
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Biology Biology 

2019 

INTRASPECIFIC VARIATION IN DEHYDRATION TOLERANCE: INTRASPECIFIC VARIATION IN DEHYDRATION TOLERANCE: 

INSIGHTS FROM THE TROPICAL PLANT INSIGHTS FROM THE TROPICAL PLANT MARCHANTIA INFLEXA 

Rose A. Marks 
University of Kentucky, marksr49@gmail.com 
Author ORCID Identifier: 

https://orcid.org/0000-0001-7102-5959 
Digital Object Identifier: https://doi.org/10.13023/etd.2019.190 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Marks, Rose A., "INTRASPECIFIC VARIATION IN DEHYDRATION TOLERANCE: INSIGHTS FROM THE 
TROPICAL PLANT MARCHANTIA INFLEXA" (2019). Theses and Dissertations--Biology. 58. 
https://uknowledge.uky.edu/biology_etds/58 

This Doctoral Dissertation is brought to you for free and open access by the Biology at UKnowledge. It has been 
accepted for inclusion in Theses and Dissertations--Biology by an authorized administrator of UKnowledge. For more 
information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/biology_etds
https://uknowledge.uky.edu/biology
https://orcid.org/0000-0001-7102-5959
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Rose A. Marks, Student 

Dr. D. Nicholas McLetchie, Major Professor 

Dr. David F. Westneat, Director of Graduate Studies 



 

 

 

 

 

 

 

 

 

INTRASPECIFIC VARIATION IN DEHYDRATION TOLERANCE: INSIGHTS 

FROM THE TROPICAL PLANT MARCHANTIA INFLEXA 

 

 

 

 

 

______________________________ 

 

DISSERTATION 

______________________________ 

 

A dissertation submitted in partial fulfillment of the 

requirements for the degree of Doctor of Philosophy in the 

College of Arts and Sciences at the University of Kentucky 

 

 

 

By 

Rose A. Marks 

 

Lexington, Kentucky  

 

Director: Dr. D. Nicholas McLetchie, Associate Professor of Biology  

 

Lexington, Kentucky 

 

2019 

 

Copyright © Rose A. Marks 2019  



 

 

 

 

 

 

 

 

 

ABSTRACT OF DISSERTATION 

 

 

 

 

 

INTRASPECIFIC VARIATION IN DEHYDRATION TOLERANCE: INSIGHTS 

FROM THE TROPICAL PLANT MARCHANTIA INFLEXA 
 

Plants are threatened by global change, increasing variability in weather patterns, 

and associated abiotic stress. Consequently, there is an urgent need to enhance our ability 

to predict plant community dynamics, shifts in species distributions, and physiological 

responses to environmental challenges. By building a fundamental understanding of plant 

stress tolerance, it may be possibly to protect the ecological services, economic 

industries, and communities that depend on plants. Dehydration tolerance (DhT) is an 

important mechanism of water stress tolerance with promising translational applications. 

Here, I take advantage natural variation in DhT to gain a deeper insight into this complex 

trait. In addition, I address questions related to the causes and consequences of sexual 

dimorphisms in DhT. Understanding sexual dimorphisms in stress tolerance is critical 

because these dimorphisms can drive spatial segregation of the sexes, biased sex ratios, 

and may ultimately reduce sexual reproduction and population persistence.  

 

This work takes an integrated approach, addressing DhT on multiple scales from 

ecology, to physiology, to genomics in the tropical liverwort Marchantia inflexa. 

Initially, I tested for correlations between DhT and environmental dryness, sex 

differences in DhT, and genetic vs. plastic contributions to DhT variability. I found that 

patterns of variation in DhT are associated with environmental variability, including 

complex sexual dimorphisms, and derive from a combination of plasticity and genetic 

differences in DhT. Subsequently, I leveraged the variability in DhT to identify candidate 

DhT enhancing genes. In M. inflexa intraspecific differences in DhT are impacted by 

baseline variability among plants, as well as unique gene expression responses initiated 

during drying. In parallel, I assembled a draft genome assembly for M. inflexa, which was 

employed to investigate questions of sex chromosome evolution and sexual dimorphism 

in DhT. Finally, the bacteriome of M. inflexa was characterized and found to be 

extremely diverse and variable.  

 

Collectively, this work adds to a growing understanding of DhT and highlights 

the importance of sampling approaches that seek to comprehensively describe variability 



 

in DhT. I detected complex patterns of variability in DhT among populations and the 

sexes of M. inflexa, which were used to gain insight into the genetic intricacies of DhT.  

 

KEYWORDS: intraspecific variation, dehydration tolerance, Marchantia inflexa, 

genomics, eco-physiology 
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 1 

CHAPTER ONE 

INTRODUCTION 

 

Background  

Plant communities are threatened by changing land use practices, a growing 

human population, and environmental fluctuations due to climate change. Both natural 

and agricultural systems are challenged by decreasing arable land, increasing 

consumption, and abiotic stresses associated with climate change (Osakabe et al. 2014). 

Consequently, there is an urgent need to develop a theoretical framework to predict plant 

population dynamics, physiological adaptations, and molecular responses to 

environmental challenges. Drought in particular, is a major threat to plant productivity 

(Osakabe et al. 2014), and many climate change models predict an increasing frequency 

of drought across the globe in the coming years (Dai 2013). Importantly, drought stress 

may disproportionally impact communities that rely on subsistence food production 

systems with limited mechanization and low-tech irrigation systems (Mongi et al. 2010; 

Trenberth 2011). Therefore, we must not only develop strategies to mitigate drought 

induced losses but should focus on those that require minimal inputs and are 

economically sustainable. Further, these efforts should include building a fundamental 

understanding of naturally evolved stress tolerance mechanisms, the diversity of which 

represents a valuable resource that can be leveraged to improve plant stress tolerance.  

Desiccation tolerance (DT, also desiccation tolerant) is a rare trait that enables 

tissues to survive extreme drying (down to or below an absolute water content of -100 

MPa) (Bewley 1979). DT is highly adaptive for plants that occupy environments with 

limited, sporadic, and unpredictable water availability and provides a promising avenue 
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for research aimed at minimizing drought induced losses. The occurrence and distribution 

of DT plants has important implications for environmental management. Changes in 

weather patterns and water availability due to climate change are likely to lead to range 

shifts for both DT and desiccation sensitive (DS) species, changes in community 

composition, and potential biases in population sex ratios due to sex-specific DT with 

possible consequences for local productivity. Many stress tolerant plants are slow 

growing, relatively small, perennial, and have reduced palatability (Theory and Grime 

1977). Despite the possible reduction in productivity of communities dominated by DT 

plants, a DT rich assemblage could increase ecological stability in areas with extreme, 

persistent, or frequent drought by increasing water holding capacity and minimizing soil 

erosion (Watkins et al. 2007). Characterization of the ecology of DT plants will offer 

insight into species range shifts, ecological productivity, and stability.  

DT organisms persist in dry periods by inducing protective mechanisms that 

combat the mechanical, metabolic, and oxidative stresses of drying. Ultimately these 

mechanisms allows them to enter a state of quiescence in which nearly all metabolic 

activity ceases (Hoekstra et al. 2001; Moore et al. 2009; Dinakar and Bartels 2013b). 

Perhaps the most striking observation that can be drawn from research on DT is that the 

phenotype is very complex. DT depends on multiple physiological pathways, which are 

initiated in a sophisticated sequence of events. Briefly, to combat the mechanical stress of 

drying, small non-reducing sugars (Bianchi et al. 1993; Ingram and Bartels 1996) and 

space filling proteins (Illing et al. 2005; Liu et al. 2009) accumulate in DT cells via 

changes in metabolism and gene expression. These compounds help to stabilize sub-

cellular structures and fill space to combat the mechanical stress caused by shrinkage. In 
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some species, increased cell wall flexibility can further reduce mechanical strain on 

drying cells (Jones and McQueen-Mason 2004; Moore, Farrant, et al. 2008; Holzinger 

and Karsten 2013). Oxidative stress is another major source of damage under dry 

conditions (Dinakar and Bartels 2013a). Normal metabolic processes are disrupted in 

water limited conditions and reactive metabolic intermediates can accumulate (Oliver et 

al. 2010). At low levels, these reactive oxygen species (ROS) can act as signaling 

molecules, but at higher levels they cause substantial damage to membranes, enzymes, 

and nucleic acids (Oliver et al. 2010). Consequently, most DT tissues deploy numerous 

antioxidants to combat damaging ROS (Dinakar and Bartels 2013a). Other subtle changes 

during drying in DT plants prevent protein aggregation, light induced damage, and 

regulate photosynthetic processes. Upon rehydration, DT plants mobilize recovery 

mechanisms of damage repair, turnover, and finally the resumption of normal metabolism 

(Dinakar et al. 2012).   

DT organisms offer an exciting opportunity to broaden our understanding of 

water stress, with potential translational utility, but there are still major gaps in our 

understanding of DT that must be overcome in order to move towards applied solutions 

in agricultural and natural systems. I sought to address three specific knowledge gaps 

here. Initially, I aimed to characterize intraspecific variability in DT. Very few studies 

have focused on quantifying intraspecific variability in DT, yet substantial variability in 

DT may exist among populations and individuals. If such differences exist and are 

heritable this would an important source of genetic variability, which could be used to 

increase DT via breeding and bioengineering approaches. Further, understanding the 

patterns of variability in DT will provide critical insight into the adaptive potential of 
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plant populations and will enhance our ability to predict ecological consequences of 

climate change. The second knowledge gap that I aimed to fill was the limited 

understanding of less extreme cases of dehydration tolerance. DT plants can survive 

drying to < -100MPa, and dehydration tolerant (DhT) plants can survive drying to < -

10MPa but not -100MPa (Marks et al. 2016). Few studies have focused on DhT plants 

but building a better understanding of DhT will provide insight into the differences 

among DS, DhT, and DT plants. My final aim was to characterize sex differences in 

DhT. Due to their sessile nature, dioecious plants may face challenges related to mate 

availability (Bierzychudek and Eckhart 1988). Specifically, differences in male and 

female reproductive biology can lead to the development of secondary sexual 

dimorphisms, which may reduce co-occurrence or reproductive synchronization of the 

sexes. Secondary sexual dimorphisms in abiotic and biotic stress tolerance may lead to 

local scarcity of a sex, biased sex ratios, or spatial segregation of the sexes (Juvany and 

Munné-Bosch 2015), all of which can reduce sexual reproduction. The sex-specific 

ecology of DhT (and DT) plants is still poorly understood, but has important implications 

for population sex ratios, reproduction, and population persistence. Consequently, I 

aimed to elucidate the mechanisms and consequences of sex differences in DhT.  

In general, bryophytes (mosses, liverworts, and hornworts) provide informative 

systems with which to investigate DT. Because bryophytes lack vascular tissue and other 

complex water management systems, they are prone to drying. Unlike tracheophytes, 

which have stomata and sophisticated water management systems, most bryophytes have 

thin tissues with limited structural features for water retention, which causes them to 
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rapidly equilibrate to the relative humidity (RH) of the surrounding air (Proctor et al. 

2007). Consequently, a high proportion of bryophytes exhibit DT.  

To characterize intraspecific variation in DhT, I conducted multiple studies, 

integrating field ecology, eco-physiology, and genomic approaches (Figure 1.1). I used 

the tropical liverwort Marchantia inflexa (Nees & Mont) for this work because it is DhT 

and exhibits substantial intraspecific variability in related traits (McLetchie and 

Puterbaugh 2000; Groen et al. 2010ab; Brzyski et al. 2014) Further, M. inflexa is 

dioecious, which provides an important opportunity to investigate sexual dimorphisms 

and sex chromosome evolution, both of which are fundamental questions in biology. The 

dominant life stage of M. inflexa is haploid and sex is chromosomally determined with a 

male V or female U chromosome. See figure 1.1 for a graphical representation of M. 

inflexa’s life cycle. Marchantia inflexa’s native habitat is in low light, high humidity sites 

along tropical streams and rivers, but it can also colonize more exposed and disturbed 

sites, such as road cuts within forests (Brzyski et al. 2014). I leveraged the unique 

biology of M. inflexa to test for differences in DhT among the sexes and populations, to 

describe gene expression responses to dehydration, identify sex-linked genes associated 

with DhT, investigate sex chromosome evolution, and characterize associated microbial 

communities.  
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Figure 1.1. The life cycle of Marchantia inflexa is dominated by the haploid 

gametophyte, which grows as a dichotomously branching thallus with dorci-ventral 

organization. Plants are unisexual and can reproduce either sexually via spores or 

asexually via gemmae. 

 

Overview  

  This work is comprised of five separate, but related studies that increase our 

understanding of intraspecific variability and sexual dimorphism in DhT. Initially, I 

characterized DhT in M. inflexa through a series of progressively intense drying 

treatments (chapter 2). I dehydrated vegetative tissues of male and female plants from 

two natural populations in Trinidad, Republic of Trinidad and Tobago and quantified 

their recovery. Both common garden and field collected tissues were subjected to drying 

Cupule with gemmae Cupule with gemmae

Thallus with cupule Thallus with cupule

Female thallus Male thallus

Archegoniophore

Archegoniophore

Antheridiophore

Antheridiophore

Spores

Female spore Male spore

Archegonia with sporophyte
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treatments at multiple intensities and recovery was monitored by chlorophyll florescence. 

Verification studies were conducted to confirm the severity of dehydration, the rate of 

drying, and associated changes in photosynthetic rates. I verified my expectation that M. 

inflexa is DhT and found that females exhibit higher DhT than males. Field collected 

samples showed differences in DhT corresponding to the environmental conditions at 

their collection site, but when cultured in a common garden plants did not differ in DhT 

suggesting plasticity in DhT. This work provided a foundation for subsequent studies and 

indicated that variation in DhT exists in M. inflexa.  

 
Figure 1.2. This schematic depicts the multilevel approach to studying DhT and 

highlights some of the methods used. Ultimately, this work sought to characterize DhT 

on multiple levels, spanning from field ecology, to physiology, to genomics. Field studies 

were employed to quantify environmental variation, population differences in DhT, the 

impact of differences in DhT on population sex ratios, and community level interactions. 

Common garden experiments were used to test for genetic differences in DhT, quantify 

the extent of dehydration that M. inflexa can tolerate, and test for sex and developmental 

differences in DhT. Genomic and transcriptomic approaches were utilized to identify 

novel genes and beneficial alleles impacting DhT, and to characterize gene expression 

during dehydration and rehydration.  

 

To gain a deeper understanding into DhT variability in M. inflexa I conducted a 

more extensive characterization of population differences in DhT (chapter 3). I explicitly 

tested if DhT was correlated with environmental exposure, if variation in DhT was 

genetically determined, and if male and female plants had contrasting DhT phenotypes. 

To do so, I collected plants from five natural populations, spanning an environmental 
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gradient in the tropical forests of northern Trinidad, Republic of Trinidad and Tobago. I 

measured DhT immediately after collection, and again after one year of cultivation in a 

common garden. I found that DhT varied significantly among populations paralleling the 

environmental gradient. Additionally, I showed that population differences in DhT were 

maintained in the common garden, suggesting that underlying genetic differences 

contribute to DhT variability. Interestingly, I detected population-specific sex differences 

in DhT (in contradiction to the findings of chapter 2). Males were more DhT than females 

in exposed sites, but females were more DhT than males in less exposed sites. This 

fluctuating sexual dimorphism in DhT was driven primarily by male variation while 

females exhibited a consistent DhT phenotype across sites, suggesting that patterns of 

sexual dimorphism in DhT are complex and possibly transient.  

Next, I aimed to characterize the molecular biology of DhT in M. inflexa (Figure 

1.1). To do so I measured gene expression during dehydration and rehydration in M. 

inflexa to gain insight into the timing and nature of cellular changes during dehydration 

(chapter 4). I took advantage of intraspecific variation in DhT to target variation 

contributing to differences in relative DhT in M. inflexa. My analyses detect a 

characteristic accumulation of late embryogenesis abundant (LEA) proteins, substantial 

modifications in carbohydrate metabolism, and changes in lipid transport during the 

dehydration – rehydration process. I speculate that low expression of other genes (i.e 

early light inducible proteins (ELIPs) and heat shock proteins (HSPs)) during the 

dehydration – rehydration process and seemingly low levels of temporal organization 

may reduce the overall tolerance of M. inflexa relative to highly DT lineages. Analyses of 

sex and tissue specific gene expression suggests that baseline variation in signaling 
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pathways and cell wall characteristics may impact the relative tolerance of samples. 

Taken together these findings indicate that multiple mechanisms of enhancing DhT exist 

in M. inflexa and are driven primarily by baseline differences among samples.  

Subsequently, I sought to develop foundational genomic resources to facilitate 

genetic inference in M. inflexa. Consequently, I sequenced and assembled a draft genome 

for M. inflexa, which adds to a growing body of genomic resources for bryophytes and 

provides an important perspective on the evolution and diversification of land plants 

(chapter 5). I specifically addressed questions related to sex chromosome evolution, 

sexual dimorphisms, and the genomic underpinnings of DhT. For assembly, I leveraged 

the recently published genome of the related liverwort, M. polymorpha, to improve 

scaffolding and annotation, aid in the identification of sex-linked sequences, and quantify 

patterns of sequence differentiation within Marchantia. I found that genes on sex 

chromosomes are under greater diversifying selection than autosomal and organellar 

genes. Interestingly, this difference is driven primarily by divergence of male-specific 

genes, while divergence of other sex-linked genes is similar to autosomal genes (parallel 

to male variability driving populations differences in DhT dimorphism (chapter 3)). 

Through analysis of sex-specific read coverage, I identified and validated genetic sex 

markers for M. inflexa, which will enable diagnosis of sex for non-reproductive 

individuals. To investigate genomic patterns of DhT I capitalized on a difference in DhT 

between genetic lines, which allowed me to identify seven dehydration tolerance genes 

with substantially higher coverage in a tolerant female relative to less tolerant male, 

suggesting that dehydration tolerance is facilitated by increased copy number of multiple 
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genes. Interestingly, two DhT genes with differences in copy number among genetic lines 

appear to be sex-linked, providing a possible explanation for sex differences in DhT. 

Finally, in an effort to scale back up to species interactions, community ecology, 

and ecosystem function, I considered the role of plant microbe interactions in M. inflexa 

(chapter 6). Marchantia inflexa (like many other bryophytes) is known to have a robust 

microbiome, but the relationship between microbiome composition and DhT is not well 

studied. Initially, I sought to characterize the diversity and variability of the M. inflexa 

microbiome, with ultimate aim of linking this to variability in DhT. I hypothesized that 

variation in the environment and sex of a host plant would impact the composition and 

diversity of associated microbial communities. To test this hypothesis, I characterized the 

bacteriome of M. inflexa, in both males and females across multiple habitats by targeted 

sequencing of the bacterial 16S rRNA gene. I found that the bacteriome of M. inflexa is 

abundant and diverse, showing some similarities with other non-vascular plant lineages. I 

detected a habitat specific component of the bacteriome, as well as sex differences under 

common garden conditions. On the basis of known microbial functions, my analyses 

suggest that the taxonomic assemblages of bacteria in particular sites may serve 

functional roles; allowing plants to better acclimate to their local environment, and that 

sex differences in the bacteriome may correspond to subtle differences in the physiology 

and morphology of the sexes. My initial characterization of variation in bacteriome 

composition of this M. inflexa provides valuable information for better understanding the 

patterns of plant-microbe interactions, and downstream work seeks to link this variation 

to DhT.  
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Collectively this work adds to a growing understanding of plant stress tolerance 

and highlights the importance of considering natural variation. I found that DhT is highly 

variable and that both genetic differences and plasticity contribute to this variability. 

When combined with complex patterns of sexual dimorphism in DhT, the challenge of 

predicting population and species responses to climate change is exacerbated. However, 

with additional studies that seek to comprehensively measure natural variation in DhT 

and other stress tolerance traits, it may be possible to improve management of both 

natural and agricultural systems.   
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CHAPTER TWO 

SEX DIFFERENCES AND PLASTICITY IN DEHYDRATION TOLERANCE: 

INSIGHT FROM A TROPICAL LIVERWORT  

 

Reproduced with minor edits from: Marks, R. A., Burton, J. F. & McLetchie, D. N. 

Sex differences and plasticity in dehydration tolerance: insight from a tropical liverwort. 

Annals of Botany. 118, 347–56 (2016). 

 

Introduction  

 In a warming and increasingly variable climate adaptations to cope with water 

scarcity are particularly relevant, and characterization of these adaptations may improve 

management of natural and agricultural resources. Some plant species have the ability to 

resurrect from near complete dehydration and apparent death. This capacity is known as 

desiccation tolerance, an extreme case of dehydration tolerance (DhT, also dehydration 

tolerant). A variety of research has been conducted on the natural history (Alpert 2000), 

physiology (Bewley 1979), mechanisms (Le and McQueen-Mason 2006; Gechev et al. 

2012), and prevalence (Wood 2007) of DhT with particular focus on highly desiccation 

tolerant species.  

Dehydration tolerance is rare. Most plant and animal tissue cannot withstand 

cellular water potentials below -5 to -10 MPa (Proctor and Pence 2002; Proctor et al. 

2007). However, DhT tissues consistently recover from cellular water potentials below 

this level (Oliver et al. 2010), and desiccation tolerant tissues survive cellular water 

potentials below -100 MPa (Gaff 1971). Dehydration tolerant organisms have unique 

protection and repair systems that are employed to combat the myriad of drying stresses, 

including membrane rupture (Hoekstra and Golovina 1999), protein aggregation, and 

oxidative damage (Leprince et al. 1990; Oliver et al. 2005). More specifically, changes in 

carbohydrate metabolism, accumulation of protective proteins, increased cell wall 
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flexibility, and induction of antioxidant systems have been associated with tolerance (see 

Black and Pritchard, 2002; Lüttge et al., 2011, and citations within).  

 Despite being uncommon, DhT is found across many life forms, from bacteria 

(Billi and Potts 2002), to animals (Clegg 2005; Gusev et al. 2014), to plants. In plants, 

DhT likely evolved as a necessary adaptation for the transition from water to land by 

early plants (Oliver et al. 2000). Through evolutionary time, most plants lost DhT in their 

vegetative tissues, perhaps as a trade-off for more complex water storage and transport 

systems supporting larger growth forms (Alpert 2006; Gaff and Oliver 2013). However, 

species from multiple plant lineages re-evolved vegetative DhT independently (Farrant 

and Moore 2011). Interestingly, most dehydration sensitive plants retain DhT in their 

pollen, seeds, or spores, suggesting that a wider array of plants may have the genetic 

potential for DhT, but that it is constrained to specific tissue types and developmental 

stages as a product of taxon-specific life history (Walters et al. 2002; Grene et al. 2011). 

Although there are DhT representatives across taxonomic groups of land plants, DhT is 

most prominent among bryophytes, lichens, and green algae (Proctor et al. 2007; Wood 

2007). 

 To date, the majority of research has focused on the extremely DhT (or 

desiccation tolerant) species, which has contributed valuable insight to the process and 

mechanisms of DhT. However, such extreme phenotypes are not applicable to many plant 

forms and may obscure nuanced components of the process. There has been a relative 

paucity of research on species that show lower levels of tolerance, although some recent 

studies address this (Koster et al. 2010; Cruz de Carvalho et al. 2011, 2012, 2014, 2015; 

Pardow and Lakatos 2013; Bader et al. 2013; Stark et al. 2013), and studies have 
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investigated the drought response of numerous species (Hsiao 1973; Osakabe et al. 

2014). Bryophytes showing moderate DhT likely occupy a large ecological niche and 

understanding their response to abiotic stress is important for predicting species range 

shifts due to environmental changes.  

 Intraspecific variability in DhT has also been relatively underexplored, though its 

existence has long been acknowledged (Schonbeck and Bewley 1981). Evidence suggests 

that DhT is not fixed within a species and examples of plasticity in DhT (Dilks and 

Proctor 1976; Schonbeck and Bewley 1981; Robinson et al. 2000), seasonal variation 

(Beckett and Hoddinott, 1997; Farrant et al. 2009), differences between developmental 

stages (Koster and Leopold 1988; Stark et al. 2004, 2007), and sex-specific variation 

(Newton 1972; Stieha et al. 2014) exist. Characterizing plasticity in DhT may be 

particularly informative for understanding parameters that modulate DhT and sex 

differences in DhT could explain the existence of biased population sex ratios in nature.    

 In this study, I tested for intraspecific variation in DhT in the tropical liverwort 

Marchantia inflexa. I hypothesized that M. inflexa would show moderate DhT and also 

considerable intraspecific variability in DhT. For this study I used plants collected from 

populations located along a moisture availability gradient and subsequently grown in a 

common garden. I predicted that M. inflexa would show reduced DhT in plants 

originating from mesic habitats compared to less mesic habitats because plants 

originating from a moist environment would have little use for DhT. Based on previous 

studies (Stieha et al. 2014) females were expected to be more DhT than males, which 

would provide a potential explanation for the female biased sex ratios seen in this and 

many bryophyte populations.  
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Methods 

Study organism, sampling, and growth conditions 

 Marchantia inflexa (Nees & Mont) is a New World liverwort with unisexual 

individuals, found from northern Venezuela to the southern United States (Bischler 

1984). Marchantia inflexa exhibits genetic variation in DhT in some developmental 

stages (gemmae) (Stieha et al. 2014), and its ecology and physiology have been the 

subject of multiple relevant studies (McLetchie and Puterbaugh 2000; Groen et al. 

2010ab; Brzyski et al. 2014; Stieha et al. 2014). 

 Plants for this study were collected from Trinidad, The Republic of Trinidad and 

Tobago and maintained in greenhouse conditions at The University of Kentucky, 

Lexington, KY, USA. Specimens were vouchered at the Missouri Botanical Garden (St. 

Louis, Missouri, USA, specimen numbers M092113 and M092115) and at the National 

Herbarium of the Republic of Trinidad and Tobago (St. Augustine, Trinidad, specimen 

number TRIN34616, D. N. McLetchie, collector). Species identification was verified by 

Alan Whittemore (New York Botanical Garden, Bronx, New York, USA). Plants were 

collected from populations in two distinct habitats along a moisture availability gradient: 

streams (native habitat) and roads (novel habitat). The streams are humid and shaded by 

trees, representing a high moisture habitat, while the roads are exposed and are expected 

to be less humid. Furthermore, the presence of a dry season (although intermittent rainfall 

occurs) causes the roads to experience intervals of drying.  

 Male and female plants were collected from randomly chosen locations (patches) 

along one stream site (Turure River) and along one road site (Cumaca Road). Each patch 
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was physically separated from the other to guarantee that individuals were genetically 

different, and uniqueness of each isolate was confirmed by PCR analysis (Brzyski et al. 

2014). Eighteen genotypes were selected for use in the current study: four males from the 

stream site, four males from the road site, five females from the stream site, and five 

females from the road site. 

 For this study, thalli of stock plants with their meristematic region intact were 

transplanted onto steam-sterilized soil (collected from the North Farm, University of 

Kentucky, Lexington, Kentucky, USA) in 12 well plug trays (3.5 x 4 cm). At least 36 

clones (three sets) of each genotype were maintained in a randomized layout in the 

greenhouse. Trays were placed on capillary mats that were kept wet by daily watering 

with deionized water and covered with a shade cloth to mimic field light conditions. 

 

Dehydration tolerance assay and recovery 

 Dehydration conditions of differing intensity were generated using saturated salt 

solutions to modify the relative humidity (RH) in dehydration chambers. Experimental 

RHs, water vapor pressure deficits (VPD), and corresponding treatment levels are shown 

in Table 2.1. Water vapor deficit was calculated to enable comparison of treatment 

intensity with my field assay (Anderson, 1936). Each experimental RH was calculated 

based on an equilibrium RH chart (Wexler and Hasegawa, 1954) and verified using a 

HOBO™ humidity sensor attached to a data logger (Onset Computer Corporation, 

Bourne, MA, USA).  
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Table 2.1. Treatment conditions for laboratory dehydration assays. Temperature was 

maintained in a growth chamber on a 12 hour light/dark cycle. Relative humidity was 

verified using a HOBO™ data logger with sensors attached. All assays were 22 hours 

long. Vapor pressure deficit indicates the relative intensity of the combined temperature 

and relative humidity during the assay.  

Treatment 

Level 1 

Temperature  Relative 

Humidity  

Vapor Pressure 

Deficit  

Salt  

Level 1 13°C 95.41% 0.08kPa KNO3 

Level 2 13°C 85.92% 0.21kPa KCl 

Level 3  13°C 75.61% 0.37kPa NaCl 

Level 4  13°C 55.87% 0.66kPa  MgN2O6 

 

 Dehydration assays were conducted in dehydration chambers (air tight plastic 

boxes 24 x 10 x 32 cm) and were placed in a growth chamber with a 12 hour light/dark 

period and a constant temperature of 13°C. Healthy vegetative thallus tips (~7 mm in 

length) from each of the 18 genotypes were collected from the greenhouse, saturated with 

distilled water and placed in the growth chamber for 24 hours to ensure that each sample 

was fully hydrated before the assay began. After 24 hours, each thallus tip was randomly 

assigned to one of four treatment groups and blotted to remove external water. Each 

thallus tip was then placed in a 35 x 10 mm falcon™ brand Petri dish along with a single 

filter paper disk and 200 L of distilled water. These Petri dishes were placed on the 

internal perimeter of the dehydration chamber, and a bowl of saturated salt solution 

(differed between treatments) was placed in the center of the box. A small battery 

powered fan sat on a wire mesh stand above the salt solution (Figure 2.1). Plants were 

dehydrated for 22 hours, after which the fan was stopped, the plants were rehydrated with 

distilled water, and maintained in the same growth chamber for 1 week. Treatments were 

replicated through time across all 18 genotypes: level 1 = three replications; level 2 = ten 

replications; level 3 = nine replications; level 4 = three replications.  
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 Recovery of each individual thallus tip was analyzed by chlorophyll fluorescence 

after 1 week of recovery to determine the condition of photosystem II. Chlorophyll 

fluorescence is a common method use to assay plant recovery after dehydration stress 

(Krause and Weis 1984; Csintalan 1999). Maximum potential quantum yield (Fv/Fm) 

readings of dark-adapted leaves (20 minutes) were taken using an OS5-FL modulated 

chlorophyll fluorometer (Opti-Sciences, Tyngsboro, Massachusetts, USA). Recovery was 

also assessed by monitoring plant growth over 2 months, during which time the plants 

were maintained in a hydrated state in the same growth chamber.  

Figure 2.1. Schematic of the dehydration assay set up. Each box contained one tissue 

sample from each of the 18 genetic lines. Each sample was placed in a Petri dish along 

with a single filter paper disk and 200 L of distilled water. The dehydration chamber 

was placed in a growth chamber with a constant temperature of 13°C and a 12-hour 

light/dark cycle.  

 

Relative water content 

 The relative water content (RWC) of tissue was measured to determine the 

percentage of water lost by samples in each treatment level. Vegetative tissue of M. 

inflexa was collected from the greenhouse and hydrated for 24 hours in the growth 

chamber. Following hydration, the tissue was blotted dry to remove external water. Each 
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plant was then weighed to the nearest nanogram using a Chan 29 electrobalance to 

determine the turgid mass (Mt), randomly assigned to one of the four treatment groups, 

and subjected to the dehydration assay described above. However, following completion 

of the assay at 22 hours, the tissue was not rehydrated. Instead, samples were weighed to 

determine sample fresh mass (Mf), and the tissue was placed in a drying oven (80°C) for 

3 days after which its dry mass (Md) was taken. The RWC was calculated for each sample 

with the following formula: 

 

  
 

Field study 

 A study was conducted to investigate corresponding patterns of DhT at the field 

sites on Trinidad, The Republic of Trinidad and Tobago, during March 2015. Vegetative 

thallus tips (~7 mm in length) were collected from plants growing in two habitat types 

(stream and road). The samples were collected from moist substrate and appeared 

hydrated when collected. Sampled thallus tips were saturated in stream water for 24 

hours, blotted dry, and then placed randomly into one of two dehydration treatment levels 

(Table 2.2). Three trials were conducted with ten thallus tips in each. Half of the thallus 

tips in each trial were from the stream habitat and half were from the road habitat. The 

assay was conducted following the same protocol as the laboratory dehydration assay 

(described above) with a few minor changes. First, because there was no access to a 

temperature regulated growth chamber in Trinidad the dehydration assay was conducted 

under a raised building to avoid direct sunlight. Ambient temperatures ranged from 26°C 

(night) to 30°C (day). The corresponding VPDs and RHs for these treatments are listed in 

RWC =
(M f -Md )

(M t -Md )
´100
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Table 2.2. The VPD was needed to compare the relative intensity of field and laboratory 

treatments because it accounts for the effect of temperature (Anderson, 1936). The thallus 

tips were allowed to dehydrate until they were noticeably dry as indicated by visual 

changes in thallus curvature, after which they were rehydrated with stream water. 

Recovery was assessed by chlorophyll fluorescence 1-week post rehydration. 

Table 2.2. Treatment conditions for dehydration assays conducted in the field. The 

temperature and humidity were confirmed using a HOBO™ data logger and sensors. The 

temperature varied with the ambient air temperature in Trinidad, and the assay was 

conducted in a location to avoid direct sunlight. Vapor pressure deficit indicates the 

combined impact of temperature and relative humidity during the assay. 

Treatment 

Level  

Temperature  Relative 

Humidity  

Vapor Pressure 

Deficit  

Salt  

Field Level 1 26°C to 30°C 83.63% 0.50 to 0.64 kPa KCl 

Field Level 2 26°C to 30°C 75.09% 0.80 to 1.07 kPa NaCl 

 

 

Verification of equilibration and rate of drying  

 To confirm that samples had equilibrated to the RH in the dehydration chambers 

after 22 hours, vegetative thalli were collected from a single randomly selected genotype 

(1F), subjected to the dehydration assay described above, and changes in RWC over time 

were documented. Samples were weighed before treatment and then randomly assigned 

to one of the four dehydration treatment levels. To minimize disturbance of the samples 

and potential changes to treatment conditions, samples were not weighed for the first 16 

hours of the dehydration assay (except in treatment level 4 because these samples dried 

much faster than the others). Samples were then weighed at 16, 18, 20, 21, and 22 hours 

using the Chan 29 electrobalance. When sample mass did not decline for three 

consecutive measurements, I considered tissues to be equilibrated to the RH in the 

chamber. If the samples were not equilibrated to experimental RH at 22 hours the assay 

was extended for an additional hour. After completion, samples were oven dried and 



 

 21 

weighed as described above. The RWC for each sample was calculated based on the 

initial turgid mass (Mt), the mass at each time point (Mf), and the final dry mass (Md) 

using the equation for RWC. 

 

Physiological changes 

  Because the RHs used in this study were higher than those typical for bryophyte 

dehydration studies, I tested the physiological consequence of these treatments by 

measuring changes in photosynthesis and respiration. I focused this effort on changes in 

gas exchange during dehydration at 75% RH. The higher experimental RHs (85 and 95%) 

were not used because plants retained high RWC at equilibrium with these RHs, and the 

lowest RH (55%) was not used because all M. inflexa samples died from this treatment.  

 Thallus tips (~7 mm long) were collected from greenhouse-grown specimens of 

one randomly selected male (8X) and female (2X) and placed in distilled water. Sample 

area was measured using ImageJ (Schneider et al. 2012). Prior to placement in the gas 

exchange chamber, the thallus tip was blotted to remove external water and 20 L of 

distilled water was added to make the thallus tip adhere to the plastic sheet used to 

support it in the gas exchange chamber.  

Gas exchange was measured with an open-flow system (LI-6400, Li-Cor, 

Lincoln, Nebraska, USA) equipped with a fluorescence attachment (6400-40, Li-Cor). 

Air temperature was allowed to vary with the ambient laboratory temperature (22 - 

24°C), and RH ranged from 72- 80%. Thus, the VPD varied from 0.53 - 0.84 MPa. 

Airflow rate was set at 100 µmol s-1, and CO2 was set at 450 µmol mol-1.  Infrared gas 

analyzers (sample and reference) were matched prior to the assays.  
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 To obtain baseline CO2 assimilation rates (µmol CO2 m-2 s-1), I first took three 

readings 15 minutes after equilibrium at a light intensity of 150 µmol m-2 s-1.  To measure 

respiration, light intensity was set at 0 µmol m-2 s-1 and three readings were taken after 15 

minutes. In M. inflexa, gas exchange rates usually equilibrate in 5 - 6 minutes after a 

change in light intensity (unpublished data). After taking baseline measurements, each 

plant was immediately subjected to the assay to measure either changes in photosynthesis 

or respiration, but never both because these assays damage tissues. For photosynthesis, 

plants were assayed using the AUTO program of the LI-6400, at a light intensity of 150 

µmol m-2 s-1 at 20-minute intervals for 5 hours, then assayed at 0 µmol m-2 s-1 to confirm 

that photosynthesis had ceased (i.e., no change in gas exchange rates between 150 and 0 

µmol m-2 s-1). For respiration, plants were assayed using the AUTO program of the LI-

6400 at a light intensity of 0 µmol m-2 s-1 at 30-minute intervals for 7.5 hours, then 

assayed at 150 µmol m-2 s-1 to confirm that photosynthesis was not contributing the gas 

exchange rates (i.e., no increase in carbon fixation from 0 to 150 µmol m-2 s-1). The 

difference between input and output air mmol H2O mol-1 at each time point was used as a 

measure of the dehydration state of the tissue, where decreasing positive values indicated 

that the tissue was still drying and zero indicated an equilibrium dehydrated state. The 

interval and duration of these assays were based on trials showing that plants in the same 

light intensity took 3 to 4 hours, and those in the dark took 6 to 7 hours to equilibrate to 

the RH.  
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Statistical analyses  

 All statistical analyses were done in JMP®, Version 10. SAS Institute Inc., Cary, 

NC.  

Dehydration tolerance assay:  To account for genotypic variation I computed ΔFv/Fm 

(initial Fv/Fm – recovery Fv/Fm= ΔFv/Fm) for each genotype using 5 thallus tips per 

genotype. Larger values indicate less recovery. Differences in recovery across treatment 

levels were analyzed using a mixed linear model with ΔFv/Fm as the dependent variable. 

The fixed effects tested were treatment level, sex, habitat, and the sex by habitat 

interaction. Genotype (nested within sex) and trial (replications) were random effects. 

Post hoc comparisons were made with a Tukey HSD test.  

 Because of strong treatment differences (high recovery for levels 1 and 2, and no 

recovery for level 4), level 3 was selected for further use in elucidating differences in 

responses to dehydration between sexes and habitats. That is, responses were most 

variable at this treatment level. The dependent variable analyzed was ΔFv/Fm. The fixed 

effects tested were, sex, habitat, and the sex by habitat interaction. Genotype (nested 

within sex) and trial (replications) were random effects. Post hoc comparisons were made 

with a Tukey HSD test.  

 

Relative water content: Differences in RWC among treatment levels were tested for 

significance using a mixed linear model. The dependent variable was RWC, and the fixed 

effect tested was treatment level. Genotype (nested within sex) and trial (replications) 

were random effects. Post hoc comparisons were made with a Tukey HSD test. 
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Field study: Differences between habitat types in ability to recover from dehydration 

were analyzed exclusively for field treatment level 1 using the mixed linear model. Field 

treatment level 2 was not used because samples did not recover from this treatment. I did 

not take initial Fv/Fm readings for these samples, so recovery was assessed using only the 

recovery Fv/Fm values. The dependent variable was Fv/Fm, and the fixed effect analyzed 

was habitat. Plant ID and trial (replications) were random effects. The sex of these plants 

was unknown, and therefore sex effects were not investigated.  

 

Verification of equilibration and rate of drying: Differences in the rate of change in RWC 

were investigated by repeated measures MANOVA with a full factorial design, repeated 

through time. I considered no change in RWC over three time points to be an indication 

of equilibration to treatment RH. Thus, the final three time points were analyzed 

separately to ascertain if the RWC had stopped changing using repeated measures 

MANOVA.  

 

Physiological changes: The difference between initial and final photosynthetic rate, as 

well as the verification of photosynthetic cessation, were investigated using 95% 

confidence intervals calculated for both mean initial and mean final photosynthetic rate 

across trials and genotypes. Respiration rates were too low to detect a change over time. 

Thus, respiration levels were not analyzed further.  

 The response variable of photosynthetic rate was examined using a mixed linear 

model in which photosynthetic rate was the dependent variable, time and genotype were 

fixed effects, and trial (replications) was a random effect. The response variable of 
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dehydration state was examined by a similar mixed linear model where dehydration state 

was the dependent variable, time and genotype were fixed effects, and trial (replications) 

was a random effect. The relationship between time to stop photosynthesis and the time 

to reach dehydration equilibrium was investigated using the mixed linear model where 

time was the dependent variable, process (photosynthesis or dehydration equilibrium) and 

genotype were fixed effects, and trial (replications) was a random effect. 

 

Results 

Dehydration tolerance assay and recovery    

Treatment intensity: Treatment level had a significant effect on recovery (F3,21 = 21.39, P 

< 0.001). Samples in level 1 were the least damaged and those in level 4 were the most 

damaged by dehydration (Figure 2.2). Estimation of survival by long-term observation 

and mortality tracking over 2 months was consistent with the Fv/Fm data. All samples 

survived the level 1 treatment, and 96% of plants survived level 2 treatment. Sixty-three 

percent of plants survived level 3 treatment, but growth of these plants was substantially 

reduced. All plants died in the level 4 treatment. 
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Figure 2.2. ΔFv/Fm of samples for each of the four levels of dehydration treatment. 

Recovery was measured after 1 week. Sample sizes used to calculate survival were: level 

1 = three; level 2 = ten; level 3 = nine; level 4 = three. Higher ΔFv/Fm indicates more 

damage.  

 

Sex and habitat patterns: Analysis of recovery from treatment level 3 revealed a sex 

effect (F1,13.37 = 7.60, P =0.016) and a sex by habitat interaction (F1,13.37 = 4.94, P = 

0.044). Females were less damaged by dehydration than males (Figure 2.3a). More 

specifically, females were less damaged than males from the stream populations, but this 

sex difference was not evident in plants from road populations (Figure 2.4). No overall 

population difference was found between individuals from stream or road habitats 

(Figure 2.3b).  



 

 27 

 
Figure 2.3. (a) Difference in damage incurred from dehydration at level 3 between the 

sexes is significant with females being less damaged than males (P = 0.016). (b) 

Difference in damage incurred for plants from wet vs. dry source habitats at level 3 is not 

significant. Recovery was measured after 1 week. There were nine trials. 

 

 
Figure 2.4. Females from the stream were less damaged than males from the stream, 

whereas females and males from the road did not differ from one another. This 

interaction is statistically significant at treatment level 3 (P = 0.044). Recovery was 

measured after 1 week. There were nine trials.  

 

Relative water content  

 Differences in mean RWC across treatment level were significant (F3,195 = 278.25, 

P < 0.001; Figure 2.5). Tissue in the level 1 treatment maintained full saturation. Tissue 

in the level 2 treatment lost some cellular water (RWC = 79.9% ± 4.4%), and that in the 
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level 3 treatment lost a substantial amount of cellular water (RWC = 19.7% ± 2.9%). 

Tissue in the level 4 treatment lost almost all cellular water. 

 
Figure 2.5. Mean RWC of M. inflexa tissue after treatment at each of the four dehydration 

intensities (Table 2.1). Sample size for each treatment group was three replicated 

dehydration chambers, each containing 18 individuals.  

 

Field study 

 Plants sampled from the dry road habitat recovered more completely from 

dehydration treatment than those collected from the moist stream habitat (F1,26 = 4.49, P 

= 0.044, Figure 2.6).  



 

 29 

 
Figure 2.6. The differences in recovery Fv/Fm of plants collected directly from stream or 

road sites and subjected to dehydration conditions was significant (P = 0.0438). Recovery 

was measured after 1 week. There were three trials with ten thallus tips in each.   

 

Verification of equilibration and rate of drying  

 There was a significant effect of time in all treatment levels (F5,3 = 529.77, P < 

0.001) as well as a significant time by treatment interaction (Wilks’ Lambda F15,8.68 = 

17.69, P < 0.001), indicating that the rate of drying differed across treatments (Figure 

2.7). Samples in both treatment levels 3 and 4 equilibrated to the treatment RH well 

within the timeframe of my assay, as evidenced by a lack of change in RWC during the 

last 4 hours of the assay for treatment level 3 and the last 12 hours for level 4. Samples in 

treatment levels 1 and 2 took the entire 22 hours to equilibrate. During the final 3 hours 

of the assay there was no significant time effect on RWC at any treatment level (level 1: 

F2,1 = 96.53, P = 0.072; level 2: F2,1 = 3.36, P = 0.36 ; level 3: F2,1 = 0.38 P = 0.75; level 

4: F2,1 = 0.55, P = 0.4), suggesting that tissues were equilibrated to treatment conditions 

during this final time period.  
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Figure 2.7. Drying rate as change in RWC over time for the four treatment levels. Three 

samples of a single genotype (1F) were used in each treatment level. RWC was 

calculated using fully hydrated sample mass, mass measured over the course of the assay, 

and the final oven dry mass. The slight initial increase in RWC seen in level 1 and level 4 

treatments is a result of the samples picking up external water prior to drying.  

 

Physiological changes   

 Tissue samples in the light equilibrated to ~75% RH after ~3 hours as indicated 

by the lack of difference in mmol H2O mol-1 of input and output air (Figure 2.8a). 

Samples stopped assimilating CO2 after ~3 hours (Figure 2.8b).  

 Neither initial (F1,4 = 0.85, P = 0.408) nor final (F1,4 = 3.37, P = 0.14) 

photosynthetic rates were significantly different between genotypes, but there was a 

significant change in photosynthetic rate during the process of equilibration to ~75% RH 

(Figure 2.8b). The mean initial photosynthetic rate was 5.48 µmol CO2m-2s-1 (95% 

confidence interval: 5.10 - 5.86 µmol CO2m-2s-1). The mean final photosynthetic rate was 

-0.02 µmol CO2m-2s-1 (95% confidence interval: -0.19 - 0.16 µmol CO2m-2s-1). Because 

the confidence intervals do not overlap, I conclude that the initial and final photosynthetic 

rates are significantly different from one another. Furthermore, the 95% confidence 

interval for the final photosynthetic rate includes 0, suggesting that photosynthesis was 
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likely shutdown at this point. I found that initial respiration levels were too low to detect 

a change over time. 

 There was no significant difference detected in the time to dehydrate to 

equilibrium at ~75% RH and the time to cease photosynthesis (F1,5 = 0.72, P = 0.435), 

nor any genotype effect (F1,4 = 0.14, P = 0.729), indicating that both processes happen 

simultaneously, and consistently across genotypes.  

 
Figure 2.8. (a) The dehydration state of samples over time was measured as difference in 

mmol H2O mol-1 input to mmol H2O mol-1 output. (b) The change in photosynthetic rate 

was measured over the same time period. Photosynthetic rates were measured as µmol 

CO2m-2s-1 and decreased to 0. between 2 and 3 hours of drying at ~75% RH. There was 

no difference between genotypes in their dehydration state or photosynthetic rate (n = 6). 

 

 

Discussion 

 These results indicate that M. inflexa displays a moderate degree of DhT, which 

confirms my expectation and extends existing knowledge of the diversity of DhT 

phenotypes within bryophytes. Marchantia inflexa also exhibits a sex difference in DhT, 

with females showing a higher degree of DhT than males. This sex differences may be 

caused by differences in male and female reproductive strategies, which in turn may 
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explain biased population sex ratios. The sex difference is particularly intriguing because 

it is only observed for plants originating from the moist stream habitat. I did not find 

evidence of genetic adaptation to dry habitats, but I did detect plasticity in DhT as plants 

appeared to acclimate to different environments. 

 

Recovery 

 No M. inflexa samples were able to recover from the most intense dehydration 

treatment (level 4), implying that M. inflexa is not highly DhT (or desiccation tolerant), 

compared to other species that can easily recover from this degree of dehydration 

(Proctor et al. 2007). However, many samples recovered from the level 3 treatment, and 

this treatment did dehydrate samples considerably as indicated by the relatively low 

cellular water content and the cessation of photosynthesis at equilibration. Moderate DhT 

provides an important link between desiccation sensitive crops and the highly desiccation 

tolerant model organisms and may provide valuable insight into the acquisition of DhT. 

 Marchantia inflexa females exhibited a higher degree of DhT than males (Figure 

2.3a), which suggests contrasting male and female reproductive strategies or functions. 

This contradicts the typical expectation that females of dioecious plants should be less 

stress tolerant due to higher resource investment in reproduction (Juvany and Munné-

Bosch 2015). However, there is mixed evidence on the direction of sex specific stress 

tolerance differences in dioecious plants. While most studies indicate that males have 

higher water stress tolerance than females (Juvany and Munné-Bosch 2015), multiple 

examples of higher tolerance in females have been observed as well (Ward et al. 2002; 

Sánchez-Vilas and Retuerto 2009; Melanie et al. 2013). Further complicating matters, 



 

 33 

some studies have found that sex-linked differences in stress tolerance depend on life 

stage and environmental conditions (Rakocevic et al. 2009; Juvany and Munné-Bosch 

2015). Notably, higher DhT has been observed in females relative to males in some other 

bryophyte species (Newton 1972). In M. inflexa (McLetchie 1992; Stark et al. 2000) 

males likely allocate more resources to pre-fertilization sexual investment than females, 

possibly at the expense of traits related to survival. Although females have higher post 

fertilization reproductive investment, this is rarely realized because fertilization rates are 

low. Additionally, females may experience stronger selection for self-preservation than 

males because they must persist during offspring maturation. Although plants were in a 

non-reproductive stage in this study, the underlying differences in male and female 

reproductive strategies could still come into play. For instance, M. inflexa males 

consistently reach sexual maturity more readily than females (Brzyski et al. 2014) and 

this precocious trait might trade-off with DhT. While this could explain the higher degree 

of DhT in females compared to males, resolving it will require more systematic 

investigation of sex specific trade-offs in DhT and sexual reproduction.  

  I predicted that plants collected from dry habitats (roadsides) would show higher 

recovery from dehydration than those collected from moist habitats (streams). However, I 

found no difference in the DhT of these two groups when plants were grown in a 

common garden. This suggests that there are no adaptive differences in DhT between 

plants from these divergent habitat types (Figure 2.3b). However, the road habitats have 

been recently colonized and thus it is not particularly surprising that I did not detect 

evidence of DhT adaptation to this environment. However, when plants were collected 

directly from these two habitat types (field study) and subjected to a dehydration 
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treatment, samples from dry habitats had higher DhT than plants from moist habitats 

(Figure 2.6). This pattern fits my initial prediction, but contradicts the laboratory study, 

and suggests a strong potential for acclimation. In other words, it implies that DhT in M. 

inflexa is a plastic trait. The ability of M. inflexa to acclimate to dry conditions 

corroborates pervious work on protoplasts showing that slight decreases in water 

potential can lead to increased DhT during subsequent drying events and multiple studies 

demonstrating hardening in vegetative tissue (Schonbeck and Bewley 1981; Beckett 

1999; Walters et al. 2002; Beckett et al. 2005; Cruz de Carvalho et al. 2011). I conclude 

that genetic adaptations are not responsible for the habitat difference in DhT, but rather 

that acclimation to dry conditions can increase DhT in M. inflexa.  

 The sex by habitat interaction detected in the common garden study was driven by 

plants derived from the stream habitat (Figure 2.4). Females from the stream showed 

higher DhT than males, whereas plants from roadsides had similar responses across the 

sexes. While this pattern is complex, it is consistent with previous studies on M. inflexa 

showing habitat by sex interactions for other life history traits. For example, the pattern 

of habitat specific sexually dimorphic DhT is similar to what Brzyski et al. 2014 found 

for growth rate. In that study there was no overall habitat difference for growth rate, but 

stream collected plants had a sexually dimorphic growth rate and road collected plants 

did not have a dimorphic growth rate. One possible explanation for this pattern is that 

because the streams populations are native and well-established there has been more time 

for selection to generate the dimorphic patterns observed. Conversely, the roads are novel 

habitats and there has been less time for selection to act on secondary sexual 

dimorphisms. In addition, the road populations engage in sexual reproduction much more 
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frequently than those along the streams (Brzyski et al. 2014), which could lead to more 

mixing of male and females traits. Coupled with reduced evolutionary time, this mixing 

may explain the more homogenous DhT of the sexes in road versus stream populations.  

Verification   

 In bryophyte dehydration studies, equilibration to different RHs is often used as a 

measure of dehydration stress (Proctor et al. 2007; Wood 2007). Thus, it was necessary 

for me to demonstrate that the length of these assays was sufficient for tissue to 

equilibrate to each treatment RH. In doing so, I showed that the rate of drying varied 

across treatments (Figure 2.7). Samples dehydrated at the lower RHs not only dried more 

completely, but also dried faster, which very likely influenced their survival. Multiple 

studies have shown that drying rate strongly effects survival and recovery from 

dehydration, with faster drying typically being more damaging for intact vegetative 

tissues (Farrant 1999; Cruz de Carvalho et al. 2012, 2015), although in many seeds slow 

drying is more damaging (Pammenter et al. 1998).  

 Most of the work on bryophyte DhT has been done using equilibration to lower 

RHs than were used in my study (Wood 2007). The standard RH used for dehydration 

treatment is ~50% RH, which has been very informative in studying highly desiccation 

tolerant species, but for understanding moderate levels of DhT I find it useful to use less 

intense dehydration treatments. Although other studies have used similarly intense 

treatments (Pardow and Lakatos 2013), there may be some concern as to the 

physiological effect of my treatments. To address this concern, I demonstrated that 

photosynthetic cessation is synchronized with equilibration to ~75% RH in M. inflexa 

(Figure 2.8). Although the cessation of photosynthesis does not imply that all metabolic 
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activity has ceased, it is a central plant process, and it’s shutdown indicates that 

substantial physiological changes are associated with this level of dehydration (Dilks and 

Proctor 1979; Deltoro et al. 1998).  

 

Conclusions 

 Taken together, this study demonstrates that M. inflexa exhibits moderate levels 

of DhT and that, depending on the habitat, females are more DhT than males. By 

combining a common garden and field study, I also show that acclimation, not 

adaptation, is responsible for habitat differences in DhT in these M. inflexa populations. 

Although it has long been known that many bryophytes are highly desiccation tolerant, 

this study provides a rare empirical example demonstrating that some bryophytes are 

moderately DhT. These findings are particularly relevant in an agricultural context where 

greater understanding of moderate DhT could inform strategies for developing DhT crop 

species. Furthermore, with climate change predicted to increase not only temperatures on 

a global scale, but to also drive more variation in weather patterns (and more extreme 

events such as droughts), these results also provide an important step towards better 

predictions of the response of M. inflexa and similar species to environmental change.
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CHAPTER THREE 

GENETIC DIFFERENCES IN WATER STRESS TOLERANCE TRACK 

ENVIRONMENTAL EXPOSURE AND EXHIBIT A FLUCTUATING SEXUAL 

DIMORPHISM  

 

A version of this chapter is currently under review at Oecologia  

 

Introduction 

With climate change models predicting increased variation in global weather 

patterns, including frequent and intense droughts across much of the world (Dai 2013), 

both ecological stability (Jentsch et al. 2007) and food security (Schlenker and Lobell 

2010) are threatened. However, by drawing on natural variation in water stress tolerance, 

we can enhance our understanding of adaptive responses and improve predictions on the 

ecological consequences of drought. Many mechanisms of water stress tolerance exist 

within land plants, spanning diverse life histories, morphologies, and physiologies. This 

diversity represents a valuable repository of information that can be mined to gain insight 

into the ramifications of water shortage. By characterizing intraspecific variation in water 

stress tolerance expectations on adaptive potential, population dynamics, and species 

persistence can be improved.  

Dehydration tolerance (DhT, also dehydration tolerant) is a highly effective 

strategy for coping with limited water availability. DhT is a less extreme version of 

desiccation tolerance (DT, also desiccation tolerant) (Gaff 1971; Oliver et al. 2010; 

Marks et al. 2016). Extant DT and DhT plants are phylogenetically diverse but tend to 

occupy similar ecological niches, suggesting that environmental selection has been a 

strong driving force in the retention and re-evolution of DT and DhT (Alpert 2005; Le 

and McQueen-Mason 2006). Although, plants spanning the entire spectrum from 
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desiccation sensitivity to DT have been identified, the extent of intraspecific variation in 

DT and DhT is unclear, and whether this variation is driven by genetic differences among 

populations has rarely been studied. While comparative studies among species can 

distinguish general characteristics of DT and DhT, studies of intraspecific variation in DT 

and DhT will inform predictions on species range shifts, population resilience, and 

provide a resource for investigating the molecular mechanisms underlying DT and DhT. 

The limited studies on intraspecific variation in DT and DhT demonstrate that DT and 

DhT vary in response to environmental differences (i.e. seasonally (Farrant et al. 2009), 

among populations (Oliver et al. 1993; Farrant and Kruger 2001), and under specific 

culturing methods (Stark et al. 2014, 2016)), or developmentally (i.e. among life stages 

(Stark et al. 2007) and the sexes (Marks et al. 2016)). However, few studies focus on 

detecting genetic differences in DT and DhT within or across populations.  

In addition to abiotic stress, dioecious plants face the threat of distorted 

population sex ratios, which can lead to mate scarcity, and in extreme cases a reduction 

or loss of sexual reproduction. Sex differences in stress tolerance are likely an important 

driving force of population sex ratio distortions (Retuerto et al. 2018), and consequently, 

detecting sex-specific responses to stress will enhance our understanding of population 

dynamics in dioecious species. Broadly speaking, sexual dimorphisms in both plants and 

animals can arise due to distinct selective pressures on males and females (Shine 1989; 

Badyaev and Hill 2003). Contrasting selection among the sexes often leads to 

unidirectional dimorphisms, (i.e. colorful male plumage in birds), but variable sexual 

dimorphisms have also been documented in numerous animal taxa (Alexander et al. 

1979; Berry and Shine 1980; Woolbright 1983; Badyaev et al. 2000). Although 
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seemingly unlikely, complete reversals of sexual dimorphisms have been observed 

(Kahlke et al. 2000). This suggests that sexual dimorphisms are not fixed, and can in fact, 

fluctuate across space. The focal species, Marchantia inflexa, exhibits numerous sexual 

dimorphisms, many of which fluctuate among populations (Brzyski et al. 2014; Marks et 

al. 2016). Interestingly, in the above examples, the fluctuation is driven by male 

variability, which I speculate is related to more variable sexual selection on males leading 

to rapid male diversification. Understanding the patterns of fluctuating sexual 

dimorphisms will improve predictions on local sex ratios, reproductive potential, and 

population persistence in dioecious plants.   

Here, I investigated variation in DhT in the tropical liverwort M. inflexa to 

provide insight into the evolutionary and ecological dynamics of DhT. My primary aims 

were to characterize intraspecific variability in DhT across environments, test for genetic 

differences in DhT, investigate if a fluctuating sexual dimorphism in DhT exists, and to 

test if variability in DhT is linked to population sex ratios. Building on previous studies 

that measured DhT in plants from a limited number of populations (chapter 2), I 

expanded the scope of my investigation to cover additional sites, intentionally targeting 

natural, relatively undisturbed streams. I collected plants from five populations, spanning 

an environmental gradient in the tropical forests of northern Trinidad, Republic of 

Trinidad and Tobago. I measured DhT immediately after collection, and again after one 

year of cultivation in a common garden. Data on recovery from dehydration were 

analyzed to explicitly test the following four hypotheses: 1) plants collected from more 

exposed (drier) sites will exhibit higher DhT than plants collected from less exposed 

sites; 2) measurable variation in DhT will be retained under common conditions due to 
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underlying genetic differences among populations; 3) the degree of sexual dimorphism in 

DhT will fluctuate among populations, as a consequence of male variability; and 4) 

population sex ratios will be biased in favor of the sex that is more DhT in that 

population.  

 

Methods 

Study organism and sample collection 

 Marchantia inflexa (Nees & Mont) is a New World liverwort with unisexual 

individuals that is distributed from northern Venezuela to the southern United States 

(Bischler 1984). The dominant life stage of M. inflexa is the haploid gametophyte, which 

grows as a bifurcating thallus. Sex is chromosomally determined with one sex (U/V) 

chromosome and eight autosomes. Sexual reproduction produces spores, and asexual 

reproduction produces specialized asexual propagules (gemmae) (Figure 3.1a) or occurs 

via thallus fragmentation. Marchantia inflexa’s native habitat is low light, high humidity 

sites along tropical streams and rivers, but it can also colonize more exposed and 

disturbed sites, such as road cuts within forests (Brzyski et al. 2014). Marchantia inflexa 

can recover from intermittent drying events, and prior studies found that females recover 

more consistently than males (Stieha et al. 2014; Marks et al. 2016).  

 Marchantia inflexa plants for the current study were collected from five sites on 

the island of Trinidad, Republic of Trinidad and Tobago in May 2016. All sites were 

located along separate streams in the moist lowland tropical forests of northern Trinidad 

(Table 3.1). Forty-eight samples (comprised of a bifurcated thallus tip 1cm long) (Figure 

3.1b) were collected from each site between 20 - 27th May, 2016. Plants were sampled 
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haphazardly along a roughly linear transect following the stream, with the restriction that 

no two samples were within 1 M of each other. This sampling scheme was based on prior 

studies showing that the probability of collecting duplicate genotypes drops to zero at 

distances > 0.4M (Brzyski et al. 2018). Upon collection, isolates were placed directly into 

24 well plates, hydrated with stream water, and transported back to the William Beebe 

Tropical Research Station where they were kept fully hydrated under low light conditions 

for 24 hours prior to experimental treatments. A total of 240 isolates were collected.   

 

Table 3.1. The name and location of collection sites in Trinidad, Republic of Trinidad 

and Tobago, collection date, and the number of male and female isolates collected at each 

site. Sites are ordered from most to least exposed. Isolate sex was determined after 

collection, via direct observation, induction of sex organ development, and the use of 

DNA sex markers.  

Collection site Coordinates Number ♂  Number ♀ 

North Oropuche  10o40’08”N 61o08’44”W 20 26 

Rio Seco  10o43’51”N 61o02’04”W 3 39 

Quare  10o40’37”N 61o11’40”W 8 37 

West Turure  10o41’00”N 61o10’04”W 32 15 

East Turure  10o41’04”N 61o09’39”W 10 38 

 

 
Figure 3.1. (a) Marchantia inflexa gemmae cup with gemmae, and (b) thallus tissue 

exhibiting a main bifurcation (and a secondary early stage bifurcation on the right 

branch). All samples collected at field sites consisted of a bifurcated thallus. One 

bifurcation was subjected to field dehydration treatment, and the other transported to the 

University of Kentucky, Lexington, KY, USA where gemmae production was induced, 

clones were propagated, and maintained in a common garden.  
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Field site characterization  

 Environmental differences among collection sites were characterized via canopy 

openness, which is a measure of exposure and has been linked to plant response in other 

studies (Fuselier and McLetchie 2004; Groen et al. 2010). Hemispherical canopy photos 

(taken using a Nikon CoolPix 4500 camera with a 180o lens attached) were used to 

quantify canopy openness. Photographs were taken at each site at the beginning, middle, 

and end of the sampling area. Canopy photographs were characterized with 

WinSCANOPY™ (Reagent Instruments, Québec, Canada) following the manufactures 

instructions to quantify canopy openness.  

   

Field dehydration treatment  

 Plants were assayed for DhT following the protocol outlined in Marks et al. 2016, 

with a few minor changes. Following collection, plants were held in fully hydrated, low 

light conditions at 25.8 °C ± 0.02 for 24 hours before dehydration treatment. To initiate 

dehydration treatment, a randomized set of 40 out of the 48 samples from each site were 

selected (the remaining eight plants were used to estimate the initial status of plants for 

each site). One side of the bifurcation (a thallus tip) was removed and placed in a 

dehydration chamber. Dehydration chambers consisted of airtight plastic containers with 

tissue samples in individual Petri dishes placed around the interior perimeter of the 

chamber. Each chamber contained a total of 20 samples (10 plants each from two sites). 

All samples were dehydrated to equilibrium with 85% relative humidity (maintained with 

a saturated KCl solution (Greenspan 1977)), and the entire dehydration treatment was 

conducted under low light at 25.8 °C ± 0.02. Plants were allowed to dehydrate until 
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visibly dry (~105 hours), after which they were rehydrated. Recovery was assessed 2 

weeks after rehydration by quantifying maximum potential quantum yield (Fv/Fm) of 

dark-adapted tissues (Krause and Weis 1984) with an OS5-FL modulated chlorophyll 

fluorometer (Opti-Sciences, Tyngsboro, Massachusetts, USA). A total of 197 plants were 

assayed.  

Confirmation that plants reached equilibrium with 85% relative humidity after 

105 hours was determined by measuring the change in mass of a subset of samples 

throughout the dehydration assay until no additional decrease in mass was observed. 

Mass measurements were also used to calculate the water content (WC) (see Equation 1) 

for a subset of plants from (North Oropuche and Quare streams) to estimate the hydration 

status of samples at their most dehydrated point. The precision of the scale at the field 

research station did not allow me to detect changes in mass of a single sample, so mass 

measurements were made on four groups of 10 tips. Sample fresh weight (FW) was 

measured at the most dehydrated condition (~105 hours after assay initiation), and 

sample dry weight (DW) was measured after drying samples for 3 days in an 80 °C 

drying oven at the University of Kentucky Lexington, KY, USA. The mean WC of 

samples after field dehydration treatment was 28.32 ± 2.23 g H2O g-1 dry weight. 

  

WC = 100 ∗ (
(FW−DW)

(DW)
)     Eqn 1 

 

Common garden cultivation  

 The remaining bifurcation (thallus tip) from each isolate was transported to the 

University of Kentucky, Lexington, KY, USA and placed in a growth chamber at 16 °C 
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with a 12-hour light/dark cycle to induce gemmae (asexual propagule) production. After 

~4 months, samples were removed from the growth chamber and visually inspected for 

evidence of gemmae production. Gemmae were used for propagation with the intention 

of removing field effects. Clones of each isolate were planted on steam sterilized local 

soil in 59 ml pots covered with neutral density acetate lids and grown in a climate-

controlled greenhouse. Plants were watered daily and covered with a shade cloth to 

mimic field light conditions.  

 

Common garden dehydration treatment 

 After plants reached sufficient size (8-12 months) they were subjected to 

dehydration treatment. These dehydration treatments were designed to replicate field 

treatments as closely as possible. Paralleling field work, thallus tips were collected from 

each isolate, placed directly into dH2O, allowed to fully hydrate for 24 hours, and then 

placed into dehydration conditions identical to those used in the field. The only difference 

in treatment conditions was a reduction in ambient temperatures from 25.8 ± 0.02 to 20.5 

± 0.01 °C, which slowed drying processes slightly. This change in temperature 

corresponds to a reduction in vapor pressure deficit from 0.504 kPa in the field to 0.351 

kPa in the common garden. Samples were dehydrated until visibly dry (~120 hours) after 

which they were rehydrated, and recovery was quantified 2 weeks after rehydration by 

measuring maximum potential quantum yield (Fv/Fm) readings of dark-adapted tissues 

with an OS5-FL modulated chlorophyll fluorometer (Opti-Sciences, Tyngsboro, 

Massachusetts, USA). More samples (n=412) were processed in common garden assays 
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relative to the field assays because I had access to sufficient tissue to permit replication of 

isolates.  

To estimate dehydration intensity in the laboratory I measured the WC of a subset 

of dehydrated samples. Mass measurements were made on a total of 57 samples at their 

most dehydrated condition and again after three days in an 80 °C drying oven using a 

Chan 29 electrobalance, and WC was calculated using Equation 1. The mean WC of 

samples after laboratory dehydration treatment was 72.27 ± 7.23 g H2O g-1 dry weight.  

 

Sex expression  

 To identify the sex of each isolate I observed natural sex organ development in the 

common garden. This allowed me to determine the sex of the majority of my samples, 

however some plants did not produce sex organs under greenhouse conditions. For these 

specimens, I induced sex organ development by exposing plants to constant far-red light 

at 16 C in a growth chamber. Plants that still failed to produce sex organs (n=7), were 

sexed using DNA sex markers for M. inflexa, as described in chapter 5.  

 

Statistical analyses 

Statistical analyses were conducted in JMP® version 12 (SAS Institute Inc. Cary, 

NC, USA). Analyses of environmental differences used a mixed effects linear model to 

test the fixed effect of site on canopy openness. The location of photographs (nested 

within site) was included in the model as random effects.  

To address the four central hypotheses of this study, the primary response variable 

tested was ΔFv/Fm (initial Fv/Fm - recovery Fv/Fm), with smaller ΔFv/Fm indicating higher 
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DhT. Initial Fv/Fm values were measured on a subset of plants (n=8) from each site (either 

directly after field collection, or after cultivation in the common garden). These initial 

measures were used to generate a mean initial Fv/Fm for each site and growth condition, 

from which experimental values were subtracted to generate ΔFv/Fm. I did not take initial 

Fv/Fm measures on experimental samples to minimize handling of tissues, which could 

alter dehydration responses.  

I used a mixed effects linear model to test the fixed effects of sex, site, growth 

condition, and all second and third order interaction effects on the response variable 

ΔFv/Fm. To account for different levels of replication in greenhouse and field studies, 

plant ID (nested within site) was included in the model as a random effect. Dehydration 

chamber (nested within growth condition) was also included as a random effect. Post hoc 

comparisons among the sexes, sites, and growth conditions were made with Tukey’s 

Honest Significant Difference (HSD) tests.  

To characterize the relationship between environment and DhT (hypothesis one) I 

considered the effect of site on ΔFv/Fm and tested for a correlation between mean canopy 

openness and mean ΔFv/Fm across sites. To test for genetic differences in DhT 

(hypothesis two), I considered only the common garden samples. I used a mixed effects 

linear model to test the fixed effect of site on ΔFv/Fm in the common garden plants. To 

test for sex differences in DhT (hypothesis three) I looked at the effects of sex and 

interactions including sex in the complete data set (field and common garden plants). To 

address the second aspect of hypothesis three (that any fluctuation in DhT dimorphism is 

driven by male variability) I computed mean ΔFv/Fm for each sex across all sites, and then 

tested if the variance in site means was sex-specific using a 2-sided F-Test. To address 
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hypothesis four, site-specific sex ratios (♂/(♂+♀) were calculated using the data from 

Table 3.1. I used the Goodness-of-fit test to examine sex ratios within each population 

(with the expected sex ratio of 0.5 (1♂:1♀)) and a heterogeneity test to identify 

significant differences among populations. Subsequently, the difference in DhT among 

the sexes (♂-♀ mean ΔFv/Fm) was computed for each site. I predicted that sites with 

significant sex differences in ΔFv/Fm would have sex ratios significantly different from 

0.5 and in favor of the sex with higher DhT, and that sites with no significant sex 

difference in ΔFv/Fm would have sex ratios not significantly different from 0.5. I 

compared the observed data to these expectations and considered the proportion of cases 

in which my prediction was met.  

 

Results 

A total of 240 isolates was collected from five field sites. Of these, 197 were 

assayed for DhT in the field. Two hundred and twenty-eight isolates survived throughout 

the study, 201 of which were assayed for DhT after being cultured in a common garden 

(samples were replicated at least once for total of n=412 samples). The study included 

155 female isolates and 73 male isolates.  

 

The effect of site on DhT 

 Canopy openness ranged from 9.4% at North Oropuche to 4.5% at East Turure, 

with significant differences among sites (F4,10 = 23.55, P < 0.0001) (Figure 3.2). 

Recovery from dehydration (ΔFv/Fm) also varied significantly among sites (F4,116 = 2.76 P 

= 0.031) (Figure 3.3), and this effect was in the same direction as environmental 
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differences. Mean ΔFv/Fm was positively correlated with canopy openness (R squared = 

0.81, F4 = 12.9, P = 0.037). Plants from the site with the most open canopy (North 

Oropuche) showed the least damage from dehydration, whereas plants from the site with 

the most closed canopy (East Turure) exhibited the most damage from dehydration.  

 
Figure 3.2. Sites (in order of most to least exposed) where Marchantia inflexa occurred in 

Trinidad, Republic of Trinidad and Tobago differed in canopy openness. Bars are 

standard error about the mean. 

 
Figure 3.3. Recovery from dehydration of Marchantia inflexa plants collected from five 

streams (ordered from most to least exposed) in Trinidad, Republic of Trinidad and 

Tobago. Recovery from dehydration (ΔFv/Fm) was assessed by measuring maximum 

potential quantum yield (Fv/Fm) of dark-adapted tissues before and after dehydration 

treatment. Both field collected and common garden specimens are included in these 

analyses. Number of isolates for each site: North Oropuche (46); Rio Seco (42); Quare 

(45); West Turure (47); East Turure (48). Bars are standard error about the mean.  
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Genetic differences in DhT 

 To test if variability in DhT is driven by genetic differences, I considered plants 

grown in the common garden. There was a significant effect of site on ΔFv/Fm (F4,140 = 

3.6 P = 0.008) (Figure 3.4). ΔFv/Fm ranged from 0.09 ± 0.03 at Rio Saco to 0.29 ± 0.04 at 

East Turure.   

 
Figure 3.4. Relative damage due to dehydration (ΔFv/Fm) of Marchantia inflexa plants 

grown in a common garden. Collection sites are ordered from most to least exposed. 

Plants collected from the least exposed sites were more damaged by dehydration 

compared to plants from drier sites, even under common growth conditions. Number of 

isolates included in analyses: North Oropuche (40); Rio Seco (32); Quare (42); West 

Turure (42); East Turure (45). Bars are standard error about the mean. 

Sex-specific DhT  

 There was a significant interaction between site and sex on ΔFv/Fm (F4,265 = 3.30 P 

= 0.012) (Figure 3.5). Specifically, males were significantly less damaged by dehydration 

than females from North Oropuche, the sexes did not differ in damage from Rio Seco, 

Quare, and West Turure, but females were significantly less damaged than males from 

East Turure. Further, the variance in mean ΔFv/Fm across sites was significantly higher in 

males than females (F4,4 = 10.1 P = 0.046). Mean ♀ ΔFv/Fm ranged from 0.18 to 0.27, 

while mean ♂ ΔFv/Fm ranged from 0.11 to 0.44 (Figure 3.5).  
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Figure 3.5. Relative damage due to dehydration (ΔFv/Fm) in Marchantia inflexa males 

and females fluctuated among the sites. Sites are ordered from most to least exposed. 

Males were significantly less damaged than females from North Oropuche, the sexes did 

not differ from Rio Seco, Quare, and West Turure, and females were significantly less 

damaged than males from East Turure. Both field and common garden data are included 

in the analysis.  Number of isolates at each site: North Oropuche (♀=26, ♂=20); Rio 

Seco (♀=39, ♂=3); Quare (♀=37, ♂=8); West Turure (♀=15, ♂=32); East Turure (♀=38, 

♂=10). Bars are standard error about the mean. 
 

Population sex ratios 

Overall populations sex ratios were heterogeneous, ranging from 0.058 to 0.64 

(G4 = 45.43, P < 0.0001). The sex ratio at North Oropuche did not differ from 0.5, Rio 

Seco, Quare, and East Turure were significantly female biased (P < 0.0001), while the 

sex ratio at West Turure had a tendency to be male biased (P = 0.051) (Table 3.2). 

Despite the fluctuating sexual dimorphism in DhT, my prediction that sex ratios would be 

biased favor the sex with higher DhT was met in only one out of the five populations 

(Table 3.2).  
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Table 3.2. The difference in DhT between males and females (♂-♀ mean ΔFv/Fm), and 

the population sex ratio (♂/(♂+♀) for each site was computed. Sites with significant sex 

differences in DhT and population sex ratios significantly different from 0.5 are indicated 

with an *. Based on the hypothesis that population sex ratios would be biased in favor of 

the sex with higher DhT, I predicted that the sex ratio would be male biased at North 

Oropuche, not significantly different from 0.5 at Rio Seco, Quare, and West Turure, and 

female biased at East Turure. This prediction was met in only one out of the five cases 

(East Turure), suggesting that DhT does not predict sex ratio.  

Collection site Sex difference in DhT  Predicted sex ratio Observed sex ratio 

North Oropuche  -0.09* > 0.5 0.43  

Rio Seco  -0.06 0.5 0.07* 

Quare  0.00 0.5 0.18* 

West Turure  0.02 0.5 0.68*  

East Turure  0.44* < 0.5 0.21* 

  

 

Discussion 

 My results indicate that M. inflexa harbors substantial intraspecific variation in 

DhT. As expected, I found that DhT is positively associated with environmental exposure 

in plants collected from five natural sites in the tropical forests of northern Trinidad, 

Republic of Trinidad and Tobago. This pattern is driven by underlying genetic 

differences among populations, as indicated by retention of population-specific DhT 

differences in common growth conditions. More interestingly, I found that population 

differences in DhT are sex-specific. In less exposed sites females have higher DhT than 

males, but in more exposed sites males have higher DhT than females. Although this 

fluctuating sexual dimorphism in DhT is intriguing and suggests that the sexes are 

responding to environmental gradients differently, it does not scale up to population sex 

ratios. 

 My analyses detected significant differences among sites in DhT. These 

differences in DhT are highly correlated with canopy openness (exposure), providing 

evidence of local adaptation in DhT. Although not entirely surprising, the observation 
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that plants collected from the most exposed sites have higher DhT than plants from the 

least exposed sites indicates that plants respond to contrasting selective pressures in their 

local environment. Others have shown that variation in DT corresponds with 

environmental changes (Dilks and Proctor 1976; Beckett and Hoddinott 1997; Stark et al. 

2007; Farrant et al. 2009), but most studies do not explicitly test for genetic differences 

among plants. This study adds to this body of work by establishing a correlation between 

genetic differences in DhT and environmental exposure in M. inflexa. Previous work 

suggested that plasticity in DhT may also play a role in this system ((Marks et al. 2016). 

However, data from the current study indicate that differences in DhT in M. inflexa are 

due to genetic differences driven by spatially variable selection. It is worth noting that 

absolute differences in DhT among common garden plants were slightly reduced relative 

to field plants. Therefore, I speculate that genetic differences in DhT are enhanced by 

plasticity, but additional studies will be needed to formally test this hypothesis.  

 I found that DhT is sexually dimorphic, but that sex differences in DhT fluctuate 

among populations, with females exhibiting higher DhT than males in less exposed sites 

and males exhibiting higher DhT than females in more exposed sites. Prior work in M. 

inflexa showed that females had higher DhT than males at East Turure (Marks et al. 

2016), and that finding is confirmed in the current study. However, here I found that 

males at North Oropuche exhibit higher DhT than females, suggesting that sex 

differences in DhT are more complex than previously appreciated. As mentioned, DhT is 

not the first trait to display a fluctuating sexual dimorphism in M. inflexa (Groen, Stieha, 

Crowley, and David Nicholas McLetchie 2010; Brzyski et al. 2014), and other dioecious 

plants exhibit sexually dimorphic traits that fluctuate in response to environmental 
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conditions (Eppley 2006; Dudley and Galen 2007; Strømme et al. 2018). I speculate that 

this fluctuating dimorphism is driven by contrasting selective pressures on males and 

females, and possibly exacerbated by intra-sexual competition. Differences in 

reproductive resource allocation between males and females, may also contribute to 

patterns of fluctuating sexual dimorphisms. Higher reproductive costs for females 

compared to males can lead to sex-specific tradeoffs between reproduction and other 

plant functions (Dawson and Geber 1999; Dudley and Galen 2007; Retuerto et al. 2018), 

and this can be accentuated under stressful conditions. In the context of the current study, 

I speculate that M. inflexa males may experience little to no selection for DhT in the less 

exposed sites because their reproductive resource requirements are met well before the 

onset of drying events. Females, on the other hand, require more time in hydrated 

conditions to meet their elevated resource demands and are therefore exposed to selection 

for DhT. However, in the drier more exposed sites, selection for DhT will be extended to 

males and may become so extreme that females are unable to mature offspring. Over 

time, this stress could lead to a reduction of females in exposed sites, as has been 

suggested in other taxa (Freeman et al. 1976; Dawson and Ehleringer 1993; Eppley 2001) 

and an increase in local male DhT. Residual females present in these exposed habitats 

may result from recent colonization events and consequently, would not exhibit elevated 

stress tolerance. The finding that sex differences in stress tolerances do not consistently 

favor males or females (Retuerto et al. 2018; Strømme et al. 2018) may be due to 

insufficient across population studies coupled with fluctuating sexual dimorphisms.  

Interestingly, the fluctuating sexual dimorphism in DhT in M. inflexa is driven 

primarily from male variability. I found that females have similar DhT across all sites, 
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while males display high variably in DhT across sites. I speculate that females are 

relatively constrained by the resource demands associated with offspring maturation and 

therefore exhibit low variability in DhT. In contrast, male reproductive biology is more 

permissive and there may be multiple viable male strategies. It is possible that high 

variability in males could lead to the development of contrasting male phenotypes over 

time. There are many examples of animal taxa where multiple male “types” have been 

identified (Liley 1966; Hayashi 1985; Sinervo and Lively 1996; Taborsky 1998; Zamudio 

and Sinervo 2000), but I am unaware of studies describing multiple male types in 

dioecious plants (but see Moore et al. 2016). I speculate that similar evolutionary 

pressures (as in animals) could generate multiple male types in dioecious plants. My 

recent genomic work also points to high male variability, showing that genes on the 

male-specific V chromosome of M. inflexa are diversifying (relative to Marchantia 

polymorpha) faster than female-specific U chromosome genes (chapter 5). These studies 

provide preliminary evidence for the existence or development of multiple male types in 

M. inflexa.  

 I found no relationship between sex differences in DhT and population sex ratios, 

suggesting that sex-specific DhT does not predict population sex ratio. Marchantia 

inflexa population sex ratios can be highly variable (they range from 0 to 1 in Quare 

stream (Brzyski et al. 2018)) and are likely impacted by numerous ecological and 

stochastic factors, such as the size of the substrate (Brzyski et al. 2018), sex-specific life 

history traits (García-Ramos et al. 2007), and spatial distribution of populations (Stieha et 

al. 2017). Sexual dimorphisms in colonization, establishment, growth, and asexual 
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reproduction also likely impact population sex ratio, so the observation that sex 

differences in DhT do not predict population sex ratios is not entirely surprising.  

  In conclusion, this study builds on prior studies of DhT in M. inflexa and 

demonstrates that patterns of DhT are more complex than previously described. I show 

that DhT varies along an environmental gradient and that population-specific variation in 

DhT is genetically determined. Evidence of genetic variation in DhT among M. inflexa 

populations and the sexes suggests that local adaptation is occurring. This adaptive 

response may enhance population persistence and contribute to ecological stability. Prior 

studies found that females were more DhT than males (Stieha et al. 2014; Marks et al. 

2016), but these conclusions were based primarily on a single population (Marks et al. 

2016), or specialized tissues (Stieha et al. 2014). Here, I showed that sex differences in 

DhT vary among populations, with males exhibiting higher DhT in some sites, while 

females maintain higher DhT in others. This finding highlights the importance of 

population-specific assessments of stress tolerance and demonstrates that sexual 

dimorphisms can fluctuate in response to environmental conditions. Additional studies of 

intraspecific variation in DhT in other species will support more generalizable 

conclusions.  
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CHAPTER FOUR 

THE DEHYDRATION - REHYDRATION TRANSCRIPTOME OF MARCHANTIA 

INFLEXA  

 

Introduction 

Climate change, increased consumption of resources by humans, and changing 

land use practices impose considerable abiotic and biotic challenges on plants and the 

ability of plants to respond and tolerate these stresses has important implications for 

ecosystem function, community dynamics, and agricultural productivity (Lesk et al. 

2016). To better predict future outcomes, a comprehensive understanding of the evolution 

of plant stress tolerance is needed. An important step towards this end is the 

characterization of physiological, biochemical, and genetic mechanisms of stress 

tolerance, which will improve ecological predictions, natural resource management, 

industry practices, and agricultural optimization.  

Drought, in particular, is a major threat to plant productivity and ecosystem 

function (Lesk et al. 2016). Drought is responsible for considerable economic losses 

annually, and it is predicted to increase due to climate change (Trenberth 2011; Dai 2013; 

Lesk et al. 2016). Consequently, there is an urgent need to characterize the mechanisms 

of water stress tolerance to mitigate drought induced losses. Again, turning to naturally-

evolved mechanisms of tolerance offers a promising approach for gaining insight into 

adaptations that can be used to optimize water stress tolerance in managed systems and 

secure plant-based industries. Desiccation tolerance (DT, also desiccation tolerant) is an 

extreme form of water stress tolerance with promising translational applications. Most 

plants are desiccation sensitive (DS) and cannot survive drying below -5 to -10 MPa 

(Proctor and Pence 2002; Proctor et al. 2007), but DT tissues can recover from drying to 
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or below and absolute water content of -100 MPa (Black and Pritchard 2002). DT is 

common in plant seeds, spores, and pollen, but is rare in vegetative tissues (Dinakar and 

Bartels 2013a). DT is a highly complex trait, dependent on the synchronized 

orchestration of a diverse set of physiological and molecular processes, including 

photosynthetic regulation, metabolic adjustment, and the accumulation of protective 

compounds (Walters et al. 2002; Moore et al. 2009).  

To progress towards applied objectives, a detailed understanding of how changes 

in cell wall composition, carbohydrate metabolism, accumulation of protective proteins, 

antioxidant systems, and signal transduction pathways impact DT is essential. 

Dehydration places considerable mechanical strain on cell walls and membranes because 

cell shrink during drying and expand upon rehydration, which can lead to membrane 

rupture (Dinakar et al. 2012). Flexible cell walls that can undergo organized folding 

during dehydration reduce mechanical strain by accommodating cytoplasmic shrinkage 

(Platt et al. 1997). Thus, cell wall characteristics that increase flexibility including 

xyloglucan and pectin modifications, elevated arabinan and arabinogalactan levels, and 

calcium ion redistribution (Vicre et al. 2004; Moore, Vicré-Gibouin, et al. 2008) may 

increase DT.  

DT plants alter carbohydrate metabolism during drying to preferentially 

accumulate small non-reducing sugars, which are thought to protect cells by stabilizing 

membranes and macromolecules though vitrification (Dinakar et al. 2012). In particular, 

raffinose, trehalose, and sucrose are observed in high quantity in many DT plants during 

dehydration (Smirnoff 1992; Illing et al. 2005; Liu et al. 2008). Evidence of increased 

sucrose synthase, sucrose phosphate synthase, and glyceraldehyde phosphate 
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dehydrogenase in the model DT plant Craterostigma plantagineum, points towards a 

genetic mechanism for modulating sugar composition that is induced during drying 

(Ingram et al. 1997).  

In addition to sugars and compatible solutes, the accumulation of numerous 

protective proteins (such as late embryogenesis abundant (LEAs) proteins, early light 

inducible proteins (ELIPs), and heat shock proteins (HSPs)) is common in DT plants. 

These proteins are thought to support DT by replacing water to stabilize membranes and 

sub-cellular organization (Dinakar et al. 2012), protecting against photooxidative damage 

(Vanburen et al. 2019), and acting as chaperones. LEA proteins have received 

considerable attention because of their characteristic accumulation during drying in DT 

plants (Costa et al. 2017). Although the precise role of LEA proteins in DT is unclear, 

their transition between an intrinsically disordered structure when hydrated to a -helical 

structure when dehydrated may play an important role in membrane and macromolecule 

stabilization (Bremer et al. 2017; Artur et al. 2018). ELIPs are also induced during 

dehydration in DT plants and may serve an important function in preventing oxidative 

damage during dehydration (Zeng et al. 2002). Recent evidence shows that ELIPs have 

undergone considerable expansion in DT lineages relative to DS lineages, suggesting a 

central role for ELIPs in DT (Xiao et al. 2015; Vanburen et al. 2019).  

Antioxidant systems also play an important role in DT. Drying in the presence of 

light can lead to increased production of reactive oxygen species (ROS), especially in 

photosynthetic tissues (Dinakar et al. 2012). ROS formation is inevitable even under non-

stressed conditions due to the leakage of electrons onto O2 during electron transport 

activities of chloroplasts and mitochondria (Choudhury et al. 2017). At low levels, ROS 
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are not damaging and may even act as important signaling molecules (Choudhury et al. 

2017). However, ROS can accumulate to potentially damaging levels under dry 

conditions due to the disruption of cellular homeostasis and the resulting build-up of 

reactive metabolic intermediates (Sharma et al. 2012). DT plants have numerous 

mechanisms to reduce damage from ROS, including the synthesis and mobilization of 

protective pigments, enzymatic, and non-enzymatic antioxidants (Dinakar et al. 2012). 

Specific ROS scavenging compounds detected in DT plants include anthocyanin and 

carotenoid pigments; enzymes such as superoxide dismutase, catalase, ascorbate 

peroxidase, aldehyde dehydrogenase, monodehydroascorbate and dehydroascorbate 

reductase, glutathione peroxidase and reductase; and non-enzymatic antioxidants 

glutathione and ascorbate (Dinakar et al. 2012).  

Finally, signal transduction pathways play a critical role in allowing plants to 

perceive and respond to changes in hydration and the fine tuning of these pathways is 

likely essential for DT. Changes in ROS production are thought to be an initial signal of 

dehydration stress and subsequent stress signaling is likely coordinated by abscisic acid 

(ABA) (Ingram and Bartels 1996). Protein phosphorylation cascades, secondary 

messengers, and transcription factors in the myeloblastosis (MYB), leucine zipper, and 

zinc finger families are induced in response to dehydration (Deng et al. 2002; Ditzer and 

Bartels 2006; Dinakar et al. 2012).  

Interestingly, the underlying genetic machinery involved in DT is present in many 

plant species (most have DT seeds, spores, or pollen), and aspects of DT are induced in 

DS plants during drying. For example, nearly all plants exhibit increased antioxidant 

activity under stress, accumulate some LEA proteins, and modulate their metabolic 
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profile to preferentially accumulate small sugars (Farooq et al. 2009). However, most 

plants fail to attain DT in their vegetative tissues, suggesting that slight differences in 

magnitude, sequence, and timing of cellular responses can confer or abolish DT. 

Consequently, to predict or manipulate DT I must understand not only the physiological 

pathways, but also the temporal orchestration of DT, and the consequences of nuanced 

variation across species, tissues, and developmental stages.  

To pinpoint characteristics that increase DT, variability in DT should be 

characterized. This can, and should, be done on multiple levels. Initially, the different 

degrees of tolerance (from DS to DT) should be carefully defined, and the progressive 

changes in physiology, biochemistry, and genetic mechanisms along this spectrum should 

be catalogued. While studies comparing DS and DT plants exist, currently little is known 

about the intermediate levels of tolerance. A thorough understanding of intermediate 

tolerance (known as dehydration tolerance (DhT)) may allow for insight into the 

progressive differences between DT and DS plants. There is a small but important group 

of plants that exhibit DhT and can survive drying to -10 MPa (Oliver et al. 2010; Marks 

et al. 2016). Additional studies of DhT plants will provide valuable insight into the 

mechanisms of water stress tolerance. Additionally, few studies have described the 

variation in DT of DhT within a species (but see (chapter 3.; Oliver et al. 1993; Farrant 

and Kruger 2001; Stark et al. 2007; Farrant et al. 2009; Marks et al. 2016). Within 

species variation provides an important resource for identifying DT enhancing 

characteristics across a common genetic background, and by studying within species 

variation in DT it may be possible to tease apart the contribution of plasticity vs. genetic 

differences and gain insight into the adaptive potential of populations and species.  



 

 61 

Here, I aimed to characterize gene expression during dehydration in the tropical 

DhT liverwort Marchantia inflexa. To do so, I quantified changes in gene expression 

throughout the dehydration – rehydration process. This allowed me to gain a broad 

overview of the timing and nature of cellular changes during dehydration, which I discuss 

in comparison with highly DT plants. In addition, I leveraged intraspecific variation in 

DhT to target more nuanced variation that may contribute to differences in relative DhT 

between the sexes and tissue types of M. inflexa. From theses comparisons, I targeted 

genes that were differentially expressed during the dehydration - rehydration process and 

also differentially expressed among the sexes or tissues as possible candidates for 

explaining differences in relative DhT.  

 

Methods 

Study organism and plant growth  

Marchantia inflexa (Nees & Mont) is a new world liverwort that is distributed 

from northern Venezuela to the southern United States (Bischler 1984). Marchantia 

inflexa typically grows along streams in tropical forests but can also colonize more 

disturbed sites along roads. The dominant life stage is haploid, and plants grow as a 

dichotomously branching thallus with dorsiventral organization. Marchantia inflexa has 

unisexual individuals that can reproduce sexually (via spores) or asexually via vegetative 

fragmentation or the production of specialized asexual propagules (gemmae). Marchantia 

inflexa exhibits numerous sexual dimorphisms (growth rate, asexual reproduction 

(McLetchie and Puterbaugh 2000; Brzyski et al. 2014), response to exposure (Groen, 

Stieha, Crowley, and David Nicholas McLetchie 2010; Groen, Stieha, Crowley, and D. 
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Nicholas McLetchie 2010), substitution rates of sex-specific genes (chapter 5), and 

differences in DhT among the populations and sexes (chapter 3; Marks et al. 2016). 

Plants for this study were collected in 2009 from a natural population along East 

Turure River (10o41’04”N 61o09’39”) in Trinidad, The Republic of Trinidad and Tobago. 

Specimens were vouchered at the Missouri Botanical Garden (St Louis, MO, USA, 

specimen numbers M092113 and M092115) and at the National Herbarium of the 

Republic of Trinidad and Tobago (St Augustine, Trinidad, specimen number 

TRIN34616, D. N. McLetchie, collector). Plants were transported to the University of 

Kentucky, and the genetic uniqueness of each line was confirmed by microsatellite 

analyses (Brzyski et al. 2014). Multiple clones of each genotype were propagated via 

vegetative fragmentation, watered daily, kept under shade cloth, and maintained in 

greenhouse conditions for 8 years prior to this study.  

 

Physiological characterization of sex and tissue differences in DhT 

Prior studies found that females from East Turure had higher DhT than males 

(Marks, Pike, et al.; Marks et al. 2016). I selected the three most DhT ♀s and the three 

least DhT ♂s for inclusion in the current work. In addition, prior work indicated that the 

meristematic tissue of M. inflexa appeared to be more DhT than the mature thallus tissue. 

To test this hypothesis, I quantified the relative DhT of these two tissue types by 

subjecting a subset of tissue samples (n=33) to a dehydration treatment (as described 

below) and documenting the proportion and location of recovered vs. dead tissues using 

ImageJ (Schneider et al. 2012). Tissues were characterized 2 weeks after rehydration and 

survival was assessed on the basis of green vs. brown tissues. Recovery ranged from 
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1.5% to 97.8% survival. In all instances, the meristematic region was among the 

recovered portions of the sample. Tissue death was increasingly likely as distance from 

the meristem increased, with the most distal region recovering only 6% of the time.  

 

Dehydration treatment, tissue collection, and RNA extraction   

Plants were subjected to dehydration treatment as described in Marks et al. (2016) 

and tissues were sampled at predetermined times throughout the dehydration-rehydration 

process. Briefly, thallus tissues (~5 mm x 7 mm) were harvested from greenhouse 

cultivated plants, fully hydrated for 24 hours, and placed into desiccation chambers with 

an internal relative humidity (RH) of 75%. Air circulation was maintained by inserting a 

small fan in the chamber, and RH was verified with a RH sensor integrated into a 

HOBO™ humidity sensor attached to a data logger (Onset Computer Corporation, 

Bourne, MA, USA). Each desiccation chamber contained 18 samples (three samples from 

each of the six genotypes). Samples were randomized and placed into Petri dishes within 

in the desiccation chamber. The chamber was maintained at 14oC and plants were 

dehydrated for 22 hours, after which they were rehydrated with dH2O and kept at 14oC 

for an additional 24 hours.  

Plants were sampled at five timepoints during the dehydration – rehydration 

process: fully hydrated (baseline), partially dehydrated at 15 hours (Dh15), fully 

dehydrated at 22 hours (Dh22), 2 hours after rehydration (Re2), and 24 hours after 

rehydration (Re24). At each hydration state, tissues were removed from the desiccation 

chamber and dissected into meristematic vs. thallus components using a 4 mm sterile 

biopsy punch. Samples were immediately flash frozen in liquid nitrogen to prevent 
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further transcriptional changes, RNA was extracted from samples using the 

TriazolReagent according to the manufacturer’s instructions, and stored at -80oC until 

needed. Because this sampling approach is destructive in nature, samples were collected 

and processed over multiple independent dehydration assays until every biological 

replicate was represented at each hydration state. Dehydration assays were conducted at 

designated times of day to reduce off target variation due to fluctuations in light, 

temperature, and circadian rhythms, and biological replicates (genotypes) were 

randomized for all downstream processing. To verify sample recovery, two samples were 

removed from each dehydration chamber at Dh22 and rehydrated.  These plants were 

tested for recovery 1 week after rehydration using Fv/Fm measured with a modulated 

chlorophyll fluorometer.  

 

Library preparation, sequencing, and preassembly read processing 

Sixty sequencing libraries were prepared from RNA samples (two tissues types 

from three ♂s and three ♀s at five different hydration states) following the protocol 

described in Hunt, (2015). Briefly, mRNA was isolated through poly(A) enrichment with 

the NEBNext® Poly(A) mRNA Magnetic Isolation Module. The resulting samples were 

heat fragmented at 95oC for 2 minutes, and barcodes were integrated during first strand 

cDNA syntheses with random primers. A strand switching primer was used for second 

strand cDNA synthesis, ultimately generating stranded libraries in a reverse-forward (RF) 

format. Libraries were size-selected using Magbio beads for a target fragment length of 

~500 base pairs (bp) and enriched by 18 PCR cycles. Library concentration was assessed 

with a Qubit dsDNA High Sensitivity Assay Kit, and fragment size was measured with a 
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Bioanalyzer High Sensitivity DNA chip. Samples were pooled in equal concentration and 

sequenced on four lanes of an Illumina HiSeq4000 for 150 bp paired end (PE) reads at 

the University of California Davis Genome Center. All samples were completely 

randomized during library preparation and sequencing to minimize batch effects. The 

resulting sequence reads were demultiplexed with Sabre v1.000, quality assessed using 

FastQC v0.11.2, and trimmed with Trimmomatic-0.30_2 to remove adapter sequences 

and low-quality reads.  

 

Transcriptome assembly, refinement, and quality assessment 

All sequencing reads were pooled and assembled with Trinity-v2.6.6 following 

the genome guided pipeline (Schneider et al. 2003). Briefly, RNAseq reads were aligned 

to the M. inflexa draft genome assembly (chapter 5) using Bowtie2-2.3.4.1. Reads that 

did not map to the M. inflexa genome were removed prior to assembly and appeared to be 

derived from fungal symbionts. Transcriptome assembly with Trinity-v2.6.6 specified 

options for genome guided assembly, RF library format, and a max intron length of 

10,000 bp. The initial assembly consisted of 50,135,468 assembled bp distributed across 

93,958 Trinity transcripts with an N50 of 693 bp. Because the large number of assembled 

transcripts suggests redundancy in the assembly, I sought to eliminate poorly supported 

transcripts and improve confidence in gene identity. To do so, RSEM-1.3.0 (Li and 

Dewey 2011) was implemented to calculate sample-specific expression for all assembled 

transcripts. The resulting gene expression matrix was used to remove all transcripts with 

less than one mapped read using the Trinity script filter_low_expr_transcripts.pl. The 

resulting transcriptome was used for all subsequent analyses. Finally, to estimate 
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assembly completeness, I quantified the percentage of Universal Single-copy Orthologs 

from the plant set of OrthoDB v9 of BUSCO v3 (Simão et al. 2015) present in this M. 

inflexa transcriptome assembly.  

 

Functional annotation 

Functional annotation of M. inflexa transcripts was accomplished by 

implementing the Trinotate annotation pipeline (Haas et al. 2013). Trinotate uses  

multiple methods for functionally annotating transcripts, including homology searches, 

identification of protein domains, and information from annotation databases. Initially, 

transdecoder (https://github.com/TransDecoder) was used to identify protein coding 

regions for each M. inflexa transcript, HMMER (Eddy 2011) was implemented to define 

Pfam protein domains (Finn et al. 2014), and BLAST+ (Altschul et al. 1990) was utilized 

for homology searches against UniProtKB/Swiss-Prot, and reference genomes 

(downloaded from phytozome (Goodstein et al. 2012)) for Arabidopsis thaliana 

(Initiative 2000) , Physcomitrella patens (Rensing et al. 2008), and Marchantia 

polymorpha (Bowman et al. 2017). Gene ontology (GO) terms were associated with each 

M. inflexa transcript based on BLASTX homology searches, and all annotation 

information was integrated with SQLite (https://www.sqlite.org) to generate a combined 

annotation report. If homology could be determined, M. inflexa transcript names were 

updated to reflect annotation information by appending M. polymorpha and 

UniProtKB/Swiss-Prot gene names to the M. inflexa Trinity transcript ID. If homology 

could not be determined, transcript names were not modified. To summarize general 

patterns of gene function, I identified the most common GO terms across the entire M. 



 

 67 

inflexa transcriptome using REVIGO (Supek et al. 2011) and the most prominent protein 

classes using PANTHER (Mi et al. 2017).  

 

Characterization of global gene expression and identification of differentially expressed 

genes 

RSEM-1.3.0 (Li and Dewey 2011) was implemented to calculate sample-specific 

gene expression. Reproducibility among samples and biological replicates was assessed 

via principal component analyses (PCA) of TMM normalized gene expression values 

with the Trinity script PtR.pl. Gene expression data were log2 transformed prior to PCA, 

and genes with less than 10 total counts were excluded prior to clustering.  

To test for genes that were differentially expressed over time, I implemented 

edgeR (Robinson et al. 2010) using the Trinity script run_DE_analysis.pl. Gene count 

data (obtained from RSEM) were normalized within edgeR. To characterize overall 

temporal patterns, I identified genes that were significantly up- and down-regulated at 

each hydration state (Dh15, Dh22, Re2, Re24) relative to baseline conditions. To 

characterize baseline plants, I identified genes that were significantly up- and down-

regulated at baseline relative to all other times combined. The resulting differentially 

expressed genes (DEGs) were analyzed to characterize changes throughout the 

dehydration – rehydration process, and similarity among samples was assessed via 

hierarchical clustering analyses implemented with the Trinity script analyze_diff_expr.pl.  

To test for general differences in gene expression between the sexes and tissues, I 

identified genes with significant differences in expression between males and females 

and meristem and thallus tissues across all hydration states. These DEGs represent 



 

 68 

transcripts that show consistent sex- or tissue-specific expression throughout the 

dehydration – rehydration process. Clustering analyses of gene and sample relationships 

were applied to sex and tissue DEGs by implementing the Trinity script 

analyze_diff_expr.pl, allowing me to identify genes with similar expression patterns and 

characterize sample relationships.  

 

Functional profiling of differentially expressed genes and analysis of gene ontology 

enrichment  

To characterize the primary functional processes induced during the dehydration – 

rehydration process and identify functional differences among the sexes and tissues, I 

conduced GO enrichment analyses. I identified the most enriched (more abundant than 

expected) GO categories among dehydration – rehydration, sex, and tissue DEGs. GO 

terms were defined with Trinotate, as described above. Functional enrichment of GO 

categories was determined implementing the R package GOseq (Young et al. 2010) with 

the Trinity script analyze_diff_expr.pl and the option --examine_GO_enrichment. I 

identified enriched GO categories for both up- and down-regulated genes at each 

hydration state, between the sexes, and between tissue types. GO terms were considered 

significantly enriched at p-value < 0.05.  

 

Identification of candidate DhT associated genes and targeted tests of intraspecific 

variation 

Genes that were differentially expressed during the dehydration - rehydration 

process and also differentially expressed among the sexes or tissues were of particular 
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interest to me based on my hypotheses that differences in gene expression between the 

sexes and between the tissues may explain differences in relative DhT. To identify such 

genes, I targeted transcripts that were significantly up- or down-regulated in response to 

dehydration and rehydration and also significantly up- or down-regulated among the 

sexes or tissues. From these, I specifically identified those that were up-regulated in the 

more tolerant samples (females and meristems) as possible DhT enhancing genes.  

Finally, to gain insight into the temporal differences in gene expression between 

the sexes and between the tissues, I conducted targeted comparisons to identify DEGs in 

males vs. females and in meristem vs. thallus tissues at each individual hydration state.  

 

Results 

Transcriptome assembly statistics  

Sequencing of 60 RNAseq libraries (two tissues types from three ♂s and three ♀s 

at five different hydration states) resulted in 1,342,651,063 PE reads. After assembly and 

removal of poorly-supported transcripts, the M. inflexa dehydration – rehydration 

transcriptome consisted of 26,977 transcripts (21,704,334 assembled bases) with an N50 

of 1,039. Assessment of transcriptome completeness indicated that a relatively low 

proportion of the expected universal single copy orthologues were present in this 

assembly (19.5% complete, and 9.9% fragmented), which may reflect inherent limitations 

of applying BUSCO to deeply-derived lineages as has been noted in prior work (Smith et 

al. 2018). Alternatively, because I did not sample a comprehensive panel of 

developmental stages and tissues (i.e. sporophyte, reproductive tissues, and gemmae), 

this transcriptome may not capture the full suite of M. inflexa genes.  
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Functional annotation 

Functional annotation with Trinotate identified homologues for 21,501 of the 

26,977 (79.7%) M. inflexa transcripts across UniProtKB/Swiss-Prot, A. thaliana, P. 

patens, and M. polymorpha, which is similar to annotation percentages in other non-

model species (Gao et al. 2017; Rathi et al. 2019). Of these, GO terms were assigned to 

16,309 transcripts. Summary of GO terms revealed that the most common GO categories 

(biological process) in the M. inflexa transcriptome were regulation of transcription, 

carbohydrate metabolism, cell cycle, and multicellular organism development. Other GO 

terms related to DT were detected, including cellular response to desiccation, lipid 

transport and metabolism, protein ubiquitination, and heat acclimation. The most 

abundant protein classes represented in the M. inflexa transcriptome were nucleic acid 

binding, hydrolase, transferase, oxidoreductase, and transporter classes.  

 

Characterization of global gene expression and identification of differentially expressed 

genes 

 PCA analysis of global gene expression was conducted to characterize broad 

patterns of similarity among samples. The first two PCAs accounted for 17.21% (13.28, 

and 3.93% respectively) of the variance in gene expression (Figure 4.1). All baseline 

samples appeared to exhibit similar gene expression patterns, but other hydration states 

were less distinct. Dh15 and Dh22 were hardly distinguishable from one another, and 

Re2 and Re24 samples only showed moderate segregation along PC2 and PC1. 
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Additional PCAs did not provide further insight into sample relationships. There were 

weak patterns of association among the sexes and tissues (not shown).  

 

  
Figure 4.1. Principal component analyses of similarity in global gene expression among 

all samples. The hydration condition of samples is represented by color. Clustering of 

samples indicates similarity in overall gene expression. Negligible differentiation among 

samples was evident along additional PCs.   

 

To investigate temporal differences in gene expression during the dehydration – 

rehydration process, I identified genes that were significantly up- or down-regulated at 

each hydration state relative to baseline conditions. This analysis detected a total of 438 

genes with significant changes in expression (FDR p-value <0.05) in response to 

changing hydration status. Two-way clustering of gene and sample relationships revealed 

complex and variable patterns of gene expression (Figure 4.2). Similar to PCA analyses, 

baseline samples had the most consistent expression profiles. Re24 samples exhibited 

relatively consistent gene expression patterns across samples. Gene expression profiles of 

plants during Dh15, Dh22, and Re2 appear to be less distinct than those of baseline and 

Re24 plants, possibly related to a lack of temporal regulation under dehydrated 

conditions, or complex patterns among the sexes, tissues, and genotypes (Figure 4.2). 
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Figure 4.2. Hierarchal clustering of hydration responsive genes (differentially expressed 

across time (FDR P-value < 0.05)) and secondary clustering of sample relationships. 

Each column represents a single sample, and each row represents a single transcript. 

Expression values are indicated by color, with yellow indicating relatively higher 

expression, and purple indicating relatively lower expression. Hierarchal sample 

relationships are shown along the top x-axis and gene relationships are shown on the left 

y-axis. Colored boxes are used to indicate hydration state, male (♂) and female (♀) 

symbols indicate sample sex, and meristem (•) and thallus () symbols indicate tissue 

type.  

 

Subsequently, I investigated differences in gene expression between the sexes and 

between the tissues across all hydration states. These analyses identified 213 genes that 

were differentially expressed among the sexes (FDR p-value < 0.05), 199 of which were 

up-regulated in males and 14 were up-regulated in females. Based on homology with M. 

polymorpha the majority of these DEGs are putatively located on sex chromosomes. A 

parallel comparison of meristematic and thallus tissues identified 926 genes that were 
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differentially expressed among the tissues across all hydration states. Of these, 884 were 

consistently up-regulated in meristems and 42 were up-regulated in thallus tissues.  

 

Functional profiling of differentially expressed genes and gene ontology enrichment  

To summarize functional changes during the dehydration – rehydration process in 

M. inflexa, I identified GO categories (biological process) that were significantly 

enriched (more abundant than expected) among time DEGs (Figure 4.3a). At baseline 

conditions, protein autophosphorylation, glutamine and arginine metabolic processes, 

detection of and response to redox state, and photosystem stoichiometry adjustments 

were enriched among up-regulated genes. The most enriched GO categories among 

down-regulated genes at baseline conditions were lipoprotein metabolism, lipid and 

organic substance transport, and localization processes. Interestingly, lipoprotein 

metabolism and lipid transport were significantly enriched among up-regulated genes at 

every subsequent hydration state, suggesting major changes to lipid metabolism and 

localization occur throughout the dehydration – rehydration process. Lysine and 

diaminopimelate biosynthesis were significantly down-regulated during dehydration, and 

metabolic processes related to pigments were down-regulated during rehydration. More 

transient changes include an increase in succinate metabolism, pentose and arabinose 

transport, as well as a reduction in lipid catabolism, aspartate and threonine biosynthesis 

under partial dehydration (Dh15). At full dehydration (Dh22), there was a significant 

enrichment of GO terms related to isoprenoid and carbohydrate metabolism among 

upregulated DEGs, and an enrichment of pectin, suberin, and dicarboxylic acid 

biosynthesis among downregulated DEGs. During early rehydration (Re2), there was an 
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enrichment of long-chain fatty acid metabolism, g-protein coupled, glutamate, and 

cannabinoid signaling among upregulated DEGs, and an enrichment of cell matrix 

adhesion, vascular development, and bacterial responses among down-regulated DEGs. 

Twenty-four hours after rehydration (Re24), I detected an enrichment of GO terms 

related to dormancy by abscisic acid and ribonucleoprotein complex assembly among up-

regulated DEGs and an enrichment of protein metabolism, protein dephosphorylation, 

and convergent extension among down-regulated DEGs (Figure 4.3a). Interestingly, 

many of the identifiable transcripts contributing to the persistent enrichment of 

lipoprotein metabolism and lipid transport were putative LEA proteins and 

apolipoproteins. 

In parallel, I identified GO categories that showed significant enrichment in males 

vs. females, and meristematic vs. thallus tissues. GO categories that were significantly 

enriched in females relative to males included dephosphorylation of RNA polymerase II 

C, peptidyl-serine phosphorylation and modification, and hydrogen transport. 

Conversely, GO categories that were significantly enriched in males relative to females 

included cell budding, reproduction, asexual reproduction, actin filament reorganization, 

and positive regulation of cell cycle process (Figure 4.3b). Comparison of tissue types 

revealed significant enrichment of GO categories related to cell wall organization, cell 

division, pectin and hydrogen peroxide catabolic process, cell cycle, and maintenance of 

dormancy in meristematic tissues. Thallus tissues, on the other hand, were enriched for 

GO categories related to oligopeptide transport, auxin-activated signaling pathway, 

riboflavin biosynthetic process, Golgi vesicle budding, and mRNA splicing (Figure 4.3c).  
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Figure 4.3. Summary of significantly enriched GO categories among (a) up- and down-

regulated DEGs throughout the dehydration – rehydration process, (b) females and males, 

and (c) meristematic and thallus tissues.  

 

Identification of candidate DhT associated genes and targeted tests of intraspecific 

variation 

Next, I identified genes that were differentially expressed in response to 

dehydration and rehydration and also showed significant differences in expression among 

the sexes or tissues. Of the 438 genes that were differentially expressed during the 

dehydration – rehydration process, 17 were also differentially expressed between males 

and females, eight were differentially expressed between meristematic and thallus tissues, 

and 13 were shared among all three DEG groups (Figure 4.4a). Genes that were both 

hydration responsive and expressed in a sex-specific manner included an ATP-dependent 

RNA helicase, a UDP-glucose:anthocyanin 3'-O-glucosyltransferase, and syntaxin 5 (a 

membrane tethering protein), and 15 unidentified transcripts. Genes that were 

differentially expressed over time and among the tissues included a LEA-1 protein, an 

apolipoprotein, a dehydrin, as well as five transcripts of unidentified function. Thirteen 
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genes were differentially expressed in all three sets, including an apolipoprotein, a 

putative glucotransferase GEM-like protein, a translation initiation factor, a RAS related 

protein, 1-phosphatidylinositol-3-phosphate 5-kinase, alpha-dioxygenase, an elongation 

factor, a proteasome subunit, and five transcripts of unidentified function. 

Because females and meristems exhibit increased DhT relative to males and 

thallus tissues, I was specifically interested in identifying transcripts that were more 

abundant in these samples as possible targets for enhancing DhT. Consequently, I 

targeted genes that were overexpressed in females, meristems and also induced during the 

dehydration – rehydration process (Figure 4.4b). Seven genes were differentially 

expressed over time and also upregulated in females, none of which had an identifiable 

homologue. Nineteen genes were differentially expressed in response to dehydration and 

rehydration and also upregulated in meristems, including two apolipoproteins, a LEA-1 

protein, translation initiation and elongation factors, RAS related protein, putative 

glucotransferase GEM-like protein, 1-phosphatidylinositol-3-phosphate 5-kinase, Alpha-

dioxygenase, and a proteasome subunit, and nine transcripts of unidentified function. No 

genes were shared among all three DEG groups.  

  

  
Figure 4.4. Venn diagrams of (a) genes that were responsive to dehydration and 

rehydration (differentially expressed over time), and also expressed in a tissue-specific 

and or sex-specific manner, (b) genes that were responsive to dehydration and 
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rehydration and also up-regulated in females or meristems, and (c) genes that were 

responsive to dehydration and rehydration and also up-regulated in males or thallus. 

Numbers of differentially expressed genes in each category are shown, and the size of the 

circles is proportional to the number of DEGs in that category after log2 transformation.  

 

To gain more nuanced insight into the temporal nature of sex and tissue 

differences, I identified genes that were differentially expressed among the sexes and 

tissues at each hydration state. These analyses identify 16 DEGs among the sexes under 

baseline conditions, zero at Dh15, nine at Dh22, one at Re2, and zero at Re24, indicating 

that the most substantial differences in gene expression among the sexes exist at baseline 

conditions. At baseline, females exhibited elevated expression of TWIN LOV 1 (a 

putative serine-threonine kinase), a CDPK protein, two pre-mRNA splicing factors, a 

CCR4-NOT complex protein, and two uncharacterized transcripts. Males also showed 

elevated expression of a CCR4-NOT complex protein, in addition to a S1 related 

ribosomal protein, a pyruvate kinase, and six uncharacterized transcripts (Figure 4.5a). 

Minimal sex differences in gene expression were observed at subsequent hydration states, 

with the exception of full dehydration. During full dehydration, females continued to 

exhibit elevated expression to the female allele of CCR4-NOT complex protein, TWIN 

LOV 1, and one uncharacterized transcript (Figure 4.5b). Males maintained elevated 

expression of CCR4-NOT complex protein, and S1 related ribosomal protein, as well as a 

calmodulin-binding protein and three uncharacterized transcripts. One DEG (an 

unidentified transcript) was identified at Re2.  

 Analyses of differences in gene expression among the meristem and thallus state 

identified 19 DEGs under baseline conditions, six at Dh15, one at Dh22, and zero at Re2 

and Re24. Similar to sex differences, I found that the most dramatic differences in gene 

expression among the tissues were evident at baseline conditions, and that subsequent 
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responses to dehydration and rehydration were similar in both tissue types. Under 

baseline conditions the meristematic tissue showed elevated expression of upstream-

binding and GT-2 related transcription factors, putative uridylyltransferase (DUF2921), 

xyloglucan:xyloglucosyl transferase, histone H2A2, UDP-glucuronate 4-epimerase, and 

triacylglycerol lipase. In comparison, thallus tissues exhibited elevated expression of a 

NAI1 transcription factor and four uncharacterized transcripts (Figure 4.5c). During 

partial dehydration the meristematic tissue showed elevated transcription of katanin P60 

ATPase along with 3 uncharacterized transcripts. Thallus tissues exhibited elevated 

transcription of only two transcripts, both of which were uncharacterized (Figure 4.5d). 

One DEG (an uncharacterized transcript) was identified at Dh22.  

 
Figure 4.5. Targeted comparisons of differences in gene expression (FDR p-value cutoff 

of 0.05) among male and female plants at (a) baseline and (b) Dh22. There was one sex 

DEG (an unidentified transcript, data not shown) during Re2, zero sex DEGs at Dh15, 

and zero at Re24.  Differences in gene expression among meristem and thallus tissues at 
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(c) baseline and (d) Dh15. There was one tissue DEG (an unidentified transcript, data not 

shown) at Dh22 and zero sex DEGs at Re2 and Re24. Expression values are represented 

by color, with yellow indicating relatively higher expression, and purple indicating 

relatively lower expression. 

 

Discussion  

My characterization of the M. inflexa dehydration – rehydration transcriptome is 

the first comprehensive description of sex differences in gene expression for a DhT plant. 

This assembly allows for detailed investigation of the dehydration – rehydration process 

in male and female plants and in two tissue types. Analyses of global gene expression in 

M. inflexa revealed strong signatures of stress responses, consistent with current models 

of DT. More specifically, I identified an abundance of transcripts related to carbohydrate 

metabolism, transcriptional regulation, lipid transport and metabolism, protein 

ubiquitination, and stress acclimation. Taken together, these results suggest that M. 

inflexa responds to dehydration by using many of the same central preceses observed in 

highly DT lineages. DT plants typically exhibit a combination of changes including 

morphological modifications (i.e. leaf folding and pigmentation changes); a coordinated 

shutdown of photosynthetic processes during drying (Dinakar et al. 2012); increased cell 

wall flexibility to alleviate mechanical stress of shrinking cells (Farrant 2000; Moore et 

al. 2006); modified carbohydrate metabolism leading to the accumulation of small non-

reducing sugars (Smirnoff 1992); accumulation of various stress related proteins (ELIPs, 

HSPs, and LEAs) (Costa et al. 2017; Vanburen et al. 2019); increased antioxidant 

activity related to ROS scavenging (Dinakar and Bartels 2013a), and ABA mediated and 

phospholipid signaling (Dinakar et al. 2012).  

My work suggests that the dominant physiological responses to dehydration in M. 

inflexa are similar to those of DT plants, including changes in metabolism, transport, 
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accumulation of protective proteins, and cell wall modifications. I detected a strong 

signature of altered carbohydrate metabolism during dehydration, as anticipated. 

Transcripts related to pentose and arabinose transport were up-regulated during early 

dehydration and persisted during complete dehydration. A parallel reduction in starch 

biosynthesis during dehydration suggests that M. inflexa plants may modulate existing 

metabolic pathways to preferentially accumulate sugars rather than starches. Changes in 

lipid metabolism are also evident in dehydrating M. inflexa. There is significant increase 

in the transport of lipids and reduction in lipid catabolism indicating that localization and 

retention of cellular lipids are important to DhT. I identified a consistent up-regulation of 

putative LEA proteins throughout the dehydration-rehydration process in M. inflexa, 

consistent with current models of DT, which indicate that LEA proteins play a central 

role in water stress responses in DT plants (Liu et al. 2009; Dinakar et al. 2012; Costa et 

al. 2017). 

This work also identifies important differences between the gene expression 

profile of dehydrating M. inflexa specimens and highly DT plants. Interestingly, 

apolipoproteins, which facilitate the transfer of water insoluble lipids (Close 1996) and 

may protect against photooxidative damage through scavenging activities and membrane 

associations (Charron et al. 2008), were consistently up-regulated in dehydration and 

rehydrating M. inflexa specimens, but have rarely been implicated in DT. Although I 

detected an induction of LEA gene expression in M. inflexa, I speculate that a lack of fine 

scale temporal regulation of LEA expression may contribute to reduced tolerance of M. 

inflexa relative to model DT lineages. The timing, localization, and identity of specific 

LEA genes has been suggested to impact tolerance. In DT monocot Xerophyta viscosa, 
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LEA families 1 and 4 accumulate early during drying and are retained throughout 

rehydration, whereas LEA families 2 and 3 decline during dehydration and rehydration 

(Costa et al. 2017). Here, I do not detect the same level of temporal control in M. inflexa, 

as most LEA genes are induced early during dehydration and are maintained at elevated 

levels through rehydration. Further, both ELIPs and HSPs were conspicuously absent 

from dehydrating M. inflexa specimens. These proteins have been implicated in DT in 

numerous studies (Bartels et al. 1992; Zeng et al. 2002; Xiao et al. 2015; Yobi et al. 

2017; Vanburen et al. 2019), and I speculate that the absence of ELIP and HSP 

expression may contribute to decreased tolerance in M. inflexa relative to highly DT 

lineages. Finally, there were numerous hydration responsive transcripts that had no 

characterizable function. These transcripts may impact DhT in meaningful ways, and 

future work should seek to characterize them.   

Differences in gene expression among the sexes (independent of time) revealed 

higher overall expression in males, suggesting that maleness may be impacted by more 

genes than femaleness, or that secondary sexual dimorphisms cause males to exhibit 

elevated transcription. GO categories that were enriched in males were mainly related to 

growth and reproduction, whereas females showed enrichment of GO categories related 

to signal transduction and transcription. These differences provide a possible explanation 

for the sex difference in DhT, suggesting that overinvestment in growth and reproduction 

by males comes at the cost of sensing and preparing for environmental stresses.  

 Characterization of differences in gene expression among meristematic and 

thallus tissues (independent of time) identified numerous DEGs, the vast majority of 

which were more abundant in meristematic relative to thallus tissue. Because meristems 
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are the actively growing part of the plant, elevated expression is expected. Although this 

pattern of increased expression in the more tolerant samples (meristems) is in opposition 

with what was shown in the sexes (where intolerant males showed elevated expression of 

more genes), the specific genes up-regulated in meristems are quite different from those 

expressed in males. Meristems show enrichment of various cell wall related genes, 

suggesting that DhT is impacted by differences in cell wall characteristics. Thallus 

tissues, on the other hand, were enriched for genes related to auxin signaling, riboflavin 

biosynthesis, and transport.    

Temporal analyses of sex differences revealed that substantial variability between 

males and females under baseline conditions. Differences in gene expression between the 

sexes declined once dehydration was initiated, suggesting that the sexes leverage the 

same basic mechanisms of DhT and that inherent differences among the sexes may drive 

differences in DhT. However, some sex DEGs were detected at full dehydration, most of 

which are male-specific. These DEGs are evidence of continued activity during the 

dehydration process, possibly representing a failure to effectively shut down metabolic 

and cellular processes, which could reduce DhT (Dinakar et al. 2012). Many of the genes 

with significant differences in expression among the sexes are not linked directly to DhT 

but may impact other traits that either tradeoff with or enhance DhT. Recovery 

mechanisms appear to be similar among the sexes (lack of DEGs detected during 

rehydration), suggesting consistency in rehydration responses. 

Temporal analyses of tissue-specific expression revealed a rapid decline in 

differences among tissues during drying. Similar to sex differences, the majority of 

differences in gene expression among the tissues appear to be derived from baseline 
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differences. Again, this suggests that inherent differences among these tissues confer 

increased tolerance to the meristematic tissue. Interestingly, differences in expression 

among the tissues persist for less time than sex differences. By full dehydration there is 

only one DEG among the tissues, and none are detected at rehydration time points. I 

speculate that differences in cell wall composition may contribute to survival differences 

among the meristem and thallus tissues, but characterization of unannotated transcripts 

may reveal alternate patterns.  

In general, I found evidence indicating that DhT in M. inflexa shares many 

mechanistic components with model DT plants. I detected a strong and persistent 

accumulation of putative LEA proteins, transcripts related to carbohydrate metabolism, 

and cell wall modifications, all of which are thought to be central components of DT 

(Dinakar et al. 2012). However, I also detected noteworthy differences between M. 

inflexa and other DT plants, including a conspicuous absence of ELIP and HSP 

expression. Taken together, it seems that the general response to drying is similar in DhT 

and DT plants, and that nuanced variation may underlie differences in relative tolerance 

among DT and DhT plants. Interestingly, many DT plants undergo a characteristic shift 

away from damage prevention and metabolic adjustments towards protective measures 

when hydration drops RWC < 40% (Zhang and Bartels 2018). Although RWC in M. 

inflexa at both Dh15 and Dh22 is < 40% (Marks et al. 2016), I find that the gene 

expression response of M. inflexa is still centered around metabolic adjustments. 

Consequently, speculate that an inability to effectively shift more energy into protection 

may contribute to the reduced tolerance of M. inflexa relative to highly DT plants.  
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By taking advantage of the intraspecific variation in DhT of M. inflexa (among 

the sexes and tissues) I was able to target nuanced variation possibly contributing to 

differences in relative tolerance. My analyses suggest that increased cell wall flexibility 

may contribute to elevated DhT in meristematic tissues, while differences in stress 

signaling and physiological regulation could drive sex differences in DhT. The 

observation that both the tissue and sex differences in DhT appear to be derived from 

baseline differences in gene expression suggests that the inherent properties of 

meristematic cells and femaleness can increase DhT. Interestingly, no dehydration 

induced DEGs were shared between females and meristems, indicating that increased 

tolerance in these two groups is driven by separate mechanisms. I should note that tissue 

differences are stronger than sex differences in DhT. In fact, some populations of M. 

inflexa have been identified where males are more DhT than females (chapter 3), but the 

mechanism of shifting sexual dimorphism in DhT is not clear.  

 In conclusion, I present a dehydration – rehydration transcriptome for the DhT 

liverwort M. inflexa. My analyses detect a characteristic accumulation of LEA proteins, 

substantial modifications to carbohydrate metabolic processes, and changes in lipid 

transport during the dehydration – rehydration process. I speculate that the absence of 

specific transcripts (ELIPs and HSPs) during the dehydration – rehydration process may 

reduce the overall tolerance of M. inflexa relative to highly DT lineages. Analyses of sex-

specific and tissue-specific gene expression suggest that baseline variation in metabolism 

and cell wall characteristics may impact differences in the relative tolerance of plants. 

Taken together these findings indicate that multiple mechanisms of enhancing DhT exist 

in M. inflexa and are driven primarily by inherent differences among samples. These 
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analyses provide an overview of gene expression in dehydrating and rehydrating M. 

inflexa specimens and building on this foundation with additional analyses including 

pathway, time course, and network analyses of co-expressed genes will provide 

additional insight into DhT mechanisms.  
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CHAPTER FIVE 

GENOME OF THE TROPICAL PLANT MARCHANTIA INFLEXA: IMPLICATIONS 

FOR SEX CHROMOSOME EVOLUTION AND DEHYDRATION TOLERANCE  

 

A version of this chapter is currently in review at Scientific Reports  

 

Introduction  

 Bryophytes (mosses, liverworts, and hornworts) are living representatives of an 

early-diverging land plant lineage (Kenrick and Crane 1997; Bowman et al. 2017) and 

they provide an important landmark for comparative phylogenetics. Although the exact 

relationships among bryophyte lineages are currently contested, the earliest fossil 

evidence assigned to a bryophyte is liverwort-like with dorsiventral complex thalluls 

morphology and a leafless gametophyte (Wellman et al. 2003; Ligrone et al. 2012; 

Morris et al. 2018), suggesting that liverworts retain a large suite of ancestral characters 

not conserved in other land plants. Importantly, building a fundamental understanding of 

genomic patterns can be readily accomplished by working with bryophytes because of 

their small genomes (Leitch and Leitch 2013), many of which contain comparatively few 

paralogous duplications of regulatory genes (Bowman et al. 2017). Thus far, genome 

assemblies have been developed for a number of bryophyte species (including the mosses 

Physcomitrella patens (Rensing et al. 2008), and Sphagnum fallax (Shaw et al. 2016), the 

liverwort Marchantia polymorpha (Bowman et al. 2017), and the hornwort Anthoceros 

agrestis (Szövényi 2016)), and more are underway (Takakia lepidozioides, Ceratodon 

purpureus, Funaria hygrometrica (Rensing 2017) and Syntricia caninervis). Relatively 

few assemblies of bryophyte mitochondria (Oda et al. 1992; Terasawa et al. 2007; Li et 

al. 2009; Wang et al. 2009; Myszczyński et al. 2017) and chloroplasts (Kugita et al. 

2003; Sugiura et al. 2003; Wolf et al. 2005) are available compared to other plant 
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lineages, yet mitochondrial genomes bryophytes tend to be less complex than those of 

tracheophytes, having no large repeated sequences and limited recombination (Ohyama 

1996). Genome sequencing efforts of additional bryophyte taxa will provide critical 

insight into more recent evolutionary changes within these lineages and may help to 

better resolve ancestral states.  

In this context, I targeted the tropical liverwort, Marchantia inflexa (Nees & 

Mont) for sequencing and assembly. Marchantia inflexa is a New World liverwort with 

that is distributed throughout Central America and the Caribbean, from northern 

Venezuela to the southern United States (Bischler 1984). Marchantia inflexa diverged 

from the well-studied sister species M. polymorpha  68-126 million years ago (Kumar et 

al. 2017). Marchantia inflexa is dioecious (has unisexual individuals), with eight 

autosomes and one female (U) or male (V) sex chromosome, and it can reproduce 

sexually by spores or asexually by fragmentation and the formation of gemmae 

(specialized asexual propagules). Marchantia inflexa typically grows on rock and soil 

surfaces along stream banks in tropical forests, but it can also colonize more exposed and 

disturbed sites along roads. Vegetative growth produces a dichotomously-branching 

thallus mat with dorsiventral organization, and the haploid gametophyte is the dominant 

life phase. Marchantia inflexa is a useful model to investigate sexual dimorphisms, 

population sex ratios, and stress tolerance because prior work has established that M. 

inflexa exhibits a considerable degree of sexual dimorphism (McLetchie and Puterbaugh 

2000; Brzyski et al. 2014), variable population sex ratios (McLetchie and Puterbaugh 

2000; McLetchie and García-Ramos 2017; Brzyski et al. 2018), and fluctuating stress 

tolerance (Stieha et al. 2014; Marks et al. 2016).    
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Bryophytes harbor a high proportion of dioecious species. Nearly half of all 

extant mosses, and approximately two-thirds of liverworts are dioecious (Wyatt and 

Anderson 1984). In many bryophytes (including M. inflexa), the reported sex ratio is 

female biased (McLetchie and García-Ramos 2017; Brzyski et al. 2018), and in M. 

inflexa this may be related to females’ superior ability to recover from drying events 

(Stieha et al. 2014; Marks et al. 2016), faster growth rate (Brzyski et al. 2014), or the 

increased establishment of female gemmae (Stieha et al. 2014). However, true population 

sex ratios are largely unknown, except for the few cases where genetic sex markers have 

been developed and utilized (McLetchie and Collins 2001; Korpelainen et al. 2008; 

Milewicz and Sawicki 2013). Typical methods for assessing sex ratios depend on 

counting the number of males and females with visible sex organs and using this 

information to infer the underlying population sex ratio. However, this approach fails to 

account for plants not currently displaying sex organs and assumes that the sex ratio of 

vegetative plants is equivalent to that of plants with sex organs (Holá et al. 2014), but this 

assumption may not hold true in natural settings. In fact, for both M. polymorpha and M. 

inflexa (where sex organ development can be artificially induced) the timing of 

reproductive development is sex-specific (Wann 1925) and some individuals never 

produce sex organs (unpublished data).  

The reproductive biology of bryophytes (with the haploid gametophyte being the 

dominant life stage) provides a unique perspective on the evolution of sex-linked genes, 

as the female (U) and male (V) sex chromosomes are present at the same copy number 

(1N) as autosomal chromosomes for the majority of the organism’s life cycle and are 

subject to haploid selection. Sex chromosome evolution in diploid dominant systems has 
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received considerable research attention. However, less is known about the forces 

shaping sex chromosomes in haploid dominant systems (Bachtrog et al. 2011), and the 

ramifications of haploid selection on sex chromosomes may have unique consequences.  

For example, exposure to haploid selection should reduce the prevalence of deleterious 

mutations (Bull 1978; Immler and Otto 2015) and could allow beneficial mutations fix 

rapidly (Immler and Otto 2015). However, lack of recombination on UV sex 

chromosomes could lead to degeneration on UV chromosomes (Bachtrog et al. 2011; 

Immler and Otto 2015), as has been observed in XY and ZW chromosomes. Further, the 

smaller effective population size of sex chromosomes relative to autosomes may increase 

the impact of genetic drift, further influencing adaptive evolution of sex-specific genes 

(McDaniel et al. 2013). The extent to which these forces shape sex chromosome 

evolution in haploid-dominant systems is not well understood, but the numerous 

dioecious bryophyte taxa provide novel opportunities to test related questions.  

Stresses caused by environmental fluctuations are accentuated in plants due to 

their sessile nature. Consequently, numerous tolerance mechanisms have evolved to 

combat environmental pressures, many of which have potential translational utility. Some 

of these stress tolerance traits, such as embryo retention (allowing for the development 

and dispersal of desiccation tolerant spores) and UV radiation, desiccation, heat, and 

freezing tolerance (Bowman et al. 2017; Rensing 2018) may have facilitated the 

transition from aquatic to terrestrial environments by early plants. Many extant 

bryophytes retain these early stress tolerance mechanisms, allowing them to occupy 

marginal niches (characterized by nutrient poor substrates (Turetsky 2003), toxic 

concentrations of metals (Shaw 1987), variable light (van der Wal et al. 2005) and 
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moisture levels (Proctor et al. 2007)). Consequently, bryophytes are particularly 

informative with respect to understanding the evolutionary history and physiological 

strategies of stress tolerance. 

Desiccation tolerance (DT) (Proctor et al. 2007) in particular, has important 

translational utility. A number of studies have described the genomes (Xiao et al. 2015; 

VanBuren et al. 2015, 2018; Costa et al. 2017) and transcriptomes (Oliver et al. 2004; 

Rodriguez et al. 2010; Gechev et al. 2012; Gao et al. 2014, 2015, 2017; Ma et al. 2015; 

Yobi et al. 2017) of DT plants, and the amassing data provide a strong foundation on 

which to construct our understanding of DT. These studies have demonstrated that DT is 

a complex multigenic trait (Dinakar and Bartels 2013a; Gechev et al. 2013; Gao et al. 

2015; Costa et al. 2017; Yobi et al. 2017), and that there are multiple means of achieving 

DT (Oliver et al. 2005). The genomic basis of DT, although not entirely described, may 

derive from regulatory differences in gene expression pathways (Xiao et al. 2015), 

increased copy number of anahydrobiosis-related genes (Grene et al. 2011), and 

differences in the structural organization of these genes (Costa et al. 2017). However, 

more studies are needed to resolve the specifics of DT mechanisms, and they should 

include work on species spanning a wide phylogenetic range and degree of tolerance 

levels (such as the intermediate trait of dehydration tolerance (DhT also dehydration 

tolerant) (Oliver et al. 2010; Marks et al. 2016)). Marchantia inflexa is DhT, which 

provides an opportunity to enhance our understanding of the evolution of this 

intermediate trait.  

Growing genomic resources for bryophytes provide novel opportunities to 

conduct comparative studies within these lineages, which are particularly well suited to 
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addressing questions related to sex chromosome evolution, sex differences, and stress 

tolerance adaptations. Here, I aimed to characterize patterns of sequence divergence 

between the thalloid liverworts M. inflexa and M. polymorpha, define genetic sex 

markers, and investigate the genomic basis of intraspecific variation in DhT. My analyses 

indicate that the greatest sequence conservation between M. inflexa and M. polymorpha is 

among chloroplast genes, likely due to the conservation of plastid function across 

lineages. Conversely, I show that mitochondrial genes are relatively divergent, which 

may be related to reduced recombination of mitochondrial genomes (as observed in M. 

polymorpha) (Ohyama 1996), or variable mutation rates (Palmer et al. 2000). Sex-linked 

genes exhibit signatures of strong diversifying selection, relative to autosomal genes. 

Interestingly, divergence of sex-linked genes is driven primarily by male-specific (V) 

genes, which I speculate is related to strong selection on males to maintain species 

recognition. Because sperm is broadcast indiscriminately and water dispersed in 

Marchantia, pressure to maintain species recognition is expected to be particularly strong 

on genes related to sperm characteristics (Palumbi 1999). Although females could be 

subjected to similar selective pressures, my analyses indicate that selection is acting 

primarily on male-specific genes in M. inflexa. Putatively sex-specific sequences were 

identified and used to develop diagnostic markers for genetic sex in M. inflexa. 

Regarding DhT, I found that the highly tolerant female genotype harbors more paralogs 

and higher coverage of DhT related genes relative to the less tolerant male genotype. 

Interestingly, some of these DhT genes are putatively sex-linked, offering a possible 

explanation for elevated DhT in M. inflexa females more broadly (Stieha et al. 2014; 
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Marks et al. 2016). The remaining DhT genes appear to be located on autosomes and 

they may contribute to changing patterns of DhT (chapter3).   

 

Results 

Genome assembly and annotation  

Whole-genome sequencing of M. inflexa, yielded 127,147,280 male reads and 

133,660,960 female reads (after quality filtering). The combined male and female k-mer 

distribution indicated a coverage of ~24X but showed a large quantity of unique and low 

abundance k-mers, suggestive of contaminating organisms. In my efforts to characterize 

the source of these low abundance k-mers, I detected a diverse community of microbes, 

consistent with recent descriptions of M. inflexa microbial associations (Marks et al. 

2017). After removal of putative microbial sequences, I assembled the remaining 

sequence reads to generate the draft assembly M_inflexa_v1.1. The resulting scaffolds 

were assigned to super-scaffolds by alignment with the M. polymorpha reference 

genome, allowing me to coalesce the assembly into 300 super-scaffolds. In total 7,747 M. 

inflexa scaffolds covering a total length of 81,634,927 bp were successfully mapped to 

the M. polymorpha genome. Unmapped M. inflexa scaffolds were appended to the 

supper-scaffold assembly. The resulting assembly consists of 41,556 scaffolds, covering 

a total of 208,839,958 bp, with and N50 of 11,144 bp and a longest scaffold length of 

2,829,880 bp. The assembly M_inflexa_v1.1 has been deposited at GenBank under the 

accession QLSQ00000000 and will be released upon publication.  

 Assessment of assembly completeness (performed with BUSCO (Simão et al. 

2015)) indicated that 54.4% (783) of the 1,440 presumptively universal single-copy 
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orthologs from the plant set of OrthoDB v9 were present in the M. inflexa genome 

assembly. Another 3.5% (51) orthologs were present, but fragmented. In comparison, a 

parallel assessment of the M. polymorpha v3.1 assembly found that 60.2% (867) of these 

same genes were complete, and 2.9% (42) were fragmented in M. polymorpha. Both of 

these estimates are rather low, suggesting that there may be inherent limitations 

associated with BUSCO as has been observed for other deeply-diverged lineages (Hara et 

al. 2015; Smith et al. 2018). Still, I found these assessments to be informative in a 

comparative context within Marchantia.  

Assembly of M. inflexa plastids generated nearly complete mitochondrial and 

chloroplast sequences (Figure 5.1). The mitochondria of M. inflexa is 190,056 bp, and the 

chloroplast is 122,620 bp. The complete mitochondrial and chloroplast sequences are 

available at FigShare (https://doi.org/10.6084/m9.figshare.6639209.v1) and will be 

released upon publication.  

  
Figure 5.1. Assembled mitochondrial and chloroplast sequences of Marchantia inflexa. 

The inner circle depicts nucleotide content (G/C in dark gray and A/T in light gray). 

Inverted repeats (IRA and IRB) along with large (LSC) and small (SSC) single copy 

regions are indicated on the chloroplast inner circle. The outer circle shows annotated 

genes that are color coded by function. Genes located on the outside of the circle are 

https://doi.org/10.6084/m9.figshare.6639209.v1)
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transcribed in a clockwise direction, and those on the inside of the circle are transcribed 

counterclockwise.  

 

Annotation 

Gene annotation of the M. inflexa draft genome utilized de novo gene finding in 

combination with the lift-over of all M. polymorpha annotations for orthologous genes. 

Lift-over annotations from M. polymorpha to M. inflexa resulted in the annotation of 

10,005 orthologous proteins within the M. inflexa assembly. De novo gene finding efforts 

identified 13,546 predicted proteins 9,194 of which had identifiable orthologs across M. 

polymorpha,  

Physcomitrella patens, Arabidopsis thaliana, and refseq. After removal of all redundant 

annotations in the de novo and lift-over annotations the combined set of annotations 

consists of 11,687 predicted proteins. Not surprisingly, the highest homology was 

observed between M. inflexa and M. polymorpha with substantially less homology 

between M. inflexa, P. patens and A. thaliana, reflecting the estimated divergence times 

among these species (divergence time between M. inflexa and M. polymorpha is 68-126 

MYA; for M. inflexa and P. patens it is 425-557 MYA; and for M. inflexa and A. thaliana 

it is 481-584 MYA (Kumar et al. 2017)).  

 

Sequence similarity between M. inflexa and M. polymorpha  

To investigate genome evolution within Marchantia I measured sequence 

divergence between M. inflexa and M. polymorpha. Initially, I compared nucleotide 

differentiation among coding sequences (CDS), introns, and intergenic regions to 

estimate the general patterns of divergence between lineages (Figure 5.2). Comparison of 
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orthologous CDS, introns, and intergenic sequences, revealed that (not surprisingly) 

intergenic sequences were the least conserved (64.5% ± 0.009%), introns were 

intermediate (81.8% ± 0.008%), and CDS were the most conserved (82.4% ± 0.001%) 

(Figure 5.2). There was a significant effect of sequence type on %ID (F2,40000=39756, 

p<0.0001). Patterns of sequence divergence between M. inflexa and M. polymorpha fit 

general expectations that CDS should exhibit higher sequence similarity compared to 

introns and intergenic sequences. That being said, I observed surprisingly high sequence 

conservation among some introns, which I speculate is related to the relatively short 

length of M. inflexa introns, in which functional elements (such as splice sites) may be 

preferentially retained. 

 
Figure 5.2. The similarity between Marchantia inflexa and M. polymorpha coding 

sequences (CDS), introns, and intergenic sequences is shown as proportion base pairs 
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(bp) at a % identity (%ID) ranging from 50-100%. As expected, CDS have higher overall 

similarity compared to introns and intergenic sequences. There was a significant effect of 

sequence type on %ID. Total bp of each sequence type is: CDS=629,624 bp; 

introns=1,087 bp; and intergenic=21,983,100 bp.  

 

To assess variation in substitution rates across coding sequences, I computed the 

ratio of non-synonymous to synonymous mutations (dN/dS) for all orthologous CDS of 

M. inflexa and M. polymorpha. The resulting dN/dS values were log transformed to 

improve normality for statistical testing. Initially, I tested for evidence of contrasting 

selective pressures among autosomal, sex-linked, and organellar genes. Notably, sex 

linked genes and autosomes are present at 1N, whereas copy number of the chloroplast 

and mitochondria is variable. I computed the mean dN/dS and standard error for 

autosomal genes (0.24 ± 0.01 (n=4,900)), for sex-linked genes (0.48 ± 0.13 (n=53)), and 

for organelle genes (0.14 ± 0.03 (n=116)). I detected significant differences among 

groups (F2,4862=18.54, p<0.001). Targeted contrasts revealed significant differences 

among sex-linked and autosomal genes (t1=-2.38, p=0.018) and among organellar and 

autosomal genes (t1=5.58, p=2.6e-8). Subsequently, I tested for differences among more 

specific gene types, subdividing sex-linked genes into male-specific, female-specific, and 

male and female alleles of genes with both U and V copies. Organellar genes were 

subdivided into mitochondrial and chloroplast genes. Mean dN/dS of male-specific genes 

was 0.63 ± 0.23 (n=23), of female-specific was 0.20 ± 0.09 (n=7), of male-alleles was 

0.24 ± 0.12 (n=11), and of female alleles was 0.56 ± 0.34 (n=12). Mean dN/dS of 

chloroplast genes was 0.03 ± 0.01 (n=74) and of mitochondria was 0.34 ± 0.06 (n=42). 

There was an overall effect of gene type on dN/dS (F2,4862=20.10, p<0.001). Targeted 

contrasts revealed significant differences between autosomal genes and male-specific 
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genes (t1=-2.88, p=0.004), chloroplast genes (t1=10.39, p=5e-25), and mitochondrial genes 

(t1=-4.40, p=1.1e-5) (Figure 5.3).  

  
Figure 5.3. Boxplot of dN/dS values of orthologous coding sequences in Marchantia 

inflexa and M. polymorpha. There were significant differences among gene types in mean 

dN/dS. Secondary comparisons reveal significant differences in mean dN/dS among 

male-specific and autosomal genes, chloroplast and autosomal genes, and mitochondrial 

and autosomal genes. Statistical tests were performed on log transformed data to satisfy 

the assumptions of normality, but untransformed numbers are presented here. All dN/dS 

values > 1 exhibit the signature of diversifying selection.  

 

These analyses reveal several genes and pathways that may be under diversifying 

selection (dN/dS > 1) in M. inflexa and M. polymorpha. Sex-linked genes with dN/dS > 1 

included the female allele of CCR4-NOT transcription related complex protein 

(Mapoly0018s0021.1), the male allele of bHLH-MYC2 transcription factor 

(MapolyY_B0018.1), a male-specific phosphatidylinositol-4,5-bisphosphate 3-kinase 

(MapolyY_A0049.1), two male-specific genes of unknown function (MapolyY_B0032.1 
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and MapolyY_B0003.1). No chloroplast genes in my analyses had dN/dS > 1, but three 

mitochondrial open reading frames (orf) (orf 84, orf 69, rpl 10) had dN/dS > 1. Of the 

243 autosomal genes with dN/dS > 1, 51 had identifiable homologs in the Uniprot 

database. GO analyses of these genes revealed that many were associated with the 

cellular components intracellular, cytoplasm, and membrane, the molecular function 

catalytic activity (followed closely by hydrolase activity and transferase activity), and the 

biological processes of metabolic process and cellular process. A complete list of genes 

with dN/dS > 1 and associated protein names can be found in Table 5.1 at the end of this 

chapter. 

   

Sex marker identification 

I identified 4,468 regions (covering 2,234,000 bp) in the M. inflexa genome 

assembly with substantial differences in copy number among genetic lines through 

coverage analysis with DifCover (https://github.com/timnat/DifCover) (Smith et al. 

2018). Of these, 89 were found on scaffolds also containing a predicted protein, 31 of 

which could be assigned to an identifiable homolog across M. polymorpha, P. patens, A. 

thaliana, and refseq databases. From this set, I identified five putatively male- and three 

female-specific sequences that were also orthologous to sequences on the U and V 

chromosomes in M. polymorpha. These candidate sex markers were analyzed by PCR in 

nine males and nine females to verify their fidelity, leading to the validation of one 

positive marker for each sex (Figure 5.4). Other candidate sex markers exhibited non-

specific amplification and were therefore discarded. Plants used for validation were 

originally collected from five distinct populations, suggesting that the markers are robust 

https://github.com/timnat/DifCover)
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to genotypic variation. Primer sequences of the validated male and female sex markers 

are listed in Table 5.2.   

 

 

Table 5.2. Primer sequences for validated male and female genetic sex markers for 

Marchantia inflexa.  

Marker Left primer sequence Right primer sequence 

Male marker-98683 CGTTTGATTCGTCTTCTCCAAA AGCTCTCGTCAGAATAGTCAGG 

Female marker-42793 GTCCAGTCTGTGAAGCCGTA CCTTCTCGTAGACCAGTGCT 

 

 
Figure 5.4. Electrophoresis pattern of sex markers and positive control (actin) amplified 

in six male and six female plants. Images shown here are sections cropped from two 

separate gels.  Male and female markers are presumptive U- and V-linked sequences, 

respectively. Plants were originally collected from five natural populations spanning a 

range of environmental conditions. In total, sex markers were validated in nine male and 

nine female plants, but only six individuals of each sex are shown here. 

 

Dehydration tolerance  

To address specific hypotheses on DhT, I probed M. inflexa and M. polymorpha 

annotated proteins for orthologs to a list of 195 DT genes (compiled from publicly 

available mRNA sequences of genes expressed under water stress in model DT plants). 

Of this set of DT genes, 112 had identifiable homologs in M. inflexa and 141 had 

identifiable homologs in M. polymorpha. My analyses of dN/dS captured 38 of these DT 
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orthologs, one of which (a putative aldehyde dehydrogenase (Mapoly0030s0099.1)) had a 

dN/dS value > 1. The function of diversification in this gene is unclear, given the lack of 

evidence for any difference in DhT between these two Marchantia species.   

Prior studies showed that the male and female M. inflexa genotypes used here 

have reproducible differences in DhT (Marks et al. 2016). Consequently, I aimed to 

identify DT genes with substantial coverage differences among these two genotypes, 

presuming that they may impact relative differences in DhT. Of the 112 DT genes 

detected in M. inflexa, most had standardized coverage ratios of ~1. However, seven 

genes had considerably higher coverage (log2 fold change > |4|) in the highly-tolerant 

female and one had higher coverage in the less tolerant male (Table 5.3). Specific genes 

with higher coverage in the tolerant female genotype compared to the male include a 

CDPK protein, a major intrinsic protein PIPc, an aldehyde dehydrogenase, GRP94, heat 

shock proteins 70 and 101, and superoxide dismutase. The sole DT gene with higher 

coverage in the less-tolerant male genotype than the female is a heat shock factor 1 

ortholog. Of the DT genes with coverage difference among genotypes, one (CDPK 

protein) was on a scaffold assigned to the putative U chromosome, and one (heat shock 

factor 1 ortholog) was assigned to the putative V chromosome.  
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Table 5.3. DhT proteins with coverage differences among the sexes in Marchantia 

inflexa. I designated a log2 fold change > |4| as the cutoff to define a significant coverage 

difference. Negative log2 coverage ratios indicate higher female coverage relative to 

males, whereas positive log2 coverage ratios indicate higher male coverage.  

 

 

Discussion 

Our assembly of the M. inflexa genome represents a new resource for comparative 

studies among land plants. I capitalized on the recently-published genome of the related 

liverwort M. polymorpha (Bowman et al. 2017) to improve scaffolding of this assembly, 

estimate divergence rates among specific sequence types, and to identify sex-linked 

sequences that were leveraged to generate male and female genetic sex markers for M. 

inflexa. My analyses identified several genes on the autosomes, organelles, and sex 

chromosomes that show strong signatures of recent diversifying selection in Marchantia. 

Additionally, I identified multiple genes possibly underlying an observed genotype 

difference in DhT in M. inflexa, which point towards a complex mechanism of 

heightened DhT. I detected extreme differences in copy number of DhT genes across 

multiple loci, some of which were putatively sex-linked. Evidence of sex-linked genes 

underlying differences in DhT is intriguing, as prior studies indicate complex patterns of 

sexual dimorphism in DhT in M. inflexa (chapter 3; Marks et al. 2016).  

Analyses of dN/dS ratios for genes on autosomes, sex chromosomes, and 

organelles in M. inflexa and M. polymorpha showed evidence of increased diversification 

Gene Coverage ratio (M/F) 

Grp94 -16.4576 

Major intrinsic protein PIPc -5.227 

Aldehyde dehydrogenase -4.2169 

Heat shock protein 101 -7.318 

Superoxide dismutase -4.095 

CDPK  -9.7936 

Heat shock protein 70 -16.4576 

Heat shock factor 1 14.3397 
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of sex-linked genes relative to autosomal genes, and conservation of organellar genes 

(particularly the chloroplast) relative to autosomes. UV sex-determination systems are 

expected to differ from diploid dominant (XY and ZW) sex-determination systems in 

multiple ways, due primarily to haploid selection (Bull 1978; Bachtrog et al. 2011). 

However, both empirical and theoretical studies on sex chromosome evolution in haploid 

dominant systems are limited. UV sex chromosomes exhibit suppressed recombination 

similar to XY and ZW sex chromosomes, which can lead to degeneration of UV 

chromosomes (Bull 1978; Immler and Otto 2015). However, because UV chromosomes 

are fully exposed to selection during the majority of the organism’s life cycle, gene 

content is maintained, and positive adaptations may sweep through populations more 

rapidly than in XY or and ZW systems. My analyses indicate that rapid diversification of 

sex-linked genes is occurring in Marchantia, suggesting that exposure to haploid 

selection can be a diversifying force on sex chromosomes.   

Interestingly, the finding that M. inflexa and M. polymorpha sex-linked genes are 

more divergent than autosomal genes is driven primarily by diversification of male-

specific (V) genes. Diversification of female-specific (U) genes, and genes with alleles on 

both the U and V chromosomes is similar to diversification of autosomal genes (Figure 

5.3). It has been suggested that UV chromosomes can become highly differentiated 

between the sexes due to sex-specific selection (Immler and Otto 2015). Males are 

generally thought to be under stronger sexual selection than females, and variability in 

male reproductive success may facilitate rapid adaptation of V-linked genes (Bachtrog et 

al. 2011). Further, because male gametes are broadcast indiscriminately, I expect strong 

selection on sperm characteristics to maintain species recognition in this system (Palumbi 
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1999). Evidence for diversification of multiple male-specific genes provides a possible 

mechanism for maintaining species boundaries.   

Sex-linked genes with high dN/dS appear to be involved in multiple cellular 

processes, some of which contribute to differences in sex function in other systems. 

Notably, diversification of the male allele for bHLH-MYC transcription 

factor transcription factor (dN/dS = 1.38) is intriguing because this class of transcription 

factors has been implicated in floral development in Arabidopsis thaliana suggesting a 

role for this gene in reproductive processes (Riechmann and Ratcliffe 2000). Similarly, 

the female-allele of CCR4-NOT transcription related complex (dN/dS = 4.27) is 

homologous to the rcd1+ gene of Schizosaccharomyces pombe, which is critical for 

nitrogen starvation induced sexual reproduction (Okazaki et al. 1998). Divergence of 

these genes within Marchantia points towards specific reproductive differences among 

these species, which may be related to selection for species-specific recognition, habitat-

specific optimization, or the evolutionary dynamics of haploid selection on sex 

chromosomes.  

My analyses define male and female-specific genetic sex markers, which will be 

of great utility in future studies of M. inflexa populations where plants are latent to 

express sex. The ability to sex plants via a simple PCR assay will expedite general efforts 

to characterize individuals and populations of M. inflexa and will aid in efforts to develop 

M. inflexa as a model system to investigate population dynamics and ecological genetics.  

In my efforts to identify genes underlying DhT, I capitalized on a previously-

identified difference in DhT in M. inflexa (Marks et al. 2016), and targeted genes that 

exhibited substantial coverage differences among genotypes. I identified several such 
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genes, which I speculate are important for increasing DhT in the more tolerant female 

genotype. Interestingly some of these genes are putatively sex-linked, suggesting that 

there may be sex-specific components to DhT in M. inflexa. However, the precise 

mechanism underlying differences in DhT is not clear, as genes with higher coverage in 

the more DhT genotype cover a broad spectrum of functional categories. For example, 

although CDPK proteins have been recognized as important hubs in plant stress signaling 

pathways (Schulz et al. 2013) with highly conserved structure (Cheng et al. 2002), other 

candidate genes appear to have diverse functions. For example, GRP94 is a stress 

induced presumptive molecular chaperone (Little et al. 1994) that may be involved in the 

recognition and removal of malformed and damaged proteins, heat shock protein 101 

contributes to thermal stress tolerance in transgenic A. thaliana (Queitsch et al. 2000), 

and major intrinsic proteins are often channel proteins, such as aquaporins (Mariaux et al. 

1998). Taken together, coverage differences in these genes point towards an explanation 

of elevated DhT that is impacted by a diverse array of genetic elements, enhancing DhT 

through multiple mechanisms. The finding that some of these DhT genes are sex-linked 

provides a possible explanation for the documented sex differences in DhT in M. inflexa.  

In summary, the draft genome for M. inflexa adds to a growing body of genomic 

resources for land plants, which will enable investigation of early plant evolution and 

physiology. I leveraged this assembly to identify genes under diversifying selection in 

Marchantia, to develop genetic sex markers, and to target genes contributing to DhT. My 

analyses comprise one of the few empirical studies on haploid sex chromosome evolution 

and suggest that several sex-linked genes (particularly male-specific (V) genes) have 

undergone rapid diversification in Marchantia. I identified multiple sex-specific 
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sequences, which were used to develop genetic sex markers, and identify genes 

underlying differences in DhT of M. inflexa. Broadly, I found evidence that DhT in M. 

inflexa is likely impacted by gene dosage, where having more copies of particular genes 

enables a more rapid and effective cellular response.  

 

Methods 

Plant growth, DNA extraction, and sequencing  

Plant specimens for genome sequencing were collected from East Turure stream 

(10o41’04”N 61o09’39”W) on the island of Trinidad, Republic of Trinidad and Tobago in 

2009. Voucher specimens are deposited at the Missouri Botanical Garden (St. Louis, MO, 

USA, specimen numbers M092113 and M092115) and at the National Herbarium of the 

Republic of Trinidad and Tobago (St. Augustine, Trinidad, specimen number 

TRIN34616, D. N. McLetchie, collector). Vegetative tissue was transported to Lexington, 

Kentucky, USA and 36 clones (generated though vegetative propagation) of one male 

and one female genotype were planted on steam-sterilized soil and maintained in a 

randomized layout in a climate-controlled greenhouse. Plants were watered daily with 

distilled water and kept under shade cloth to mimic field conditions. Vegetative tissue 

(growing aerially with no soil contact) was collected from male and female plants after 

~5 years in greenhouse conditions. Prior to DNA extraction, thalli were washed in 

distilled water three times to remove surface contamination. DNA was extracted 

following a CTAB extraction protocol modified from Doyle 1987. Sequencing libraries 

were constructed with 300 base pair (bp) inserts and whole genome sequencing was 
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conducted on an Illumina HiSeq2000 for 100 bp paired end (PE) reads at the Beaty 

Biodiversity Research Centre, University of British Columbia.  

 

Genome assembly and annotation  

 Sequence read quality was assessed with fastQC version 3 (Andrews 2010), and 

filtered with Trimmomatic version 0.33 (Bolger et al. 2014). Male and female reads were 

combined to increase coverage and k-mer plots were generated with DSK version 1.1 

(Rizk et al. 2013). Assembly was carried out using SOAP de novo version 2.04-r240 

(Luo et al. 2012) with a k-mer length of 31. Reads shorter than 100 bp were not included, 

alignments of less than 32 bp were not considered reliable, and k-mers observed nine or 

fewer times were excluded from the assembly.  

Following initial assembly, I plotted the length and GC content of each scaffold in 

JMP®, Version 12 (SAS Institute Inc.). The plot revealed two distinct clusters of well-

assembled (long) scaffolds: one with a mean GC content of ~65% and one with a mean 

GC content of ~45% (Figure 5.5). Consequently, I probed each distinct GC cluster to 

identify the taxonomic source of the contributing sequence reads by aligning the 100 

longest scaffolds of each GC cluster to NCBI’s refseq database (Pruitt et al. 2005) using 

TBLASTX (Altschul et al. 1990). Taxonomic classification of the resulting alignments 

with Megan version 4 (Huson et al. 2007) revealed that scaffolds with high GC content 

were derived from a diverse microbial community, whereas scaffolds with low GC 

content were derived exclusively from plant material (Figure 5.6). Notably, other 

members of Marchantia have a GC content of ~45% (Sharma et al. 2014), providing 

additional support for the assumption that low GC content reads were derived from M. 
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inflexa. Consequently, I filtered the raw sequence data to remove all reads with a GC 

content > 55%. The remaining reads (although likely not entirely contamination free) 

represent a data set enriched for M. inflexa genomic information. Using only reads with a 

GC content < 55%, I reassembled the sequence data with the same parameters as above.  

 

 
Figure 5.5. Plots of scaffold length (in kilobases) by GC content on both linear (main) 

and log10 (insert) scales show two distinct peaks of GC content. The low GC fraction 

consists of putative Marchantia inflexa scaffolds (other species in the genus have 

similarly low GC content(Sharma et al. 2014)). The high CG-content scaffolds are 

derived from an associated microbial community and were removed from sequence data 

prior to assembly of the M_inflexa_v1.1 draft genome.  
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Figure 5.6. Taxonomic assignments of (a) high GC content scaffolds and (b) low GC 

content scaffolds. The size of the branch tip is proportional to the abundance of those taxa 

in the data set.  

 

The resulting scaffolds were aligned to the M. polymorpha reference genome 

(Bowman et al. 2017) with BLASTN, allowing me to organize M. inflexa scaffolds with 

Chromosomer version 1.3 (Tamazian et al. 2016), which leverages pairwise sequence 

alignments and local synteny to assign orthologous regions to super-scaffolds. All M. 

inflexa scaffolds not mapped to M. polymorpha were appended to the super-scaffold file, 

and all contigs under 1000 bp were removed. Assembly statistics were computed using 

assemblathon_stats_2.pl script (https://github.com/lexnederbragt/denovo-assembly-

tutorial/blob/master/scripts/assemblathon_stats_2.pl). To estimate assembly 

completeness, I quantified the percentage of Universal Single-copy Orthologs from the 

plant set of OrthoDB v9 of BUSCO v3 (Simão et al. 2015) present in the M. inflexa 

genome assembly. I conducted a parallel assessment of the M. polymorpha genome 

assembly.  

 To assemble the mitochondrial and chloroplast genomes of M. inflexa, raw reads 

were trimmed with Trimmomatic version 0.33 (Bolger et al. 2014) and error corrected 

https://github.com/lexnederbragt/denovo-assembly-tutorial/blob/master/scripts/assemblathon_stats_2.pl)
https://github.com/lexnederbragt/denovo-assembly-tutorial/blob/master/scripts/assemblathon_stats_2.pl)


 

 109 

using the ErrorCorrectReads module of Allpaths-LG version 50156 (Gnerre et al. 2011). 

These were aligned to the M. polymorpha reference plastid and mitochondrial sequences 

(GI 11466673 (Ohyama et al. 1988) and GI 11467097 (Oda et al. 1992), respectively) 

with BWA mem version 0.7.12-r1039 (Li 2013). Reads with alignments, plus their mates, 

were extracted and partitioned. Each partition was assembled separately with Ray de 

novo version 2.3.1 (Boisvert et al. 2010) at k=31. Ray contigs were scaffolded against 

their homologous M. polymorpha reference sequences using Abacas version 1.3.1 

(Assefa et al. 2009). Adjacent contig overlaps were identified using BLASTN (Altschul 

et al. 1997) and merged at the shared substring. Pilon version 1.13 (Walker et al. 2014) 

was then run for 30 iterations. Assemblies were annotated with Daisie Huang’s script 

PLANN (https://github.com/daisieh/plann) and visualized in OrganellarGenomeDRAW 

(http://ogdraw.mpimp-golm.mpg.de/cgi-bin/ogdraw.pl).  

I used Crossmap version 2.7 (Zhao et al. 2014) to transfer all M. polymorpha gene 

annotations to orthologous M. inflexa sequences. In addition to these lift-over 

annotations, de novo gene prediction was carried out via Maker version 2.31.8 (Cantarel 

et al. 2008) for four iterations of gene finding. The resulting predicted proteins were 

aligned to the M. polymorpha genome (Bowman et al. 2017), Physcometrella patens 

genome (Rensing et al. 2008), the Arabidopsis thaliana genome (Berardini et al. 2015), 

and NCBI’s refseq database (Pruitt et al. 2005) using BLASTP (Altschul et al. 1990). All 

alignments were merged and the single best hit for each M. inflexa predicted protein was 

selected based on bitscore. The combined set of de novo and lift-over annotations was 

used for downstream analyses. 

 

https://github.com/daisieh/plann)
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Sequence similarity between M. inflexa and M. polymorpha   

To enable comparison of orthologous sequences, I aligned the entire M. inflexa 

assembly to the M. polymorpha assembly v3.1 with LASTZ version 1.04 (Harris 2007), 

and extracted orthologous CDS, introns, and intergenic sequences from both assemblies 

using a combination of BEDtools version 2.19.1 (Quinlan and Hall 2010) and BEDOPS 

version 2.4.35 (Neph et al. 2012). To explicitly test for differences in nucleotide 

differentiation among these sequence types, CDS, introns, and intergenic sequences were 

realigned to one another using LASTZ version 1.04. The resulting mean % identity 

(%ID) for each sequence type was computed and differences among sequence types were 

tested for significance with a mixed effects linear model in JMP®, Version 12 (SAS 

Institute Inc.). The fixed effect of sequence type on %ID was tested (sequence length was 

included in the model as a random effect).  

To investigate patterns of gene divergence, I computed dN/dS for all orthologous 

CDS in M. inflexa and M. polymorpha. Initially, I extracted the complete CDS and 

translated amino acid sequence for all orthologous genes using gffread 

(https://github.com/gpertea/gffread). Orthologous translated CDS were aligned with 

Clustal Omega version 1.2.4 (Sievers et al. 2011), and codon aware DNA alignments 

were defined using PAL2NAL version 14 (Suyama et al. 2006), during which all gaps 

and internal stop codons were removed. Next, dN/dS ratios for each ortholog were 

calculated with the yn00 function of PAML version 4.9 (Yang 2007), which computes 

dN/dS using pairwise comparisons accounting for both transition/transversion bias and 

base/codon frequency bias (Yang and Nielsen 2000). Following filtering conventions 

(Villanueva-Cañas et al. 2013), cases in which dS = 0, dN > 2, and dN/dS > 10 were 

https://github.com/gpertea/gffread)
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removed from the output, and dN/dS values were log transformed to satisfy assumptions 

of normality for statistical testing. Differences among groups in mean dN/dS were tested 

for significance using a mixed effects linear model in JMP®, Version 12 (SAS Institute 

Inc.). Initially, the fixed effect of gene type (autosomal, sex-linked, or organellar) on 

dN/dS was tested (scaffold ID was included in the model as a random effect). Post hoc 

comparisions among gene types were made using orthogonal contrasts to explicitly 

compare autosomal genes to sex and organallar genes. Subesquntly, I made more detailed 

comparisions among specific gene types with a mixed effects linear model testing the 

fixed effect of specific gene type (autosomal, male-specific, female-specific, male-allele, 

female-allele, mitochondria, and chloroplast) on dN/dS (scaffold ID was included in the 

model as a random effect). Again, post hoc comparisons were made using orthogonal 

contrasts to specifically compare each gene type to the autosomal genes. Finally, all 

individual genes with dN/dS values > 1 were identified, and gene ontology (GO) terms 

were defined with the GORetreiver tool and summarized with the GOSlimViewer tool 

available at AgBase (http://agbase.msstate.edu/cgi-bin/tools.pl) (McCarthy et al. 2006). 

 

Sex marker identification  

  Read coverage was computed using DifCover 

(https://github.com/timnat/DifCover) (Smith et al. 2018) to identify regions of the 

genome unique to these male and female genotypes. Briefly, I determined the genotype-

specific coverage by mapping male and female sequence reads back to the draft assembly 

with Bowtie2 (Langmead et al. 2009). Coverage was calculated for 500 bp windows with 

BEDtools version 2.19.1 (Quinlan and Hall 2010), and DifCover was used to calculate 

http://agbase.msstate.edu/cgi-bin/tools.pl)
https://github.com/timnat/DifCover)
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the log2 ratios of male:female coverage for each 500 bp window. Marchantia inflexa 

sequences that were both homologous to the M. polymorpha sex chromosomes and 

showed genotype-specific coverage were flagged as potential sex markers. PCR primers 

were designed with primer3 (Untergasser et al. 2012) for five candidate male markers 

and three candidate female markers.  

 Candidate sex markers were tested for fidelity by PCR analysis using plants from 

five distinct populations in Trinidad in 2016 (see Table 5.4 for sample collection info). 

Plants were cultivated in greenhouse conditions on steam-sterilized soil, under shade 

cloth, and watered daily for ~one year. When plants began to produce sex organs 

naturally, vegetative tissue (visibly connected to a reproductive structure to ensure 

accurate sex identification) was collected from nine individuals of each sex. DNA was 

extracted from plant tissues following a modified CTAB extraction protocol (same as 

above), and PCR reactions were conducted with a DNA template concentration of 0.8 

ng/ul and combined forward and reverse primer concentration of 0.4 uM. Reaction 

conditions consisted of initial denaturation at 94 C for 5 minutes, followed by 34 cycles 

of 94 C for 30 seconds, 60 C for 30 seconds, 72 C for 15 seconds, and a final 

extension at 72 C for 5 minutes.  

 

Table 5.4. Habitat type, site name, and coordinates of the locations where Marchantia 

inflexa plants were collected in Trinidad, Republic of Trinidad and Tobago. These 

collections were used to validate the fidelity of M. inflexa genetic sex markers. Plants 

were collected in 2016 and cultured under greenhouse conditions at the University of 

Kentucky, Lexington KY, USA, for 18 months prior to use.  

Habitat type Site name Coordinates 

Stream East Turure  10o41’04”N 61o09’39”W 

Stream West Turure 10o41’00”N 61o10’04”W 

Stream  Quare  10o40’37”N 61o11’40”W 

Road Guanapo  10o41’08”N 61o15’49”W 

Road Cumaca  10o41’11”N 61o09’45”W 
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Dehydration tolerance  

  To address specific hypotheses on DhT, I probed M. inflexa and M. polymorpha 

annotated proteins for orthologs to a list of 195 DT genes (compiled from publicly 

available mRNA sequences of genes expressed under water stress in model DT plants). 

DT orthologs were identified using BLASTX (Altschul et al. 1990), and the single best 

hits for each M. inflexa and M. polymorpha sequence were determined based on bitscore. 

Presuming that some DT genes would be multi-copy in M. inflexa, I calculated the 

genotype-specific coverage of each DhT ortholog using DifCover (Smith et al. 2018) 

with the aim of detecting genes contributing to the observed genotype difference in DhT 

in M. inflexa (Marks et al. 2016). I targeted sequences corresponding to DhT genes 

showing log2 coverage ratios > |4| as potential contributors to the observed difference in 

DhT. Finally, I computed dN/dS ratios for all DhT genes and identified those exhibiting 

signs of diversifying selection (dN/dS > 1). 
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Table 5.1. List of all genes with dN/dS > 1. The transcript ID reported here is the ID 

assigned to Marchantia polymorpha transcripts in the v3.1 assembly available on 

Phytozome (https://phytozome.jgi.doe.gov). Gene type refers to my categorization of genes 

as autosomal, sex-linked, DhT related, or mitochondrial. GO protein IDs were defined 

using the GOretriever tool available at AgBase (http://www.agbase.msstate.edu).   
Transcript ID Gene Type dN/dS GO protein ID  
Mapoly0001s0022.1 Autosomal 1.0183 Mechanosensitive ion channel protein 1 
Mapoly0003s0183.1 Autosomal 3.8104 Probable carboxylesterase 18 
Mapoly0003s0246.1 Autosomal 3.8104 Polyribonucleotide nucleotide transferase 2 
Mapoly0009s0052.1 Autosomal 3.8104 Shewanella-like protein phosphatase 2 
Mapoly0009s0208.1 Autosomal 3.8104 Methionine aminopeptidase 2B 
Mapoly0010s0113.1 Autosomal 3.8104 Ribosomal protein S19 
Mapoly0019s0040.1 Autosomal 3.1317 Basic leucine zipper 61 
Mapoly0022s0184.1 Autosomal 3.1317 Protein NRT1/ PTR FAMILY 8.2 
Mapoly0025s0007.1 Autosomal 3.1317 kinase PAM74 
Mapoly0027s0071.1 Autosomal 3.1317 UDP-glucuronate 4-epimerase 4 
Mapoly0027s0188.1 Autosomal 3.1317 Inositol-pentakisphosphate 2-kinase 

Mapoly0031s0063.1 Autosomal 3.1317 
Pentatricopeptide repeat-containing protein 

At3g06920 
Mapoly0031s0108.1 Autosomal 3.1317 Malate dehydrogenase [NADP] 

Mapoly0031s0181.1 Autosomal 3.1317 
Uncharacterized membrane protein 

At4g09580 
Mapoly0033s0148.1 Autosomal 2.4628 Pathogenesis-related protein 5 

Mapoly0035s0037.1 Autosomal 2.4628 3-oxoacyl-[acyl-carrier-protein] synthase II 

Mapoly0038s0053.1 Autosomal 2.4628 Splicing factor U2af large subunit A 

Mapoly0040s0067.1 Autosomal 2.4628 7-deoxyloganetin glucosyltransferase 

Mapoly0040s0110.1 Autosomal 2.4628 Kinesin-like protein KLP1 

Mapoly0042s0095.1 Autosomal 2.4628 Glucan endo-1,3-beta-glucosidase GII 

Mapoly0043s0098.1 Autosomal 2.4628 Auxin response factor 10 

Mapoly0046s0122.1 Autosomal 2.346 Bifunctional levopimaradiene synthase 

Mapoly0056s0145.1 Autosomal 2.2798 kinase At1g07650 

Mapoly0058s0080.1 Autosomal 2.2798 Aldose 1-epimerase 

Mapoly0061s0076.1 Autosomal 2.2798 

Pentatricopeptide repeat-containing protein 

At5g39980 

Mapoly0063s0067.1 Autosomal 2.2463 Iron-sulfur assembly protein IscA 

Mapoly0064s0048.1 Autosomal 1.5588 Putative GDP-L-fucose synthase 2 

Mapoly0066s0022.1 Autosomal 1.5588 

Uncharacterized ABC transporter ATP-

binding protein  

Mapoly0067s0036.1 Autosomal 1.5588 Protein SERAC1 

Mapoly0067s0061.1 Autosomal 1.5588 Codeine O-demethylase 

Mapoly0068s0065.1 Autosomal 1.5588 

Pentatricopeptide repeat-containing protein 

At3g18110 

Mapoly0071s0008.1 Autosomal 1.5168 Serine/arginine-rich splicing factor RSZ23 

Mapoly0088s0006.1 Autosomal 1.0503 Methyl-CpG-binding domain protein 4 

Mapoly0088s0027.1 Autosomal 1.0503 

Uncharacterized FAD-linked 

oxidoreductase YvdP 

Mapoly0088s0041.1 Autosomal 1.0503 Zinc transporter 2 

Mapoly0093s0044.1 Autosomal 1.0503 Zinc-regulated transporter 2 

Mapoly0097s0084.1 Autosomal 1.0503 

DNA-directed RNA polymerase subunit 

beta' 

https://phytozome.jgi.doe.gov)/
http://www.agbase.msstate.edu)/
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Table 5.1 (continued)  
Mapoly0098s0044.1 Autosomal 1.0503 Exosome RNA helicase MTR4 

Mapoly0098s0056.1 Autosomal 1.0503 Myb family transcription factor APL 

Mapoly0106s0023.1 Autosomal 1.0503 Phosphate permease PHO89 

Mapoly0131s0005.1 Autosomal 1.0503 Patatin-like protein 2 
Mapoly0144s0027.1 Autosomal 1.0503 Protein tas 
Mapoly0147s0041.1 Autosomal 1.0503 Alpha-N-acetylglucosaminidase 
Mapoly0166s0010.1 Autosomal 1.0039 Endochitinase CH25 

Mapoly0191s0007.1 Autosomal 1 
Ethylene-responsive transcription factor 

ERF110 
Mapoly0191s0015.1 Autosomal 1 Protein-L-isoaspartate O-methyltransferase 
Mapoly0204s0015.1 Autosomal 1 Probable linoleate 9S-lipoxygenase 5 
Mapoly0265s0001.1 Autosomal 1 Probable LRR receptor-like serine/threonine  
Mapoly0643s0001.1 Autosomal 1 Probable LRR receptor-like serine/threonine  
Mapoly1175s0002.1 Autosomal 1 Probable LRR receptor-like serine/threonine  
Mapoly0030s0099.1 DhT related 3.1317 Aldehyde dehydrogenase family 3 member I1 

Mp011-91 Mitochondria 1.309 orf 69 
Mp067-91 Mitochondria 1.105 rpl 10 
Mp048-91 Mitochondria 1.0398 orf 84 

Mapoly_Y_A0049 Male 5.107 
phosphatidylinositol-4,5-bisphosphate 3-

kinase 
Mapoly_Y_B0032 Male 2.3731 Unknown function 
Mapoly_Y_B0003 Male 1.1008 Unknown function 
Mapoly_Y_B0018  Male allele 1.3802 bHLH-MYC transcription factor  
Mapoly_0018s0021 Female allele  4.2679 CCR4-NOT transcription related complex  
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CHAPTER SIX 

VARIATION IN THE BACTERIOME OF THE TROPICAL LIVERWORT 

MARCHANTIA INFLEXA, BETWEEN THE SEXES AND ACROSS HABITATS  

 

Reproduced with minor edits from: Marks, R. A., Smith, J. J., Cronk, Q. & McLetchie, 

D. N. Variation in the bacteriome of the tropical liverwort, Marchantia inflexa, between 

the sexes and across habitats. Symbiosis 1–9 (2017). doi:10.1007/s13199-017-0522-3 

 

Introduction 

 Associations between prokaryotes and larger life forms are both ubiquitous and 

important (van der Heijden et al. 2016). Animal microbiomes are known to influence 

nutrient uptake, digestion (Hooper et al. 2002), metabolism (Claus et al. 2008), and even 

behavior (Ezenwa et al. 2012). Likewise, plant microbiomes can dramatically affect 

performance, physiology, and play a significant role in nutrient acquisition, plant-water 

relations, and stress responses (Turner et al. 2013; Panke-Buisse et al. 2015; Haney et al. 

2015; Vandenkoornhuyse et al. 2015; Agler et al. 2016). Because the plant microbiome 

can dramatically impact plant health and performance, understanding the factors that 

modulate microbiome establishment and composition has implications for food security, 

agricultural productivity (Sessitsch and Mitter 2015), and ecological stability in natural 

systems (Vandenkoornhuyse et al. 2015).  

That being said, we are only beginning to appreciate the complex dynamics of 

plant-microbe interactions. To date, most research efforts have focused on subsurface 

(rhizosphere) interactions with a particular concentration on agricultural species. 

Consequently, I have developed a sophisticated understanding of associations between 

plant roots and soil microbes (Berendsen et al. 2012; Vandenkoornhuyse et al. 2015). 

However, the microbiome in aboveground tissues (phyllosphere) is less well 

characterized, especially in non-agricultural systems (Turner et al. 2013). Nevertheless, 
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recent technological advances have made this area of investigation more accessible, and a 

number of contemporary studies have addressed related questions (Turner et al. 2013; 

Delaux et al. 2013; Bragina et al. 2014; Knack et al. 2015; Agler et al. 2016; van der 

Heijden et al. 2016). Some of these studies provide evidence suggesting that plant 

microbiomes are determined, at least in part, by associations that span the deep 

evolutionary history of plant lineages (Knack et al. 2015). In parallel, others have shown 

that random colonization (Lebeis 2014), nutrient availability (Turner et al. 2013), local 

ecology (Lundberg et al. 2012; Schlaeppi et al. 2014; Koua et al. 2014; Bragina et al. 

2014), host genotype (Manter et al. 2010; Ofek et al. 2014; Agler et al. 2016), and host 

sex (Vega-Frutis and Guevara 2009; Ali Balkan 2016) can influence the community 

structure of plant microbiomes.  

While some specific plant-microbe relationships have been well studied, the 

bacteriome (the bacterial component of the microbiome) in bryophytes (mosses, 

hornworts and liverworts) is not well characterized. Only a few studies have described 

bacteriomes in liverworts (Koua et al. 2014; Knack et al. 2015) and mosses (Opelt and 

Berg 2004; Opelt, Berg, et al. 2007; Opelt, Chobot, et al. 2007; Bragina et al. 2012, 

2014, 2015; Knack et al. 2015) despite the potential insight provided by such studies. It is 

worth noting that bryophyte microbiomes may differ substantially from the microbiomes 

of other plants in relevant ways. For example bryophytes are often early colonizers in 

ecological succession, and their propensity for drastic changes in water content may 

necessitate specific adaptations in the accompanying microorganisms (Opelt and Berg 

2004; Proctor et al. 2007). Additionally, many bryophytes are found in harsh and nutrient 

limited environments (Goffinet 2008), which likely impacts any microbes associated with 
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these plants. A comprehensive understanding of the bryophyte microbiome may therefore 

offer insight into relationships that aid in stress tolerance and nutrient acquisition, both of 

which have practical applications in environmental and crop management.  

 In this study, I hypothesized that because the plant bacteriome can affect plant 

fitness, changes in the composition of a plant’s bacteriome would be associated with the 

environment, possibly increasing local fitness. I further hypothesized that host plant sex 

would be associated with changes in bacteriome composition, due to differences in the 

specific functions of each sex. To test these hypotheses, I examined the bacteriome of the 

tropical liverwort, Marchantia inflexa, in male and female plants from multiple habitats 

(native stream sides, recently colonized roadsides, and a greenhouse common garden) by 

targeted sequencing of the bacterial 16S rRNA gene. I predicted that particular bacterial 

taxa would be enriched in the bacteriome of plants from different habitats and sexes. 

Other studies have demonstrated that the plant bacteriome is influenced by environmental 

variation, and I expected this study system to exhibit a similar pattern. Identification of 

habitat-specific associations could point toward functional relationships that aid in plant 

performance under specific environmental conditions, such as drought or nutrient 

limitation. Due to differences in the function, physiology, and morphology of the sexes I 

expected to detect sex-specific differences in the bacteriome of M. inflexa. Although sex-

specific fungal interactions have been noted in angiosperms (Varga et al. 2013) and 

mosses (Ali Balkan 2016), a sex difference in the bacteriome of liverworts has not been 

documented.  
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Materials and Methods 

Study organism 

 Marchantia inflexa Nees & Mont is a New World liverwort with unisexual 

individuals found from northern Venezuela to the southern United States (Bischler 1986). 

Marchantia inflexa grows as a dichotomously branching thallus with dorsiventral 

organization (Figure 6.1) and can reproduce asexually by fragmentation and the 

production of gemmae (asexual propagules), or sexually by spores. The dominant life 

phase of M. inflexa is the haploid gametophyte, which produces gametes, and sex is 

chromosomally determined (Bischler 1986). Male and female gametophytes have unique 

morphology during reproductive life stages (Figure 6.1) and can easily be sexed. 

Marchantia inflexa is typically found in low light, high humidity environments along 

streams, but it has recently been found colonizing more exposed and disturbed sites, such 

as roadsides (Groen et al. 2010; Brzyski et al. 2014).  

 

 
Figure 6.1. Anatomy and morphology of Marchantia inflexa plants. (a) Two fully-

developed male sex structures (antheridiophores) emerging from the thallus. The 

antheridia are embedded in the tissue and sperm is released onto the top of the structure 

(seen on the surface of the right most antheridiophore above). (b) Two fully-developed, 

but unfertilized female sex structures (archegoniophores) and supporting thallus tissue. 

The female archegonia are located on the underside of the umbrella like structure. 

Fertilization occurs when water-dispersed sperm reaches the female archegonia. (c) 

vegetative thallus tissue. Greenhouse collections consisted of vegetative tissues only, 

whereas field samples included male or female sex structures (used to determine the sex 

of each sample).  

 

1mm 1mm 1mm

a b c
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Sampling and growth conditions 

 Specimens of M. inflexa were collected from the island of Trinidad, Republic of 

Trinidad and Tobago in 2009 and 2015 (Table 6.1). In 2009, vegetative thallus tissue 

from individual male and female plants was collected from populations along one stream 

(East Turure) and one road (Cumaca) (Table 6.1). Samples were physically separated 

from one another to ensure that individuals were genetically distinct, and the uniqueness 

of each isolate was confirmed by microsatellite analysis (Brzyski et al. 2014). Specimens 

were vouchered at the Missouri Botanical Garden (St Louis, MO, USA, specimen 

numbers M092113 and M092115) and at the National Herbarium of the Republic of 

Trinidad and Tobago (St Augustine, Trinidad, specimen number TRIN34616, D. N. 

McLetchie, collector). Specimens were transported to Kentucky, USA, planted on steam-

sterilized soil in a climate-controlled greenhouse and maintained via vegetative 

propagation until sampling for the current study in 2015. All individual genotypes were 

maintained in lidded pots to prevent contamination or cross fertilization among 

specimens. Pots were placed on a capillary mat, kept wet by daily watering with dH2O, 

and placed under shade cloth to mimic field light conditions. Plants were rotated 

periodically, and new clones of each genetic line were propagated by vegetative 

fragmentation on a semi-annual schedule. When sampled for the current study, 

greenhouse specimens had been in culture in Kentucky for over 5 years. For the current 

study, three vegetative thallus tips (~5x8 mm) from each genetic line were collected for 

DNA extractions. Only aerial tips growing with no soil contact and no evidence of 

reproductive structures were sampled, and tissues were collected directly into 100% 

EtOH. Total tissue sampled amounted to ~30 mg per genotype. Although female plants 
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of this species have higher growth rates than males (McLetchie and Puterbaugh 2000), 

the individual thalli sampled were similar in size across sexes and genotypes. 

  Additional specimens were collected directly from field sites in Trinidad, 

Republic of Trinidad and Tobago in March 2015 (Table 6.1). Plants were collected at 

three sites (Quare stream, Cumaca road and Guanapo road). Thus, there is potential 

genetic overlap among greenhouse and field samples from Cumaca road. Study sites in 

separate drainages were targeted to increase variation between populations. The closest 

and farthest sites were ~1 and ~11 km apart, respectively. Vegetative tissues (growing 

aerially with no soil contact) and attached reproductive structures (used to determine the 

sex of the specimens) were collected at each field site. In order to minimize the potential 

of collecting clones, all samples were at least 1 m apart. At each site a minimum of one 

and maximum of three plants of each sex were collected directly into 75% ethanol and 

transported to the University of Kentucky for subsequent DNA extraction. Field 

collections included reproductive structures, but greenhouse specimens were comprised 

of vegetative tissue only. Environmental soil samples were not collected due to the 

restrictions on the transport of soil across national borders.  
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Table 6.1. The name, location, and habitat type of collection locations in Trinidad, 

Republic of Trinidad and Tobago are listed along with the collection year. Cultivation 

indicates whether the plants were cultured in a common garden at the University of 

Kentucky or processed directly from field sites. 

Habitat 

type 

Collection 

location 

Coordinates Collection 

Year 

Cultivation 

Stream East Turure  10o41’04”N 

61o09’39”W 

2009 Yes  

Stream  Quare  10o40’37”N 

61o11’40”W 

2015 No  

Road Guanapo  10o41’08”N 

61o15’49”W 

2015 No  

Road Cumaca  10o41’11”N 

61o09’45”W 

2009 and 

2015 

Yes 2009 

No 2015  

 

 

 To demonstrate that the field habitats were significantly distinct from one another 

in relative humidity and temperature, I collected environmental data in June 2016. I 

monitored the relative humidity and temperature at each field site at five-minute intervals 

for 4-6 days (overlapping dates when possible) using sensors integrated in the 

WatchDog™ model 450 data logger (Spectrum® Technologies, Inc. Plainfield, IL, 

USA). The resulting data were analyzed with a mixed effect linear model in JMP®, 

Version 10 (SAS Institute Inc., Cary, NC) to test the effect of habitat type and site (nested 

within habitat type) on relative humidity and temperature (date and time of day were 

included as random effects). Relative to the road sites, the stream sites were significantly 

more humid (mean: 99.8 ± 0.02% vs. 95.2 ± 0.17%, F1,11 = 920.8, P = 0.0019) and cooler 

(mean: 24.6 ± 0.04 °C. vs. 25.3 ± 0.08 °C., F1,13 = 5.7, P = 0.032). While these data 

clearly do not capture all differences between these two habitats, they demonstrate that 

the habitats differ significantly in temperature and humidity. Environmental data are 

available at Figshare (DOI:10.6084/m9.figshare.4823530). Historical weather data for 
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June 2009, June 2015, and June 2016 indicate that mean monthly temperatures varied by 

only 0.5 oC across sampling years (© Copyright 2017 The Weather Company, LLC). 

 

Characterization of the M. inflexa bacteriome  

 Given evidence for a tightly associated and functionally diverse bacteriome in M. 

inflexa (unpublished data), I sought to characterize the taxonomic diversity of the M. 

inflexa bacteriome and assess variation across habitats and among the sexes. The 

composition and diversity of the M. inflexa bacteriome (including both surface dwelling 

and endophytic bacteria) was characterized in mature male and female plants from three 

habitat types: 1) streams in Trinidad (native habitat), 2) roadsides in Trinidad (recently 

colonized habitat), and 3) the greenhouse at the University of Kentucky (common garden 

environment). The reproductive structures of field samples were included, but greenhouse 

samples consisted of only vegetative tissue.  

 DNA was extracted from 20 plant samples via a modified CTAB extraction method 

(Doyle and Doyle 1987). Prior to DNA extraction samples were washed three times in 

distilled water to reduce surface contamination and remove any residual soil on samples. 

This washing was not intended to remove all surface bacteria, but rather to enrich the 

proportion of tightly associated and endophytic bacteria in my samples. In addition, I 

performed three DNA extractions from 100% EtOH without plant tissue to serve as 

negative controls. 16S rRNA gene sequencing libraries were generated for each sample 

by PCR amplification of the V4 region of the 16S bacterial rRNA gene. Barcoded 

primers 501-507F 

(5’TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG
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)/701-706R 

(5’GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCT

AATCC) were used to index samples. PCR reactions were conducted using Promega 

GoTaq 5X PCR buffer, 0.8M of each primer (F/R), and 150-200 ng genomic DNA. The 

PCR cycling conditions consisted of initial denaturation for 5 minutes at 94 °C followed 

by 34 cycles of 94 °C for 30 seconds, 55 °C for 30 seconds, 72 °C for 60 seconds and a 

final extension at 72 °C for 5 minutes. Samples that did not amplify were cleaned using 

AMPure magnetic beads, until adequate amplification was attained. All barcoded samples 

were pooled in approximately equi-molar concentration for sequencing (estimated by 

florescence on agarose gels). Sequencing of the 16S rRNA gene was conducted at the 

Advanced Genetic Technology Center, University of Kentucky on an Illumina MiSeq 

platform. Samples were demultiplexed by the Advanced Genetic Technology Center. 

Sequence data are available on the Sequence Read Archive of NCBI (BioProject 

accession number: PRJNA381821). 

 Read quality of the resulting sequence data was assessed with fastQC (Andrews 

2010), and reads were merged using FLASH (Magoč and Salzberg 2011) with a 

minimum overlap of 20 base pairs (bp) and a maximum overlap of 250 bp. Merged reads 

were quality filtered with FASTX-toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Bases 

with a quality score below 25, entire reads in which >20% of the bases had quality scores 

below 25 and samples with <1,000 reads were removed.  

 To characterize the bacteriome composition and address questions of sex and 

habitat specificity, bacteriome composition and diversity were analyzed using QIIME 

(Caporaso et al. 2010). FASTA files were labeled, combined into a single file, and de 

http://hannonlab.cshl.edu/fastx_toolkit/
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novo operational taxonomic units (OTUs) were picked using a 97% similarity threshold. 

All OTUs found in negative controls and all chloroplast sequences were removed from 

downstream analyses.  

 To test for differences in the magnitude of bacterial diversity among habitat types, 

alpha diversity was assessed. In order to account for differences in the number of reads 

recovered for each sample, rarefaction analysis was conducted. The data set was 

normalized to 7,174 counts/sample (the median number of counts/sample) before 

calculating the Chao1 metric, and the difference in the magnitude of diversity between 

habitats was tested for significance using a dissimilarity matrix.  

 To test for differences in bacteriome composition between habitats, beta diversity 

was analyzed using the Unweighted UniFrac metric (Caporaso et al. 2010; Lozupone et 

al. 2011), and the number of counts/sample was normalized to the 1,139 (the minimum 

number of counts/sample in my dataset). Principal coordinates analysis (PCoA) plots 

were generated to characterize the differences between all samples. The diversity 

between habitats was compared to the diversity within habitats using a 999 Monte Carlo 

permutations based on the Unweighted UniFrac metric, and P-values were adjusted using 

the Bonferroni correction for multiple comparisons. 

 Differences in the relative abundance of each OTU among habitats were tested for 

significance using the Kruskal Wallis test. To reduce statistical problems associated with 

multiple comparisons the OTU table was filtered to retain only OTUs observed in 25% or 

more of the samples prior to running this test (Caporaso et al. 2010). P-values were 

corrected for multiple comparisons with the False Discovery Rate (FDR) adjustment.  

 I tested for a sex difference in the bacteriome of the entire data set, but also in a 
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reduced OTU table containing only greenhouse samples. Analyses of sex differences in 

alpha diversity, beta diversity, and differential abundance of taxa (analogous to those 

described above) were conducted using the complete OTU table and an OTU table 

containing only the greenhouse samples. Again, all p-values were adjusted using the 

Bonferroni correction in order to account for multiple comparisons.  

 To characterize similarities in the bacteriome, I described the shared bacteriome of 

M. inflexa. I defined a shared bacteriome that includes all OTUs found in at least 75% of 

samples. This definition is analogous to the definition of the core bacteriome (Bragina et 

al. 2015), but because my study included only a limited number of M. inflexa populations 

I prefer to be conservative and refrain from defining a core bacteriome. Differences in 

taxon abundance among habitats within the shared bacteriome were identified using a 

Kruskal Wallis test, and the FDR correction was employed to correct for false positives.  

 

Results 

 Targeted sequencing of the 16S rRNA gene in M. inflexa males and females from 

three habitats revealed high diversity in the bacteriome of M. inflexa. Overall, I identified 

10,337 unique OTUs, representing 618 bacterial genera. The most abundant phylum was 

Proteobacteria, and within that phylum, the order Rhizobiales was prevalent. Other 

abundant phyla included Bacteroidetes, Verrucomicrobia, Cyanobacteria, Acidobacteria 

and Actinobacteria (Figure 6.2). Although hundreds of different bacterial genera were 

present at all collection sites, there was no difference in the magnitude of alpha diversity 

among habitats (Chao1 values for each habitat: stream=2,050; road=1,827; and 

greenhouse=1.383).  
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Figure 6.2. The 16 dominant bacterial phyla (major groups) in the bacteriome of 

Marchantia inflexa are shown as percentage of total OTUs. Each stacked column depicts 

the bacteriome of a single sample and colors represent different phyla. All phyla that 

comprise <1% of the total OTUs for a given sample are combined and labeled as “other”. 

Samples are grouped by habitat and then by sex.  

 

 Comparisons among samples derived from stream, roadside, and greenhouse 

habitats revealed substantial differences in community composition. There was 

significantly higher diversity among habitats compared to within habitat diversity (P < 

0.0001), and samples from the same habitat clustered with one another and were distinct 

from other habitats in PCoA plots of bacteriome composition (Figure 6.3). The variation 

detected may be driven by standing differences in the bacterial communities at these 

collection sites, or differences in plant-microbe interactions that are impacted by habitat 

differences, but I am unable to distinguish among these alternate explanations. 

Greenhouse plants were originally collected from different habitats (roads and streams) 
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~five years prior to the study, but habitat of origin did not significantly impact 

bacteriome composition of common garden plants.  

 
Figure 6.3. Unweighted Unifrac principal coordinates analysis (PCoA) showing the 

diversity among samples along PC1 and PC2. Each point represents a sample, and 

samples are color coded by habitat. Within greenhouse plants, dark green plants were 

originally collected from Cumaca road, whereas light green plants were collected from 

East Turure stream. The sexes appear as separate shapes (squares designate males, and 

circles represent females). Habitat differences in the bacteriome are significant, but sex 

differences are evident only within greenhouse samples. No additional separation was 

evident when comparing PC2 and PC3, and consequently that relationship is not shown 

here. 

 

 Two hundred and ninety-one bacterial genera exhibited significant differences in 

abundance among habitats. Of these, 140 belonged to the phylum Proteobacteria, 

including the subgroups Rhizobiales (known to be involved in nitrogen fixation, stress 

protection, auxin and vitamin production (Erlacher et al. 2015)) and 

Gammaproteobacteria, which function in carbon processing and sulfur oxidation (Gifford 

et al. 2014). Forty-three genera belonged to the phylum Actinobacteria. Many subgroups 

of this phylum are involved in nitrogen fixation, antimicrobial compound production, and 

antioxidant production (Newton et al. 2008). These genera were most abundant in the 

field sites. Cyanobacteria (10 genera) some of which are known to fix nitrogen in 

bryophyte tissues (DeLuca et al. 2002), Amaimonadetes (5 genera) (Lee et al. 2014) and 

the filamentous Chloroflexi (5 genera) (Björnsson et al. 2002) were most abundant in the 

stream site. In the greenhouse, the carbon processing Bacteroidetes (27 genera) and 
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Verrucomicrobia (14 genera) (Thomas et al. 2011) were abundant. Planctomycetes (14 

genera), some of which can metabolize ammonia (Fuerst and Sagulenko 2011), 

Acidobacteria (12 genera) which are important in nutrient cycling (Naether et al. 2012), 

and Tenericutes (2 genera) were also more abundant in the greenhouse. The remainder of 

differentially abundant genera are unclassified taxa.  

 No significant sex differences were detected in the M. inflexa bacteriome when 

the entire data set was analyzed. Both alpha and beta diversity were assessed between the 

sexes and found to be non-significant. Additionally, no specific taxa differed significantly 

in abundance between the sexes. However, analysis of greenhouse samples only revealed 

that diversity between the sexes was significantly higher than diversity within the sexes 

(T5=4.22, P=0.03), indicating sex specificity in the bacteriome under common conditions. 

 The shared bacteriome of M. inflexa contained 34 OTUs from 26 genera that are 

commonly associated with this plant. The most abundant orders of bacteria found in the 

shared bacteriome were Caulobacterales, Rhizobiales, Acidobacteriales, Saprospirales, 

Actinomycetales and Rhodospirillales (Table 6.2). Like the entire bacteriome, some taxa 

in the shared bacteriome varied in abundance among habitats (Figure 6.4).  
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Table 6.2. The orders of the shared bacteriome and percent that each comprises are listed 

in decreasing abundance. The shared bacteriome was defined to include only OTUs 

found in 75% or more of the samples. Orders comprising less than 1% of the shared 

bacteriome are not shown. 

Bacterial Order Percent of shared bacteriome (%) 

Caulobacterales 18.59 

Rhizobiales 15.73 

Acidobacteriales 13.44 

Saprospirales 11.50 

Actinomycetales 9.03 

Rhodospirillales 8.65 

Xanthomonadales 7.99 

Sphingobacteriales 6.10 

Chthoniobacterales 2.43 

BD7-3 2.02 

Cytophagales 1.58 

 

 

 
Figure 6.4. Genera of the shared bacteriome showing differential abundance among 

habitats. Abundance is the mean number of observed OTUs in each habitat.  
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Discussion 

 Here, I demonstrate that there are significant patterns of association between 

bacteriome composition and habitat in M. inflexa. There was no comprehensive sex 

difference in bacteriome composition or diversity. However, I did detect a sex difference 

in the bacteriome of greenhouse-grown specimens, which I speculate is linked to sex 

function, sex related physiology (e.g. nutrient requirements for the production of gametes 

and maturation of sexual offspring) and sex-specific morphology (e.g. aiding in the 

dispersal and capture of gametes). It is likely that this sex effect is only identifiable under 

controlled conditions, due to an overwhelming effect of habitat on the bacteriome. 

Notably, I identified multiple groups of nitrogen fixing bacteria associated with M. 

inflexa. These taxa likely serve nutrient acquisition roles, as has been shown for other 

non-vascular plants (Bragina et al. 2012; Knack et al. 2015), suggesting that bacterial 

nitrogen fixation may be prevalent among bryophyte lineages.  

 Recent studies have shown that the bacteriomes of mosses (Opelt and Berg 2004; 

Opelt, Berg, et al. 2007; Opelt, Chobot, et al. 2007; Bragina et al. 2012, 2014, 2015) and 

liverworts (Knack et al. 2015) exhibit high diversity, and I found that the bacteriome of 

M. inflexa is similarly diverse. Variation in the taxonomic composition of the M. inflexa 

bacteriome is largely explained by habitat type. This variation may derive from standing 

differences in local bacterial pools across environments. Alternatively, it may arise from 

plant directed recruitment of symbiotic microbes, or selection within M. inflexa. The 

plant microbiome, as a reservoir of additional genes, may serve as the plant’s first line of 

defense against changing environmental conditions (Vandenkoornhuyse et al. 2015), and 

therefore differences in the bacteriome correlated to habitat are expected. Interestingly, 
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although greenhouse specimens were derived from both road and stream habitats 

originally, there was no persistent effect of native habitat on bacteriome composition. 

This suggests that current environmental conditions have a dominant effect on the 

bacteriome of these plants, and that a substantial fraction of the bacteriome is relatively 

transient.  

 Notably, I detected an abundance of nitrogen fixing species, which were 

substantially enriched in putatively low nutrient environments (field sites). It is well 

known that some cyanobacteria associated with mosses, hornworts and liverworts aid in 

nitrogen fixation (During and Tooren 1990; DeLuca et al. 2002), but it has only recently 

become clear that rhizobium-like bacteria may play an equally important role in nutrient 

acquisition for the living relatives of early diverging land plants (Knack et al. 2015). In 

the current study, Rhizobiales were among the most abundant and consistently detected 

microbial taxa. Additionally, the richness of Actinobacteria in the field, but not the 

greenhouse, might suggest a role for the bacteriome in stress tolerance. In addition to 

antimicrobial compounds, some Actinobacteria species are known to produce 

mycothinol, a glutathione like antioxidant, that could be important in reactive oxygen 

species scavenging during stress response (Newton et al. 2008). These taxa would aid 

plants growing in field sites where stressful drying events are more common than in the 

climate-controlled greenhouse.    

I did not detect comprehensive evidence of an association between bacteriome 

composition and plant sex. However, under common conditions I identified a sex 

difference in the bacteriome. This general pattern is analogous to studies of plant 

rhizosphere interactions, showing that the strongest driver of microbial community 
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composition is soil type (or land use in the case of air born microbial communities 

(Bowers et al. 2011)), yet within a single soil type plant genotype, cultivar, and species 

can influence microbiome assemblage (Manter et al. 2010; Ofek et al. 2014). Because 

plants were grown under common conditions, the identified sex difference cannot be 

explained by exposure to different microbial communities. Thus, I speculate that the 

detected difference derives from sex specific plant-microbe interactions, or sex specific 

morphology and physiology. It seems possible that these differences impact the retention 

and recruitment of associated microbes. However, these effects are subtle enough to be 

overwhelmed by the dominant effect of habitat on the bacteriome composition. In the 

common garden, I detected a higher abundance of Rhizobiales in females, including 

Brydyrhizobium, Agrobacterium and Rhizobium. In addition, females harbored a 

substantially more Terriglobus and Pseudonocardia. Males, on the other hand, had a 

greater abundance of the nitrogen fixing cyanobacteria, Nostoc, multiple groups of the 

aquatic Planctomyces and Chitinophagaceae. Taken together these differences in taxon 

abundance point towards alternative strategies for nitrogen acquisition among the sexes. 

While females host more Rhizobiales, males appear to associate preferentially with 

Nostoc. Additionally, the detection of Pseudonocardia in females suggests that the 

bacteriome may aid in stress tolerance, as these taxa have been implicated in 

detoxification and protection roles (Jafari et al. 2014). Consequently, I speculate that sex 

differences in microbial communities may be correlated to a previously identified sex 

difference in dehydration tolerance under identical growth conditions (Marks et al. 2016), 

but additional studies will be needed to confirm this.   
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I identified 26 bacterial genera shared in the majority of my samples, indicating 

that specific taxa are closely associated with M. inflexa, despite changing habitats and 

sexes, although it is possible that these taxa are simply ubiquitous. The composition of 

the shared M. inflexa bacteriome shows similarities with other bryophytes, including an 

abundance of Proteobacteria and a richness of Rhizobiales, Actinobacteria, and 

methanogenic bacteria (Juottonen et al. 2005; Knack et al. 2015). Actinobacteria are also 

abundant in seed plant bacteriomes indicating that this group may be a common feature 

of all plant bacteriomes (Schlaeppi et al. 2014). These genera are interesting candidates 

for future studies investigating relationships that are critical for M. inflexa across habitats.  

In summary, I present evidence supporting the hypothesis that the M. inflexa 

bacteriome varies across habitats, and I show that under common conditions, host sex can 

modulate bacteriome composition. Furthermore, these data suggest that habitat dependent 

differences in the M. inflexa bacteriome may be functionally relevant because particular 

taxa that may aid in plant performance in specific conditions were enriched in these 

environments, but this speculation must be confirmed by additional studies. Other work 

in the field has indicated that plant bacteriome composition can be determined by lineage 

(Knack et al. 2015), and also that community composition depends on environmental 

factors (Bulgarelli et al. 2012; Schlaeppi et al. 2014) . My study suggests that both of 

these factors influence bacteriome diversity and assemblage in M. inflexa.  
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CONCLUSIONS AND FUTURE DIRECTIONS  

 

Collectively, this work sheds light on intraspecific variability in water stress 

tolerance in Marchantia inflexa on ecological, physiological, and genomic levels. In a 

world where plants are threatened by changing land use practices and abiotic stresses 

associated with climate change, there is an urgent need to develop scientific solutions to 

mitigate crop losses and meet increased demands for human consumption. Dehydration 

tolerance (DhT, also dehydration tolerant), among other mechanisms of water stress 

tolerance, offers a promising path towards developing stress tolerant crops and better 

managing natural resources. Building a comprehensive understanding of the evolution, 

ecology, physiology, and genetics of stress tolerance will allow for innovations that 

enhance management in both natural and agricultural settings. Here, I sought to 

contribute to the growing understanding of plant stress tolerance by investigating the 

ecological patterns and genomic mechanisms of DhT in the tropical liverwort M. inflexa. 

This work was carried out on multiple scales ranging from field ecology, to physiology, 

to genomics and provides novel insight into the complexities of water stress tolerance in 

plants (Figure 7.1).  

  
Figure 7.1. This schematic depicts my approach to studying DhT and highlights my 

findings. Field studies quantified environmental variation, identified population 

differences in DhT, the impact of differences in DhT on population sex ratios, and plant-

microbe interactions. Common garden experiments quantified the intensity of 

dehydration that M. inflexa can tolerate, identified genetic and plastic mechanisms of 

DhT, and characterized sex and developmental differences in DhT. Genomic and 

transcriptomic approaches were utilized to characterize gene expression during 
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dehydration and rehydration and identify genes that may impact DhT. I found evidence to 

suggest that cell wall composition and modifications, expression of apolipoproteins and 

late embryogenesis abundant proteins, carbohydrate metabolism, sex linked genes, and 

copy number variation of stress related genes are involved in DhT.  

 

Natural variation in DhT 

Extensive natural variation in DhT exists within M. inflexa, is quantifiable, and 

can be leveraged to gain insight into complex phenotypes. The existence of natural 

variation in DhT is not, in and of itself a revolutionary observation. However, it is worth 

highlighting because the extent, distribution, and consequences of natural variation in 

stress tolerance can impact population dynamics, species distributions, and ultimately 

environmental stability and productivity. Genetic variation in functional traits is critical 

for adaptation to novel habitats and can allow populations to survive in a changing word 

(Jump and Penuelas 2005). Consequently, understanding the patterns of natural variation 

can be used to predict shifting species distributions, community dynamics, and ecosystem 

functioning under climate change. Further, quantifying natural variation (and 

differentiating among plastic and genetic mechanisms) offers a promising path towards 

understanding the molecular intricacies of complex phenotypes. Here, I detect intricate 

patterns of natural variation in DhT in M. inflexa (both genetic and plastic), which appear 

to be impacted by both plant sex and environmental selection. Because my approach is 

integrated, drawing on principles and techniques from ecology, physiology, and 

genomics I was able to link phenotype (in the field and in a common garden) to genotype 

(on transcriptional and genomic levels) (Figure 7.1). Ultimately, this multi-level approach 

allowed for a broad understanding of DhT in M. inflexa. Future studies that take 

advantage of natural variation in DhT (and other traits) are needed to better predict 
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ecological outcomes and develop management practices to mitigate drought induced 

losses under climate change.  

 This work indicates that quantifiable variation in DhT exists among populations 

of M. inflexa. As predicted, DhT is measurably higher in populations with increased 

exposure to dry conditions. Population differences in DhT appear to derive from a 

combination of plasticity (chapter 2) and genetic differences (chapter 3). I speculate that 

plasticity serves as an initial and temporary adjustment for rapid fluctuations in water 

availability, whereas genetic differences accrue over extended periods of consistent 

selection for increased DhT. Understanding the relative contribution of plasticity and 

genetic differences to variation in DhT can be used to predict adaptive potential of 

populations, define targets for breeding programs aimed at increasing DhT, and estimate 

range shifts (Jump and Penuelas 2005). Most studies that have documented population 

differences in DT have done so using field collected material, and thus cannot distinguish 

among genetic and plastic mechanisms of tolerance (Oliver et al. 1993; Farrant et al. 

2009). I speculate that much of the documented variation in DhT and DT derives 

primarily from plasticity, but additional studies where plants are grown in a common 

garden to remove field effects are needed to confirm this speculation. If, on the other 

hand, heritable genetic differences driving variation in DhT can be identified (as my work 

suggests), they could provide an important resource for identifying tolerance enhancing 

genes. Distinguishing among plastic and genetic differences in tolerance is therefore 

critical for optimizing management practices and defining reasonable targets for breeding 

and bioengineering. Future studies that rigorously test the limits of plasticity in DT and 

DhT are needed and should use plants cultivated under common conditions. 
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Sexual dimorphism in DhT  

Much of this work focuses on understanding the complexity of sex-specific 

biology and secondary sexual dimorphisms in stress tolerance. A growing body of work 

shows that M. inflexa exhibits numerous sexual dimorphisms, some of which may be 

directly related to reproductive function and others that have likely arisen due to tradeoffs 

and trait correlations (McLetchie and Puterbaugh 2000; Groen et al. 2010ab; Brzyski et 

al. 2014; Marks et al. 2016). The consequences of sexual dimorphisms (especially in 

stress tolerance traits) could have major implications for population sex ratios and 

ultimately the reproductive success of a population (Bierzychudek and Eckhart 1988). 

When the sexes exhibit unequal stress tolerance the more tolerant sex may out compete 

the less tolerant sex under stressful conditions or expand into marginal habitats where the 

other sex is rare, resulting in spatial segregation of the sexes and biased population sex 

ratios (Juvany and Munné-Bosch 2015). This difference in stress tolerance of the sexes 

could have major ramifications for sexual reproduction, adaptation, and species 

persistence. Thus, a detailed understanding of the sex-specific biology of stress tolerance 

should be used to inform ecological predictions.  

Here, I show that M. inflexa exhibits complex patterns of sexual dimorphism in 

DhT. Initially, I found that females were more DhT than males (chapter 2), which I 

speculated allowed females to persist for extended periods of time to mature offspring. 

However, subsequent studies identified populations in which males were more DhT than 

females (chapter 3). While this pattern of sex differences is surprising and somewhat 

counterintuitive, I speculate that environmental differences among sites alter the strength 
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of selective pressures in a sex-specific manner. I find that males are more tolerant than 

females in the driest sites, whereas females are more DhT in moister sites. It is possible 

that males only experience selection for DhT in sites where drying is frequent and 

intense, while in moister sites they complete their reproductive cycle without 

encountering a drying event and thus are not under selection for DhT. Females, on the 

other hand may experience selective pressure to maintain DhT at all sites because the 

time and resources required for reproduction are increased in females relative to males. 

Interestingly, I found that the fluctuating sexual dimorphism in DhT in M. inflexa is 

driven by male variability suggesting that the male reproductive biology may be more 

flexible and less constrained than female reproductive biology. Interestingly, my genomic 

work in M. inflexa shows that males harbor considerably higher substitution rates in sex-

linked genes than females (chapter 5), indicating that males may be able to rapidly adapt 

to changing environments. Additional studies that quantify sex differences in stress 

tolerance are needed to fully understand the mechanism and consequences of sexual 

dimorphisms in stress tolerance and should include individuals from multiple 

populations, as my work indicates that sexual dimorphisms can fluctuate across the 

landscape (chapter 3).  

 

Genomics of DhT 

 Our work demonstrates that intraspecific variation can be leveraged to gain 

insight into the underlying molecular mechanisms of stress tolerance. Background 

genetic differences between samples are minimized when making intraspecific 

comparisons, which allows for targeted identification of meaningful variation. I utilized 
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this approach to identify genes underlying elevated DhT in females and meristems of M. 

inflexa (chapter 4). My analyses detected a characteristic accumulation of late 

embryogenesis abundant (LEA) proteins, substantial modifications to carbohydrate 

metabolic processes, and changes in lipid transport during the dehydration – rehydration 

process. These findings are consistent with current models of DhT and DT (Dinakar et al. 

2012; Costa et al. 2017; Zhang and Bartels 2018). Additionally, targeted analyses of sex 

and tissues specific gene expression indicates that baseline variation in physiology and 

cell wall characteristics impact the relative tolerance of the sexes and tissues. A similar 

approach could be applied to physiological, morphological, and metabolic traits and 

future work should leverage natural variation to better dissect the nuances of DT. 

 Previous studies comparing DT and DS species have provided insight into the 

central components of DT. Here, I build on this work by providing insight into the 

intermediate DhT phenotype. In doing so, I refine our understanding of the essential suite 

of DT enhancing mechanisms and begin to distinguish among common and unique 

components of water stress tolerance mechanisms. I detect notable differences between 

DT and DhT. In my characterization of DhT, I noted key characteristics that were absent 

in M. inflexa (and possibly other DhT plants) but are common in DT plants. These 

included a putative reduction in temporal regulation during dehydration and rehydration 

and a conspicuous absence of early light inducible protein (ELIP) and heat shock protein 

(HSP) expression during dehydration. Future studies on additional DhT species are 

needed to validate these findings.  

 Finally, I present an initial characterization of M. inflexa’s microbiome and detect 

extensive natural variation in microbiome composition consistent with patterns of 
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variation in DhT (chapter 6). This work clearly demonstrates that differences in 

microbiome composition among populations of M. inflexa exist. Additional variation in 

microbiome composition was detected among the sexes, but only when plants were 

grown under common conditions. I speculate that the plant’s microbiome can impact 

DhT, but additional studies are needed to test this hypothesis.  

 

Future directions 

Future work on M. inflexa should aim to test the limits of DhT and fully 

characterize the extent of plasticity in this trait. These studies should include tests of 

additional developmental stages and tissues, modified treatments including pre-hydration 

of samples to minimize damage caused by imbibition, and hardening treatments to 

increase tolerance via growth-based methods. Future studies should seek to characterize 

DhT in additional populations, and along additional environmental gradients (i.e. 

temperature, humidity, disturbance) to better define the extent and patterns of standing 

variation in DhT in M. inflexa, which will inform predictions on population persistence 

and range expansion under climate change. Additionally, characterization of within 

population sex differences may help to untangle the puzzle of fluctuating sexual 

dimorphisms in DhT.  

The genomic resources for M. inflexa presented here can (and should) be 

improved with additional studies. Candidate genes identified via RNAseq (chapter 4) 

could be validated (via qPCR) in additional specimens from other populations to test for 

differences in patterns of gene expression during dehydration and rehydration. 

Additionally, many unannotated transcripts showed hydration responsive transcription 
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and characterizing these transcripts may provide insight into novel components of the 

DhT mechanism. The M. inflexa genome (chapter 5) should be improved with additional 

sequencing efforts to generate a more contiguous assembly, and genome annotation could 

be enhanced by integrating RNAseq information. Additionally, population genetics work 

on M. inflexa would greatly enhance this system by allowing for estimation of gene flow, 

migration rates, and tests for loci under selection for DhT. Finally, rigorous experiments 

to test for a link between microbiome composition and DhT in M. inflexa could be 

conducted to quantify the impact of microbial interactions on DhT. If such a relationship 

can be established, it would provide an alternative path for developing treatments and 

practices to increase DhT in both natural and agricultural settings.  

To gain deeper insight into DT more broadly, future studies that characterize 

additional DhT species to validate these findings and better differentiate among general 

stress responses and critical components underling DT are needed. Further, studies of DT 

(and other traits) should seek to quantify natural variation. Not only is natural variation 

seemingly common, but quantifying natural variation can enhance ecological predictions 

and be used to tease apart the relative contribution of plasticity and genetic differences to 

changing stress tolerance. Finally, studies on additional dioecious species are needed to 

gain a better understanding of the causes and consequences of sexual dimorphism in 

stress tolerance traits, which can have major implications for population dynamics.  
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