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ABSTRACT OF DISSERTATION

UNSUPERVISED LEARNING IN PHYLOGENOMIC ANALYSIS OVER THE
SPACE OF PHYLOGENETIC TREES

A phylogenetic tree is a tree to represent an evolutionary history between species or
other entities. Phylogenomics is a new field intersecting phylogenetics and genomics
and it is well-known that we need statistical learning methods to handle and analyze a
large amount of data which can be generated relatively cheaply with new technologies.
Based on the existing Markov models, we introduce a new method, CURatio, to
identify outliers in a given gene data set. This method, intrinsically an unsupervised
method, can find outliers from thousands or even more genes. This ability of analyzing
large amounts of genes (even with missing information) makes it unique in many
parametric methods. At the same time, the exploration of statistical analysis in
high-dimensional space of phylogenetic trees has never stopped, many tree metrics are
proposed to statistical methodology. Tropical metric is one of them. We implement a
MCMC sampling method to estimate the principal components in a tree space with
tropical metric for achieving dimension reduction and visualizing the result in a 2-D
tropical triangle.
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Chapter 1 Introduction

1.1 Phylogenetic Tree

Phylogenetics

Phylogenetics is a study of development or evolutionary history and relationship of a

group of organisms. The basic idea is to compare the characteristics of species and to

consider that similar species are genetically similar. Usually this relationship between

species with a common ancestor can be represented by a phylogenetic tree. In the past,

biologists used morphological characters collected from living or fossilized organisms,

to infer phylogenetic trees. Then, phylogenentic trees with stochastic processes and

combinatorics are applied to genetic data, such as DNA/RNA, protein sequences. But

in recent decades, with the accumulation of genetic sequence data and cost reduction

of generating genome data, traditional methods can no longer meet the needs of

analysis. Researchers need some new approaches to deal with hundreds of thousands

of phylogenetics trees. In addition, it has been proved that likelihood-based tree

reconstruction on a concatenation of alignments can be positively misleading [53].

Generic Notation

A phylogentic tree T = (V,E) is an acyclic, directed graph, which consists of a finite

set V (T ) of nodes, also called vertices), and a finite set E(T ) of distinct unordered

pairs of distinct elements of V (T ) called edges. In a phylogenetic tree, a node rep-

resents the taxonomic unit. Specifically, nodes with degree ≥ 2 are interior nodes

referred as extinct or hypothetical taxonomic units; nodes with degree = 1 appears at

the tips of a tree, also called leaves. An edge connecting to a leaf is called an external

edge; otherwise, it is called an internal edge.

A rooted tree is a tree in which a node has been designated as the root node,

and thus the direction of ancestral relationships is determined. Correspondingly, an

unrooted tree has no root. The fastest way to generate an unrooted tree is simply
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Figure 1.1: Binary tree

omitting the root of a rooted one. A bifurcating tree is a tree whose edges can be split

into at most two edges (Figure 1.1). In contrast, a multifurcating tree may have more

than two edges at interior vertices. If we assign distinct values to leaves, the tree

topology (i.e. the configuration of tree shape and combination of leaves) will vary.

For a labeled bifurcating tree, given the number of leaves N , the number of possible

tree topologies is (2N − 3)!! for a rooted binary and (2N − 5)!! for an unrooted tree.

1.2 Evolutionary Model

In actual research, the raw data are sequences instead of the tree format data. This

requires us to use certain algorithms to construct phylogenetic trees. The advantage

of using trees is that in addition to the information contained in the DNA sequence,

we explore the relationship between the sequences. Distance based methods, which is

a family of phylogenetic reconstruction methods, was introduced in [10] and in [17].

The basic idea is to first define a distance between gene sequences and then construct

a tree that fits the observed data as far as possible based on this distance. To some

extent, such methods come from traditional clustering algorithms. This shift from

nucleotide to distance naturally leads to a loss of genetic information during this

transition. However, from the results of computer simulations, the losses among it

are remarkably small [71].
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There are many ways to define distance between two leaves. The simplest distance

is p distance, also called Hamming distance, defined as the frequency of different base

pairs between two sequences. In addition, the most popular method is to use an

independent continuous Markov probability model to describe the changes between

nucleotides. Here we mainly use the memoryless nature of the Markov chain and

DNA sequences as an example: a nucleotide in a DNA sequence jumps from one

state, which refers to nucleotide with different bases, to another depending only on

the current state, regardless of where the current state comes from.

A continuous-time Markov chain with a finite discrete state space Σ can be used

to model evolutionary history. The dynamic behavior under this evolutionary model

is determined by the initial character state and a transition rate matrix, typically

denoted Q, which describes the rates at which the different types of substitution

occur. Many classes of transition rate matrices have been proposed, each of which

makes different assumptions about the probabilistic nature of molecular evolution.

The General Time Reversible Model

Let πa, a ∈ Σ,
∑

a πa = 1, be the stationary distribution of the Markov chain and

let θab > 0, a, b ∈ Σ be parameters; for example, Σ = {A,G,C, T}. In Markov chain,

the time-reversibility equation is:

πiP (i|j, t) = πjP (j|i, t), for all pairs of states i, j (1.1)

where P is the transition matrix and P(j|i, t) = P [Xt = j|X0 = i]. This assumption

is biologically unreasonable, but it will bring about easy mathematical calculations

[71]. Then, the General Time Reversible (GTR) model has substitution rate matrix:

Q =


· θAGπG θACπC θATπT

θAGπA · θGCπC θGTπT

θACπA θGCπG · θCTπT

θATπA θGTπG θCTπC ·

 (1.2)

where the diagonal elements are such that each row sums to zero.

3



The behavior of a continuous-time Markov process on a state space Σ is governed

by the transition rate matrix Q. The off-diagonal elements of Q represent the rates for

the exponentially distributed variables that describe the amount of time that elapses

before a particular type of base substitution occurs. The ij-th element of Q represents

the rate at which characters in the i-th state are replaced with the j-th state. We use

this rate matrix Q to compute a transition probability matrix P (t) for evolutionary

time t > 0. This probability matrix gives the probability that a character in state i

at the present time will be in state j at an evolutionary time t > 0. Let Xt denote

the state of a character site at time t from the present state; for any i, j ∈ Σ. The

probability matrix is related to the rate matrix by the matrix exponential,

P (t) = exp(tQ).

Since the model is reversible, we can use this matrix to look up the likelihood of

observing a particular pair of characters in a sequence alignment, assuming the se-

quences are separated by time t > 0. In addition, we also assume that the sites in the

alignment are independent; then the likelihood of the entire alignment is the product

of the individual site likelihoods. The overall rate of substitution and the passage of

time cannot be inferred separately without imposing additional assumptions and it is

only possible to estimate their product. Thus, the evolutionary branch length t > 0

measures the mean number of substitution events expected to occur per site.

For the number of leaves n = 2, specifically P (j|i, t) is the probability of a state

i being substituted by a state j over an edge length t. Then the likelihood of two

aligned sequences x1
u, x

2
u, where u is the uth site in the alignment, is given by

L(t) =
∏
u

P (x2
u|x1

u, t).

For the sake of numerical stability, it is more common to work with the log-likelihood,

l(t) = logL(t) =
∑
u

logP (x2
u|x1

u, t). (1.3)

Note that since P (x2
u|x1

u, t) is an exponential family, L(t) is also an exponential fam-

ily. Thus, l(t) in (1.3) is the sum of the exponential terms of P (x2
u|x1

u, t), which is
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proportional to the negative of the total branch length (this can be derived from

formula (2) in [22]).

In general, for n ≥ 3, let Tn be the space of all unrooted phylogenetic trees with n

leaves. Let t = (ti|i ∈ E(T )) be a vector representation of branch lengths of a tree T .

Let x1
u · · · xnu denote the residues at the uth site of n sequences (leaves) D = x1 · · ·xn.

The likelihood function of observing D given the tree topology τ and t is:

L(D|τ, t) = L(x1 · · ·xn|τ, t) (1.4)

=
∏
u

P (x1
u · · · xnu|τ, t) (1.5)

=
∏
u

∑
an+1,an+2,··· ,a2n−1

πa2n−1×

2n−2∏
i=n+1

P (ai|aα(i), ti)
n∏
i=1

P (xiu|aα(i), ti)

(1.6)

where aα(i) ∈ Σ, ranging over all extensions of the input data D = x1 · · ·xn to the

internal nodes of T , denotes the assigned state at node α(i) ∈ T ; α(i) is defined as the

node at the top of the edge i and πa is the nucleotide equilibrium frequency implied

by the evolutionary model. The sum in equation (1.6), which is a modification in

[13], is over all possible states of residues ak to internal nodes k where k ∈ Z : k ∈

[n + 1, 2n − 1]. Similar to the case of n = 2, since P i is an exponential family,∏2n−2
i=n+1 P (ai|aα(i), ti)

∏n
i=1 P (xiu|aα(i), ti) is also an exponential family.

The Jukes-Cantor Model

Compared with the GTR model with high degree of freedom, the Jukes-Cantor (JC)

model is a simplified version of it and it is also the simplest model of DNA evolution.

In JC model, we assume that the mutation rates between all states are the same and

that there are equal base frequencies (πA = πG = πC = πT ). This assumption allows

us to reduce the six parameters in the GTR model to one parameter, the mutation

5



rate µ. In this way, we have the JC model substitution rate matrix as follows:

Q =


−3λ λ λ λ

λ −3λ λ λ

λ λ −3λ λ

λ λ λ −3λ

 .

The probability matrix is related to the rate matrix by the matrix exponential:

P (t) =


p0(t) p1(t) p1(t) p1(t)

p1(t) p0(t) p1(t) p1(t)

p1(t) p1(t) p0(t) p1(t)

p1(t) p1(t) p1(t) p0(t)

 , with
 p0(t) = 1

4
+ 3

4
e−4λt

p1(t) = 1
4
− 1

4
e−4λt

.

Specifically, the likelihood of two aligned sequences x1
u, x

2
u with length n, where u is

the uth site in the alignment, based Jukes-Cantor model is given by

L(t) =
∏
u

P (x2
u|x1

u, t) (1.7)

= pm0 (t)pn−m1 (t) (1.8)

= (
1

4
+

3

4
e−4λt)m(

1

4
− 1

4
e−4λt)n−m (1.9)

where m is the number of same states at the corresponding site of the two sequences.

1.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a statistical sampling method for obtaining

a sequence of random observations. It is a powerful and general method which allows

us to sample from a probability distribution P when exact inference is intractable. In

fact, this method originated from physics [44] and began to be significantly popular

around 1990s.

Basically, in the Metropolis algorithm [43], the proposal distribution q must be

symmetric; in other words, q(x|y) = q(y|x) for all values of x and y. And then, if

we can find a function f which is proportional to P , we can calculate the acceptance

ratio α = f(y)
f(x)

where y is sampled from the distribution q(y|x) for next step. After
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this, we generate a uniform random number u on [0, 1] and accept the candidate y if

u ≤ α; otherwise, we stay at x if u > α.

The insights behind this method is to construct a Markov Chain whose equilibrium

distribution equal to the probability distribution P . After many steps (probably

hundreds or even thousands steps), the sampling distribution would converge to the

stationary distribution and we will actually sample from the desired distribution P .

For more details, suppose we have the given probability distribution π(x) and the

transition matrix P (p(i, j) is the probability of transition from state i to state j).

Normally, we will have:

π(i)p(i, j) 6= π(j)p(j, i).

Thus, we would like to do some modification on this inequality to make it a equality.

Here we add a accept rate α(i, j) into the inequality and we hope we could have:

π(i)p(i, j)α(i, j) = π(j)p(j, i)α(j, i). (1.10)

To make it, a simple solution for the equality 1.10 is:

α(i, j) = π(j)p(j, i) (1.11)

α(j, i) = π(i)p(i, j). (1.12)

After we know α(i, j) and α(j, i), the equation 1.10 is established and we have:

π(i) p(i, j)α(i, j)︸ ︷︷ ︸
p’(i,j)

= π(j) p(j, i)α(j, i)︸ ︷︷ ︸
p’(j,i)

. (1.13)

Finally, we construct a Markov chain from a random one with transition matrix P

to another one with transition matrix P ′ which has the desired distribution as its

equilibrium distribution.

1.4 Overview of Dissertation

The remainder of the dissertation is organized as the following. In Chapter 2, I

introduce a new method, CURatio, for detecting outliers in a given gene data set.

Under the relationship between species trees and gene trees, I defined a test statistic
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by taking the ratio of total branch lengths of a tree in two scenarios caused by whether

I constrained the tree topology using a consensus tree or not. I successively clustered

gene trees into different groups with this test statistic using JC model as the measure

of distance. Furthermore, I show our method has a better performance than KDETREES

[68] in most cases using ROC to compare the simulation result. In addition, CURatio

may have a more accurate result and a very wide application prospect since it is a

parametric method compared to the non-parametric method KDETREES.

In Chapter 3, I implemented MCMC Metropolis-Hastings method with tropical

principal components defined by Yoshida et. al. [73] to increase the efficiency and

reduce running time of finding the tropical principal components. Since the proposal

distribution at each step is uniform distribution, they are canceled by each other

at the numerator and denominator such that the acceptance ratio will have same

format as the ratio in Metropolis algorithm which leads to a slow convergence rate.

To solve that issue, we did a small modification in the algorithm: remove one tree

from the data set after each step. We also visualize the result and it is clear that

the given tree data are clustered into different cells using tropical MCMC method.

We have published a R package, tropPCA , includes all the programs about this

tropical MCMC and some basic functions of tropical principal components on Github:

https://github.com/QiwenKang/tropPCA.

Copyright c© Qiwen Kang, 2019.

8



Chapter 2 CURatio: Genome-wide Phylogenomic Analysis Method

Using Ratios of Total Branch Lengths

Abstract

Evolutionary hypotheses provide important underpinnings of biological and medi-

cal sciences, and comprehensive, genome-wide understanding of evolutionary rela-

tionships among organisms are needed to test and refine such hypotheses. Theory

and empirical evidence clearly indicate that phylogenies (trees) of different genes

(loci) should not display precisely matching topologies. The main reason for such

phylogenetic incongruence is reticulated evolutionary history of most species due to

meiotic sexual recombination in eukaryotes, or horizontal transfers of genetic mate-

rial in prokaryotes. Nevertheless, many genes should display topologically related

phylogenies, and should group into one or more (for genetic hybrids) clusters in poly-

dimensional “tree space”. Unusual evolutionary histories or effects of selection may

result in “outlier” genes with phylogenies that fall outside the main distribution(s)

of trees in tree space. We present a new phylogenomic method, CURatio, which uses

ratios of total branch lengths in gene trees to help identify phylogenetic outliers in a

given set of ortholog groups from multiple genomes. An advantage of CURatio over

other methods is that genes absent from and/or duplicated in some genomes can be in-

cluded in the analysis. We conducted a simulation study under the coalescent model,

and showed that, given sufficient species depth and topological difference, these ratios

are significantly higher for the “outlier” gene phylogenies. Also, we applied CURatio

to a set of annotated genomes of the fungal family, Clavicipitaceae, and identified

alkaloid biosynthesis genes as outliers, probably due to a history of duplication and

loss. The source code is available at https://github.com/QiwenKang/CURatio, and

the empirical data set on Clavicipitaceae and simulated data set are available at

Mendeley https://data.mendeley.com/datasets/mrxts7wjrr/1.
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2.1 Introduction

In recent decades the field of phylogenetics has found applications in the analysis of

genomic scale data (phylogenomics). In particular, it has been applied to analyze

the relationships between species and populations, genome evolution, and the evo-

lutionary processes of speciation and molecular evolution. However, today, we can

generate genomic data so cheaply and quickly that we encounter a new problem: the

sheer volume of genomic data and the lack of analytical tools for working with such

quantities of data.

It is well-known that incomplete lineage sorting leads to differences in phylogenetic

tree topologies among gene trees [39, 24, 67, 63]. Therefore, a key issue in systematic

biology is to reconstruct the evolutionary history of populations and species from

numerous gene trees with varying levels of discordance [6, 14].

Even though there has been much work in discordant phylogenetic relationships

[48, 61, 39, 5], it is only recently that researchers have shifted away from single gene

or concatenated gene estimates of phylogeny towards these multi-locus approaches,

e.g., [8, 76, 3, 21, 64]. For example, researchers have begun to consider the effect of

genetic drift in producing patterns of incomplete lineage sorting and gene tree/species

tree discordance, largely using coalescent theory [54, 55, 12, 36, 30, 75, 65]. Other

research has addressed the reconstruction of species trees from the distribution of

estimated gene trees [40, 9, 15, 45, 56, 29, 70, 31, 23].

It is well-known that several processes can reduce the correlation among gene

trees, including negative or balancing selection [62], meiotic sexual recombination in

eukaryotes [50], and horizontal transfers of genetic material especially in prokaryotes

[51]. Such processes can strongly influence phylogenetic/species tree reconstruction

from the distribution of gene trees [50, 42, 14].

In this paper we propose a method to detect outlier genes from the distribution

of gene trees based on likelihood functions. Here, we focus on the problem of dis-

cordance among gene trees, and the distribution of gene trees as a whole. We view

“typical” gene trees as samples from some distribution f (e.g., a coalescent model)
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that generates gene trees as independent samples. We also suppose that there may be

”atypical” outlier gene trees that in effect are sampled from some other distribution

f ′ very different from f . We are interested in estimating the distribution f for typical

gene trees, and also identifying outlier gene trees that were probably not generated by

f . Trees identified as outliers can be inspected for biologically interesting properties

or evolutionary histories. Also, identifying and removing outliers that violate model

assumptions can improve inferences made from collections of gene trees.

Here we propose the CURatio method based on likelihood ratios. A likelihood

ratio test is a statistical test used to compare the goodness of fit of two models: the

null model and an alternative model. In this paper, the null model is the evolutionary

model constrained to a fixed species tree topology and the alternative is the evolu-

tionary model unconstrained to any fixed species tree topology. If a gene tree follows

the species tree, the likelihood ratio between these models should be close to one. If

it does not, this ratio should be significantly greater than one. Here we demonstrate

the method on simulated data sets, as well as an empirical set from 12 genomes in

the fungal family Clavicipitaceae.

2.2 Methods

Test statistics

For each gene tree, we consider the following hypotheses:

H0 : A gene tree with the data D is congruent to the given tree topology τ .

H1 : A gene tree with the data D is not congruent to the given tree topology τ .

In this paper we are testing these hypotheses using the ratio between the total branch

lengths in the constrained and unconstrained trees.

Under the maximum likelihood estimation (MLE), branch lengths in a tree are the

expected number of mutations per site in certain time period. This means that the

total branch length of a tree under the MLE is the expectation of the total number

of mutations per site over the certain time period.
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Our objective is to test how a gene tree fits a given species tree topology. If the

tree topology τ is not the “best” tree topology for the observed dataset and for a given

evolutionary model, then the expected number of mutations per site would increase

to fit the data to the given tree topology τ . Thus the total branch length would

increase if τ is not well-fitted to the given observed data under the given evolutionary

model.

Therefore, with the given data set, we infer the MLE tree T0 under the null

hypothesis H0 by constraining the tree to have topology τ under the given model,

and we infer the MLE tree T1 under the alternative hypothesis H1 by not constraining

the tree topology (i.e., finding the optimal tree topology under the model).

Λ′ =

∑
l∈E(τ |D,M) l∑
l∈E(τ∗|D,M) l

,

where E(τ |D,M) defines the set of edges on τ given D,M. M is an evolutionary

model, τ is the constrained tree topology, and τ ∗ is the MLE tree topology.

Note that Λ, Λ′ ≥ 0 and Λ ∈ [0, 1]; however, Λ′ can be greater than one. Also

note that the stronger the evidence against H0, the smaller Λ becomes. On the other

hand, the stronger the evidence against H0, the greater Λ′ becomes.

Note that the log ratio test statistic Λ′ is standardized: i.e., like the Z statistic,

it does not depend on the scale. In addition, we compute each Λ′ independently

from each D, and since the Λ′ are standardized, we can compare them even though

each gene tree is reconstructed independently from each alignment. This is a signifi-

cant difference from the Shimodaira-Hasegawa (SH) [59] and approximately unbiased

(AU) tests [18]. SH and AU test whether the given trees are congruent to each

other by comparing likelihood functions in the same given data set D. However, our

CURatio test compares test statistics that are independent of scale, therefore lacking

the constraints of SH and AU.

The CURatio method operates in the following manner: Given a set of alignments

{A1, . . . , Ag} for g genes on n individuals and a tree topology T for the constraint

tree, we reconstruct the MLE gene trees from each alignment both constrained or

unconstrained by T . Next, we calculate the ratio of total branch length of the con-
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strained and the unconstrained tree. The pseudocode in Algorithm 1 summarizes this

process.

Algorithm 1: CURatio

Input: A set of alignments {A1, . . . , Ag} for g genes on n individuals
(species) and a tree topology T for the constraint tree.

Output: A sequence of ratios (r1, ..., rg).

1. For i = 1, . . . , g, do

a) Reconstruct the MLE gene tree Ti from an alignment Ai for i = 1, . . . , g
without any constraint.

b) Reconstruct the MLE gene tree T ′i from an alignment Ai for i = 1, . . . , g
with the constraint tree topology T .

c) Compute the total branch length bi of Ti.

d) Compute the total branch length b′i of T ′i .

e) Compute ri = b′i/bi.

2. Return the ratios (r1, ..., rg).

Once we have all the ratios, we compute the cut-off value P as the 95th percentile

of the collection {r1, ..., rg}. Finally, we select the genes with ratios which are greater

than P . Figure. 2.1 depicts the CURatio algorithm as well.

The hypothesis test is performed as follows: We compute the test statistics ri from

the observed data (alignments) Ai. Then we estimate the distribution of ri under the

null hypothesis (if we know the asymptotic distribution of ri then we use it, but this

is still an approximation). If Ai yields ri in the rejection region, for example above

the 95th percentile of the estimated distribution, then Ai is considered an outlier.

The performance of this test is shown in Figure 2.2 for varying P from 0 to 1.

In addition we can use this method for the significant test by computing the test

statistic of a particular gene tree (i.e. the ratio) and count how many of the gene

trees which have higher ratios than the ratio of the gene tree you want to test. The

proportion of this number is the estimated cut-off value P .
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Figure 2.1: CURatio alogrithm

Empirical Data Set

Genome sequences determined for one isolate each of 12 species in the fungal fam-

ily Clavicipitaceae were annotated with MAKER version 2.28[7]. The annotation

of Epichloë festucae Fl1 (GenBank BioProject PRJNA51625) was manually refined

based on cDNA and RNA-seq data sets, and the resulting gene models were included

as evidence in the MAKER annotations of the other genomes. The other genomes

in this study were from Aciculosporium take (PRJNA67241), Atkinsonella texensis

B6155 (PRJNA274998), Balansia obtecta B249 (PRJNA221345), Claviceps purpurea

20.1 (PRJNA76493), Epichloë amarillans E4668 (PRJNA222148), Epichloë inebri-

ans E818 (PRJNA174039), Epichloë glyceriae E277 (PRJNA67247), Epichloë mol-

lis AL9923 (PRJNA215230), Epichloë typhina subsp. poae E5819 (PRJNA68441),

Metarhizium robertsii ARSEF 23 (PRJNA38717) and Periglandula ipomoeae P4806

(PRJNA67303).

Gene models for the 12 genomes were subjected to OrthoMCL version 2.0.2 [33] to
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classify ortholog groups, as described in the OrthoMCL algorithm document (https:

//docs.google.com/document/d/1RB-SqCjBmcpNq-YbOYdFxotHGuU7RK_wqxqDAMjyP_

w/pub). Because OrthoMCL-derived ortholog groups may contain paralogs as well as

orthologs [33], we used the refiner COCO-CL [26] to divide ortholog groups. To im-

prove the reliability of the refinement process and the quality of generated alignments,

we used a modified version of COCO-CL described in Protocol S2 of [57].

For each gene, the nucleotide sequence was identified from the start codon to the

stop codon, including introns; all such gene sequences for each ortholog group were

aligned by MAFFT version 6.864b [27, 28]. Finally, the ortholog groups were filtered

to exclude those that had more than one representative from any genome, those that

had fewer than five orthologs, and those for which the alignment had fewer than 50%

non-gap characters for every gene sequence. The latter condition was imposed to filter

out groups that included misannotated genes, although it also removed some ortholog

groups that included pseudogenes. In total, 4266 out of 16995 ortholog groups passed

the filters.

Phylogenies were determined by maximum likelihood estimation (MLE) imple-

mented in the R package ape [49] under a Jukes-Cantor model. Those 3408 ortholog

groups that had a representative from each of the 12 genomes were analyzed in a

batch by CONSENSE in the PHYLIP version 3.2 package [16], and a 65% consensus

tree was chosen as the constraint tree; this corresponded to a 70% consensus of the

trees inferred under a GTR+Gamma model.

2.3 Results

Simulated data set

We conducted simulations to test CURatio on gene trees generated under the coales-

cent process,

Depth = Population Size× C (2.1)

where Depth is the depth of the species tree, Population Size is the effective popula-

tion size (Ne) and C is a parameter, which we varied from 0.6 to 6.0 as in[19, 72].
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For each value of C, we generated 2000 species trees with 10 leaves each under the

Yule process, and calculated the Robinson-Foulds (RF) distance [52] for each pair of

trees using the R package phangorn [58]. Then, for each RF distance 2, 4, 6, 8, 10,

12 and 14, we randomly selected ten pairs of species trees. For each selected pair we

called one species tree “TreeOne” and the other “TreeTwo”.

From each species tree, we generated 1000 gene trees with 10 leaves under the

coalescent model using the software Mesquite [41], with the fixed “Population Size”

equal to 10000 and the depth of the species tree determined by the parameter C

(Equation 2.1). For each pair of species trees, we called the set of gene trees generated

from TreeOne “GeneOne”, and the set generated from TreeTwo “GeneTwo”.

We then simulated DNA alignments based on these gene trees using PAML [69]

under the Jukes-Cantor (JC) model, which is a special case of the GTR model with

equal mutation rates µ
4
, where µ is the overall substitution rate.

Algorithm 2: Simulating Data Sets Process

for each C (from 0.6 to 6.0) do
generate 2000 species trees randomly and calculate pairwise RF distance;
for each RF distance (2, 4, 6, 8, 10, 12, 14) do

randomly pick 10 pairs of species trees;
for each pair of species trees(S1,S2) do

generate 1000 gene trees G1 from S1;
generate 1000 gene trees G2 from S2;
generate 1000 alignments A1 from each tree in G1;
generate 1000 alignments A2 from each tree in G2;

end

end

end

The first simulation produced ROC curves for comparing CURatio with KDETREES.

KDETREES is a non-parametric method to estimate the distribution of trees and iden-

tify potential outlier gene trees which are probably not generated by this distribution;

CURatio, on the other hand, is a parametric method. Note that CURatio does not fit

a chi-squared distribution because it is not a traditional likelihood ratio test. Instead,

potential outlier genes can be identified by those giving a value of r in a high per-

centile (e.g. 95th or 99th) of the distribution of r values of all the genes in the genome
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for which phylogenies were determined. We used the set of alignments GeneOne and

their corresponding trees as the non-outlier data set, and we used the set of align-

ments GeneTwo and their corresponding trees as the outlier data set. The constraint

tree was the species tree corresponding to GeneOne. The process is summarized in

Algorithm 2.

Algorithm 3: Summary of the simulation comparing CURatio and
KDETREES. For our simulation, m = 100, n = 1

Input: A set of alignments {A1, . . . , Ag} for g genes and their corresponding
trees as the non-outlier data set. A set of alignments {B1, . . . , Br}
for r genes and their corresponding trees as the outlier data set. A
species tree, S, corresponding to the non-outlier trees,

Output: Average number of true and false outlier identifications for each
method

for each C (from 1.0 to 6.0) do
Randomly sample m alignments and their corresponding trees from the
non-outlier data set;

Randomly sample n alignments and their corresponding trees from the
outlier data set;

Detect outliers with both CURatio and KDETREES;
Tally true and false outlier identifications for both methods;

end

We randomly selected a data set for each C value from our simulations regardless

of RF distance. As shown in Figure 2.2, CURatio performed as well or better than

KDETREES for C values up to 2. KDETREES performed better than CURatio at C = 4.

For C = 6 the ROC curves for both methods passed close to the (0,1) point.

Our second simulation procedure is outlined in Algorithm 3. For each pair of

species trees and the associated gene trees, we applied CURatio (Algorithm 1) four

times, to obtain four sets of ratios: once on the set of alignments GeneOne against

the corresponding species tree TreeOne; once on GeneOne against the other species

tree; and likewise for the GeneTwo alignments. Then we used R to calculate Tukey’s

five number summary (minimum, lower-hinge, median, upper-hinge, maximum) of

each of the four sets of ratios. We were particularly interested in the trend of the

medians of GeneOne with TreeTwo, and GeneTwo with TreeOne, with increasing

C and different RF distances between the species trees. Significant differences were
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Figure 2.2: ROC curves comparing results of CURatio (dashed line) and KDETREES

(solid line) as the C value is changed. TPR stands for true positive rate and FPR
stands for false positive rate. 18



apparent at RF = 4 and high C values; at RF = 6 or higher, significant differences

were also apparent for C values of 2 or less (see Figure 2.3).

Algorithm 4: LOESS Plot

Input: Two sets of alignments, A1 and A2, and their corresponding species
trees, S1 and S2.

Output: The trend of medians
for each RF distance (2, 4, 6, 8, 10, 12, 14) do

for each combination of sets of alignments and species tree,
(A1,S1)(A1,S2)(A2,S1)(A2,S2) do

Apply Algorithm 1;
Calculate the medians.

end
Apply ”LOESS” from R to fit a smooth curve.

end

For visualization, we applied “LOESS” from R on these medians, fitting a smooth

curve through the points in Figure 2.3, where we can observe that both of the two

ratios are greater than one. But if we use the species tree as the constraint tree, the

ratio tends to be relatively close to one. Meanwhile, if we use a constraint tree with a

different topology from the species tree, then the ratio tends to be greater than one.

When using the correct species tree as the constraint tree, larger values of C

resulted in ratios approaching one. This was as expected because, as C gets larger,

the species tree becomes taller and narrower relative to population size, so gene trees

tend to follow the species tree topology more closely. Also as expected, such behavior

was not apparent when the gene trees differed from the species trees, particularly at

RF distances of six or greater.

An important feature of CURatio is that it is applicable to datasets that include

ortholog groups where some taxa lack the gene, as well as ortholog groups with par-

alogs. For paralogs, in-paralogs arise from gene duplications on terminal branches and

should not cause deviation from the constraint tree, whereas out-paralogs arise from

gene duplications on internal branches and consequently differ from the constraint

tree (see Figure 2.4). A simulation (see Figure 2.5) illustrates that out-paralogs can

result in ratios significantly greater than one.
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Figure 2.4: Examples of constrained and unconstrained tree configurations for or-
tholog groups with either in-paralogs or out-paralogs. In-paralogs arise from gene
duplication on terminal branches, whereas out-paralogs arise from gene duplication
in common ancestors of two or more species. For non-outlier trees the ratios of con-
strained to unconstrained tree lengths should be close to one, whereas for ortholog
groups with outlier phylogenies and ortholog groups with out-paralogs the ratios
should be greater than one.
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as disgrammed in Figure 2.4. The p-value of a two-sample t-test was 2.2 × 10−16,
indicating a statistically significant difference between non-outliers with in-paralog
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Analysis of an Empirical Data Set

CURatio was applied to ortholog groups from a set of 12 genomes of fungi in the family

Clavicipitaceae; a histogram of ratios of constrained tree length to unconstrained tree

length is presented in Figure 2.6. Although there was a negative trend between the

ratios and the numbers of genomes containing orthologs in an ortholog group, the

correlation coefficient was −0.433. Thus, there was not a strong general relationship

between whether a gene was a core gene (present in all 12 genomes) or flexible gene

(present in fewer than 12 genomes) and its conformity to the species tree.
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Figure 2.6: A histogram of log ratios of constrained tree length to unconstrained tree
length based on the empirical data set of 4266 ortholog groups from 12 annotated
fungal genomes. The lowest observed ratio was approximately 0.994. The ratios
obtained for ergot alkaloid biosynthesis genes are indicated by arrows.

It has been noted previously that, in the Clavicipitaceae, phylogenies of ergot

alkaloid biosynthesis (EAS) genes fail to match phylogenies of core housekeeping

genes commonly used to infer species relationships [37, 74]. Ortholog groups for five

EAS genes passed the filters (see Section 2.2) and were included in our analysis. All

five EAS genes gave ratios exceeding 1.09, and were therefore considered significant

outliers. This was in keeping with expectations for EAS genes (see Figure 2.6). Figure

2.7 compares ratios for nine core housekeeping genes and a mating type gene (mtAC)

with those of the five EAS genes, easG, easC, easD, cloA and easA. If, instead of ratios,

genes are ordered by RF values, the difference between EAS genes and housekeeping
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genes is much less apparent. With RF = 5, easG is in the 52nd percentile, and

with RF = 9, easC, easD, cloA and easA are in the 95th percentile. RF values for

housekeeping genes ranged from 2 to 9, with tefA, rpbB and actG having RF = 5

(95th percentile), tubP RF = 7 (80th percentile), and gapD RF = 9 (95th percentile).

In contrast, the housekeeping genes chosen for analysis (Figure 2.7) had ratios ranging

from the 4th to the 73rd percentile, whereas the EAS genes all had ratios in the 99th

percentile.
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Figure 2.7: Ratios of constrained to unconstrained tree lengths for nine core house-
keeping genes and a mating type gene (mtAC) with those of the five ergot alkaloid
biosynthesis genes, easG, easC, easD, cloA and easA.

2.4 Discussion

Our objective was to develop a simple statistical approach to identify genes with

evolutionary histories that significantly deviate from their corresponding species phy-

logeny, and particularly an approach that can accommodate genes that are missing or

duplicated (paralogs) in some genomes. We have proposed a novel statistical method

to detect outlying gene trees from a large set of gene trees, for example obtained by
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whole genome analyses. For each set of orthologous genes we calculate the length

of the MLE tree constrained to the postulated species tree, divided by the length

of the unconstrained MLE tree to give the CURatio statistic. In this paper we ap-

proximate the distribution of the CURatio from the observations and we take ratios

more than 95th percentile as outliers. Another phylogenomic use for this method is

to explore relative deviations from the more common phylogenies, such as different ri

percentiles, to address questions such as whether some classes of genes tend to deviate

more than others. Importantly, the CURatio method can be applied to gene sets in

which some genes are lacking in some of the taxa, making it possible to compare such

flexible genes with the species tree.

We applied the CURatio method to simulated data, with gene trees derived from

the coalescent model, based on species trees differing by RF distances of 2 through

14, assuming Ne = 10, 000 and various C values for population depth = Ne × C.

With these parameters, average ratios were significantly different for the same versus

different species trees for C ≥ 0.6 at moderate to high RF distances.

A set of genomes from Clavicipitaceae was chosen for an empirical test of CURatio

because previous investigations of species and alkaloid gene phylogenies indicated

different evolutionary histories [74]. Of the 12 genomes included, EAS genes were

present in 10 of the genomes. The maximum number of EAS genes was 14, and nine

EAS genes were shared among all 10 genomes. Despite sharing a similar topology,

easG had a much lower RF (= 5) than the other EAS genes (RF = 9), simply because

easG was not represented in all of the genomes that contained the other EAS genes.

Nevertheless, the EAS genes all had ratios in the 99th percentile. Furthermore, the

10 housekeeping and mating type genes had a wide range of RF values (2 to 9), but

all had ratios very close to 1.00. Given the overlap in RF values, EAS genes were

not discoverable as outliers based on RF. In fact, RF did not correlate significantly

with ratios (R2 = 0.0483). The obvious reason is that RF is a purely topological

measure, and some genes that gave high RF differed from the constraint tree only in

short branches. Constraining such trees only slightly lengthened them.

For various reasons, only five of the 14 EAS genes passed the filter to be included in
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the analysis (see Section 2.2). Of the excluded genes, three were present in fewer than

five of the genomes, dmaW was duplicated in C. purpurea (in this run we excluded

duplicated genes), the closely linked easF and easE genes were sometimes misanno-

tated as a single gene, and the lpsA, lpsB and lpsC genes were not separated from

other nonribosomal peptide synthetase genes by the OrthoMCL/COCO-CL pipeline. The

stringency of the filter was deemed necessary to minimize cases of outliers originating

from misannotations or incorrect inferences of orthology, but in future, consideration

can be given to refining orthology searches and subsequent filters to capture a greater

proportion of shared genes for the CURatio test. It seems likely that flexible genes

were disproportionately excluded, so more inclusive representation may well affect the

observed distribution of ratios. Additionally, although not included in our empirical

analysis, the implementation of CURatio allows for inclusion of genes for which more

than one ortholog (up to a user-set maximum) may occur in a taxon or genome.

It will be hard to give a specific running time function of the input size since

CURatio is based on maximum likelihood with its NP-hardness. But in our data set,

the size of each alignment would be around 40 KB. It just takes 3.1s to calculate the

ratio. For the whole data set, it takes around 21 mins including 4266 alignments.

All the code is running on a computer with processor Intel Core i7-6700 3.40GHz×8,

memory 15.6 GB and OS type Ubuntu 17.10 64-bit.

In simulations in which the constraint tree differed from the species tree by RF

distances of 2–14, we observed that tree-length ratios leveled out at 1.1–1.3 for C = 2

or greater. It would be of interest to derive an explicit formula for the expected

ratio under a given model and number of leaves. Also of interest is the possibility

of estimating population depths based on the distributions of ratios from empirical

data sets.

In this paper, we choose JC model, which is a specific case of Markov models, as

our evolutionary model. Markov models are popular in molecular evolution area. Its

no memory feature is that the transition probabilities depends only upon the current

state. This makes it natural to assume that the nucleotide sites in DNA sequence

evolved independently of each other. However, such assumption is often inappropriate
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in co-evolution [66]. We will discuss this situation and develop alternative models in

future work.

Copyright c© Qiwen Kang, 2019.
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Chapter 3 Tropical Principal Components Using Metropolis-Hastings

Algorithm

Abstract

Principal component analysis is one of the most popular unsupervised learning meth-

ods for reducing the dimension of a given data set in a high-dimensional Euclidean

space. However, computing principal components on a space of phylogenetic trees

with fixed labels of leaves is a challenging task since a space of phylogenetic trees is

not Euclidean. In 2017, Yoshida et. al. defined a notion of tropical principal compo-

nent analysis and they have applied it to a space of phylogenetic trees. The challenge,

however, they encountered was a long computational time for large data set.

In this paper we estimate tropical principal components in a space of phylogenetic

trees using the Metropolis-Hasting algorithm. We have implemented an R software

package to efficiently estimate tropical principal components and then we have applied

it to African coelacanth genomes data set.

3.1 Introduction

Principal component analysis (PCA) is one of the most popular and robust unsu-

pervised learning methods for reducing the dimension of a high-dimensional data set

in Euclidean spaces. PCA is a statistical method that takes data points in a high

dimensional Euclidean space into a lower dimensional plane which minimizes the sum

of squares between each point in the data set and their orthogonal projection onto

the plane. It has been used for clustering high dimensional data points for statistical

analysis and it is one of the simplest and most robust ways of doing such dimen-

sion reduction in a Euclidean vector space. However, it assumes the properties of

a Euclidean vector space while the space of rooted equidistant trees on n leaves, a

polyhedral complex of dimension n − 2, realized as the set of all ultrametrics is not

Euclidean.
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One classical way to conduct a statistical analysis on phylogenetic trees with n

leaves is to map each tree to a vector in R(n
2), for example using the dissimilarity

map. Given any tree T of n leaves with branch length information, one may produce

a corresponding distance matrix, D(T ). The distance matrix is an n × n symmetric

matrix of non-negative real numbers, with elements corresponding to dij(T ), the sum

of the branch lengths between pairs of leaves in the tree. To calculate dij(T ), one

simply determines which edges of the tree form the path from a leaf i to a leaf j, and

then sums the lengths of these branches. Since D(T ) is symmetric and has zeros on

the diagonal, the upper-triangular portion of the matrix contains all of the unique

information found in the matrix. We can vectorize T by enumerating this unique

portion of the distance matrix,

vd(T ) := (d12(T ), d13(T ), . . . , d23(T ), . . . , dn−1n(T ))

which is called the dissimilarity map of a tree T and is a vector in R(n
2). If it is clear

we simply abbreviate D(T ) with D.

Let D be a distance matrix computed from a phylogenetic tree, that is, a non-

negative symmetric n × n-matrix D = (dij) with zero entries on the diagonal such

that all triangle inequalities are satisfied:

dik ≤ dij + djk for all i, j, k in [n] := {1, 2, . . . , n}.

If a distance matrix D is computed from an equidistant tree, it is well-known that

elements in D satisfy the following strengthening of the triangle inequalities

dik ≤ max(dij, djk) for all i, j, k ∈ [n]. (3.1)

If (3.1) holds then the metric D is called an ultrametric. The set of all ultrametrics

contains the ray R≥01 = (a, a, . . . , a), where s ∈ R, spanned by the metric 1 =

(1, 1, . . . , 1), which is defined by dij = 1 for 1 ≤ i < j ≤ n. The image of the set

of ultrametrics in the quotient space R(n
2)/R1 is denoted Un and called the space of

ultrametrics. Therefore, we can consider the space of ultrametrics as a treespace for

all possible equidistant phylogenetic trees with n leaves.
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However, the space of phylogenetic trees with n leaves is not an Euclidean space.

In fact, it is a union of lower dimensional polyhedral cones in R(n
2). Therefore we

cannot directly apply classical PCA to a set of gene trees. Nye showed an algorithm

in [46] to compute the first order principal component over the space of phylogenetic

trees of n leaves using the unique shortest connecting paths, or geodesics, defined by

the CAT (0)-metric introduced by Billera-Holmes-Vogtman (BHV) over the tree space

of phylogenetic trees with fixed labeled leaves [4]. Nye in [46] used a convex hull of

two points, i.e., the geodesic, on the tree space as the first order PCA. However, we

could not generalize this idea for computing higher order principal components with

the BHV metric because, in 2017, Lin et. al. showed that the convex hull of three

points with the BHV metric over the tree space has an arbitrary dimension [35]. On

the other hand the tropical metric in tree space defined by the tropical convexity in

the max-plus algebra is well studied [38].

Now we turn to tropical mathematics [60]. This furnishes a metric and a convexity

structure on the tree space which is radically different from BHV. Let e =
(
n
2

)
. Trop-

ical geometry gives an alternative geometric structure on Un, via the graphic matroid

of the complete graph [38, Example 4.2.14], i.e., Un can be written as a tropical lin-

ear space under the max-plus algebra. We mostly use the max-plus algebra, so our

convention is opposite to that of [38] and [47]. The connection between phylogenetic

trees and tropical lines, identifying tree space with a tropical Grassmannian, has been

explained in many sources, including [38, §4.3], [47, §3.5], and [60, Fact 6]. However,

the restriction to ultrametrics [2, §4] offers a fresh perspective.

In 2017, Yoshida et. al. defined a notion of tropical principal components [73]:

Tropical convex hull, i.e., tropical polytope, which minimizes the sum of squares be-

tween each point in the data set and their orthogonal projection onto the tropical

polytope with the tropical metric dtr. They have introduced a mathematical founda-

tion on tropical principal components and they have applied it to computing tropical

principal components in Un. However, it is not efficient to compute tropical prin-

cipal components using their implementations even though the time complexity of

computing tropical principal components is still unknown.
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In this paper we have developed a method to estimate tropical principal compo-

nents via Metropolis-Hasting algorithm and then we have applied it to coelacanths

genome and transcriptome data from Liang et. al. [34]. This paper is organized as

follows: In Section 3.2 we discuss the basics of tropical geometry and review the

interpretation of the space of equidistant trees as a tropical linear space. Then we

review the tropical principal components introduced by Yoshida et. al. In Section

3.3 we describe our algorithm and then in Section 3.5 we apply our method to the

coelacanths genome data set.

3.2 Tropical Principal Components

In this section we review some basics of tropical geometry and then we review the

tropical principal components developed by [73]. See [38] or [25] for more details.

In the tropical semiring (R ∪ {+∞},⊕,�) , the basic arithmetic operations of

addition and multiplication are redefined as follows:

a⊕ b := min{a, b}, a� b := a+ b where a, b ∈ R.

The element −∞ is the identity element for addition and 0 is the identity element

for multiplication: for all a ∈ R ∪ {+∞}, we have a⊕−∞ = a and a� 0 = a.

Similarly, there is another way to define addition and multiplication using maxi-

mum instead of minimum, which is called max− plus semiring (R ∪ {−∞},⊕,�):

a� b := max{a, b}, a� b := a+ b where a, b ∈ R.

With given scalars a, b ∈ R∪{−∞} and vectors v = (v1, . . . , ve), w = (w1, . . . , we) ∈

(R∪∞)e, we can define tropical scalar multiplication and tropical vector addition as

a� v = (a+ v1, a+ v2, . . . , a+ ve)

a� v � b� w = (max{a+ v1, b+ w1}, . . . ,max{a+ ve, b+ we})

In tropical geometry we often work in the tropical projective torus Re/R1, where

1 denotes the all-ones vector. Given two points v, w in the tropical projective torus,

31



their tropical distance dtr(v, w) is defined as follows:

dtr(v, w) = max
{
|vi − wi − vj + wj| : 1 ≤ i < j ≤ e

}
, (3.2)

where v = (v1, . . . , ve) and w = (w1, . . . , we). This metric is also known as the

generalized Hilbert projective metric [1, §2.2], [11, §3.3].

A subset S ⊂ Re is said tropically convex if it contains the point a� x� b� y for

all x, y ∈ S and all a, b ∈ R. The tropical convex hull or tropical polytope tconv(V )

of a given subset V ⊂ Re is the smallest tropically convex subset containing V ⊂ Re.

The tropical convex hull of V can be also written as the set of all tropical linear

combinations

tconv(V ) = {a1 � v1 � a2 � v2 � · · ·� ar � vr : v1, . . . , vr ∈ V and a1, . . . , ar ∈ R}.

Any tropically convex subset S of Re is closed under tropical scalar multiplication,

R� S ⊆ S.

Let P be a tropical polytope P = tconv(D(1), D(2), . . . , D(s)), where the D(i) are

points in Re/R1. There is a projection map πP sending any point D to a closest

point in the tropical polytope P as

πP(D) = λ1 �D(1) � λ2 �D(2) � · · · � λs �D(s), (3.3)

where λk = min(D − D(k)) for k = 1, . . . , s. This formula appears as [38, Formula

5.2.3].

Now we review how tropical geometry connects to the space of phylogenetic trees.

It is well known that all ultrametrics are tree metrics. In fact, all ultrametrics are

derived from equidistant trees, where all leaves have the same distance to some dis-

tinguished root vertex. Furthermore, the tree metric of an equidistant tree is an

ultrametric; hence ultrametrics and equidistant trees convey equivalent information.

Let Ln denote the subspace of Re defined by the linear equations xij−xik+xjk = 0

for 1 ≤ i < j < k ≤ n. The tropicalization Trop(Ln) ⊆ Re/R1 is the tropical linear

space consisting of points (v12, v13, . . . , vn−1,n) such that max(vij, vik, vjk) is obtained

at least twice for all triples i, j, k ∈ [n].
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Theorem 1 [73] The image of Un in the tropical projective torus Re/R1 coincides

with Trop(Ln).

A tropical principal component analysis defined in [73] is the tropical convex hull

of s points in Un minimizing the sum of distances between each point in the sample to

its projection onto the convex hull. While we can generalize this to arbitrary s, here

we focus on the second order principal components for simplification. The second

order tropical principal components can be written as follows:

Problem 1 We seek a solution for the following optimization problem:

min
D(1),D(2),D(3)∈Un

n∑
i=1

dtr(di, d
′
i)

where

d′i = λi1 �D(1) ⊕ λi2 �D(2) ⊕ λi3 �D(3), where λik = min(di −D(k)), (3.4)

and

dtr(di, d
′
i) = max{|di(k)− d′i(k)− di(l) + d′i(l)| : 1 ≤ k < l ≤ e} (3.5)

with

di = (di(1), . . . , di(e)) and d′i = (d′i(1), . . . , d′i(e)). (3.6)

Even though we do not know the time complexity to solve the optimization prob-

lem in Problem 1, the implementation by [73] was not efficient in general. Therefore

in this paper we have applied the Metropolis-Hastings algorithm to approximate the

optimal solution for Problem 1.

3.3 MCMC Algorithm

Let n be the number of principal components andN be the number of trees. Φ(w1,w2,w3)

be the tropical triangle defined by w1, w2, w3. Hence, we have f(w1, w2, w3) =

ΠΦu1,u2,u3
(S) is the sum of tropical distance in the tropical triangle defined by w1, w2, w3

where S = {d1, . . . dn} is the sample of ultrametrics; g, which is the function which
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project trees onto the tropical tree space. At first, we randomly select n trees from

the whole tree data set T and we define the combination of these n trees as pcs. We

give an initial value as large as possible to the sum of tropical distance tropDist.

Then, we randomly select a tree a from pcs and replace it with a tree b randomly

selected from the rest of trees S (S = T \ pcs) such that we can have a new tree

combination ˆpcs = pcs \ a ∩ b. Next, we calculate the ratio of the sum of tropical

distance r = f(pcs)/f( ˆpcs) and compare it with a number u randomly selected from

uniform(0, 1) distribution. Once u ≤ min(r, 1), we replace pcs with ˆpcs and record

the projected points projPoints, tropDist and ˆpcs if f(pcs) < tropDist. Finally,

we remove b from S and repeat the whole process N − n times. This process is

summarized in Algorithm 5 as below:

Algorithm 5: Markov Chain Monte Carlo sampling

Input: Initial distance vectors D of trees T , the number of principal
components n, the number of trees N .

Output: The combination of trees comb, the projected points projPoints
and the sum of tropical distances tropDist.

Let pcs = n random trees selected from T , S = T \ pcs, tropDist = 1000000;
for i = 1, ..., N − n do

a = Select one tree randomly from pcs;
b = Select one tree randomly from S;
ˆpcs = pcs \ a ∩ b;
r = f(pcs)/f( ˆpcs);
Randomly select a number u from uniform(0,1) distribution;
if u ≤ min(r, 1) then

pcs = ˆpcs;
if f(pcs) < tropDist then

projPoints = g( ˆpcs), tropDist = f( ˆpcs), comb = ˆpcs
end

end
S = S \ b;

end

We defineB as the set of all possible combination of trees andWi = [w1 w2 . . . wn] ∈

B as a specific combination of trees which is actually a set of principal components.

Thus, the probability of sampling would be as follows:

P (Wi) =
f(Wi)∑
i∈B f(Wi)

(3.7)
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Since we would like to find the combination of trees which leads to minimum sum

of tropical distances, we have f(Wi) negatively corresponds to P (Wi) such that the

acceptance ratio in our case should be f(pcs)/f( ˆpcs) instead of f( ˆpcs)/f(pcs).

3.4 Factor of Explained Variance

Like traditional principle component analysis, we need a factor to evaluate the per-

formance of tropical PCA, this factor is also called R2 defined as the proportion of

explained variance in terms of tropical geometric set up as below:

R2 = 1− ΠΦ(S)

ΠΦ(S) + SSreg
(3.8)

where SSreg is defined as the ”explained sum of squared” which is:

SSreg =

n∑
i=1

dtr(ûi, ū)

where ûi is the tropical projection of an ultrametric ui for a tree Ti on a tropical

polytope and ū is defined as

ū = arg max
u

n∑
i=1

dtr(ûi, ū)

which is also called a Fermat Weber point of {û1, ..., ûn}.

3.5 Application to Empirical Datasets

Apicomplexa data

The phylum Apicomplexa contains many important protozoan pathogens [32], in-

cluding the mosquito-transmitted Plasmodium spp., the causative agents of malaria,

Toxoplasma gondii, which is one of the most prevalent zoonotic pathogens world-

wide, and the water-born pathogen Cryptosporidium spp. Several members of the

Apicomplexa also cause significant morbidity and mortality in both wildlife and do-

mestic animals. These include Theileria spp. and Babesia spp., which are tick-borne

haemoprotozoan pathogens that infect and cause disease in ungulates, and several

35



species of Eimeria, which are enteric parasites that are particularly detrimental to

the poultry industry. Due to their medical and veterinary importance, whole genome

sequencing projects have been completed for multiple prominent members of the

Apicomplexa. The second order tropical principal components computed from the

Apicomplexa data set is shown in Figure. 3.1 and Figure. 3.2.

Figure 3.1: Projected topology frequencies from the Apicomplexa data set: paren-
thesized numbers give the frequencies of each topology.
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Figure 3.2: Projected points in the tropical polytope PCA of the Apicomplexa data
set.

Coelacanths genome and transcriptome data

We have applied the clustering methods to the data set comprising 1,290 nuclear genes

encoding 690,838 amino acid residues obtained from genome and transcriptome data

by [34]. Over the last decades, the phylogenetic relations between coelacanths, lung-

fishes, and tetrapods have been controversial despite there has been much work on

the data set [20]. After we clean the data set, it consisted of 1193 gene alignments

for 10 species: lungfish, Protopterus annectens, and coelacanth, Latimeria chalum-
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nae; three tetrapods, frog, Xenopus tropicalis, chicken, Gallus gallus, and human,

Homo sapiens ; two ray-finned fish, Danio rerio and Takifugu rubripes ; and three

cartilaginous fish included as an out-group, Scyliorhinus canicula, Leucoraja erinacea

and Callorhinchus milii. The second order tropical principal components computed

from the Coelacanths genome and transcriptome data set is shown in Figure. 3.3 and

Figure. 3.4.

It takes around 6 mins to finish a round. The running time could be reduced if we

consider parallel computing. All the code is running on a computer with processor

Intel Core i7-6700 3.40GHz×8, memory 15.6 GB and OS type Ubuntu 18.04 64-bit.
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Figure 3.3: Projected topology frequencies from the Coelacanths genome data set:
parenthesized numbers give the frequencies of each topology. Labels abbreviations
are: Latimeria, Lc; Scyliorhin, Sc; Leucoraja, Le; Callorhinc, Cm; Takifugu, Tr;
Danio, Dr; Lungfish, Pa; Homo, Hs; Gallus, Gg; Xenopus, Xt.
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Figure 3.4: Projected points in the tropical polytope PCA of the Coelacanths genome
and transcriptome data set.

Influenza data

Influenza is a respiratory illness caused by influenza virus, which is also a highly

contagious and fast-transmitting disease. Especially, Influenza A often undergoes

antigenic variation and is extremely prone to widespread epidemics. In this section, we

analysis 1089 Influenza A H3N2 sequences collected in the United States between 1993

and 2016. Sequences are randomly selected from four or five consecutive seasons which

corresponds to four or five leaves in a phylogeny tree. With these sequences, around
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20,000 unrooted trees are built using Neighbor-joining method based on hamming

distance for most years.

To achieve tree dimensionality reduction and visualize a fitted tropical polytope

with three vertices, tropical principal component analysis is applied here. Due to the

sensitivity of ordinary PCA for outliers, we remove these trees identified by KDE-

TREES method as outliers from each data set. After that, we implemented tropical

MCMC method to approximate principal components since the number of trees is

large. We ran this tropical MCMC process 5 times and selected the tree combination

with minimum sum of tropical distance. Each time was run in parallel on eighteen

CPU cores, Intel(R) Xeon(R) W-2155 CPU @ 3.30GHZ 3.31GHz, and took almost 2

hours to finish.

In general, the projected topologies are congruent with our intuition: Sample

4 and Sample 3, Sample 5 and Sample 4 are grouped together since they are two

consecutive years. Compared to the tree topology with BHV metric of this data set,

they are quite similar, and seem to differ by the nearest neighbor interchange.

Figure 3.5 is a plot of the best-fit tropical polytope over the two-dimensional plane

R3/R1 with its cells and projected points at year 2008 for trees with five leaves. The

phylogenetic trees are clustered and divide the tropical polytope PCA into several

different regions. In addition, the projected points are not equally distributed in cells;

adjacent cells may correspond to single tree rearrangement.

Figure 3.6 is the second principal components computed with BHV metric from

the Influenza A data set.
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Figure 3.5: The second principal components with tropical metric from the Influenza
A data set with five consecutive seasons: (a) The projected points in the tropical
polytope PCA; (b) Threes second order principal components and projected tree
topology. Labels abbreviations are: Sample1, 1; Sample2, 2; Sample3, 3; Sample4, 5.

Figure 3.6: The second principal components computed with BHV metric from the
Influenza A data set with five consecutive seasons: (a) The simplex shaded by the
topology of the corresponding points on the affine subspace; (b): Tree 1, Tree 2, and
Tree 3 correspond to three weighted Fréchet means. Topology 1 is the topology of
trees on the affine subspace.

In terms of R2, it is obvious from Table 3.1 that BHV metric has a better per-

formance than tropical metric until year 2006. After that time point, tropical PCA

could explain more variance than PCA using BHV metric. This result may due to

various computational source of errors. It is obvious that tropical PCA has a better

performance since its R2 is greater than the R2 of PCA using BHV metric except

year 2000, 2001 for tree with 4 leaves and year 1999, 2001 for tree with 5 leaves.
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Table 3.1: R Squares of Tropical PCA and BHV

Year
Tree with 4 leaves Tree with 5 leaves

Tropical metric BHV metric Tropical metric BHV metric

1993 0.9559 0.7099 0.7269 0.3019
1994 0.9426 0.4611 0.8505 0.4347
1995 0.8665 0.1900 0.9577 0.3151
1996 0.9821 0.2150 0.7482 0.5025
1997 0.9532 0.0069 0.8437 0.0505
1998 0.9395 0.0452 0.8790 0.6408
1999 0.9069 0.0038 0.8564 0.9524
2000 0.9132 0.9555 0.7942 0.0014
2001 0.9088 0.9402 0.8302 0.9488
2002 0.9863 0.0107 0.9525 0.8962
2003 0.9848 0.0972 0.8622 0.4927
2004 0.9505 0.4272 0.7931 0.3651
2005 0.9949 0.4628 0.8304 0.3634
2006 0.9643 0.0951 0.7300 0.2383
2007 0.9381 0.5562 0.6995 0.2727
2008 0.8813 0.4887 0.4637 0.0460
2009 0.8926 0.0763 0.6289 0.1563
2010 0.8886 0.0329 0.6665 0.1935
2011 0.9016 0.3592 0.5920 0.2771
2012 . 0.2756 0.5568 0.1998
2013 0.7935 0.3612 0.5624 0.1279
2014 . 0.1383 N/A N/A

3.6 Discussion

We achieved the application of the MCMC method in the tropical tree space. It has

been shown this method works well in the tropical tree space instead of traditional

Euclidean space. The three PCs returned from the MCMC method are combination

of trees selected from the original data set. It is, however, not the true PCs in the

tropical tree space. In other words, the result of this approximation brings extra

errors increased with the size of the original data set.

In order to find the true PCs, Yoshida proposed a new MCMC Metropolis-Hasting

algorithm. This new method is supposed to bring greater efficiency and less errors.

The parameter k in this method is used to control the convergence rate. It makes

it possible for us to control the ”temperature” of our method. The whole process is
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listed in Algorithm 6, Algorithm 7 and Algorithm 8. These algorithms compute a

proposal state, i.e., a set of proposed trees.

Algorithm 6: Finding the proposal set of trees

Input: Input: Set of equidistant trees {T1, T2, T3}, k ∈ [m].
Output: Output: Next set of equidistant trees {T ′1, T ′2, T ′3}.
for i = 1, 2, 3 do

Set T ′i = Ti;
Pick random numbers (i1, . . . , ik) ⊂ [m] without replacement;
Permute the tree leaf labels (i1, . . . , ik) ⊂ [m] of T ′i with a random
permutation σ in the symmetric group on {i1, . . . , ik};

Pick a random internal branch b1 in T ′i ;
Let li be the branch length of the internal branch you picked and update
li := li + ε · c where ε ∼ Unif{+1,−1}, and c ∼ Unif [0, li/m];

Pick another branch b2 on the path from the root to the leaf where the
branch b1 is also on the path;

Let l is the branch length of b2. If l − ε · c < 0 then set l := 0 and
li := li + I − ε · c. If not then set l := l − ε · c

end
Return {T ′1, T ′2, T ′3}.

Now, using Metropolis algorithm to decide whether the proposal state should be

accepted or rejected.

Algorithm 7: Metropolis-Hastings algorithm

Input: Input: Current set of equidistant trees {T1, T2, T3} and the proposal
state, {T ′1, T ′2, T ′3}. The sample of ultrametrics S = {d1, . . . dn}.

Output: Output: Decision whether we should accept the proposal or not.
Compute ultrametrics u1, u2, u3, from T1, T2, T3, respectively;
Compute ultrametrics v1, v2, v3, from T ′1, T

′
2, T

′
3, respectively;

Compute ΠΦu1,u2,u3
(S) and ΠΦv1,v2,v3

(S);

Set p = min{1,ΠΦu1,u2,u3
(S)/ΠΦv1,v2,v3

(S)};
Accept a proposal {T ′1, T ′2, T ′3} with probability p. If not then stay at the
current state {T1, T2, T3}.

With Algorithms 6 and 7, we have the following MCMC algorithm.

Copyright c© Qiwen Kang, 2019.
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Algorithm 8: MCMC algorithm to estimate the second order principal com-
ponents

Input: Input: Sample of equidistant trees {T1, . . . , Tn}. Constant positive
integer C > 0.

Input: Output: Second order principal components {T ∗1 , T ∗2 , T ∗3 }.
Set S := {d1, . . . , dn} where di is the ultrametrics computed from a tree Ti,
for i = 1, . . . , n;

Pick random trees {T 1
0 , T

2
0 , T

3
0 } ⊂ {T1, . . . , Tn};

Compute ultrametrics u∗1, u
∗
2, u
∗
3, from T 1

0 , T
2
0 , T

3
0 , respectively;

Set k = m, where m is the number of leaves;
Set i = 1;
while not converge do

if i mod C equals zero and k > 0 then
Set k = k − 1.

end
Compute the proposal {T 1

1 , T
2
1 , T

3
1 } via Algorithm 6 with {T 1

0 , T
2
0 , T

3
0 }

and k;
Set ultrametrics u1, u2, u3, from T 1

1 , T
2
1 , T

3
1 , respectively;

if Algorithm 7 returns “accept′′ then
Set T 1

0 = T 1
1 , T 2

0 = T 2
1 , and T 3

0 = T 3
1

end
if ΠΦu1,u2,u3

(S) < ΠΦu∗1,u
∗
2,u

∗
3
(S) then

Set u∗1 := u1, u
∗
2 := u2, u

∗
3 := u3

end
Set i = i+ 1

end
Return the ultrametrics u∗1, u

∗
2, u
∗
3.
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Appendix A: Code for Chapter 2

# D e s c r i p t i o n

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# In t h i s s c r i p t , we j u s t i n c l u d e our CURatio f u n c t i o n s

# The f i r s t one ”CURatio” i s f o r c a l c u l a t i n g CURatios .

# The second one i s f o r the case when we have mult i−

r e p r e s e n t a t i v e s

# of one gene . The ” dup l ” f u n c t i o n cou ld d u p l i c a t e the a

s p a c i f i c gene

# in a g iven s p e c i e s t r e e .

CURatio <− function ( stdTree ){

l ibrary ( ape )

l ibrary ( phangorn )

# In t h i s part , we d e f i n e some v a r i a b l e s to save the v a l u e

b <− c ( ) # I t i s the sum of branch l e n g t h o f the t r e e

wi thou t a consensus t r e e .

# You can change the t o p o l o g y o f the t r e e .

B <− c ( ) # I t i s the sum of branch l e n g t h o f the t r e e wi th

a consensus t r e e .

# You cannot change the t o p o l o g y o f the t r e e .

d i s t <− c ( ) # I t i s the Robinson−Foulds d i s t a n c e

output <− c ( ) # This i s the r a t i o s

f i l e L i s t N e w <− c ( ) # This i s the new name l i s t to save the

name we need .

# Since we want to remove the
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# Given a consensus tree , t h i s s tdTree i s g e t t e d from the

user .

# Since the t r e e have no branch l e n g t h s , so we c a l c u l a t e

the branch l e n g t h s

# us ing Grafen ’ s method ( Grafen , 1989) .

stan . t r e e <− compute . b r l en ( stdTree )

# The t i p l a b e l s o f the consensus t r e e

stan . name <− Tree$ t i p . l a b e l

# Reading data s e t from the current work s t a t i o n

f i l e L i s t <− l i s t . f i l e s (path=’ . ’ , pat te rn=’ . f a s t a ’ )

# From here , we beg in our f o r loop , read ing each DNA

sequence i n t o RAM

# and c a l c u l a t i n g the r a t i o s .

for ( i in 1 : length ( f i l e L i s t ) ){

# Reading the DNA sequence i n t o RAM

data . l i s t <− read . phyDat ( f i l e=f i l e L i s t [ [ i ] ] , format=’ f a s t a

’ , type=’DNA’ )

# Since we want to change the name o f the t i p l a b e l s

s p l i t V a l u e <− sapply (names(data . l i s t ) [ 1 : length (data . l i s t )

] , function ( x ) s t r sp l i t (x , ” | ” , f i x e d=T) )

nameValue <− lapply ( sp l i tVa lue , function ( x ) x [ 1 ] )

names(data . l i s t ) <− unlist ( nameValue )

# We s e p a r a t e the DNA sequence i n t o 3 d i f f e r e n t cases :

<5, 5˜11 , 12.

i f (5 <= length (data . l i s t ) && length (data . l i s t ) < 12){

# STEP 1: C a l c u l a t i n g the sum of branch l e n g t h s o f the

t r e e wi thou t consensus t r e e
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# Computing p a i r w i s e d i s t a n c e s f o r an o b j e c t o f c l a s s

phyDat .

dm <− d i s t . hamming(data . l i s t )

# Performing the neighbor−j o i n i n g t r e e e s t i m a t i o n o f

Sai tou and Nei (1987) .

treeNJ <− NJ(dm)

# Computing the l i k e l i h o o d o f a p h y l o g e n e t i c t r e e g iven

a sequence a l ignment and a model .

f i t <− pml ( treeNJ , data . l i s t )

# Optimiz ing the d i f f e r e n t model parameters .

t r e e F i t <− optim . pml ( f i t , optNni=TRUE, model=”JC” )

#

b [ i ] <− sum( t r e e F i t $ t r e e $edge . length )

# STEP 2: C a l c u l a t i n g the sum of branch l e n g t h s o f the

t r e e wi th consensus t r e e

# I f the number o f t i p s i s l e s s than 12 , we need to

remove some o f the miss ing

# t i p s from the consensus t r e e .

data . name <− attr (data . l i s t , ’ names ’ )

index <− which( stan . name%in%data . name)

remove . name <− stan . name[−index ]

t r e e .new <− drop . t i p ( stan . t ree , remove . name)

# Computing the l i k e l i h o o d o f a p h y l o g e n e t i c t r e e g iven

a sequence a l ignment and a model .

f i t 2 <− pml ( t r e e .new , data . l i s t )

# Optimiz ing the d i f f e r e n t model parameters .

t r e e F i t 2 <− optim . pml ( f i t 2 , optNni=FALSE, model=”JC” ) #

## MLE t r e e under the JC model wi th c o n s t r a i n t
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#

B[ i ] <− sum( t r e e F i t 2 $ t r e e $edge . length )

# We c a l c u l a t e the Robinson−Foulds d i s t a n c e to compare

the two t r e e s

d i s t [ i ] <− RF. d i s t ( t r e e F i t $ t ree , t r e e F i t 2 $ t r e e )

# We keep a l l the new names o f the DNA sequences

f i l e L i s t N e w [ i ] <− paste ( unlist ( s t r sp l i t ( f i l e L i s t [ i ] , ”−

wg” ) ) [ 1 ] , unlist ( s t r sp l i t ( f i l e L i s t [ i ] , ”−wg” ) ) [ 2 ] , sep=

’ ’ )

# C a l c u l a t i n g the r a t i o s

output [ i ] <− B[ i ] /b [ i ]

} else i f ( length (data . l i s t ) == 12){

# Here , we do the same work . But the case i s when the

number o f

# tree ’ s t i p s i s e q u a l to 12.

# STEP 1

dm <− d i s t . hamming(data . l i s t )

treeNJ <− NJ(dm)

f i t <− pml ( treeNJ , data . l i s t )

t r e e F i t <− optim . pml ( f i t , optNni=TRUE, model=”JC” )

b [ i ] <− sum( t r e e F i t $ t r e e $edge . length )

# STEP 2

f i t 2 <− pml ( stan . t ree , data . l i s t )

t r e e F i t 2 <− optim . pml ( f i t 2 , optNni=FALSE, model=”JC” ) #

## MLE t r e e under the JC model wi th c o n s t r a i n t

B[ i ] <− sum( t r e e F i t 2 $ t r e e $edge . length )
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d i s t [ i ] <− RF. d i s t ( t r e e F i t $ t ree , t r e e F i t 2 $ t r e e )

f i l e L i s t N e w [ i ] <− paste ( unlist ( s t r sp l i t ( f i l e L i s t [ i ] , ”−

wg” ) ) [ 1 ] , unlist ( s t r sp l i t ( f i l e L i s t [ i ] , ”−wg” ) ) [ 2 ] , sep=

’ ’ )

#OUTPUT

output [ i ] <− B[ i ] /b [ i ]

} else next

}

# Since the numbers o f some o f the t r e e s ’ s t i p s are l e s s

than 5 , so we g e t some

# NA v a l u e in our data s e t . We use ” p o s i t i o n ” to mark the

p o s i t i o n .

p o s i t i o n <− i s . na( output )

# We remove the NA v a l u e from the data s e t .

r e s u l t . mix <− data . frame ( f i l e L i s t N e w [ ! p o s i t i o n ] , output [ !

p o s i t i o n ] , d i s t [ ! p o s i t i o n ] , s t r i ng sAsFac to r s=FALSE)

# We return the f i n a l dataframe data s e t a t l a s t .

return ( r e s u l t . mix )

}

dupl <− function ( t i p l abe l , consen path ){

# t i p l a b e l : The t i p l a b l e you want to d u p l i c a t e

# consen path : The d i r e c t o r y o f your consensus t r e e .

i f ( require ( ape ) ){

dupl text <− readLines ( consen path )

i f ( g r ep l ( t i p l abe l , dupl text ) ){

new pattern <− paste ( ” ( ” , t i p l abe l , ” , ” , t i p l abe l , ” ) ” ,

sep = ”” )
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new lines <− gsub ( t i p l abe l ,new pattern , dupl text )

conTree <− read . t r e e ( text = new lines )

return ( conTree )

}

else {

warning ( ”No t i p l a b e l matched in the t r e e . ” )

}

}

else {

warning ( ” This func t i on r e q u i r e s ’ ape ’ package . ” )

}

}

##### O u t l i e r group DNA g e n e r a t i n g

##### Qiwen Kang

# Functions

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# The f i r s t two f u n c t i o n s are f o r s i m u l a t i n g the DNA

a l i g m e n t s

p r i n t f <− function ( . . . ) invis ib le ( print ( s p r i n t f ( . . . ) ) )

mdk <− function (path ){

f i l eNames <− l i s t . f i l e s (path )

gene1 <− read . nexus ( paste (path , f i l eNames [ 1 ] , sep=”” ) )

for ( i in 1 :6000) {

gene1 [ [ i ] ] $edge . length <− gene1 [ [ i ] ] $edge . length/sum(

gene1 [ [ i ] ] $edge . length )
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wt1 <− p r i n t f ( paste (path , ” o u t l i e r%d . t r e ” , sep = ”” ) , i )

write . t r e e ( gene1 [ [ i ] ] , wt1 , append = FALSE, d i g i t s = 4)

comd <− p r i n t f ( ” . /run paml JC %s > jnk2 ” , wt1 )

system (comd)

}

}

# These two f u n c t i o n s are f o r c a l c u l a t i n g CURatio

sevenJC<−function ( spTree , f i l e D i r ){

#### The sum of branch l e n g t h o f each t r e e

b <− rep (NA,6000 )

B <− rep (NA,6000 )

output <− rep (NA,6000 )

stan . t r e e <− compute . b r l en ( spTree )

f i l e L i s t <− l i s t . f i l e s (path=f i l e D i r , patte rn = ” . phy l ip ” )

#### C a l c u l a t i n g the r a t i o

for ( i in 1 :6000) {

workDir<−paste ( f i l e D i r , f i l e L i s t [ [ i ] ] , sep=”” )

# STEP 1

# Reading the o r i g i n a l t ree , we a l s o need to c l ean the

name value , i t

# i s k ind o f messy

dataOri<−read . dna ( workDir )

data <− as . l i s t ( dataOri )

data$aa <− as . l i s t ( dataOri )$a

data$ee <− as . l i s t ( dataOri )$e

data . l i s t<−phyDat (data , type=’DNA’ )
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# STEP 2

# Reading the MLE t r e e

dm<−d i s t . hamming(data . l i s t )

treeNJ<−NJ(dm)

f i t<− pml ( treeNJ , data . l i s t )

treeJC <− optim . pml ( f i t , optNni=TRUE, model=”JC” )

b [ i ]<−sum( treeJC$ t r e e $edge . length )

# STEP 3

f i t 2<− pml ( stan . t ree , data . l i s t )

f i t . opt<− optim . pml ( f i t 2 , optNni=FALSE, model=”JC” ) ###

MLE t r e e under the JC model wi th c o n s t r a i n t

B[ i ]<−sum( f i t . opt$ t r e e $edge . length )

#OUTPUT

output [ i ]<−B[ i ] /b [ i ]

}

return ( output )

}

sevenJC out<−function ( spTree , f i l e D i r ){

#### The sum of branch l e n g t h o f each t r e e

b <− rep (NA,6000 )

B <− rep (NA,6000 )

output <− rep (NA,6000 )

stan . t r e e <− compute . b r l en ( spTree )

f i l e L i s t <− l i s t . f i l e s (path=f i l e D i r , patte rn = ” .

phy l ip ” )

#### C a l c u l a t i n g the r a t i o

53



for ( i in 1 :6000) {

workDir<−paste ( f i l e D i r , f i l e L i s t [ [ i ] ] , sep=”” )

# STEP 1

# Reading the o r i g i n a l t ree , we a l s o need to

c l ean the name value , i t

# i s k ind o f messy

dataOri<−read . dna ( workDir )

data <− as . l i s t ( dataOri )

data$aa <− as . l i s t ( dataOri )$e

data$ee <− as . l i s t ( dataOri )$e

data$e <− as . l i s t ( dataOri )$a

data . l i s t<−phyDat (data , type=’DNA’ )

# STEP 2

# Reading the MLE t r e e

dm<−d i s t . hamming(data . l i s t )

treeNJ<−NJ(dm)

f i t<− pml ( treeNJ , data . l i s t )

treeJC <− optim . pml ( f i t , optNni=TRUE, model=”

JC” )

b [ i ]<−sum( treeJC$ t r e e $edge . length )

# STEP 3

f i t 2<− pml ( stan . t ree , data . l i s t )

f i t . opt<− optim . pml ( f i t 2 , optNni=FALSE, model

=”JC” ) ### MLE t r e e under the JC model

wi th c o n s t r a i n t

B[ i ]<−sum( f i t . opt$ t r e e $edge . length )

#OUTPUT
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output [ i ]<−B[ i ] /b [ i ]

}

return ( output )

}

# S e t t i n g up

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

l ibrary ( ape )

l ibrary ( phangorn )

setwd ( ”˜/ r/180116 sevenLeaves/” )

# Creat ing DNA al ignment ( Jus t running 1 time )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

path non <− ” . /data2/non o u t l i e r /”

path out <− ” . /data2/out/”

# mdk( path non )

# mdk( path out )

# C a l c u l a t i n g CURatio

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

s p e c i e s <− unroot ( read . nexus ( ” . /data2/sp30 . nex” ) [ [ 3 0 ] ] )

# Non o u t l i e r wi th in−p a r a l o g s

output non <− sevenJC ( spe c i e s , path non )

f i l e L i s t <− l i s t . f i l e s (path=path non , pattern = ” . phy l ip ” )
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r e s u l t . mix1<−data . frame ( f i l e L i s t , output non , s t r i ng sAsFac to r s=

FALSE)

colnames ( r e s u l t . mix1 )<−c ( ’Names ’ , ’ Ratio ’ )

write . table ( r e s u l t . mix1 , paste (path non , ’ Ratio non . txt ’ , sep=””

) , sep=’\ t ’ )

# out p a r a l o g s

output out <− sevenJC out ( spe c i e s , path non )

f i l e L i s t 2 <− l i s t . f i l e s (path=path non , pattern = ” . phy l ip ” )

r e s u l t . mix2<−data . frame ( f i l e L i s t 2 , output out , s t r i ng sAsFac to r s

=FALSE)

colnames ( r e s u l t . mix2 )<−c ( ’Names ’ , ’ Ratio ’ )

write . table ( r e s u l t . mix2 , paste (path non , ’ Ratio out . txt ’ , sep=””

) , sep=’\ t ’ )

non <− read . table ( ” . /data2/non o u t l i e r /Ratio non . txt ” )

out <− read . table ( ” . /data2/non o u t l i e r /Ratio out . txt ” )

non [ , ”Group” ] <− ”Non o u t l i e r ”

out [ , ”Group” ] <− ”Out para log ”

treeOne <− rbind ( non , out )

require ( ggp lot2 )

jpeg ( f i l ename = paste ( workDir , ’ TreeOne ’ , cValue , ’ . png ’ , sep=”” )

, width = 400 , he ight = 300)

picOne <− ggp lot ( treeOne , aes ( Ratio , f i l l = Group ) )+

geom histogram (data = subset ( treeOne , Group == ’Non

o u t l i e r ’ ) , alpha = 0 . 2 , binwidth = 0 . 05 )+

geom histogram (data = subset ( treeOne , Group == ’Out

para log ’ ) , alpha = 0 . 2 , binwidth = 0 . 05 )+

theme ( plot . t i t l e = element text ( h ju s t = 0 . 5 ) )+
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scale f i l l manual ( va lue s = c ( ” red ” , ” blue ” ) )+

xlim ( c ( 0 . 9 , 2 . 5 ) )+

ylab ( ”Count” )+

g g t i t l e ( ’ Histogram of Rat ios ’ )

print ( picOne )

dev . of f ( )
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Appendix B: Code for Chapter 3

#’ Trop ica l MCMC

#’

#’ @param d i s t V e c t a l l

#’ Al l o f the d i s t anc e ve c t o r s .

#’ @param N

#’ Number o f po in t s in t r o p i c a l space .

#’ @param pcs

#’ Number o f p r i c i n p a l components

#’ @param nr

#’ Number o f repeat t imes .

#’ @param env

#’ Parameter f o r changing environment .

#’ @return

#’ @export

#’

#’ @examples

tropMCMC <− f unc t i on ( d i s t V e c t a l l , N, pcs , nr = 2 , env = .

GlobalEnv ){

env$sumValues <− rep (NA, nr )

env$comb l i s t <− l i s t ( )

D a l l <− matrix ( u n l i s t ( d i s t V e c a l l ) , nco l=N)

f o r ( j in 1 : nr ){

s a m p l e i n i t <− sample (N, pcs )

bes t <− 100000

out <− c ( 1 :N) [− s a m p l e i n i t ]
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p c b a s e i n i t <− D a l l [ , s a m p l e i n i t ]

i n i t v a l u e <− tropDistSum ( p c b a s e i n i t , d i s t V e c a l l )

whi l e ( l ength ( out ) !=0){

change ind <− sample ( pcs , 1 )

out change <− sample ( out , 1)

comb set <− c ( s a m p l e i n i t [− change ind ] , out change )

new base <− D a l l [ , comb set ]

update va lue <− tropDistSum ( new base , d i s t V e c a l l )

r <− i n i t v a l u e / update va lue

i f ( r u n i f (1 ) < min( r , 1) ){

s a m p l e i n i t <− comb set

best <− i f e l s e ( update va lue < best , update value ,

bes t )

}

out <− out [−which ( out==out change ) ]

i n i t v a l u e <− update va lue

}

env$comb l i s t [ [ j ] ] <− s a m p l e i n i t

env$sumValues [ j ] <− best

}

min index <− which ( sumValues==min( sumValues ) )

re turn ( comb l i s t [ [ min index ] ] )

}

#’ Distance matrix
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#’

#’ @param t r e e s

#’ Phylogeny t r e e s

#’ @param tipOrder

#’ The names o f t i p l a b e l . You co ld g ive an order to them .

#’ @descr ip t ion

#’ This func t i on i s to get the d i s t ance vec to r o f a phylogeny

t r e e in t r o p i c a l space

#’ @return

#’ @export

#’

#’ @examples

. vec fun<−f unc t i on ( x ){

m<−dim( x ) [ 1 ]

vecTreesVec<−rep (NA, choose (m, 2 ) )

f o r ( row .num in 1 : (m−1) ){

f o r ( c o l .num in ( row .num+1) :m){

vecTreesVec [ c o l . num−row .num+(m−1+(m−1−row .num+2) ) ∗( row .

num−1)/2]<−x [ row .num, c o l .num]

}

}

vecTreesVec

}

distMat <− f unc t i on ( t r e e s , t ipOrder ){ # Here t r e e s should be

a l i s t

i f ( c l a s s ( t r e e s )==”multiPhylo ”){

t r e e s r o o t <− root ( t r e e s , outgroup = tipOrder [ 1 ] , r e s o l v e .

root=TRUE)
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chronot r e e s <− parLapply ( c l , t r e e s r o o t , chronos )

d i s t c h r o n o <− parLapply ( c l , chronotrees , cophenet i c )

d i s t o r d e r e d <− parLapply ( c l , d i s t chrono , f unc t i on ( x ) x [

t ipOrder , t ipOrder ] )

d i s t V e c a l l <− parLapply ( c l , d i s t o rde r ed , . vec fun )

# chronot r e e s <− l app ly ( t r e e s r o o t , chronos )

# d i s t c h r o n o <− l app ly ( chronotrees , cophenet i c )

#

# d i s t o r d e r e d <− l app ly ( d i s t chrono , f unc t i on ( x ) x [

t ipOrder , t ipOrder ] )

# d i s t V e c a l l <− l app ly ( d i s t o rde r ed , vec fun )

} e l s e {

treeOne <− root ( t r e e s , outgroup = tipOrder [ 1 ] , r e s o l v e .

root=TRUE)

chronoTree <− chronos ( treeOne )

d i s t ch rono one <− cophenet i c ( chronoTree )

d i s t o r d e r e d o n e <− d i s t ch rono one [ t ipOrder , t ipOrder ]

d i s t V e c a l l <− vec fun ( d i s t o r d e r e d o n e )

}

r e turn ( d i s t V e c a l l )

}

#’ Por jec ted po in t s

#’

61



#’ @param D s The d i s t ance matrix used to bu i ld t r o p i c a l

space

#’ @param D Distance vec to r ( matrix )

#’

#’ @return

#’ @export

#’

#’ @examples

p r o j e c t p i<−f unc t i on ( D s ,D){

i f ( i s . n u l l ( dim( D s ) ) ){

lambda <− min(D − D s )

pi D <− c ( t ( lambda + t ( D s ) ) )

} e l s e {

lambda <− apply (D − D s , 2 , min )#D s by row

pi D <− apply ( t ( lambda + t ( D s ) ) ,1 ,max)

}

# pi D <− i f e l s e ( rep ( i s . n u l l ( dim( D s ) ) ,28) , c ( t (min (D − D s

) + t ( D s ) ) ) , apply ( t ( apply (D − D s , 2 , min ) + t ( D s ) )

,1 ,max) )

# pi D <− i f e l s e ( rep ( i s . n u l l ( dim( D s ) ) ,28) , c ( t (min (D [ [ 1 ] ]

− D s ) + t ( D s ) ) ) , apply ( t ( apply (D [ [ 1 ] ] − D s , 2 , min )

+ t ( D s ) ) ,1 ,max) )

re turn ( pi D )

}

#’ The sum of t r o p i c a l d i s t ance o f mu l t ip l e t r e e s

#’

62



#’ @param pc base

#’ Three d i sntance ve to r s used to bu i ld t r o p i c a l space

#’ @param d i s t V e c a l l

#’ Al l o f the d i s t anc e ve c t o r s .

#’ @return

#’ @export

#’

#’ @examples

tropDistSum <− f unc t i on ( pc base , d i s t V e c a l l ){

p r o j p o i n t s <− parLapply ( c l , d i s t V e c a l l , p r o j e c t p i , D s

= pc base )

t r o p i c a l d i s t v e c <− mapply ( t r o p i c a l d i s t , d i s t V e c a l l ,

p r o j p o i n t s )

sum dist <− sum( t r o p i c a l d i s t v e c )

re turn ( sum dist )

}

#’ Trop ica l d i s t anc e between two t r e e s .

#’

#’

#’ @descr ip t ion

#’ func t i on to get t r o p i c a l d i s t anc e o f two po in t s

#’ @export

#’

#’ @examples

t r o p i c a l d i s t <−f unc t i on ( D 1 , D 2 ){
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e <− l ength ( D 1 )

t d i s t <− 0

f o r ( i in 1 : ( e−1) ){

f o r ( j in ( i +1) : e ){

i f ( abs ( D 1 [ i ]−D 2 [ i ]−D 1 [ j ]+D 2 [ j ] )> t d i s t ){

t d i s t<−abs ( D 1 [ i ]−D 2 [ i ]−D 1 [ j ]+D 2 [ j ] )

}

}

}

t d i s t

}
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[1] Marianne Akian, Stéphane Gaubert, Viorel Nitica, and Ivan Singer. Best ap-

proximation in max-plus semimodules. arXiv preprint arXiv:1012.5492, 2010.

[2] Federico Ardila and Carly Klivans. The bergman complex of a matroid and

phylogenetic trees. arXiv preprint math/0311370, 2003.

[3] R. Betancur, C. Li, T.A. Munroe, J.A. Ballesteros, and G. Ort́ı. Address-

ing gene tree discordance and non-stationarity to resolve a multi-locus phy-

logeny of the flatfishes (Teleostei: Pleuronectiformes). Systematic Biology, page

doi:10.1093/sysbio/syt039, 2013.

[4] Louis J Billera, Susan P Holmes, and Karen Vogtmann. Geometry of the space

of phylogenetic trees. Advances in Applied Mathematics, 27(4):733–767, 2001.

[5] J.P. Bollback and J.P. Huelsenbeck. Parallel genetic evolution within and

between bacteriophage species of varying degrees of divergence. Genetics,

181(1):225–234, 2009.

[6] P. Brito and S. Edwards. Multilocus phylogeography and phylogenetics using

sequence-based markers. Genetica, 135:439–455, 2009.

[7] B.L. Cantarel, I. Korf, S.M.C. Robb, G. Parra, E. Ross, B. Moore, C. Holt, A.S.

Alvarado, and M. Yandell. MAKER: an easy-to-use annotation pipeline designed

for emerging model organism genomes. Genome research, 18(1):188–196, 2008.

[8] M. Carling and R. Brumfield. Integrating phylogenetic and population ge-

netic analyses of multiple loci to test species divergence hypotheses in passerina

buntings. Genetics, 178:363–377, 2008.

[9] B. C. Carstens and L. L. Knowles. Estimating species phylogeny from gene-tree

probabilities despite incomplete lineage sorting: an example from Melanoplus

grasshoppers. Syst. Biol., 56:400–411, 2007.

65



[10] Luigi L Cavalli-Sforza and Anthony WF Edwards. Phylogenetic analysis: models

and estimation procedures. Evolution, 21(3):550–570, 1967.
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