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RESEARCH Open Access

A longitudinal feature selection method
identifies relevant genes to distinguish
complicated injury and uncomplicated
injury over time
Suyan Tian1*, Chi Wang2 and Howard H. Chang3

From 2018 Sino-US Conference on Health Informatics
Guangzhou, China. 28 June - 01 July 2018

Abstract

Background: Feature selection and gene set analysis are of increasing interest in the field of bioinformatics. While
these two approaches have been developed for different purposes, we describe how some gene set analysis
methods can be utilized to conduct feature selection.

Methods: We adopted a gene set analysis method, the significance analysis of microarray gene set reduction
(SAMGSR) algorithm, to carry out feature selection for longitudinal gene expression data.

Results: Using a real-world application and simulated data, it is demonstrated that the proposed SAMGSR
extension outperforms other relevant methods. In this study, we illustrate that a gene’s expression profiles over
time can be regarded as a gene set and then a suitable gene set analysis method can be utilized directly to select
relevant genes associated with the phenotype of interest over time.

Conclusions: We believe this work will motivate more research to bridge feature selection and gene set analysis,
with the development of novel algorithms capable of carrying out feature selection for longitudinal gene
expression data.

Keywords: Core subset, Feature selection, Gene set analysis, Longitudinal microarray data, Significance analysis of
microarray (SAM)

Background
Currently, feature selection and pathway analysis are two
bioinformatics tools that are employed with extremely
high frequency. While pathway analysis aims to identify
relevant pathways/gene sets associated with a phenotype
of interest, feature selection mainly focuses on the identifi-
cation of relevant individual genes. These two tools seem
to be parallel to each other.
Nevertheless, some pathway analysis methods can be

further extended to possess the ability of identify

relevant individual genes. One example is the signifi-
cance analysis of microarray - gene set reduction ana-
lysis (SAMGSR) method proposed by [1]. The add-on
reduction step of the SAMGSR method can reduce se-
lected gene sets into respective core subsets. Those
identified core subsets provide more insight into the
biological mechanisms underlying the phenotype of
interest. This reduction step is a process of identifying
important individual genes in nature, which motivated us
to adopt the SAMGSR algorithm for feature selection [2,
3]. Here, a pathway or a gene set is defined as a set of
genes that may be co-regulated/co-expressed together to
impact a biological process, e.g. those GO terms in the* Correspondence: windytian@hotmail.com
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Gene Ontology (GO) project [4] and those pathways in
the KEGG database [5].
Since biological systems or processes are dynamic, re-

searchers are interested in investigating gene expression
patterns across time, in an effort to capture dynamical
changes that are biologically meaningful to the systems.
With the fast evolution of microarray and RNA-Seq tech-
nology, longitudinal omics experiments have become af-
fordable and thus routine in a variety of fields. The
statistical approach typically employed to analyze longitu-
dinal omics data is to stratify the data into separate time
points and then tackle them separately. This naïve strategy
is inefficient given the highly dependent structure between
the measures of same subject over time is erroneously
ignored, leading to a huge loss of statistical power and a
failure to detect incremental changes in gene expression
patterns over time [6–8]. Therefore, the separate appli-
cations of cross-sectional feature selection methods
(where the gene expression values were measured at a
single time point) are ineffective for longitudinal micro-
array data [8].
On the other hand, several novel and complex

methods have been proposed to specifically deal with
longitudinal gene expression data [6–9]. For instance,
Storey et al. [6] proposed a method designed to identify
differentially expressed genes over time among different
phenotypes. This method utilized spline-based models to
estimate expression-versus-time curves for genes indi-
vidually, and a specific software program called EDGE
[10] has been developed for its implementation. This
algorithm may be classified into the simplest feature se-
lection category, namely the filter method. Since a filter
method usually screens genes one by one according to a
relevance score of the specific genes with the phenotype
of interest, it tends to include all highly correlated
features into the final model. The direct impact of this
drawback is an inferior model parsimony/size (the number
of genes in the final gene list) [11].
Traumatic injury with subsequent infection was a com-

mon cause of death in ancient times. Even today massive
injury such as combat wounds remains life threatening [12,
13]. A large clinical study that examined the genome-wide
expression patterns of blood leukocytes in the immediate
post-injury period was carried out recently [14]. The au-
thors of that study used the EDGE algorithm to
characterize transcriptomic difference after severe trauma
injury compared to healthy subjects, with more than 80%
of genes showing significant differences between the two
groups. Regarding to this unexpected “genomic storm”, we
think some irrelevant genes might be included mistakenly
by EDGE due to their correlations with the relevant ones.
Another primary objective of the study by [14] was to

explore if different patterns of gene expression existed
for two extremes of clinical recovery: the uncomplicated

recovery and the complicated recovery. Likewise, the
EDGE algorithm identified 2391 differentially expressed
genes (DEGs) over time. Among those 2391 genes, many
might be mistakenly included due to their high correla-
tions with the true relevant genes. Given the fact one
specific gene’s expression values over time are highly
correlated one another and thus cluster together as a
group, it is natural to regard a gene’s longitudinal ex-
pression profile as a gene set. Therefore, many gene set
analysis method capable of feature selection can be uti-
lized directly or modified correspondingly to analyze
longitudinal data. In this study, we explore more deeply
on the SAMGSR method [1] to investigate if it can carry
out longitudinal feature selection. The microarray data
in Xiao’s study [14] were used to evaluate the perform-
ance of the proposed procedure.

Methods
Experimental data
The raw data for the injury microarray experiment by
[14] were downloaded from the Gene Expression Omni-
bus repository (http://www.ncbi.nlm.nih.gov/geo/). The
accession number is GSE36809. This experiment was
hybridized on Affymetrix HGU133 plus2 chips. Because
we focus on identifying genes that present longitudinal
expression change pattern between the trauma patients
with complication and those without complication, only
patients with uncomplicated recoveries and patients with
complicated recoveries were considered here.
Based on the duration of recovery, uncomplicated

recovery represents recovery within 5 days while compli-
cated recovery includes recovery after 14 days, no recov-
ery by 28 days, or death [14]. Thus, the potential time
points for an uncomplicated recovery are days 1/2, 1, 4,
7 and 14, while those for a complicated recovery are
days 1/2, 1, 4, 7,14, 21, and 28. Here, we collected 18
complicated patients with 7 full measures and 25 un-
complicated patients with 5 full measures and used the
resulting dataset to train final models. Next, the data for
patients with complications were truncated at 14 days in
order to make comparisons with uncomplicated patients
at each single time point. Lastly, we used the rest of
complicated and uncomplicated patients as a test set to
validate the results given by the proposed method. There
were 50 uncomplicated patients and 23 complicated pa-
tients in the test set, and the time points considered in
the test data were days 1/2, 1, 4, and 7 since early dis-
charge of patients occurred before day 14. The charac-
teristics of patients in the training set and the test set
may be different since the patients in the test set were
those had been discharged early from the hospitals. Of
note, since different pre-processing procedures may im-
pact the data analysis, the summary expression values of
the experimental data provided by the GEO were
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downloaded and used directly. No pre-processing proce-
dures were carried out.

Statistical methods
In this subsection, we first gave an introduction to the
SAMGSR algorithm, and then provided a detailed de-
scription on the proposed procedure, which is referred
to as the longitudinal SAMGSR method herein.

SAMGSR
The SAMGSR method extends the SAMGS method [15]
by providing an additional reduction of significant gene
sets into respective core subsets. This reduction step
may approximately result in a 90% of reduction in the
size of selected genes, in an effort to improve predictive
performance and allow biological patterns to become
more obvious. The SAMGSR method consists of two
major steps [1]. The first step is the SAMGS process in
which an SAMGS statistic is calculated. This statistic is
the squared sum of SAM statistics over all genes within
the specific gene set. Using a permutation test by per-
turbing phenotype labels to calculate a p-value for the
SAMGS statistic, the statistical significance of a gene set
is determined. In the second step, only those genes
within significant gene sets identified by the first step
are considered. The SAMGSR method reorders the
genes within gene set j based on the magnitude of its
SAM statistic and gradually partitions the entire gene set
into two subsets: the reduced subset Rk which includes
the first k genes with largest SAM statistic, and the re-
sidual subset Rk being the complement of Rk for k = 1,…,
|S-1|. Here S is the size of gene set j. Let ck be the SAMGS
p-value of the residual subset Rk . The optimal size of re-
duced set Rk is the smallest k such that ck is larger than a
pre-specified cut-off, e.g., 0.05. Conceptually, the signifi-
cance level of a gene within a gene set is determined by
the magnitude of its SAM statistic. It implies that if in a
gene set |SAMi| > |SAMj| for genes i and j, gene j cannot
enter the reduced subset unless gene i is inside the re-
duced subset.

Modification to SAMGSR for longitudinal data
In the longitudinal SAMGSR method, a gene set has differ-
ent meaning, namely, it refers to a gene’s expression profiles
across time. Firstly, the significant genes were selected in
which the original SAMGS statistic was modified to as,

SAMGSg ¼
XT

t¼1
d2
t ; dt ¼ xd tð Þ−xc tð Þð Þ= s tð Þ þ s0tð Þ

ð1Þ

here, dt is the SAM statistic [16] of gene g (g = 1,…,G)
at time point t (t = 1,…, T). In the SAM statistic, xdðtÞ
and xcðtÞ are the sample averages of gene g at time

point t for the diseased and control group, respectively.
Parameter s(t) is a pooled standard deviation that is esti-
mated by pooling the expression values of all samples at
the specific time point t, while s0t is a small positive con-
stant used to offset the small variability in microarray ex-
pression measurements and thus to avoid the denominator
of the SAM statistic being zero. Both s(t) and s0t are specific
for individual time points because the variability of expres-
sion measurements may differ over time.
From the above equation, it is observed that each

gene’s expression profiles over time are combined into a
gene set. Namely, a gene set represents one specific gene
over different time points. Our rational is that a gene’s
expression values for the same individual over time are
correlated, mimicking a gene set/pathway. This method
first calculates the SAMGS statistics for all genes to se-
lect the relevant genes and then determines exact time
point(s) where the expression values of the specific gene
differ between two phenotypes.
In the method, ck is regarded as a tuning parameter.

Using the sequence of 0.05, 0.1, …, 0.5, the optimal value
of ck corresponds to the one associated with the minimum
5-fold cross-validation (CV) error. Figure 1 elucidates
graphically the longitudinal SAMGSR algorithm. Of note,
the essential difference between the SAMGSR method
and the longitudinal SAMGSR algorithm is what a gene
set refers — while one corresponds to a set of genes and a
single time point, the other contains only a single gene but
many time points.

Performance statistics
In this study, we use four metrics - Belief Confusion
Metric (BCM), Area Under the Precision-Recall Curve
(AUPR), Generalized Brier Score (GBS) and the misclassi-
fied error – to evaluate the performance of a classifier.
Our previous study [17] described those metrics in detail.
Briefly, they all range from 0 to 1. For the first two metrics
the closer to 1 the better a classifier is, whereas a value of
0 is optimal for the GBS and the misclassified error.
Since an evaluation on individual time points using

the selected statistical metrics might be unfair for the
SAMGSR extension in that its tendency to identify those
genes that are insignificant at isolated time points but
significant jointly over time, we used the following steps
to calculate overall performance statistics. Specifically,
for those methods incapable of providing the final model
simultaneously with the selection of relevant genes, e.g.,
the longitudinal SAMGSR method, a linear support
vector machine (SVM) model using the selected genes
was fit to estimate the β coefficients at individual time
points. Then, the posterior probabilities of the samples
belonging to the diseased group were calculated at each
time point on the basis of the SVM models, and the av-
erages of those probabilities over time were taken and
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used to obtain these performance statistics. Figure 2
shows graphically how to calculate BCM, AUPR, GBS
and the error rate. For those methods that are able to
provide final models, e.g., LASSO, no extra SVM fitting
was needed.

Statistical language and packages
Statistical analysis was conducted in the R language
version 3.2.1 (http://www.r-project.org), and R codes for
the longitudinal SAMGSR algorithm are available in an
additional file (see Additional file 1).

Fig. 1 Flowchart illustrates the longitudinal SAMGSR algorithm

Fig. 2 Graphical presentation illustrates how to calculate the performance statistics
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Results
Injury application
Here, we applied the SAMGSR extension to the train-
ing set to build final models, whose performance was
evaluated upon the test set. The respective perform-
ance statistics are provided in Table 1, from which we
observed that the ability of the longitudinal SAMGSR
method to discriminate between the complicated recovery
and the uncomplicated recovery is the best.
In order to evaluate the predictive performance of

EDGE and make a more fair comparison between EDGE
and our proposed method, we conducted the EDGE ana-
lysis on the training set and evaluated its performance
on the test set. The results of EDGE analysis are pre-
sented in Table 1. Compared with the performance sta-
tistics from the longitudinal SAMGSR extension, EDGE
does not show any superiority. Furthermore, there were
1083 genes identified by the EDGE method. In contrast,
the overall unique number of selected genes is less than
one hundred with our SAMGSR extension. The super-
iority of the SAMGSR extension over the EDGE method
in terms of model parsimony is obvious. In terms of
computing time, a single run of the simple SAMGSR al-
gorithms takes 4.03 min on a Mac Pro equipped with a
2.2 GHZ dual-core processor and 16GB RAM. A single
run of EDGE takes 4.2 min if the bootstrapping method
is chosen to estimate the null distribution, which is more
suitable than the asymptotic normality method for this
specific application because of its moderate sample size.
The other feature selection algorithms evaluated were

the original SAMGSR method [1], penalized SVM [18]
and LASSO [19]. Of note, these three methods were ap-
plied separately on individual time points since they are
incapable of carrying out longitudinal feature selection.
The results are presented in Table 1 as well. Firstly, the
comparison between the SAMGSR extension and the
SAMGSR separately at each time point was made. While
the longitudinal SAMGSR extension accounts for the
correlations among the expression values of one specific
gene over time, the application of SAMGSR at each
individual time point considers the membership of genes
(i.e., the specific gene belongs to which gene sets, thus

might interplay with other genes inside those gene
sets). The results of this comparison indicate that the
SAMGSR extension is superior to the separate
SAMGSR procedure. Incorporation of the pathway in-
formation inside gene sets, the clusters of genes that
might be potentially co-expressed/co-regulated to-
gether, did not result in the separate SAMGSR method
having substantially superior performance. One possible
explanation relates to the quality of the pathway data-
base itself. The canonically curated databases on path-
ways/gene sets are biased toward well-studied diseases
such as cancers, and with few work has investigated on
traumatic injury using gene expression profiles, the
gene-to-gene interaction information contained inside
those curated pathways may have no or limited meaning
for injury. Therefore, we conclude that the consideration
of coordinated effects existing among one gene’s expres-
sion profiles over time results in a better predictive
performance.
Secondly, we compared the longitudinal SAMGSR algo-

rithm with well-known conventional feature selection al-
gorithms, namely, LASSO and penalized SVM separately
at each time point. In these comparisons, we observed
that the SAMGSR extension has at least comparable pre-
dictive performance but being superior in terms of overall
model parsimony. For example, the longitudinal SAMGSR
method identifies 97 unique genes while LASSO selects
147 genes. Moreover, we observed that in the 97- gene
signature identified by longitudinal SAMGSR, there is a
substantial proportion of overlaps for all 5 time points
together (25.77%), while the number of genes being sig-
nificant only at one specific time point is one half of this
number (Fig. 3). Again, this highlights the ability of our
SAMGSR extension to identify genes that present mild
but concordant change over time points between two
different phenotypes. In contrast, though at each individ-
ual time point LASSO selects the smallest number of
genes, there is almost no overlap among those genes,
resulting in a 147-gene list.
Regarding computing time, LASSO is the most effi-

cient with one single run only taking less than 1 s since
the implementation of LASSO in the R glmnet package

Table 1 Performance of SAMGSR extension and other relevant algorithms on the injury data

Method # of genes Using 5-fold CVs On the test set

Error GBS BCM AUPR Error GBS BCM AUPR

L-SAMGSR1 97 0.442 0.268 0.515 0.576 0.356 0.230 0.535 0.622

EDGE1 1083 0.442 0.281 0.511 0.526 0.407 0.234 0.514 0.594

SAMGSR separatelya > 400 0.419 0.246 0.510 0.559 0.428 0.243 0.511 0.553

P-SVM separately > 1000 0.488 0.281 0.477 0.454 0.441 0.244 0.511 0.560

LASSO separately 147 0.465 0.261 0.497 0.498 0.407 0.237 0.509 0.580

Note: a the posterior probabilities were calculated using an SVM classifier. Here, the cutoff for q-value in SAM-GS part is set at 0.05. # of genes represents the
number of the union of individual genes selected at each time point. CV: cross-validation

Tian et al. BMC Medical Informatics and Decision Making 2018, 18(Suppl 5):115 Page 93 of 127



[20] calls upon Fortune language and utilizes a fast-up-
dating strategy. These two factors make substantial con-
tributions to the time efficiency of LASSO. On the other
hand, penalized SVM is the least time efficient one,
which is unsurprising since the cross-validation process
is automatically a part of model construction inside the
penalized SVM modeling.

Simulations
In order to explore the properties of the SAMGSR exten-
sion, we used the observed expression values from the in-
jury application to design two sets of simulations. First, we
chose two causal genes – F13A1 and GSTM1 – and then
randomly selected 998 genes from the remaining genes as
noises that are irrelevant. Denote the expression value of
gene i (F13A1 or GSTM1) at time j (j = 1,…, 5) as Xi.j, the
following logit function was used to obtain the probability
for sample i (i = 1, …43) experiencing a complicated in-
jury, i.e., pi,

logitc=u ¼ 0:18X F13A1:1 þ 0:57X F13A1:2 þ 0:29X F13A1:3

þ 0:41X F13A1:4 þ 1:02XGSTM1:3

Here, pi = exp.(logiti)/(1 + exp.(logiti)). Then a random
variable Yi that follows a Bernoulli distribution with the
parameter of pi was simulated, it has two possible values
with 1 indicating the sample belongs to the complicated
injury group and 0 for the uncomplicated injury group.
Notably, we considered one gene (i.e., F13A1) whose sig-
nificance arises from its joint association accumulated
from time point 1 to time point 4 and the other (i.e.,
GSTM1) whose association with the outcome is only at
the third point time in this simulation.

The aim of this simulation was to illustrate the ad-
vantage possessed by the SAMGSR extension, namely,
by incorporating the accumulated effect of genes over
time, it can recognize genes with a coordinated change
accumulating over time but only mild or moderate
change at each time point.
In the second simulation, we chose two genes –

COX4I2 and RP9 as the relevant genes. The logit func-
tion was,

logitc=u ¼ 0:56XCOX4I2:1−0:91XRP9:5

In this simulation, both genes were associated with the
outcome at a single respective time point but in opposite
directions. For both simulation settings, 50 replicates/50
datasets were generated. The frequencies of each causal
gene being selected at each time point are given in
Table 2.
Although in the second simulation the number of

relevant time points was less than that in the first one,
the number of selected genes by the longitudinal
SAMGSR algorithm was dramatically larger in the sec-
ond simulation. This might be because the relevant
genes in the second simulation were highly correlated
with other genes compared to the first simulation. The
highly correlated structure between relevant features and
irrelevant ones produced a large number of redundant
features that the SAMGSR extension cannot exclude. To
our best knowledge, however, many feature selection
algorithms, especially the filter methods [11], suffer
from this drawback. As illustrated in our previous
work [21, 22], an additional reduction step using a
statistical method such as bagging [23] may alleviate
this problem.

Discussion
In the injury application, only complicated patients with
five measurements, and uncomplicated patients with
seven time points were included in the training set. Then

Fig. 3 Venn-diagram illustrates how selected genes by the longitudinal
SAMGSR method overlap at different time points

Table 2 Performance of the longitudinal SAMGSR on simulated
data

Time 1 Time 2 Time 3 Time 4 Time 5

# of genes 19.84 19.14 13.68 9.30 11.00

Simulation 1 F13A1 (%) 72 100 100 92 68

(Ave. # 32.06) GSTM1 (%) 0 0 62 22 0

# of genes 182.38 56.18 35.44 30.94 123.84

Simulation 2 COX4I2 (%) 96 0 0 0 4

(Ave. # 291.98) RP9 (%) 10 4 4 6 96

Note: Ave. # represents the average number of the union of individual genes
selected at each time point over 50 simulated datasets; # of genes represents
the average number of individual genes selected at the specific time point
over 50 simulated datasets; % represents the percentage of the corresponding
true causal gene being selected by the algorithm over 50 simulated datasets
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patients discharged from the hospital earlier (thus having
later measurements missing) were used to verify the
resulting models. Similar to SAMGSR, our proposed
extension has no difficulty to deal with missing values.
Therefore, the proposed algorithm does not require this
restriction. In this study, we imposed this restriction to
simplify our data analysis.
The SAMGSR extension incorporates the correlated

structure of expression’s profiles over time into the frame-
work of gene sets/pathways, and is more likely to identify
genes with aggregated effects over time, while their effect
size at individual time points may be insignificant. These
genes are usually overlooked by the implementation of a
conventional feature selection method at individual time
points. Using a real-world application, we showed that the
longitudinal SAMGSR method is superior to other rele-
vant algorithms.

Conclusions
In this article, we applied the SAMGSR algorithm to carry
out feature selection for longitudinal gene expression pro-
files. To the best of our knowledge, this study is one of
few efforts to explore the modification of suitable pathway
analysis methods to execute feature selection for longitu-
dinal gene expression data, such an application may save
time of developing a new feature selection algorithm that
can tackle longitudinal data from scratch. As shown by
two simulations, this extension has a big drawback,
namely, including many redundant irrelevant genes in the
final lists. Nevertheless, we believe this work will pave the
way for more research to bridge feature selection and gene
set analysis with the development of novel algorithms to
tackle longitudinal omics data. For instance, many gene
set analysis methods such as [24] may be applied directly
or modified correspondingly to identify real ‘driving’ fea-
tures that characterize the phenotype of interest better.

Additional file

Additional file 1: The R codes of the longitudinal SAMGSR method.
(TXT 7 kb)
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