, C. elegans operates in an aerobic environment where as most 

parasites are within an anaerobic environment.  The genetic differences between a 

parasitic and non-parasitic nematode are unknown (i.e. the ‘parasite’ genes have not been 

identified) (Gilleard, 2004; Geary and Thompson, 2001). Further, the genetic variability 

between similar and dissimilar parasites also remains unknown (Geary and Thompson, 

2001). Therefore, the application of C. elegans largely depends on the characteristic to be 

studied. Despite these challenges, this model organism has proven beneficial for 

anthelmintic screening assays (Geary and Thompson, 2001; Hashmi et al., 2001), and has 

some applications for studying parasite gene regulation and function (Gilleard, 2004; 

Geary and Thompson, 2001; Hashmi et al., 2001). Exploring gene regulation in C. 

elegans is a common and relatively simple technique as this nematode can be easily 

transformed with DNA, and expression patterns can be observed using reporter genes. 

However, the promoter and regulatory regions of a given gene of interest should be 

considered as it may not be the same in the parasite species (Gilleard, 2004). For gene 

function analysis, there is a plethora of C. elegans mutant strains available for which the 

gene of interest can be inserted and observed for functional restoration (Gilleard, 2004; 

Geary and Thompson, 2001). However, it must be considered that these results only 
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provide evidence for gene function, but do not provide proof. The gene may not function 

identically in C. elegans as it does in the parasite species, and other genes with a shared 

function of the deletion may partially restore the phenotype. Another challenge is that 

some knockouts are lethal. In this case, other technologies such as RNAi or 

overexpression may be useful. The former requires a high-level of sequence homology, 

while the latter requires a clear hypothesis for the gene function (Gilleard, 2004). Overall, 

it is clear that C. elegans can be a useful model for studying parasites, but there are many 

considerations that must be taken into account and results should be interpreted with 

caution. 

6.9 Lack of anthelmintic resistance in Strongylus vulgaris 

 Finally, the last point of discussion will be on the lack of resistance reports for 

stongylids, such as S. vulgaris, when it has developed so broadly for the cyathostomins. 

Although S. vulgaris was not a focus of the research described herein, the implication for 

discussion is still warranted due to the high pathogenicity of this parasite and need for 

preventing the development of resistance.  There are four primary hypotheses which may 

contribute to the lack of resistance in this parasite. First, it must be considered that the 

cyathostomins consist of over 50 species. While it is unknown which species, or if all of 

them, harbor resistance genes, the species diversity gives the cyathostomins a much 

larger variety of genes which may associate with resistance. Secondly, the prepatent 

periods of cyathostomins and S. vulgaris differ greatly. S. vulgaris takes at least 6 months 

from the time of initial infection until the adult worms are sexually mature and females 

begin laying eggs. The prepatent period for cyathostomins is much more complicated due 

to the arrested stages. In foals, the prepatent period has been documented as early as 5 

weeks, but in young horses (4-5 years old) it may be 12-15 weeks (Smith, 1976b), while 

in older horses (9-10 years old) it has been observed at 17-18 weeks (Smith, 1978). 

Nevertheless, the prepatent period of S. vulgaris is longer than the cyathostomins, and 

likely contributes to a slower rate of resistance development as it would take longer to 

cycle the resistant alleles through to subsequent generations. It is also unknown how 

cyathostomins are recruited from arrested development to continue development within 

the lumen, but it is presumed to occur as a trickle effect. This method of recruitment 
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would likely contribute to a faster rate of resistance spreading through the population. 

Next, the mechanisms of drug uptake should be considered. The Strongylus species are 

known blood feeders, and if the drug used has a high systemic concentration, then S. 

vulgaris would receive direct exposure. The feeding action of cyathostomins is unknown, 

but they are found free floating in the lumen of the intestine rather than attached to the 

mucosa. This suggests that they do not take a blood meal, but perhaps ingest intestinal 

content. Therefore, they may take up drug through oral ingestion during feeding, and/or 

perhaps the drugs are absorbed transcuticularly. If this is the case, then either method 

may result in indirect and/or lower drug bioavailability for cyathostomins than S. 

vulgaris, and inadequate drug bioavailability is a known driver for resistance. Finally, the 

arrested development stage of cyathostomins is complex and largely unknown, but likely 

has some role in the development of resistance as the larvicidal drugs (MOX single dose 

0.4 mg/kg or FBZ at 10 mg/kg for 5 days) are not 100% efficacious, allowing a portion of 

surviving worms harboring resistance to propagate. Perhaps those that survive have 

developed pertinent mechanisms. It is also unknown if there is a time lapse between 

when the cyathostomin L4 stage excysts and when metabolic/feeding processes begin in 

the lumen. If there is a period where the L4 is present in the lumen, but not feeding, then 

the amount of drug reaching the target receptor may be too low to cause lethal effects. 

For S. vulgaris, IVM treatment affects nearly all stages, including larval stages within the 

CMA, except for the L5 residing in the CMA. Most L5s are reportedly observed retaining 

the L4 cuticle before migrating to the large intestine. Presumably, this extra layer 

provides additional protection from anthelmintic treatment. One might assume that this 

would drive resistance, but if the extra cuticle provides complete protection, then possibly 

no resistance mechanisms are necessary.  

6.10  Overall conclusion 

The anthelmintic resistance crisis is not a new problem, yet there is limited 

knowledge regarding resistance mechanisms and alternative treatment regimens. Some 

research in livestock supports alternative treatment and management regimens (i.e refugia 

management, combination deworming, etc.), but few field studies have been performed 

for equine parasites. Currently, the use of combination deworming where drug resistance 
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is prevalent within a cyathostomin population only selected for multi-drug resistance 

parasites and was not a sustainable control option. Some experts suggest using 

combination therapies with a new anthelmintic with perfect efficacy, but the lack of drug 

development prevents this opportunity on most managed horse farms. However, with a 

unique ML naïve cyathostomin population, we investigated the use of a ML in 

combination with OBZ. While the ML drug was capable of perfect efficacy as evaluated 

by FECs and delaying egg counts for several months, the long-term effects on OBZ 

efficacy are still unknown. The consequences of this combination on managed horse 

farms where the ML ERP is shortened must be evaluated before recommendations are 

made. Overall, it appears that cyathostomin populations with a history of drug resistance 

will be challenging parasites to overcome. Regarding resistance mechanisms,  very few 

studies have focused on equine parasites, and most research has focused on results 

obtained from other parasite phyla, such as generalized resistance mechanisms and 

changes in subunit composition. However, it is likely that resistance to a single drug is 

due to numerous mechanisms. Identifying drug response mechanisms of the whole worm, 

as presented herein, has provided the opportunity for identifying a detoxification 

mechanism shared among numerous phyla (plants, insects, nematodes etc). It also 

identified potentially novel genes which may be involved with compensating for the 

drug’s toxic effects, however no firm conclusions can be made at this time. It is clear that 

there are vast opportunities for research in equine parasites going forward, and swift rate 

of resistance development demands knowledge for preventing resistance from developing 

to future drugs. 
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APPENDIX 1. SUPPLEMENTARY TABLE 1 
 
Supplementary Table 1. Mean treatment efficacies at 2 weeks‐post treatment 
calculated using the FECRT. Predicted efficacies were calculated using the additive 
effect formula. 
95% Confidence intervals are included in parenthesis.  
FECRT = [(pre‐treatment EPG) – (post‐treatment EPG)/ pre‐treatment EPG] x 100% 

Treatment  FECR (%) 
2015 Oxibendazole  66.7  (54.62 – 78.78) 
2015 Pyrantel pamoate  63.3 (51.32 – 75.28) 
2015 Predicted combination treatment  80.73 (72.29 – 89.17) 
1st Combination treatment  76.64 (64.82 – 88.46) 
2nd Combination treatment  42.56 (28.09 – 57.03) 
3rd Combination treatment  41.59 (25.7 – 57.48) 
4th Combination treatment  40.67 (27.21 – 54.13) 
2016 Oxibendazole  42.29 (32.84 – 54.27) 
2016 Pyrantel pamoate  42.7 (28.27 – 57.12) 
2016 Predicted combination treatment  68.68 (57.54 – 79.82) 

 
 



 
 

APPENDIX 2.  SUPPLEMENTARY INFORMATION FOR CHAPTER 5  
 

Supplementary Table 1. The top portion of the table presents the mapping 

statistics for individual each Parascaris spp. sample to the Parascaris univalens 

reference genome (Wang et al., 2017) generated in Part 1 of this study. The 

second portion of the table presents the results of the sequence alignments for the 

PCR products generated in Part 2 of this study compared to the predicted 

sequence. 

Mapping statistics 

Sample Uniquely Mapped Reads (%) 

In vivo control, Female 72.73 

In vivo control, Male 76.65 

Ivermectin (1 µg/mL), Female 76.06 

Ivermectin (1 µg/mL), Male 68.03 

Ivermectin control, Female 71.94 

Ivermectin control, Male 62.65 

Oxibendazole (10 µg/mL), Female 77.67 

Oxibendazole (10 µg/mL), Male 73.94 

Oxibendazole control, Female 43.02 

Oxibendazole control, Male 71.80 

PCR product sequence alignment to predicted sequence (% identity) 

Sample Target gene 

 ncbp ama cytp450 frmd4a sup-9 klhdc-

10 

IVM Male 100 100 98.54 98.4 NSA 100 

IVM-C Male 99 100 100 98.93 98 100 

OBZ Male 98 100 97.84 98.91 94.83 100 

OBZ-C Male 100 99.28 97.96 99.45 92.06 NSA 

Abbreviations: IVM, ivermectin treated; IVM-C, ivermectin control; OBZ, 

oxibendazole treated; OBZ-C, oxibendazole control; NSA, no significant 

alignment 
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Supplementary Table 2. Primer sequences for housekeeping genes and genes of interest. 

Primers were designed using NCBI Primer Blast. 

Gene Primer Name Sequence (5’-3’) Amplicon 

Size (bp) 

Nuclear cap 

binding protein 

subunit 2 (ncbp)* 

Pgr002_g120F 

Pgr002_g120R 

ATCAGCATACGAAATGGACG 

TTCAGAAAGCAAATTGGGAC 

206 

RNA polymerase 

RPABC1 

large subunit 

(ama)* 

PgR065_g009F 

PgR065_g009R 

CCATGACTTTACTTCCGTCA 

AAGAAGGTTATCATCTCGGC 

185 

Cytochrome P450 

4C1 (cytp450) 

PgR071_g005F 

PgR071_g005R 

TCCTATCTTCATCCCGTGTA 

CCTTTCACCAGTTCCGTATT 

188 

FERM domain 

containing protein 

4a (frmd4a) 

PgR045_g021F 

PgR045_g021R 

CAGACAGTGAACTCCAGAAA 

CCAACATAGCCTCAGAGTTT 

231 

Two pore 

potassium channel 

protein (sup-9) 

PgB01_g100F 

PgB01_g100R 

GGCCAGACTATTAGCAAAGG 

AACAAATGAACGCCAAAAGG 

94 

Kelch domain 

containing protein 

10 (klhdc-10) 

PgR401_g001F 

PgR401_g001R 

ACAACGGAGTTCTTTACCAA 

CTCCAAAGATGAGGTTCAGG 

133 

Asterisks indicate housekeeping genes. 

 

 

Supplementary Table 3. Concentrations and RIN scores for samples used in RNA-seq 

analysis analyzed by the Agilent Bioanalyzer (Agilent, Santa Clara, CA, USA) at the 

University of Kentucky Genomics Core Lab.  

Sample ID Concentration Average Average RIN 
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(ng/μl) 

In vivo Male 432 9.75 

In vivo Female 1105 9.75 

OBZ (10) Female 459 9.8 

OBZ Control Female 583 9.75 

IVM (1) Female 440.5 9.8 

IVM Control Female 531.5 10 

OBZ (10) Male 328.5 9.5 

OBZ Control Male 366 9.35 

IVM (1) Male 487 9.35 

IVM Control Male 574.5 9.45 

Abbreviations: IVM, ivermectin; OBZ, oxibendazole; RIN, RNA integrity number 

 

Materials and Methods Supplementary Information 

2.2.1 Collection of Parascaris spp. 

 Collection of live worm specimens at necropsy occurred as previously described 

(Scare et al., 2018). Briefly, all worms were milked out of the small intestine onto a mesh 

sieve, rinsed with room temperature (RT) tap water, and placed in a container of RT 

RPMI-1640. The container was placed in a water bath maintained at 37˚C for transport to 

the laboratory. Worms were classified as adult or L4, and adult worms were further 

characterized by sex as described by Scare et al. (2018).  

2.5 Part 1: Initial assessment of parasite responses to in vitro drug exposure 

Viability assessments on worms harvested from the first necropsy were performed every 

hour for the first six hours, and then every once every six hours until all worms had died 

(78 hours). For the second necropsy, viability assessments were performed at one, six, 

and twelve hours post-treatment, then at 12-hour intervals until all worms had died (84 

hours). Because the number of worms to be collected for part two of this study was 

unknown (i.e., there was a risk of no worms present), worms from the second necropsy 

were snap frozen once a sub-lethal decrease in viability (>25%) was observed. This 

included the IVM worms at 1 hour, OBZ (10μg/mL) at 12 hours and OBZ (100μg/mL) at 
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24 hours, along with the corresponding control worms. The remaining control worms 

were allowed to continue the observation period. 

2.6.2 RNA-seq analysis 

Adaptor trimming and quality control were performed using TrimGalore Version 0.4.4 

(Babraham Bioinformatics) and reads were subsequently aligned to the Parascaris 

univalens reference genome (Wang et al., 2017) using STAR Version 2.5b (Dobin et al., 

2013). Reads were annotated to the Parascaris reference transcriptome (Wang et al., 

2017) using Cufflinks (Release 2.2.1) (Trapnell et al., 2012). The parasite sources used to 

develop the genome and transcriptome by Wang et al. (2017) were obtained from the 

same drug naïve Parascaris spp. population used in the current study (section 2.2). Read 

counts were normalized as fragments per kilobase of exon per million mapped reads 

(FPKM) and differential gene expression analysis was performed on normalized read 

counts.  

Selection criteria for candidate genes were as follows: significant differences (α=0.05) 

between all drug treated worms and all control worms, the differences in expression must 

show an obvious pattern between groups, and the candidate genes must not be 

significantly different between the in situ and in vitro control groups nor between worm 

sexes (i.e., differences did not occur due to in vitro maintenance nor worm sexes). Due to 

the higher number of candidate genes remaining, some selections were based on 

annotated gene function and those which may play a role in parasite drug 

metabolism/defense/drug efflux.  

2.7.2 Primer design and validation 

 

Specificity of primers were tested by performing real-time qPCR (Agilent Mx3000P 

qPCR System, Santa Clara, CA) with PowerUP SYBR Green Master Mix (ThermoFisher 

Scientific, Waltham, MA) according to the manufacturer’s instructions. Cycle parameters 

can be found in the supplementary files.  The total reaction volume was 10 μl and 

prepared according to the manufacturer’s instructions with forward and reverse primers at 

a concentration of 400 nM each and the cDNA sample at approximately 10 ng. This was 

performed on a pooled-sample of cDNA from all drug treated and control worms. The 

cycle parameters were as follows: activation step at 50˚C for two minutes followed by the 
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Dual-Lock DNA polymerase at 95˚C for two minutes, then 40 cycles of denaturation at 

95˚C for 15 seconds and anneal/extension at 60˚C for one minute. Lastly, a dissociation 

step was performed to determine gene-specific amplification evident by a single peak in 

the melting curve. The dissociation step was 60˚C to 95˚C at a ramp rate of 

0.15˚C/second.  

2.8 Statistical analyses 

2.8.1 Part 1: Initial assessment of parasite responses to in vitro drug exposure 

Two mixed model analyses with repeated measures over time were performed where 

‘percent viability’ was the response variable. The first analysis examined the differences 

between worm stage (adult or immature) and between adult males and females. The 

covariates examined were ‘time’, ‘stage/sex’, and the interaction term of 

‘time’*‘stage/sex’. The variable ‘drug’ was kept as a random effect. The second analysis 

examined the effects of drugs (IVM or OBZ) at each concentration (0.1, 1, or 10 μg/mL), 

and RPMI-1640 and DMSO (10%) controls for all worms over time. The covariates 

examined were ‘time’, ‘drug/concentration’, and the interaction term of 

‘time’*‘drug/concentration’. The variable ‘stage/sex’ was kept as a random effect. 

A third mixed model analysis (without repeated measures) was performed to produce two 

sets of results. First, to examine differences between worm stage/sex for the different 

drug concentrations and control groups, and secondly to determine if changing the drug 

concentrations altered viability within each stage/sex. The response variable was ‘percent 

viability’, and the covariates examined were ‘drug/concentration’, ‘stage/sex’, and the 

interaction term of ‘drug/concentration’*‘stage/sex’. The variable ‘time’ was kept as the 

random effect. 

2.8.3 Part 3: Further investigation of genes of interest with qPCR 

Further statistical analyses were performed in SAS software (version 9.4, SAS Institute, 

Cary, North Carolina, USA). Mixed linear analyses were performed to analyze gene 

expression of each GOI in response to drug treatment, and any variability between worm 

sex and between in situ and in vitro controls. The forward construction and backward 

elimination approach was employed in all models and only covariates where p<0.2 

remained in the model. Covariates identified as significant (α=0.05) were further 

examined in a ‘least squares means’ analysis for a Tukey’s pairwise comparison. For all 
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models, the response variable was ‘normalized –ΔCq.’ The first model was used to 

analyze the influence of worm sex and the in situ verses in vitro environment. The 

covariates examined were ‘sex’ and ‘environment’, whereas ‘drug’, ‘gene’ ‘PCR plate’ 

and ‘sample replicate’ were kept as random effects. The second model was for a broad 

comparison between all drug treated and all control worms. The covariates examined 

were ‘drug or control’, ‘gene’, ‘sex’, ‘environment’ and the interaction term of ‘drug or 

control’*‘gene’. The third model was more specific and examined direct comparisons 

between IVM treated and IVM controls, OBZ treated and OBZ controls, and IVM treated 

and OBZ treated. The covariates examined were ‘drug/control type’, ‘gene’, ‘sex’ and the 

interaction term of ‘drug/control type’*‘gene.’ 

 

Sequences for genes of interest for products from all male worms from section 3.3 

ncbp 

>Predicted Sequence 

ATCAGCATACGAAATGGACGCGTAAATTAAATTAGCAAGTAGAAGCAGGC

GGATATGTGGGTTGAGGATTTATGATTGGCACTGCCCGGCAGCTTCCTGAGG

CCTCATCTGGTTATGTGCTTTTACGTTCAGTTATATGCTACTTGAATATGCTTT

ATGGAAAAGCGGTCAAACACGTTGAAGAGCGTCCCAATTTGCTTTCTGAA 

>NCBP Male IVM 1µg/mL 

AGGGCGGATATGTGGGTTGAGGATTTATGATTGGCACTGCCCGGCAGCTTCC

TGAGGCCTCATCTGGTTATGTGCTTTTACGTTCAGTTATATGCTACTTGAATAT

GCTTTATGGAAAAGCGGTCAAACACGTTGAAGAGCGTCCCAATTTGCTTTCTG

AAA 

>NCBP Male IVM Control 

AGCAGGCGGATATGTAGGGTTGAGGATTTATGATTGGCACTGCCCGGCAGCT

TCCTGAGGCCTCATCTGGTTATGTGCTTTTACGTTCAGTTATATGCTACTTGAA

TATGCTTTATGGAAAAGCGGTCAAACACGTTGAAGAGCGTCCCAATTTTGCTT

T 

CTGAAA 

>NCBP Male OBZ 10µg/mL 
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TCCAGCAGGCGGATATGTGGGTTGAGGATTTATGATTGGCACTGCCCTACAG

CTTCCTGAGGCCTCATCTGGTTATATGTTTTTACGTTCAGTTATATGCTACTTG

AATATGCTTTATGGAAAAGCGGTCAAACACGTTGAAGAGCGTCCCAATTTGC

TTTCTGAAA 

>NCBP OBZ Control 

ACCAGCAGGCGGATATGTGGGTTGAGGATTTATGATTGGCACTGCCCGGCAG

CTTCCTGAGGCCTCATCTGGTTATGTGCTTTTACGTTCAGTTATATGCTACTTG

AATATGCTTTATGGAAAAGCGGTCAAACACGTTGAAGAGCGTCCCAATTTGC

TTTCTGAAA 

 

ama 

>Predicted Sequence 

CCATGACTTTACTTCCGTCAGGAACGACTATAAAAATGAATTACCTTAGCA

AGTGGAGCTAAGCAGTTGGTGGTGCAAGATGCATTCGAGATGACATGGTTGT

TAGCAGCATCATATTTATCTTCGTTGACGCCCATAACGAACATTGGTGCATCC

GCAGATGGCGCCGAGATGATAACCTTCTT 

>AMA Male IVM 1µg/mL 

CGCTGGAAGCTAAGCAGTTGGTGGTGCAAGATGCATTCGAGATGACATGGTT

GTTAGCAGCATCATATTTATCTTCGTTG 

ACGCCCATAACGAACATTGGTGCATCCGCAGATGGCGCCGAGATGATAACCT

TCTTCACGTT 

>AMA Male IVM Control 

AGGTGGGAGCTAAGCAGTTGGTGGTGCAAGATGCATTCGAGATGACATGGTT

GTTAGCAGCATCATATTTATCTTCGTTGACGCCCATAACGAACATTGGTGCAT

CCGCAGATGGCGCCGAGATGATAACCTTCTTAAAGCCCA 

>AMA Male OBZ 10 µg/mL 

AGCAGGAGCTAAGCAGTTGGTGGTGCAAGATGCATTCGAGATGACATGGTTG

TTAGCAGCATCATATTTATCTTCGTTGACGCCCATAACGAACATTGGTGCATC

CGCAGATGGCGCCGAGATGATAACCTTCTTCATGT 
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>AMA Male OBZ Control 

AGGATAGCAGGTGGAGCTAAGCAGTTGGTGGTGCAAGATGCATTCGAGATGA

CATGGTTGTTAGCAGCATCATATTTATCTTCGTTGACGCCCATAACGAACATT

GGTGCATCCGCAGATGGCGCCGAGATGATAACCTTCTTGGTCTA 

 

Cytp450 

>Predicted Sequence 

TCCTATCTTCATCCCGTGTAGACCACTTTCATGGTCTCATCAGAAAACTCTC

CCCTTGAACCATCTCACGGCATATATTTAAGAAGGCGCGCAGAATTTCGCCTA

CCTGTTTCAATTAATAAAATTGTATTTCTTTTCAACGAACACCTTCAGCCAAT

ACTCGAGAGCAATACGGAACTGGTGAAAGG 

>CYTP450 Male IVM 1 µg/mL 

TAGCCCCTTGACCATCTCACGGCATATATTTAAGAAGGCGCGCAGAATTTCGC

CTGCCTGTTTCAATTAATAA 

AATTGTATTTCTTTTCAACGAACACCTTCAGCCAATACTCGAGAGCAATACGG

AACTGGTGAAAGGACTAATA 

>CYTP450 IVM Male Control 

CTCCCCTTGAACCATCTCACGGCATATATTTAAGAAGGCGCGCAGAATTTCGC

CTACCTGTTTCAATTAATAAAATTGTA 

TTTCTTTTCAACGAACACCTTCAGCCAATACTCGAGAGCAATACGGAACTGGT

GAAAGGATT 

>CYTP450 Male OBZ 10µg/mL 

CACTACCCTTGACCATCTCACGGCATATATTTAAGAAGGCGCGCAGAATTTCG

CCTGCCTGTTTCAATTAATAAAATTGT 

ATTTCTTTTCAACGAACACCTTCAGCCAATACTCGAGAGCAATACGGAACTG

GTGAAAGGACGTGT 

>CYTP450 Male OBZ Control 

AGTAAACTCTCCCCTTGACCATCTCACGGCATATATTTAAGAAGGCGCGCAG

AATTTCGCCTGCCTGTTTCAATTAATAA 

AATTGTATTTCTTTTCAACGAACACCTTCAGCCAATACTCGAGAGCAATACGG

AACTGGTGAAAGGA 
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Klhdc10 

>Predicted Sequence 

ACAACGGAGTTCTTTACCAAGTTGGTGGTACCACAGGACACATATATAACA

TGGAGGTGCGGAGTTTGACACCCGTTCGGACTGAGACGAACAAACCGTGTGC

AAGCAATTTCCCTGAACCTCATCTTTGGAG 

>klhdc10 Male IVM 1µg/mL Male 

CGACCGGCTTACTGGAGGTGCGGAGTTTGACACCCGTTCGGACTGAGACGAA

CAAACCGTGTGCAAGCAATTTCCCTGAACCTCATCTTTGGAGGATGGCCTCGT

TATGCTCTATGGAAAAGCGCCGTAACGACGTTGTGATTATACCCC 

TTTGGTTTCT GAAAAATGCATT 

>klhdc10 Male IVM Control 

TGCGCAGGTGCGGAGTTTGACACCCGTTCGGACTGAGACGAACAAACCGTGT

GCAAGCAATTTCCCTGAACCTCATCTTTGGAGGACTAAATCGGTAATCCTAGA

TGGAGCTAGATGATGTGCTGATTAGGGAATTTTAATTTGAAGA 

GGTCCT 

>klhdc10 Male OBZ 10 µg/mL 

CCCTGCTCTCTTACTGGAGGTGCGGAGTTTGACACCCGTTCGGACTGAGACGA

ACAAACCGTGTGCAAGCAATTTCCCTGAACCTCATCTTTGGAGGAGCGAAAT

TGGTGGATCCATATATAAAAGCTAAAGACGTTGAAAGTTCGTGGCG 

GTTGTTTTCTGAAAGGACTTTC 

>klhdc10 Male OBZ Control (No significant alignment) 

TGGAGGGAGGAAGTTTCTTCAGCCCTTTTTCTCTCTGACTGGACTGTCTGTTC

GTGAGCCATTCCCTATCACGTTCTTCTCGATATTGTTTAAAAAGCTTTTTTATT

ATATTTGAGCAATATATATTTTTGTGGTAGTGAGC 

 

Sup-9 

>Predicted sequence 

GGCCAGACTATTAGCAAAGGCGCTTTCATCAGGCAGCTCTAAGAAATTAGA

GAATCGGGCATCACTCGCCGAATCCTTTTGGCGTTCATTTGTT 

>sup-9 Male IVM 1µg/mL 
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No sequence product generated 

>sup-9 Male IVM Control 

GGGGGGCAGCCTCCTAGAATTAGAGATCGGGCATCACTCGCCGAATCCTTTT

GGCGTTCATTTGTTAGAGGGCCGCTTCTCTAGTTTATATGCTGTGGCTATATCT

ACACGAAGGCGCATCACAAATGGCGTACAGATGATTAGCATTAT 

>sup-9 Male OBZ 10 µg/mL 

GTCGGGCCGCCTCTAGGAATTAGAGATCGGGCATCACTCGCCGAATCCTTTTG

GCGTTCATTTGTTCGAGGGCCATTTCTTTTTTTTTTTGTTGCAGATACGAAATT

GTTATGCCCTACACAAGAGCGCTATCAACGCTTGATGTATACCCCTTTTTTTC

TGAAA 

>sup-9 Male OBZ Control 

GGGGGCGGCTCTAGAATTAGAGATCGGGCATCACTCGCCGAATCCTTTTGGC

GTTCATTTGTTAATGAGCCCCAACTTCTTGTGCTTCCCTTTGCAGATATAAAC

ATTGAATATGCCAAATAGAAAAGCGCGATGACGACCTGAAACGTATA 

CCCTTTT TCTCAGAAAA 

 

Frmd4a 

>Predicted sequence 

CAGACAGTGAACTCCAGAAATTGATGAAGATTTTAAGGAAGAAATCCAGA

CGGGAATCTGTTGAGATAAGGACGGGAAAATCTTGGCAAATTATACGTTCGG

GAAACATCCGTTCCATATGTGAAACTGCAGATTACTTCAACGAGCAGTAACA

AATCATATTTATTCTGAGTATTCTTTGCAGTCATAGCCGAGAATGATAACTTC

GTTCAAACTCTGAGGCTATGTTGG  

> frmd4a Male IVM 1 µg/mL 

TCGGAGCAATCCAGACGGGATCTGTTGAGATAAGGACGGGAAAATCTTGGCA

AATTATACGTTCGGGAAACATCCGTTCCATATGTGAAATTGCAGATTACTTCA

ACGAGCAGTAACAAATCATATTTATTCTGAGTATTCTTTGCAGTCATAGCCGA

GAATGATAACTTCGTTCAAACTCTGAGGCTATGTTGG 

 

>frmd4a Male IVM Control 
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CCAGAACGGGAATCTGTTGAGATAAGGACGGGAAAATCTTGGCAAATTATAC

GTTCGGGAAACATCCGTTCCATATGTGAAATTGCAGATTACTTCAACGAGCA

GTAACAAATCATATTTATTCTGAGTATTCTTTGCAGTCATAGCCGAG 

AATGATAAC TTCGTTCAAACTCTGAGGCTATGTTGGA 

>frmd4a Male OBZ 10 µg/mL 

AGAACGGGCAATCTGTTGAGATAAGGACGGGAAAATCTTGGCAAATTATACG

TTCGGGAAACATCCGTTCCATATGTGAAATTGCAGATTACTTCAACGAGCAGT

AACAAATCATATTTATTCTGAGTATTCTTTGCAGTCATAGCCGAGAA 

TGATAACTTCGTTCAAACTCTGAGGCTATGTTGG 

>frmd4a Male OBZ Control 

TCCGACGGGAATCTGTTGAGATAAGGACGGGAAAATCTTGGCAAATTATACG

TTCGGGAAACATCCGTTCCATATGTGAAATTGCAGATTACTTCAACGAGCAGT

AACAAATCATATTTATTCTGAGTATTCTTTGCAGTCATAGCCGAGA 

ATGATAACTTCGTTCAAACTCTGAGGCTATGTTGG 

 

 

 



 
 

 APPENDIX 3.LIST OF SIGNIFICANTLY DIFFERENT GENES 
 
Due to the length of the list, please see the separately included excel sheet. 
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