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ABSTRACT Integrated modular avionics introduces the concept of partition and has been widely used in
avionics industry. Partitions share the computing resources together. Partition scheduling plays a key role
in guaranteeing correct execution of partitions. In this paper, a strictly periodic and preemptive partition
scheduling strategy is investigated. First, we propose a partition scheduling model that allows a partition to
be interrupted by other partitions, but minimizes the number of interruptions. The model not only retains
the execution reliability of the simple partition sets that can be scheduled without interruptions, but also
enhances the schedulability of the complex partition sets that can only be scheduled with some interruptions.
Based on the model, we propose an optimization framework. First, an interruption analysis method to decide
whether a partition set can be scheduled without interruptions is developed. Then, based on the analysis of the
scheduling problem, we use the number of interruptions and the sum of execution time for all partitions in a
major time frame as the optimization objective functions and use particle swarm optimization (PSO) to solve
the optimization problem when the partition sets cannot be scheduled without interruptions. We improve
the update strategy for the particles beyond the search space and round all particles before calculating the
fitness value in PSO. Finally, the experiments with different partitions are conducted and the results validate
the partition scheduling model and illustrate the effectiveness of the optimization framework. In addition,
other optimization algorithms, such as genetic algorithm and neural networks, can also be used to solve the
partition problem based on our model and solution framework.

INDEX TERMS Integrated modular avionics, partition scheduling model, optimization framework, inter-
ruption analysis, particle swarm optimization.

I. INTRODUCTION
With the development of the microelectronic technology and
software technology, the system architecture of avionics has
been evolving from traditional discrete and federated stages
to integrated and highly-integrated stages [1]. In the new gen-
eration of the avionics system, integrated modular avionics
architecture was proposed and has been validated on many
large passenger planes, like A380 and B7E7. It is one kind
of highly-integrated avionics under software control mode
and aims at standardization, reusability and interchangeabil-
ity of avionics modules. Generally, the core idea of IMA is
hardware resource-sharing mode. Many applications utilize
the same computing, communication and I/O resources to
reduce the hardware redundancy and improve the resource

utilization [2], [3]. Therefore, IMA can easily achieve the
goal of reduction in size, cost and weight [4] and the greater
flexibility in resources allocation.

A. THE ANALYSIS OF THE RELATED WORK
In order to guarantee that one or more avionics applications
can execute independently in a core module, IMA introduces
the concept of partition [5]–[7], which is similar to a pro-
gram in a single application environment. The partitions are
divided based on the functions of the applications and each
partition is activated in one or more time-windows allocated
by the system. Each partition has no effect on other par-
titions in time and space. All partitions in a core module
share the common resources. Besides, each partition contains
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processes to complete the corresponding application. The
system resources occupied by a partition are shared by all
processes in it. In order to guarantee the stability of the
system, a high performance two-level scheduling strategy for
partitions and processes is critical for the operation system
to allocate the occupation time of the processor, memory
and other resources for each partition. There are two trends
for the two-level scheduling problem, the hybrid solution
and the hierarchical solution. Many researches considered
the two-level scheduling of partitions and processes simul-
taneously. However, the scheduling strategy of the process
can adopt the classic scheduling algorithms in embedded
system, like earliest deadline first (EDF) [8], least laxity
first (LLF) [9] scheduling algorithms, which have excellent
performance. At the same time, considering the two-level
scheduling algorithms simultaneously makes it difficult to
optimize the scheduling problem. Therefore, we study the
scheduling problem of partition and process separately. Then
we combine them together in meeting the constraints of each
other. In this paper, we consider the partition scheduling
problem on a single processor.

Avionics application standard software interface named
ARINC653 gives the basic rules for partition scheduling [6],
[10], [11]. First, partition scheduling is strictly deterministic
over time. Second, all partitions have no priority and they can
only execute in their own time-windows. Third, the schedul-
ing algorithm is predefined and all partitions execute in a
certain period. Based on these rules, many researchers have
proposed a variety of scheduling models and analyzed the
schedulability for arbitrary partition sets. Several proposed
models even break the restriction that partitions do not have
priority.

Round robin (RR) scheduling is the most frequently
adopted strategy for partition scheduling problem. On the
basis of RR scheduling, Sheikh et al. [12] used the model
that arbitrary two partitions cannot be released with overlap.
They proposed an optimization goal and a best-response
algorithm based on the game theory to achieve the maxi-
mum stability for the schedulable partition set under their
partition model. However, the model cannot schedule the
partitions with complex periods. It means that if the partition
periods are coprime, the schedulability of the system will
be sharply reduced. Lee et al. [13] presented a partition and
channel-scheduling algorithm for the strong partitioned real-
time system. They used a two-level hierarchical schedule
that activates partitions following a distance-constraints guar-
anteed cyclic schedule and then dispatches tasks according
to a fixed priority schedule. However, they did not give a
specific scheduling algorithm. Tao et al. [14] proposed a
scheduling scheme with partition readjustment based on the
fixed priority strategy. Through adjusting the length of each
partition and reconstructing them, their scheme can reduce
the resource costs and improve schedulability. In addition,
they also gave the partition adjustment algorithm based on
their scheduling model. However, the algorithm will change
the number of partitions. Gui et al. [15] proposed a partition

scheduling model that always allocates the time slots for the
newly released partitions, and gave rules to ensure the correct
execution of all partitions. They also proved that their model
has the maximum schedulability for complex partition sets.
However, partitions may be interrupted frequently.

For the case of multiprocessor, Eisenbrand et al. [16]
scheduled the periodic tasks on a minimum number of
processors. In addition, they proved that there exists
a 2-approximation for the minimization problem when the
periods are harmonic. Kermia and Sorel [17] dealt with the
non-preemptive scheduling of tasks onto multi-processor by
considering both precedence relation and periodicity con-
straints. Their objective was to minimize the global execution
time of the system.

Some researchers studied the schedulability of partitions
for IMA.Wan and Tian [18] considered the partition schedul-
ing as a fixed priority preemptive scheduling problem on a
single processor and analyzed the condition of schedulability
for several periodic tasks based on the rate monotonic (RM)
algorithm [8], [19]. Marouf and Sorel [20] considered the
cases of the tasks with harmonic periods and the tasks with
non-harmonic periods separately. They gave the schedula-
bility conditions for the harmonic case and proposed local
schedulability conditions for the non-harmonic case. How-
ever, the above analyses depended on the specific scheduling
model.

From the above researches, on a single processor, there
exist some defects on the scheduling models and the schedul-
ing algorithms based on the analysis of the current situation.
First, the existing model can be divided into two categories.
One forbids interruptions for all partitions. It means that a
partition must be finished once it is released and other parti-
tions cannot be released when one partition is running in the
processor, as in the model proposed by Sheikh et al. [12]. The
other allows a running partition to be interrupted by the new
coming partition, as in the model proposed by Gui et al. [15].
For periodic partitions, the former scheme will greatly reduce
the schedulability of the partition set, especially for the par-
tition sets with non-harmonic periods. For the latter scheme,
the influence caused by the interruption is ignored and the
partitions are allowed to be released at any time. Therefore,
the partitions are likely to be interrupted frequently, although
the processor utilization and the schedulability of the partition
set will be enhanced. As for the existing algorithms, they
are designed based on the specific models and most of them
cannot handle other models effectively.

B. OUR WORK
In this paper, we propose a comprehensive partition schedul-
ing model which combines the advantages of the existing
two models without violating the definition and rules in
ARINC 653. Based on the model, we develop an optimiza-
tion framework for the partition scheduling model. It can
be divided into two steps. The first one is the interruption
analysis to determine whether the partition set is schedulable
without interruptions. The second step is to use an appropriate
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algorithm to optimize the scheduling model. The appropriate
algorithm framework consists of two parts based on the result
of the first step. For the partition sets that are schedulable
without interruptions the framework uses the optimization
goal and the algorithm proposed by Sheikh et al. [12]. For
the rest of the more general partition sets, we analyze the
properties of the partition scheduling problem of our model,
and improve particle swarm optimization (PSO) [21]–[24]
to search a good scheduling scheme. Other meta-heuristic
algorithms can replace the improved PSO as the scheduling
algorithm. Our contribution can be described in three aspects.

First, based on the analysis of the model proposed by
Sheikh et al. and the model proposed by Gui et al., we pro-
pose a comprehensive partition scheduling model that uses
different scheduling strategies to schedule different partitions
based on whether the partition set is schedulable without
interruptions. The main idea is that the interruption is allowed
but it should be avoided as much as possible. For the schedu-
lable partition sets without interruption, the model uses the
scheduling scheme proposed by Sheikh et al. [12]. However,
the complex partition sets that cannot be scheduled without
interruption are more common, and we use the minimum
interruption strategy to schedule this type of partition sets.
Therefore, compared with the existing twomodels, our model
can improve partition sets’ schedulability and reduce the
number of interruptions.

Second, we propose an optimization framework to opti-
mize our scheduling model. The optimization framework can
be divided into two steps, which are interruption analysis and
algorithm optimization. For the first step, we design an inter-
ruption analysis method to determine the schedulability of
the partition sets without interruptions. There exist four cases
for the relationship of the arbitrary two partition’s periods.
We analyze the schedulability of the arbitrary two partitions
for each case. Therefore, we can obtain the schedulability of
the arbitrary partition sets without interruptions by using two
partitions as the basis and expanding the number of consid-
ered partitions gradually until all partitions are considered.
This is a critical step to decide which optimization strategy
will be used to search the scheduling scheme for the partition
set.

Finally, for the second step of the optimization framework,
we propose two objective functions with one playing a sup-
plementary role for the other to evaluate the performance of
each candidate solution. Besides, based on the properties of
the scheduling model, we use PSO to optimize all partitions’
first release time points for the partition set that cannot be
scheduled without interruptions. We improve the random-
ization strategy to update the positions of the particles that
fly beyond the search space so that all candidate solutions
can have the same possibility to be searched. In addition,
the updated positions of all particles are rounded before cal-
culating the fitness values. The rounding operation can make
the algorithm search better solutions more easily based on
the model we proposed. When the partition set is schedulable
without interruptions, we will use the optimization goal and

FIGURE 1. The process and the solution framework in the paper.

algorithm proposed by sheikh et al. to optimize the partition
scheduling problem.

The basic process and the solution framework proposed in
the paper is shown in Fig. 1. The meaning of the optimization
goal proposed by Sheikh et al. when the partition set is
schedulable without interruptions will be briefly introduced
in section III.B.

The rest of the paper is organized as following. Section II
investigates the strictly periodic and preemptive partition
scheduling model and the objective functions. In section III,
the interruption analysis to determine the partition set’s
schedulability without interruptions and the corresponding
optimization scheme and the optimization algorithm are pre-
sented. Section IV gives experiment results and analyses to
show the effectiveness of our proposed model and the solu-
tion frameworks. In addition, the properties of the partition
scheduling problem are also addressed in this section. Finally,
a brief conclusion follows in Section V.

II. STRICTLY PERIODIC AND PREEMPTIVE PARTITION
SCHEDULING MODEL
A. PARTITION SCHEDULING MODEL
In this paper, we focus on the partitions on one processor.
Assume a set of partitions 5 = {P1,P2,P3, · · · ,Pn}. Every
partition Pi has a periodmiT and execution timeCi. There are
some hypotheses and rules.

(1) All partitions have the same operation in each major
time frame (MTF),whichmeans theminimum and fixed cycle
of the processor’s runtime operation, can be defined as the
least common multiple (LCM ) of all partitions’ periods. The
formula to calculate MTF is as following.

MTF = LCM (m1T ,m2T ,m3T · · ·mnT ) (1)

(2) The running times for Pi in eachMTF can be calculated
as follows.

Ni = MTF/miT (2)

(3) Each partition cannot be executed in other partition’s
time-windows, including the idle time-windows.

(4) Each partition may have one or more time-windows in
MTF , and the time-windows can have different length.
(5) The necessary and sufficient condition for each par-

tition’s schedulability is that the partition has been finished
before a new release.

VOLUME 6, 2018 13525
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FIGURE 2. The illustration for partition scheduling problem.

(6) The new coming partition can be executed first, and the
execution status of the partition which is being executed will
be saved in cache. Each time when it happens, we regard it as
an interruption.

(7) The partition with closer next release will resume exe-
cution first when two or more partitions are in the cache [15].

(8) The partitionwith a smaller periodwill be executed first
when two or more partitions are released simultaneously.

(9) The time of the first release of the partition with the
minimum period is used as the start of MTF .
Based on the above hypotheses and rules, if the first

release time (FRT ) for each partition [t1, t2, t3 · · · tn] is given,
the processor’s runtime operation is certain and we can deter-
mine whether the partition set is schedulable. Therefore,
the aim of scheduling is to search the optimal FRT with
regard to the objective functions, like the number of interrup-
tions and the sum of execution time. The illustration of the
scheduling problem is shown in Fig. 2.

B. SCHEDULING OBJECTIVE
There are two objectives. They are the number of interrup-
tions for all partitions in eachmajor time frame and the sum of
execution time for all partitions in eachmajor time frame. It is
worth emphasizing that the scheduling optimization is not
a multi-objective optimization problem. We use the number
of interruptions for all partitions as the primary objective.
If more than one optimal solutions are obtained, we use the
sum of execution time for all partitions in each major time
frame as the auxiliary objective.

1) THE NUMBER OF INTERRUPTIONS FOR ALL
PARTITIONS IN MTF
Interruption means that a running partition is interrupted by a
new coming partition. The jitter of release with the interrup-
tion will increase the uncertainty of the processor’s runtime
operation. Therefore, the smaller the number of interrup-
tions is, the less likely the error caused by interruptions will
occur. To guarantee the certainty of the partition’s execution,
we select the number of interruptions for all partitions inMTF
as the primary optimization goal. It is shown as following.

f1(FRT ) = min NI , satisfy FPi (si) ≤ RPi (si + 1)

∀Pi ∈ {P1,P2,P3 · · ·Pn}

Here, NI is the number of interruptions for all partitions.
FPi (si) is the finish time of the si-th release of partition Pi.
RPi (si + 1) is the (si + 1)-th release time of partition Pi.

TABLE 1. Partition parameters.

FIGURE 3. The gantt chart of the runtime operation for all partitions
with FRT1.

The number of interruptions can be calculated based on
Eq. (3) when the runtime operation of all partitions is known.

NI = STW − SN (3)

Here, STW is the number of all partition’ time-windows
in MTF . SN is the number of all partitions’ execution times
in MTF . SN is a constant for a certain partition set. Based
on Eq. (3), the smaller time-windows for all partitions means
the fewer interruptions. Therefore, the optimal scheduling
scheme with the minimum interruptions can make each
release of all partitions execute completely in the smallest
number of possible time-windows.

It should be emphasized that we do not consider the situ-
ation that two or more partitions are released simultaneously
as an interruption. Based on the rules of the execution, if there
are no other releases, the partitions released simultaneously
will be executed in ascending order of their periods.

2) THE SUM OF EXECUTION TIME FOR ALL
PARTITIONS IN MTF
The minimum number of interruptions for all partitions in
MTF can guarantee the partition’s certainty. However, there
may exist many different solutions of FRT with the same
number of interruptions but different schedule for all parti-
tions. An example is shown in Table 1. The two scheduling
results of the example are shown in Fig. 3 and Fig. 4.

The number of interruptions in Fig. 3 and Fig. 4 can be
calculated based on Eq. (3).

NIFRT1 = (6+ 6+ 4)︸ ︷︷ ︸
STW

− (6+ 4+ 3)︸ ︷︷ ︸
SN

= 3 (4)
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FIGURE 4. The gantt chart of the runtime operation for all partitions
with FRT2.

NIFRT2 is equal toNIFRT1 . However, the runtime operations
for partition 2 and partition 3 are totally different. We define
the sum of execution time (SET ) for all partitions in MTF
as another optimization goal to select the best FRT when
the number of interruptions is the same. SET includes the
interruption time of all partitions and equals to the sum of the
difference of the finish time and the beginning time for all
partitions’ every release. The smaller SET is, the shorter the
interruption time for all partitions is. Therefore, the objective
function can be described as following.

f2(FRT ′) = min SET

FRT ′ is the set of FRT which can make NI obtain the same
minimum. SET can be calculated as following if the runtime
operation of all partitions is known.

SET = SAC +
n∑
i=1

kiCi (5)

Here, SAC is the sum of all partitions’ execution time
without any interruptions. kiCi is the sum of the partition Pi’s
execution time in the interruption. Based on the execution
process of all partitions in Fig. 3 and Fig. 4, we can obtain
SET as following.

SETFRT1 = 5+ 5+ 5+ 5+ 5+ 5︸ ︷︷ ︸
P1

+ 6+ 5+ 5+ 1+ 6+ 5+ 5+ 1︸ ︷︷ ︸
P2

+ 7+ 7+ 3+ 4+ 5+ 5+ 1+ 4︸ ︷︷ ︸
P3

= 6×5+ 4×6+ 3×7︸ ︷︷ ︸
SAC

+ 3× 5+ 1× 6+ 0× 7︸ ︷︷ ︸
n∑
i=1

kiCi

= 96ms (6)

SETFRT2 = 5+ 5+ 5+ 5+ 5+ 5︸ ︷︷ ︸
P1

+ 3+ 5+ 3+ 2+ 7+ 4+ 3+ 5+ 3+ 6︸ ︷︷ ︸
P2

+ 6+ 7+ 7︸ ︷︷ ︸
P3

= 6× 5+ 4×6+ 3×7︸ ︷︷ ︸
SAC

+ 2×5+ 0× 6+ 1× 7︸ ︷︷ ︸
n∑
i=1

kiCi

= 92ms (7)

Therefore, FRT2 is better than FRT1.
Though the fewer interruptions means the smaller SET in

general, there exists the situation that a FRT is corresponding
to more interruptions but smaller SET compared with other
FRT . SET reflects the impact of the interruptions, but cannot
replace the interruptions. Therefore, we select NI and SET
as two optimization goals, and the latter is supplementary for
the former.

III. STRICTLY PERIODIC AND PREEMPTIVE PARTITION
SCHEDULING OPTIMIZATION
In this section, we introduce the optimization framework that
we proposed for our model. In the optimization framework,
we first propose an interruption analysis method to deter-
mine whether a partition set is schedulable without interrup-
tions. For the schedulable partition sets without interruptions,
we give a simple summarization of the optimization goal
and the algorithm proposed by Sheikh et al. [12] which is
effective to optimize the partition scheduling. For the non-
schedulable partition sets without interruptions, we give the
detailed algorithm to calculate NI and SET . Here, many
optimization algorithms can be used to optimize FRT for
obtaining the minimum NI and SET . Due to the features of
simple structure and simple process of PSO, we improve it
based on the properties of the scheduling problem to optimize
FRT to show the general process of the optimization and the
details that should be considered.

A. INTERRUPTION ANALYSIS
We discuss the process of the interruption analysis method in
two steps. The first step is the available time analysis of FRT
without interruptions for two partitions. The second step is
the comprehensive analysis for the arbitrary partition sets.

1) AN EXAMPLE TO EXPLAIN THE INTERRUPTION ANALYSIS
FOR TWO PARTITIONS
Assume there are two partitions P1, P2 with periods 2T and
3T, respectively. The execution time of P1 and P2 is C1 and
C2, respectively. Based on the rules, MTF is equal to 6T,
and the first release time of partition P1 is zero. As shown
in Fig. 5(a), the runtime intervals of partition P1 allocated by
MTF is [0,C1], [2T , 2T +C1] and [4T , 4T +C1] if partition
P2 is not considered. Here, we use t2 to denote the release time
of partition P2. If there are no interruptions, every runtime of
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FIGURE 5. The available time for t2.

partition P2 cannot overlap these three intervals. To guarantee
the complete execution of the last release inMTF for partition
P2, t2 should be in [0, 3T − C2]. If we move t2 from 0 to
3T −C2, three available time-intervals for t2 can be obtained.

Available t2 s.t. (n2 × 3T + t2, n2 × 3T + t2 + C2)

∩ (n1×2T , n1×2T+C1) = 0 (n1=0, 1, 2; n2=0, 1) (8)

Here, n1 is the n1-th execution of P1 and n2 is the n2-th
execution of P2.
Based on Eq. (8), the three available time-intervals for t2

are as following.
t2 ≥ C1

t2 + C2 ≤ 2T
3T + t2 ≥ 2T + C1

3T + t2 + C2 ≤ 4T

⇒ t2 ∈ [C1,T − C2] (9)


t2 ≥ C1

t2 + C2 ≤ 2T
3T + t2 ≥ 4T + C1

⇒ t2 ∈ [T + C1, 2T − C2] (10)


t2 ≥ 2T + C1

t2 + C2 ≤ 4T
t2 + C2 ≤ 3T
3T + t2 ≥ 4T + C1

⇒ t2 ∈ [2T+C1, 3T−C2] (11)

The necessary and sufficient condition for the existence
of the three time-intervals is aT + C1 ≤ (a + 1)T − C2
(a = 0, 1, 2), namely C1 + C2 ≤ T .

In addition, there also exist some available time points
which make different partitions release simultaneously. They
can be calculated as following.

t2 = { t2| t1 + n1 × 2T = t2 + n2 × 3T ,

n1=0, 1, 2; n2=0, 1; t1=0; 0≤ t2≤3T−C2} (12)

Therefore, 0,T and 2T, as the available time points for t2,
can be obtained. As shown in Fig. 5(b), when t2 is equal
to 0, the first release of P1 and P2 is simultaneous, andMTF
allocates the time window [0,C1] to P1 and [C1,C1 + C2]
to P2. When t2 is equal to T, the second release of P2 and the
third release of P1 are simultaneous, and MTF allocates the
timewindow [4T , 4T+C1] toP1 and [4T+C1, 4T+C1+C2]
to P2. When t2 is equal to 2T, the first release of P2 and

FIGURE 6. The gantt chart of partition Pi and Pj in mi T .

the second release of P1 are simultaneous, andMTF allocates
the time window [2T , 2T + C1] to P1 and [2T + C1, 2T +
C1+C2] to P2. The necessary and sufficient condition for the
existence of time points 0,T and 2T is Ci ≤ T (i = 1, 2).
Therefore, the available time for t2 is shown as Eq. (13).

t2 ∈ [aT + C1, (a+ 1)T − C2]

(a=0, 1, 2;C1+C2≤T ) ∪ {0,T , 2T } (Ci≤T (i=1, 2))

(13)

2) INTERRUPTION ANALYSIS FOR ARBITRARY TWO
PARTITIONS
The relationship of the periods for the arbitrary two partitions
in a partition set 5 = {P1,P2,P3, · · · ,Pn} can be divided
into four categories. The first one is that mi and mj are equal.
The second one is that mi is a divisor of mj but not equal
to mj. The third one is that mi and mj are coprime. The last
one is that mi and mj have common factor greater than 1
and mi is not a divisor of mj (mi < mj), such as 6 and 9.
However, the arbitrary two partitions do not always include
the partition with the minimum period in a partition set. As a
result, the first release time of partitions Pi and Pj are both
variable. Assume mi < mj if mi is not equal to mj. Therefore,
we discuss the available tj based on the value of ti.

a: mi EQUALS TO mj
When mi is equal to mj, both partitions Pi and Pj are exe-
cuted only once in MTF ′ = LCM (miT ,mjT ), as shown
in Fig. 6.

Based on Fig. 6, if Ci + Cj is greater than miT , partition
Pj is not schedulable no matter what tj is. When Ci + Cj is
not greater than miT , there are two cases based on the size
of Ci + 2Cj and miT . If Ci + 2Cj is greater than miT , there
must exist an interval for ti to make Pj non-schedulable when
ti slides from 0 tomiT −Ci, as shown in Fig. 7(a). If Ci+2Cj
is not greater than miT , Pj is always schedulable no matter
what tj is equal to, as shown in Fig. 7(b).
Based on Fig. 7(a), when 0 ≤ ti ≤ miT − Ci − Cj,

the available interval for tj is [ti + Ci,miT − Cj], which
ensures no interruption for partitions Pi and Pj. In addition,
if partitions Pi and Pj release simultaneously, meaning ti = tj,
there is also no interruption based on the rules in section II.
Therefore, the available tj is [ti + Ci,miT − Cj] ∪ {ti} when
0 ≤ ti ≤ miT−Ci−Cj. In addition, available tj does not exist
when miT − Ci − Cj < ti < Cj and tj ∈ [0, ti − Cj] when
Cj ≤ ti ≤ miT − Ci. For the case in Fig. 7(b), the analysis
process is similar to the above. Therefore, all the available
intervals for tj are as following when mi equals to mj.
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FIGURE 7. Two cases based on the size of 2Cj + Ci and mi T .
(a) mi T < 2Cj + Ci (b) 2Cj + Ci ≤ mi T .

FIGURE 8. The gantt chart of partition Pi and Pj in 6T .

a) 2Cj + Ci ≤ miT

tj ∈



[ti + Ci,miT − Cj] ∪ {ti} 0 ≤ ti < Cj
[0, ti − Cj] ∪ [ti + Ci,miT − Cj] ∪ {ti}
Cj ≤ ti ≤ miT − Ci − Cj

[0, ti − Cj]
miT − Ci − Cj < ti ≤ miT − Ci

(14)

b) Cj + Ci ≤ miT < 2Cj + Ci

tj ∈


[ti + Ci,miT − Cj] ∪ {ti}
0 ≤ ti ≤ miT − Ci − Cj
∅ miT − Ci − Cj < ti < Cj
[0, ti − Cj] Cj ≤ ti ≤ miT − Ci

(15)

c) Cj + Ci > miT

tj ∈ ∅ (16)

b: mi IS A DIVISOR OF mj BUT NOT EQUAL TO mj
Take mi = 2 and mj = 6 as an example, partition Pi
will execute for three times while Pj executes only once in
MTF ′ = LCM (2T , 6T ) = 6T , as shown in Fig. 8.
Based on Fig. 8, the maximum idle interval is miT − Ci

when only partition Pi is executing. If Cj is grater than
miT − Ci, meaning Cj + Ci > miT , partition Pj is not
schedulable no matter what tj is.
The analysis is similar to the case that mi is equal to mj.

For example, under the premise that Cj+Ci ≤ miT < 2Cj+
Ci, if 0 ≤ ti ≤ miT − Ci − Cj, the available interval for
tj is [ti + Ci,miT + ti − Cj], [miT + ti + Ci, 2miT + ti −
Cj] . . . [amiT + ti+Ci, (a+1)miT + ti−Cj] (a = mj/mi−2)
and [(mj/mi−1)miT+ti+Ci,mjT−Cj]. Besides, if partitions
Pi and Pj release simultaneously, the available time for tj is
{ti + bmiT }(b = 0, 1 · · ·mj/mi − 1). Therefore, the available
interval for tj is [amiT+ti+Ci, (a+1)miT+ti−Cj]∪[(mj/mi−
1)miT + ti+Ci,mjT −Cj]∪{ti+bmiT }(a = 0, 1 · · ·mj/mi−
2; b = 0, 1 · · ·mj/mi − 1). Similar to the above analysis, all

the available intervals for tj are as following when mi is a
divisor of mj but not equal to mj.
a) 2Cj + Ci ≤ miT

tj∈



[amiT + ti + Ci, (a+ 1)miT + ti − Cj]
∪ [(mj/mi − 1)miT + ti + Ci,mjT − Cj]
∪ {ti + bmiT } (a = 0, 1 · · ·mj/mi − 2;
b = 0, 1 · · ·mj/mi − 1) 0 ≤ ti < Cj

[0, ti − Cj] ∪ [amiT + ti + Ci, (a+ 1)miT + ti − Cj]
∪ [(mj/mi − 1)miT + ti + Ci,mjT − Cj]
∪ {ti + bmiT } (a = 0, 1 · · ·mj/mi − 2;
b = 0, 1 · · ·mj/mi − 1) Cj≤ ti≤miT − Ci − Cj

[0, ti − Cj] ∪ [amiT + ti + Ci, (a+ 1)miT + ti − Cj]
∪ {ti + bmiT } (a = 0, 1 · · ·mj/mi − 2;
b=0, 1 · · ·mj/mi−2) miT−Ci−Cj< ti≤miT−Ci

(17)

b) Cj + Ci ≤ miT < 2Cj + Ci

tj ∈



[amiT + ti + Ci, (a+ 1)miT + ti − Cj]
∪ [(mj/mi − 1)miT + ti + Ci,mjT − Cj]
∪ {ti + bmiT } (a = 0, 1 · · ·mj/mi − 2;
b=0, 1 · · ·mj/mi−1) 0 ≤ ti≤miT−Ci−Cj

[amiT + ti + Ci, (a+ 1)miT + ti − Cj]
∪ {ti + bmiT } (a = 0, 1 · · ·mj/mi − 2;
b = 0, 1 · · ·mj/mi − 2) miT − Ci − Cj< ti<Cj

[0, ti − Cj] ∪ [amiT + ti + Ci, (a+ 1)miT
+ ti − Cj] ∪ {ti+bmiT } (a = 0, 1 · · ·mj/mi − 2;
b = 0, 1 · · ·mj/mi − 2) Cj ≤ ti ≤ miT − Ci

(18)

c) Cj + Ci > miT

tj ∈ ∅ (19)

c: mi AND mj are coprime
Based on the rules in section II, we distinguish two cases
based on whether there exist some different partitions that
release simultaneously. tj1 represents the available time inter-
vals for partition Pj obtained by the case that all release time
points are unequal, and tj2 represents the available release
time for partition Pj meeting the case that some releases of
partitions Pi and Pj are simultaneous.Therefore, all available
time-intervals for tj can be calculated by the following for-
mula.

tj = tj1 ∪ tj2 (20)

• The analysis of tj1
Take mi = 2 and mj = 3 as an example, partition Pi

will execute three times while Pj executes twice in MTF ′ =
LCM (2T , 3T ) = 6T , as shown in Fig. 9.
Based on Fig. 9, themaximum idle interval is T−Ci as long

as the periods of partitions Pi and Pj are coprime. Therefore,
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FIGURE 9. The gantt chart of partition Pi and Pj in 6T .

partition Pj is not schedulable no matter what tj1 is if Cj is
greater than T − Ci, i.e., Cj + Ci > T .
Under the premise that Cj +Ci ≤ T < 2Cj +Ci, there are

different available time-intervals for tj1 when ti slides from
0 to miT − Ci. Assume that mi = 2 and mj = 3, if 0 ≤
ti ≤ T − Ci − Cj, there are three time-intervals for tj1. They
are [ti + Ci,T + ti − Cj], [T + ti + Ci, 2T + ti − Cj] and
[2T + ti + Ci, 3T − Cj]. If T − Ci − Cj < ti < Cj, there are
two time- intervals for tj1. They are [ti +Ci,T + ti −Cj] and
[T + ti+Ci, 2T + ti−Cj]. If Cj ≤ ti ≤ T −Ci, there are three
time-intervals for tj1. They are [0, ti−Cj], [ti+Ci,T+ti−Cj]
and [T + ti+Ci, 2T + ti−Cj]. If T −Ci < ti < T , there are
three time-intervals for tj1. They are [−T + ti + Ci, ti − Cj],
[ti+Ci,T+ ti−Cj] and [T+ ti+Ci, 2T+ ti−Cj]. If T ≤ ti ≤
2T − Ci − Cj, there are three time-intervals for tj1. They are
[−T+ti+Ci, ti−Cj], [ti+Ci,T+ti−Cj] and [T+ti+Ci, 3T−
Cj]. If 2T−Ci−Cj < ti < T+Cj, there are two time-intervals
for tj1. They are [−T+ti+Ci, ti−Cj] and [ti+Ci,T+ti−Cj].
If T + Cj ≤ ti ≤ 2T − Ci, there are three time-intervals
for tj1. They are [0, ti − T − Cj], [ti + Ci − T , ti − Cj] and
[ti + Ci,T + ti − Cj].
Under the premise that 2Cj + Ci ≤ T , the analysis is

similar to the above process. Therefore, all the available time-
intervals for tj1 can be summarized as follows.
a) 2Cj + Ci ≤ T

tj1∈



[(a− n)T + ti + Ci, (a+ 1− n)T + ti − Cj]

∪ [(mj − 1− n)T + ti + Ci,mjT − Cj]
(a = 0, 1 · · ·mj − 2) nT ≤ ti < nT + Cj

(n = 0, 1 · · ·mi − 1)

[0, ti − nT − Cj] ∪ [(a− n)T + ti + Ci,
(a+1−n)T+ti − Cj] ∪ [(mj − 1− n)T + ti
+Ci,mjT − Cj] (a = 0, 1 · · ·mj − 2)
nT + Cj ≤ ti ≤ (n+ 1)T − Ci − Cj
(n = 0, 1 · · ·mi − 1)

[0, ti − nT − Cj] ∪ [(a− n)T + ti + Ci,
(a+ 1− n)T + ti − Cj] (a = 0, 1 · · ·mj − 2)
(n+ 1)T − Ci − Cj < ti ≤ (n+ 1)T − Ci
(n = 0, 1 · · ·mi − 1)

[(a− n)T + ti + Ci, (a+ 1− n)T + ti − Cj]
(a=−1, 0, 1· · ·mj−2) (n+1)T−Ci< ti< (n+1)T
(n = 0, 1 · · ·mi − 2)

(21)

b) Cj + Ci ≤ T < 2Cj + Ci

tj1 ∈



[(a− n)T + ti + Ci, (a+ 1− n)T + ti − Cj]
∪ [(mj − 1− n)T + ti + Ci,mjT − Cj]
(a=0, 1 · · ·mj−2) nT ≤ ti≤ (n+1)T−Ci−Cj
(n = 0, 1 · · ·mi − 1)

[(a− n)T + ti + Ci, (a+ 1− n)T + ti − Cj]
(a = 0, 1 · · ·mj − 2) (n+ 1)T − Ci − Cj
< ti < nT + Cj (n = 0, 1 · · ·mi − 1)

[0, ti − nT − Cj] ∪ [(a− n)T + ti + Ci,
(a+ 1− n)T + ti − Cj] (a = 0, 1 · · ·mj − 2)
nT+Cj≤ ti≤ (n+1)T−Ci (n = 0, 1 · · ·mi − 1)

[(a− n)T + ti + Ci, (a+ 1− n)T + ti − Cj]
(a = −1, 0, 1 · · ·mj − 2) (n+ 1)T − Ci
< ti < (n+ 1)T (n = 0, 1 · · ·mi − 2)

(22)

c) Cj + Ci > T

tj1 ∈ ∅ (23)

• The analysis of tj2
Assume the first release time of both partitions Pi and Pj

are zero. All the release time points of the two partitions in
MTF ′ = LCM (miT ,mjT ) are as following.

Pi 0, miT , 2miT , · · · (mj − 1)miT , mjmiT

Pj 0, mjT , · · · (mi − 1)mjT ,︸ ︷︷ ︸
MTF ′

mimjT

The number of releases for partition Pj is mi. For each
qmjT (q = 0, 1, 2 · · ·mi − 1), there exists a pmiT (p =
0, 1, 2 · · ·mj − 1) making 0 ≤ pmiT − qmjT < miT .
Takemi = 5 andmj = 7 as an example. All the release time

points of the two partitions inMTF ′ = LCM (5T , 7T ) = 35T
are as following.

Pi 0, 5T , 10T , 15T , 20T , 25T , 30T , 35T

Pj 0, 7T , 14T , 21T , 28T ,︸ ︷︷ ︸
MTF ′

35T

For each one in {0, 7T , 14T , 21T , 28T }, there exists
an appropriate value in {0, 5T , 10T , 15T , 20T , 25T , 30T }
which makes 0 ≤ s = 5pT − 7qT < 5T (p ∈
{0, 1, 2, 3, 4, 5, 6}; q ∈ {0, 1, 2, 3, 4}). s denotes the differ-
ence of 5pT − 7qT and s = rT (r = 0, 1, 2, 3, 4). It is
remarkable that each q corresponds to a different r because of
the equal numbers of q and r . In fact, each pmiT −qmjT (q =
0, 1, 2 · · ·mi − 1) will be equal to a different one of s = rT
(r = 0, 1, 2 · · ·mi − 1) for any two coprime numbers mi and
mj. The proof is as following.
Assume there exist two equal pmiT − qmjT (q =

0, 1, 2 · · ·mi − 1), namely

pn1miT − qn1mjT = pn2miT − qn2mjT (n1 6= n2)

⇒ pn1miT − pn2miT = qn1mjT − qn2mjT (n1 6= n2)

⇒ (pn1 − pn2)miT = (qn1 − qn2)mjT (n1 6= n2) (24)
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FIGURE 10. The necessary and sufficient condition of the existence of tj2.

However, pn1 − pn2 < mj; qn1 − qn2 < mi because of
p = 0, 1, 2 · · ·mj − 1; q = 0, 1, 2 · · ·mi − 1. The Eq. (24) is
in contradiction with the premise that mi and mj are coprime.
Therefore, arbitrary two pmiT −qmjT (q = 0, 1, 2 · · ·mi−1)
are not equal when q is different, and each pmiT −qmjT (q =
0, 1, 2 · · ·mi − 1) can be equal to a different one of s = rT
(r = 0, 1, 2 · · ·mi − 1).
If the time that the two different partitions are released

simultaneously is not zero, it means that all the release time
points of the two partitions in MTF ′ = LCM (miT ,mjT ) are
as following.

Pi ti, ti + miT , · · · ti + (mj − 1)miT , ti + mjmiT

Pj tj, tj + mjT , · · · tj + (mi − 1)mjT ,︸ ︷︷ ︸
MTF ′

tj + mjmiT

s = ti + pmiT − (tj + qmjT ) will equal to mod[(r +
a)T/mi](r = 0, 1 · · ·mi − 1; a = {0, 1 · · ·mi − 1}), which
is always equal to s = rT (r = 0, 1, 2 · · ·mi − 1) no matter
what a is.

Therefore, we can obtain the necessary and sufficient con-
dition of the existence of tj2 using the case that the first release
time of the two partitions Pi and Pj are both zero.

As Fig. 10(a) shows, Eq. (25) will be obtained when
pmiT − qmjT = 0.

Ci + Cj ≤ miT (25)

As Fig. 10(b) shows, Eq. (26) will be obtained when
pmiT − qmjT = rT (r = 1, 2 · · ·mi − 1).{

Ci ≤ (mi − r)T
Cj ≤ rT

(26)

Therefore, the necessary and sufficient condition of the
existence of tj2 is the intersection of Eq. (25) and Eq. (26),
which is Cm ≤ T (m = i, j). The available tj2 can be
obtained based on the following formula when the condition
is satisfied.

tj2 = { tj2
∣∣ ti+nimiT = tj2 + njmjT , ni = 0, 1, 2 · · ·mj − 1;

nj = 0, 1 · · ·mi − 1; 0 ≤ tj2 ≤ mjT − Cj} (27)

⇒ 0 ≤ tj2 = ti + nimiT − njmjT ≤ mjT − Cj (28)

Assume that ti is equal to 0, and 0 ≤ tj2 = nimiT−njmjT ≤
(mj−1)T has the same solution with Eq. (28). We can obtain
tj2 = bT (b = 0, 1, 2 · · ·mi − 1) when ti = 0. Therefore,
the general tj2 can be calculated as following.

tj2 = ti + bT



b = 0, 1 · · ·mj − 1 ti ∈ [0,T − Cj]
b = 0, 1 · · ·mj − 1− n
ti ∈ [nT − Cj, (n+ 1)T − Cj]
(n = 1, 2 · · ·mi − 2)

b = 0, 1 · · ·mj − 1− mi − 1
ti ∈ [(mi − 1)T − Cj,miT − Ci − Cj]

b = 0, 1 · · ·mj − 1− mi
ti ∈ [miT − Ci − Cj,miT − Ci]

(29)

Therefore, tj can be obtained by using Eq. (20).

d: mi AND mj HAVE COMMON FACTOR GREATER THAN
ONE AND mi IS NOT A DIVISOR OF mj
Assume that R is the greatest common divisor of mi and mj.
mi/R and mj/R are coprime. Therefore, the analysis is the
same as the case that mi and mj are coprime when T is
replaced by RT , mi is replaced by mi/R and mj is replaced
by mj/R.

Therefore, the schedulability of the arbitrary two partitions
can be obtained based on the above analysis.

3) INTERRUPTION ANALYSIS FOR ARBITRARY
PARTITION SET
Since, MTF ′ = LCM (miT ,mjT ) is a divisor of MTF =
LCM (m1T ,m2T ,m3T , · · · ,mnT ), the two partitions Pi and
Pj in a partition set5 = {P1,P2,P3 · · ·Pn} can be scheduled
without interruptions inMTF if they are schedulable without
interruptions in MTF ′. Moreover, the runtime operation in
MTF will periodically repeat for the two partitions Pi and Pj
and the repetition period is exactly MTF ′.
For an arbitrary partition set 5 = {P1,P2,P3 · · ·Pn},

we first sort the partitions in ascending order of periods.
Then, we set the first release time of partition P′1 in the
ordered partition set 5′ = {P′1,P

′

2,P
′

3 · · ·P
′
n} as zero,

and analyze the schedulability without interruptions for
P′1 and P′2. If they are non-schedulable, other partitions do
not need to be considered, and we can derive that the parti-
tion set is non-schedulable without interruptions. Otherwise,
we conduct the available time analysis for partition P′3 with
partition P′i(i < 3) based on the available first release time
of P′2 obtained in the previous analysis. For example, if the
available first release time of P′2 is t2, we first analyze the
schedulability of P′3 and P

′

1, and we can obtain the available
t ′3 if they are schedulable. Then we analyze the schedulability
of P′3 and P

′

2 based on t2. Assume that the available time for
P′3 exists and can be denoted by t

′′

3 . If the intersection of t
′

3 and
t ′′3 is nonempty, we can derive that P′1, P

′

2, P
′

3 is schedulable
without interruptions. In addition, we can also obtain the
available time for P′2 and P′3. Similar to the above process,
we can analyze more partitions one by one until all partitions
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FIGURE 11. The impact of α.

are considered. The partition set5 = {P1,P2,P3 · · ·Pn} can
be scheduled without interruptions if the intersection of all
available time is nonempty.

The above analysis process will be terminated once the
partition set can be determined to be non-schedulable. How-
ever, every two partitions will be analyzed if the partition
set is schedulable without interruptions. Therefore, the time
complexity of the analysis is O(n2) in the worst situation.

B. OPTIMIZATION STRATEGY FOR THE PARTITION
SCHEDULING PROBLEM
1) OPTIMIZATION SCHEDULING STRATEGY FOR
SCHEDULABLE PARTITIONS WITHOUT INTERRUPTIONS
For the schedulable partitions without interruptions, there
will be many FRTs that can make the number of interrup-
tions equal to zero, Therefore, the two optimization goals
proposed in section II.B cannot be used to determine the best
FRT . Sheikh et al. [12] use a coefficient α to evaluate FRT .
The maximum α determines the maximum idle time that is
allocated to each partition as much as possible based on their
execution time. The impact of α is shown in Fig. 11.

Assume there are two partitions and their periods are
the same, namely m1T = m2T . Therefore, MTF =

LCM (m1T ,m2T ) = m1T = m2T . If t1 = 0, t2 ∈ [C1,m2T−
C2]. Based on the definition, we can obtain the following
equations.

α1 = t2/C1 (30)

α2 = (MTF − t2)/C2 (31)

α = max
t2

(min(α1, α2)) (32)

α will reach the maximum value when t2 make α1 = α2,
and the idle time is fairly allocated to the two partitions based
on their execution time.

Sheikh et al. [12] also proposed a best-response algorithm
inspired by the non-cooperative game theory to optimize α.
The algorithm is effective to dispatch the schedulable parti-
tions without interruptions.

2) OPTIMIZATION SCHEDULING STRATEGY FOR
NON-SCHEDULABLE PARTITIONS WITHOUT INTERRUPTIONS
Many optimization algorithms, like genetic algorithm (GA)
[25], [26], tabu search (TS) [27], [28], neural networks (NN)
[29], particle swarm optimization (PSO), can be used in our
optimization framework to optimize the partition sets which
are not schedulable without interruptions. Among the many

optimization algorithms, PSO has been widely used to solve
various optimization problems because of its simplicity and
fast convergence. In this paper, we use PSO in the opti-
mization framework to optimize the first release time of all
partitions. We improve the update strategy for the particles
beyond search space and round all particles before calculating
the fitness value in PSO to optimize FRT for searching the
minimum NI and SET in partition scheduling.

a: THE ENCODING AND THE INITIALIZATION OF THE
PARTICLES
For a partition set 5 = {P1,P2,P3 · · ·Pn}, the first release
time of the partition with the minimum period is zero. There-
fore, the optimization of FRT is (n − 1) dimensional. The
value of partition Pj’s first release time is an arbitrary real
number between 0 and mjT − Cj. As a result, each parti-
cles’ position xi can be indicated by [t1, t2, t3 · · · tn−1] when
partition Pn has the minimum period and the range of tj is
[0,mjT − Cj]. Based on the number of partitions, we choose
different numbers of particles constituted by candidate solu-
tions. In addition, the initial position x∗j(0) and velocity v∗j(0)
of the j-th dimension for all particles are chosen randomly
from [0,mjT − Cj]. Each particle updates velocity and posi-
tion based on its own previous experience and the swarm’s
experience. The update formulas and the parameters are the
same as standard PSO [21]–[23], [30], [31].

b: THE PROCESS OF PARTICLES BEYOND SEARCH SPACE
To prevent the particles from flying beyond the boundary and
obtaining invalid candidate solutions, the appropriate limits
for the velocity and the position need to be set. The maximum
velocity is chosen as following.

v∗jmax = (mjT − Cj)/2 (33)

Here, v∗jmax is the maximum velocity of the j-th dimension
of all particles, If v∗j(t) is greater than v∗jmax , set v∗j(t) as
v∗jmax . If v∗j(t) is less than −v∗jmax , set v∗j(t) as −v∗jmax .
For the positions of the particles, the maximum x∗jmax is
(mjT − Cj), and the minimum x∗jmin is zero. If x∗j is beyond
its interval in any dimension, the position for this particle will
be chosen randomly from all candidate solutions.

c: THE ROUNDING FOR CANDIDATE SOLUTIONS
In general, the case in which some partitions are released
simultaneously can decrease the number of interruptions
compared to the case inwhich all partitions are released at dif-
ferent time based on the definition of the interruption. How-
ever, if the updated positions are directly used to calculate the
two fitness values, the influence caused by the fractional part
will make the simultaneous release almost impossible. For
example, assume that there are three partitions in a partition
set, and the first release time is [0, 5.1, 10.7]. The release
time of the partitions P2 and P3 will never be simultaneous
if the three partitions’ periods are integers. The experiment
results in section IV.B also show that rounding is at least an
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effective measure to obtain better candidate solutions with the
partitions which are released at the same time.

d: THE CALCULATION OF FITNESS VALUES
The runtime operation of all partitions in MTF needs to
calculate NI and SET . Here, we take the partition set shown
in Table 1 with FRT1 as an example to show the analysis
method of the runtime operation of all partitions. In Table 1,
the period ofP1 is the smallest one among the three partitions,
whichmeans the first release time ofP1 is zero. The execution
time of P1 is 5ms, and there are no other releases in the
time-interval [0, 5ms]. Therefore, MTF allocates [0, 5ms] to
partitionP1. Similar to the above process, [5ms, 11ms] will be
allocated to partition P2. The closest release for all partitions
is at 12ms, and there are no partitions, which are interrupted
before, waiting for execution in [11ms, 12ms]. Therefore,
[11ms, 12ms] will be the idle time without execution for
all partitions. Similar to the above process, [12ms, 19ms]
and [20ms, 25ms] will be allocated to partitions P3 and P1,
respectively. The second execution of partition P2 begins at
35ms. However, the third release of partition P1 is at 40ms.
Based on the execution rules, the MTF will allocate the time
window to the new coming partition. Therefore, partition
P1 will interrupt the execution of partition P2 at 40ms. The
third execution of partition P1 will be finished at 45ms, when
the second execution of partition P2 will continue for 1ms.
Therefore,MTF will allocate [35ms, 40ms] and [45ms, 46ms]
to partition P2 and [40ms, 45ms] to partition P1. Similar to
the above process, we can obtain the runtime operation of all
partitions in MTF .

Therefore, NI and SET for the example shown
in Table 1 with FRT1 can be calculated by Eq. (4) and Eq. (6).

Based on the above analysis, the algorithm to calculate NI
and SET for an arbitrary partition set 5 = {P1,P2,P3 · · ·Pn}
with the arbitrary FRT [t1, t2, t3 · · · tn] is shown as the pseudo
code in algorithm 1. In step 5, RT means the release time
points for each partition. In step 9, If some release time points
for different partitions are equal, sort them in descending
order of corresponding periods. In step 10, WET saves the
time that all interrupted partitions need to finish their own
complete execution. For example, if partition Pi with Ci =
5ms is interrupted by other partition’s release when Pi has
been executed exactly for 3ms, the corresponding position of
WET will be 5 − 3 = 2ms. If a partition is not interrupted,
the corresponding position of WET is zero.

IV. EXPERIMENT AND ANALYSIS
In this section, we first introduce the simulation environment
that we have developed. Using the simulation environment,
we conduct the experiments to show the function of rounding
all candidate solutions in each iteration. Then, we conduct
the scheduling experiments for different partition sets which
cannot be scheduled without interruptions based on our pro-
posed scheduling model, and give the scheduling results and
the comparisons with other models. In addition, we also
analyze the properties of the optimization problem and show

Algorithm 1 Calculate NI and SET for Arbitrary Partition
Set With Arbitrary FRT = [t1, t2, t3 · · · tn]
Input: [t1, t2, t3 · · · tn], [C1,C2,C3 · · ·Cn] and

[m1T ,m2T ,m3T · · ·mnT ]
Output: NI and SET
1: MTF = LCM (m1T ,m2T ,m3T · · ·mnT )
2: for i = 1→ n do
3: Ni = MTF/miT
4: for j = 1→ Ni do
5: RT [ij] = ti + (j− 1) ∗ miT
6: end for
7: end for
8: SN =

n∑
i=1

Ni

9: RT = SortAscending(RT11 · · ·RT1N1 · · ·RTnNn )
10: WET = [0, 0, 0 · · · 0]
11: for i = 1→ SN do
12: s = the first number of the subscript for RT [i]
13: if RT [i+ 1]− RT [i] <= Cs then
14: Assign time window [RT [i],RT [i + 1]] to parti-

tion s
15: WET [s] = RT [i+ 1]− RT [i]− Cs
16: else
17: Assign time window [RT [i],RT [i + 1]] to parti-

tion s
18: Sort WET in ascending order of each partition’s

next release time
19: Execute the corresponding partitions in the order

WET in RT [i+ 1]− RT [i]− Cs
20: update the corresponding WET
21: end if
22: end for
23: NI = STW − SN

24: SET = SAC +
n∑
i=1

kiCi

the rationality of the improved PSO. Finally, we summarize
the experiments and conclusions.

A. SIMULATION ENVIRONMENT
IMA runs in the embedded operation system named
VxWorks, which abides by the basic software framework of
the industry standard ARINC 653. However, the scheduling
model and the algorithm are the underlying work of the
embedded development platform. As a result, they are gener-
ally not open as universal interfaces and we cannot load our
proposed model and algorithm in ARINC653 directly.

For the construction of the simulation environment, a soft-
ware language named Architecture Analysis and Design Lan-
guage (AADL) [32] is popular in the field of embedded
systems. However, it also does not have the open inter-
face or software development kit (SDK) available. The
scheduling models it can simulate are limited, and it cannot
achieve the schedulability analysis and optimization of the
model and the algorithm.
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TABLE 2. Optimal solutions with rounding for the partition set in Table 1.

TABLE 3. Optimal solutions without rounding for the partition set
in Table 1.

In order to verify our model and optimization frame-
work, we construct a simple simulation platform based on
MATLAB environment and MySQL database ourselves. Our
simulation platform has a more convenient interface to sup-
port the addition of the running rules of the scheduling
model. First, it calculates the execution time-windows of
all partitions by simulating the system operation. Then,
it can further calculate the schedulability of the system
and the fitness values of the candidate solutions. Besides,
the optimization algorithm is an independent module and
has a common interface in the platform. We can embed any
improved algorithms based on the primary platform. Overall,
our simulation platform is an integrated system that sup-
ports model addition, algorithm optimization and the graph-
ical display of simulation results. We can use it to verify
the validity of the model, calculate the schedulability of
the system and analyze the performance of the algorithm.
For the following experiments, the simulation platform runs
in a computer with Intel(R) Core(TM) i5-4590T CPU and
4GB RAM.

B. THE FUNCTION OF ROUNDING
We use the partition set shown in Table 1 to demonstrate
the function of rounding. The number of particles is 50 and
the number of iterations is 200. The optimization results
with rounding the positions in PSO are shown in Table 2,
while the optimization results without rounding is shown
in Table 3. A total number of 10 runs for each case are
conducted.

There exist more than one optimal solutions with the same
NI and SET whether we round the candidate solutions or not.

TABLE 4. All release time points of all partitions in Table 1 when
FRT = [0,10,25].

TABLE 5. All release time points of all partitions in Table 1 when
FRT = [0,15,27].

FIGURE 12. The gantt chart of the runtime operation for all partitions
with FRT = [0,10,25].

For each optimal solution, the candidate solutions in its small
neighborhood are worse than it when we round the candidate
solutions in each iteration. However, there may exists a small
neighborhood with the same fitness values as the optimal
solution when we do not execute rounding. For example,
NI 6= 1, SET 6= 81 when FRT equals to [0, 10.1, 20] and
[0, 15, 27] can still make NI = 3, SET = 92. Based on the
two fitness values, the scheduling results with rounding are
much better than those without rounding. We use [0, 10, 25]
and [0, 15, 27] to explain the reasons. As Table 4, Table 5,
Fig. 12 and Fig. 13 show, the case that some partitions are
released simultaneously in MTF can decrease NI and SET .
Because of the fact that all the release time points of the
partition with the minimum period are integers, rounding all
candidate solutions is a good strategy to make more partitions
released simultaneously.

The candidate solutions may still obtain real numbers
along with the evolution of the particles when integer-number
encoding is used, and they also need to be rounded. Therefore,
we adopt the real-number encoding for FRT directly, and
round the candidate solutions before calculating the fitness
values.
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FIGURE 13. The gantt chart of the runtime operation for all partitions
with FRT = [0,15,27].

TABLE 6. Partition parameters of the three partitions.

FIGURE 14. The gantt chart of the runtime operation in MTF for all three
partitions in Table 6.

C. THE ANALYSIS OF THE PROPOSED MODEL BASED
ON DIFFERENT SETS
1) AN EXAMPLE TO SHOW THE INFEASIBILITY OF
COMPLEX PARTITION PERIODS
The complex partition periods, which means mi and mj are
coprime, will cause the complicated operation of all parti-
tions. It is more likely to cause a large number of interrup-
tions and sharply reduce the schedulability of the system.
Besides, the optimization will also be much more difficult.
For the three partitions shown in Table 6, the optimiza-
tion result is presented in Fig. 14. The complex periods
of all partitions cause very complex operation for the IMA
system. Therefore, the simple periods of all partitions are
more reasonable when designing partition parameters. In fact,
the periods of all partitions are even equal in the real
IMA system.

TABLE 7. Partition parameters of the three partitions.

TABLE 8. Partition parameters of the four partitions.

TABLE 9. Partition parameters of the five partitions.

TABLE 10. Optimal solutions obtained by the improved PSO for the
partition set in Table 7.

2) EFFECTIVENESS ANALYSIS OF ALGORITHM AND MODEL
The following three experiments with three, four, and five
partitions are conducted to illustrate the effectiveness of our
proposed partition scheduling model and the optimization
framework. The partition parameters are shown in Table 7,
Table 8 and Table 9. The numbers of the particles are 10,
50 and 50, respectively, for the three experiments, and the
numbers of iterations are 50, 100 and 200, respectively.

Each experiment runs 10 times and the optimal solutions
are shown in Table 10, Table 11 and Table 12. From Table 10,
we can find that NIs and SETs of the 10 runs are the same,
while FRTs are different. It means that there exist more than
one solutions which can make NI equal to 2 and SET equal to
117ms. Therefore, FRTs of the 10 runs are equivalent. Taking
[0, 10, 11] as an example, the scheduling gantt chart is shown
in Fig. 15. From the results shown in Table 11, all NIs are
equal to 1, while SETs are not the same. 70% of the 10 runs
reach the optimal solutions searched by the improved PSO.
The scheduling gantt chart using an optimal FRT which is
equal to [0, 10, 20, 3] is shown in Fig. 16. In Table 12, The
searched optimal solution is [0, 14, 10, 20, 24]. However,
the ratio of obtaining the optimal solution in the ten runs
is only 10%. The improved PSO has an obvious decline
in performance along with the increasing of the particle’s
dimension. The scheduling gantt chart for the partition set
in Table 9 with FRT = [0, 14, 10, 20, 24] is shown in Fig. 17.
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TABLE 11. Optimal solutions obtained by the improved PSO for the
partition set in Table 8.

TABLE 12. Optimal solutions obtained by the improved PSO for the
partition set in Table 9.

FIGURE 15. The gantt chart of the runtime operation for all partitions
with FRT = [0,10,11].

In order to prove that our improved PSO used in the frame-
work can obtain at least a sub-optimal solution, we search
all the integer solutions in each experiment. The comparison
results of the solutions obtained by our improved PSO and
traversal search for the partition sets in Table 7, Table 8 and
Table 9 are shown in Table 13.

From Table 13, the best one of the optimization results
of our improved PSO for all three experiments is the same
with the corresponding result obtained by the traversal
search. It means that the improved PSO can obtain the optimal
solution within the integer range for the three partition sets.
Therefore, the improved PSO can at least obtain the sub-
optimal solutions.

FIGURE 16. The gantt chart of the runtime operation for all partitions
with FRT = [0,10,20,3].

FIGURE 17. The gantt chart of the runtime operation for all partitions
with FRT = [0,14,10,20,24].

TABLE 13. The optimization results obtained by improved PSO and
traversal search.

3) THE COMPARISON OF OUR MODEL AND THE TWO
EXISTING MODELS WE COMBINED
The above three partition sets shown in Table 7, Table 8 and
Table 9 will be non-schedulable based on the model proposed
by Sheikh et al. [12], which is combined in our model to
deal with the schedulable partition sets without interruptions.
Therefore, our combined model retains the reliability for the
schedulable partition sets without interruptions, and extends
the schedulability for the partition sets which cannot be
scheduled without interruptions because of the rationality of
the interruptions in the model we proposed. In order to make
a comparison with the model proposed by Gui et al. [15],
we do not optimize FRT and choose FRTs randomly for the
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FIGURE 18. The gantt chart of the runtime operation for all partitions
with FRT = [0,8,15].

FIGURE 19. The gantt chart of the runtime operation for all partitions
with FRT = [0,9,15,27].

FIGURE 20. The gantt chart of the runtime operation for all partitions
with FRT = [0,5,8,18,22].

three partition sets, such as [0, 8, 15], [0, 9, 15, 27] and
[0, 5, 8, 18, 22]. The scheduling gantt charts for them are
shown in Fig. 18, Fig. 19 and Fig. 20.

The detailed comparison results for the three experiments
are shown in Table 14. Sheikh et al.’s model cannot schedule
the partition sets shown in Table 7, Table 8 and Table 9,

TABLE 14. The comparison results for our model and the two existing
models.

and the results in Table 14 for it are empty. Compared with
Gui et al.’s model, though our model has higher time cost,
the smaller NIs, the smaller SETs and the simpler scheduling
charts prove that our model is better. For the partition sets
which are schedulable without interruptions, our scheduling
model can retain the advantages of Sheikh et al.’s model. For
the partition sets which are not schedulable without interrup-
tions, our scheduling model makes significant improvement
in the reliability of the processor’s operation. Therefore, our
model has a wider application scope for arbitrary partition
sets.

D. ANALYSIS FOR THE PROPERTIES OF
THE CANDIDATE SOLUTIONS
The partition set shown in Table 7 is used as an example to
illustrate the properties of the search space for the partition
scheduling problem. There are three partitions and the search
space is two-dimensional. We traverse all integer candidate
solutions. NI and SET of the optimal FRT are equal to 2 and
117ms, respectively. In order to combine NI and SET , we use
Z to denote the new fitness value which can be calculated by
the following formula.

Z (FRT ) = −(NI(FRT ) ×W + SET(FRT )) (34)

Here, W is equal to 100. Through traversing all candidate
solutions, the maximum and the minimum SET are equal
to 167ms and 104ms, respectively, without considering NI .
The difference is 63ms, which is less than 100ms. Therefore,
the influence from SET will not change the dominant function
of NI . In addition, we set NI as 9 and SET as 170ms for
FRT which cannot make the partitions schedulable. They are
greater than the maximum NI = 8 and the maximum SET =
167ms, respectively. The fitness values of FRTswhich cannot
make the partition set schedulable are less than that of FRTs
which can make the partition set schedulable. Fig. 21 shows
the fitness landscape of the partition set shown in Table 7 and
Fig. 22 reflects the top view of Fig. 21.

From Fig. 21 and Fig. 22, we can obtain the following
properties of the partition scheduling problem based on our
model.

(1) There may exist more than one optimal solutions for
the partition scheduling problem. However, the number of
the optimal solutions is still very small compared with the
search space. For the partition set in Table 7, there are four
optimal solutions while all integer candidate solutions are
23 × 32 = 736. In addition, we also traverse all integer
candidate solutions for the partition sets shown in Table 8 and
Table 9. The optimal solutions are 10 and 4, respectively,
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FIGURE 21. The fitness landscape of the partition set shown in Table 7.

FIGURE 22. The top view of Fig. 21.

while all integer candidate solutions are 26×25×34 = 22100
and 16 × 27 × 35 × 51 = 771120, respectively. Moreover,
the optimal solutions have a decentralized distribution in the
search space.

(2) The search space is very rough, and there aremany local
optimal solutions for the partition scheduling problem. There-
fore, improving the diversity of the optimization algorithm
is critical to searching the optimal solutions. The operation
that updates the positions randomly for the particles beyond
the search space is an effective measure to prevent premature
termination for the improved PSO.

(3) The fitness landscape for the partition scheduling prob-
lem lacks gradient information of the neighborhood. This
characteristic also can be seen from the definition of the inter-
ruption. If we just change a partition’s first release time for a
certain partition set, NI and SET for the scheduling scheme
will not change unless the change for the partition’s first
release time goes beyond the critical point. Therefore, the tra-
ditional optimization algorithms, such as gradient descent
algorithm, branch and bound algorithm, will be inappropriate
for this problem. However, themeta-heuristic algorithms, like
GA, PSO and TS, will be suitable to optimize the scheduling
scheme.

E. SUMMARY OF THE EXPERIMENTS
Overall, the core idea of our model is that interruption is
allowed but it should be avoided as much as possible. The
model inherits the advantages of the two existing mod-
els. Compared with Sheikh et al.’s model [12], our model
improves the schedulability. It also improves reliability com-
pared with Gui et al.’s model [15]. From the scheduling
results and the gantt charts, it can be concluded that our
model can deal with arbitrary partition sets whether they are
schedulable without interruptions or not, and give at least
a near-optimal scheduling scheme. Therefore, our model is
more effective than the existing models.

In addition, we also propose an optimization framework
based on our model. We first analyze the schedulability for
the partition sets without interruptions. For the partition set
which cannot be scheduled without interruptions, we use
improved PSO in the framework to show the complete opti-
mization process and the details that need to be consid-
ered. In the improved PSO, the rounding for all positions
of the particles is a critical process to search the optimal
solutions, including the case in which different partitions
can be released at the same time. In addition, the random
assignment for the particles beyond the search space guaran-
tees the fairness of all candidate solutions and improves the
diversity of the optimization algorithm. From the scheduling
charts shown in Fig. 15, Fig. 16 and Fig. 17, it is clear that
the obtained solutions can achieve the scheduling goals of
minimizing the number of interruptions and all partitions’
run time when the partition sets cannot be scheduled without
interruptions. Therefore, we can conclude that the optimiza-
tion framework for our model is effective.

V. CONCLUSIONS
This paper focuses on the partition scheduling problem in
IMA systems. Compared with the existing partition schedul-
ing models, our proposed model retains the execution stabil-
ity for the partition sets which can be scheduled without inter-
ruptions. In addition, our model increases the schedulability
and ensures the execution stability as much as possible for the
partition sets which can only be scheduled with interruptions.
In the optimization framework, we first determine whether
they are schedulable without interruptions for arbitrary par-
tition sets. Furthermore, we use two different optimization
strategies to obtain a good partition scheduling scheme based
on the result of schedulability analysis. Therefore, the shedu-
lability analysis is an essential contribution for the partition
scheduling problem. The experiment results show that the
solutions obtained by the improved PSO, which is used as
an example in the framework, meet the goals of the model.
In summary, the scheduling model that we proposed are more
reasonable than the two existing models and the optimiza-
tion framework that we proposed for our model is effective.
In addition, other meta-heuristic algorithms can be embedded
into the framework as the solution method.

Future work will focus on the scheduling model, schedul-
ing algorithms and scheduling platform. For the scheduling
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model, more practical constraints, like the jitter uncertainty,
should be considered in our proposed scheduling model.
In addition, the partition scheduling model can be extended
for multi-core processors. With regard to scheduling algo-
rithms, other kinds of meta-heuristic algorithms can be con-
sidered based on our proposed solution platform and to find
the best performance. For the scheduling platform, we have
developed one based on Matlab and MySQL. The platform
will be ported to the Web environment for increasing the
generality and information sharing. Finally, the application
of the proposed partition scheduling model and scheduling
process in real IMA systems is a problem deserving further
research.
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