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ABSTRACT OF DISSERTATION 
 

 

EFFECT OF HYDROGEN EXPOSURE ON THE ELECTRONIC AND OPTICAL 
PROPERTIES OF INSULATING TITANATES 

 
Hydrogen exposure of insulating d0-titanates, such as SrTiO3 (STO), has 

displayed the formation of intriguing conducting states.  These conducting states form 
through the use of forming gas (N2/H2) annealing or hydrogen plasma exposure, where 
hydrogen gas is exposed to high energy microwaves.  The exposure of STO to hydrogen 
causes metallic conductivity due to the introduction of hydrogen cations on some of the 
oxygen sites.  However, the optical properties of this hydrogen-exposed STO have not 
been well-studied. Further, Ba0.5Sr0.5TiO3 (BST), an insulating dielectric, also shows 
changes in its conductivity upon hydrogen exposure.  Unlike STO where the conductivity 
of the hydrogen-exposed material has been characterized, the optical, electronic, and 
transport properties of hydrogen exposed BST have not been studied.  Thus, by studying 
hydrogen-exposed BST and STO, our understanding of the effects of hydrogen on 
insulators can be enhanced.   

In the first study, the effects of the exposure of insulating dielectric BST thin 
films to a hydrogen plasma is presented.  These BST thin films are deposited on GdScO3 
(GSO) substrates via Pulsed Laser Deposition (PLD).  After deposition, the thin films are 
exposed to a hydrogen plasma.  Just five minutes of hydrogen plasma exposure is enough 
to induce conductivity in the BST thin film.  This conducting state is dominated by the 
interplay of disorder and strong electron correlations introduced during hydrogen 
exposure.  Further, the optical properties indicate the formation of a transparent 
conductor, as the introduction of disorder and strong correlations has not changed the 
optical properties of the BST thin film in the visible spectrum.  BST demonstrates an 
example of a new type of transparent conductor that utilizes large effective mass carriers 
to generate conductivity.   

In the second study, the effects of hydrogen doping on the surface of STO is 
explored.  The conducting heterointerface that forms between PLD-deposited thin films 
of LaAlO3 (LAO) on STO is used as the standard to explore this hydrogen surface 
doping.  The optical, electronic, and transport properties of water-leached and buffered 
hydrofluoric acid (BHF) etched heterointerfaces are characterized and compared.  The 
recently developed water-leaching method is compared with the well-known BHF 
etching method, which has been shown to unintentionally dope the STO surface with 
fluorine and hydrogen.  Both methods generate single-terminated atomically flat STO 



substrate surfaces that are ideal for heterointerface formation.  After deposition, the 
optical, electronic, and transport properties of both the water-leached and BHF-etched 
heterointerfaces show no meaningful difference, demonstrating that water-leaching may 
also unintentionally dope the STO substrate surface with hydrogen.  However, these 
results confirm that water-leaching generates a high-quality conducting heterointerface 
without the safety concerns of BHF. 
 
KEYWORDS: Thin film titanates, pulsed laser deposition, plasma hydrogenation, 

transparent conductor, conducting heterointerface 
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CHAPTER 1. INTRODUCTION 

1.1 Perovskite oxides  

Perovskite oxides have attracted substantial attention due to their unique electronic 

and magnetic properties1.  These materials have been shown to host strongly-correlated 

transparent conducting states2, interfacial conductivity3-6, interfacial superconductivity7, 

interfacial ferromagnetism8,9, as well as electronic, magnetic, and orbital reconstructions 

that have led to novel conducting states10-17.  The key for many of these interesting 

properties lies in the perovskite structure (ABO3, where B is typically a transition metal) 

as shown in Fig. 1.1a.  

 

Figure 1.1 Typical perovskite ABO3 structure and the crystal field splitting due to it.  a, 
typical cubic perovskite unit cell.  The A site atoms (green) sit on the corners.  The B site 
(blue) transition metal sits at the center of the unit cell in an octahedron formed by the 
face-centered oxygens (red).  The crystal field splitting of the d orbitals is shown in b. 

   

A typical perovskite has an A site atom (typically an alkaline earth or a rare earth metal) 

that sits on the corners of the unit cell.  The B-site transition metal sits in the center of the 

unit cell, with the oxygen atoms positioned in the face centers.  Thus, the B-site atom is 

a b

Δ

eg

t2g
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in an octahedral coordination with the surrounding oxygen atoms.  This coordination 

leads to the crystal field splitting of the 5-fold degenerate d-orbitals into the 3-fold 

degenerate t2g and 2-fold degenerate eg orbitals, as shown in Fig. 1.1b1.  As we further 

take correlation effects due to the on-site Coulomb interaction into account, we are able 

to observe three adjustable degrees of freedom: charge, spin, and orbital18.  By tuning the 

structural properties through the introduction of lattice strain, chemical doping, or the use 

of the broken symmetry at an interface, these degrees of freedom can be tuned to unlock 

novel physical properties18.  Chemical doping can be accomplished via chemical 

substitution (either A site or B site) or the introduction of oxygen vacancies1,19-22.  Thus, 

many unique properties and states are available for exploration, which adds to the 

potential applicability of these materials in current and future devices18.  

 In our current investigation, we will focus on the properties of d0-titanates.  

Particularly, we will consider a novel doping method on a high dielectric constant d0-

insulator (Ba(1-x)SrxTiO3)23 and the effects of surface preparation on the conducting 

heterointerface between a d0-titanate (SrTiO3 (STO)) and a band insulator (LaAlO3 

(LAO))24.                 

1.1.1 d0-titanates   

d0-titanates are perovskite oxides where the B-site transition metal is titanium (Ti) 

and the A-site atom is an alkaline earth metal (typically Ca, Sr, or Ba).  These materials 

can take a cubic (e.g. STO) or tetragonal (e.g. BaTiO3) crystal structure at room 

temperature.  In a simple ionic picture, the d-orbital is empty and forms the conduction 

band above a fully-occupied O2p orbital valence band1.  Thus, Ti simply becomes a Ti4+ 

cation, while the alkaline earth metal is a cation with a charge of 2+.  Depending on the 
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size of the A-site cation, these systems can show lattice distortions along one of the 

crystalline axes.  These distortions can cause the titanium B-site cation to shift from the 

center of the perovskite structure, generating a net polarization of the crystal.  This 

polarization can be harnessed via the application of an external electric field, displaying 

itself as a ferroelectric moment, where an increased static dielectric constant can be 

observed1,25.   

A large static dielectric constant is not just limited to the tetragonal titanates 

however.  In general, d0-titanates tend to have a very high static dielectric constant1.  

Figure 1.2 displays the effects of a large dielectric constant on the transport properties of 

hydrogen plasma reduced STO.  
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Figure 1.2 Sheet resistance and mobility for a 5 minute plasma hydrogenated (001)-
oriented SrTiO3 substrate.  The sample displays metallic conductivity at low temperatures 
in a and an increasing mobility as temperature decreases in b. 
 

At low temperatures, the carrier mobility increases by about 2 orders of magnitude (See 

Fig. 1.2b), which follows the STO static dielectric constant as it changes from ~300 at 

300 K to ~18000 around 2 K26.  This reduced sample also displays metallic conductivity 

as shown in Fig. 1.2a.  The large dielectric constant in STO follows from the easy 

accommodation of oxygen vacancies through the generation of shear planes in response 
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to the addition of these vacancies.  These large dielectric constants come from the fact 

that these perovskite titanates are all close to a structural transition from a cubic to a 

tetragonal phase, which occurs for BTO at a finite temperature and for STO at 0 K1.  This 

increase of the dielectric constant can be observed optically by the softening of the 

transverse optical phonon mode.  As the phase transition is approached, the frequency of 

this mode tends to zero and the dielectric constant of the material is greatly increased, 

screening impurities as shown schematically in Fig. 1.31,25,27.   

 

Figure 1.3 How an increasing static dielectric constant can increase carrier mobility.  a 
shows the static dielectric constant (εr) versus temperature.  TC indicates the ferroelectric 
transition temperature.  b illustrates the screening of impurities (green dots) as εr 
increases.  At low εr, electrons are scattered by charged impurities (lower panel, red 
curve).  At high εr, charged impurities are more screened and electrons are scattered less, 
leading to a high carrier mobility near the ferroelectric phase transition.   
 

This increase in the dielectric constant can also be observed by the increase of carrier 

mobility in Fig. 1.2b.  As the phase transition is approached the increased dielectric 

constant screens impurities and the conducting electrons are less scattered, which 

Low εr

e-

High εr

e-

TC

a b

Temperature
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increases the mobility as shown schematically in Fig. 1.3b1,28.  Thus, carrier doping of 

high dielectric constant d0-titanates can lead to unique high mobility conducting states.        

1.1.2 Effects of electron doping on d0-titanates  

As a d0-titanate is electron doped, the system can undergo an insulator to metal 

transition, as illustrated in Fig. 1.4.  

 

Figure 1.4 Schematic representation of doping a d0-titanate. a, typical insulating d0-
titanate before carrier doping.  Note that the filled valence band is O 2p in character and 
the unfilled conduction band is Ti 3d in character1.  b, after adding impurities, an 
impurity state (ED) forms, raising the Fermi level (EF).  c, as more impurities are added, 
scattering of charged impurities leads to Anderson localization and the conductivity is not 
metallic.  d, at a high enough doping level, electrons enter the conduction band and 
metallic conductivity occurs.  
 

First, as impurities are added to the system, an impurity band (ED) forms between the 

filled valence band (VB, O 2p for a d0-titanate) and the unfilled conduction band (CB, Ti 

3d), shifting the Fermi energy (EF) of the system to sit between this filled impurity band 

and the unfilled conduction band (See Fig. 1.4b).  Then, as even more impurities are 

added to the system, the impurity band begins to overlap with the conduction band, as 

shown in Fig. 1.4c.  However, strong disorder in a doped compound leads to Anderson 
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localization; the conducting electrons interact with charged impurity sites, which limits 

the overall conductivity of the system22,29-31.  Finally, at a high enough doping level, the 

impurity band broadens and electrons enter the conduction band of the material, 

completing the transition to the metallic state, as shown in Fig. 1.4d1.  Note that Fig. 1.4 

ignores the effects of strong electron correlations.  The implications of these effects on 

the insulator-to-metal transition will be discussed in Chapter 2. 

An interesting question can be raised at this point. Namely, is conductivity easily 

generated via doping in all d0-titanate materials?  If we consider only the single-occupied 

A-site compounds SrTiO3 and BaTiO3, the answer appears to be yes1,19-22,32-37.  Both 

materials are quite susceptible to chemical doping and oxygen vacancy-based 

conductivity.  However, despite the high room temperature dielectric constant in BTO 

(~103)38, there has been no report of an enhanced mobility33-37.  Regardless, we would 

expect the mixed A-site perovskite Ba(1-x)SrxTiO3 to similarly form a conducting or 

semiconducting state using conventional doping techniques such as the addition of 

oxygen vacancies or cation doping.  It would be advantageous to generate conducting 

Ba(1-x)SrxTiO3 as the dielectric constant tends to be about an order of magnitude higher 

(~104) than BTO at room temperature38,39.  However, no measurable dc conductivity is 

introduced via conventional means of doping23,40.  Thus, we can ask, are there any doping 

methods that can cause metallic conductivity in Ba(1-x)SrxTiO3?       

1.2 Exposure of insulating oxides to hydrogen    

Hydrogen exposure of d0-titanates is another method of generating semiconducting 

and conducting states1,19,20,41-45.  Here, oxide materials are typically exposed to forming 
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gas (N2/H2 or Ar/H2) at high temperatures46,47, vacuum sealed with a metal hydride (e.g. 

CaH2) and heated42-45, exposed to H+ cations via ionic liquid gating48-50, or exposed to a 

hydrogen plasma51,52.  Two of these methods have been employed on Ba(1-x)SrxTiO3, 

leading to intriguing results as discussed in Subsections 1.2.1 and 1.2.251,53-57.   

Following the discussion of Ba(1-x)SrxTiO3, we consider a second question.  

Namely, can unintentional surface hydrogen doping influence the surface and interfacial 

properties of a single crystal substrate24?  The mechanisms of this unintentional surface 

doping will be discussed in Subsection 1.2.3. 

1.2.1 Forming gas annealing of insulating oxides   

Forming gas annealing is typically used in the semiconductor industry to 

eliminate the interfacial traps present in the Si-SiO2 system58,59.  The typical processing 

temperature for forming gas annealing is around 400 °C with an anneal lasting a few 

hours46,57-59.  The effects of forming gas on oxides has been investigated for some 

time19,20,41.  Recently, the performance of Ba(1-x)SrxTiO3 capacitors after forming gas 

exposure has been investigated53-55.  These materials have been considered as a new high-

k dielectric for use in the semiconductor industry39,60-62.  Thus, it is important to 

determine whether Ba(1-x)SrxTiO3 capacitors can withstand a forming gas anneal.  

However, it has been shown that forming gas decreases the static dielectric constant of 

Ba(1-x)SrxTiO3 and increases the observed leakage current in all reported cases53-56.  

Further, oxygen annealing following forming gas annealing does not restore the degraded 

capacitor back to its original performance, although there is some improvement54,56.  

However, an investigation of the structural, transport, and optical properties after 

hydrogen exposure has not been conducted.  Thus, a thorough study of the properties of 
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these hydrogen exposed Ba(1-x)SrxTiO3 systems is a must to understand the unique effects 

of hydrogen, as these effects appear to be different from what is observed in STO and 

BTO19,20,41,42.  However, forming gas annealing is a process that takes a few hours.  After 

a few hours of exposure, most oxides turn completely black, which can make it difficult 

to fully understand the optical properties46.  Thus, we seek a short-term hydrogen 

exposure process to explore the effects in Ba(1-x)SrxTiO3.          

1.2.2 Hydrogen plasma exposure of insulating oxides   

Hydrogen plasma exposure provides a short-term method of hydrogen exposure.  A 

microwave plasma chamber is shown with a schematic of its operation in Fig. 1.5. 

 

Figure 1.5 Plasma hydrogenation chamber (left) with a schematic of how materials are 
hydrogenated (right). 
 

As shown in the schematic, the process gas enters from the bottom of the chamber while 

high energy microwaves are generated from the top of the chamber.  The interaction 

between the microwaves and H2 causes a plasma containing H2, H+, and free electrons to 

form.  Finally, a sample can be removed from the hydrogen plasma chamber within a few 

minutes to an hour of processing, as opposed to cool-down time of about 12 hours after 

forming gas annealing.  All plasma hydrogenation experiments in this work have been 
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conducted by Allen D. Reed (STO single crystal) and Namal Wanninayake 

(Ba0.5Sr0.5TiO3 thin film) in Prof. Doo Young Kim’s laboratory in the Chemistry 

Department at the University of Kentucky.  Further discussion of the plasma 

hydrogenation conditions used for the SrTiO3 single crystal and Ba0.5Sr0.5TiO3 thin films 

can be found in the Methods section of Chapter 2.   

Previous short-term hydrogen plasma exposure shows similar results in Ba(1-

x)SrxTiO3 as compared with forming gas annealing.  Morito et al. has shown that 10 

minutes of exposure to a CH4 plasma can have similar effects on the leakage current of 

Ba(1-x)SrxTiO3 capacitors as compared with forming gas annealed samples51.  Short-term 

exposure of Ba(1-x)SrxTiO3 can allow for an investigation of the optical properties.  For 

example, just 5 minutes of hydrogen plasma exposure generates a metallic optical 

response in the transmittance of the single crystal STO substrate in Fig. 1.6, while not 

drastically reducing the optical transparency in the visible region. 
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Figure 1.6 Transmittance of a (001)-oriented SrTiO3 substrate before and after 5 minutes 
of plasma hydrogenation.  The hydrogenated substrate shows a metallic Drude response, 
which agrees with the metallic conductivity measured in Fig. 1.2a.  The asterisks (*) at 
1.7, 2.4 and 2.9 eV indicate the optical absorptions due to oxygen vacancies19,20.     
 

These optical properties can be well-explained by an oxygen vacancy interpreteation19,20.  

However, for Ba(1-x)SrxTiO3, this explanation may not be completely valid since the 

insulating properties of Ba(1-x)SrxTiO3 capacitors are not fully restored upon oxygen 

annealing51,54.  Thus, a study of the effects of hydrogen plasma exposure on the optical 

and conducting properties of Ba(1-x)SrxTiO3 can shed light on the conducting mechanism 

present in a high dielectric constant insulator.  The results of this study are presented in 

Chapter 2.  

1.2.3 Unintentional surface hydrogen doping of insulating oxides  

Through the use of wet surface preparation methods, the crystal surface of oxides 

can be unintentionally doped with hydrogen.  This surface hydrogen has been observed in 



12 
 

(001)-oriented SrTiO3 substrate surfaces via the most common preparation method: 

buffered hydrofluoric acid etching (BHF-etching)63.  This method is intended to generate 

an atomically flat TiO2-terminated surface.  The formation of this surface is necessary to 

generate the 2 dimensional electron gas (2DEG) present at the heterointerface of LaAlO3 

and SrTiO3 and generate a high quality single-terminated substrate surface3,63.  However, 

BHF-etching has been shown to unintentionally dope the STO substrate surface with 

hydrogen and fluorine, potentially changing the interfacial electronic properties64-66.  

Hatch et al. has shown that the unintentional fluorine doping generates a deep trap state, 

while unintentional hydrogen doping generates a shallow state that may contribute to the 

interfacial electronic properties64.  Further, Hatch et al. goes on to show that by using 

boiling water to prepare the surface, only some oxygen vacancies form64.  Hence, they go 

on to claim that the best single-terminated STO surface is generated by exposure to 

boiling water67.  However, a room temperature Deionized-water leaching (water-

leaching) method has been shown to also generate a single-terminated atomically flat 

STO substrate surface68.  Thus, a comparison between the BHF-etching method and the 

water leaching method using the conducting heterointerface between LaAlO3 and SrTiO3 

may shed light on the effects of surface hydrogen and fluorine doping24.  The results of 

this study are presented in Chapter 3. 

1.3 d0-titanate thin films and heterointerfaces  

In order to investigate the fundamental effects of hydrogen plasma exposure and 

unintentional surface hydrogen doping, we will consider thin films and thin film 

heterointerfaces, respectively.  In the case of hydrogen plasma exposure, considering a 

thin Ba(1-x)SrxTiO3 film will allow us to fully quantify the optical and transport properties 
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of this system.  Further, thin films are often incorporated in many current commercially 

available devices, allowing for the discussion of potential applications of these 

materials18,69.  Thus, we will consider two thin film systems to investigate the questions 

that have been indicated above: Ba0.5Sr0.5TiO3 deposited on single-terminated atomically 

flat GdScO3 substrates70 and LaAlO3 deposited on single-terminated SrTiO3 

substrates63,68.    

1.3.1 Titanate thin films: Ba0.5Sr0.5TiO3  

Thin films of Ba0.5Sr0.5TiO3 (BST) are deposited via pulsed laser deposition 

(PLD) on (110)-oriented GdScO3 substrates in the PLD chamber shown in Fig. 1.7.   

 

Figure 1.7 Pulsed laser deposition (PLD) vacuum chamber (left) with a schematic of PLD 
(right).  As laser light is focused on a target, a plume of target material is generated that 
deposits a thin film on the heated substrate. 
 

Thin films have been deposited by using two single crystal SrTiO3 and BaTiO3 targets.  

The stoichiometry has been controlled by alternating each target every half-unit cell.  

After deposition, thin films are exposed to a hydrogen plasma using the hydrogen plasma 

chamber in Fig. 1.5.  After exposure, the structural, electronic, and optical properties 

have been measured and interpreted.  The results of this data and its implications on our 
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understanding of ionic disorder and strong-electron correlations introduced by non-

equilibrium hydrogen plasma exposure are discussed in Chapter 223.  

1.3.2 Heterointerfaces: LaAlO3/SrTiO3  

Conducting heterointerfaces of LaAlO3/SrTiO3 (LAO/STO) are generated via 

pulsed laser deposition of a LaAlO3 (LAO) target simultaneously on two SrTiO3 

substrates.  The STO substrates are cut from the same larger substrate in order to ensure 

the uniformity of the substrate surface.  The only difference between the two substrate 

halves is the preparation method: one substrate is prepared using BHF-etching63, while 

the other is prepared using water leaching68.  After deposition, the structural, electronic, 

and optical properties of the heterointerfaces have been measured and interpreted.  The 

results of this data and its implications on our understanding of surface doping of wet 

etched substrates is discussed in Chapter 324.     

1.3.3 Thin film deposition via Pulsed Laser Deposition (PLD)   

Pulsed Laser Deposition (PLD) is a physical vapor deposition technique utilized to 

generate high-quality thin films and heterointerfaces.  As shown in Fig. 1.7, a vacuum 

chamber (base pressure: ~10-8 Torr) is used to allow the laser ablated target material (See 

the schematic in Fig. 1.7) to be deposited on the substrate.  The beam is optically steered 

and focused from a KrF excimer laser (λ = 248 nm) and is directed at a stoichiometric 

single crystal target.  The laser plume generated from the interaction of the laser and the 

target contains the constituents of the target material less some oxygen, which is lost due 

to the energy of the laser plume.  Thus, a background oxygen partial pressure (pO2) is 

employed in order to ensure proper thin film stoichiometry, with typical values being 

between 10-6 Torr (oxygen deficient) up to about 250 milliTorr (mTorr).  The substrate 
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upon which the thin film is deposited is maintained at high temperatures, typically around 

500-800 °C.  The optimal value of the substrate temperature usually corresponds to about 

half of the melting temperature of the thin film being deposited.  A properly heated 

substrate increases the probability that a high quality epitaxial thin film will form.   

After deposition, the thin film is cooled either at the same, higher, or lower pO2 as 

has been used during deposition.  This value is adjusted to influence the oxygen content 

of the thin films.  By cooling at a low pO2, oxygen vacancies will be incorporated in the 

thin film, which will most likely cause metallic or semi-metallic conductivity.  By 

cooling at the same or higher pO2, these oxygen vacancies can be limited so that the 

deposited thin film will be insulating.  The thin films deposited and discussed in the 

following chapters have both been deposited at 700 °C with deposition pressures ranging 

from 10-6 Torr to 10 mTorr and cool-down pressures ranging from 10 mTorr to 1 Torr.  A 

detailed discussion on the design and operation of the vacuum chamber displayed in Fig. 

1.7 is located in Appendix A.2.  

Copyright © John Gerard Connell 2019 
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CHAPTER 2. TRANSPARENT CONDUCTING STATES INDUCED BY HYDROGEN-PLASMA  

Transparent conducting oxides (TCO) are essential materials for advanced optoelectronic 

devices such as display panels and solar cells.  One example is tin doped indium oxide, 

i.e. Sn: In2O3, the most commonly-used TCO, which shows high electronic conductivity 

with optical transparency.  However, doping with heavy ions such as tin has been a 

fundamental barrier in enhancing the properties of TCO’s due to strong impurity 

scattering.  Here, we report a new method for generating TCO’s: applying the lightest 

element (hydrogen) to insulating dielectric oxides.  By exposing Ba0.5Sr0.5TiO3 (BST) 

thin films to hydrogen plasma for a few minutes, we have formed an optically-

transparent, electrically-conducting state.  We have found that this transparent conducting 

state is induced by the confluence of strong electron-correlation and ionic disorder.  The 

discovery of this new transparent conducting state opens new opportunities not only for 

device applications but also for understanding the behavior of strongly-correlated 

electrons in non-equilibrium states.  

2.1 Introduction  

Transparent conducting oxides (TCO’s) are indispensable materials for modern 

optoelectronic components, such as display panels and solar cells69,71.  TCO’s should 

exhibit high electronic conductivity (σ > 104 S/m) with good optical transparency (> 80 

%) in the visible photon energy region (1.6 – 3.0 eV)72.  The most widely-used TCO’s, 

e.g. Sn: In2O3 and (In, Ga)2ZnO7, satisfy this property72,73.  However, heavy ion doping in 

typical TCO materials introduces strong impurity scattering, limiting their electronic 

conductivities73.  Moreover, the ever increasing cost of indium has driven the search for 
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new methods of creating transparent conducting materials.  Unfortunately, this effort has 

proven to be a formidable task because most undoped oxides are good insulators, whose 

conducting phases require at least a few percent of heavy ion doping. This amount of 

doping generates a huge amount of impurities compared to conventional ppm doping in 

semiconductors, which introduces inevitable optical absorption bands in the visible 

spectrum19,20.  Recently, metallic oxides such as SrVO3 (SVO) have been proposed to 

create transparent conducting states due to the large effective mass of strongly-correlated 

electrons that can lower the plasma frequency below 1.6 eV for optical transparency2.  

Hence, it would be ideal to find a way to utilize the benefits of the large effective mass of 

strongly correlated electrons with minimal impurity scattering in the continued search for 

new TCO’s.    

In this chapter, we report the first observation of unprecedented transparent 

conducting states generated in a dielectric oxide thin film by doping hydrogen, the 

lightest element, in a thermodynamically non-equilibrium manner.  Through the 

utilization of hydrogen plasma exposure, insulating Ba0.5Sr0.5TiO3 (BST) thin films 

maintain good transparency in the visible region while becoming conducting.  Our 

approach of short-term (i.e. for a few minutes) hydrogen plasma exposure differs from 

conventional plasma hydrogenation, forming gas annealing, metal hydride reduction, and 

ionic liquid gating where samples are typically exposed for a few hours42,44,45,47-51,53-57.  

While long-term hydrogen exposure can reduce optical transparency, short-term 

hydrogen plasma exposure preserves good optical transparency as identical to the as-

deposited, insulating BST thin films in the visible spectra (See Fig. 2.6b).  Moreover, we 

have discovered that as hydrogen plasma exposure time increases, the BST thin films 
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undergo a phase transition from a dielectric band insulator, to a disordered insulator, and 

finally to a transparent conductor.  This phase transition is driven by the confluence of 

strong-electron correlation and ionic disorder induced by the hydrogen plasma exposure.  

These results demonstrate that short-term hydrogen plasma exposure of insulating 

dielectrics can generate novel transparent conducting states that will pave the way to 

develop new optoelectronic materials.   

2.2 Methods 

We have synthesized epitaxial Ba0.5Sr0.5TiO3 thin films by pulsed laser deposition. 

Ba0.5Sr0.5TiO3 (BST) thin films are deposited on (110)-oriented GdScO3 substrates, which 

has an in-plane lattice match of (+0.50 %), using a KrF excimer laser with a laser fluence 

of 1.6 J/cm2 at 700 °C with an oxygen partial pressure of 10 mTorr.  We have synthesized 

epitaxial BST thin films on (110)-oriented GdScO3 substrates, using pulsed laser 

deposition74.  Thin films are deposited from BaTiO3 and SrTiO3 targets that are switched 

after each half-unit cell of deposition until a 75 nm thick film is deposited.  The thin films 

are cooled with a 1 Torr oxygen background to ensure proper oxygen stoichiometry.  The 

(110)-oriented GdScO3 substrates are prepared by annealing in air at 1000 °C for one 

hour, which produces a single-terminated atomically-flat substrate surface as confirmed 

by atomic force microscopy (Park Systems) (See Fig. 2.12)70.  The amorphous thin films 

have been deposited with a thickness of about 20 nm on glass at room temperature (~25 

°C) using the same laser conditions and pO2 used for the crystalline samples.  The 

crystallinity and thickness of the thin films is confirmed by X-ray diffractometry (Bruker 

D8 Advance) (See Fig. 2.11).  BST thin films are plasma hydrogenated from 2-5 minutes 

(1 hour for amorphous samples) using a microwave plasma CVD system (Seki Diamond 
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Systems, AX5010, 2.45 GHz), which generates a plasma using 300 W microwaves in a 

H2 partial pressure of 10 Torr.  Scanning transmission electron microscopy is conducted 

using an FEI Titan SEM.  The optical transmittance and reflectivity of the thin films is 

measured using a grating type spectrophotometer for energies from 6 eV to 0.5 eV and a 

Fourier Transform Infrared Spectrometer from 50 meV to 0.6 eV.  Resistivity and 

transport measurements to 2 K are conducted using a physical property measurement 

system (Quantum Design PPMS) with a maximum magnetic field of 14 T.  Chemical 

states present in the as-deposited BST, hydrogenated BST, and oxygen deficient BST thin 

films have been examined via X-ray photoelectron spectroscopy (XPS) using a Thermo 

Scientific K-Alpha photoelectron spectrometer.  XPS measurements have been performed 

by focusing monochromatic Al K-α radiation (energy of 1486.6 eV) onto each sample 

with a spot diameter of 400 µm.    

2.3 Conducting properties of hydrogen plasma exposed BST thin films 

Hydrogen plasma exposure introduces carriers to the BST thin films, which 

become conducting after about 5 minutes of exposure.  Figure 2.1a shows the 

temperature- dependent resistivity of the BST thin films exposed to hydrogen plasma 

from 2 to 5 minutes.    
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Figure 2.1 The effects of plasma hydrogenation on the electronic and structural properties 
of BST thin films.  a, Resistivity vs. temperature for BST thin films plasma hydrogenated 
from 2-5 minutes.   b, HAADF STEM of the 2 minute and 5 minute hydrogenated thin 
films.  The black arrows indicate the approximate size of the amorphous regions.  The 
white scale bar is 15 nm.  c, RSM scans about the GSO 260O

 reflection for the as-
deposited, hydrogenated, and oxygen deficient thin films.  As the resistivity decreases, 
the size of the amorphous layer increases with longer hydrogen plasma exposure.  Both 
the as-deposited and oxygen deficient thin films show no measurable conductivity.   

 

Samples with a hydrogen plasma exposure time shorter than 2 minutes remained highly 

insulating, disallowing reliable dc-resistivity measurements.  Note that the 2 and 3 minute 

hydrogenated thin films show some reduced resistivity but exhibit insulating behavior 

(dρ/dT < 0).   As hydrogenation time increases to 5 minutes, the BST thin film displays 
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correlated metallic behavior32,75,76.  Coinciding with this decrease in resistivity, the 

scanning transmission electron microscopy images in Fig. 2.1b reveal the formation of an 

amorphous-like layer from the surface, which increases in thickness as the exposure time 

is increased.  Further evidence of this amorphous-like layer is shown by the large diffuse 

spread of the (024) BST thin film peak in the x-ray reciprocal space maps shown in Fig. 

2.1c.  The formation of similar amorphous-like layers has been previously observed for 

hydrogenated TiO2 nanoparticles, which enhances their photocatalytic properties 

significantly46,52,77,78.  Similarly, we have found that this amorphous-like layer contributes 

to the conducting properties of all hydrogenated BST thin films, as discussed in the 

following Subsection.  

2.3.1 Conducting properties of insulating BST 

Plasma hydrogenated insulating Ba0.5Sr0.5TiO3 (BST) thin films show differeing 

behavior at high and low temperatures.  The insulator fits for the 2 minute hydrogenated, 

3 minute hydrogenated, and amorphous 1 hr. hydrogenated thin films are displayed in 

Fig. 2.2.    



22 
 

 

Figure 2.2 Properties of insulating BST thin films.  Resistivity vs. temperature for the 2 
minute, 3 minute, and amorphous 1 hour hydrogenated BST thin films.  The black lines 
are fits of the resistivity (See Table 1). 
 

All three samples could not be fit using a simple single insulating fit of any form.  At 

high temperatures, all 3 samples can be fit by the following weak localization model,  

 𝜌𝜌(𝑇𝑇) = 𝜌𝜌0 − 𝛼𝛼𝑇𝑇3 4� + 𝛽𝛽𝑇𝑇3 2�  (2.1) 

where ρ0, α, and β represent the remnant resistance, weak localization, and 

electron-boson interaction contributions, respectively75.  As shown in Table 2.1, as 

hydrogenation time increases, weak localization can be fit to lower temperatures.      
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Table 2.1 Resistivity fits for BST hydrogenation times at various temperatures. 

Hydrogenation Time Temperature range (K)  Fitting Function 𝜌𝜌(𝑇𝑇) (Ω•cm)2 

2 minutes 
200 ≤ 𝑇𝑇 ≤ 300 

 

50 ≤ 𝑇𝑇 < 200 

𝜌𝜌0 − 𝛼𝛼𝑇𝑇3/2 + 𝛽𝛽𝛽𝛽3/4 
 

(1 𝜌𝜌0exp (𝑇𝑇𝐺𝐺 𝑇𝑇⁄ )⁄ + 1 𝜌𝜌1⁄ )−1 

3 minutes 
100 ≤ 𝑇𝑇 ≤ 300 

 

2 ≤ 𝑇𝑇 < 100 

𝜌𝜌0 − 𝛼𝛼𝑇𝑇3/2 + 𝛽𝛽𝛽𝛽3/4  
 

(1 𝜌𝜌0√𝑇𝑇exp ((𝑇𝑇𝑀𝑀 𝑇𝑇)⁄ 1 4⁄ )⁄ + 1 𝜌𝜌1⁄ )−1 

5 minutes 2 ≤ 𝑇𝑇 ≤ 300 𝜌𝜌0 − 𝛼𝛼𝑇𝑇3/2 + 𝛽𝛽𝛽𝛽3/4 

1 hour1 
125 ≤ 𝑇𝑇 ≤ 300 

 

75 ≤ 𝑇𝑇 < 125 

𝜌𝜌0 − 𝛼𝛼𝑇𝑇3/2 + 𝛽𝛽𝛽𝛽3/4 
 

𝜌𝜌0exp (𝑇𝑇𝐺𝐺 𝑇𝑇⁄ ) 

1 Amorphous thin film (20 nm thickness)  
2 Fit curves are the black lines in Figure 2.2 and Figure 2.3 (5 minute sample) 

 

After 5 minutes of hydrogen plasma exposure weak localization fits the entire 

temperature region to 2 K (See Figure 2.4).    

The insulating samples show rich behavior at low temperatures.  The 2 minute 

hydrogen plasma exposed and 3 minute hydrogen plasma exposed samples low 

temperature behavior cannot be fit by a single insulator.  In fact the samples are fit by,  

𝜌𝜌(𝑇𝑇) = (
1

𝜌𝜌0𝑒𝑒
𝑇𝑇𝐺𝐺
𝑇𝑇

+
1
𝜌𝜌1

)−1 (2.2) 

for the 2 minute sample where 𝑇𝑇𝐺𝐺 = 𝐸𝐸𝐺𝐺
2𝑘𝑘𝐵𝐵

, and 

𝜌𝜌(𝑇𝑇) = (
1

𝜌𝜌0√𝑇𝑇𝑒𝑒
𝑇𝑇𝑀𝑀
𝑇𝑇

1/4 +
1
𝜌𝜌1

)−1 (2.3) 
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for the 3 minute sample where 𝑇𝑇𝑀𝑀 = 18
𝑘𝑘𝐵𝐵 𝑁𝑁(𝐸𝐸𝐹𝐹) 𝑎𝑎3

, and N(EF) and a are the density of states 

at the Fermi level and the localization length, respectively32,79,80.  Both samples require 

the addition of a linear insulator in parallel, which we have dubbed ρ1 that will be further 

discussed below.  Adding multiple insulator fits in parallel, such as the Arrhenius or Mott 

models, does not lead to a fit of our data (not shown).   Finally, the low temperature 

behavior of the amorphous hydrogen plasma exposed sample can be fit by a single 

insulator of the form   

𝜌𝜌(𝑇𝑇) = 𝜌𝜌0𝑒𝑒
𝑇𝑇𝐺𝐺
𝑇𝑇  (2.4) 

From the insulator fits, we find that the 2 minute hydrogen plasma exposed sample 

has a very narrow gap of about 67.6 meV and the 3 minute hydrogen plasma exposed 

sample displays a TM value of 0.71 K.  This small value indicates that the 3 minute 

sample is close to the insulator-to-metal transition, which is likely due to a large 

N(EF)30,81.  Further, the transition from an “Arrhenius-like” to a “Mott-like” fit indicates 

that as hydrogenation time increases, the electronic band gap continues to close, as 

indicated by the optical conductivity in Figure 2.832.  It is noteworthy that both fits 

require the addition of a constant parallel resistor whose resistivity is denoted as ρ1.  The 

inclusion of this parallel resistivity suggests that both the amorphous-like and crystalline 

regions contribute to the observed transport properties (See Fig. 2.1b, particularly the 2 

minute hydrogen plasma exposed sample and Fig. 2.10).   

The amorphous BST thin film requires 1 hour of hydrogen plasma exposure to 

show a measurable conductivity.  The low temperature region displays a narrow gap with 

a value of 52.9 meV.  This gap is narrower than the 2 minute hydrogen plasma exposed 
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sample, which is most likely due to the long hydrogen plasma exposure time.  The reason 

for the longer time may be related to the fact that the amorphous thin film receives ionic 

disorder during PLD deposition (See the Methods seciton for depostion conditions), 

whereas the crystalline thin films receive ionic disorder from hydrogen plasma exposure 

(See Fig. 2.1 and Fig. 2.10b).   

2.3.2 Transport properties of conducting BST    

Turning our attention to the 5 minute hydrogen plasma exposed thin film, we can 

fit the resistivity using a weak localization model for all measured temperatures (See Fig. 

2.4), demonstrating that the ionic disorder introduced by hydrogen plasma exposure is a 

contributing factor to the observed conductivity46.  

The temperature-dependent resistivity of the 5 minute hydrogen plasma exposed 

BST thin film displays weak localization behavior (See Fig. 2.4), which is a disorder 

driven effect due to quantum interference of the conducting carriers at defect sites82.  This 

method of conductivity suggests that the ionic disorder introduced by hydrogen plasma 

exposure is a contributing factor to the observed electronic transport (See Fig. 2.1a and 

2.1b)46.  Further measurements under magnetic fields suggest that ionic disorder and the 

Coulomb interaction between carriers play an important role in the hydrogen plasma 

exposed BST thin films.  To differentiate between weak localization and anti-

localization, the magnetoresistance (MR) of the 5 minute hydrogenated thin film is 

measured as shown in Fig. 2.3.  



26 
 

 

Figure 2.3 Magnetoresistance (MR) for the conducting 5 minute plasma hydrogenated 
BST thin film.  The low temperature MR from 2 K to 25 K is plotted above the MR from 
50 K to 150 K. At 2 K, 5 K, and 10 K the MR is fit by 𝑀𝑀𝑅𝑅 = ( 1

𝐵𝐵𝐻𝐻2 + 1

𝐶𝐶𝐻𝐻1
2�
)−1, due to 

strong electron correlations and high-field spin-splitting in the BST thin film.  From 25 K 
to 75 K, the MR is fit by 𝑀𝑀𝑅𝑅 = 𝐴𝐴𝐻𝐻2 due to strong electron correlations.  Above 75 K, the 
MR is negative indicating weak localization in the BST thin film due to disorder.  The 
transition from a negative to positive MR is due to the opening of the Coulomb gap due to 
electron-electron interactions. 
 

From 150 K to 100 K, the MR is negative, which is due to the asymmetrical phase shift 

between forward and backscattered carriers that suppresses the interference, i.e., weak 

localization, and results in a decrease in the resistance under magnetic fields82.  From 75 

K to 25 K, the magnetoresistance is positive and can be fit by the familiar Lorentz 

behavior, i.e. 𝑀𝑀𝑅𝑅 = 𝐴𝐴𝐻𝐻2, where A is a constant.  At 10 K and below, the MR is given by 

𝑀𝑀𝑅𝑅 = ( 1
𝐵𝐵𝐻𝐻2 + 1

𝐶𝐶𝐻𝐻0.5)−1, where B and C are constants.  The low temperature behavior is 
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due to the Coulomb interaction between electrons (𝐻𝐻2) with spin-splitting (𝐻𝐻0.5) 

manifesting below 10 K at high fields, as shown in Fig. 2.4. 

 

Figure 2.4 Observation of the Coulomb gap in 5 minute hydrogenated BST.  a, resistivity 
vs. temperature for the 5 minute hydrogen plasma exposed BST thin film.  The black line 
is the weak localization fit (See Table 2.1).  b, the maximum magnetoresistance (MR) vs. 
temperature.  The crossover from a negative to a positive MR occurs at the same value as 
the increase in resistivity shown in a.  This crossover indicates the opening of the 
Coulomb gap.  The plotted MR values are taken at +14 T. 
 

As shown above around 75 K, a transition from a negative to a positive 

magnetoresistance (MR) is observed (See Fig. 2.4b and Fig. 2.3).  This transition 

corresponds to the transition from metallic to insulating behavior as shown in Fig. 2.4a.  

Due to the presence of a large number of conducting carriers (See Fig. 2.5a), this gap is 

likely due to the Coulomb interaction between electrons (Coulomb gap), which has been 
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observed in heavily-doped semiconductors at low temperatures31,83,84.  Similar 

observations have been seen in heavily-doped semiconductors such as Si:P (Ref. 83).     

The appearance of the Coulomb interaction between electrons agrees well with 

our Hall measurements that give a carrier concentration of n = 1.67×1022 cm-3, which is 

about one electron per titanium ion (See Fig. 2.5a).   

 

Figure 2.5 Transport properties for 5 minute hydrogenated BST.  a, Hall resistance vs. 
magnetic field (T) for the 5 minute hydrogen plasma exposed BST thin film.  The black 
line is an eye guide demonstrating the similarity of the Hall data across varying 
temperatures.  b, carrier mobility vs. temperature.  Note that the mobility is constant with 
temperature.  The dotted red line is an eye guide.   
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Very little variance in the Hall resistance is observed as the temperature increases.  From 

fitting the slope of our Hall resistance, we extract an average carrier concentration of 𝑛𝑛 =

1.67 × 1022 cm-3, which is greater than one carrier per unit cell (75 nm thick film).  

Figure 2.5b displays the carrier mobility after 5 minutes of hydrogen plasma exposure.  

On average, the mobility is 𝜇𝜇 = 0.183 cm2•V-1•s-1.  This low mobility is likely due to the 

large number of carriers and ionic disorder present in the thin film.   

2.4 Optical properties of hydrogen plasma exposed BST thin films   

The hydrogen plasma exposed BST thin films are optically transparent in the 

visible region (Fig. 2.6b).  Figure 2.6a shows that the 5 minute hydrogen plasma exposed 

BST thin film exhibits a clear Drude response due to conducting carriers.  
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Figure 2.6 Visible light transmission of the BST thin films.  a, transmission spectra of the 
as-deposited, oxygen deficient, and 5 minute hydrogenated BST thin films.  The GSO 
substrate spectra (gray curve) is shown for comparison.  The gray region indicates the 
apparent onset of Drude conductivity.   b, photograph comparing the various BST thin 
films and GSO substrate from a. Notice the increased absorption of the oxygen deficient 
thin film as compared to the hydrogen plasma exposed thin film.  The hydrogenated, as-
deposited, and GSO substrate show little difference in visible light transmission. 
 

However, its plasma frequency is lower than the onset of the visible region (𝜔𝜔𝑝𝑝 <

12905.02 cm-1), allowing the samples to be as transparent as the as-deposited thin film or 

bare substrates (Fig. 2.6b).  It is noteworthy that although hydrogen plasma exposure 

induces ionic disorder and strongly-correlated electrons, it does not deteriorate the optical 
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transparency in the visible region.  Thus, hydrogen plasma exposure does not add light-

absorbing impurity bands or defects such as oxygen vacancies19,20,46,77,78 (Fig. 2.6a).  

However, this is not the case for the amorphous BST thin films on glass, as shown in 

Figure 2.7.    

 

Figure 2.7 Transmittance of the amorphous BST thin films deposited on glass.  a, 
transmission spectra of the as-deposited and 1 hour hydrogenated amorphous BST thin 
films.  The glass substrate spectra (gray curve) is shown for comparison.  b, photograph 
comparing the amorphous BST thin films and glass substrate from a.  The hydrogenated 
thin film shows a difference in visible light transmission as compared to the as-deposited 
thin film. 
 

Before hydrogenation, a 20 nm thick film of amorphous BST is nearly as transparent as 

the borosilicate glass substrate (See Fig. 2.7b).  After 1 hour of hydrogenation, the thin 
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film is very absorbing in the visible region and displays insulating behavior at low 

temperatures (See Fig. 2.2 and Table 2.1). 

 

From the transmittance data, we can estimate the TCO Figure of merit (FOM) as 

𝛷𝛷 = 𝑇𝑇10

𝑅𝑅⧠
= 1.0 × 10−3 Ω-1 where T is the transmittance at 550 nm and R⧠ is the sheet 

resistance (See Supplementary Information for further calculation details)85.  The FOM of 

our samples has a similar order of magnitude with that of SVO, as expected for a TCO 

with strongly correlated electrons, despite the ionic disorder introduced during hydrogen 

plasma exposure2,46,52,77,78. The comparison with other TCO FOM’s is listed in Table 2.2.   

 
Table 2.2 Figure of Merit values for various TCO’s 

Material Transmittance4  Sheet Resistance (Ω/⧠)6 Figure of Merit (Ω-1) 
Hydro. BST (5 min. 75 nm)1 0.8935 323 1.0 × 10−3  

SrVO3 (50 nm) 2 0.6255 7 1.3 × 10−3 
Cd2SnO4 (1 μm)3 0.84 3.1 5.2 × 10−2 
In:SnO2 (2 μm)3 0.83 2.4 7.1 × 10−2 

1 This work   
2 L. Zhang et al. Nat. Mat. 15, 204 (2016).  
3 G. Haake Journ. Appl. Phys. 47, 4086 (1976). 
4 Value taken at 550 nm  
5 See Section 2.4 for calculation details 
6 Value taken at Room Temperature 

 

The FOM of our samples has a similar order of magnitude with that of SVO, as 

expected for a TCO with strongly correlated electrons, despite the ionic disorder 

introduced during hydrogen plasma exposure2,46,52,77,78.  
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As hydrogen plasma exposure time increases, the optical spectra indicate that this 

BST thin film system undergoes phase transitions. The optical conductivity (𝜎𝜎1(𝜔𝜔)) of 

the thin films is presented in Fig. 2.8.   

 

Figure 2.8 Optical conductivity for the as-deposited, oxygen deficient, 3 minute 
hydrogenated, and 5 minute hydrogenated samples (bottom to top).  The ▼ indicates the 
transition generated by conducting quasiparticles added y hydrogen plasma exposure.  
The red dot in the 5 minute hydrogenated sample data at 0 eV is the room temperature 
conductivity.  The gray region indicates the Drude response of the 5 minute hydrogenated 
thin film.  The * peak is the added mid-gap state due to the extra defects present in the 
oxygen deficient thin film from deposition conditions.  The insets are band diagrams 
extrapolated from the optical conductivity data. 
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The optical parameters are obtained by fitting the transmittance and reflectivity of the 

thin films, which are presented in Fig. 2.9.   

 

Figure 2.9 Optical parameters for hydrogenated BST thin films.  a, normalized 
transmittance (black lines) and reflectivity (red lines) for the 5 minute hydrogenated, 3 
minute hydrogenated, oxygen deficient, and as-deposited BST thin films.  The 
transmittance and reflectivity are normalized to 1=100 % intensity (fully transmitting or 
fully reflecting).  b, index of refraction (n) for the thin films.  c, extinction coefficient (k) 
for the thin films. d, real part of the dielectric constant (ε1) for the thin films.  The range 
of 𝜔𝜔𝑝𝑝

√𝜀𝜀∞
 is shown by the bracket for the 5 minute sample.  e, imaginary part of the 

dielectric constant (ε2) for the thin films.   
 

The as-deposited BST thin film shows only the charge-transfer transition, from O2p to 

Ti3d, above 3.5 eV.  The oxygen deficient BST thin film also shows a broad peak (*) 

centered around 1.7 eV, which is due to a mid-gap state near the Ti3d conduction band46.  

It is noteworthy that despite this mid-gap state, the oxygen deficient BST thin film 

remains very insulating.  As a BST thin film undergoes hydrogen plasma exposure for 3 

minutes, a low energy excitation (▼) forms.  This peak red shifts after 5 minutes of 

hydrogen plasma exposure.  The previously mentioned Drude response (See Fig. 2.6a) 
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with a nearby excitation is indicative of electron-electron interactions at atomic sites that 

are broadened by electron hopping, indicating quasiparticle based conductivity that 

demonstrates the presence of a correlated metallic state30,32.  From the Drude response of 

the 5 minute hydrogen plasma exposed sample, we can extract the effective carrier mass 

using the carrier concentration from the Hall measurements (n = 1.67×1022 cm-3, see Fig. 

2.5a).  We find the effective carrier mass to be between 3.5𝑚𝑚𝑒𝑒 and 15.2𝑚𝑚𝑒𝑒 using 𝜔𝜔𝑝𝑝2 =

4𝜋𝜋𝜋𝜋𝑒𝑒2

𝑚𝑚∗ , where 𝜔𝜔𝑝𝑝 ranges from 16937.64 cm-1 to 8065.54 cm-1.  We give a range for the 

plasma frequency due to the uncertainty generated by the broad ▼ peak as observed in 

Fig. 2.8.  Our range of effective mass is similar to other strongly-correlated and heavily 

electron doped titanates, i.e. Sr(1-x)LaxTiO3 (from 2.0𝑚𝑚𝑒𝑒 to about 10𝑚𝑚𝑒𝑒 as x ranges from 

0.1 to 1) and hydrogen reduced SrTiO3 (4.9𝑚𝑚𝑒𝑒 when n = 5.3×1020 cm-3)21,86.  Thus, the 

enhanced effective mass of the conducting carriers in the hydrogen plasma exposed BST 

thin films combined with the MR observations (See Fig. 2.3) confirm that the carriers are 

strongly-correlated. 

2.5 XPS properties of BST thin films  

The X-ray Photoemission spectra (XPS) of our BST thin films display the effects of 

hydrogen plasma exposure on the electronic properties of our BST thin films.  The XPS 

spectra for the 5 minute plasma hydrogenated, 30 second plasma hydrogenated, as-

deposited, and oxygen deficient thin films are displayed in Fig. 2.10.   
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Figure 2.10 XPS spectra of the BST thin films.  a,  X-ray photoemission spectra (XPS) of 
the Ba 3d(3/2) and Ba 3d(5/2) peaks.  The raw spectra is indicated by the open black 
circles.   The black fit line indicates Ba-O bonding and the red fit line indicates Ba-
OH/BaCO3 bonding.  b, XPS for the Ti 2p(1/2) and Ti 2p(3/2) peaks.  Ti4+ and Ti3+ 
bonding are indicated by the black and red line fits, respectively.  c, XPS for the Sr 
3d(3/2) and Sr 3d(5/2) peaks.  Sr-O bonding is fit by the black line.  The Sr-O* bonding 
in the oxygen deficient sample is fit by the red line.  d, XPS for the O 1s peak.  Metal-O 
bonding is fit by the black line.  Sr-O* bonding in the oxygen deficient sample is fit by 
the red line.  The ♦ peak, which is due to oxygen vacancies, hydroxide, and carbonates is 
fit by the blue line.  The vertical dotted lines indicate the position of the as-deposited Ba-
O, Ti4+, Sr-O, and Metal-O peaks.  The linear intensity scale is 20000 counts.   

 

All data has been normalized using the carbon C 1s spectra (284.5 eV)87,88.  The energy 

and full width half maximum of all deconvoluted peak fits is recorded in Table 2.3. 
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Table 2.3 XPS peak positions for the BST thin films 

Sample Ba-OH 
BaCO3 

Ba-O Ti4+ Ti3+ Sr-O2 Sr-O* 
(Sr 3d)2 ♦3 Metal-O4 Sr-O* 

(O 1s) 
Hydro. BST 

(5 min.) 
779.6 
(1.8)1 

778.1 
(1.4) 

457.7 
(1.1) 

456.2 
(1.7) 

132.7 
(1.1) - 531.2 

(2.3) 
529.1 
(1.3) - 

Hydro. BST 
(30 sec.) 

779.9   
(1.8) 

778.1 
(1.4) 

457.7 
(1.1) 

456.3 
(1.5) 

132.5 
(1.1) - 531.4 

(2.4) 
528.9 
(1.3) - 

As-deposited 779.8 
(2.0) 

778.0 
(1.6) 

457.6 
(1.6) - 132.1 

(1.2) - 531.4 
(2.7) 

528.8 
(1.6) - 

Oxygen 
deficient 

779.4 
(2.0) 

778.0 
(1.6) 

457.6 
(1.5) 

456.2 
(1.5) 

132.4 
(1.3) 

132.1 
(1.7) 

531.1 
(2.7) 

528.8 
(1.6) 

527.4 
(1.6) 

   1 Full width half maximum (FWHM) for each peak is in parenthesis. 
   2 Value of the lower binding energy peak.   

3 Peak due to oxygen vacancies, hydroxide, and carbonate. 
   4 Metal-O includes Ti4+, Ba-O, and Sr-O bonding.  
 

Ba 3d5/2 spectra in Fig. 2.10a can be deconvoluted into peaks representing Ba-OH and 

BaCO3 (779.8 eV) bonding89, as well as Ba-O (778.0 eV) bonding90.  The Ti 2p spectra 

displaying the Ti 2p1/2 and the Ti 2p3/2 peaks is shown in Fig. 2.10b.  The 5 minute 

plasma hydrogenated, 30 second plasma hydrogenated, and oxygen deficient samples all 

display peaks that can be attributed to both Ti4+ bonding (457.6 eV)91 and Ti3+ bonding 

(456.2 eV)92.  In contrast, the as-deposited thin film can only be fit by a single Ti4+ peak.  

Figure 2.10c shows the Sr 3d spectra displaying the Sr 3d3/2 and Sr 3d5/2 peaks.  The 

plasma hydrogenated (132.7 eV for 5 minute plasma hydrogenated and 132.5 eV for 30 

second plasma hydrogenated) and oxygen deficient (132.4 eV) Sr-O peaks shift to a 

higher binding energy as compared to the as-deposited thin film (132.1 eV)93.  The 

oxygen deficient spectra can be further deconvoluted into a lower energy peak that we 

denote as Sr-O*(131.1 eV), which may indicate the presence of hole doping in the 

oxygen deficient thin film94.  The O 1s spectra is displayed in Fig. 2.10d.  Only the 5 

minute plasma hydrogenated thin film displays a peak shift to a higher binding energy for 

the Metal-O bond (529.1 eV) as compared to the 30 second plasma hydrogenated (528.9 
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eV), oxygen deficient (528.8 eV), and as-deposited (528.8 eV) thin films.  Further, the 

intensity of the ♦ peak (531.4 eV), which can be attributed to oxygen vacancies95, 

hydroxides96, and carbonates97 present in the thin films, is reduced for the plasma 

hydrogenated thin films.  It also is noteworthy that the O 1s spectra of the oxygen 

deficient thin film includes the Sr-O* peak (527.4 eV), as discussed above94.  

 X-ray Photoelectron Spectroscopy (XPS) shows that the observed transparent 

conductivity is due to a novel conduction mechanism.  There is significantly less Ti3+ 

bonding generated by hydrogen plasma exposure as compared to the amount of Ti3+ 

bonding in the oxygen deficient sample (See Fig. 2.10b)92.  This observation agrees with 

the data in Fig. 2.6 and Fig. 2.8, which shows that hydrogen plasma exposure does not 

reduce visible region transparency via the addition of oxygen vacancies (Ti3+).  Thus, the 

conduction mechanism in our hydrogen plasma exposed BST thin films is not due to 

oxygen vacancies introduced during exposure.  However, as the hydrogen plasma 

exposure time increases, the main peak in the Sr 3d and O 1s spectra shift to a higher 

binding energy with respect to the as-deposited BST thin film (See Supplementary Figs. 

2.10c and 2.10d).  This shift can be understood as an increase in the Fermi energy due to 

electron doping88,98,99.  This fact indicates that hydrogen plasma exposure has increased 

the number of electrons in the BST thin film, which is consistent with the resistivity and 

transport measurements (See Fig. 2.1a and Fig. 2.5a).  It is noteworthy that the intensity 

of the ♦ peak is reduced with respect to the Metal-O peak in the O 1s spectra following 

hydrogen plasma exposure (See Fig. 2.10d).  In general, the ♦ peak is attributed to 

oxygen vacancies95, hydroxides96, and carbonates97 present in a material.  The decreased 

intensity of the ♦ peak is unexpected for a system that has been exposed to hydrogen. In 
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fact, an increase in the intensity of this peak in other hydrogen exposed materials has 

been shown to have a direct effect on the reported electronic properties46-50,52,77,78.  

Hence, the small amount of Ti3+ bonding, the indication of electron doping, and the 

decrease in the amount of OH bonding combined with our previous observations on the 

structural, transport, and optical properties demonstrate that the conduction mechanism of 

the upper amorphous-like region is different from that of other hydrogen exposed 

systems20,42,44-47,52,77,78,86,98.  However, the crystalline region below the amorphous-like 

layer (See Fig. 1b) also contributes to the observed transport properties (See 

Supplemental section “Conducting properties of insulating BST”).  In order to fully probe 

the electronic properties of both of these regions, we suggest that secondary ion mass 

spectroscopy (SIMS) be taken to determine the chemical composition48-50,55 in this unique 

system. 

 Further information can be gathered on these unique BST thin films by 

considering the structural and surface properties.  Following these considerations, a 

discussion of the dielectric constant of these hydrogen plasma exposed thin films follows.       

2.6 Structural Properties of BST thin films  

X-ray characterization of our BST thin films show the effects of hydrogen plasma 

exposure and oxygen vacancies on the structural properties of our samples.  Figure 2.11a 

displays the 2θ-ω scans of our as-deposited, 2 minute hydrogenated, 5 minute 

hydrogenated, and oxygen deficient thin films, respectively.  
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Figure 2.11 Structural properties of hydrogenated BST thin films.  a, 2θ-ω scan of the as-
deposited, 2 minute, 5 minute, and oxygen deficient BST thin films.  The ▼ denotes the 
110O and 220O GdScO3 substrate peaks.  The * indicates the 001C and 002C oxygen 
deficient BST thin film peaks. b, rocking curves for the as-deposited (green), oxygen 
deficient (blue), 2 minute hydrogenated (black), and 5 minute hydrogenated (red) BST 
thin films taken from the RSM’s in Figure 2.1c.  c, out-of-plane (c, top panel) and in-
plane (a, bottom panel) lattice constants for the BST thin films in calculated from the 
RSM’s in Figure 2.1c. 
 

The substrate 110O and 220O peaks are denoted by ▼.  The * indicates the 001C and 002C 

oxygen deficient BST thin film peaks.  It is noteworthy that the BST thin film peaks 

cannot be observed in a 2θ-ω scan before or after hydrogen plasma exposure.  Figure 

2.11b displays the thin film rocking curves extracted from the reciprocal space maps 

(RSM) in Fig. 2.1c.  The as-deposited and oxygen deficient thin films display similar 

rocking curves (FWHM=0.058) showing that both are high-quality epitaxial thin films74.  
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After 2 minutes and 5 minutes of hydrogen plasma exposure, the rocking curves increase 

to 0.217 and 0.327 respectively, indicating that hydrogen plasma exposure has added a 

large amount of ionic disorder46,77,78.  Figure 2.11c shows the evolution of the in-plane (a) 

and out-of-plane lattice constants (c).  The in-plane lattice constants are the same for the 

as-deposited and oxygen deficient samples (3.971 ± 0.001 Å).  However, the hydrogen 

plasma exposed thin films show a small reduction in a, with both having a value of 3.968 

± 0.002 Å.  Due to the diffuse spread, our estimated in-plane constant value has a large 

error bar for the hydrogen plasma exposed samples and may actually be closer to the 

value observed in the unhydrogenated samples.  As for the out of plane lattice constants, 

there is a continuous increase from the as-deposited (3.968 ± 0.001 Å), to the 

hydrogenated (3.972 ± 0.002 Å for 2 minutes of hydrogen plasma exposure, 3.981 ± 

0.002 Å for 5 minutes of hydrogen plasma exposure), and finally, to the oxygen deficient 

(4.027 ± 0.001 Å) thin film.  Intriguingly, hydrogen plasma exposure increases the out-

of-plane lattice constant by +0.1% for the 2 minute hydrogen plasma exposed sample and 

+0.33% for the 5 minute hydrogen plasma exposed sample, while the addition of oxygen 

vacancies increases it by +1.49%.  Further, metal hydride exposed thin films show a 

decrease in the out-of-plane lattice constant (i.e. –0.02% for SrTiO3)44 while ionic liquid 

gated thin films show an increase (i.e. up to +3.3% for SrRuO3)50.  These results further 

confirm the unique nature of these hydrogen plasma exposed BST thin films. 

2.7 Surface properties of the BST thin-films  

The surface of the BST thin films display the effects of hydrogen plasma exposure.  

Figure 2.12a shows a 3 x 3 μm2 scan of a single-terminated atomically-flat GSO 

substrate70.   
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Figure 2.12 Surface properties of hydrogen plasma exposed BST thin films.  a, GSO 
substrate with corresponding line profile after annealing.  b, 75 nm thick BST thin film 
after deposition.  c, BST thin film after 2 minutes of hydrogen plasma exposure.  d, BST 
thin film after 5 minutes of hydrogen plasma exposure.  All scans are 3x3 μm2. 
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Immediately after deposition, the BST thin film displays step terrace growth in Fig. 

2.12b.  After hydrogen plasma exposure, the formation of hills occurs for both the 2 

minute and 5 minute hydrogen plasma exposure samples (See Figs. 2.12c and 2.12d).  

These hills are probably due to the presence of BaCO3 and Ba-OH on the surface of the 

thin film, which can also appear in as-deposited thin films a few weeks after thin film 

deposition.  These hills similarly form on SrTiO3 substrates a few days after high 

temperature annealing68,100,101.   

2.8 Calculation of static dielectric constant from Mott Criterion  

The dielectric constant of the hydrogenated BST thin films is reduced as 

compared to BST single crystals and thin films.  Figure 2.13 shows the estimated static 

dielectric constant for hydrogenated BST thin films.   
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Figure 2.13 Estimated static dielectric constant for hydrogenated BST thin films.  The 
Mott Criterion (solid black line) is plotted for the static dielectric constant (εr) vs. carrier 
concentration (n).  Materials with values εr and n that fall below the Mott Criterion are 
predicted to show insulating behavior while those materials with values above the line are 
predicted to show metallic behavior.  The dotted blue lines indicate the static dielectric 
constants for various BST single crystals and thin films.39,56,60-62  The vertical red line 
indicates the estimated dielectric constant based on the effective carrier mass for the 5 
minute HPE BST thin films.  The green line and hashed region indicate plasma 
frequencies that are in the visible region.   
 

The black line gives the Mott Criterion81, which is:  

                   𝑛𝑛−1/3~4𝑎𝑎𝐻𝐻 (2.5) 

where n is the carrier concentration and aH is the Bohr radius given by:  

𝑎𝑎𝐻𝐻 =
4𝜋𝜋𝜀𝜀𝑟𝑟𝜀𝜀0ℏ2

𝑚𝑚𝑒𝑒𝑒𝑒2
 (2.6) 

where εr is the static dielectric constant of the material.  We choose me in the general case 

to set a lower bound on the transition from an insulator to a metal.  Substituting (2.6) into 

(2.5) and solving for εr, we find:   



45 
 

𝜀𝜀𝑟𝑟~
𝑚𝑚𝑒𝑒𝑒𝑒2

8𝜋𝜋𝜀𝜀0ℏ2
𝑛𝑛−1/3 (2.7) 

which is the equation of the black line.  Materials with values of εr and n below this line 

are predicted to show insulating properties whereas values above this line are predicted to 

show metallic properties81.  The two horizontal blue lines are εr values for both single 

crystal BST (higher values) and BST thin films (lower values)39,56,60-62.  Naively, it would 

seem that doping n~1018 cm-3 carriers into a BST thin film where εr ~103  should generate 

a metallic conductor, as high dielectric constant oxides, such as SrTiO3, tend to be more 

prone to metallic conductivity1.  However, BST does not become conducting upon 

conventional doping or the addition of oxygen vacaincies40.  However, the dielectric 

constant of the BST fthin films may be reduced by hydrogen exposure.  To estimate this 

reduction, we use the following approximation from P. A. Cox1:  

𝑛𝑛−1/3~4𝑎𝑎0 (2.8) 

where  

𝑎𝑎0 =
𝑎𝑎𝐻𝐻′ 𝜀𝜀𝑟𝑟
𝑚𝑚∗ 𝑚𝑚𝑒𝑒⁄  (2.9) 

with m* as the effective carrier mass.  𝑎𝑎𝐻𝐻′  is given by: 

 𝑎𝑎𝐻𝐻′ =
4𝜋𝜋𝜀𝜀0ℏ2

𝑚𝑚𝑒𝑒𝑒𝑒2
 (2.10) 

and equals 53 pm.  Thus, substituting (2.9) into (2.8) and solving for εr,  

        𝜀𝜀𝑟𝑟~
𝑚𝑚∗

𝑚𝑚𝑒𝑒𝑎𝑎𝐻𝐻′
𝑛𝑛−1/3 (2.11) 



46 
 

Equation (2.11) is used to generate the vertical red line in Figure 2.12 by setting 𝑛𝑛 =

1.67 × 1022 cm-3 and varying m* from 3.5𝑚𝑚𝑒𝑒 to 15.2𝑚𝑚𝑒𝑒 as estimated from the Drude 

conductivity in Section 2.4.  As shown, our BST thin films display about an order of 

magnitude reduction in dielectric constant, particularly when considering effective 

masses that give a plasma frequency (ωp) below the onset of the visable region (~1.6 eV 

or ωp=12905 cm-1, giving m*=6.0me).  It is reasonable to make this assumption since the 

hydrogenated thin films still transmit visable light (See Figure 2.6b).  Thus, plasma 

hydrogenation reduces the dielectric constant in BSt along with the introduction of a 

novel conduction mechanism. 

2.9 Summary  

In summary, the first observation of transparent conductivity in BST thin films via 

short-term hydrogen plasma exposure has been shown.  These transparent conducting 

states are generated by the interplay of ionic disorder and strongly correlated carriers.  

The structural, transport, optical, and electronic properties demonstrate that a new type of 

conducting mechanism could be responsible for this unique transparent conducting state, 

which warrant further experimental and theoretical investigation.  This unique state 

reveals a new approach for studying the interplay of strongly-correlated electrons in non-

equilibrium systems.   Furthermore, these novel states also indicate a new roadmap for 

the development of low cost TCO’s via short-term hydrogen exposure of insulating 

dielectric oxides.  This work will be submitted to Nature Materials for publication23.  

Copyright © John Gerard Connell 2019  
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CHAPTER 3. CONDUCTING LAALO3/SRTIO3 HETEROINTERFACES ON ATOMICALLY FLAT 
SUBSTRATES PREPARED BY DEIONIZED-WATER  

We have investigated how the recently-developed water-leaching method for 

atomically-flat SrTiO3 (STO) substrates affects the transport properties of LaAlO3 (LAO) 

and STO heterointerfaces.  Using pulsed laser deposition at identical growth conditions, 

we have synthesized epitaxial LAO thin films on two different STO substrates, which are 

prepared by water-leaching and buffered hydrofluoric acid (BHF) etching methods. The 

structural, transport, and optical properties of LAO/STO heterostructures grown on 

water-leached substrates show the same high-quality as the samples grown on BHF-

etched substrates.  These results indicate that the water-leaching method can be used to 

grow complex oxide heterostructures with atomically well-defined heterointerfaces 

without safety concerns. 

3.1  Introduction 

Preparation of atomically-flat surfaces of substrates is an important step to 

successfully fabricate well-characterized epitaxial thin films and heterointerfaces.  For 

example, the atomically flat TiO2-terminated SrTiO3 surface3-6 is the key for creating the 

high-mobility two-dimensional election gas (2DEG) at LaAlO3/SrTiO3 (LAO/STO) 

heterointerfaces, which show intriguing multichannel conduction102-105, interfacial 

superconductivity7, ferromagnetism8,9, and for developing electronic devices and 

sensors106-108.  The atomically-flat surfaces of SrTiO3 (STO) single crystal substrates are 

usually achieved by an acid-based chemical etching procedure63,109,110 followed by 

thermal-annealing.  For example, buffered-hydrofluoric acid (BHF), which is used in 

silicon semiconductor research and industry for removing SiO2, has been used widely for 
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making atomically-flat STO substrates63,100,109-112.  Recently, we have shown that a non-

acidic deionized-water leaching method (water-leaching) is as effective at generating 

single-terminated atomically-flat STO substrates68.  The water-leaching method can 

remove effectively SrO, which is a hydrophilic compound64,67,68,100,101,112-114, from the 

STO surface.  Since 6-14% of fluorine impurities can be doped into the STO surface 

during the BHF-etching procedure64,65, water-leaching eliminates not only the safety 

concerns of acidic etchants but also possible impurity doping on the surface. 

 In this Chapter, we report that the water-leaching method creates heterointerfaces 

that have the same high-quality as those generated through the BHF-etching method. We 

have investigated the LAO/STO 2DEG as a representative model system requiring 

atomically well-defined STO substrates.  By simultaneously depositing LaAlO3 (LAO) 

thin films under the same conditions on two STO substrates, which are prepared by the 

water leaching and BHF-etching methods, respectively, we have observed that there is no 

noticeable difference between the two heterointerfaces regarding their structural, 

transport, and optical properties.   

3.2 Methods 

We  have synthesized LAO/STO heterointerfaces on atomically-flat surfaces of 

(100)-oriented STO substrates that are prepared by using either the water-leaching68 or 

BHF-etching methods63.  All substrates (purchased from CrysTec GmbH) are sliced into 

two pieces (5 × 2 × 1 mm3), are annealed at 1000 °C in ambient conditions for 1 hour, 

which forms a dual-terminated step-and-terrace structure, and each piece is leached 

(etched) for 30 s in deionized-water (BHF), respectively.  Substrates are again annealed 
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at 1000 °C for 2 hours, which effectively forms atomically-flat single-terminated 

surfaces, reducing the overall surface roughness.  The final step of substrate preparation 

is to once again leach in deionized-water or etch in BHF as before in order to eliminate 

possible strontium oxides or strontium hydroxides segregated on the surface68.  A full 

discussion of the water leaching method can be found in Appendix A.1.  Atomic Force 

Microscopy (Park XE-70) is employed to ensure the formation of single-terminated 

atomically-flat substrates before deposition and to confirm thin film surface quality after 

deposition.  Epitaxial LAO thin films of various thickness (5 – 60 unit-cells) are 

deposited on the STO substrates using pulsed laser deposition with a laser fluence (KrF 

excimer, λ = 248 nm) of 1.6 J/cm2, a substrate temperature of 700 °C, and pO2 of 10-6 

Torr.  In situ reflection high energy electron diffraction (RHEED) is utilized to monitor 

the number of unit cells of LAO deposited.  The grown samples are cooled naturally for 2 

hours to room temperature at a higher oxygen partial pressure (10 mTorr) so that the 

films have proper oxygen stoichiometry. There is no clear systematic thickness 

dependence of LAO thin films on their transport properties, as reported previously115. 

Thus, here we focus our discussion on the results obtained from the 5, 25, and 30 unit-

cell LAO samples.  Structural quality of the thin films is characterized using X-ray 

diffractometry (Bruker D8 Advance). Optical transmission spectra is taken at room 

temperature using a Fourier-transform infrared spectrometer (FT-IR) (for spectra regions 

between 50 meV and 0.6 eV) and a grating-type spectrophotometer (for spectra regions 

between 0.5 and 6 eV).  Transport properties are measured using a Physical Property 

Measurement System (Quantum Design) with conventional four-probe and Hall 

geometries.  Hall measurements are taken at various temperatures at a maximum 
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magnetic field of 9 T.  Electrical contacts are made using aluminum wire attached with 

indium solder, which gives access to the 2DEG present at the heterointerface.     

3.3 Results and discussion  

LAO thin films deposited on the water leached STO substrates show the same 

thin film quality as BHF-etched substrates.  Figure 3.1a depicts a 3 × 3 µm2 atomic force 

microscopy (AFM) topography scan of a water-leached STO substrate with respective 

line profile below.  
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Figure 3.1 Crystal properties of LAO films deposited on water-leached and BHF-etched 
STO substrates. 3  ×  3 μm2 AFM topography of a water-leached substrate (a) before and 
(b) after deposition of a 30 unit-cell LAO thin film.  The red lines correspond to the line 
profiles shown below each AFM scan.  (c) RHEED intensity oscillations of the 5 unit-cell 
water-leached LAO thin film deposition on a water-leached STO substrate.  The insets 
show the RHEED pattern at the beginning and end of the thin film growth.  (d) X-ray θ-
2θ scans of the 30 unit-cell water-leached sample (blue) and BHF-etched sample (red). 
The asterisk (*) indicates the STO substrate (200) reflection.  X-ray reciprocal space 
maps near the STO (114) reflection for the 30 unit-cell LAO thin films deposited on (e) 
water-leached and (f) BHF-etched substrates.  Note that both LAO thin films are 
coherently strained. 

 

As indicated in the line profile, the substrate has a step height of 3.9 Å, which is the 

lattice constant of cubic STO.  Figure 3.1b displays the same sample as in (a) after 
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deposition of a 30 unit-cell LAO film.  Both images show single-terminated atomically-

flat step terraces before and after deposition.  Figure 3.1c displays the RHEED intensity 

oscillations for the 5 unit-cell thick LAO film deposited on the water-leached substrate.  

The insets show the RHEED patterns at the beginning and end of film deposition, which, 

other than a change in intensity, do not display any noticeable changes.  The high quality 

of the LAO films is confirmed further by the X-ray θ-2θ scans, as shown in Fig. 3.1d for 

the 30 unit-cell thick films. The peak position of the (220)-LAO plane does not depend 

on substrate preparation method.  The X-ray reciprocal space maps near the (114)-STO 

reflection show that both LAO thin films exhibit coherent in-plane tensile strain with no 

evidence of strain relaxation, as shown in Fig. 3.1e for water-leached and Fig. 3.1f for 

BHF-etched samples.  

 The optical transmission spectra of both heterointerfaces show little qualitative 

difference in the range of 0.2 – 3.2 eV, demonstrating that their optical properties and 

electronic structures are quite similar regardless of substrate preparation method.  Figure 

3.2 illustrates the optical transmittance spectra of the 25 unit-cell LAO/STO grown on 

water-leached and BHF-etched substrates.   
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Figure 3.2 Optical transmittance spectra of 25 unit-cell LAO thin films grown on water-
leached (blue) and BHF-etched (red) STO substrates.  The STO substrate (grey) is shown 
for comparison.  The asterisks (*) at 1.7, 2.4 and 2.9 eV indicate the optical absorptions 
due to oxygen vacancies.  The shaded region below about 1.5 eV indicates the decrease 
of optical transmittance due to conducting Drude carriers.  Two sudden drops of optical 
transmittance at 0.2 eV and 3.2 eV are due to the Reststrahlen band and the bandgap 
energy of STO, respectively. 

 

Both spectra demonstrate clear Drude absorption due to conducting carriers, i.e. the 

decrease of optical transmittance, below about 1.5 eV.  These transmittance spectra are 

consistent with the optical properties of LAO/STO heterointerfaces, as has been reported 

previously.102  The three dip structures near 1.7, 2.4, and 2.9 eV are commonly observed 

in LAO/STO heterostructures and reduced STO crystals.  The absorption at 1.7 eV 

increases as STO crystals are reduced, hence it is related to the oxygen vacancy level20.  

The dip structures at 2.4 eV and 2.9 eV are observed regardless of free carrier 

concentration, and they may originate from the excitation of electrons trapped by oxygen 

vacancies, i.e. F1 centers19.   
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The sheet resistance of both heterointerfaces has similar behavior down to low 

temperatures, regardless of substrate preparation method.  Figure 3.3 shows the sheet 

resistance as a function of temperature for the LAO/STO heterointerfaces for the 5 unit-

cell and 30 unit-cell LAO layers.   

 

Figure 3.3 Temperature dependence of the sheet resistance of the 5 and 30 unit-cell LAO 
thin films grown on water-leached (blue) and BHF-etched (red) STO substrates. 

 

The sheet resistance of the same LAO thickness is qualitatively identical despite the use 

of two different methods of substrate preparation.  It is noteworthy that the 30 unit-cell 

LAO/STO samples display metal-insulator transitions at around 40 K while the 5 unit-

cell LAO/STO samples are overall metallic.  This behavior has been reported previously: 

the resistivity of LAO/STO heterointerfaces with thicker LAO layers can be larger than 

that of thinner samples, which may be due to structural reconstructions at the LAO/STO 

interface115.   
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The heterointerfaces also have comparable carrier concentrations and mobilities.  

The results of the Hall measurements for the metallic 5 unit-cell LAO/STO 

heterointerfaces are displayed in Figs. 3.4a and 3.4b.   

 

Figure 3.4 Temperature dependence of the (a) sheet carrier concentration and (b) mobility 
for the 5 unit-cell LAO/STO heterointerfaces. The filled circles (squares) indicate the 
high-density low-mobility carriers and open circles (squares) indicate the low-density 
high-mobility carriers for samples grown on the water-leached (BHF-etched) STO 
substrates.  The dotted lines in (a) and (b) are guides for the eye.  The inset in (b) shows 
the Hall resistance as a function of magnetic field at 2, 50, and 100 K for the sample 
grown on a water-leached STO substrate.  The black lines are the two-carrier model fits. 
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Sheet carrier concentration (ns) and mobility (µ) of the heterointerfaces prepared on the 

two kinds of STO substrates are similar regardless of preparation method.  The values of 

ns and µ compare well to those of other conducting LAO/STO 2DEG’s where similar 

deposition conditions were used3-5,115.  Further, room temperature ns  exceeding or near 

1013-1014 cm-2 are observed in most LAO/STO 2DEG’s when the pO2 of deposition is 

below 10-5 Torr3-5,115.  Thus, as in most low-pO2 LAO/STO heterointerfaces, oxygen 

vacancies play a role in the heterointerfacial conductivity.  It is noteworthy that below 

100 K we observe the non-linear Hall effect due to multi-channel electron conduction as 

shown in the inset of Figure 3.4b as has been seen previously103-105.  This effect can be 

fitted by a two-band model, assuming the same sign for the charge carriers13.  Thus, we 

can write the Hall coefficient,  𝑅𝑅𝐻𝐻 = 𝑅𝑅𝑋𝑋𝑌𝑌
𝐵𝐵

, as 𝑅𝑅𝐻𝐻 =

�1
𝑒𝑒
� 𝑛𝑛1𝜇𝜇12+𝑛𝑛2𝜇𝜇22+(𝑛𝑛1+𝑛𝑛2)𝜇𝜇12𝜇𝜇22𝐵𝐵2

(𝑛𝑛1𝜇𝜇1+𝑛𝑛2𝜇𝜇2)2+(𝑛𝑛1+𝑛𝑛2)2𝜇𝜇12𝜇𝜇22𝐵𝐵2 
13,27,116,117. We can rewrite this equation of four unknown 

parameters as an equation of two unknown parameters, 𝑅𝑅𝐻𝐻 = 𝑅𝑅0+𝑅𝑅∞𝜇𝜇∗2𝐵𝐵2

1+𝜇𝜇∗2𝐵𝐵2
, where 𝜇𝜇∗ and 

𝑅𝑅∞ are fitting parameters with 𝑅𝑅0 being 𝑅𝑅𝐻𝐻(𝐵𝐵 = 0). Using the zero field resistivity, 

𝑅𝑅𝑋𝑋𝑋𝑋 = (𝑒𝑒𝑛𝑛1𝜇𝜇1 + 𝑒𝑒𝑛𝑛2𝜇𝜇2)−1, we can find the low-density-high-mobility (LDHM) (𝑛𝑛2 and 

𝜇𝜇2) and high-density-low-mobility (HDLM) (𝑛𝑛1 and 𝜇𝜇1) carriers using 𝐴𝐴 = 1
2

( 𝑅𝑅0
𝑅𝑅𝑋𝑋𝑋𝑋

+ 𝜇𝜇∗), 

𝜇𝜇1 = 𝐴𝐴 + (𝐴𝐴2 − 𝜇𝜇∗𝑅𝑅∞
𝑅𝑅𝑋𝑋𝑋𝑋

)1/2,  𝜇𝜇2 = 𝐴𝐴 − (𝐴𝐴2 − 𝜇𝜇∗𝑅𝑅∞
𝑅𝑅𝑋𝑋𝑋𝑋

)1/2,  𝐶𝐶 = 𝜇𝜇1(𝜇𝜇∗−𝜇𝜇2)
𝜇𝜇2(𝜇𝜇1−𝜇𝜇∗)

, 𝑛𝑛1 = 1
𝑒𝑒𝑅𝑅∞(1+𝐶𝐶)

, and 

𝑛𝑛2 = 𝐶𝐶
𝑒𝑒𝑅𝑅∞(1+𝐶𝐶)

116-118.  The model fits at 50 and 2 K are shown by the black lines in the 

inset of Figure 3.4b.  As stated above, neither the LDHM nor the HDLM display any 

differences based on substrate preparation.  According to Chambers et al., the BHF-

etching method might result in a few percent of fluorine doping into STO, which can 
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provide 4 × 1013 cm-2 to 1 × 1014 cm-2 extra carriers65.  Figure 3.4a, however, shows that 

ns for both samples is very similar in the whole measurement temperature range.  As for 

changes in µ, Chambers  et al. also suggests that the fluorine atoms, acting as impurity 

sites, would increase the scattering rate, thereby reducing the overall µ of any 

heterointerface65.  However, the µ of the two kinds of 5 unit-cell 2DEG samples shows 

little or no difference, as displayed in Fig. 3.4b.  Thus, fluorine doping does not appear to 

alter the electronic properties of oxygen deficient conducting LAO/STO heterointerfaces.  

Surface hydrogen doping does not seem to change the heterointerfacial conducting 

properties.  As suggested by Hatch et al., hydrogen doping due to BHF-etching should 

contribute some difference in the conducting properties.  However, Hatch et al. also 

states that water-leaching generates oxygen vacancies at the surface64.  Further, our 

samples are heated up to 700 °C at a pO2 of 10 mTorr.  For comparison, T. Sakaguchi et 

al. has demonstrated that around ~350 to ~450 °C is enough to cause hydrogen to escape 

metal hydride exposed perovskite oxide single crystals43.  The majority of the interfacial 

hydrogen has probably left the surface before or during thin film deposition.  Hence, a 

study on the conducting heterointerface generated at deposition temperatures below ~300 

°C may show a meaningful difference.  Such heterointerfaces have been generated by 

depositing amorphous layers on STO substrates at room temperature119.    

3.4 Summary  

LAO/STO heterointerfaces grown on water-leached and BHF-etched STO 

substrates show similar structural, optical, and electronic properties.  Based on these 

results, the water-leaching method produces not only atomically-flat single-terminated 
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surfaces of STO but also high-quality heterointerfaces of complex oxides.  Recently, 

various oxide heterointerfaces grown on STO substrates such as LaTiO3/SrTiO3
10,12,13, 

LaVO3/SrTiO3
116,120, LaMnO3/SrTiO3

14, GdTiO3/SrTiO3
121, NdAlO3/SrTiO3

122, and 

NdGaO3/SrTiO3
122,123 have demonstrated intriguing electronic reconstructions, interfacial 

superconductivity, and magnetic ordering.  Hence, the use of the water-leaching method 

promotes research on future oxide electronics by providing a safe way to prepare 

atomically-flat complex-oxide substrates.  This work has been published in Scientific 

Reports24.  

Copyright © John Gerard Connell 2019  
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CHAPTER 4. CONCLUSIONS AND FUTURE OUTLOOK  

4.1 Conclusions for hydrogen plasma exposed BST thin films  

Short-term hydrogen plasm exposure of BST thin films represent a new direction in 

the generation of transparent conducting oxides.  Our results demonstrate that short-term 

hydrogen plasma exposure can lead to the formation of a novel correlated metallic state 

through the addition of strongly-correlated conducting carriers and ionic disorder.  

Hence, in the following section, we suggest some future research directions based on 

these intriguing results.    

4.2 Implications of transparent conducting BST thin films  

The exploration of plasma hydrogenation on thin films of SrTiO3 (STO) and 

BaTiO3 (BTO) has yet to be completed.  Hosono et al., Bouilly et al., and T. Yajima et 

al.  have shown that hydrogenation can generate conducting states in STO and BTO thin 

films42,44,45.  However, there has not been any exploration of short-term hydrogen plasma 

exposure on these constituent materials, other than the results for a single crystal of STO 

shown in Figs. 1.2 and 1.6.  An investigation of these materials on (110)-oriented 

GdScO3 substrates may help to explain our results as discussed in Chapter 2.  Further, we 

suggest (001)-oriented (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) substrates as have been used 

for other strongly-correlated transparent conducting oxides and for hydrogenated BTO 

and STO thin films in the past2,45,124.  Due to the compressive strain of the substrate on 

the thin film, these thin films could show ferroelectric behavior124.  If short-term 

hydrogen plasma exposure of BTO and STO does not induce as much ionic disorder as is 

seen for BST, an enhanced carrier mobility near the ferroelectric phase transition may be 
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observed28.  Hence, further research on the transparent conducting state discussed in 

Chapter 2 may also lead to the observation of a high mobility transparent conducting 

state.   

The observation of the novel conducting state that forms in these BST thin films 

warrants further exploration. Typically, conductivity is expected to be generated via 

electron hopping from one B-site transition metal to another in a perovskite1. However, 

this is not true for the short-term hydrogen plasma exposed BST thin-films (See Section 

2.5).  Thus, further theoretical and experimental work is needed to understand this unique 

state.  One experiment would be to consider thinner (20 nm or less) crystalline BST thin-

films.  An observation of a shorter (longer) hydrogen plasma exposure time can reveal a 

critical thickness to host these strongly-correlated transparent conducting states.  Further, 

varying the amount of barium (Ba) and strontium (Sr) in the thin-films may show 

interesting results.  Based on the XPS data in Fig. 2.10, it appears that oxygen and Sr are 

the primary contributors to the electronic properties observed in the upper amorphous-

like regions of these BST thin films.  Thus, by decreasing (increasing) the Ba content, the 

amount of hydrogen plasma exposure required for the onset of conductivity may be 

decreased (increased).  Any decrease in plasma hydrogenation time may reduce the 

amount of ionic disorder introduced during hydrogenation and improve carrier mobility 

and increase conductivity.  Further, increasing the Ba content may make the samples 

more insulating, as the Ba site does not appear to be electronically active in the upper 

amorphous-like regions (See Fig. 2.10a).  Samples with a high Ba content may prove to 

be useful to further our understanding of localized states in a non-equilibrium system.     
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4.3 Conclusions for conducting LaAlO3/SrTiO3 heterointerfaces   

The similarity in the conducting properties of both heterointerfaces is not surprising 

considering the deposition conditions used24.  Thus, hydrogen doping from BHF may be 

removed during substrate annealing before sample deposition.  Regardless, Chapter 3 has 

shown that the water leaching method not only generates a single-terminated atomically-

flat STO substrate, but that it also allows for the formation of heterointerfaces that have 

the same structural, optical, and transport properties as those generated by BHF-etching. 

However, in order to possibly observe the effects of hydrogen and fluorine on the 

interfacial properties, we suggest the future research below. 

4.4 Implications of similar conducting properties and water leaching  

The similar conducting properties observed in Chapter 3 demonstrate that both 

hydrogen and fluorine do not contribute to the transport properties of our LAO/STO 

heterointerfaces due to our deposition conditions.  Thus, a future study that focuses on the 

properties of conducting heterointerfaces deposited at temperatures below 300 °C could 

shed light on this system119.  Further, as shown in Fig. 3.3, insulating heterointerfaces 

may show meaningful differences in their transport properties, especially near the metal-

to-insulator transition.  Finally, other conducting heterointerfaces, such as 

LaTiO3/SrTiO3
10,12,13, LaVO3/SrTiO3

116,120, LaMnO3/SrTiO3
14, GdTiO3/SrTiO3

121, 

NdAlO3/SrTiO3
122, and NdGaO3/SrTiO3

122,123 can be considered.  These systems may 

retain the effects of either hydrogen or fluorine on the conducting properties of the 

heterointerfaces.  By combining these methods, the observation of mobility or 

conductivity differences in these heterointerfaces may be more likely. 
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The implications of water leaching on the thin film oxide community have been far 

reaching.  The method has been used to generate single-terminated atomically flat STO 

substrates for many thin films and heterostructures125-127.  The water leaching method has 

also been scrutinized in a few cases as well128,129.  In general, oxide thin film groups tend 

to use the water leaching method when they wish to avoid the investment in costly safety 

equipment required for BHF-etching, since both methods tend to generate substrates with 

similar properties68.   

4.5 Conclusions regarding the effects of hydrogen on insulating titanates  

In conclusion, the effects of hydrogen on insulating titanates have shown two 

interesting results.  First, hydrogen plasma exposure can be used to generate 

unprecedented transparent conductivity.  Second, surface hydrogen at a conducting oxide 

heterointerface may have an effect on the conducting and transport properties of that 

heterointerface.  In both cases, future work is needed to understand the true nature of 

hydrogen in the generation of these intriguing properties and novel conducting states.   

Copyright © John Gerard Connell 2019  
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APPENDICES 

APPENDIX A  PREPARATION OF ATOMICALLY FLAT SRTIO3 SURFACES USING A 
DEIONIZED-WATER LEACHING AND THERMAL ANNEALING PROCEDURE     

We report that a deionized-water leaching and thermal annealing technique can be 

effective for preparing atomically-flat and single-terminated surfaces of single crystalline 

SrTiO3 substrates. After a two-step thermal-annealing and deionized-water leaching 

procedure, topography measured by atomic force microscopy shows the evolution of 

substrates from a rough to step-terraced surface structure. Lateral force microscopy 

confirms that the atomically-flat surfaces are single-terminated. Moreover, this technique 

can be used to remove excessive strontium oxide or hydroxide composites segregated on 

the SrTiO3 surface. This acid-etchant-free technique facilitates the preparation of 

atomically-aligned SrTiO3 substrates, which promotes studies on two-dimensional 

physics of complex oxide interfaces. 

 A.1 Introduction  

Recently, intriguing electronic properties have been discovered at the interfaces of 

complex oxides: a high-mobility two-dimensional electron gas (2DEG) at the interface of 

LaAlO3/SrTiO3
3-6,130, which has been shown to exhibit both superconductivity6 and 

ferromagnetism8,9 as well as electronic reconstructions and superconductivity at the 

interfaces of LaTiO3/SrTiO3
10-13, LaVO3/SrTiO3

120, and magnetic ordering in 

LaMnO3/SrTiO3 superlattices14.  Orbital reconstructions15 and high-Tc 

superconductivity16 in cuprite interfaces along with magnetoelectric17 and strain-tuning131 
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effects in LaMnO3/SrMnO3 superlattices have also been observed.  Studying interfacial 

phenomena of complex oxides provides important clues not only to understanding the 

physics of complex oxides but also to advancing oxide electronics18.   

 Preparation of atomically-flat surfaces of substrates is an indispensable step to 

successfully prepare well-characterized samples and to achieve the intriguing electronic 

properties at the interfaces.  Since the atomically-abrupt interfaces can be achieved only 

when substrates are flat, effective methods of preparing flat substrates cannot be 

overemphasized.  Atomically-flat surfaces of strontium titanate (SrTiO3) single crystals, 

which are by far the most widely used substrate in complex-oxide research, are typically 

achieved by using an acid-based etchant63,109 and thermal-annealing.  For example, the 

method based on buffered-hydrofluoric acid (BHF) etching, which is the same chemical 

etching procedure used in silicon semiconductor research and industry for removing 

SiO2, resulted in atomically-flat SrTiO3 substrates63,109-112,132. Owing to the safety issues 

of acidic etchants, these acid-based methods have been a barrier against promoting active 

research of interfacial properties of complex oxides. 

In this appendix, we show that a non-acidic deionized (DI)-water treatment and 

thermal annealing technique can be effectively used to prepare atomically-flat and single-

terminated surfaces of SrTiO3 substrates.  The perovskite SrTiO3 has two possible surface 

terminations along the (100) direction: SrO and TiO2.  We note that the SrO layer of 

SrTiO3 has an ionic bonding nature, which is in contrast with the covalent bonding of 

SiO2.  Thus, water (H2O) might be effective to chemically remove the SrO layer since 

SrO is a water-soluble material101,112,113,133-135.  By combining two thermal annealing 

steps before and after DI-water treatment, our process successfully removes SrO 
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terminated layers as well as what are most likely segregated strontium oxide or hydroxide 

islands from the surface.  

 A.2 Methods  

We have taken commercially available SrTiO3 (100) and SrTiO3 (111) single 

crystalline substrates (Crystec GmbH) and prepared them by annealing at 1000ºC for 1 

hr. (1st thermal annealing) in air.  Substrates are then rinsed with DI water (Resistance > 

15 MΩ, pH = 7.0 ± 0.2) via agitation for about 30 seconds at room temperature.  Finally, 

the substrates are annealed again at 1000ºC (2nd thermal annealing) for 1 hr. in air.  The 

surfaces of the substrates are characterized through the leaching and annealing process 

using an Atomic Force Microscope (Park XE-70).   

 A.3 Results  

Figure A1 illustrates surfaces of a SrTiO3 (100) substrate that is prepared by the 

process at each step.   
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Figure A1 Surface evolution of a SrTiO3 (100) substrate through the deionized-water 
leaching and thermal-annealing process.  (a) AFM topography after 1st thermal annealing 
with line profile (b). (c) AFM topography after water-leaching with line profile (d). (e) 
AFM topography after 2nd thermal annealing.  As shown in (f) the final substrate is 
atomically flat with rms roughness of ~0.2 Å.  Scan area is 3 × 3 µm2.  Reproduced from 
Connell, J. G., Isaac, B. J., Ekanayake, G. B., Strachan, D. R. & Seo, S. S. A. Preparation 
of atomically flat SrTiO3 surfaces using a deionized-water leaching and thermal 
annealing procedure. Applied Physics Letters 101, 251607 (2012), with the permission of 
AIP Publishing.   
 

Figure A1a shows the sample after the 1st annealing step.  The rather large islands formed 

on the sample surface are due to strontium oxide or hydroxide segregation100.  Figure A1c 

supports this hypothesis as the water soluble SrO and SrO hydroxide islands have been 

removed by DI-water treatment.  It is noteworthy that there are half-unit-cell high step-

(a) After 1st Anneal

(e) After 2nd Anneal

(b)

(f)

(d)(c) After Water Leach

AFM Topography
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terraces as shown in Figs. A1c and A1d.  Figure A1e and A1f show the sample following 

the 2nd thermal annealing.  An atomically-flat surface has been produced by the process 

with a step height of 3.9 Å and roughness of approximately 0.2 Å.  

Clearly, an atomically-flat substrate surface has been produced.  However, it is 

not clear just from AFM topography that this sample is single-terminated.  Thus, Lateral 

Force Microscopy (LFM) has been employed as has been previously used on SrTiO3 and 

other perovskite surfaces31,32 to check surface-termination.  Figure A2a (A2b) and A2c 

(A2d) show the AFM (LFM) images before and after the 2nd thermal annealing, 

respectively.   
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Figure A2 (a) Lateral Force Microscopy (LFM) of a SrTiO3 (100) substrate after DI-water 
leaching and (b) the line profiles of LFM signal trace and retrace (arrows).  (c) The same 
substrate after 2nd annealing and (d) the line profile of LFM signal trace and retrace 
(arrows).  The insets in (a) and (c) show corresponding AFM topography.  (e)-(k) 
Examples of SrTiO3 (100) substrates that are tested by using the same leaching and 
annealing process. All substrates are atomically flat and singly-terminated.  Scan area is 3 
× 3 µm2.  Reproduced from Connell, J. G., Isaac, B. J., Ekanayake, G. B., Strachan, D. R. 
& Seo, S. S. A. Preparation of atomically flat SrTiO3 surfaces using a deionized-water 
leaching and thermal annealing procedure. Applied Physics Letters 101, 251607 (2012), 
with the permission of AIP Publishing. 
 

Note that the Fig. A2b LFM image shows the regions of non-uniform friction near the 

step edges which corresponds to the half-unit-cell deep regions in Fig. A2a. However, 

after its second annealing, Figures A2c and A2d show that the LFM topography shows 

(b)

(c) After 2nd Anneal (d)

(e) (f) (g) (h)

(i) (j) (k)

LFM AFM

(a) After Water Leach

LFM AFM
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uniform frictional response, which implies that the substrate is single-terminated. We 

tested more substrates to see whether our method is reproducible: Figures A2e – A2k 

display AFM topography images of a few SrTiO3 (100) substrates which have been 

treated through the same water-leaching and thermal annealing process.  Atomically flat 

surfaces are obtained regardless of their step-terrace widths and miscut angles. Step-

bunching is observed in some substrates. However, the step bunching is not due to our 

method but due to substrate crystallinity since we have observed similar step-bunching in 

BHF treated substrates as well.    

We have shown that substrates that have been prepared via the water-leaching and 

thermal annealing process are both atomically-flat and single-terminated.  However, 

surface-degradation due to SrO segregation or Sr out-diffusion has been observed in a 

few hours or days after the 2nd annealing, as shown in Fig. A3a.  
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Figure A3 AFM topography images of (a) a SrTiO3 (100) substrate 1 day after the second 
annealing and (b) after another DI-water leaching. The inset shows the same substrate 60 
days later.  (c) SrTiO3 (111) substrate after the second annealing and (d) after DI-water 
leaching.  The inset shows the same substrate 50 days later.  Scan area is 3 × 3 µm2.  
Reproduced from Connell, J. G., Isaac, B. J., Ekanayake, G. B., Strachan, D. R. & Seo, S. 
S. A. Preparation of atomically flat SrTiO3 surfaces using a deionized-water leaching and 
thermal annealing procedure. Applied Physics Letters 101, 251607 (2012), with the 
permission of AIP Publishing. 
 

SrO segregations are visible near the step-edges and similar surface-degradation has also 

been reported for BHF-etched and thermally annealed substrates111,132.  Figure A3b 

shows that these degraded surfaces can be improved by another 30 second water-leaching 

step: The segregated SrO islands are removed and an atomically flat surface is recovered.  

The inset of Fig. A3b shows that the substrate preserves the surface even 61 days after 

the water-leaching step.  LFM confirms that the surface is still single-terminated (data not 

shown). This implies that the final DI-water treatment results in rather chemically stable 

surfaces free from SrO segregation. We also tested our method on SrTiO3 (111) 

STO (100)

(a) 1 Day After (b) After Water Leach

STO (111)

(c) After Anneal (d) After Water Leach

After 50 
days

After 60 
days
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substrates, which have until now been typically prepared using BHF110,136.  Figure A3c 

shows that SrTiO3 (111) substrates also have SrO segregations on their surfaces after our 

process.  However, after one more water-leaching step, SrO segregations have once again 

been removed and the surface is clean and atomically-flat as shown in Fig. A3d.  The 

inset of Fig. A3d shows that the substrate surface is flat even 51 days after the treatment.  

Thus our method works for both SrTiO3 (100) and (111) substrates.  

 A.4 Summary 

In summary, atomically-flat single-terminated surfaces of SrTiO3 (100) and (111) 

substrates were prepared using a water-leaching and thermal annealing technique. 

Furthermore, better chemically stable surfaces can be obtained when the final step in the 

process is water-leaching.  While previously preparing this manuscript, we have learned 

of two publications65,114 and a patent113 where a warm (50 – 100 ºC) water bath and/or 

ultraviolet light exposure has been used to prepare SrTiO3 substrates, which showed 

consistent results with ours.  Our acid-etchant-free technique eliminates the safety issues 

of the acid-based etching process, which will promote the progress of research on 

interfacial physics of complex oxides.       

Copyright © John Gerard Connell 2019  
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APPENDIX B  DESIGN AND CONSTRUCTION OF A PLD CHAMBER  

As a necessary first step to the two projects discussed above in Chapter 2 and 3, I 

designed a vacuum chamber for pulsed laser deposition.  An image of that chamber is 

shown in Fig. B1 and the layout of the chamber is given in Table B1.  

Table B1 Vacuum chamber component location 
Diameter 
of 
opening 
(in.) 

Polar 
Angle 
(degrees) 

Azimuthal 
Angle 
(degrees) 

Focal 
Length 
(in.) Description of use 

Focal 
Point 
(in.) Figure 

8 0 0 11 Heater 0,0,0 B2a 
8 90 0 11 Door 0,0,0 B2b 
8 90 90 11 Viewport 0,0,0 B2b 
8 90 180 11 Blank 0,0,0 B2c 
8 90 270 11 Turbo Pump 0,0,0 B2b 
8 180 90 11 Target Manipulator 0,0.5,0 B2c 
6 45 45 11 Viewport 0,0,0 B2b 
6 45 135 11 Blank 0,0,0 B2c 
6 45 225 11 Blank 0,0,0 B2d 
6 45 315 11 Viewport 0,0,0 B2a 

4.5 45 270 13 Laser Port 0,0,-1 B2a 
4.5 135 45 11 Blank 0,0,0 B2b 
4.5 135 135 11 Blank 0,0,0 B2c 
4.5 135 225 11 Blank 0,0,0 B2d 
4.5 135 315 11 Blank 0,0,0 B2a 
4.5 45 90 13 Blank Laser Port 0,0,-1 B2b 

2.75 90 45 11 Blank 0,0,0 B2b 
2.75 90 135 11 Blank 0,0,0 B2c 
2.75 90 225 11 Nude Ion Gauge 0,0,0 B2d 
2.75 90 315 11 N2 Valve 0,0,0 B2a 
2.75 70 45 11 Blank 0,0,0 B2b 
2.75 70 135 11 Blank 0,0,0 B2c 
2.75 70 225 11 Blank 0,0,0 B2d 
2.75 70 315 11 Blank 0,0,0 B2a 
2.75 110 45 11 Roughing Valve 0,0,0 B2b 
2.75 110 135 11 Pirani Gauge 0,0,0 B2c 
2.75 110 225 11 Viewport 0,0,0 B2d 
2.75 110 315 11 Turbo Angle Valve 0,0,0 B2a 
1.33 90 30 11 O2 Leak Valve 0,0,0 B2b 
1.33 90 120 11 Baratron Gauge 0,0,0 B2c 
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Figure B1 Image of PLD vacuum chamber in its current location.  The chamber is set on 
a cart that has been built by Kurt Lesker, the same company that built the chamber body. 
 

The final column of the table indicates the image in Fig. B2 where the components of the 

chamber are located, which will now be discussed in turn.  
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 B.1 Components of a PLD vacuum chamber 

 

Figure B2 Views of the components of PLD chamber 2.  a, view of the heater, laser port, 
viewport, N2 valve, Turbo angle valve and Turbo gate value (top to bottom).  Notice that 
the Turbo gate valve is connected to an 8 in. T with a 2 ¾ in. port on its end.  Also note 
the Bayard-Alpert Ion gauge attached below the T.  b, Blank laser port (former laser port 
in Figure 1.7), 6” viewport, 8 in. door, O2 leak valve 8 in. viewport, and roughing angle 
valve (top to bottom).  c, Baratron gauge, Pirani gauge, and target manipulator (top to 
bottom).  d,  nude ion gauge, 2 ¾ in. viewport (covered in foil) (top to bottom).  The 
angle valve in a is connected to the Turbo pump via the bellows. 

 

Figure B2a shows the locations of some of the major vacuum components of the 

chamber. Key to the generation of high vacuum (~10-6 to 10-8 Torr), a Turbomolecular 

(Turbo) pump is used that is backed by a roughing pump.  Behind this Turbo pump, a 

pneumatic angle valve (Fore valve) ensures that the system does not experience oil 

backstreaming in the case of a power outage.  This value automatically closes to ensure 

that no oil from the roughing pump can enter the Turbo pump or the vacuum chamber.  
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Further a leak valve that is located on the roughing pump ensures that the roughing line 

behind the Turbo pump is quickly brought up to room pressure (~760 Torr).  A view of 

the Turbo pump and Fore value is located in Fig. B2 (lower left).  A detailed view of the 

angle valve controller, roughing pump, and leak valve is located in Fig. B3.    

  

Figure B3  Roughing pump and Fore valve control.  a, oil-based roughing pump.  The 
plastic bellows is the pump exhaust, which goes into a fume hood.  b, electronic fore 
valve control.  The 4-way cross that connects the roughing line and the Turbo pump is 
shown on the left.  The Fore valve is at the bottom of this cross. c, Side view of the oil-
based rouging pump.  The leak valve is the small black box with an electrical wire 
connection at the top of the image. 
 

The Turbo pump is connected to the large T by a manually controlled gate valve.  

Further, the Turbo pump is connected to the Turbo angle valve by the bellows shown in 

Fig. B2d.  These two connections allow for a large range of oxygen partial pressures 

(pO2) (~10-6 Torr to 200 mTorr) to be used during deposition.  For pressures of 1 mTorr 
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to 200 mTorr, the large gate valve is closed and all pressure control is done using the 

Turbo angle valve and the O2 leak valve (See Fig. B2b).  On the left side of this T is a 

blank 2 ¾ in. flange.  This connection is there for the potential future addition of a 

Reflection High Energy Electron Diffraction system (RHEED).  In fact, all of the 4 ½ in. 

ports that have a polar angle of 135° located in Figs. B2a through B2d are placed such 

that an Ellipsometry system could also be added in the future.  The addition of these two 

components would allow for the in situ measurement of thin film thickness and electronic 

properties, respectively137.  After deposition, the chamber is brought up to room pressure 

with the N2 leak valve that is sourced with ultra-high purity nitrogen.  Once the system is 

at air pressure, the Neocera heater (top of the chamber in Fig. B2a) can be safely 

removed.  A detailed view of the electronic connections and of the adjustable properties 

of this block heater is shown in Fig. B4 below.  
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Figure B4 Close-up of Neocera block heater.  a, the block heater outside of the vacuum 
chamber.  The black lamp behind the heater is used for attaching substrates with silver 
paste.  Note that the legs double as handles for moving the heater to and from the 
chamber.  b, close-up of block heater.  The substrate shield (right) has been moved away 
from the heater.  Notice the set screws that allow for the heater to be adjusted vertically 
and horizontally.  c, close up of heater plate from above.  Substrates are placed in the 
center of the heater, where the heater temperature is within 10 °C of the set temperature.  
d, view of the electronics of the heater in the chamber.  The thermocouple (yellow cord) 
and electronic connection (black cord) are shown.  To the left is the rotator for the 
substrate shield.  The laser port on the right will be discussed in Section B.3.  
 

The laser port in Fig. B2a will be discussed in Section B.3. 

Figure B2b shows more of the main components of the chamber.  The door is 

primarily used to help in breaking vacuum pressures by opening its lock (black plastic 

star screw in Fig. B2a) while the N2 valve is open.  PLD targets are placed into the 

chamber via the door as well (See Fig. B5e).  Some basic cleaning of the target 
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manipulator components can also be conducted through this door (See Fig. B5a).  The O2 

leak valve is used in tandem with the Turbo gate valve and Turbo angle valve to set pO2.  

The roughing angle valve is used to rough the vacuum from room pressure to about 50 

mTorr.  During this step, all Turbo valves including the Fore valve are closed (The Fore 

valve switch in Fig. B3b set to Roughing).  This isolates the Turbo pump from damage as 

it is kept at full speed while sample processing, sample loading/unloading, and target 

loading/unloading occurs.      

Figure B2c shows two of the gauges used to measure the pressure in the system.  The 

Baratron gauge is a capacitance monometer that is accurate from 0.1 mTorr-1 Torr.  It is 

used to precisely monitor pO2 during deposition.  Below this gauge is the Pirani gauge or 

Convection gauge.  This gauge is accurate from room pressure to 1 mTorr.  However, it 

is not as precise as the Baratron gauge in our pO2 deposition range.  The target 

manipulator shown at the bottom of Fig. B2c will be discussed in Section B.2.   

Figure B2d shows the Nude Ion gauge.  This gauge is used to measure the base 

pressure of the chamber to ensure that impurities have been removed via the vacuum 

pumps before deposition at our process pO2, which can vary from sample to sample.  It 

typically takes around 2-3 hours for the system to get below the minimum required 

pressure of 1 ×  10−6 Torr.  The lower port that is covered by foil is a small window 

port.  This port has been used for illumination via an external light (now located on a 6 in. 

port in Fig. B2a) but has been covered to block UV laser light from exiting the chamber.  
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 B.2 Target manipulator design  

The target manipulator for chamber 2 underwent some redesign to improve it.  

Initially, the manipulator contained upper components that can be seen at the bottom of 

Fig. B5b. However, as shown in Fig, B5a, some of these components have been changed.  
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Figure B5 Changes in target manipulator and heater distance.  a, current target 
manipulator design and heater-manipulator separation.  The separation is around 2 in.  b, 
former manipulator-heater separation.  The separation is around 1 in., which would cause 
the two independent motors to move the system as one.  c, Rotary motor (foreground) 
and stepper motor (background).  Notice the 1.33 in. feedthrough on the 8 in. port at the 
top of the image.  d, electronic motor control.  The rotary motor is controlled by the 
switches and speed control on the left while the stepper motor is controlled on the right.  
By setting Pos. #1 and Pos. #2 and hitting the red Glide mode button, the stepper motor 
can be set to oscillate between two points while the target is rotated. e, 1 in. diameter 
single crystalline PLD target.  Glide mode allows for the target to be used evenly, which 
lessens target surface polishing.   
 

The reason for these changes is illustrated in the middle of Fig. B5b.  The initial location 

of the substrate heater has been found to be too close to the target manipulator.  While the 

heater is set to typical oxide thin film deposition temperatures (400 °C-800 °C), the 

independent motion of the motors would lock (see Figs. B5c and B5d for an image of the 

motors and motor control box, respectively), causing all target holders to rotate about the 

center of the manipulator.  This would ruin sample deposition as the laser beam would hit 

multiple targets and the stainless-steel components of the chamber and target 

manipulator.  The redesign of the upper components of the target manipulator is intended 

to move the components further away from the heat source, as shown in Fig. B5a.  In fact 

a similar design principle has been used for the target manipulator located in our third 

chamber138.  However, this locking of the target manipulator has been alleviated only 

through the use of the new adjustable heater, which is shown in Fig. B4b.  The increased 

target manipulator-heater distance is shown in Fig. B5a.  This increased distance has been 

enough to eliminate the motor locking problem that affected the use of this system in the 

past.   
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 B.3   Laser beam path and sample deposition  

Due to the addition of chamber 3, the laser beam path of chamber 2 has been 

adjusted.  Figure B6a shows chamber 2 in its original location.  

 

Figure B6 Past and current laser beam path for chamber 2. a, past laser beam path.  The 
approximate beam path is indicated by the red line.  Notice that the path is shielded.  b, 
current unshielded beam path. 
 

The clear plastic shielding is enough to stop the UV laser beam.  The current location of 

chamber 2 is shown in Fig. B6b.  At this time, the clear plastic shielding is still being 

designed and implemented.  Note that the laser port is a reduced 4 ½ in. flange.  The UV 

laser window is 2 ¾ in. where the laser enters the chamber (See Fig. B2a).  Due to the 

lack of shielding, extra care is taken during thin film deposition to ensure that exposed 

skin is covered and that no one walks across the beam path when chamber 2 is in use.  

Copyright © John Gerard Connell 2019   
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