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METHOD Open Access

SeqOthello: querying RNA-seq experiments
at scale
Ye Yu1, Jinpeng Liu1, Xinan Liu1, Yi Zhang1, Eamonn Magner1, Erik Lehnert2, Chen Qian3 and Jinze Liu1*

Abstract

We present SeqOthello, an ultra-fast and memory-efficient indexing structure to support arbitrary sequence query
against large collections of RNA-seq experiments. It takes SeqOthello only 5 min and 19.1 GB memory to conduct a
global survey of 11,658 fusion events against 10,113 TCGA Pan-Cancer RNA-seq datasets. The query recovers 92.7%
of tier-1 fusions curated by TCGA Fusion Gene Database and reveals 270 novel occurrences, all of which are present
as tumor-specific. By providing a reference-free, alignment-free, and parameter-free sequence search system,
SeqOthello will enable large-scale integrative studies using sequence-level data, an undertaking not previously
practicable for many individual labs.

Keywords: RNA-seq, TCGA, Gene fusion, Pan-cancer, Query, Compression, Othello, SeqOthello

Background
Advances in the study of functional genomics over the
past decade have produced a vast resource of RNA-seq
datasets. As of December 2017, over 12 petabytes of
RNA-seq data were deposited in the Sequence Read Arch-
ive (SRA) [1]. Sequencing consortiums such as The Can-
cer Genome Atlas (TCGA) [2] and the International
Cancer Genomics Consortium (ICGC) [3] have sequenced
tens of thousands of tumor transcriptomes from diverse
cancer populations. Although these datasets have collect-
ively redefined the landscape of cancer transcriptomes,
additional clinically relevant features remain to be discov-
ered. However, data reanalysis to identify these features
requires extensive computational resources and bioinfor-
matics support, making it exclusive to a few labs. The de-
velopment of SeqOthello will enable labs with limited
resources to learn from sequence-level data by support-
ing fast and memory-efficient query over large-scale
RNA-seq datasets.
To date, sequence search options are limited. Most se-

quencing databases support metadata searches [1, 3, 4],
which permit selection of experiments by tissue type, or-
ganism, experimental condition or sequencing protocol.
From this refined list, experiments can be downloaded

and analyzed individually [5]. SRA-BLAST [6] is able
to search only a limited set of sequencing experi-
ments. Finally, the bioinformatics community has
lately established databases storing ready-to-analyze
results in areas such as gene or transcript expression
[4, 7–9]. However, these databases are subject to fre-
quent updates as bioinformatics algorithms improve
and reference genomes are refined, nor can they sup-
port the query of novel sequences that are absent
from existing annotation or undetectable by current
bioinformatics tools.
Recently, Sequence Bloom Tree (SBT) [10] and its de-

scendants [11, 12] were developed to query RNA-seq ex-
periments for expressed transcripts, pioneering the field
of large-scale sequence search in RNA-seq. SBT is de-
signed as an experiment filter that returns the subset of
experiments containing at least θ percent of k-mers from
the query sequence. Built upon bloom filters [13, 14],
SBT-based algorithms are generally memory efficient for
small queries. Unfortunately, tuning the input parameter
θ is time-consuming and produces inconsistent results
for a single query, thereby hampering interpretability.
Furthermore, extracting sequence-level information
from the filtered experiments requires downloading and
reanalyzing the raw sequencing datasets and thus does
not sidestep traditional RNA-seq processing. Very re-
cently, Mantis [15] (by Pandey et al.) used counting quo-
tient filter to further improve the speed in sequence
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search. There is also growing interest in methods for
indexing large collections of genomic sequencing reads
from different individuals. Bloom Filter Trie (BFT) [16]
was developed to store and compress a set of colored
k-mers from a Pan-Genome of hundreds of samples.
Additionally, the Burrows–Wheeler transform (BWT)
and FM index have been employed to build indexes on
raw sequencing reads with applications in compressing
2705 whole genome sequencing samples from the 1000
Genomes Project [17, 18]. Though retaining full-text in-
formation, these data structures are often associated
with high memory cost and slow query speed as the en-
tire index must be loaded to memory prior to query.
Here we present SeqOthello, a novel indexing struc-

ture that supports query of an arbitrary sequence against
large collections of RNA-seq experiments. Large-batch
query with SeqOthello is orders of magnitude faster than
with SSBT, the improved version of SBT. A SeqOthello
query may return near-exact k-mer information in indi-
vidual experiments or k-mer hit ratios (i.e., the fraction
of k-mer hits in a query). We illustrate the utility and ef-
ficiency of SeqOthello by conducting a global survey of
known gene fusions against 10,113 TCGA RNA-seq
datasets. The survey confirms roughly 93% of known fu-
sion events and reveals 270 novel occurrences, all of
which are tumor-specific. Index construction on over
10,000 k-mer files, representing RNA-seq datasets ex-
tracted from TCGA, required less than nine CPU hours
on a computer with 32 GB memory. The entire survey
only took under 5 min, which, to our knowledge, is a
scale unachieved by previous methods.

Results
SeqOthello data structure
A sequencing experiment can be represented by a col-
lection of k-mers, or length k subsequences of the
original reads. k-mers are fundamental components of
de Bruijn graphs and are essential for de novo transcrip-
tome assembly [19–21]. A database of sequencing
experiments can therefore be represented as a collection
of occurrence maps of individual k-mers. The occurrence
map of a k-mer is defined as its presence or absence
across all experiments indexed in the database. The
challenge is to efficiently store and query this informa-
tion in scenarios with billions of k-mers across tens of
thousands of experiments. We leverage novel algorithms
in data compression and k-mer indexing to surmount
this obstacle.
The prevalence of each k-mer varies dramatically, with

plots of k-mer frequency often exhibiting a U- or
L-shaped distribution (Additional file 1: Figure S1).
k-mers located at the extremes of the spectrum tend to
originate from experiment-specific transcripts or
common transcripts that manifest in nearly all

experiments. By contrast, k-mers near the center of
the distribution may be tissue- or organism-specific.
The prevalence of a k-mer directly determines the informa-
tion content [22, 23] or the number of bits required to
store its occurrence map. To this end, SeqOthello em-
ploys an information-content-aware data-compression
scheme: an ensemble of compression techniques tailored
to store the occurrence maps of k-mers from each region
of the occurrence distribution without hampering query
efficiency (Fig. 1a and Methods). SeqOthello relies on a
novel, hierarchical indexing structure to facilitate fast
retrieval of k-mer occurrence maps (Fig. 1a). The
mappings between levels are supported by the Othello
data structure [24, 25] (Methods), a minimal perfect
hashing classifier that provides key-to-value searching
in constant time. An Othello is significantly more
compact than a traditional hash table as it does not
store keys. But an Othello constructed on billions of
k-mers still demands too much memory to be prac-
tical for use with standard computers. The hierarch-
ical structure employed by SeqOthello overcomes this
challenge using a divide-and-conquer approach. Spe-
cifically, k-mer occurrence maps are split into buckets
according to their encoded lengths, with the assign-
ment of each k-mer to its bucket determined by the
root Othello. Within each bucket, the mapping be-
tween a k-mer and the location of its occurrence map
is again stored in an Othello. SeqOthello significantly
increases the volume of indexed k-mers within limited
memory space and is inherently parallelizable.
Querying a SeqOthello first requires decomposing the

query sequence into its constituent k-mers. The root
Othello node identifies the occurrence bucket for each
k-mer, following which each bucket Othello node re-
trieves the desired occurrence map. Per k-mer, this
process requires exactly two Othello queries and is thus
executed in constant time. The full set of occurrence
maps is then synthesized to generate a k-mer hit map of
the query for each experiment, where a hit means a
k-mer is present in an experiment. Each k-mer hit map
can be summarized into the number of hits or a hit ra-
tio, the fraction of hits out of the total k-mers in the
query (Fig. 1b).

SeqOthello outperforms state-of-the-art algorithms
We compare SeqOthello to each of three
state-of-the-art methods for querying large-scale
RNA-seq datasets: SBT [10], SSBT [11], and SBT-AS
[12]. The evaluation was benchmarked on 2652
RNA-seq experiments of human blood, breast, and
brain tissues from the SRA (Additional file 2). We
use Jellyfish [26] to convert raw sequence data into
k-mer files at a rate of 1.85 min per file. Taking these
files as input, SeqOthello requires 1.93 h and a
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maximum of 14.1 GB memory to construct the index,
10 times faster than SBT and SSBT. At 20.8 GB, the
SeqOthello index is 30% smaller than the
most-compact SBT-based index, SSBT, and achieves a
700:1 compression ratio relative to the original data-
base (Additional file 3: Table S1).
SeqOthello queries 198,093 transcripts from Gencode

Release 25 [27] for k-mer hits in all 2652 experiments in

35.7 min using 15.2 GB memory. With four threads, the
running time drops to 13.4 min. SBT-based queries only
return the set of experiments whose k-mer hit ratio is
greater than a user-defined threshold, denoted by θ. Even
with a very high k-mer hit ratio (θ= 0.9), SBT-AS and
SBT require 575 and 4160 min to complete, respectively,
with higher memory cost than SeqOthello (Fig. 2). While
SSBT is extremely memory frugal, it is at the expense of

(a) (b)
Fig. 1 Overview of SeqOthello structure and query procedure. a An illustration of the SeqOthello indexing structure to support scalable k-mer
searching in large-scale sequencing experiments. The bottom level of SeqOthello stores the occurrence maps of individual k-mers, encoded in
three different formats and divided into disjoint buckets. The mapping between a k-mer and its occurrence map is achieved by a hierarchy of
Othello structures in which the root Othello maps a k-mer to its bucket and the Othello in each bucket maps a k-mer to its occurrence map. b
An example illustrating SeqOthello’s sequence query process and output. A sequence query is decomposed into its constituent k-mers. The query
result can be either a k-mer hit map, recording each k-mer’s presence/absence along the query sequence, or k-mer hit ratios (i.e., the fraction of
query k-mers present in each experiment)

(a) (b)
Fig. 2 Comparing query performance for SeqOthello and three SBT-based algorithms: SBT [10], SSBT [11], and SBT-AS [12]. Performance is
benchmarked on 2652 human RNA-seq experiments. The query consists of 198,093 human transcripts in Gencode Release 25. a Query
response time. b Peak memory

Yu et al. Genome Biology          (2018) 19:167 Page 3 of 13



much slower speed, two orders of magnitude slower than
SeqOthello (Fig. 2).
The significance of experiments extracted by SBT

using a single threshold θ is difficult to assess. To avoid
generating misleading conclusions, multiple queries with
different θ may be attempted to determine an approxi-
mate distribution, affording an overall query time several
times larger than we report. Querying a small batch of
1000 transcripts with settings of θ = 0.7, θ = 0.8, and
θ = 0.9 required 40 min to execute with SBT-AS,
190 min with SBT, and 241 min with SSBT
(Additional file 4: Table S2). In contrast, SeqOthello re-
quires only 4.6 min to query the same set of transcripts
and generates exact hit ratios for each transcript in each
indexed experiment.
SeqOthello also accommodates online features for

small-batch queries. Online queries preload the entire
index into memory prior to querying and can be
executed in approximately 0.09 s per transcript
(Additional file 4: Table S2). Our method’s advantageous
speed supports on-demand queries from multiple users
in a client-server setting. Other methods do not have
online options at present.

SeqOthello achieves near-exact k-mer query
SeqOthello always returns the correct occurrence map
when querying k-mers that are present in at least one
experiment sample. However, for queries involving
alien k-mers that are not present in any of the
original experiments, SeqOthello may return false-positive
occurrences. (Methods, Section 4). To assess the
accuracy in general k-mer search, we queried
120,044,842 k-mers present in human transcriptome
Gencode Release 25 against the SeqOthello index
constructed for the aforementioned 2652 experiments.
We randomly selected 150 experiments and calculated
the false-positive rate of k-mer queries in each experiment.
The false-positive rate is defined as the fraction of k-mers
absent from the raw k-mer file that SeqOthello classi-
fies as present among all queried k-mers. The Venn
diagram (Additional file 5: Figure S2) shows overlap
among three sets of k-mers. For k-mers that are not
present in any of the indexed experiments,
SeqOthello yields an extremely low rate of false
positives: across 150 randomly chosen experiments,
the average false-positive rate was 0.015% with stand-
ard deviation of 0.071%.
To further evaluate the effect of false positives on tran-

script queries, we mapped the raw k-mers of each ex-
periment to transcript sequences, calculating the true
k-mer hit ratio for each transcript. We then compared
the k-mer hit ratios generated by SeqOthello to the
ground truth. Roughly 89.7% of transcripts afforded

k-mer hit ratios equal to the true value, with an additional
9.3% exhibiting an error rate up to 0.003 (Fig. 3). These re-
sults demonstrate that SeqOthello achieves near-exact
query of k-mers and k-mer hit ratios. Additionally, as con-
secutive k-mers in a sequence are highly redundant, even
a single base mismatch to the query sequence will be evi-
denced by the absence of multiple (i.e., k) k-mers, render-
ing an extremely low likelihood of false-positive match
due to alien k-mers (Methods). Although k-mer informa-
tion is implicitly stored in bloom filters employed in
SBT-based algorithms, efficient implementation of k-mer
retrieval by these algorithms is not yet available.

SeqOthello enables efficient query against TCGA Pan-Cancer
RNA-Seq experiments
The Cancer Genome Atlas (TCGA) [2] contains tran-
scriptome profiles of 10,113 tumor samples obtained
from 9215 cancer patients. The database allows re-
searchers to detect and characterize novel transcriptomic
alterations across 29 different cancer types in the GDC
Legacy Archive [2]. We have constructed a SeqOthello
index, storing the occurrences of 1.47 billion 21-mers
across all tumor samples (Additional file 6). The prepar-
ation of k-mers averaged 4 min per sample while the
construction of SeqOthello on all samples required less
than 9 h. The index occupies only 76.6 GB of space, thus
is portable for querying at different locations.

Fig. 3 The distribution of error rate in k-mer hit ratios returned by
SeqOthello. A randomly selected set of 150 experiments are
extracted from SeqOthello’s result by querying all human transcripts
on 2652 human experiments. The error (δ) of a transcript query over
an experiment is calculated as the difference between the
transcript’s k-mer hit ratio returned by SeqOthello and the k-mer hit
ratio obtained by mapping raw k-mers using the same RNA-seq
experiments to the transcript sequences. Each bar shows the
percentage of transcripts with δ falling in a specific range. The error
bar shows the standard deviation of such percentage measured on
150 experiments
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We use the SeqOthello index to conduct a survey of
all gene-fusion events curated by TCGA Fusion Gene
Database as of December 2017 [28]. The database
contains 11,658 documented unique tier-1 fusion
events from TCGA detected by PRADA [29]. This
represents 10,994 gene fusion pairs as multiple junc-
tions might exist for one fusion pair. For each fusion
junction, we construct a fusion sequence that will be
used to query SeqOthello for its presence. The
sequence consists of 20 bases from the donor exon
and 20 bases from the acceptor exon, thereby guaran-
teeing that any 21-mer from the sequence will span
the fusion junction (Additional file 7: Figure S3).
A SeqOthello query of a fusion sequence returns

the number of k-mer hits in each sample. A simple
fusion-calling method may take an SBT-like approach,
requiring a minimum fraction of k-mer hits, θ, to call
the presence in each sample. However, this technique
yields lackluster sensitivity and specificity. Lowering θ
permits fusion detection with fewer spanning reads,
but may increase false-positive calls if the fusion junc-
tion sequence contains repetitive k-mers that are
abundant in many samples. Instead of using a fixed
threshold for all fusion calls, we develop a
noise-aware approach. The approach first evaluates
the background noise generated from repetitive
k-mers present in a large fraction of samples. This is
quantified by leveraging the distribution of k-mer hits
across TCGA tumor samples queried through
SeqOthello. Two examples with different levels of re-
petitive k-mers are shown in Fig. 4a, b. Assume true
fusion occurs in less than 2% of samples, as
TMPRSS2-ERG achieves the highest occurrence to
date at 0.953% of all TCGA tumor samples [28]
(14.657% occurrence rate in prostate tumor samples).
For each fusion, we estimate the level of background
noise, δ, as the number of k-mer hits at the 98th per-
centile of the samples in the distribution of k-mer
hits. We require an additional number of k-mers, μ,
beyond the background noise as evidence of expression
to conclude the fusion occurrence in a sample. We
compared the noise-aware approach with the Ɵ-based
SBT-like approach in recovering known fusion occur-
rences and in detecting unknown fusion occurrences.
As shown in Fig. 4c, the noise-aware approach re-
covers more known fusions than the SBT-like ap-
proach without generating too many putative fusions
that are likely to be false. Fusion occurrences called
at μ = 7 is used for further analysis as it renders the
best sensitivity while being most conservative in gen-
erating candidates of novel occurrences. We then
compared the distributions of actual k-mer hits of
known fusion occurrences and novel occurrences in
all the called fusion occurrences. The consistency

between known and novel occurrences across the en-
tire spectrum of k-mer hits further supports the valid-
ity of the noise-aware approach (Fig. 4d). Please note
that the background noise δ should be adjusted ac-
cording to the expected signal to noise ratio in indi-
vidual applications.
Under this method, we detect 92.7% of tier-1 fusion

occurrences in TCGA Fusion Gene Database [28]
with at least 10 spanning reads reported by PRADA.
Additionally, we identify 270 novel occurrences of
fusion events across 17 tumor subtypes that are not
identified by PRADA. We selected two fusion pairs
with occurrences most inconsistent with current cur-
ation for further validation: FGFR3-TACC3 in GBM
samples (5 novel, 3 undetected) and ESR1-C6orf97 in
BRCA samples (2 novel, 5 undetected). We confirmed
all 7 novel occurrences by identifying at least 10 fu-
sion spanning reads supporting each. For all un-
detected fusions, insufficient spanning reads were
confirmed, consistent with low read support cited in
the database (Additional file 6).
Figure 5 depicts the 10 novel, recurring fusions

with greatest number of occurrences suggested by
SeqOthello. Several have doubled or even tripled the
original recurring rates. Interestingly, all novel oc-
currences agree with the original fusion cancer-type
classifications, rendering the chance of random oc-
currence negligible. This result corroborates their
cancer specificity and supports the high precision of
SeqOthello’s query results. One example of this
consistency is TMPRSS2-ERG, a clinical marker for pros-
tate cancer. SeqOthello extracted 122 pre-identified occur-
rences of TMPRSS2-ERG and 142 novel occurrences, all
from prostate cancer samples. The complete information
of all detected fusion occurrences is listed in
Additional file 6.

Discussion
SeqOthello is a novel algorithm capable of indexing
large-scale RNA-seq experiments that supports online
sequence query. We constructed a SeqOthello index on
the TCGA Pan-Cancer RNA-seq datasets, the latter to-
taling 54 TB in compressed fastq format. The
SeqOthello index uses only a 76.6-GB disk space, achiev-
ing a compression ratio of 700:1. Querying the index to
assess the prevalence of 11,658 documented fusion
events requires only 5 min on a standard desktop com-
puter with 32 GB memory. The index circumvents the
need to reanalyze large volumes of sequencing datasets
in searching for novel transcripts, which is computation-
ally prohibitive. For example, it is estimated to take
54 days of computational time when repurposing the
fastest RNA-seq aligner to achieve targeted fusion search
(Methods, Section 6). Thus, SeqOthello provides an
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efficient and viable solution for on-demand sequence
query against a large-scale sequencing database, overcom-
ing the barrier in data access by the broader research
community.
SeqOthello can be parameterized to report either the

number of k-mer hits of a query sequence or the pres-
ence/absence information of each constituent k-mer of
the query in individual samples. The utility of SeqOthello’s
query result is demonstrated by its application to gene fu-
sion survey, accurately determining the tumor-specificity
of individual fusion events without requiring downloading
and reanalysis of raw sequencing data.

The simple query supported by SeqOthello is power-
ful, with myriad applications yet to be defined. One can
use SeqOthello to assess the prevalence of clinically im-
portant features in different patient populations or to
compare across different patient cohorts. Beyond tran-
scripts, one can use SeqOthello to identify expressed re-
gions by querying entire reference genomes. SeqOthello
can be potentially leveraged on any form of
next-generation sequencing data that can be translated
to a k-mer occurrence matrix. We leave the definitions
and demonstrations of these applications for future
work.

(a) (b)

(c) (d)
Fig. 4 An illustration of fusion calling criteria using SeqOthello’s query results against TCGA RNA-seq data. a, b Examples of k-mer hit distribution
as a result of fusion junction sequence query using SeqOthello. The presence of a small set of k-mers in large fraction of samples indicates background
noise as a result of these k-mers being repetitive. For each fusion, we use δ98th, the k-mer hit at 98th percentile as an estimation of background noise.
a Histogram of k-mer hits querying junction sequence spanning chr21:42880008-chr21:39956869 connecting gene pair TMPRSS2-ERG. The background
noise is estimated at δ98th = 2. b Histogram of k-mer hits querying junction sequence spanning chr5:134688636-chr5:179991489 connecting gene pair
H2AFY-CNOT6. The background noise is estimated at δ98th = 6. c The comparison of performance in recovering database-known fusion occurrences and
detecting novel occurrences between noise-aware approach and SBT-like approach using θ-based containment query. Here μ is the minimum number of
k-mer hits required beyond the fusion-specific noise level used in the noise-aware approach. The change in μ between two adjacent points is 1; θ is the
minimum fraction of k-mer hits required to call the presence of a query as used in SBT containment query. The change in θ between two adjacent points
is 0.05. d The distribution of the actual k-mer hits of all fusion occurrences called with the noise-aware approach
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Conclusion
SeqOthello supports parameter-free, reference-free and
annotation-free sequence query against large collection of se-
quencing experiments. Its unbiased nature supports
large-scale integrative and comparative studies, while its
ultra-fast performance and undemanding system require-
ments render it appropriate for a wide variety of research in-
vestigators. SeqOthello will enable novel discoveries that
would be otherwise unrealizable for individual research labs.

Methods
Section 1. The Othello data structure
The mapping of k-mers in either level of SeqOthello is
maintained by a data structure named Othello. Othello
belongs to the class of minimal perfect hashing (MPHF)
algorithms [30]. However, conventional MPHF supports
one-to-one mapping between a predefined set of keys to
a set of integers, so that each key corresponds to a
unique integer. Unlike MPHF, Othello conducts
many-to-1 mapping where more than one key can be
mapped to the same integer with the condition that one
key can be only mapped to one integer. Thus, Othello
naturally implements a hashing classifier that efficiently
maps keys (k-mers) to appropriate categories. To date,
the Othello algorithm has demonstrated great scalability
of both memory and querying speed in various applica-
tions [24, 25, 31].
An Othello O(S,V) maps a predefined set of k-mers S

to a list of categories represented as integers, denoted by
V = {1, 2,⋯, v}. Let T : S→ V be the function that maps
k-mers in S to classes in V, where T(s) indicates the cat-
egory of a k-mer s ∈ S. Each category in V is represented
by an l-bit integer, where l = ⌈log2(v + 1)⌉.
In essence, an Othello O(S,V) maintains a query func-

tion τ :U→C mapping the set of all possible k-mers, U,

to the set of all l-bit integers, C = {0, 1,⋯, 2l − 1}. Thus
S ⊂U and V ⊂C. Furthermore, τ is a superset of T: That
is, for any s ∈ S, τ(s) = T(s); for any s' ∈U − S, τ(s) is a de-
terministic l-bit integer. A k-mer s' is called alien if and
only if s' ∈U − S, such that s' ∉ S and the mapping for s'
is not specified in T.

Section 1.1 Properties of Othello
We previously described the Othello [25] data structure
with a comprehensive evaluation of the algorithm. We
summarize the properties of Othello as follows.

� An Othello data structure maintains the mapping τ :
U→C, where C = {0, 1,⋯, 2l − 1} and l = ⌈log2v + 1⌉.

� Implementation of Othello entails (1) a pair of hash
functions, ⟨ha, hb⟩, and (2) two arrays of l-bit
integers, A and B. The lengths of the arrays,
respectively denoted ma and mb, satisfy 2.67n ≤ma

+mb < 4n, where n is the number of k-mers. The
functions and contents of the arrays are determined
by the construction algorithm according to the keys
and their corresponding categories. The time
complexity of the construction algorithm is O(n).

� An Othello built to map n k-mers to v categories
requires at most 4n ⌈log2(v+ 1)⌉ bits of memory
space.

� Given a k-mer s, its class information τ(s) is
computed by [hA(s)]⊕ B[hB(s)]. Thus, querying a k-
mer requires only two memory accesses and one
XOR bit operation, making it extremely fast.

Section 1.2 On alien k-mer query of Othello
Let τ(s) be the category returned by querying a k-mer s
on Othello O(S,V). If s ∈ S, then Othello guarantees that
τ(s) = T(s). An alien k-mer s' ∉ S may be correctly

Fig. 5 Top ten most recurring gene fusion events queried through SeqOthello indexing 10113 TCGA RNA-seq experiments across 29 tumor types.. Bar plots
show occurrence number of top ten recurrent gene fusions detected by SeqOthello over different tumor types. Occurrences of each fusion on each tumor type
are classified into novel occurrences (not reported in TCGA Gene Fusion Database) and annotated occurrences (already curated by TCGA Gene Fusion Database)
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recognized as an alien if τ(s') ∈C −V; alternately, such a
query may return a false positive if τ(s') ∈V. Our next
goal is to analyze and bound the probability of Othello
in recognizing alien k-mers.
Lemma 1: For any alien k-mer s' ∉ S, a query on

Othello O(S,V) returns an l-bit integer τ(s'). For any in-
teger x, the probability of τ(s') = x is denoted by px

px ¼ Pr τ s0ð Þ ¼ x½ � ¼
X2l−1

t¼0

atbx⊕t

Proof: Here ax is the fraction of 0s in the array A of
the Othello data structure, and bx is the fraction of 0s in
array B. The values of ax and bx are computed using the
content stored in the memory of Othello. Lemma 1 is a
direct application of a result presented in our previous
work (MetaOthello [24], Section 2.2.3).
Lemma 2: Let |S| = n for an Othello O(S,V) con-

structed with n elements. Let p0 be the probability of an
alien k-mer being assigned to category 0. p0 satisfies
p0 > 0.223 as n→∞.
Proof: We prove Lemma 2 by giving an estimated

lower bound on p0. Array A of the Othello contains ma

elements. Each k-mer is mapped to an index of array A
computed by ha(s), where ha is a uniform random hash
function. Assuming the number of k-mers, n, is large,
the possibility of an index in A not being hit by any of
the ha(s) values is

lim
n→∞

a0 ¼ lim
n→∞

1−
1
ma

� �n

¼ e−
n
ma

An analogous statement holds for array B. Note that

ma ¼ 2 ⌈log2n⌉ and mb ¼ 2 ⌈log2
4
3n⌉. We have

1 < n
1
ma

þ 1
mb

� �
≤1:5

pAlien≥p0 ¼
X2l−1
x¼0

axbx > a0b0→e−
n
mae−

n
mb ¼ e

−n 1
ma

þ 1
mb

� �
> e−1:5 ¼ 0:223

Theorem 1: For any alien k-mer s' ∉ S, the probability
that s' is identified as “alien” by an Othello O(S,V) is
given by:

PAlien ¼ p0 þ
X2l−1
x¼vþ1

px

We also have pAlien > 0.223 as ∣S ∣ →∞.
Proof: The probability that an alien k-mer falls into a

class x ∈C −V, denoted px, can be computed using the
approach specified in Lemma 1. Note that C −V = {0, v +
1, v + 2,⋯, 2l − 1}, so that:

PAlien ¼ Pr τ s0ð Þ∈C−V½ � ¼ Pr τ s0ð Þ ¼ 0½ �

þ
X2l−1

x¼vþ1

Pr τ s0ð Þ ¼ x½ � ¼ p0 þ
X2l−1

x¼vþ1

px

By Lemma 2, PAlien ≥ p0 > 0.223 as ∣S ∣ →∞.

Section 2. Encoding of k-mer occurrence map
We define the occurrence map of a k-mer as a binary
vector recording the k-mer’s presence or absence in each
experiment. Given m experiments, the occurrence map
can be stored using m bits, where 1 represents presence
and 0 represents absence in a certain experiment. To
minimize the storage requirement of these vectors, we
have developed a hybrid encoding method that leverages
one of three different encoding strategies depending on
the occurrence frequency of a k-mer. Each k-mer is
stored using the method that yields the shortest code.
These encoding methods are detailed below:

� Value-list encoding. This method is used to
compress occurrence maps associated with rare k-
mers. For an m-bit occurrence map with exactly t 1s
(representing presence in t out of m samples), we
enumerate the t indices of these positions as a list.
Each index is represented by t integers, each ⌈log2m⌉

bits long. This list can also be viewed as a t⌈log2m⌉-
bit integer. Value-list encoding is used when
t⌈log2m⌉ ≤ 64.

� Delta-list encoding. This approach is employed for
occurrence maps with a relatively larger number of 1s
(t⌈log2m⌉ > 64). The m elements in the occurrence map
can be considered as a succession of alternating
subsequences of 0s and 1s. Thus, the map can be
represented by a list of 2w + 1 integers, ⟨x1, y1, x2, y2,⋯,
xw, yw, xw + 1⟩, representing the number of digits in each
subsequence, where x1 ≥ 0, xw + 1 ≥ 0; y1, y2,⋯, yw ≥ 1,
x2, x3,⋯, xw ≥ 1; and x1 + y1 + x2 + y2 +⋯ + xw + yw +
xw + 1 =m. The occurrence map can be reconstituted by
enumerating x1 0s, followed by y1 1s, x2 0s, y2 1s, etc.
For example, consider an occurrence map of m = 20
elements, 1110011...10, with 1s at indices 1, 2, 3, 6, 8,
9,…, 19. The corresponding delta-list representation is
⟨x1 = 0, y1 = 3, x2 = 2, y2 = 14, x3 = 1⟩.
The 2w + 1 integers from this first step are further
encoded as positive integers. Multiple procedures
exist for the second encoding step, the choice of
which depends on the relative importance of
minimizing encoding/decoding overhead versus
maximizing the compression rate. To balance the
time and memory complexity of encoding, as well as
the storage overhead, we choose to encode the delta
list as a hexadecimal stream. Each integer is
converted to a hexadecimal value using the method
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described in Table 1. We then concatenate the
hexadecimal values into a single hexadecimal datum.
For the delta list shown in the example, ⟨0, 3,
2,14,1⟩, the corresponding hexadecimal format is 0 ×
8, 0 × B, 0 × A, 0 × 4E, 0 × 9. After concatenation, the
final result is 0 × 8BA4E9.

� Bitmap encoding. Each occurrence bitmap is an m-
bit value, with each bit coding the presence or
absence information for one of the m samples. As
this method requires more memory than other
options, it is only used when a value-list or delta-list
cannot generate a more efficient encoding.

Section 3. Construction of SeqOthello
Section 3.1 Construction algorithm
Construction of a SeqOthello data structure requires as
input a list of k-mer files, each containing the set of
k-mers extracted from reads associated with a distinct
RNA-seq experiment. Currently the k-mer file is gener-
ated by applying Jellyfish to fastq files.

Step 1: Assembling the occurrence map of each k-
mer in the collection of experiments to be indexed
The goal of step 1 is to determine each k-mer’s pres-
ence/absence information across all experiments. This
task requires the integration of k-mers from all k-mer
files, but simultaneous file access is time-consuming
and not allowed by many operating systems. Instead,
we employ a strategy similar to merge sort. We first
obtain k-mer occurrence maps for small groups of ex-
periments, where each group contains approximately
50 samples. These intermediate occurrence maps are
encoded as delta lists, which significantly reduces file
sizes. The groups are then merged to obtain the
k-mer occurrences across all experiments. After
SeqOthello is constructed, the group files generated
at this step are no longer needed. However, as these
files are orders of magnitude smaller than the original
k-mer files, they can be stored to support update of
the SeqOthello structure.

Step 2: Assignment of k-mer occurrence maps to
buckets We next divide the entire set of k-mers into
disjoint buckets based on their occurrence maps using
the following principles: (1) Occurrence maps within the

same bucket should be generated by the same encoding
approach; (2) the lengths of encoded occurrence maps
within the same bucket should have limited variation;
and (3) the total size of the encoded occurrence maps
within each bucket should not exceed a specified thresh-
old (by default, 128 MB).
Given a maximum bucket size, we define the range

of encoding lengths for each bucket prior to allocat-
ing k-mers. Note that the distribution of k-mer
encoding lengths is unknown prior to construction.
To avoid multiple iterations over all k-mers during
bucket assignment, we designed a sampling-based
approach to estimate the range of encoding lengths.
The goal is to set an open upper bound nt + 1 and
closed lower bound nt so that k-mers with encoding
lengths in the range [nt, nt + 1) are assigned to each
bucket t. We select 10 million k-mers, which is
approximately 0.1% of the k-mers present over all
experiments, and let Li be the estimated number of k-mers
with encoding length equal to i. Starting from t = 1 and n1
= 1, we greedily select the maximum index nt + 1 so that nt
Lnt þ ð1þ ntÞL1þnt þ⋯þ ðntþ1−1ÞLntþ1−1≤128M . Once
the number of buckets and their ranges of encoding
lengths are determined, the construction algorithm will
iterate over each k-mer, assigning it to the appropriate
bucket in accordance with the encoding length of its
occurrence map. The encoded occurrence maps are fur-
ther compressed by gzip when the final structure is stored
as a file.

Step 3: Establish k-mer mapping using Othello Dur-
ing step 2, SeqOthello maintains the list of k-mers and
their corresponding encoded occurrence maps in each
bucket. Once the k-mer assignment is completed in the
bucket, an Othello will be established to record the map-
ping between k-mers and the locations of their occur-
rence maps. Once the buckets are finalized, a root
Othello is constructed to record the mapping between
the entire set of k-mers and their bucket IDs.
SeqOthello also maintains an .xml file to store meta-

data associated with the data structure, which includes
basic information about the experiments and informa-
tion necessary for the query algorithm to interpret the
data file.

Table 1 Hexadecimal encoding for integer values in the delta-list encoding

Integer value z Encoded binary representation Hexadecimal value Encoded length in bits

0≤ z < 8 (1xxx)2 0x8 ∣ z 4

8≤ z < 64 (01xxxxxx)2 0x40 ∣ z 8

64 ≤ z < 512 (001xxxxxxxxx)2 0x200 ∣ z 12

512≤ z < 4096 (0001xxxxxxxxxxxx)2 0x1000 ∣ z 16

4096≤ z (0000xxxxxxxxxx…)2 0x0000 ∣ z 32
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Section 3.2 Optimization for k-mers that appear in only one
experiment
The prevalence of individual k-mers varies dramatic-
ally, with plots often exhibiting a U- or L-shaped dis-
tribution (Additional file 1: Figure S1). Note that the
number of k-mers present in only one experiment is
relatively large compared to k-mers with higher fre-
quencies. We apply the following approach to im-
prove the efficiency and accuracy of SeqOthello.
Instead of storing all k-mers with single occurrence

in a level-2 bucket, we encode them directly in the
root Othello. Let E be the set of experiments indexed
by SeqOthello, identified by integers {1, 2,⋯, | E| } .
Let B be the set of buckets identified by integers {|E|
+ 1, |E| + 2,⋯, |E| + |B|}. The root Othello records the
mapping between k-mer set S and E ∪ B. For any
k-mer s, if the query result on the first level τ(s) ∈ {1,
2,⋯, | E| }, SeqOthello will report that s is present in
the experiment with index τ(s); if τ(s) = |E| + b for
some integer b ∈ {1, 2,⋯, |B|}, then τ(s) ∈ B and the
query process will continue into the bucket with
index b on the bottom layer of SeqOthello.

Section 3.3 Insertion of new experiments into SeqOthello
If the group files generated at step 1 have been
retained, the insertion of new experiments to
SeqOthello is quite fast, especially for batch update.
The process involves merging newly inserted experi-
ments with the existing group files, and then repeat-
ing steps 2 and 3 of the above construction
algorithm. The entire update requires only a few
hours to complete.

Section 4. The probability of false-positive k-mer query
with SeqOthello
SeqOthello maintains a mapping from a large set of
k-mers to their occurrence maps. However, due to the
nature of Othello being a minimal perfect hashing
classifier, querying of an alien k-mer (i.e., k-mer that
does not exist in any of the samples) with SeqOthello
may afford a false report of its presence in one or
more RNA-seq experiments. Here, we analyze the
likelihood of such a false report.

Section 4.1 Notations
In reference to SeqOthello, we use the notation Roo-

tO(S,V) to denote the root-level Othello. RootO(S,V)
records the mapping between a k-mer in S and its as-
signment either to a single experiment or to a
second-level bucket in V = E ∪ B.
For any bucket b ∈ B, we use the notation bO(Sb,Vb)

to denote the associated Othello, where bO(Sb,Vb)
stores the mapping between a k-mer in Sb and its oc-
currence map index in Vb. Thus, Sb is the set of

k-mers that are assigned to bucket b and Vb = {1, 2,
⋯, vb} is the list of indices for encoded occurrence
maps in bucket b.
We list the primary notation used in the following

analysis in Table 2.

Section 4.2 Probability of alien k-mer recognition and
false-positive presence
Let s' be an alien k-mer and τ(s') be the result returned
when querying s' on the root Othello. Then, τ(s') falls
into one of the following three categories:

A. τ(s') ∉V, where V = E∪ B. This k-mer will be
identified as alien, and SeqOthello will report its
absence from the database. The probability of this
result is rootPAlien, which can be calculated according
to Theorem 1.

B. τ(s')∈ E. Such a k-mer will be reported falsely as
existing in the experiment identified by τ(s'). For
any experiment e∈ E, the probability of returning e
as the result of querying an alien k-mer has a
probability rootpe, which can be calculated based on
Lemma 1.

C. τ(s′)∈ B. In this case, the query process would
continue into the bucket b identified by τ(s′). This
circumstance occurs with probability rootp|E| + b.
Inside the bucket b, the query bτ(s') will result in
one of two scenarios:
1) bτ(s') ∉Vb. In this case, s′ is identified as alien in

bucket b with probability bPAlien, which is PAlien
for the Othello bO(Sb, Vb).

2) bτ(s')∈Vb. Here s' is mapped falsely to a
location storing the occurrence map of a
different k-mer. A calculation follows for the
probability of this outcome.

Assume there are vb encoded occurrence maps
stored in bucket b, namely W 1;W 2;⋯;Wvb . We use
the notation Wt, e∈ {0, 1} to denote the presence/

Table 2 A summary of notations used in Section 4
RootO(S, V) Othello at the root of SeqOthello
bO(Sb, Vb) Othello of the bucket b

E Set of RNA-seq experiments

B Set of buckets

Wt tth occurrence map in a bucket b
SeqOthelloPAlien Probability of an alien k-mer being recognized as alien

by SeqOthello
SeqOthelloP(e) Probability of an alien query returning experiment e
rootpx Probability that query of an alien k-mer on the root

Othello τ(s') returns x
bpx Probability that query of an alien k-mer on the Othello in

bucket b returns bτ(s′) value x
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absence information for experiment e stored in the
tth occurrence map. Here, Wt, e = 1 indicates that the
k-mer associated with occurrence map Wt is marked
as “present” in experiment e; Wt, e = 0 indicates it is
marked as “not present” in experiment e.
Note that a query on bucket b returns the
occurrence map with index bτ(s′), namely W bτðs0Þ.
For any experiment e, 1 ≤ e ≤ ∣ E∣, if W bτðs0Þ;e ¼1,
then the query result would indicate falsely that s'
is present in experiment e. We use the notation bP(e)
to denote the probability of the query on bucket b
yielding W bτðs0Þ;e ¼ 1. bP(e) is equal the probability
of bτ(s′) returning any index x such that the xth
occurrence map Wx satisfies Wx, e = 1:

bP eð Þ ¼ Pr Wbτ s0ð Þ;e ¼ 1
h i

¼
X
x∈Vb

Pr bτ s0ð Þ ¼ x∧Wx;e ¼ 1
h i

Noting that Wx, e ∈ {0, 1},

bP eð Þ ¼
X
x∈Vb

bpxWx;e

Computing bpx for all x ∈Vb using Lemma 1 requires

Oðð2lbÞ2jVbjÞ computation, which becomes infeasible
when lb is large. Hence, we use an alternative approach
to estimate the bpx values when l ≥ 12. Lemma 2 indi-
cates that the value of bp0 is significantly larger than
bpxvalues for x ≠ 0. We also observe that the values for
bpx are similar for any x ≠ 0 and x < 2lb in the same
bucket b. We therefore use the average value of bpx over

x ≠ 0, denoted by bpx≠0, to replace individual bpx values:

bpx≠0 ¼
1

2lb−1
1−bp0
� �

Hence,

bP eð Þ ¼
X
x∈Vb

bpxWx;e→
X
x∈Vb

bpx≠0Wx;e

¼ bpx≠0
X
x∈Vb

Wx;e ¼
1−bp0
� �

2lb−1

X
x∈Vb

Wx;e

Here,
P

x∈Vb
Wx;e is the number of encoded occur-

rence maps in bucket b in which the associated
k-mer is marked to be present in experiment e.
For an alien k-mer s', the query on SeqOthello may re-

turn a false presence in experiment e if τ(s') falls in cat-
egory B, a circumstance which occurs with probability
rootpe. Otherwise, if τ(s') satisfies circumstance C.2, the
query yields an occurrence map in which experiment e
is marked as positive with probability bP(e). Hence, the
probability of an alien k-mer query on the two-level

SeqOthello yielding a false-positive presence in experi-
ment e is:

SeqOthelloP eð Þ ¼ rootpe þ
XjBj

b¼1

rootp Ej jþb � bP eð Þ

On the other hand, an alien k-mer has a very good
likelihood of being recognized as alien if τ(s') satisfies
circumstance A, or falls in circumstance C and is subse-
quently identified under C.1. Taken together, the overall
probability of SeqOthello identifying the k-mer as alien
is:

SeqOthelloPAlien ¼ rootPAlien þ
XjBj

b¼1

rootp Ej jþb � bPAlien

We present a numerical estimation of various prob-
abilities based on the distribution of k-mer occurrences
as well as the SeqOthello structures constructed for the
two datasets used in this paper. The results are given in
Table 3 below.

Section 4.4 Error rate of a SeqOthello sequence query
SeqOthello executes sequence query by making individ-
ual k-mer queries extracted from the sequence. The
probability of returning false-positive k-mer hits is low
and can be computed as SeqOthelloP(e). Let X(e) be the
number of false positives for experiment e returned over
w alien k-mer queries. Then, X(e) follows the binomial
distribution Binomial(w, SeqOthelloP(e)). Note that the
query result for transcript query is reported as the frac-
tion of present k-mers for each sample, and X(e)

false-positive k-mers will result in an error rate of XðeÞ
w .

Note that the XðeÞ
w is usually 0. The probability of XðeÞ

w be-
ing large enough to affect the query result is very low,
only occurring when multiple k-mer queries return the
same false-positive experiments. For example, for w = 50
and P(e) = 0.0084, the probability of X(e) > 2 is 1.15 ×
10− 5. Thus, SeqOthello returns the query result with

error rate δ ¼ XðeÞ
w > 2

50 ¼ 4% with probability 1.15 × 10−
5, which is much lower than the probability of a single
error.

Table 3 Estimated probability values computed on SeqOthello
constructed for human and TCGA datasets

SRA TCGA

∣E∣: number of experiments 2652 10,113

∣B ∣ : number of buckets 105 127
SeqOthelloPAlien 0.532440 0.551722
SeqOthelloP(e), average over all experiments 0.000840 0.000606

standard deviation of SeqOthelloP(e),
across all experiments

0.000684 0.000173
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Section 5. Performance comparison
Section 5.1 System configuration
All comparison tests with SBT, SSBT, and SBT-AS were
conducted on a Linux OS (RHEL) server with Quad Intel
E5-4640 8 core (Sandy Bridge) @ 2.4 GHz processors,
512 GB of 1600 Mhz RAM, and 4 × 1 TB local (internal)
NLSAS disk.

Section 5.2 Versions and parameters for SBT, SSBT, and
SBT-AS
SBT, SSBT, and SBT-AS versions used in the evaluation
are provided in Table 4.

Section 6. Estimation of typical fusion-detection
processing time
An alternative approach to test whether a fusion event
occurs in a sample is by checking whether there are
reads that can be properly aligned to the fusion se-
quence. To estimate the performance of querying fusion
events detection using aligner-based approach, we built
a STAR [32] index for the 11,658 tier-1 fusion tran-
scripts curated by TCGA Fusion Gene Database and
aligned the reads against it. The average speed for STAR
to process 1 million paired-end reads using a 16-core CPU
is benchmarked at 0.11 min using ten random samples
of TCGA datasets. The TCGA RNA-seq dataset is esti-
mated to contain a total of 660 billion reads. Thus, it will
cost about 54 days of computation using 16-core CPUs
to search through all the TCGA RNA-seq dataset for
known fusion detection regardless of the alignment
accuracy.
A study [33] published recently by Kumar et al. details

a comprehensive comparison of 12 fusion-detection al-
gorithms, including FusionHunter [34], FusionMap [35],
Bellerophontes [36], MapSplice [37], Chimerascan [38],
TopHat-Fusion [39], BreakFusion [40], SOAPfuse [41],
JAFFA [42], nFuse [43], EricScript [44], and Fusion-
Catcher [45]. The authors reported that it requires 120
to 3845 min for current tools to process a dataset of 70
million paired-end reads, averaging between 1.71 and
54 min per million reads. The TCGA RNA-seq dataset is
estimated to contain 660 billion reads. Taking the fastest
processing speed regardless of accuracy, we estimate that
it costs 785 days of computation to process all the
TCGA data for fusion detection using standard tools.
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