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Association analyses of repeated measures ® e
on triglyceride and high-density lipoprotein
levels: insights from GAW20

Saurabh Ghosh'" and David W. Fardo?

From Genetic Analysis Workshop 20
San Diego, CA, USA. 4-8 March 2017

Abstract

Background: The GAW20 group formed on the theme of methods for association analyses of repeated measures
comprised 4sets of investigators. The provided “real” data set included genotypes obtained from a human whole-
genome association study based on longitudinal measurements of triglycerides (TGs) and high-density lipoprotein
in addition to methylation levels before and after administration of fenofibrate. The simulated data set contained
200 replications of methylation levels and posttreatment TGs, mimicking the real data set.

Results: The different investigators in the group focused on the statistical challenges unique to family-based association
analyses of phenotypes measured longitudinally and applied a wide spectrum of statistical methods such as linear mixed
models, generalized estimating equations, and quasi-likelihood-based regression models. This article discusses the varying

with repeated measures of a phenotype.

Quasi-likelihood, Multivariate phenotypes

strategies explored by the group’s investigators with the common goal of improving the power to detect association

Conclusions: Although it is difficult to identify a common message emanating from the different contributions because
of the diversity in the issues addressed, the unifying theme of the contributions lie in the search for novel
analytic strategies to circumvent the limitations of existing methodologies to detect genetic association.

Keywords: Genome-wide association, Epigenome-wide association, Longitudinal data, Linear mixed models,

Background

Even though genome-wide association studies (GWAS)
have successfully identified novel genetic variants that
confer risk to various complex disorders, the proportion
of trait variance that can be explained by the identified
variants remains abysmally low compared to the estimates
of heritability of these traits obtained from twin studies. It
has been argued that analyzing quantitative precursors of
a clinical end-point trait, which carry more information
on interindividual phenotypic variability compared to an
often binary end-point trait, may be a more powerful
strategy to unravel the genetic architecture of the
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underlying complex disorder [1]. However, quantitative
trait values vary over time; consequently, measurements at
a single time point may not serve as optimal phenotypes
in genetic association analyses. Longitudinal data are
known to contain more information on the genetic and
environmental factors modulating a phenotype compared
to cross-sectional studies [2]. Moreover, there is increasing
belief that epigenetic factors, such as methylation and
histone acetylation, may be able to explain some of the
“missing heritability” in these complex traits.

The major statistical challenge encountered in the gen-
etic association analyses of repeated phenotype measure-
ments is the modeling of the phenotype values across the
different time points. Cross-sectional analyses of pheno-
type values at different time points may not only provide
inconsistent inferences but also can exacerbate the
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problem of multiple testing inherent in GWAS. On the
other hand, a naive multivariate analysis ignoring the cor-
relation structure of phenotype values across the different
time points may result in power loss [3]. It is also challen-
ging to develop methodologies that can incorporate
multiple phenotypes in the longitudinal framework.
Likelihood-based methods, such as variance components
[4, 5] for analyzing multivariate phenotypes, may be directly
adopted to analyze a single phenotype in a longitudinal
framework, but such methods are, in general, sensitive to
violations of the underlying assumptions used for modeling
the vector comprising the phenotype values at the different
time points. Alternatively, data reduction techniques, such
as principal components analysis [6], circumvent the prob-
lem of robustness, but often yield reduced power to detect
associations. The family-based framework involves an add-
itional challenge of modeling phenotypic, familial, and serial
correlations, but this can be addressed, for example, by la-
tent variable methodology that incorporates both longitu-
dinal and family correlation [7].

The GAW20 provided an excellent opportunity to ex-
plore the various statistical issues pertaining to association
analyses of longitudinal phenotypes, whole-genome
single-nucleotide polymorphism (SNP) data, and methyla-
tion (cytosine-phosphate-guanine [CpG]) data. The real
data provided in GAW?20 includes pedigrees from the Gen-
etics of Lipid Lowering Drugs and Diet Network (GOLDN)
study comprising 1105 participants and including
genome-wide information on 597,145 variant sites and
methylation levels at 463,995 CpG sites. Repeated measure-
ments are available on 2 phenotypes: triglyceride (TG)
levels and high-density lipoprotein (HDL) levels, measured
twice each before and after the intervention of fenofibrate,
a blood lipid-lowering drug. Information was also available
on a few additional variables, such as age, sex, smoking
status, and study center. The simulated data provided in
GAW?20 was created to mimic the real data and assumed 5
“major gene” causal SNP effects. Each of these effects on
TG response was modeled to be proportional to the
degree that the physically closest CpG site is
unmethylated. Two hundred simulation replicates of
posttreatment TG and methylation levels were gener-
ated under this growth-curve-based pharmacoepige-
netic response model [8].

There were 4 contributions from our group, of which
3 considered the real data while 1 [9] analyzed the simu-
lated data. Table 1 summarizes the data analyzed in the
different contributions. The contributions that focused
only on detecting association between SNPs and longitu-
dinal phenotypes considered a minor allele frequency
threshold of greater than 0.05 based on the common
variant—common disease hypothesis. While Das et al.
[10] and Kulkarni et al. [11] performed genome-wide as-
sociation analyses based on TG and HDL levels, Wei
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Table 1 Description of the data analyzed in the different
contributions

Contribution Type of data analyzed Phenotypes analyzed

Das et al GOLDN (GWAS) TG, HDL
Kulkarni et al GOLDN (GWAS) TG (adjusted for HDL)
Wei and Wu GOLDN (EWAS) TG, methylation

Strickland et al Simulated (10 SNPs)

EWAS epigenome-wide association study, GOLDN Genetics of Lipid Lowering
Drugs and Diet Network, HDL high-density lipoprotein, SNP single-nucleotide
polymorphism, TG triglyceride

TG, methylation

and Wu [12] carried out an epigenome-wide association
analysis based on TG and methylation levels, and Strick-
land et al. [9] restricted their analyses to 10 SNPs along
with the nearest CpG sites in the simulated data set (5
causal SNPs that were simulated to exhibit large effects
on TG levels and 5 noncausal SNPs). The association
analyses in the different contributions adopted variance
components approaches, linear mixed effects models,
generalized estimating equations, quadratic inference
functions, or tests based on transmission disequilibrium.
None of the contributions performed analyses of
cross-sectional phenotype values exclusively. Although
there were varying statistical issues addressed by the dif-
ferent investigators in the group, we were able to inte-
grate these issues into a few unifying themes as
discussed in the subsequent sections.

Methods

Combining repeated measurements of phenotypes

A primary challenge in analyzing a phenotype in a longi-
tudinal framework lies in the integration of the pheno-
type values across different time points in a multivariate
phenotype vector or a reduced univariate phenotype. All
the contributions used logarithmic transformations on
phenotypic values to induce normality. Das et al. [10]
considered an 8-dimensional phenotype vector compris-
ing the 4 measurements of TG and the 4 measurements
of HDL while performing the GWAS with the 2 quanti-
tative traits. In a separate analysis, they considered the
difference in the means of the 2 measurements of TG
levels made before administration of fenofibrate with
those made after treatment as the phenotype of interest
to analyze the effect of fenofibrate on genomic associa-
tions. Strickland et al. [9] and Wei and Wu [12] also
summarized the TG measurements pre- and postadmi-
nistration of fenofibrate by the respective means. Kulk-
arni et al. considered the first principal component of
the TG measurements before and after the administra-
tion of fenofibrate as a summarized phenotype in their
model. Because the different contributions considered
diverse alternatives of combining the phenotype values,
comparisons of the performances based on the different
choices were not performed and hence, an optimal
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method of integrating the phenotype values was not
investigated.

Adjustment for covariates

Environmental confounders as well as clinically corre-
lated endophenotypes are known to adversely affect in-
ferences on genetic association [13], especially with
respect to false-positive rates. Thus, it is necessary to ad-
just the effects of these factors from the phenotypes of
interest to assess the true effects of the genetic variants.
Data were available on 5 covariates: HDL levels, age, sex,
smoking status, and study center. Even though Das et al.
[10] considered HDL levels jointly with TG levels as the
primary phenotype, they included age and smoking sta-
tus as fixed effects in the regression model. Strickland et
al. [9], as well as Wei and Wu [12], used a similar
method of adjustment by modeling age, sex, study cen-
ters, and methylation levels at CpG sites as fixed effects.
Wei and Wu [12] also included treatment (ie, prestatus
or poststatus of fenofibrate administration) as a binary
covariate in the model. Kulkarni et al. [11] used a gener-
alized linear regression of TG levels on HDL levels to
obtain TG levels adjusted for HDL levels.

Das et al. [10] and Kulkarni et al. [11] used different
strategies to impute missing phenotypic values to
maximize the information on longitudinal data. Kulkarni
et al. [11] used an unrelated set of founders from the pedi-
grees to estimate the missing phenotype values based on
data on the available phenotype values using an expect-
ation maximization algorithm under the assumption of
multivariate normality of phenotype values and then used
the plug-in estimates of the parameters to impute the
missing phenotype values of the nonfounders in the pedi-
grees. Das et al. [10] also used the expectation
maximization algorithm but under their assumed mixed
model framework. The imputed values corresponding to
the missing phenotypic observations are computed under
the null hypothesis of absence of any SNP effect and zero
genetic correlation.

Statistical methods for association

The different contributions explored contrasting statis-
tical approaches to analyze TG levels before and after
the administration of fenofibrate. The most popular ap-
proach to model the Ilongitudinal data in the
family-based framework is to use linear mixed effects
models, primarily because such models can both account
for relatedness within families and correct for population
stratification between families via incorporation of prin-
cipal components [14]. Moreover, the flexibility of mod-
eling the effect of fenofibrate both as a main effect and
as an interaction effect with SNPs results in higher pow-
ers of detecting association. However, analyses based on
linear mixed models are susceptible to violations in
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distributional assumptions (such as normality). On the
other hand, transmission-based tests for association that
model transmission probabilities of parental alleles condi-
tioned on offspring phenotypes require partitioning large
pedigrees into nuclear families, resulting in possible loss
of power but are relatively more robust with respect to
model misspecifications as the tests are conditioned on
phenotype values and hence do not require modeling the
correlation structure of the repeated measurements of a
phenotype across different time points. Moreover, such
models can incorporate both quantitative and qualitative
components in the vector of measurements [15, 16].

Strickland et al. [9] considered 2 outcome variables: TG
change scores calculated as the difference between the
posttreatment and pretreatment average log-transformed
TG levels and TG adjusted by baseline TG to compare the
performances of 3complementary multivariate methods
that account for the correlation induced by familial re-
latedness: linear mixed effects models, generalized esti-
mating equations, and quadratic inference functions. Wei
and Wu [12] et al. employed a mixed effects model with a
familial random effect and conducted an epigenome-wide
association study. They used a time-by-methylation inter-
action test to identify candidate genes for a gene-set en-
richment analysis. Das et al. [10] considered a multivariate
phenotype vector comprising TG and HDL levels, each
measured at 4 different time points and used a linear
mixed model to perform a GWAS with the set of SNPs.
They also used a modification of Henderson’s mixed
model to develop a multilocus association test with the
mean change in TG levels caused by the administration of
fenofibrate. Kulkarni et al. [11] developed a novel test for
association based on quasi-likelihood where the condi-
tional distribution of the transmission indicators of alleles
from both parents (of whom at least 1 must be heterozy-
gous) at a SNP is modeled using a logistic link function of
the principal components of TG levels (both unadjusted
and adjusted for HDL levels) before and after the adminis-
tration of fenofibrate.

Results

Because contrasting statistical methodologies were ap-
plied to analyze different subsets of the GAW20 data on
repeated measurements of TG and HDL levels, it was
not feasible to explore the extent of similarity in the re-
sults obtained by the different investigators in the group.
The phenotype definitions as well as the objectives with
respect to these definitions were also not strictly com-
parable. Thus, it is not unexpected that the significantly
associated SNPs obtained by Das et al. [10] and Kulkarni
et al. [11] are located in different genomic regions. With
respect to objectives of individual contributions in the
group, we summarize the major conclusions as follows:
Das et al. [10] showed that testing for association at the



Ghosh and Fardo BMC Genetics 2018, 19(Suppl 1):73

gene level (ie, simultaneously testing at multiple SNPs)
may significantly reduce the multiple testing burden
compared to single SNP association tests. Kulkarni et al.
[11] observed that including transmission information
from both parents may increase the likelihood of obtain-
ing a larger number of significant association findings
compared to classical transmission-based tests that con-
sider transmissions only from heterozygous parents. Wei
and Wu [12] demonstrated that integrating information
on association obtained from methylation data and from
pathway databases is likely to yield a larger set of puta-
tive genes modulating the phenotype of interest. Based
on the empirical error rates obtained from the 200 simu-
lated replications, Strickland et al. [9] found that while
tests based on linear mixed effects models maintained
the appropriate size, those based on the generalized esti-
mating equations or the quadratic influence function
have inflated false positive rates unless an explicit bias
correction is employed. A common observation in all
the contributions was the lack of power in obtaining a
larger number of true association findings as a conse-
quence of inadequate sample sizes.

Discussion

A majority of the contributions [9, 10, 12] highlighted
the flexibility of linear mixed effects models, which can
be used to model the dependence of TG values across
different time points in a family-based framework. On
the other hand, the transmission-based test using a
quasi-likelihood model [11] provides a semiparametric
alternative that is likely to be more robust to violations
in distributional assumptions.

Although it is difficult to determine whether novel asso-
ciation findings obtained from real data sets are indeed
true positives, the probability of the finding to be a false
positive is reduced if contrasting statistical methods pro-
vide significant evidence of association in similar genomic
regions in the absence of confounding effects. Because the
phenotype definitions were not identical in the different
contributions, it was difficult to evaluate the consistency
of the different analytical strategies in yielding similar as-
sociation findings. However, all contributions that ana-
lyzed the GOLDN data [10-12] obtained significant
association findings in genes or CpG sites that were previ-
ously reported to be involved in heart-related disorders,
lending additional credibility to the approaches taken.

Finally, we wish to highlight that a major issue corre-
sponding to any novel methodology is the computational
burden involved in the analysis. Even though the
transmission-based test using the quasi-likelihood ap-
proach requires partitioning of large pedigrees into nu-
clear families, it is not computationally expensive. On the
other hand, large pedigrees can be directly incorporated in
linear mixed effects models that assume the genetic and
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phenotypic correlation structures between individuals
within a pedigree, but, being likelihood-based in nature,
such methods are often susceptible to inflated false posi-
tives when underlying distributional assumptions on
cross-sectional as well as time-dependent correlation
structures on phenotype values are violated. It may be
more appropriate to use empirical thresholds (one can
randomly assign genotypes to parents based on estimated
allele frequencies and use Mendelian transmission rules to
determine offspring genotypes keeping the phenotype
values unaltered so as to preserve the observed phenotypic
correlation within each family) rather than asymptotic
thresholds to determine the significance of a test statistic
value to increase the robustness of the test. However, such
a strategy may prohibitively increase the computational
complexity of the methods.

Conclusions

The common aim of the group was to explore powerful
statistical methodologies for identifying genetic variants
modulating triglyceride levels in a longitudinal framework.
Despite the varied statistical approaches to model re-
peated phenotype measurements, the crucial paradigm
unifying the contributions was that analyzing repeated
phenotype measurements may be a more powerful strat-
egy compared to cross-sectional analyses for identifying
genetic and epigenetic factors underlying a complex trait.
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