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ABSTRACT OF DISSERTATION

RADIATIVE CONDUCTIVITY ANALYSIS OF LOW-DENSITY FIBROUS
MATERIALS

The effective radiative conductivity of fibrous material is an important part of the
evaluation of the thermal performance of fibrous insulators. To better evaluate this
material property, a three-dimensional direct simulation model which calculates the
effective radiative conductivity of fibrous material is proposed. Two different geome-
tries are used in this analysis.

The simplified model assumes that the fibers are in a cylindrical shape and does
not require identically-sized fibers or a symmetric configuration. Using a geometry
with properties resembling those of a fibrous insulator, a numerical calculation of the
geometric configuration factor is carried out. The results show the dependency of
thermal conductivity on temperature as well as the orientation of the fibers. The
calculated conductivity values are also used in the continuum heat equation, and the
results are compared to the ones obtained using the direct simulation approach.

In continue, the simulated model is replaced by a realistic geometry obtained from
X-ray micro-tomography. To study the radiative heat transfer mechanism of fibrous
carbon, three-dimensional direct simulation modeling is performed. A polygonal mesh
computed from tomography is used to study the effect of pore geometry on the overall
radiative heat transfer performance of fibrous insulators. An robust procedure is
presented for numerical calculation of the geometric configuration factor to study
energy-exchange processes among small surface areas of the polygonal mesh. The
methodology presented here can be applied to obtain accurate values of the effective
conductivity, thereby increasing the fidelity in heat transfer analysis.

This thesis integrates material from one published papers [1] and another one in
review. So, some passages have been quoted from these sources.

KEYWORDS: Fibrous geometry, Anisotropic effective conductivity, Radiative heat
transfer.
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Chapter 1

Introduction

1.1 Background

An object entering a planetary atmosphere (Fig. 1.1) requires a Thermal Protection

System (TPS) to shield it from aerodynamic heating. While the re-entering object

moves at high speed in atmospheric media, its kinetic energy is mostly dissipated

in the form of heat. A fraction of this energy, depending on the surface properties

of the materials, is transmitted to its surface by convective and radiative heating.

In absence of a proper TPS, the re-entering (spacecraft) object is damaged or even

destroyed. The role of the TPS is to block, absorb, or radiate the heat to protect the

re-entering object.

A wide range of materials and designs have been studied for space vehicles. The

priority in TPS design is to maximize the insulation capability and minimize the

vehicle weight to extend the vehicle applicability. Improvements to these materials

have been the subject of numerous investigations. Through these studies various

types of TPS have been developed: radiative system [3–13], heat-sink system [14,15],

transpiration and film cooling system [16–19], ablative system [20], and convective

cooling system [21].
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Figure 1.1: (color online) An object entering a planetary atmosphere [2].

Each of these systems protects the surface of the space vehicle from heat damage in

a different way. Among these thermal protection techniques, the ablative TPS is most

widely used because of its satisfactory performance, light weight, relative simplicity,

and reliability. The ablative TPS prevents heat penetration into the material by

a process called ablation such that the material starts to erode when the surface

becomes very hot.

Phenolic Impregnated Carbon Ablator (PICA) is part of a new generation of light-

weight fibrous insulators used on re-entry vehicles as thermal protection. [22–30]. It

consists of a low density fibrous substrate (FiberFormr, see Fig. 1.2, taken from

[31]) impregnated with an organic resin. The arc-jet testing of low density (high

porosity) PICA showed [32] that these materials can withstand high heating rates. For

such a porous media subjected to high temperature and high temperature gradients,

radiative energy exchange within the material becomes important. This radiative heat

transfer process can be expressed in the form of a temperature dependent effective
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dimensions and provides a digital representation of the 
material as a set of voxels that can be used for 
numerical simulations. Here the micro-CT data were 
imported into the GeoDict frame, a commercial toolbox 
to perform computations of materials properties, and 
into PuMA (Porous Materials Analysis), a NASA’s 
software for microscale oxidation simulations. 

2. MICRO-TOMOGRAPHY OF RIGID CARBON 
PREFORM AND FLEXIBLE FELT. 

Micro-CT measurements were performed at the 
Advanced Light Source (ALS) at Lawrence Berkeley 
National Laboratory. Synchrotron X-rays produced by 
the ALS provide high quality images, with low noise 
and sub-micron resolution. This is ideal for resolving 
the fibrous architecture of highly porous substrates. 

The tomography setup and its capabilities are described 
in [2]. In this study, to collect tomography images, we 
used a 2560×2160 pixels pco.edge 5.5 sCMOS camera 
(PCO, Kelheim, Germany) and a 10× Mitutoyo Plan 
Apo long working distance objective (Mitutoyo, 
Kawasaki, Japan) providing a pixel size of 0.645 µm. 
The scans were performed at an X-ray energy of 18 
keV. Micro-CT projections were reconstructed into 3D 
images using the Octopus software (inCT, Aalst, 
Belgium) [3], using an ALS in-house interface 
implemented in the Fiji software [4]. Fiji was also used 
to filter tomography artifacts and segment the images 
for visualization.  

We imaged samples of FiberForm™ (Fiber Materials 
Inc., Biddeford, ME, USA), carbon felt and rayon felt. 
FiberForm is the carbon substrate used in PICA. It is 
made from a slurry composed of chopped rayon-based 
carbon fibers mixed with phenol-formaldehyde resin 
and water. The slurry is vacuum casted, compressed and 

cured at high temperature into desired shapes. Of the 
conformal and flexible materials being developed at 
NASA Ames Research Center (ARC), two different 
felts were considered. The materials analyzed were a 
low-density rayon-based carbon fiber felt from Morgan 
Advanced Material (Windsor, Cornwall, UK) and a 
needled (densified) rayon fiber felt from the American 
Felt & Filter Company (AFFCO, New Windsor, NY, 
USA). The rayon was made of semisynthetic fibers 
derived from cellulose. Felts fabrics were made by a 
combination of mechanical, chemical and thermal 
treatments that are proprietary to each manufacturer. 

Photorealistic renderings of FiberForm and the carbon 
felt are shown in Figure 1. The visualizations were 
produced from triangulated micro-CT data, at the 
NASA Ames Advanced Supercomputing facilities, 
using ray-tracing [5]. The figure highlights appreciable 
differences between FiberForm and the Morgan felt.  

Fiber diameters (≈10-12 µm) and aspect ratio of the two 
materials are similar, as both the carbon felt and 
FiberForm’s fibers are rayon based. However, while 
FiberForm presents numerous clumps, cluster and 
bundles of fibers due to the FMI manufacturing process, 
these are not present in the felt. The carbon felt fibers 
appear to be organized in a more regular architecture 
that follows a defined pseudo-weaving pattern. This can 
be observed in Fig. 1(b), showing a clear needling 
pattern.   

The felts investigated in this study are more porous than 
FiberForm, as can be noticed from the visualization in 
Figure 1. An analysis of the gray-scale distribution of 
the tomography voxels revealed porosities of ≈85 to 
89% for FiberForm, while higher than ≈94% for fibrous 
felts. 

Figure 1. Micro-CT ray-tracing rendering of a) FiberForm and b) Morgan carbon-fiber felt. Here and in following sections 𝑥- 𝑦 
define the “in-plane” direction  and  𝑧 the “through-the-thickness” direction. 

Figure 1.2: (color online) Example of a realistic geometry, obtained using computed micro-
tomography (image from [31])

radiative conductivity. Different models are used to study the heat transfer process

and, more specifically, the radiative thermal process [33]. These are briefly reviewed

in the following section.

1.2 Review of heat transfer models

Heat transfer through fibrous material has been investigated in numerous studies [34–

37], and new models have been developed to estimate the porous material response

to high-enthalpy environments [38–40]. Briefly, the basic modes of heat transfer in

fibrous material are:

1. Gas convection,

2. Gas conduction,

3. Thermal radiation,

3



4. Fiber-to-fiber conduction.

Gas convection is a very important mechanism in material response, such that the

cold gas is transfered into the hot region, and cools the material. In material response

modeling, gas convection is no accounted for in the effective heat conductivity, but

treated separately in an other term of the governing equations. However, either in

case of vacuum (considered in the present study) or if the gas is not moving there is

no convection.

Radiation and conduction are other two major processes that must be taken into

account in thermal response models. Both of these phenomena require a detailed

knowledge of the micro-scale geometry of the material. For radiative transfer, the

upscaling task is complex since the process depends on the specific orientation of in-

dividual fibers and their geometric configuration factors (GCF); which is the fraction

of the radiation which leaves a surface and strikes another surface. The importance

of these modes in material response modeling depends on the different values of the

porosity and temperature. The relative magnitudes of the different modes of heat

transfer in fibrous material have been reported in [41–44]; these are schematically

shown in Fig. 1.3. The study of thermal radiation in fibrous material is essential

since in high temperature regimes a significant portion of the total heat transfer is

composed of thermal radiation. A brief review of various developed analytical and

numerical models used in material response studies have been done at [45]. The main

goal of these models is an accurate prediction of the radiative properties of the fibrous

material.

The importance of the thermal radiation in fibrous insulations under vacuum is ex-

perimentally discussed using conducting guarded hot-plate tests in [41]. The guarded

hot-plate tests allow the determination of the thermal conductivity of material, if the

samples are plane and plate-shaped.

4
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Figure 1.3: (color online) Schematic illustration of the basic modes of heat transfer with respect
to the porosity and temperature of the fibrous material.

There are different aspects involved in the thermal radiation studies which need

to be addressed:

1. An appropriate transfer model must be developed,

2. The radiative properties must be determined,

3. Effects of the geometry of the fibers should be studied.

Past studies have modeled radiative heat transfer in porous material as a con-

ductive process [46–53]. Simple expressions have been developed for the thermal

conductivity due to radiation. Most of these models contain parameters which need

to be determined experimentally. A few investigations have been done as well [54–59]

to address the problem from a radiative point of view. In follow, we briefly introduce

these models.

For a conductive process, from Fourier’s law, the radiant flux q [W/m2] is expressed

as

q = κrad
∆T

L
, (1.1)

5



where κrad [W m−1 K−1] is the thermal conductivity due to radiation, ∆T [K] is

the absolute temperature difference across the FM, and L [m] is the thickness of

the insulation. Thermal radiation diffuses through fibers within an absorbing and

emitting regime. The net thermal radiation across the entire material is determined

by combining all the contributions from the fibers. The radiative thermal conductivity

is then defined by casting the final radiant flux expressions in the form of Eq. 1.1 [53].

It is found that the conductivity due to radiation to be a cubic function of the

temperature as T 3
m, where Tm is the mean temperature in the material. It is important

to point out that the work presented in this thesis is also in agreement with this cubic

dependency on the temperature which is a prediction of Rosseland’s hypothesis [61].

Other approaches have been developed based on using a continuous or discon-

tinuous formulation of the Radiative Transfer Equation (RTE). In the first ap-

proach [47, 48], the medium is treated as a continuous regime. While, the discontin-

uous model [49], the system is subdivided into an array of cells of a given geometry.

Then, the radiative transfer is calculated in each basic cell by macroscopic methods

such as Monte Carlo [50]. However, such models are limited in their applicability and

consume much CPU time.

The study done by [54] addressed the problem of the radiation attenuation (grad-

ual loss in intensity of radiation flux through the medium due to absorption and

scattering). There, the total radiation through the fibrous material was measured.

A two-flux model was used to deduce the absorption and scattering coefficients. The

results showed that, in general, the scattering coefficients are orders of magnitude

larger than the absorption coefficients. This is in agreement with studies in [60]. The

prediction of the coefficients from an analytical approach was also discussed in [54].

In regards to the scattering properties of the porous material, two different criteria

of fibers are considered separately:

1. Coarse (non-scattering criteria) where (2πr/λ)� 1,
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2. Fine (scattering criteria) where (2πr/λ)� 1,

where λ denotes the characteristic wavelength of the radiation and r denotes the

effective radius of the fibers. An expression for the absorption and scattering coeffi-

cients was developed in [55]. The Rayleigh approximation was deployed to estimate

the coefficients in the coarse and fine regimes; the size of a scattering particle was

parameterized by the ratio (2πr/λ). The opaque surface assumption was consid-

ered [52] for greater simplification; however, this approximation is very restrictive.

To prevent the effect of scattering, the diameter of the fibers has to be much larger

than the characteristic wavelength of the radiation for the approximation to be valid.

Therefore, this model is strictly valid only for fibrous material with large fibers.

The studies which have been done in [56, 57] addressed both radiation and con-

duction simultaneously in fibrous material. The work done by [56] was based on three

different approaches:

1. Radiation transfer equation or its approximations,

2. Approximation of radiation thermal conductivity,

3. Radiation diffusion approximation for radiation transfer.

It was shown that the third approach is the most preferable, since the first and second

approaches need experimental measurement of the optical properties. The compar-

ison between the radiation thermal conductivity approximation and the radiation

diffusion approximation has been carried out. In [57], a quartic dependence to the

temperature (T 4) was approximated by a Taylor series in the differential integral

equation governing the temperature distribution which was solved numerically. The

heat flux was also numerically determined.

Geometric features of the porous material is another essential parameter, effective

on the radiative properties of the material. Different studies have been done to
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characterize the effects of the geometry of the fibers using numerical or experimental

techniques [62–65].

Regarding the geometrical properties of the fibrous material, a radiation model is

developed in [62] to evaluate the effect of the fiber orientation on the radiative heat

transfer. The results show that the orientation of the fibers strongly affects both the

back-scatter factor and radiative heat transfer.

In order to investigate the effects of the geometrical properties of the fiber pre-

forms, a simplified direct simulation (DS) for a two-dimensional fibrous medium has

been proposed by van Eekelen and Lachaud [63]. Based on the hypothesis of Rosse-

land, they model the thermal radiation process in a fiber preform medium made of

randomly positioned, yet parallel and identically-sized, fibers. Although they showed

that there is a temperature dependence of the radiative conductivity, the relation to

angular dependence was not taken into account.

It has been shown that [66–69] light-weight fibrous insulators such as PICA have

a preferred orientation of the fibers and, therefore, show anisotropic behavior. Hence,

developing new models with the ability to calculate the material thermal properties

using real geometrical features of the fibers is a significant improvement.

More recently, the availability of three-dimensional computed tomography imag-

ing facilitates the studies [64,65]. It is now possible to develop detailed models using

the true structure of porous material in digitized form. Also, the effective radiative

conductivity due to heat conduction through porous material can be accurately es-

timated using simple numerical or analytical tools based only upon the information

casted from 3D computed tomography. This provides a low-cost alternative compared

to using expensive experimental techniques.

The study of the morphology characteristics and ablation behavior of a highly

porous carbon fiber perform combining experimental and numerical approaches has

been done in [64]. Using the morphological characterization of the 3D structure of
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the material, they reported the geometrical properties of the carbon preform such

as porosity, specific surface area, and tortuosity. This information then guided them

to the study of the diffusion of oxygen through the porous medium by applying a

Lagrangian model.

The work which has been done in [65] studied the effective thermal conductivity

– a thermal property which combines the contributions of both conduction and ra-

diation – of a porous material (metal foam) at high-temperature regimes using the

real geometry obtained from 3D computed tomography. Using the data casted from

computed tomography, they numerically predicted the ETC subject to two different

1D models. The first model considered the steady state energy conservation equation

for coupled conduction-radiation heat transfer, where the gradient of radiative heat

flux is obtained from the solution of coupled conduction-radiation RTE. The second

model treats conduction and radiation in a decoupled manner and separately pre-

dicts the ETC due to pure radiation using Rosseland approximation. The numerical

results casted from these two models have been validated in comparison with panel

test experimental techniques.

Various studies have been done for derivation of an analytical expression for the ef-

fective thermal conductivity used in TPS of a space vehicle. An analytical expression

for determination of the effective thermal conductivity as a function of local condi-

tions is ultimately a suitable tool in computationally intensive large-scale analyses.

The results obtained in [70] are shown that such an expression is valid for a large

ranges of temperature and pressure. They presented the expression for assessing the

performance of a CFOAM-based [71] TPS (a carbon-based foam from high suphur

bituminous coal). It is important to note that the work has been done in this thesis,

in agreement with Rosseland approximation, is ultimately led to an expression of

the effective radiative conductivity as a function of direction and local temperature

(κi,j(T ), where i and j denote the Cartesian coordinates (x, y, z)) for assessing the
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performance of FiberFormr.

Thermal radiation in fibrous material continues to be an active research topic.

The development of a proper transfer model and determination of the radiative prop-

erties of the fibrous material in accordance with the transfer model are complex and

computationally intensive. A bottom line lies on the fact that radiative heat transfer

analysis consistently depends upon reliable material property information in addition

to accurate radiative transfer modeling techniques. This is despite the fact that the

material properties are known to be a source of huge uncertainties.

1.3 Physics of thermal radiation

1.3.1 Thermal radiation

It is critical to understand the underlying physics of thermal radiation. Electromag-

netic radiation generated by the thermal motion of charged particles in matter, with

a temperature greater than absolute zero, is called thermal radiation. Thermal radi-

ation is a consequence of kinetic energy fluctuations of the atoms or molecules. This

then results in charge acceleration and/or dipole oscillation which produces electro-

magnetic radiation. All matter, even at a single temperature, radiates in a wide

spectrum of energies. The types of electromagnetic radiation are broadly classified

based on the radiation wavelength, which is a characteristic of the type of radiation.

This is listed in Table 1.1.

Thermal radiation can be detected as heat and occurs approximately in the range

0.4 < λ < 1000.0 µm, which includes the visible and the near, middle, and far infrared

(IR) regions.

Three physical phenomena contribute to the effective conductivity within porous

media: conduction, convection, and radiation. Thermal radiation is different from

thermal convection and thermal conduction, such that radiation is able to act at a

distance in the absence of an intervening medium, which makes it one of the fun-
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Table 1.1: Spectrum of electromagnetic radiation.

Region Wavelength [cm] Frequency (G Hz) Energy(eV)

Radio > 10 < 3 < 10−5

Microwave 10 – 0.01 3 – 3×103 10−5 – 0.01
Infrared 0.01 – 7×10−5 3×103 – 4.3×105 0.01 – 2
Visible 7×10−5 – 4×10−5 4.3×105 – 7.5×105 2 – 3
Ultraviolet 4×10−5 – 10−7 7.5×105 – 3×108 3 – 103

X-Rays 10−7 – 10−9 3×108 – 3×1010 103 – 105

Gamma Rays < 10−9 > 3×1010 > 105

damental mechanisms of heat transfer. Heat transfer by conduction and convection

can only occur in the presence of a medium, while for example, thermal radiation

emitted by the sun reaches us through empty space. A second distinguishing feature

of radiative transfer is that high-temperature radiative energy-exchange becomes im-

portant such that the transfer of energy between two bodies depends on the difference

between the temperatures of the individual components raised to the fourth power,

O
(
∆(T 4)

)
. Alternatively, for the material-oriented heat transfer modes (i.e. con-

duction and convection), this dependency is just on the order of the first power,

O
(
∆(T )

)
.

1.3.2 Surface radiation properties

Radiation properties of a surface can be listed as:

1. Emissivity ε,

2. Absorptivity α,

3. Reflectivity ρ.

The radiation q [W/m2] that can be emitted from a surface has a quartic depen-

dence (a polynomial function of degree 4) on absolute temperature associated with
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the surface. This is governed by the Stefan-Boltzman law,

q = σ T 4 , (1.2)

where σ is the Stefan-Boltzman constant of the value 5.67×10−8 [W/(m2 K4)]. This

is the maximum radiation, called black body radiation, from a surface called a black

body. Alternatively, the emitted radiation associated with other surfaces is a fraction

of the radiation emitted by a black body at the same temperature which is weighted

by emissivity coefficient 0.0 ≤ ε ≤ 1.0 and is expressed as

q = ε σ T 4 . (1.3)

Absorptivity α is another important property of a surface which is the fraction

of the radiation incident on a surface that is absorbed by the surface. Absorptivity

values also range between 0 and 1. The black body absorptivity is equal to 1 which

makes it a perfect absorber as well as a perfect emitter. Therefore, a black body

in thermal equilibrium, at every frequency, emits as much energy as any other body

emits at the same temperature, and emits energy isotropically (i.e. independent of

direction).

Finally, reflectivity ρ of a surface is the ratio of reflected power to incident power.

All these material characteristics (i.e. ε, α, and ρ) are functions of the wavelength

(λ) of the electromagnetic radiation, direction (θ and ϕ), and temperature T (i.e.

ε (λ, θ, ϕ, T ), α (λ, θ, ϕ, T ) and ρ (λ, θ, ϕ, T )).

1.3.3 Diffuse-Gray Surface

A common assumption here is that surfaces are diffuse-gray. Diffuse signifies that

ε and α do not depend on direction. The term gray specifies that ε and α do not

depend on wavelengths. In summary, a diffuse surface has properties independent

of direction and a gray surface is characterized by having properties independent of

wavelength.
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Therefore, a diffuse-gray condition is applied and denotes a surface which ab-

sorbs a fixed fraction of incident radiation from any direction and at any wave-

length, α (λ, θ, ϕ, T ) = α (T ). It also denotes a surface which emits radiation that

is a fixed fraction of black body radiation for all directions and all wavelengths,

ε (λ, θ, ϕ, T ) = ε (T ).

Furthermore, Kirchhoff’s law denotes that – since black body radiation is equal

in every direction (isotropic) – the emissivity and the absorptivity, if they happen to

be dependent on direction, must be equal for any given direction,

α (T ) = ε (T ). (1.4)

1.4 Objective

The study here continues the previous contributions to the analysis, modeling, and

understanding of the radiative aspects of the new generation of light-weight insulators

used in re-entry vehicles. The objective of this work is to study the high-temperature

applications of low-density fibrous material such as FiberFormr. A 3D model is

developed, based on FiberFormr micro-structure characteristics, porosity, and surface

emissivity values, to quantitatively analyze and determine the radiative properties.

Chapter 2 introduces the concept of the geometric configuration factor which

is used in thermal radiation processes. The radiation exchange in an enclosure of

diffuse-gray surfaces is also discussed. Chapter 3 and 4 present the new models on the

development of a direct simulation of radiative heat transfer processes. An artificial

geometry of the cylindrical fibrous material is simulated in chapter 3 to examine

the developed model. Then, in chapter 4, the validated model is used on a realistic

geometry of FiberFormr. In both cases, the radiative properties are extracted directly

from the simulation and no experimentally determined parameters are used. Finally,

Chapter 5 gives a brief summary.
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Chapter 2

Geometric configuration factor and

radiation exchange in an enclosure

of diffuse-gray surfaces

2.1 Introduction

The Geometric Configuration Factor calculation is an important aspect in determin-

ing the radiation interchange between surface areas. The computation of GCF in-

volves integrating over the solid angles subtended by each surface segment, if surfaces

have a common view field. A diffuse-gray surface area radiates across all wavelengths

per unit time, due to the temperature of that particular surface, and incident par-

tially on the second surface. The amount of energy exchanged between these two

arbitrarly oriented surface areas, A1 and A2, is explicitly dependent upon the GCF

defined as

F1→ 2 =
Energy intercepted by A2

Energy leaving A1

. (2.1)
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Figure 2.1: (Color online) Schematic configuration of two surface areas arbitrarly oriented in
space.

2.2 GCF between two differential elements

The fraction of energy leaving diffuse infinitesimal surface element a1 that arrives

at infinitesimal surface element a2 is defined as the geometric configuration factor

Fa1→ a2 . Let’s consider i1 [W/m2] as the total intensity leaving a1. The total energy

per unit time [W] leaving a1 and incident on a2 can be expressed as

Wa1→ a2 = i1 a1 cos θ1 dω1 (2.2)

and vise versa if we consider i2 as the total intensity leaving a2; then the total energy

per unit time leaving a2 and incident on a1 is of the form

Wa2→ a1 = i2 a2 cos θ2 dω2 , (2.3)
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where dω1 (dω2) is the solid angle subtended by a2 (a1) when viewed from a1(a2).

The differentials dω1 and dω2 can be written as

dω1 =
a2 cos θ2

S2
,

dω2 =
a1 cos θ1

S2
.

(2.4)

Here, θ is the angle between the normal of the surface elements and the line of length

S joining them (see Fig. 2.1). Substituting dω1 and dω2 in Eq. 2.2 and Eq. 2.3, it

then follows that

Wa1→ a2 =
i1 a1 cos θ1 a2 cos θ2

S2
,

Wa2→ a1 =
i2 a2 cos θ2 a1 cos θ1

S2
.

(2.5)

So, to calculate the GCF defined as

Fa1→ a2 =
Energy intercepted by a2

Energy leaving a1

=
Wa1→ a2

I1

, (2.6)

we need to determine the denominator I [W/m2] which corresponds to the total

diffuse energy leaving a1 within the entire hemispherical solid angle over a1 and is of

the form

I(θ, φ) =

∫ 2π

0

∫ π/2

0

i(θ, φ) cos θ sin θ dθ dφ. (2.7)

Based on our assumption, a diffuse-gray surface absorbs a fixed fraction of incident

radiation from any direction and at any wavelength and emits radiation that is a

fixed fraction of black body radiation for all directions and all wavelengths. However,

they can still depend on the surface temperature. An illuminated ideal diffuse-gray

reflecting surface will have equal luminance from all directions which lie in the half-

space adjacent to the surface. So, for a diffuse surface, emission is isotropic (i(θ, φ) =

i) and Eq. 2.7 can be rewritten as

I = i

∫ 2π

0

∫ π/2

0

cos θ sin θ dθ dφ = π I. (2.8)

Substituting I from Eq. 2.8 in Eq. 2.6, the geometric configuration factors are of the

form

Fa1→ a2 =
Wa1→ a2

π I1 a1

=
cos θ1 cos θ2

π S2
a2 , (2.9)
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and vise versa in an analogous manner,

Fa2→ a1 =
Wa2→ a1

π I2 a2

=
cos θ1 cos θ2

π S2
a1, (2.10)

where π I1 a1 (π I2 a2) is the total energy leaving a1 (a2) within the entire hemispher-

ical solid angle over a1 (a2). Using dω1 and dω2 definitions from Eq. set 2.4, the

GCF’s can be rewritten in the short form

Fa1→ a2 =
cos θ1 dω1

π
,

Fa2→ a1 =
cos θ2 dω2

π
.

(2.11)

Then, a reciprocity equation for differential-element configuration factors would be

achievable by multiplying Eq. 2.9 by a1 and Eq. 2.10 by a2 as

a1 Fa1→ a2 = a2 Fa2→ a1 . (2.12)

2.3 GCF between a differential element and a finite area

GCF calculation between an isothermal diffuse finite surface area A and an isothermal

diffuse infinitesimal surface element a is addressed. There are two GCF’s to be

determined: first, the GCF from the differential area a to the finite area A, Fa→A,

and the second one from the finite area A to the differential area a, FA→ a. To derive

both, we note that the total radiation leaving a is of the form

Ia = π ia a , (2.13)

and the total radiation leaving A is

IA =

∫
A

π iA dA . (2.14)

Also, the energy reaching dA on A from a can be written as

Wa→dA =

∫
A

ia
cos θa cos θA

S2
a dA , (2.15)
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and the energy reaching a from A can be written as

WA→ a = a

∫
A

iA
cos θa cos θA

S2
dA. (2.16)

The GCF Fa→A and FA→ a are then the ratios of Wa→ dA/Ia and WA→ a/IA, respec-

tively:

Fa→A =

∫
A

cos θa cos θA
π S2

dA ,

FA→ a =
a

A

∫
A

cos θa cos θA
π S2

dA .

(2.17)

From Eq. 2.17 the reciprocity for configuration factors between infinitesimal and

finite areas can be written as

aFa→A = AFA→ a . (2.18)

To accomplish the numerical integration, a dense mesh grid set {dA} is needed

to be superposed on finite surface area A. The numerical results need to be mesh

independent, using a surface discretization where each subsurface is smaller than the

total area of the finite surface by orders of magnitude.

2.4 GCF between two finite areas

Finally, for the case of GCF between two isothermal diffuse finite surface areas A1

and A2, the GCF expression would be addressed. Definition FA1→A2 denotes the

fraction of energy leaving A1 that arrives at A2, and vise versa, FA2→A1 denotes the

fraction of energy leaving A2 that arrives at A1. We note that the total radiation

leaving A1 and A2 are of the forms

I1 = π i1A1 ,

I2 = π i2A2 .

(2.19)

19



Table 2.1: Summary of geometric configuration factor and reciprocity relation.

Case Geometric configuration factor Reciprocity

1 Fa1→ a2 = cos θ1 cos θ2
π S2 a2 a1 Fa1→ a2 = a2 Fa2→ a1

2 Fa→A =
∫
A

cos θa cos θA
π S2 dA aFa→A = AFA→ a

3 FA1→A2 = 1
A1

∫
A1

∫
A2

cos θ1 cos θ2
π S2 dA2 dA1 A1 FA1→A2 = A2 FA2→A1

Also, the energy reaching A2 from A1 and the energy reaching A1 from A2 are re-

spectively given by

WA1→A2 =

∫
A1

∫
A2

i1
cos θ1 cos θ2

S2
dA2 dA1 ,

WA2→A1 =

∫
A2

∫
A1

i2
cos θ1 cos θ2

S2
dA1 dA2 .

(2.20)

The GCF FA1→A2 and FA2→A1 are then the ratio of WA1→A2/I1 and WA2→A1/I2,

respectively,

FA1→A2 =
1

A1

∫
A1

∫
A2

cos θ1 cos θ2

π S2
dA2 dA1 ,

FA2→A1 =
1

A2

∫
A2

∫
A1

cos θ1 cos θ2

π S2
dA1 dA2 .

(2.21)

From equation set 2.21 the reciprocity for configuration factor between two isothermal

diffuse finite surface areas can be written as,

A1 FA1→A2 = A2 FA2→A1 . (2.22)

For the sake of simplicity, the relations demonstrated in sections 2.2, 2.3 and 2.4,

are listed in Table 2.1.

2.5 Geometric configuration factor features

Known GCF features are listed as follows:

1. Bounding: GCF’s are bounded to 0 ≤ F ≤ 1 (i.e. the GCF is the fraction of

energy exiting from a surface area that impinges on another surface area).
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2. Closeness: Consider the GCF’s among surfaces that form a complete enclosure.

For an enclosure of N surface areas the entire energy leaving from any single

surface Ai must be incident on all the surfaces forming the enclosure. So, sum-

ming up all geometric configuration factors from a given surface in an enclosure

must equal 1;
N∑
j=1

Fi→ j = 1 . (2.23)

3. Algebra: Consider A1 and A2 two isothermal surface areas exchanging energy

based on geometric configuration factors F1→ 2 and F2→ 1. If A2 is divided into

two parts A3 and A4 the GCF from A1 to A2 would be of the form

FA1→A2 = FA1→A3 + FA1→A4 . (2.24)

2.6 GCF numerical integration

As it was shown in previous sections, the evaluation of the configuration factors re-

quires integration over the finite areas involved. In the absence of exact analytical

expression for geometric configuration factors of arbitrary geometries, tedious numer-

ical integration is required. To accomplish a precise numerical integration, a set of

dense mesh grids is needed to be superposed on finite surface areas. The numerical

results need to be mesh independent, using a surface discretization where each sub-

surface is smaller than the total area of the finite surface by orders of magnitude.

Geometric configuration factor features are useful tools for increasing the speed or

accuracy of these computations. These techniques will be discussed and applied in

following chapters. Also, a number of methods are available for increasing the speed

and accuracy of the GCF calculation in [72, 73]. However, many configuration fac-

tors for specific geometries have been given in analytical form and have been spread

throughout the literature. A detailed selection of the GCF formulation also has been

given by [74].
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2.7 Diffuse-gray enclosure

An assumption in this study to ensure that all radiative contributions are accounted

for is that simulated material is enclosed by a fiducial volume (see Fig. 2.2) whose

boundary walls are composed of different or the same material. The surfaces are

assumed to be diffuse and gray such that the emissivity and absorptivity do not

depend on direction or wavelength. The emissivity and absorptivity are equal and

only depend on surface temperature. Even though this assumption is valid to be

considered by only a limited number of real materials, the diffuse-gray approximation

simplifies the simulation greatly.

Surfaces of enclosure can have various imposed thermal boundary conditions. In

the simplest case, all surfaces are isothermal. However, if the boundary conditions

imposed on the analysis are such that the temperature needs to vary remarkably over

an area, the area can be readily subdivided into smaller isothermal portions. Also, the

surfaces of the enclosure are either taken to be perfectly insulated from external heat

addition and removal or in exchange of energy with external thermal sources. Two

widely used conditions which are imposed in this thesis are illustrated schematically

in Fig. 2.3. Symmetric condition denotes that the energy fluxes incoming to and

outgoing from a surface area are equal. The asymmetric condition denotes that the

difference between incoming and outgoing energy fluxes are not zero and a fraction

of radiation is absorbed by the surface area.

The accuracy of the results is a further consideration which needs to be addressed.

The accuracy of the results is strongly dependent on the number of enclosure surface

areas. A poor accuracy is possible if too few areas are designated such that significant

non-uniformity in reflected flux over an area has not been accounted for. On the other

hand, too many areas require excessive computation time. An engineering judgment

is required to define a “figure of merit” for the selection of an optimal number of
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Figure 2.2: Enclosure composed of N diffuse-gray isothermal surfaces of area A and at temperature
T . The surface areas emit energy flux q and are assumed to be insulated from external energy
exchanges.

subsurface area elements.

2.8 Radiation exchange model

For the purpose of this study, consider an enclosure composed of some discrete surface

areas. Each surface is identified by area Ai and assigned to be at temperature Ti.

Subscript i refers to the ith face. All surfaces within the fiducial volume produce a

complex system of radiation exchange. Each unit surface area A radiates across all

wavelengths per unit time due to the temperature of that particular surface element.

The emitted energy from each surface area is propagated by rays which are released

in all directions (diffuse-gray model) through straight lines. These rays travel through

the fiducial volume and transfer energy to the other surface areas. The radiation sent

from a surface element is partially intercepted and reflected when another surface is

encountered. This process is repeated multiple times through all surfaces.

To formulate the energy exchange process, the diffuse-gray net radiation method
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Figure 2.3: Schematic explanation of the asymmetric and symmetric condition at the k-th surface
area.

[61] is used. The goal is to analyze the radiation exchange between the surface areas

(in total N surfaces) in discretized time step. To formulate this complex energy

exchange process we use the net-radiation method.

Consider the ith surface to be at temperature Ti and the quantities qout, i [W m−2]

and qinc, i [W m−2] be the rates of outgoing and incoming radiant energy per unit

area, respectively. We will recall qout, i and qinc, i, hereafter, radiosity and incident

radiation. From the Stefan-Boltzmann law the rate of energy emitted per unit area

of the ith surface (gray body) is proportional to the fourth power of its temperature,

qout, i = ε σ T 4
i , (2.25)

where ε is the emissivity of the gray body (if it is a perfect black-body ε = 1) and σ

denotes the Stefan-Boltzmann constant [W m−2 K−4]. From the fact that the energy

flux leaving the surface is composed of emitted plus reflected energy, a second term

must be added to equation 2.25. So, the radiosity qout, i, for a gray-diffuse surface, is

the sum of the reflected and emitted irradiances as follows,

qout, i = ε σ T 4
i + (1− ε) qinc, i . (2.26)
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It then follows that, the incident energy flux of the ith surface, qinc, i, is determined

by summing over the portions of the radiation leaving other enclosure surfaces which

arrive at the ith surface:

Fj iAj
Ai

qout, j . (2.27)

So, the incident irradiance qinc, i is the sum of radiation from all other surfaces per

unit area Ai and is of the form,

qinc, i =

∑N
j=1 (Fj iAjqout, j)

Ai
, (2.28)

where Fj i is the predefined geometric configuration factor from surface j to surface

i. Now, employing the reciprocity relation equation

AjFj i = AiFi j, (2.29)

Eq. 2.28 is rewritten in the form

qinc, i =
N∑
j=1

Fi j qout, j . (2.30)

Then, substituting the incident irradiance Eq. 2.30 into the Eq. 2.26, for the ith

surface area we get

qout, i = ε σ T 4
i + (1− ε)

N∑
j=1

Fi j qout, j. (2.31)

The equation 2.31 is the balance between net radiative loss and energy supplied by

the radiation inside the enclosure. We assumed there is no neither external energy

source nor leakage of energy (i.e. the enclosure surfaces are isolated).

For an N surface area, this summation for each surface will generate N linear

equations with N unknown radiosities. It then follows that we can construct a N×N

system of linear equations for the set {qout, i}Ni=1 as follows

qout, i − (1− ε)
N∑
j=1

Fi j qout, j = ε σ T 4
i , i = 1, . . . , N . (2.32)
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The temperature Ti are known (i.e., initialized) quantities, and the Fi j are calculated

previously. The resulting N × N system of linear equations can then be readily

solved via standard numerical methods (e.g., Gaussian elimination). It then follows

that the incident radiation {qinc, i}Ni=1 can be explicitly calculated from Eq. 2.30. Once

the radiosities and incident radiations have been calculated, the net heat transfer qi

at ith surface can be determined by finding the difference between the incoming and

outgoing energy (asymmetric condition Fig. 2.3) as follows,

qi = qinc, i − qout, i. (2.33)

2.9 Radiation heat conductivity model

Most of the materials have physical and mechanical properties which differ with

orientation [81]. The geometric configuration factor is the quantity of importance

to investigate the anisotropic behavior of the model. A non-uniform distribution

of the GCF’s, with considering the explicit dependence of energy exchange process

on geometry configuration factors, introduces an anisotropic property. One of these

properties is radiative conductivity κ. Therefore, radiative conductivity is expected

to vary with orientation. For anisotropic cases, κ is represented by a 3 × 3 matrix

with elements κmn, where m and n denote the Cartesian coordinates x, y, and z. The

most well known approach to address the anisotropic behavior of the radiation heat

conductivity is based on the use of the law of heat conduction (Fourier’s law). The

law of heat conduction states that the time rate of heat transfer through a material

is proportional to the negative gradient in the temperature and to the area, at right

angles to that gradient, through which the heat flows. So, considering qn as the

heat flux in a direction n, which is normal to an isotherm, therefore, in Cartesian

coordinates, the heat flux vector ~q can be resolved into components such that in a
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directional expression it can be expressed as follows,

~q = qx î+ qy ĵ + qz k̂. (2.34)

It then follows the differential form of Fourier’s law shows that the local heat flux

density is equal to the product of thermal conductivity and the negative local tem-

perature gradient as follows,

~q = −κ ~∇T (2.35)

and in a matrix form, 
qx

qy

qz

 = −


κxx κx y κx z

κy x κy y κy z

κz x κz y κz z




∂T
∂x

∂T
∂y

∂T
∂z

 . (2.36)

∂/∂x, ∂/∂y and ∂/∂z denote gradient operator along x, y and z component, re-

spectively, and the diagonal elements κi i are radiative conductivity along the main

axes.

Copyright c© Nima Nouri, 2015.
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Chapter 3

FiberFormr simulation using

artificial geometries

3.1 Introduction

In this chapter, a simplified three-dimensional direct simulation model is developed.

The model is used to study the effective radiative conductivity of fibrous material

using a geometry with properties resembling those of carbon-preform. Since the

fibrous material is a low-density (high porosity) composite made from rigid carbon

fibers, simulations are carried out using artificial non-overlapped perfect cylinders

with arbitrary size and orientation. Then, using a Monte-Carlo procedure the perfect

cylinders are irregularly positioned within a 3D cubic enclosure (fiducial volume)

until the desired fiber volume fraction is obtained. This ultimately will resulte in a

heterogeneous distribution of the cylinders, resembling anisotropic properties of the

FiberFormr. After the fiducial volume simulation is completed, gray body diffuse

radiation and radiation heat conductivity models are applied to analyze the heat

transfer process. It is shown that the effective radiative conductivity is a function of

both temperature and the orientation of the fibers. The model results are validated
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Figure 3.1: Schematic Figure of the specific experimental geometry employed in the model. The
fiducial volume consists of a cubic enclosure whose boundary walls are composed of the same material
as the inside fibers. The integers are used to identify the boundary surfaces.

by comparing them with numerical studies of a transient volume averaged heat model.

3.2 Model

While X-ray micro-tomography measurements of FiberFormr [64] show that the over-

all geometry of the actual fibers is not perfectly cylindrical, the high porosity of the

material makes the cylindrical geometry appropriate for validation studies. As illus-

trated schematically in Fig. 3.1, the measurement volume, or fiducial volume, used in

the present analysis is assumed to be a cubic enclosure, 1.0 mm (x) × 1.0 mm (y) ×

1.0 mm (z), which contains the arbitrarily sized, positioned, and oriented cylinders.

Therefore, the fibers are treated as perfect cylinders and are generated in two steps

as follows.

First, a set of arbitrary values for the radius and length, {ri}Mi=1 and {hi}Mi=1,

are assigned to M cylinders. In Cartesian coordinates, if the cylinders are generally

oriented along the z-axis (0, 0, 1), then the centers of the bottom and top cap of the
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ith fiber are

Pb, i =


0

0

−hi/2

 , Pt, i =


0

0

hi/2

 , (3.1)

respectively.

Secondly, the fibers within the 3D geometry (fiducial volume) are rotated and

translated using a linear transformation mapping, Tr(x) = x′. Rotation and transla-

tion are accomplished by using a pair of operators, called the rotation and translation

operators.

First, three arbitrary angles (0 ≤ α, β, γ ≤ 2π) are chosen each defines a rotation

operator associated to each angle to rotate the main axis of the cylinders. The singular

rotations in matrix form are expressed as

Rγ(z) =


cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 , (3.2)

Rβ(y) =


cos β 0 sin β

0 1 0

− sin β 0 cos β

 , (3.3)

Rα(x) =


1 0 0

0 cosα − sinα

0 sinα cosα

 . (3.4)

Then, the rotation operator R would be an extrinsic rotation defined as three matrix

multiplications and expressed as

R = Rγ(z)Rβ(y)Rα(x), (3.5)
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where α, β, γ are predefined random Euler angles about the x-, y-, z-axes, respec-

tively. So, we get

R =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 . (3.6)

Rmn are rotation matrix elements and are of the form,

R11 = cos β cos γ ,

R12 = cos γ sinα sin β − cosα sin γ ,

R13 = cosα cos γ sin β + sinα sin γ ,

R21 = cos β sin γ ,

R22 = cosα cos γ + sinα sin β sin γ ,

R23 = − cos γ sinα + cosα sin β sin γ ,

R31 = − sin β ,

R32 = cos β sinα ,

R33 = cosα cos β .

(3.7)

A rotation operator is assigned for each cylinder as Ri. Therefore, the main axis

rotate to:

v = R


0

0

1

 =


R13

R23

R33

 (3.8)

Moreover, we need to move all the cylinders to their arbitrary locations in space by

using a translation operator T which will be defined arbitrary for each cylinder in

the form of,

T


x

y

z

 =


x+ x0

y + y0

z + z0

 . (3.9)
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Finally, rotation operator R and translation operator T are combined to form the

transform operator Tr = T R. The transform operator modifies the observation point

x = (x, y, z) as follows,

x′ = Tr(x) =


x0

y0

z0

+


R11 R12 R13

R21 R22 R23

R31 R32 R33




x

y

z

 , (3.10)

Again, a transform operator is assigned for each cylinder which transforms top and

bottom cap of the ith cylinder as follows respectively

Pb = Tr


0

0

−h
2

 =


x0 − h

2
R13

y0 − h
2
R23

z0 − h
2
R33

 , (3.11)

Pt = Tr


0

0

h
2

 =


x0 + h

2
R13

y0 + h
2
R23

z0 + h
2
R33

 . (3.12)

So, each cylinder is defined by bottom Pb and top Pt caps center position, radius r

and unit vector v as the cylinder main axis (see Fig. 3.2). The geometrical properties

of the fiber used here have a radius of 10.0 ≤ r ≤ 20.0 [µm] and a length of 300.0 ≤

h ≤ 600.0 [µm]. The cylinders with random sizes and orientations are positioned

irregularly within the fiducial volume until the desired fiber volume fraction of ' 0.2

is obtained.

A preferred orientation applied to the cylinders makes the simulation more real-

istic. The cylinders are simulated such that each cylinder has an azimuthal direction

oriented between −15.0◦ < ξ < 15.0◦ with respect to the xy-plane. This condition is

achieved if and only if the angle between the each cylinder main axis v and normal

to the xy-plane k̂ satisfies,

sin−1
( ∣∣∣k̂ · v∣∣∣ ) ≤ 15.0◦. (3.13)
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Figure 3.2: Schematic illustration of a cylinder defined via radius r, length h, main axis v and
the bottom and top caps center coordinates Pb and Pt, respectively.

This preferred orientation is expected to reduce the thermal conductivity in z-

direction.

3.3 Non-overlapping cylinders test

The FiberFormr will be modeled as a random array of non-overlapping cylinders to

prevent any heat transfer by conduction. The non-overlapping condition is verified

using the separating axes method [78]. As an aid to the interested reader we briefly

explain this method.

Separating axis method in 2D has been illustrated in Fig. 3.3 between two “a”

and “b” objects. This is a method to determine if two convex shapes are intersecting.

In particular, the goal is finding a line where the projections of the shapes do not

overlap. The corresponding line is called a separation axis. Based on Fig. 3.3, two

convex objects do not intersect if there exist a direction ~D such that either

λ
(a)
min( ~D) > λ(b)

max( ~D),

or

λ(a)
max( ~D) < λ

(b)
min( ~D).

(3.14)

33



Separating 

axis 

(a) 

(b) 

D 

 ( )

min

a D

 ( )

max

a D

 ( )

min

b D

 ( )

max

b D

Figure 3.3: Schematic illustration of the separating axes method.

So, via determining λmin and λmax of the projection of two cylinders (carbon fibers)

onto a direction ~D and checking the condition 3.14, we are able to define whether two

objects are overlapping or not. The direction ~D can be chosen from one of following,

1. Separation tests involving the cylinder axis directions.

2. Separation tests involving the cylinder axis perpendiculars.

3. Separation tests involving other directions.

The algorithm regarding to the separating axis method is roughly expensive nu-

merically. An alternative method can be proposed such that minimum distance be-

tween the cylinder main axes be smaller or equal to the sum of the cylinder radii. It

should be noted that, by using this test we are using imaginary capsule shape instead

of cylindrical shape. However, we preferred to use the expensive test to obtain a more

realistic simulation of the material.
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Figure 3.4: (Color online) Artificial FiberFormr. The boundary surfaces illustrated in Fig. 3.1
are not illustrated here.

Finally, the geometrical layout of the cylindrical fibers used in the present analysis

are presented in Fig. 3.4, where non-overlapped simulated perfect cylinders, irregu-

larly oriented to be at angle < |15.0◦| with respect to the xy-plane, within the cubic

fiducial volume. Porosity φ ' 0.8 has been obtained via arbitrary sized fibers.

3.4 Mesh grid generqator

Efforts to develop an analytical approximation for calculating the geometric config-

uration factor of two cylinders of the same geometry and different orientations has

been done in Ref. [79]. Here, we explicitly determine the GCF of the perfect cylinders

which have different geometries and orientations using the numerical calculation of

Eq. 2.21. Numerical determination of the GCF requires a planar discretization of
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Figure 3.5: schematic illustration of the mesh surface area on the surface of a cylindrical fiber.
The blue dots denote the centroid of the surface area elements.

fiber perimeter containing a set of grids illustrated schematically in Fig. 3.5.

In first step we generate the mesh grid on surface of an imaginary cylinder at the

origin of our appropriate Coordinate system as follows,

x = r cosφ ,

y = r sinφ ,

z = z ,

(3.15)

where z ∈ [−h/2 + δz, h/2 − δz] incremented by δz and φ ∈ [0, 2π] incremented by

δφ. Also, for the top and bottom caps mesh grid, we use

x = ρ cosφ ,

y = ρ sinφ ,

z = −h
2

or
h

2
,

(3.16)

where ρ ∈ [0, r] incremented by δρ and φ ∈ [0, 2π] incremented by δφ r/ρ.

Acting predefined transform operator Tr on the generated mesh grid, each mesh

grid points, it is easy then to transform them to the locations specified for each
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cylinder as follows,
xtr

ytr

ztr

 = Tr


x

y

z

 =


x0

y0

z0

+


R11 R12 R13

R21 R22 R23

R31 R32 R33




x

y

z

 , (3.17)

then we get 
xtr

ytr

ztr

 =


x0 + xR11 + yR12 + zR13

y0 + xR21 + yR22 + zR23

z0 + xR31 + yR32 + zR33

 . (3.18)

We do note that, the small mesh surface areas on the surface of the cylinder are

ultimately the area surrounded by four adjacent mesh grids.

We do note that one limitation of determining the GCF’s is that, in general, the

accuracy of the results strongly depend upon mesh grid discretization. Therefore,

one may wish to use densely-spaced grid points on the surface of the fibers for accu-

rate solutions. Implementing such a densely-spaced mesh grid, in often unacceptably

long execution times, would not be possible or practical. On the other hand, im-

plementing coarsely-spaced grid points causes losing accuracy. Thus, we are forced

to propose a way to improve the accuracy of the results. Since, our numerical ex-

periment takes place in a closed volume (e.g. cube), we expect the sum over the ith

surface configuration factor through the rest of the surfaces follow the closure

N∑
j=1

Fij (1− δij) = 1, (3.19)

where, δij is Kronecker delta defined as

δij =

 1 if i = j

0 if i 6= j,
(3.20)

and used since the ith surface assumed to be concave (can not view itself), Fii = 0.

But, losing accuracy causes a slightly different value in summation, 1 − ε. In order

to compensate the difference, the value ε would be distributed, based on the weight

of each Fij, among the GCF’s such that the summation tends to 1.
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Figure 3.6: Comparison of configuration factors for two infinite-parallel cylinders as a function
of interval d between numerical (Data points) and analytical results (solid line) in panel (a). The
cylinders configuration is shown in panel (b).

3.5 GCF numerical integration analysis

To evaluate the accuracy of the numerical calculation we compare the numerical

results from some particular cases by the analytical results. These comparisons have

been plotted in figures 3.6, 3.7 and 3.8. The configuration factor regarding two

infinite-parallel cylinders (with same radius and length) are shown in Fig. 3.6 as a

function of two cylinders interval, d. The points computed by numerical integration

and the solid line is the curve defined by the analytical solution. The numerical

and analytical results regarding two finite-parallel cylinders (with same radius and

length) have been compared in Fig. 3.7 as a function of two cylinders interval, d.

For pure θ-rotations (φ = 0) about the mid-point of one of the cylinders, the GCF’s

are symmetric with respect to θ = 90 ◦. Computations were therefore performed for

0 ≤ θ ≤ 90 ◦. The variation of the GCF’s as a function of θ are shown in Fig. 3.8.

The points computed by numerical integration and the solid line is the curves defined

by the analytical solution.

The comparison between the two methods shows that good agreement is achieved

(average relative error < 3.0%). The numerical results are mesh independent, using
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Figure 3.7: Comparison of configuration factors for two finite-parallel cylinders as a function of
interval d between numerical (Data points) and analytical results (solid line) in panel (a). The
cylinders configuration is shown in panel (b).
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Figure 3.8: Comparison of configuration factors for mid-point θ-rotations between numerical (Data
points) and analytical results (solid line) in panel (a). The cylinders configuration is shown in panel
(b).

a surface discretization where each sub-surface is smaller than the total area of the

cylinder by 6 orders of magnitude, dA = 10−6A. With this level of refinement, the

numerical approach is expected to produce more accurate results than the analytical

approximation. Several other verification test-cases were performed using Ref. [80]

but are not presented here.

A histogram of the GCF’s, Fi, j, from the fibers to the internal boundary surfaces

of the fiducial volume is shown in Fig. 3.9. A non-uniform distribution of the GCF’s,
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which considers the explicit dependence of energy exchange process on geometry con-

figuration factors, shows that the model simulates anisotropic properties. Therefore,

radiative conductivity, κ, is expected to vary with orientation and use of the law of

heat conduction (Fourier’s law) discussed in 2.9 is demanded.
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Figure 3.9: Histograms of the calculated geometric configuration factor Fkj from the fibers within
the fiducial volume (i.e. k ∈ {6, 7, 8, . . . , N − 1}) to the selected internal boundary surface (e.g.
j ∈ {0, 1, 4}) Fk0 (light-gray), Fk1 (gray) and Fk4 (black), respectively.

3.6 Ray-fiber intersection analysis

The emitted energy from the surface element is propagated by rays which are released

in all directions (diffuse-gray model) through straight lines. These rays travel through

the porous material and transfer energy to the other surface elements if and only

if the line does not intersect with another surface element. Hence, the problem of

determining whether a line and a surface element in three-dimensions are intersecting

needs to be addressed. In the present model, since all fibers are cylindrical, this
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process can be greatly accelerated by evaluating the intersection between a line and

the whole cylinder, instead of each individual surface element.

3.6.1 Cylinder surface equation

The process starts from the mathematical formulation of the set of surface shape

equations for a finite cylinder (without caps) of radius r oriented along v (from Pb

to Pt), which is of the form:

∥∥q−Pb −
(
v ·
(
q−Pb

))
v
∥∥2 − r2 = 0 , (3.21)

v ·
(
q−Pb

)
> 0 , (3.22)

v ·
(
q−Pt

)
< 0 . (3.23)

Here, q is a point (x, y, z) on the cylinder. Using cylinder main axis, bottom and top

caps coordinate predefined in equations 3.8, 3.11 and 3.12, respectively, we can also

expand Eq. 3.21 in the form of,

( (
a2 − 1

)
(x− xb) + a b (y − yb) + a c (z − zb)

)2

+(
b a (x− xb) +

(
b2 − 1

)
(y − yb) + b c (z − zb)

)2

+(
c a (x− xb) + c b (y − yb) +

(
c2 − 1

)
(z − zb)

)2

− r2 = 0 , (3.24)

a (x− xb) + b (y − yb) + c (z − zb) > 0 , (3.25)

a (x− xt) + b (y − yt) + c (z − zt) < 0 . (3.26)

Above we assumed,

v =


a

b

c

 , Pb =


xb

yb

zb

 , Pt =


xt

yt

zt

 . (3.27)

The equations governing the bottom and top caps can be expressed respectively

41



as follows,

v ·
(
q−Pb

)
= 0 , (3.28)

‖q−Pb‖2 < r2 , (3.29)

v ·
(
q−Pt

)
= 0 , (3.30)

‖q−Pt‖2 < r2 . (3.31)

Then, the expanded form, respectively, would be of the form,

a (x− xb) + b (y − yb) + c (z − zb) = 0 , (3.32)

(x− xb)2 + (y − yb)2 + (z − zb)2 < r2 , (3.33)

a (x− xt) + b (y − yt) + c (z − zt) = 0 , (3.34)

(x− xt)2 + (y − yt)2 + (z − zt)2 < r2 . (3.35)

3.6.2 Finite Cylinder – Ray Intersection

From basic radiation physics, since the radiation beams will travel between source

and target through a straight line, it is clear then in GCF calculation only the surface

elements will participate that we are able to draw a straight line between them. These

lines should not be disconnected by any other cylinders. Therefore, it is important

to examine the possibility of hitting a cylinder by a line and look for the conditions

that will lead to this case.

The possibility of intersection of line q′ = P′ + v′ t, which is a ray between the

source and target surface elements located at p′ and p′′ respectively, with a cylinder

is addressed using Eqs. 3.21, 3.22 and 3.23. To find the intersection points, we need

to substitute q′ into the equation of that particular cylinder and solve the leading

equation for t, so we get(
P′ + v′ t−Pb −

(
v ·
(
P′ + v′ t−Pb

))
~v

)2

− r2 = 0 . (3.36)
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Some implementation the equation above can be rewritten in a short format as follows,

A t2 +B t+ C = 0, (3.37)

where

A =
∥∥v′ − (v′ · v)v∥∥2

,

B = 2
[
(v′ −

(
v′ · v

)
v
]
·
[
∆Pb −

(
∆Pb · v

)
v
]
,

C =
∥∥∆Pb −

(
∆Pb · v

)
v
∥∥2 − r2,

(3.38)

where ∆Pb = P′ − Pb. So, if value B2 − 4AC be greater than (equal to) zero, this

equation will have solutions t1, t2 (solution t0), which shows the line and cylinder will

intersect. Note that, the cylinder is finite, so the intersection points should be inside

the range of the cylinder. Therefore, Eqs. 3.22 and 3.23 need to be satisfied;

0 ≤ ti ≤ 1 , (3.39)

v · (qi − pb) > 0 , (3.40)

v · (qi − pt) < 0 . (3.41)

If the ti’s satisfy these conditions, there exist intersection points, in the range of the

finite cylinder. This leads to the neglecting of the contribution of that particular

surface element (source) to the configuration form factor fraction calculations.

3.6.3 Caps – Ray Intersection

The analogous procedure should be followed to find any intersection between the

straight line and the cylinder caps. For the same line q′ = P′ + v′t, we examine the

possibility of intersection with the bottom and top caps. By substituting the line

equation inside the caps equations 3.28 and 3.30 we get

v · (P′ + v′t−Pb) = 0 (3.42)

v · (P′ + v′t−Pt) = 0 (3.43)
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Solving for t we get

t3 = −v ·∆Pb

v · v′
, ∆Pb = P′ −Pb (3.44)

t4 = −v ·∆Pt

v · v′
, ∆Pt = P′ −Pt (3.45)

We note that since these intersection points should be located on the caps, Eqs. 3.29

and 3.31 need to be satisfied as follow:

0 ≤ ti ≤ 1 (3.46)(
q3 − ~Pb

)2

< r2, bottom cap (3.47)(
q4 − ~Pt

)2

< r2, top cap (3.48)

The important point is that if the value v ·v′ at the denominator be equal to zero

the line is perpendicular to the cylinder main axis. In this case we need to consider

two different scenarios for each cap. If v ·∆Pi 6= 0 (∆Pi = P′−Pi), the line and the

caps will not intersect each other. subscript i distinguishes the bottom cap, i = b,

from the top cap i = t. But, if v · ∆Pi = 0, it means the line is located on the

surface that includes one of the caps. At this situation to check the mutual status

of the line and the caps we need to substitute the line equation in the caps equation

(q−Pi)
2 = r2, it then follows that,

(P′ + v′t−Pi)
2

= r2 (3.49)

some mathematical implementations simplify it to

A′t2 +B′t+ C ′ = 0 (3.50)

where

A′ = v′ · v′ , (3.51)

B′ = 2 (v′ ·∆Pi) , (3.52)

C ′ = (∆Pi ·∆Pi)− r2 . (3.53)
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So, if the value B′2− 4A′C ′ be greater than or equal to zero, there exist intersection

point and we need to neglect the contribution of that particular surface element

(source) to the geometric configuration factor fraction calculations.

We list the discussions above in follow. A straight line and a cylinder will intersect

if and only if they satisfy bellow conditions

• Finite Cylinder – Ray Intersection

B2 − 4AC ≥ 0 (3.54)

ti ≥ 0 (3.55)

v · (qi −Pb) > 0 (3.56)

v · (qi −Pt) < 0 (3.57)

• Caps-Ray Intersection

v · v′ 6= 0, ti ≥ 0, ⇒ (3.58)

(q3 −Pb)
2 < r2, bottom cap (3.59)

(q4 −Pt)
2 < r2, top cap (3.60)

v · v′ = 0, (3.61)

v ·∆Pi = 0, ⇒ (3.62)

B′
2 − 4A′C ′ ≥ 0 . (3.63)

3.7 Computational operations optimizing

From previous section, it is clear that in order to calculate the total GCF received by

the target cylinder from the other sources (rest of the cylinders) we need to operate

a huge amount of computations. A simple calculation shows that for N number of

cylinders with M number of mesh grids located on each one, we have M N(M N −1)
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different surface elements pair to compute the configuration factor fractions. So, we

need to somehow optimize this time consuming procedure. Applying reciprocity rela-

tions half of the computational costs are already saved. We continue optimization by

decreasing the number of possible pair surface elements which are able to exchange

the rays. Earlier, we mentioned the ray which exchanged between source and target

should go through a straight line. From this it then follows, A non-zero GCF is com-

putable if and only if surface elements i and j, respectively, located on the cylinders

I and II, view each other. More specifically, the only way to draw a straight line,

left the ith and hit the jth, is if the surface element i be in front of a plane which is

tangent to the cylinder surface includes the target point. The reverse process should

meet too. The mutual configuration of surface element i in respect to the cylinder

which surface element j is located on, can be listed as follows,

1. surface elements on the curved surface of two different cylinders

Assume the surface elements (xi, yi, zi) is located on the curved surface of

cylinder I. we need first to find the normal n̂ at location of the surface elements.

Recalling cylinder main axis v(a, b, c), we look for n̂ · v = 0. Let ∆ : (xb +

ta, yb + tb, zb + tc) be the main parametric line equation of the cylinder along

the v. The line passing through (xi, yi, zi) and intersect with ∆ would be of

the form ∆′ : (xi − xb − ta, yi − yb − tb, zi − zb − tc). Since, ∆ and ∆′ should

be normal, applying v ·∆′ = 0 we get

t = (xi − xb) a+ (yi − yb) b+ (zi − zb) c. (3.64)

Here, we used the fact that a2 + b2 + c2 = 1 (i.e. the cylinder main axis is a

unit vector). Hence, knowing the t the normal vector direction would be of the

form,

n̂ :
1

λ
(xi − xb − ta, yi − yb − tb, zi − zb − tc) = (a′, b′, c′) , (3.65)
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where λ is the normal coefficient and is of the form,

λ =
√

(xi − xb − ta)2 + (yi − yb − tb)2 + (zi − zb − tc)2. (3.66)

Therefore, the plane equation tangent to the cylinder at (xi, yi, zi) would be of

the form,

PI : a′x+ b′y + c′z + d = 0, (3.67)

where d = −a′ xi−b′ yi−c′ zi. Considering PI(x) = a′x+b′y+c′z+d, so for point

(xj, yj, zj) if the value of PI(xj) be greater than one, that point is located in

front of the plane. In an analogous manner, the plane equation PII(x) tangent

to the cylinder II at (xj, yj, zj) is calculated. So, for point (xi, yi, zi) if the

value of PII(xi) be greater than one, that point is located in front of the plane.

Satisfying these both conditions, it then follows that energy exchanging between

them is possible. For any two surface elements which do not satisfy these

conditions, further computation is refrained (resulting in Fi→ j = Fj→ i = 0).

2. Surface element on the Cylinder caps

For the point (x, y, z) on the caps we realize that the n̂ is automatically along

the cylinder main axis v. Here, we should note that for the top cap n̂t = v, but

for the bottom cap n̂b = −v. So, the equations of the top and bottom caps can

be expressed as follows,

Pb : −ax− by − cz + db = 0 , (3.68)

Pt : ax+ by + cz + dt = 0 , (3.69)

where

db = ax+ by + cz , (3.70)

dt = −ax− by − cz . (3.71)
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Figure 3.10: (Color online) Two-dimensional schematic illustration of optimization procedure.
Panel (a) the only case which will remain in GCF calculation. All other cases, panels (b), (c) and
(d), are refrained of further computation since the energy exchange between two surface areas is
forbidden.

So, for any point located at x(x, y, z) if either Pb(x) or Pt(x) > 0, the point

is in front of the plane and exchanging of the rays between them is possible.

For any point which not satisfies these conditions, they are located behind the

plane and are out of GCF calculation procedure.

The procedure demonstrated above is schematically depicted in Fig. 3.10, where

a 2D illustration of different possible cases has been drawn.

3.8 Results and discussion

So far the model required for thermal regime analysis has been constructed. The

FiberFormr has been simulated using artificial non-overlapped perfect cylinders with

arbitrary size and orientation (see Fig. 3.4). In following discussion the radiative

properties such as conductivity of the simulated FiberFormr is determined. The

calculated conductivity values are also used in the continuum heat equation, and the

results are compared to the ones obtained using the direct simulation approach.
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3.8.1 Effective conductivity

To calculate the elements of the conductivity matrix in Eq. (2.36) we act as follows.

Temperature gradient along one axis is imposed. Suppose the x-axis is used, then

Temperature gradient along y and z axis, ∂T/∂y = 0 and ∂T/∂z = 0, respectively,

then Eq. (2.35) can be rewritten in the form of:

qx = −κxx ∂T
∂x
, (3.72)

qy = −κy x ∂T
∂x
, (3.73)

qz = −κz x ∂T
∂x
. (3.74)

Thus, determining κxx, κy x, and κz x is just depending on the predefined temperature

gradient along the x-axis. In an analogous manner for each axis three conductivity

matrix elements can be readily determined.

The above procedure is carried out as follows. For specified values of temperature

T , a temperature gradient is systematically applied along each axis. This gradient

is applied such that a 1 K difference of temperature assure the accurate dependency

on temperature. For instance, the κxx, κy x, and κz x at a temperature of 3000 K,

are determined using a linear variation of temperature, along the x-axis through the

whole fiducial volume, ranging from 2999.5 K to 3000.5. This process is then repeated

for T ∈ [0, 6000] K. An adiabatic boundary condition is imposed by forcing a null

heat flux on each imaginary wall, as illustrated in Fig. 2.3.

The results of this analysis are plotted as a function of T in Fig. 3.11. From the

figure, a minimum effective conductivity along the z-direction, among main axes, is

clear. This was already predicted since the fibers are distributed inhomogeneously

(see Fig. 3.4), as well are oriented within a ±15.0◦ bias from the xy-plane. The

temperature averaged values of the heat conductivity elements are printed in Table
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Figure 3.11: Effective conductivity matrix elements κmn as a function of temperature
are shown in panel (a). The small values of the conductivity matrix elements are
zoomed in panel (b).

3.1(a). The averaged definition is defined as follows,

〈κmn〉T =
1

Tfinal − Tinitial

∫ Tfinal

Tinitial

κmndT. (3.75)

The Table 3.1(a) implies an orthotropic behavior of the material since the diagonal

terms are much greater than the others, κmn � κmm (see also Ref. [81]).

The polynomial dependency on temperature in Fig. 3.11 assures the results agree-

ment with Rosseland hypothesis defined in Ref. [61], where a cubic dependence to

the temperature is expected. From the Rosseland radiation model, the radiative heat

flux ~qr has the same form as the Fourier conduction law,

~qr = −KεσT 3 ~∇T. (3.76)
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Table 3.1: (a) Temperature averaged effective radiative, (b) Geometric factor recon-
structed from Rosseland model, (c) Temperature averaged effective radiative conduc-
tivity along the principal axis, and (d) Geometric factor reconstructed from Rosseland
model along the principal axis.

(a) 〈κ〉T [W/(m K)] (b) K [10−4 m]
x y z x y z

x 2.249 0.039 0.029 x 8.210 0.142 0.106
y 0.039 2.441 0.032 y 0.142 8.910 0.117
z 0.029 0.032 1.717 z 0.106 0.117 6.266

(c) 〈λ〉T [W/(m K)] (d) Λ [10−4 m]
1 2 3 1 2 3
2.450 2.242 1.714 8.186 8.944 6.256

and in a matrix form like Eq. 2.36,
qr,x

qr,y

qr,z

 = −εσT 3


Kxx Kx y Kx z

Ky x Ky y Ky z

Kz x Kz y Kz z




∂T
∂x

∂T
∂y

∂T
∂z

 . (3.77)

Therefore, the data can be fitted to a cubic function of the form

κmn = KmnεσT
3, (3.78)

where Kmn is a geometric factor. Finding fit parameters Kmn leads to the K-factor

matrix elements listed in Table 3.1(b). From the matrix theory the effective radia-

tive conductivity tensor possesses three mutually orthogonal principal axes (i.e. the

orientation of the geometry where the off-diagonal terms are zero) which are asso-

ciated with three real eigenvalues. These eigenvalues are listed in Table 3.1(c) and

(d) regarding to panels (a) and (b), respectively. The following points are important

to discuss. First, comparison between the orthogonal values and the diagonal ele-

ments shows that the geometry was already well oriented along the main axes. Also,

κxx ≈ κyy (in-plane (IP ) directions), and are different from κzz (the through-the-

thickness (TTT ) direction), which is a consequence of the fact that the cylindrical

fibers were oriented within a ±15.0◦ bias from the xy-plane.
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3.8.2 Transient thermal conduction analysis

Following the discussion in section 2.8, the calculated net heat transfer qi is applied

to determine the new surface temperature Ti at time step ∆t using the following

equation,

T
(τ+1)
k =

q
(τ)
k Ak ∆t

Vk ρc cp
+ T

(τ)
k , (3.79)

where ρ, V , and cp are the density, volume, and specific heat capacity of the fibers.

The temperature is assumed to be uniformly distributed on the surface of the fiber.

Superscripts in parenthesis denote iteration counters (i.e. updated value τ + 1 and

old value τ).

Since Eq. (3.79) is a discrete version of the heat equation and is, therefore, in-

fluenced by the choice of ∆t, a convergence study was carried out to ensure that

no numerical error was generated. The value of ∆t = 0.1 µs was determined to be

small enough to generate an average root-mean-square error on the temperature of

less than 10−9 when compared to a time step twice as large.

A transient heat transfer analysis of the fibrous volume is performed, using the

DS method combined with Eq. (3.79). The emissivity, specific heat capacity, and

density of the fibers are taken to be ε = 0.85, cp = 1000.0 J/(kg K), and ρc = 1800.0

kg/m3, respectively. These values are representative of literature data for carbon

preform [64].

As initial condition, all fibers have a temperature of 300 K, less a small group

(slice) of fibers located near the z = 0.5 mm boundary, within a ∆z = 0.02 mm

distance. This group of fibers are instead initialized at 3000.0 K. Applying the energy

exchange process (discussed in Section 3.2) to the entire fiducial volume, the new

temperature of the fibers is calculated using Eq. (3.79). Updated values of Tk are

retained, and the new radiosities qout, k are determined by solving the system of linear

Eqs. (2.32). This process is then repeated a number of times until the values of all the
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Tk do not change appreciably between successive sweeps (less than 0.1 K throughout

the volume), thereby implying that the iteration process has converged. In this

simulation, an adiabatic boundary condition is imposed by applying the symmetry

condition on all walls.

The goal of the present method is to obtain values for the effective conductivity

that are linked to a specific fiber-scale geometry but can be used in a macro-scale sim-

ulation. Thus, the results from the approach developed above (DS at fiber scale) are

compared to results obtained from the heat conduction model, derived from Fourier’s

law and from the conservation of energy. The solution of this second model, called Fi-

nite Difference (FD), is obtained by numerically solving the one-dimensional transient

heat equation:

ρcp
∂T

∂t
=

∂

∂z

[
κz z(T )

∂T

∂z

]
,

where effective density ρ = ρc(1 − φ) = 360.0 kg/m3, cp = 1000.0 J/(kg K), and

κz z(T ) = εσKzzT
3. The equation is solved over a 1.0 mm domain with the first

∆z = 0.02 mm initially at 3000.0 K and the rest at 300.0 K. Both boundaries of the

domain are considered adiabatic.

Temperatures for three different locations: z = −0.25 mm, z = 0.0, and z = 0.25

mm, are extracted for each of these models. For the DS model, the temperatures for

specified locations are considered to be the average temperature of a group of fibers

located within z ±∆z (∆z = 0.01 mm) domain, which corresponds to the heat con-

duction along the z-axis. Temperature evolution curves are shown in Fig. 3.12 where

there is good agreement between both models. The shaded color bands correspond

to the standard error of the mean of the temperatures as calculated by the DS model.

The discrepancy in Fig. 3.12, even if considered minimal, is a consequence of mul-

tiple approximations. First, although the DS model is considered to be an accurate

representation of the heat transfer phenomena, the conversion of the heat to temper-

ature (Eq. (3.79)) is a gross approximation since the fibers are assumed to have a
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Figure 3.12: (Color online) Comparison of the temperature evolution of the thermal radiant
regime between the Direct Simulation (DS) and the Finite Difference (FD) models at discretized z
positions. The standard error of the mean of the temperatures calculated from the DS model for
each z = −0.25 mm, 0.0 mm, and 0.25 mm are shown with shaded color bands in blue, green, and
red respectively.

uniform temperature. Therefore, even though the evaluation of the κ matrix is con-

sidered to be highly accurate, the transient heat transfer analysis of the DS approach

is not. Another source of discrepancy comes from the fact that the DS model is

three-dimensional simulation, but the volume-averaged numerical calculation is only

in one dimension since all cross terms of the effective radiative conductivity matrix

are neglected.

3.9 Remarks

A three-dimensions direct simulation model was developed to determine the effective

radiative conductivity within a fiducial volume filled with randomly sized, positioned,

and oriented cylindrical fibers. Anisotropic behavior of the fibrous model was high-
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lighted by calculating the effective radiative conductivity matrix for a representative

geometry. This conductivity was shown to be a function of both temperature and

the orientation of the fibers. The effective conductivity was used in a transient vol-

ume averaged heat equation and compared to the direct simulation approach. The

results showed accurate agreement that validated the approach. The methodology

developed and presented here could be use to obtain accurate values of the effec-

tive conductivity of realistic three-dimensional material geometry, such as the ones

obtained from computed X-ray micro-tomography [64]. These values could then be

used in volume-averaged material response code [84, 85] to increase the fidelity in

heat transfer analysis. Moreover, performing such an analysis on a real material

would allow to compare to experimental analysis.

Copyright c© Nima Nouri, 2015.
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Chapter 4

FiberFormr simulation using real

geometry

In the previous chapter, a simplified three-dimensional direct simulation model was

developed. The model was used to study the effective radiative conductivity of fibrous

material using an artificial geometry with properties resembling those of carbon-

preform. Simulations were carried out using artificial non-overlapped perfect cylinders

with arbitrary size and orientation which were irregularly positioned within a cubic

enclosure. This ultimately resulted in a heterogeneous distribution of the cylinders,

resembling anisotropic properties of the FiberFormr. It was shown that the effective

radiative conductivity is a function of both temperature and the orientation of the

fibers.

In this chapter, instead of employing perfect cylinders, we now take advantage

of an available three-dimensional micro-tomography image to achieve a better un-

derstanding of the properties of the fiber-preforms at the microscopic scale. This is

achieved by using the real architectures extracted from computed micro-tomography

to understand and model the energy-exchange process of the fibrous material. For

that purpose, a 3D reconstructed geometry is implemented in a robust GCF calculator
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algorithm. The results are retained and implemented in a systematic radiative tran-

sient regime model to study the radiative conductivity properties of the FiberFormr.

FiberFormr is a carbon fiber insulator that serves as the preform to certain TPS ma-

terials [88]. To demonstrate the validity of the approach, the radiative conductivity

tensor of the sample is calculated, and compared to experimental results.

4.1 Test geometry

Using X-ray computed tomography a triangulated polygon surface mesh of fibrous

material was generated to characterize the microstructural properties of FiberFormr.

The image analysis were caried out at the Advanced Light Source (ALS) at Lawrence

Berkeley National Laboratory [89]. High resolution (low noise) data obtained from

ALS makes X-ray tomography technique a potentially valuable tool in porous sub-

strates studies. The polygon surface mesh has been visualized via Wolfram Mathe-

matica software, and illustrated in Fig. 4.1. The data set is a collection of 168,804

vertices which ultimately construct M = 56,268 triangle faces (solid opaque surfaces)

defining the external shape of fibrous material in 3D. The triangles are identified by

set of vertices {
(
V1,k ,V2,k ,V3,k

)
}, normal directions {nk} and centroids coordinate

{Ck} = {
(
Cx,k , Cy,k , Cz,k

)
}. Subscript k refers to kth triangular face. The coor-

dinates of the centroid is calculated by averaging the x, y and z component of the

vertices (e.g. Cx = 1
3
(V1,x + V2,x + V3,x)). A relative configuration of two triangular

mesh grids is illustrated schematically in Fig. 4.2.

To ensure that all radiative contributions are accounted for, the visualized

FiberFormr is enclosed by a cubic fiducial volume (see Fig. 4.3a) whose boundary

walls are composed of the same material as the fibrous material (diffuse and gray).

Also, the surfaces of the enclosure are taken to be perfectly insulated from external

heat addition or removal. Another assumption in the present analysis is that each

separate surface of the enclosure is taken to be isothermal. However, if the bound-
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Figure 4.1: (Color online) Schematic illustration of three-dimensional microscopic scale of
FiberFormr real geometry extracted from computed tomography.

ary conditions imposed to the analysis are such that the temperature needs to vary

markedly over an area, the area can be readily subdivided into smaller isothermal

portions.

4.2 GCF calculation and analysis

The GCF calculation is an important aspect in determining the radiation interchange

between surface elements in heat transfer. The computation of GCF involves integrat-

ing over the solid angles subtended by each surface segments, if surfaces have common

view field. In the absence of an exact analytical expression for GCF, tedious numeri-

cal integration is required. Moreover, so many areas (N = six internal enclosure sides
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Figure 4.2: (Color online) Schematic configuration of the ith and jth triangular mesh extracted
from computed tomography.
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Figure 4.3: Panel (a): Schematic figure of the specific experimental geometry employed in the
model. A cubic enclosure with, 0.1 mm (Lx) × 0.1 mm (Ly) × 0.1 mm (Lz), which contains the
fibrous material. Panel (b): Dense square mesh grid superposed on the internal enclosure surfaces
of area A.

+ M triangular mesh grids) require excessive computation time. Hence, a robust

algorithm with fast implementation is essential to reduce computational complexity.

Mathematical details and general formulas for the GCF numerical calculation were

explained and verified in chapter 2. Here, for the sake of completeness, a step-by-step

set of operations for GCF calculation performance is presented. Also, as an aid to
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Figure 4.4: Algorithm flowchart of geometric configuration factor calculation.

the interested reader, a set of filters deployed on the algorithm in order to streamline

the computations are disclosed. Each of the above is written in C++ and executed

on University of Kentucky High Performance Computing (HPC) hardware [90]. A

summary of geometric configuration factor calculation and analysis demonstrated in

this section is schematically depicted in Fig. 4.4.

4.2.1 Triangle - Triangle GCF calculation

Set of triangular areas reconstructed from computed tomography is considered to

include tiny surface elements (isothermal, opaque, and diffuse) defined as {ak}. Then,

it follows that the fraction of energy leaving ai that is incident on the second surface

aj is denoted by Fai→ aj . In general, such a factor is given by,

Fai→ aj =
cos θi cos θj

π S2
i j

aj , (4.1)

where, θ (0 ≤ θi , θj ≤ π/2 ) is the angle between the normal of the surface elements

and the line of length S joining the triangles centroid (see Fig. 4.2). To minimize

the computational cost, a reciprocal equation which determines Faj→ ai with less

computational effort is deployed. The reciprocity relation is of the form,

ai Fai→ aj = aj Faj→ ai . (4.2)
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4.2.2 Internal enclosure surface - Triangle GCF calculation

GCF calculation between the finite area internal enclosure surfaces and predefined

triangular surface elements is addressed. To accomplish the numerical integration,

a dense square mesh grid set {dA} is superposed on each of the internal enclosure

surfaces of area A (see Fig. 4.3b). Then, the configuration factor from each small

triangular surface area ai to the finite receiving area Aj is given by,

Fai→Aj
=

∫
cos θi cos θk

π S2
i k

dA , (4.3)

which in a discretized form it can be rewritten in the form of

Fai→Aj
=

∆A

π

∑
k

cos θi cos θk
S2
ik

, (4.4)

where subscripts i, j and k refer to ith triangular surface area, jth internal enclosure

surface and kth subsurface, respectively. The numerical results are mesh independent,

using a surface discretization where each subsurface is smaller than the total area of

the internal enclosure side by 4 orders of magnitude. Again, a reciprocity relation

would be vital to accelerate the algorithm performance. The equation would be of

the form,

ai Fai→Aj
= Aj FAj→ ai . (4.5)

4.2.3 Internal enclosure surface - Internal enclosure surface GCF calcu-

lation

Finally, for the case of radiation leaving internal enclosure surface Ai and reaching

another internal enclosure surface Aj, the GCF expression would be of the form,

FAi→Aj
=

1

Ai

∫ ∫
cos θk cos θ`

π S2
k `

dA dA , (4.6)

which in a discretized form it can be rewritten in the form of,

FAi→Aj
=

(∆A)2

πAi

∑
k,`

cos θk cos θ`
S2
k`

. (4.7)

61



Table 4.1: Summary of geometric configuration factor and reciprocity relation.

Case Geometric configuration factor Reciprocity

1 Fai→aj =
cos θi cos θj

πS2
ij

aj aiFai→aj = ajFaj→ai

2 Fai→Aj
= ∆A

π

∑
k

cos θi cos θk
S2
ik

aiFai→Aj
= AjFAj→ai

3 FAi→Aj
= (∆A)2

πAi

∑
k,`

cos θk cos θ`
S2
k`

AiFAi→Aj
= AjFAj→Ai

Subscripts k and ` refer to kth and `th subsurfaces on ith and jth internal enclosure

surfaces, respectively. Here, the associated reciprocity relation is given by,

Ai FAi→Aj
= Aj FAj→Ai

. (4.8)

For the sake of simplicity, the relations demonstrated in sections 4.2.1, 4.2.2 and 4.2.3,

are listed in Table 4.1.

4.2.4 Acceleration of the GCF calculation

In general, for N (predefined) surface areas N(N −1) geometric configuration factors

(∼ 3 × 109) need to be calculated. Applying reciprocity relation Eqs. (4.2), (4.5)

and (4.8) half of the computational costs are already saved. Even so, the quantity of

triangulated polygon surface areas from computed tomography and the dense square

mesh grid on the internal enclosure surfaces keep the GCF calculation very intensive.

Geometric properties of surface segments are used to reduce the CPU-time cost.

GCF Field-of-view test

A non-zero GCF is computable if and only if surfaces i and j view each other. More

specifically, each surface area is assumed to be surrounded by a hemisphere of infinite

radius, and subtends a solid angle of 2π steradians about the predefined centroid of

its base and in the direction of its associated surface normal. Under these circum-

stances, surfaces i and j are able to exchange radiation if and only if two domes,
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either fully or partially, faced each other. In order to mathematically implement this

filter, following discussion is proposed. Given centroids and normal vectors associated

to the ith and jth surface areas, infinite planes Pi (x, y, z) and Pj (x, y, z) are con-

structed. Therefore, the viewability condition would be a true statement if and only

if both Pi (Cj) and Pj (Ci) are positive values. As discussed above, this is ultimately

equivalent with a constraint on the relative orientation of two surface segments with

respect to their associated normal directions (i.e. cos θi and cos θj > 0). otherwise,

further computation is refrained (resulting in Fi→ j = Fj→ i = 0).

GCF Obstruction test

Even if surfaces i and j pass the first filter, they are just candidates for radiation

exchange. They need to pass another filter to ensure that the radiation exchange

has occurred. In case of an isotropic emission (diffuse-gray approximation), radiation

exchange between two sources is possible, if and only if their line-of-sight (LoS) is not

blocked by an opaque object. To address this, uniform radiation is characterized by

a set of straight lines rising from the source, diffusing in all directions and reaching

the target. Therefore, the energy exchange would be prevented, if an opaque object

(i.e. one of the triangular mesh grids) intersects the straight path from centroid i

to centroid j. Second filter would be examined over all the triangular mesh grids

and save CPU-time significantly by preventing any further computation once the

condition statement becomes true (resulted in Fi→ j = Fj→ i = 0).

Finding surface segments which are incapable of radiation interchange, the filters

play an essential role to achieve a more realistic heat transfer model. The algorithm

associated with above can be readily designed using simple algebraic implementation.

It is also worth noting that, second filter does not necessarily assure a fully blocked

radiation. In fact, in some cases (based on the triangles’ size and orientation) energy

can be partially exchanged, since portions of surfaces can still view each other. To
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achieve a better resolution, the triangles computed from micro-tomography can be

subdivided into smaller triangular portions. An engineering judgment is required to

define a “figure of merit” for the selection of an optimal number of subsurface area

elements. This can be supplemented with following discussion.

GCF algebraic test

Details of our GCF algebra are as follows:

1. Bounding: GCF’s are bounded to 0 ≤ Fi→ j ≤ 1 (i.e. the GCF Fi→ j is the

fraction of energy exiting surface element i, that impinges on surface element

j). Bounding is the evaluation criteria of resolution which should have been

met, by triangular mesh grid computed from micro-tomography, prior to GCF

calculation. Such that, if bounding between ith and jth triangular elements was

violated, those triangles should be subdivided into smaller triangular portions.

In a complex scene, there can be any number of triangles, which can be divided

into even more surface segments. To address this, from Eq. (4.1) it is clear

that the term cos θi cos θj / π is always < 1, hence decent resolution would be

achieved if condition aj / S
2
ij ≤ 1 is satisfied over all the triangles.

2. Closeness: Summing up all GCF’s from a given surface in an enclosure must

equal 1 (
∑

j Fi→ j = 1). But, due to the numerical errors associated with the

size of the discretized surface segments, the summation is slightly smaller than

one (1 − ξ , where ξ̄ ∼ 10−3). In order to compensate that, a weight based

distribution algorithm is applied to distribute ξ among the configuration factors

such that the summation leads to 1.

A bin-averaged “3D map” of calculated bilateral GCF’s is shown in Fig. 4.5. Each

bin-averaged is calculated as the average of the Fij values lying in 562×562 consecutive

interval of (i, j) combinations. For instance, Fij values for (i, j) = (0, 0)→ (561, 561)
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Figure 4.5: (Color online) Calculated geometric configuration factors have been plotted in a bin-
averaged over 562× 562 consecutive (i, j) combinations.

are averaged. This mean value is assigned to the bin (0, 0) of Fig. 4.5. In the same

way, the Fij values for (i, j) = (562, 0) → (1123, 561) are averaged and mapped to

bin (1, 0), and so on. So, the radiative properties – such as conductivity κ [W m−1

K−1] – are expected to show directional dependence. Therefore, the matrix form of

the law of heat conduction (Fourier’s law) for such an anisotropic fibrous medium can

be written as, 
qx

qy

qz

 = −


κxx κx y κx z

κy x κy y κy z

κz x κz y κz z



∂x T

∂y T

∂z T

 . (4.9)

∂i denotes gradient operator in Cartesian coordinates (i.e. ∂/∂x, ∂/∂y and ∂/∂z), and

the diagonal elements κi i are radiative conductivity along the main axes.
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4.3 Radiation exchange model

As discussed earlier in 2.8, for the ith surface segment, radiosity qout, i [W m−2] is

composed of emitted irradiance derived from the Stefan-Boltzmann law plus reflected

irradiance derived from incident radiation qinc, i [W m−2]. Therefore, in a diffuse-

gray approximation, where absorptivity and emissivity (ε) coefficients are equal and

depend only on temperature Ti, the balance equation between qout, i and qinc, i is given

by

qout, i = εσT 4
i + (1− ε) qinc, i . (4.10)

σ denotes the Stefan-Boltzmann constant [W m−2 K−4]. For an enclosure which is

composed of 6 internal boundaries and contains M small surface segments, Eq. (4.10)

becomes more complicated. A complex radiative exchange occurs as radiation leaves

a surface, travels through the enclosure, reflects from segments and reaches other

surfaces. For a N -body problem like above, qinc, i is determined by summing over the

portions of the radiation leaving the segments within the fiducial volume that arrive

at the ith surface. Applying some mathematic implementations (discussed in 2.8),

Eq. (4.10) in a comprehensive form can be generalized as follows,

qout, i − (1− ε)
N−1∑
j=0

Fi j qout, j = εσT 4
i , i ∈ {6, . . . , N − 1} . (4.11)

Also, in place of the enclosure boundaries, which are assumed to be perfectly insu-

lated, a symmetric condition (qinc = qout) is imposed such that Eq. (4.11) can be

rewritten as

qout, i −
N−1∑
j=0

Fi j qout, j = 0 , i ∈ {0, 1, 2, 3, 4, 5} . (4.12)

Eq. (4.11) plus Eq. (4.12) generate N linear equations with N unknown radiosities

{qout, i}N−1
i=0 and N known temperatures {Ti}N−1

i=0 . So, a N ×N system of linear equa-

tions is constructed and can be readily solved via standard numerical methods (e.g.,
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Gaussian elimination). It then follows that, the incident radiation set {qinc, i}N−1
i=0 , can

be calculated by

qinc, i =
N−1∑
j=0

Fi j qout, j . (4.13)

4.4 Results and discussion

The nine elements of the effective conductivity matrix presented in Eq. (4.9) are

determined in a systematic procedure as follows. First, a temperature difference ∆T

is imposed between two enclosure walls (called here TI and TII) normal to the i-axis

(i ∈ {x, y, z}), while the symmetric condition is imposed for the enclosure walls

normal to the j-axis (j 6= i and ∈ {x, y, z}). Then, a linear temperature gradient

∂i T ranging from TII to TI (TII > TI) is applied along i-axis, such that the kth

triangular mesh grid is assigned temperature

Tk = TII −∆T
Ci,k
Li

. (4.14)

Ci, k and Li are previously defined as i-component of kth triangular centroid coordinate

and the enclosure volume dimension, respectively. The temperature variation imposed

on the domain in the i-direction ultimately leads to ∂j 6=i T = 0. Therefore, from

Eq. (4.9) it then follows that, for each i-axis three conductivity elements κx i, κy i, and

κz i at a given mean temperature of T = 1
2
(TI +TII) can be readily determined. From

the Rosseland model [61] it is also well established that, the radiative conductivity

is expected to exhibit a “cubic polynomials” dependence on temperature. Therefore,

the radiative conductivity matrix elements can be fitted to a third order polynomial

of temperature. The foregoing discussion can be summarized in the following set of

equations,

κji (T ) = − qj
Li

∆T
= Kji ε σ T

3 (4.15)
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where K is a geometric factor associated to the Rosseland model. This analysis is

repeated for ∆T = 1.0 K over the model for a range temperature of 300.0 ≤ T ≤

4000.0 K, and an emissivity of ε = 0.85 is used.

The temperature averaged values of the effective radiative conductivity for all nine

matrix elements are presented in Table 4.2(a), where the calculated values imply an

orthotropic behavior of the material (as the diagonal elements are about one order of

magnitude greater than off-diagonal elements) and a symmetric behavior (κij = κji)

which is in agreement with experimental data. Also, calculated temperature depen-

dent conductivities are shown in Fig. 4.6, where the results are in good agreement

with the Rosseland prediction. Therefore, the geometric factors associated to the best

fit obtained from a cubic curve are extracted and presented in Table 4.2(b). From

the matrix theory the effective radiative conductivity tensor possesses three mutually

orthogonal principal axes (i.e. the orientation of the geometry where the off-diagonal

terms are zero) which are associated with three real eigenvalues. These eigenvalues

are listed in Table 4.2(c) and (d) regarding to panels (a) and (b), respectively. Com-

parison between the orthogonal values and the diagonal elements, which are different

in magnitude, shows that the geometry was not well aligned with the chosen axes. As

well, the through-the-thickness (TTT ) direction (i.e. the smallest value κyy) is also

less obvious when compared to the IP directions (κxx and κzz), which is a consequence

of the fact that the material sample is small.

The values of the thermal conductivity calculated using the present method can be

compared to the values provided by the manufacturer [86], as well as those available

in the literature [88]. In these two references, the values in the TTT direction is

presented. The TTT direction is defined as κii � κjj, κkk, where κjj ≈ κkk is the IP

direction. In the present work, the TTT direction corresponds to the y–axis. Since

these results are obtained experimentally, they include all the physical phenomena

that contribute to conductivity: the radiative conductivity, the gas phase conductivity
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Table 4.2: (a) Temperature averaged effective radiative, (b) Geometric factor recon-
structed from Rosseland model, (c) Temperature averaged effective radiative conduc-
tivity along the principal axis, and (d) Geometric factor reconstructed from Rosseland
model along the principal axis.

(a) 〈κ〉T [W/(m K)] (b) K [10−3 m]
x y z x y z

x 1.767 0.176 0.111 x 2.072 0.207 0.130
y 0.176 1.301 0.372 y 0.207 1.526 0.436
z 0.111 0.372 1.583 z 0.130 0.436 1.856

(c) 〈λ〉T [W/(m K)] (d) Λ [10−3 m]
1 2 3 1 2 3
2.001 1.034 1.615 2.347 1.213 1.894
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Figure 4.6: (Color online) Effective conductivity matrix elements as a function of
temperature.

(argon), and the solid conductivity.

In order to properly compare the two values, the radiative conductivity calculated

in this work is added to the solid conductivity value in the TTT direction calculated

by Panerai et al. [31], so that κeff
TTT = κTTT + κsol

TTT . To calculate κsol
TTT , they use
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Figure 4.7: Comparison of the total effective conductivity with experimental results
presented by Tran et al. [88] and Fiber Materials Inc. [86]. The total effective con-
ductivity includes the radiative conductivity calculated in this work, and the solid
conductivity κsol

TTT calculated by Panerai et al. [31]

a 1 mm3 cubic sample of FiberFormr in air, at 273 K. Even though it is expected

that the solid conductivity slightly decreases with an increase in temperature [87], a

constant value of κsol
TTT = 0.203 W/(m·K) is used here.

The comparison is presented in Fig. 4.7. As can be seen, the computed total

effective conductivity κTTT +κsol
TTT fits the experimental data remarkably well over the

entire range of temperatures considered. Experimental data in the other directions are

not readily available, but a factor of κIP/κTTT = 2.4 is mentioned in Tran et al. [88],

and a factor of 2.0 in Weng and Martin [68]. Comparing to these ranges of values

would also give a reasonable agreement for the κxx and κzz values calculated here.

Finally, it is important to point out that the temperature-dependent gas phase

conductivity and radiative absorption are not accounted for in the present work.

Moreover, the geometry of the sample used for the radiative conductivity, κTTT , is
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different from the one used in Panerai et al. [31] to calculate κsol
TTT . Even though

the axis with the minimum value is used for both components, the axes were likely

oriented differently.

4.5 Remarks

The possibility of using X-ray micro-tomography for computing radiative conductiv-

ity was demonstrated. A robust algorithm to calculate the geometric configuration

factors among the planar surface segments of FiberFormr using triangular mesh grids

generated by micro-tomography was constructed. The calculated values highlighted

the heterogeneous behavior of fibrous material. The net radiation exchange model

and Fourier’s law was used to investigate the radiation energy flux distribution within

the FiberFormr micro-structure. The developed model accounts for both the angular

and thermal dependence of the effective radiative conductivity. The extracted val-

ues of the effective radiative conductivity tensor elements manifested an orthotropic

behavior of the material and the results also show that the cubic polynomials formu-

lation of Rosseland model is valid in the studied case.

Copyright c© Nima Nouri, 2015.

71



Chapter 5

Summary and future studies

5.1 Summary

The purpose of our study was to develop a model, based on the micro-structure

characteristics, porosity, and surface emissivity values, to quantitatively analyze and

determine the radiative properties of the carbon-based fibrous material as an insula-

tion material used in TPS. More specifically, the effective radiative conductivity of

the FiberFormr used in the TPSs of re-entry objects was evaluated using computer

modeling.

A simplified three-dimensional DS model was developed which accounts for both

the angular and thermal dependence of the effective radiative conductivity of a low-

density fibrous material. Diffuse-gray (section 1.3.3 and section 2.7), net-radiation

(section 2.8), and radiation heat conductivity (section 2.9) models were applied to an-

alyze the radiative thermal transfer process. The basic equations were developed for

analyzing radiative energy exchange within enclosures having black or diffuse-gray

surfaces. The radiation energy exchange process among the enclosure diffuse-gray

surfaces has been formulated via pre-calculated GCF’s (chapter 2). An analytical

expression was derived for the effective radiative conductivity as a function of direc-
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tion and a wide range of temperature. The effective conductivity matrix elements as

a function of direction and temperature were determined by applying a systematic

temperature gradient procedure. The heterogeneous behavior of the FiberFormr was

ultimately manifested.

The developed three-dimensional DS model was used for two different scenarios:

1. Using artificial geometry obtained from computer simulation,

2. Using realistic geometry obtained from tomography imaging.

First, an artificial geometry (section 3.2) with properties resembling those of

FiberFormr was computationally constructed. The main goal of using this geom-

etry was to validate the developed model to be applied into the second scenario.

Using three-dimensional computed tomography imaging made it possible to apply

the model into the true structure of FiberFormr. The artificial geometry was then

substituted by three-dimensional X-ray micro-tomography imagery (chapter 4) to

achieve a more realistic result.

As an important part of this thesis, a list of original contributions is outlined:

1. A robust procedure to calculate the geometric configuration factor

using discretized mesh surface area was proposed.

The calculation of the geometric configuration factor between finite surfaces

requires the solution to a double area integral. Such integrals are exceedingly

difficult to evaluate analytically except for very simple geometries. Even a

numerical integration may often be problematic because of excessive CPU time

requirements.

2. The geometric properties of the discretized mesh surface area was

used to accelerate the GCF calculation.
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Considerable effort has been directed toward tabulation and development of

methods to suppress the CPU time requirement.

3. The net-radiation method was combined to the radiation heat con-

ductivity model to evaluate the radiative heat transfer process.

Radiative heat transfer rates within an enclosure without a participating

medium has been developed by applying the geometric configuration factors

calculated earlier.

4. A systematic procedure was developed to determine the effective ra-

diative conductivity matrix element.

The results from developed models are retained and implemented in a sys-

tematic radiative transient regime model to study the radiative conductivity

properties of the FiberFormr.

5. A C++ code was developed regarding the proposed model.

The studies developed in this work have been written based on a C++

manuscript. The data analysis part has been done using ROOT programing.

5.2 Future studies

The radiation-exchanged equations were developed in section 2.8 for an enclosure

that does not contain an absorbing-scattering medium. The work in development at

the time of writing this manuscript focuses on the effects of the presence of ambient

gas on the radiative conductivity properties of the fibrous material. The attenuation

of radiation is studied using Bouguer’s law. As the radiation passes through a volume

element dV of thickness dx, its intensity q is reduced by absorption and scattering.

For simplicity, the subscripts inc and out have been dropped. Intensity at some
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distance in the media is expressed by Bouguer’s law in differential form as

dq = −µ(x) q dx . (5.1)

When this equation is integrated, it becomes

q(x) = q(x0) e
−

∫ x
x0
µ(x) dx

. (5.2)

The attenuation coefficient (µ) describes the fraction of a beam (intensity) that is

absorbed or scattered per unit thickness of the medium. More specifically, µ accounts

for the number of atoms in a cubic cm volume of material and the probability of a

photon being scattered or absorbed from the nucleus or an electron of one of these

atoms. Attenuation coefficient µ [cm−1] depends on the local properties of the medium

(physical property). It is a function of temperature T , pressure P , concentration ρ

and incident radiation wavelength λ.

Attenuation is composed of two volumetric coefficients, absorption µa and scat-

tering µs. If the attenuation coefficient is a constant (i.e. a uniform density gas),

Eq. (5.2) can be rewritten as

q(∆x) = q(x0) e−(µa+µs) ∆x , (5.3)

where q(x0) denotes the initial intensity leaving one of the surface segments within

the fiducial volume (qout) and q(∆x) denotes the specific intensity (qinc) after reaching

another surface segment at a distance of ∆x. Equations (4.11), (4.12) and (4.13) are

rewritten as

qout,i − (1− ε)
N−1∑
j=0

Fijqout,j e
−µa ∆xij = εσT 4

i , i ∈ {6, . . . , N − 1}, (5.4)

qout,i −
N−1∑
j=0

Fijqout,j e
−µa ∆xij = 0, i ∈ {0, 1, 2, 3, 4, 5}, (5.5)

qinc,i =
N−1∑
j=0

Fij qout,j e
−µa ∆xij . (5.6)
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The attenuation coefficient values can sometimes be found in the literature, where

attenuation data is mostly located in terms of the mass attenuation coefficient (a

mass attenuation coefficient µ/ρ is converted to an attenuation coefficient µ if it is

multiplied by the density ρ of the material). Mass attenuation coefficients for elements

Z = 1 to 92, and for 48 compounds and mixtures of radiological interest are listed at

the National Institute for Standards and Technology (NIST) [91]. The data on the

NIST cover energies of photons (e.g. x-ray, gamma ray, bremsstrahlung) from 1 keV

to 20 MeV.

The studies which have been done in this work were based on the assumption that

the radiation process occurs in vacuum regimes. However, a more realistic model

would be achieved if the vacuum space were filled with a participating medium that

can absorb and scatter radiation. The model developed in this study, adding ambient

gas, can be used to manifest the effects of the presence of ambient gas on the radiative

conductivity properties of the fibrous material.

Copyright c© Nima Nouri, 2015.
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