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ABSTRACT OF DISSERTATION

A Flexible Zero-Inflated Poisson Regression Model

A practical problem often encountered with observed count data is the presence of ex-

cess zeros. Zero-inflation in count data can easily be handled by zero-inflated models,

which is a two-component mixture of a point mass at zero and a discrete distribu-

tion for the count data. In the presence of predictors, zero-inflated Poisson (ZIP)

regression models are, perhaps, the most commonly used. However, the fully para-

metric ZIP regression model could sometimes be restrictive, especially with respect

to the mixing proportions. Taking inspiration from some of the recent literature on

semiparametric mixtures of regressions models for flexible mixture modeling, we pro-

pose a semiparametric ZIP regression model. We present an “EM-like” algorithm

for estimation and a summary of asymptotic properties of the estimators. The pro-

posed semiparametric models are then applied to a data set involving clandestine

methamphetamine laboratories and Alzheimer’s disease.
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Chapter 1 Introduction to Zero-Inflated Models

1.1 Introduction

Poisson and negative binomial (NB) regression models are two of the most common

models for count data. However, the behavior of the zero counts in the observed data

may create difficulties for these models. For example, zero counts may be impossible,

which is known as zero-truncation [1]. Or, the zero and non-zero counts may be gen-

erated through differerent processes, for which hurdle models are commonly employed

[2]. Moreover, observed data may exhibit zero-inflation, which is when the observed

data have excessive zeros relative to the assumed count distribution. Mathematically,

zero-inflated (ZI) models are two-component mixtures of a point mass at zero and a

count distribution. The seminal paper by [3] is among the earliest works to develop

ZI regression models in the prescence of covariates. In that paper, the ZI Poisson

(ZIP) regression model is introduced and applied to model the number of defects in

a soldered switchboard. The two components (degenerate and count) are interpreted

as a perfect state where defects are impossible, and an imperfect state where defects

are possible, respectively.

ZI regression models are heavily utilized across various disciplines, including ecol-

ogy. For example, [4] analyzed avian abundance by ZI regression models, while dis-

cussing how zeros arise in an ecological dataset. In detail, the authors define true

zero counts and false zero counts, which are the zeros from the degenerate and count

component, respectively. A true zero count may arise because the species does not

occur at the site, while a false zero count may arise because the species occurs at a

site, but is not present during the survey period or the observer failed to detect it.

Other ecological applications of ZI regression in fish abundance and vulnerable plant

species abundance can be seen in [5] and [6], respectively. The general importance of

ZI regression models in ecology is also emphasized in Chapter 11 of [7].

Another discipline where ZI regression models are frequently employed is insur-

ance. [8] paralleled the notion of strategic and incidental zeros to the perfect and

imperfect states introduced in [3]. For instance, in determining the health policy of a

(potential) policyholder, the number of physician visits can be an indication of overall

health and, thus, affect the level of policy coverage. [8] noted that when modeling

the number of physician visits, a person might have zero visits during a time period

(or exposure) because they follow alternative medicine and never visit a physician
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(strategic zero), or because they were healthy during the time period and had no

reason to visit a physician (incidental zero). [9] noted similar states with how zeros

in the no claim discount (NCD) system, which is widely used by automobile insurers.

Policyholders could have zero claims either because they typically will not file the

claim if it doesn’t meet the deductible (strategic zero), or because they simply did

not have any issues regarding their automobile (incidental zero). Similar analyses

involving ZI regression modeling for risk classification of claim counts are performed

in [10, 11, 12].

While ecology and insurance are two fields where ZI regression models are com-

monly used, the utility of such models has been demonstrated with numerous other

diverse applications. Examples highlighting the broad range of interesting applica-

tions using ZI regression models include the development of a functional relationship

between truck accidents and the geometric design of road sections [13], an analysis

of economists seeking academic interviews after tenure denial [14], a study about the

effects of cigarette price change on smoking behavior [15], the assessment of dental

cavities in low birth weight adolescents [16], and development of a set of models to

characterize the on-going quality of census frames in preparation for the 2020 United

States Census [17].

The rest of this chapter is organized as follows: Section 1.2 defines the zero-inflated

mass function along with the zero-inflated regression model. In the framework of

[3], Section 1.3 provides a formal discussion of the ZI count regression model with

emphasis on the two most commonly assumed discrete distributions for the count

component - the Poisson and negative binomial distributions. In this section, es-

timation and inference is discussed from a frequentist perspective in greater detail.

Section 1.4 discusses Bayesian ZI regression models and Bayesian diagnostic devel-

opments. Section 1.5 reviews software in SAS and R for fitting ZI regression models.

Section 1.6 provides an example of several count regression and ZI regression fits on

an auto insurance data set, along with model comparisons and diagnostics. Section

1.7 discusses zero-inflation in the context of modeling with non-standard discrete

distributions when data dispersion is present. Section 1.8 highlights developments

of analyzing correlated (or clustered) ZI counts, such as longitudinal data and time

series data. Section 1.9 briefly discusses multivariate ZI regression models and their

applications. Section 1.10 discusses models that are related to ZI regression mod-

els, such as zero-truncated and hurdle models. Section 1.11 examines different ZI

regression models applied to a unwanted pursuit behavior data set. Finally, Section

1.12 is an appendix where the ECM algorithm for ZI negative binomial regression

2



is presented, as well as JAGS and R code for estimation of a Bayesian ZIP regression

model.

1.2 Traditional ZI Models

Let the discrete random variable Y ∈ N be a count of interest; e.g., length of stay

in the hospital [18], the counts of trees in a forest using grid-cell data [19], or the

number of added or deleted housing units in a census block [17]. Moreover, let C be

a latent class indicator such that the conditional distribution

Y |C = c ∼

p(y;µ,ϑ) c = 0

0 c = 1
.

Here, p(y;µ,ϑ) is a mass function on N with mean µ, and ϑ pertains to any additional

(possibly nuissance) parameters, such as the heterogeneity parameter in negative

binomial regression. Now, C is unobservable, and so we seek to model the marginal

distribution of Y . The marginal distribution of Y is

fY (y;µ,ϑ) = P(C = 1)P(Y = y|C = 1) + P(C = 0)P(Y = y|C = 0)

= π I{y = 0}+ (1− π)p(y;µ,ϑ),
(1.1)

where π = P(C = 1). The quantity π is called the mixing proportion, latent class

probability, or more commonly, the zero-inflation probability. The mass function in

Equation 1.1 is called the ZI mass function with count distribution p(·), which is a

mixture of a degerate distribution at zero and a count distribution. So, if there is

a positive count, then that observation must come from p(·). But, a observed zero

could come from the degenerative state or a random zero observed from p(·). In

interpretation, suppose Y is the amount of times a individual visited a doctor in a

calender year. If a patient had no medical issues in a calender year, that zero is more

likely to be from the degenerative state since that patient is not at risk. On the other

hand, a patient could have zero doctor visits even though they were at risk, i.e. had

health ailments, but didn’t want to pay the bill to go to the doctor, or they were

on an alternative medicine plan. This observed zero is more likely to a random zero

from the count component p(·).
The extension to ZI regression is analagous to that of generalized linear models

(GLM). Suppose that X ∈ Rp and W ∈ Rq are vectors of covariates measured

with the response Y . Let x, w, and y be, respectively, the realizations of those
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variables. Suppose the mean function for the count component can be related to x

by g(µ) = xTβ for some link function g(·), and the zero-inflation probabilities are

related to covariates through h(π) = wTα via the link function h(·). Typically, g(·) is

taken as the log link, and h(·) is taken to be the logit link. Also, the count of interest

is sometimes measured in terms of its exposure, N . Assuming a log-link implies

log(µ) = log(N) + xTβ, (1.2)

where log(N) appears as an offset term in the right-hand side of the above ex-

pression. For the remainder of this chapter, we’ll write π(α) = h−1(wTα) and

µ(β) = g−1(xTβ) to denote the zero-inflation probabilities and mean of the count

distribution, respectively.

The ZI Regression model then can be written as the two-component mixture

model

Y |X = x,W = w ∼ π(α)I{y = 0}+ (1− π(α))p(y;µ(β),ϑ). (1.3)

Note that the predictors w may be uncoupled from those predictors in x. Lastly, it

is typical to assume that µ(β) and π(α) are not functionally related, although this

need not be the case [3].

1.3 Estimation and Inference

The most common count distributions used in ZI regression models [3, 20, 21] are the

Poisson, which has pmf

p(y;µ) = (y!)−1µye−µ µ > 0, (1.4)

and the negative binomial, which employing the gamma-Poisson (mixture) represen-

tation, has pmf

p(y;µ, θ) =
Γ(θ + y)

y!Γ(θ)

( µ

θ + µ

)y( θ

θ + µ

)θ
(µ, θ > 0), (1.5)

where µ is the mean and θ is called the heterogeneity or dispersion parameter. Here,

Γ(·) denotes the Gamma function

Γ(t) =

∫ ∞
0

xt−1e−tdx.
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The Poisson model assumes equidispersion, i.e. the mean and variance are equal.

This strong assumption however, is often violated in practice. On the other hand,

it can be shown that the negative binomial (NB) distribution has mean E(Y ) = µ

and variance Var(Y ) = µ + µ2θ. Thus, the variance increases quadratically with

the mean, and so the negative binomial distribution is often used to model data

that exhibit overdispersion; i.e. as the mean of the count distribution increases, the

variance increases at a faster rate than the mean. A visual representation of Poisson

equdispersion and NB overdispersion can be seen in Figure 1.1.
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Figure 1.1: Equadispersion (left) versus Overdispersion (right)

In the negative binomial pmf, the heterogeneity parameter θ is usually assummed

constant, but could be modeled as a function of covariates if there is overdispersion

or underdispersion relative to the negative binomial regression model; see Chapter

7.5 of [22].

Suppose we have a sample size of n. The pmfs in (1.3) and (1.4) can be extended

to the Poisson regression pmf and negative binomial pmf by modeling log(µi) = xT
i β,

or equivalently, µi(β) = exp(xT
i β). We’ll assume the mixing proportions can be

modeled as logit(πi) = wT
i α, or equivalently, πi(α) = logit−1(wT

i α). Then, using the

ZI count regression pmf in (1.3), it follows that the ZIP regression log-likelihood is

`1(β,α;y) =
∑
yi=0

log
(
πi(α) + (1− πi(α)) exp{µi(β)}

)
+
∑
yi>0

[
log(1− πi(α))− µi(β) + yi log(µi(β))− log(y!)

]
,

(1.6)
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and the ZINB regression log-likelihood is

`2(β,α, θ;y) =
∑
yi=0

log

(
πi(α) + (1− πi(α))

( θ

θ + µi(β)

)θ)
+
∑
yi>0

[
log(1− πi(α)) + log(Γ(θ + yi))− log(Γ(θ))− log(yi!)

+ yi log(µi(β)) + θ log(θ)− (θ + yi) log(θ + µi(β))
]
,

(1.7)

where y = (y1, . . . , yn)T. Note that the ZI Geometric (ZIG) regression model is a

special case of the ZINB regression model when θ = 1, which has been discussed in

detail by [23]. Also, if the response has an upper bounded count, then a ZI binomial

(ZIB) regression model is easily obtained; see [24].

Maximum likelihood estimation for ZIP and ZINB regression models has been

thoroughly treated in [3] and [22], respectively. Under typical regularity conditions,

the asymptotic distribution of the maximum likelihood estimates (MLEs) is, of course,

multivariate normal. While closed forms solutions for the MLEs do not exist, they are

easily obtained using numerical methods. Moreover, [3] and [25] provide the formulas

for the gradients and second derivatives, which can then be used for computing the

observed information matrix for standard errors.

EM Algorithms

Newton-Raphson algorithms are one of the most frequently utilized method for cal-

culating the ZIP and ZINB regression MLEs. The Newton-Raphson algorithm, when

it converges, is typically faster than the Expectation-Maximization (EM) algorithm.

However, EM algorithms are quite easy to code and take advantage of the mixture

structure of ZI regression models by iteratively fitting weighted versions of simpler

GLMs [26].

EM algorithms seek MLEs of parameters in statistical models where the model

depends on latent (or unobserved) random variables [27]. In the case of ZI regression,

the latent variable is the degerate or count component class membership for the ith

observation. A summary of the EM Algorithm is as follows : Let X be the observed

data, andR be the set of missing or latent variables. Let the complete data (X,R) ∼
f(X,R;θ), where f is a density (or mass function) and θ is a vector of parameters.

Denote the complete data likelihood function as L(θ;X,R) = f(X,R;θ).
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We seek the MLEs of the observed data likelihood

L(θ;X) = f(X;θ) =

∫
f(X,R;θ)dR (1.8)

The above likelihood function can be difficult to optimize. Instead, the complete

data likelihood, which is typically easier to optimize than the observed likelihood, is

utilized as a surrogate. The EM algorithm simiplifies the optimization by iteratively

applying E-Steps and M-Steps.

EM Algorithm - For t = 0, 1, . . . , do:

1. Expectation Step (E-Step) : Compute the expectation

Q(θ;θ(t)) = ER|X;θ(t)

[
logL(θ;X,R)

]
, (1.9)

where the expectation is with respect to the conditonal distribution of R|X
and the current estimate of the paramter θ(t).

2. Maximization Step (M-Step) : Maximize (1.9) :

θ(t+1) = argmax
θ

Q(θ;θ(t)). (1.10)

Repeat steps 1 and 2 until the change in the marginal likelihood is small (i.e. L(θ(t+1);X)−
L(θ(t);X) < ε, where ε is sufficiently small).

For the EM algorithm applied to ZIP Regression, letRi = I{Yi from the degenerate state},
and R = (R1, . . . , Rn)T.

Therefore, Ri ∼ Bern(πi(α)), and

Yi|Ri = ri ∼

0 ri = 1

Poisson(µi(β)) ri = 0
. (1.11)
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Let θ = (α,β). Then, the complete data log-likelihood is

`c(θ;y, r) =
n∑
i=1

log(fRi(ri)× fYi|Ri(yi|ri))

=
n∑
i=1

log(fRi(ri)) +
n∑
i=1

log(fYi|Ri(yi|ri))

=
n∑
i=1

[
rilogit(πi) + log(1− πi)

]
+

n∑
i=1

I{ri = 0}
[
yi log(µi)− µi − log(yi!)

]
∝

n∑
i=1

[
ri(w

T
i α)− log(1 + exp(wT

i α))
]

+
n∑
i=1

(1− ri)
[
yi(x

T
i β)− exp(xT

i β)
]

= `c(α; r) + `c(β;y, r).

(1.12)

Then, the E-Steps and M-Steps are:

1. E-Step - Given the current estimates of β(t) and α(t), compute Q(θ;θ(t)). Since

`c(·) is linear in the ri’s, this step can be simplified to updating the posterior

memberships via Bayes Rule:

r
(t+1)
i = P(Ri = 1|Yi = yi;θ

(t)) (1.13)

Then, Q(θ;θ(t)) = `c(θ;y, r(t+1)).

2. M-Step - Maximize `c(θ;y, r(t+1)) by:

• Maximize `c(α; r(t+1)), which is equivalent to running a logistic regression

of r(t+1) on W , where W = (wT
1 , . . . ,w

T
n )T.

• Maximize `c(β;y, r(t+1)), which is equivalent to running a weighted Pois-

son regression of y onX with weights 1−r(t+1). Here,X = (xT
1 , . . . ,x

T
n )T.

Since ZINB regression also requires estimating a heterogenity parameter, the opti-

mization can be broken into two conditional maximization steps via an expectation-

conditional-maximization (ECM) algorithm [28]. Thus, we perform iterative esti-

mation of the heterogenity parameter and the regression parameters, such that the

conditioning on the former allows the latter to be estimated via fitting a GLM. Details

for an ECM algorithm in a ZINB regression model are given in the Appendix.
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Inference

Testing of regression coefficients for predictors in a fully parameteric ZI count regres-

sion models is typically based on the asymptotic normality of the MLEs. Such testing

applies to predictors in either the count regression component or the proportion of

zero-inflation. Using the approximate standard errors, it is then straightforward to

calculate Wald-based confidence intervals.

While tests of predictors are important, score tests on the zero-inflation structure

in ZI count regression models have also been given considerable attention.

In particular,

H0: π = 0

H1: 0 < π < 1,
(1.14)

is employed to test the null hypothesis of a count regression model against the alterna-

tive hypothesis of a ZI count regression model. Many score tests pertaining to (1.14)

have been developed in the literature. [29] developed a score test for zero-inflation

in the Poisson setting, but where the zero-inflation probabilities are not a function

of covariates. [30] extended this score test to the setting where the zero-inflation

probabilities could depend on predictors. Similar score tests were developed in the

negative binomial setting by [31].

Another test of interest is
H0: θ = 0

H1: θ > 0,
(1.15)

which is used to test for the presence of overdispersion in the ZI count regression mod-

els. Specifically, the null distribution is the ZIP regression model and the alternative

distribution is the ZINB regression model. [32] developed a score test for testing the

hypothesis (1.15). [33] provided a more comprehensive approach by developing score

tests for each of the hypotheses in (1.14) and (1.15), as well as for testing both of

them simultaneously.

[34] highlighted that since the null hypothesis for the tests in (1.14) and (1.15)

are on the boundary of the parameter space, the standard asymptotic χ2
1 distribution

is conservative. An alternative is to employ a boundary likelihood ratio test using

a modified χ2 distribution [22]. The corresponding test statistic is characterized as

having a limiting distribution that is a mixture of χ2 distributions:

.5χ2
0 + .5χ2

1, (1.16)
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where χ2
0 is a degenerate distribution with all its mass placed at 0. The distribution in

(1.16) is also called a chi-bar-squared distribution when it pertains to the specific test-

ing paradigm of uni-component versus two-component mixture models with known

component densities [35].

The Vuong non-nested test [36] is also commonly used for testing the hypotheses

in (1.14) and (1.15). However, [37] pointed out that by Vuong’s definition, nesting

occurs on the boundary, so a model is not strictly nested in its ZI counterpart. This

does not imply that the models are non-nested and, hence, score tests or the boundary

LRT should be used instead of the Vuong non-nested test. Finally, as noted in [22],

model selction criteria, such as the Akaike information criterion (AIC) or the Bayesian

information criterion (BIC), can be utilized to select between all the models discussed

this far.

Various pseudo-R2 measures for assessing goodness-of-fit of ZI count regression

models were developed by [4]. One such measure the authors developed includes an

adjustment to reward parsimony due to the chi-bar-squared limiting distribution of

the boundary LRT. The adjusted-R2 quantity for the ZIP regression model is given

by

R2
ZIP,adj = 1− `1(y, z;y)− `1(β̂, α̂;y) + p+ q + 0.5

`1(y, z;y)− `1(ȳ1n,0n;y)
, (1.17)

where β̂ and α̂ are the MLEs under the full ZIP regression model, and z = (z1, . . . , zn)

with zi = I{yi = 0}. Here, `1(y, z;y) is similar idea to the saturated likelihood in

the GLM setting. Similarly, the adjusted-R2 quantity for the ZINB regression model

is given by

R2
ZINB,adj = 1− `2(y, z, θ̂;y)− `2(β̂, α̂, θ̂;y) + p+ q + 1.5

`2(y, z, θ̂;y)− `2(ȳ1n,0n, θ̂;y)
, (1.18)

where β̂, α̂, and θ̂ are the MLEs under the full ZINB regression model. Note that in

both expressions, the log-likelihoods evaluated at π = 0 (or α = 0) are simply the log-

likelihoods for the corresponding non-ZI regression model. The above quantities are

similar to the adjusted-R2 formulas for non-ZI count regression models, as presented

in [38].

Residual diagnostics for GLMs are typically employed when fitting ZI regression

models. For example, one can assess Pearson, deviance, or Anscombe residuals for

goodness of fit. However, goodness of fit is more difficult to define because we must

examine a lack of fit in two processes, one of which is unobservable. Moreover, there

10



isn’t a clear definition of fitted values in a zero-inflated regression model. It can

be shown that the mean of a ZIP random variable is (1 − πi)µi, where π̂i and µ̂i

are estimates of the mixing proportions and mean count for the, ith observation,

respectively. Thus, the aforementioned definition of fitted value is the mean for the

count distribution weighted by the probability of belonging in the count component.

Another possible definition for fitted value is

ŷi =

0 if Ri ≥ .5

µ̂i if Ri < .5
, (1.19)

where Ri is the posterior class probabilities and µ̂i is again the mean of the count

distribution for the ith subject. Thus, first perform a soft classification to the mixture

componenets, and then take the mean of that component for prediction.

More recently, [39] and [34] have highlighted the utility of using randomized quan-

tile residuals [40] for assessing the fit of ZI regression models. The definition from

[40] is as follows: Let F (y; µ̂i, φ̂) be a distribution function with estimated location µ̂i

and estimated nuissance parameters φ̂. Let ai = lim
y↑yi

F (y; µ̂i, φ̂) and bi = F (yi; µ̂i, φ̂).

Then, the randomized quantile residual for yi is

rq,i = Φ−1(ui) (1.20)

where ui is a uniform random variable on the interval (ai, bi], and Φ−1 is the inverse

cdf of a standard normal distributon. Then, the rq,i are exactly standard normal,

apart from sampling variability in µ̂i and φ̂ [40]. The randomized quanitle residuals

employ a similar idea to jittering, where the goal is improve data visualization by

preventing an abundance of overlapping data points.

1.4 Bayesian ZI Models

Bayesian approaches for analyzing ZI count regression models have received increas-

ing attention in the literature. [41] is one of the earliest papers where such a Bayesian

analysis is performed. The paper presented a Bayesian hierarchical ZIP regression

model that simultaneously models covariates and correlated count data. The ap-

proach was applied to count data on the efficacy of pesticides in controlling the re-

production of whiteflies. [42] presented the ZI power series (ZIPS) regression model,

which provides a generalized setting for the ZIP and ZINB regression models. To de-

fine the power series distribution, let b0, b1, b2, . . . be a sequence of nonnegative real

11



numbers. The partial sum of order n ∈ N is given by gn(ν) =
∑n

k=1 bkν
k, ν ∈ R. The

power series g is defined by g(ν) = lim
n→∞

gn(ν), and is denoted by g(ν) =
∑∞

n=0 bnν
n.

Letting r ≥ 0 denote the radius of convergence of this series, the pmf of the power

series distribution is given by

p(y; ν) =
byν

y

g(ν)
, y ∈ N, 0 ≤ ν ≤ r. (1.21)

For Bayesian fitting of the ZIPS regression model, [42] assume that the regression

parameters β and α are a priori independent and specify multivariate normal priors

with a scaled identity matrix as the variance-covariance matrix. The authors present

their MCMC algorithm for generating samples from the respective full conditional

distributions. They also provide their code, which is written in WinBUGS [43]. [44]

had a similar setup as [42], but focused strictly on performing a Bayesian analysis of

ZIP and ZINB regression models using a power prior as an informative prior. Their

Bayesian approach was used to analyze data on road safety countermeasures.

The Bayesian ZIP regression model is typically formulated as logit(πi) = wTα

and log(µi) = xTβ, where α and β are independent. Moreover, the priors are usually

“non-informative”:

β ∼ N (0,Σβ), α ∼ N (0,Σα), (1.22)

where typically it is assumed that Σβ = σ1I and Σα = σ2I. In the case of ZINB

regression, common priors for the overdispersion parameter are uniform, gamma, and

inverse-gamma.

Review of Bayesian Inference

Inference in the Bayesian setting is conducted through the posterior distribution of

the parameters given the data. Let X be the data and θ be the parameters. Let

X|θ ∼ f(X|θ) and θ ∼ π(θ). Note, that π(θ) could depend on additional (random)

parameters, i.e. hyperparameters, but we will assume that these are known.

Then, the posterior distribution of θ|X is given by

g(θ|X) =
π(θ)f(X|θ)∫
f(X|θ)π(θ)dθ

. (1.23)

Common estimates of θ are the mean, median, and mode of the posterior distribution.

Typically, outside of trivial cases, the posterior density g(·) cannot be calculated in
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closed form. Therefore, inferences are based on a large chain of draws from the poste-

rior distribution using MCMC algorithms. A frequently employed MCMC algorithm

for sampling from the posterior distribution is Gibbs Sampling.

Gibbs Sampling

The key idea behind Gibbs sampling is that for a random vector X = (X1, . . . , Xp)
T,

it is easier to sample from several (univariate) conditional distributions, rather than

trying to sample from the joint distribution by computing a normalization constant.

Denote the kth sample by X(k) = (X
(k)
1 , . . . , X

(k)
p )T. Start with an initial value X(0),

which is typically randomly chosen.

Then, for k = 1, . . . , N , where N is sufficiently large :

• For j = 1, . . . , p, update x
(k)
j by sampling from the conditonal distribution

f(x
(k)
j |x

(k)
1 , . . . , x

(k)
j−1, x

(k−1)
j+1 , . . . , x(k−1)p ). (1.24)

Note that the samples for x
(k)
j are conditioned on the new samples for x

(k)
1 , . . . , x

(k)
j−1

(i.e. for l = 1, . . . j−1), and the previous iteration samples for x
(k−1)
j+1 , . . . , x

(k−1)
p

(i.e. for l = j + 1, . . . , p).

• Repeat process until the desired number of samples are obtained.

It can be shown that these samples from the conditional distribution form an ap-

proximate sample from the joint distribution [45]. Moreover, it is common to discard

the first 1000 samples in what is called burn-in period since the stationary distribu-

tion (i.e. the desired joint distribution) is not yet reached. Furthermore, it is common

after the burn-in period to only keep every 20th or 100th sample since the sequential

samples are correlated. Convergence of the MCMC algorithm is typically dictated by

the traceplot of the samples for each x
(k)
j (after the burn-in period), in addition to

other numerical measures. Lastly, it is common to run multiple parallel chains with

different initial values to ensure that all chains are converging to the same stationary

distribution.

For the Bayesian ZIP Regression Model written in (1.21), the posterior complete-
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data likelihood is

g(β,α|y, r) ∝ π(β,α)f(y|β,X)f(r|α)

=
( p∏
k=1

φ(βj|σ2
β)
)( q∏

l=1

φ(αl|σ2
α)
)( n∏

i=1

πi(α)ri(1− πi(α))1−ri
)

×
( n∏
j=1

(1− ri) exp(−µi(β))µi(β)yi
)

=
( q∏
l=1

φ(αl|σ2
α)

n∏
i=1

πi(α)ri(1− πi(α))1−ri
)

×
( p∏
j=1

φ(βj|σ2
β)

n∏
j=1

(1− ri) exp(−µi(β))µi(β)yi
)

= g(α|σ2
α, r)g(β|σ2

β,y, r),

(1.25)

where φ(·) the Gaussian density with variance σ2. Note that the posterior factors

into two condtionals for the mixing proportions and the mean of the Poisson state.

This can simplify the Gibbs sampler significantly. Note that the likelihood depends

on the latent variable r. Both [42] and [46] incorperate data augmentation into their

MCMC samplers. Here, we assume that σ2
α and σ2

β are known.

A summary of the process is as follows :

1. Begin with intial values of β(0) and α(0).

2. For t = 1, 2, . . . , N , do:

a) For i = 1, . . . , n, generate R
(t)
i with

P(R
(t)
i = 1) =


πi(α

(t−1))

πi(α(t−1))+(1−πi(α(t−1))) exp(−µi(β(t−1)))
yi = 0

0 yi > 0.
(1.26)

b) Generate α(t) from g(α|σ2
α, r

(t)).

c) Generate β(t) from g(β|σ2
β,y, r

(t)).

An example of a fitted Bayesian ZIP regression model can be seen in Section 1.6.

Bayesian Testing and Diagnostics

Bayesian approaches to test and construct influence diagnostics have also been pro-

posed in the literature. [47] proposed a Bayes factor based on a suitable objective
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prior for testing a Poisson regression model versus a ZIP regression model. Bayesian

inference involving specific ZI count regression models has also been treated in the

literature, including approaches for ZINB regression [25], ZIGP regression [48], and

ZICMP regression [49]. In each paper, the authors present an MCMC sampler for

the particular ZI model under consideration, followed by a discussion of Bayesian

case influence diagnostics and relevant model selection criteria. For Bayesian influ-

ence diagnostics, the primary approach is based on case-deletion, where the impact

of deleting an observation on the estimates is directly assessed by measures such as

likelihood distance and Cook’s distance. Some of the model criteria discussed include

deviance information criterion (DIC) [50], the expected BIC (EPIC) [51], and the

log-pseudo-marginal likelihood (LMPL) statistic. The LMPL statistic requires calcu-

lation of the conditional prediction ordinate (CPO) statistic of [52]. Let Y |θ ∼ f(y|θ)

and θ ∼ π(θ). Let y−i = (y1, . . . , yi−1, yi+1, yn)T be the vector of responses with the

ith case deleted. The CPO for the ith observation is defined as

CPOi := f(yi|y−i).

In other words, the CPO estimates the likelihood of observing yi conditional on

observing y−i. Furthermore, note that

CPOi = f(yi|y−i)

=
f(y−i|yi)f(yi)

f(y−i)

=
(f(y−i)

f(y)

)−1
=

(
1

f(y)

∫
f(y−i|θ)π(θ)dθ

)−1
=

(∫
(f(yi|θ))−1

f(y|θ)π(θ)

f(y)
dθ

)−1
=

[
Eθ|y

{
(f(yi|θ))−1

}]−1
.

The estimate of CPOi is then defined as the inverse harmonic mean

ĈPOi =

[
N−1

N∑
t=1

(
f(yi|θ(t))

)−1]
,
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where θ(t) denote Monte Carlo samples from the posterior distribution. Hence, larger

values of ĈPOi indicate a better fit. Then, LPML =
∑n

i=1 log(ĈPOi), such that

larger values of LPML indicate a better fit.

Recent Bayesian Advances

[53] proposed a class of Bayesian Generalized Additive Models for ZI count responses

in the Generalized Additive Models for Location, Shape, and Scale (GAMLSS) frame-

work. Attractive features of their model include flexible modeling for all the param-

eters in a ZI regression model (including the scale or heterogenity parameter), as

well as providing an efficient framework for extending to multilevel models such as

spatial regression. For illustration, let {Yi,Xi,Zi,Vi} be a random sample such that

Yi|Xi = xi,Zi = zi,Vi = vi ∼ ZINB(πi(zi), µi(xi), θi(vi)).

Furthermore, suppose the following :

logit(πi) = α0 + f1(zi) + · · ·+ fJπ(zi),

log(µi) = β0 + h1(xi) + · · ·+ hJµ(xi),

log(θi) = γ0 + g1(vi) + · · ·+ gJθ(vi),

(1.27)

where we assume each fj, hk, and gl can be approximated by linear combinations

of basis functions. So, for example, each fj can be expressed such that fj(zi) ≈∑Dj
dj=1 αj,djBj,dj(zi), where Bj,dj(·) are basis functions (ex: B-spline basis). Then,

letting αj =
(
αj1, . . . , αjDj

)T
, which is the vector of regression coefficients for fj(·),

we assign a multivariate Gaussian prior αj|τ 2j ∼ N (0Dj , τ
2
jKj) to enforce smoothness

conditions. Here, Kj is a prior (diagonal) precision matrix, and τ 2j is the hyper-

parameter for smoothing variance. We assume all the functions hl(·) and gl(·) can

be approximated analogously. For details on IWLS implementation in a Metropolis-

Hastings sampler, see [53].

[54] developed a Bayesian latent factor zero-inflated (LZIP) model for analyzing

correlated zero-inflated counts, which was used to study moleclar differences among

breast cancer patients. In their model, the formulation of a random variable is ZIP

distributed when Y ∼ (1 − π)I{W = 0} + πp(y|µ)I{W = 1}, where p(y|µ) is the

Poisson mass function with mean µ, and W is a latent “at-risk” indicator such that

Y ∼ 0 with probability 1−π when W = 0, and Y is drawn from a Poisson distribution

having mean µ with probability π when W = 1.
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Then, using the complementary log-log link and log link,

cloglog(π) = cloglog(P(W = 0)) = wTα,

log(µ) = log(E(Y |W = 1)) = xTβ,

which then implies π = 1 − exp(− exp(wTα)). Therefore, π is equivalent to the

probability that a Poisson random variable, call it Z1, with mean µ1 = exp(wTα),

is bigger than zero. Hence, W = 1 if and only if Z1 > 0. In other words, Z1 is a

latent variable indicating the capability of being at risk. Similarly, define another

Poisson latent variable Z2 := (Y |Z1 > 0) with mean µ2 = exp(xTβ), which is the

count conditional on the subject being at risk for the given outcome. Then, rewriting

the ZIP model in terms of Z1 and Z2, the model is

Y ∼ (1− π)I{Z1 = 0}+ πp(z2|µ2)I{Z1 > 0},

π = P(W = 1) = P(Z1 > 0) = 1− exp(− exp(wTα)),

µ1 = E(Z1) = exp(wTα),

µ2 = E(Z2) = E(Y |Z1 > 0) = exp(xTβ).

(1.28)

The variable Z2 can be viewed as the “potential” count that would have been observed

if the subject had been at risk.

It is reasonable to assume that Z1 and Z2 are positively correlated for most in-

stances. For example, as [54] wrote, “in cancer genomics, we might expect patients

with increased risk of pathway activation to also have more genes with CNVs given

activation.” This is similar to the idea behind the ZIP(τ) model in [3], where the

zero-inflation probabilites are functionally related to the mean of the Poisson state.

Then, to accommodate association between µ1 and µ2, we assume that µ1 and µ2 can

be written as a multiplicative function of subject-specific latent factors, ξ. Then, the

resulting latent factor ZIP (LZIP) model is

Y |ξ ∼ (1− π)I{Z1 = 0}+ πp(z2|µ2)I{Z1 > 0}, (1.29)

where
π = P(W = 1|ξ) = P(Z1 > 0|ξ) = 1− exp(−µ1),

µ1 = E(Z1|ξ) = (λT
1 ξ) exp(wTα),

µ2 = E(Z2|ξ) = E(Y |Z1 > 0, ξ) = (λT
2 ξ)T exp(xTβ),

(1.30)

and ξ = (ξ1, . . . , ξL)T is an L× 1 vector of subject-specific latent factors with ξl > 0
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for all l = 1, . . . , L to ensure µk > 0 (k = 1, 2), and λk = (λk1, . . . , λkL)T is an

L × 1 vector of loadings for the kth component. Again, we assume λkl > 0 for

all k, l. [54] discusses some strategies for choosing L, such as the widely applicable

information criterion (WAIC) [55]. Here, the latent factor, ξ, accounts for “between-

subject heterogeneity potentially due to unmeasured subject-level confounding”. [54]

assumes that ξl
iid∼ Gamma(γ, γ), where the authors recommend setting γ = 1.

Since E(ξl) = 1, it follows the population-averaged mean of Zk is

E(Zk) =


[∑L

l=1 λ1l
]

exp(wTα) = exp(wTα+ v1) if k = 1[∑L
l=1 λ2l

]
exp(xTβ) = exp(xTβ + v2) if k = 2,

(1.31)

where vk = log(
∑L

l=1 λkl). Thus, vk is similar to a population-averaged intecept

for the kth component. [54] also extends the LZIP model to multiple zero-inflated

outcomes, such as in longitudinal studies.

In [54], λkl
iid∼ Gamma(a, b) with a = b = .001. For categorical predictors, wh or

xh, exp(αh) or exp(βh) are assigned Gamma(c, d) priors, with c = d = .001, since

these priors are conjugate for the model. Then, for continuous predictors, αh and

βh are assigned uninformative normal priors. For details on the Gibbs sampler with

data augmentation, see [54].

[56] also discusses Bayesian longitudinal modeling via random effects. In the arti-

cle, the authors discuss repeated measures modeling for the Poisson hurdle regression

model, ZIP regression model, and the zero-altered model. See Section 1.10 for defi-

nitions of hurdle models and “zero-altered” models. For the random effect on the ith

subject, bi = (bi1, bi2)
T, it is assumed that b ∼ N (0,Σ), where bi1 and bi2 represent

random intercepts for the zero-state and the Poisson mean, respectively. Then, it

is assumed that Σ ∼ I-W(2, I2), where I-W(2, I2) denotes a Inverse-Wishart distri-

bution with 2 degrees of freedom and scale matrix I2. The authors also consider

Σ being distributed with a product normal distribution [57]. [56] then discusses a

Metropolis-Hastings algorithm with iteratively weighted least squares proposal den-

sities for sampling from the posterior distribution, as well as model selection criteria

such as DIC and the CPO statistic.

It was noted by [58] that the ZIP and ZINB regression models can provide unsatis-

factory fits when there is extreme incidence of zeros (above 80%); in particular, those

models can be unable to find important covariates. To mitigate this issue, the authors

propose a k-ZIG regression model, which allows for more flexible modeling between

the zero and count components. In particular, suppose G(y|Θ) is a zero-inflated dis-
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tribution with a point mass at zero and G0(y|Θ0) is a pmf that is non-degenerate.

In other words, G(y|Θ) = qI{y = 0}+ (1− q)G0(y|Θ0). Then, inputting G(·) as the

“non-degenerate” mass function into a ZI mass function, we obtain

π(y|p, q,Θ0) = pI{y = 0}+ (1− p)G(y|Θ)

= pI{y = 0}+ (1− p)
[
qI{y = 0}+ (1− q)G0(y|Θ0)

]
=
(
p+ (1− p)q

)
I{y = 0}+ (1− p)(1− q)G0(y|Θ0).

(1.32)

In other words, to account for highly excessive zeros, we assume the density of the

data to be a mixture of a point mass at zero and a ZIP density. The allowance

of three sources of zeroes can make this model more desirable at explaining heavily

zero-inflated data. It can be shown that p and q are not identifiable in (1.30), and

so we reparameterize by assuming (1− p) = (1− θ)k−1 and (1− q) = (1− θ), which

yields

π(y|θ,Θ0, k) = (1− (1− θ)k)I{y = 0}+ (1− θ)kG0(y|Θ0). (1.33)

The above density in (1.31) is, thus, called the k-ZIG(θ,Θ0) distribution. The param-

eter k increases (decreases) the amount of zero-inflation. See [58] for further details

on regression for the k-ZIG(θ,Θ0) distribution, prior selection, and MCMC sampling.

We end this section by highlighting a few more diverse problems with zero-inflated

data that were addressed from using Bayesian methods. [59] modeled the ordinal

outcomes of smoking and chewing tobacco jointly by developing a bivariate zero-

inflated probit regression model (ZIBOP). This is necessary since it is common for

non-smokers to also not chew tobacco (i.e. joint zero-inflation of the bivariate re-

sponse). [60] developed a Bayesian multivariate measurement error model with zero-

inflation. The authors applied their measurment error model to a National Health

and Nutrition Examination Survey (NHANES) data set to model the the amount

of 12 food groups (vegtables,fruit,oil,etc.) consumed in a 24 hour period regressed

on age, gender, and race. The authors noted that it is common for some dietary

groups to be consumed daily by almost everyone, while other food groups are episod-

ically consumed (i.e. zero-inflation). Furthermore, the dietary intake can exhibit

sizeable measurement error and consumption of certain food groups are correlated.

[61] also developed a Bayesian trivariate ZIP regression model to predict the number

of third-party liability automobile claims , motor collison claims, and other claims

for automobile insurance. The authors developed an MCMC algorithm for analyzing

this model.
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Table 1.1: Results for estimating simulated data from a ZIP regression model using
the two R functions in the pscl, glmmTMB, and VGAM packages, and the three SAS

procedures, GENMOD, NLMIXED, and COUNTREG. Notice the highly variable results across
the five methods for α when n = 50.

n Procedure β0 (= 3.000) β1 (= −1.500) α0 (= 0.500) α1 (= −0.500)

50

zeroinfl 2.998 (0.230) -1.511 (0.240) 1.108 (10.197) -1.387 (15.001)
vglm 2.997 (0.229) -1.506 (0.239) 0.844 (2.228) -1.030 (3.874)

glmmTMB 2.992 (0.213) -1.511 (0.229) 3.879 (62.870) -4.295 (70.208)
GENMOD 2.998 (0.230) -1.512 (0.240) 0.758 (1.203) -0.852 (1.333)
NLMIXED 2.998 (0.230) -1.511 (0.240) 1.038 (5.681) -1.307 (8.667)
COUNTREG 2.998 (0.230) -1.511 (0.240) 6.453 (262.742) -11.971 (371.527)
zeroinfl 2.996 (0.084) -1.500 (0.098) 0.523 (0.375) -0.532 (0.356)

250

vglm 2.996 (0.084) -1.500 (0.098) 0.522 (0.375) -0.532 (0.355)
glmmTMB 3.002 (0.081) -1.506 (0.092) 0.536 (0.368) -0.550 (0.351)
GENMOD 2.996 (0.084) -1.500 (0.098) 0.523 (0.375) -0.532 (0.355)
NLMIXED 2.996 (0.084) -1.500 (0.098) 0.523 (0.375) -0.532 (0.356)
COUNTREG 2.996 (0.084) -1.500 (0.098) 0.523 (0.375) -0.532 (0.356)

1.5 Software and Numerical Demonstrations

Many statistical software programs have routines for estimating ZI count regression

models, but the scope of such functions is usually limited to estimating ZIP and

ZINB regression models. In SAS [62], three available procedures are PROC GENMOD,

PROC NLMIXED, and PROC COUNTREG. In R [63], two of the major functions available

are zeroinfl and vglm, which are within the pscl [64] and VGAM [65] packages, re-

spectively. Recently, another R package, glmmTMB [66], was developed for count data

regression, including zero-inflated regression models. glmmTMB employs similar syntax

and interface to lme4 [67], where fixed and random effects can both be specified in the

zero-inflation state and count component. For estimation, all of the aforementioned

functions employ gradient-based methods, such as Newton-Raphson or iteratively

reweighted least squares (IRLS), by default. Mixed models in glmmTMB are estimated

via optimization of the marginal likelihood function through Gauss-Hermite quadra-

ture.

We demonstrate the accuracy of the estimates obtained using the aforementioned

six procedures through a brief simulation study. We generated B = 1000 datasets of

sizes n ∈ {50, 250} from a ZIP regression model and ZINB regression model. The pa-

rameters for these models are given in the headers of Tables 1.1 and 1.2, respectively.

We report the mean and standard deviation of the ZI count regression estimates using

the different procedures such that all arguments are set to their respective defaults.

The ZIP regression estimates in Table 1.1 are nearly identical for β in the different
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Table 1.2: Results for estimating simulated data from a ZINB regression model us-
ing the two R functions in the pscl and VGAM packages, and the three SAS proce-
dures, GENMOD, NLMIXED, and COUNTREG. Notice the considerably different results for
COUNTREG.

n Method β0 (= 3.000) β1 (= 1.200) α0 (= −0.500) α1 (= 0.500) θ (= 4.482)

50

zeroinfl 2.986 (0.160) 1.168 (0.160) -1.023 (0.563) 0.605 (0.536) 5.576 (1.221)
vglm 2.986 (0.160) 1.168 (0.160) -1.023 (0.563) 0.605 (0.536) 5.576 (1.221)

glmmTMB 3.003 (0.209) 1.196 (0.084) 0.549 (0.648) -0.536 (0.308) 5.187 (1.460)
GENMOD 2.986 (0.160) 1.168 (0.160) -1.023 (0.563) 0.605 (0.536) 5.576 (1.221)
NLMIXED 2.986 (0.160) 1.168 (0.160) -1.023 (0.563) 0.605 (0.536) 5.576 (1.221)
COUNTREG 2.871 (0.304) 1.011 (0.305) -0.360 (63.363) -106.078 (473.480) 2.208 (2.121)

250

zeroinfl 3.003 (0.076) 1.189 (0.077) -0.573 (0.217) 0.486 (0.217) 4.617 (0.412)
vglm 3.004 (0.076) 1.189 (0.077) -0.573 (0.217) 0.486 (0.217) 4.617 (0.412)

glmmTMB 2.996 (0.093) 1.201 (0.036) -0.524 (0.268) 0.514 (0.124) 4.603 (0.547)
GENMOD 3.004 (0.076) 1.189 (0.077) -0.573 (0.217) 0.486 (0.217) 4.617 (0.412)
NLMIXED 3.004 (0.076) 1.189 (0.077) -0.573 (0.217) 0.486 (0.217) 4.617 (0.412)
COUNTREG 2.901 (0.216) 1.137 (0.134) -1.844 (11.082) -56.140 (533.695) 1.540 (2.398)

procedures, but with fairly noticeable differences in the estimates of α when n = 50,

especially for PROC COUNTREG. The ZINB regression estimates in Table 1.2 are nearly

identical for (β,θ) with the different procedures, but there are sizeable differences in

the estimates of α when n = 50. However, this time PROC COUNTREG demonstrates

quite different results for both sample sizes. These numerical results are consistent

with those obtained in Liu et al. [68], who performed an extensive simulation study

that addresses the performance of ZI estimation procedures in SAS and R.

We also performed a brief timing study for comparing the six procedures discussed

above. We generated datasets of different sample sizes from a ZIP and ZINB regres-

sion model, and timed each of the five procedures using their default settings. PROC

GENMOD was found to perform the quickest for nearly all of the settings considered.

The zeroinfl function typically took the longest when estimating the ZIP regression

model, while the vglm function typically took the longest when estimating the ZINB

regression model. More details, including the actual timing results, are given in the

Appendix.

We note that the gamlss package [69] can also estimate ZIP and ZINB regression

models, as well as some related models discussed in Section 1.10, using the GAMLSS

framework. Estimation is performed using a maximum penalized likelihood approach,

which differs from the pscl and VGAM packages. Thus, we did not include a comparison

with estimates obtained using the gamlss package.

Other statistical software have built-in routines to estimate ZIP and ZINB re-

gression models. To estimate these models in Mplus [70], place the (i) option after

the count response variable in the count statement. In the Stata software [71], the
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Figure 1.2: Histogram of the Number of Claims

zip and zinb functions can be used, respectively, to estimate ZIP and ZINB regres-

sion models. Also, the NCSS software [72] has routines for estimating both of these

models, which is found under the Regression with Count Data menu.

1.6 Example: Insurance Data

The data set consists of 67856 one-year automobile insurance policies in Australia

for the years 2004 and 2005. The response is the number of claims on a policy with

predictors associated with the policyholder and the vehicular characteristics. The

policyholder variables are gender, area of residence (A,B,C,D,E,F), and the age of

the driver (1,2,3,4,5,6), where 1 denotes the youngest group and 6 denotes the oldest

group. The vehicular variables are vehicle value (in $10,000s), vehicle body (see Table

1.3), and the age of the vehicle (1,2,3,4). Here, higher values of age represent older

vehicles. All predictors are categorical except for vehicle value. Moreover, the natural

log of the length of exposure, which is the length of time of the policy in years, is

utililized as an offset in the count regression component. The data set is from the

textbook Generalized Linear Models for Insurance Data [73], and can be accessed in

the dataCar data set in the insuranceData R package [74].
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EDA and Initial Variable Selection

A histogram of the number of claims can be seen in Figure 1.2. Overall, 93.19% of

the policies have no claims, and an additional 6.9% had one claim. Vehicle body

was binned with the goal of grouping similar vehicles (see Table 1.3). The vehicle

group of general was taken to be the reference category. Initial variable selection for

the count component was based on backwards elimination in the Poisson GLM of

the aforementioned variables. A list of variables selected for the count component

can be seen in Table 1.4. For the zero-inlation component, variables were chosen

in a forward stepwise manner. After vehicle value was selected, no other significant

predictors were found for the zero-inflation component.

The Poisson, negative binomial, generalized Poisson (GP), and Conway-Maxwell-

Poisson (CMP), along with their zero-inflated counterparts were fit to the data. First,

we performed the boundary LRTs discussed in Section 1.3. The test of zero-inflation

for the Poisson regression setting and negative binomial regression settings have test

statistics of 69.8893 (p-value = 3.13 × 10−17) and 30.5087 (p-value = 1.66 × 10−8),

respectively. Thus, with respect to the Poisson and negative binomial model, we can

conclude that the zero-inflated counterparts provide a better fit. Moreover, using the

boundary LRT to compare ZIP versus ZINB, the test statistic is 0.9746 (p-value =

0.08), and therefore, we cannot conclude that there is evidence of overdispersion

relative to the ZIP model.

The AIC and BIC statisitcs can be seen in Table 1.5. In general, we can see that

the zero-inflated counterparts are improvements over the single component of a count

regression. Moreover, we see that by both criteria, the ZIP model provides the best

fit to the data.

[75] provides rules of thumbs for interpreting model differences in BIC, which is

based on a Bayes factor. According to [75], a difference in BIC between models M1

and M2 that is between 0-2 is weak evidence of superiority, 2-6 is positive evidence

Table 1.3: Bins of Vehicle Body Types

Bins Original Body Types
Convertibles Hardtop,Convertibles

Vans Caravan,Panelvan
Two-Seaters Roadster,Coupe

Bus Bus
Utility Utility
General Hatchback,Station Wagon,Sedan,Truck
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of superiority, 6-10 is strong evidence of supremacy, and finally > 10 is very strong

evidence of supremacy. From these rules of thumb, we conclude that ZIP is at least

“strongly” superior to every other considered model, the other zero-inflated models

(ZINB, ZIGP, ZICMP) are similar, and that all non-zero-inflated models are consid-

erably weaker than the zero-inflated counterparts. [76] offer similar criteria for AIC

differences: a difference in AIC of less than 2 suggests a non-substantial difference,

between 3 and 7 is a substantial difference, and > 10 indicates a large difference. So,

according to [76], all the zero-inflated models are roughly equivalent, whereas the non-

zero-inflated counterparts are substantially less probable models. [76] also discusses

Akaike weights and evidence ratios as a means to compare competing models.

The randomized quantile residuals (see Figure 1.3) were then examined for each

model. Note that the zero-inflated counterparts typically produce better fits with

respect to the quantiles of the N (0, 1) line, although all models deviate from the line

for the extremely rare larger counts; i.e., when the number of counts is 3 or 4.

Finally, we fit a Bayesian ZIP model discussed in Section 1.4. The priors were

taken to be fairly non-informative with β ∼ N (0, 10I) and α ∼ N (0, 10I). The

MCMC sampler was constructed in JAGS [77] using the zeros trick, and the code is

Table 1.4: Count Component Variables Selected

Variables Selected
Vehicle Value

Convertible Indicator
Bus Indicator
Van Indicator

Two-Seater Indicator
Area D Indicator

Age of Driver

Table 1.5: BIC and AIC Values for Fitted Models

Model BIC AIC
Poisson 34934.4249 34824.9231

NB 34905.1512 34786.5243
GP 34916.9900 34798.3600

CMP 34905.5000 34786.8700
ZIP 34890.9244 34763.1724

ZINB 34900.7921 34763.9149
ZIGP 34901.9626 34765.0855

ZICMP 34901.2733 34764.3961
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included in the Appendix. Table 1.6 shows the coefficients from the frequentist and

Bayesian ZIP regressions. The MCMC sampler was ran for 6000 iterations, and did

not include a burn-in.

The covariate effects indicate that higher age groups typically file less claims than

younger age groups. Moreover, two seaters, vans, convertibles, and buses generally

result in higher claim counts than the general cars or utility vehicles. The effect due

to vehicle value on average counts is a little harder to interpret directly since it is a

covariate in both the Poisson and zero-inflation state. But, we can see the sign for

the log-odds coefficient in the zero-inflation state for vehicle value is negative, which

means that lower costs cars are more likely to experience zero-inflation compared

to higher cost cars. In other words, it is more probable for lower cost vehicles to

exhibit zero claims in contrast to higher cost vehicles. This could be because lower

cost automobiles are more likely to have smaller claim amounts that are below the

deductible, and therefore, will not be filed.

1.7 ZI Count Regression Models for Handling Data Dispersion

Relative to the Poisson distribution, many count data sets are heavily right-skewed

and exhibit excess zero observations. As noted in [78] and [39], overdispersion has

Table 1.6: ZIP Model Coefficients

Variable Frequentist Bayes
Count Component

Intercept -1.108 -1.109
Vehicle Value -0.066 -0.067

Bus Ind .861 .809
Convertible Ind 0.027 0.024

Van Ind 0.133 0.127
Two-Seater Ind 0.419 0.412

Utility Ind -0.219 -0.221
Area D Ind -0.127 -0.128

Age Group 2 -0.178 -0.177
Age Group 3 -0.235 -0.234
Age Group 4 -0.259 -0.258
Age Group 5 -0.473 -0.472
Age Group 6 -0.446 -0.472

Zero Component
Intercept 0.183 0.189

Vehicle Value -0.664 -0.683
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the tendacy to increase the proportion of zeros such that other distributions, like the

negative binomial, can improve the fit. However, even better fits can be obtained

through overdispersed models that simultaneously characterize excess zeros.

When the negative binomial still fails to provide a good fit to the data, the gen-

eralized Poisson distribution [79, 80] can often provide an improved fit. For two

given parameters, µ > 0 and max{−1,−µ/4} ≤ α < 1, one parameterization of the

generalized Poisson pmf [81] is

p(y;µ, α) =

µ(µ+ αy)y−1 exp{−(µ+ αy)}/y! y ∈ N

0 if y > m when α < 0,
(1.34)

where m is the largest positive integer such that α + mµ > 0, when the disper-

sion parameter α is negative. When α = 0, the above reduces to the Poisson pmf

(equadispersion), and α > 0 and α < 0 represent count data with overdispersion and

underdispersion, respectively.

[82] and [78] were the earliest works to study the ZI generalized Poisson (ZIGP),

where the mean µ is related to the covariates x through the log link function. The

former also established the consistency and asymptotic normality of the MLEs for the

parameters in the ZIGP regression model. [83] developed a score test to determine

whether the ZIGP regression model is necessary over the ZIP or ZINB regression

models. [84] provdied an extension of the ZIGP regression model that allows the

dispersion parameter to be related to a vector of covariates. Computational routines

for this model were made available in the R package ZIGP, which is archived as of July

2017. However, the ZIGP regression model can be fit in the glmmTMB package [66].

Applications where the ZIGP regression model has been demonstrated to provide

a better fit compared to the ZIP and ZINB regression models are data on domes-

tic violence occurances [78], outsourcing of patent filing process [84], and mapping

quantitative trait loci [85].

The Conway-Maxwell-Poisson (CMP) distribution of [86] is another flexible dis-

tribution for count data expressing overdispersion or underdispersion [39].

This two-parameter distribution has pmf

p(y;µ, ν) =
µy

(y!)ν
Z(µ, ν) µ > 0, ν ≥ 0, (1.35)

where ν is a dispersion parameter and Z(µ, ν) =
∑∞

j=0
µj

(j!)ν
normalizes the distribu-

tion. Similar to the generalized Poisson pmf, when the dispersion parameter ν = 1,
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(1.33) reduces to the Poisson pmf, while ν > 1 and ν < 1 characterize overdispersion

and underdispersion, respectively. The flexibility with the CMP distribution is that

it can capture two other classic discrete distributions, namely the geometric distri-

bution with success probability (1 − µ) when ν = 0 and µ < 1, and the Bernoulli

distribution with success probability µ/(1 + µ) when ν → ∞. [87] later proposed

a generalized CMP distribution that generalizes both the CMP distribution and the

negative binomial distribution. [88] first proposed a CMP regression model, where µ

is related to a vector of covariates x using the log link function. Just like the CMP

distribution generalizes several different discrete distributions, the CMP regression

model generalizes both Poisson and logistic regression models.

[39] introduced a ZICMP regression model when excess zeros are present in a

CMP regression setting. The authors further allowed the dispersion parameter to be

modeled as a function of covariates via the log link. The probability of observing

a zero from the degenerate state, π, is again allowed to be modeled as a function

of covariates via a logit link. Just like the discussion of ZI count regression models

in Section 1.2, the covariates used when modeling the parameters µ, ν, and π need

not all be the same. [39] also developed the LRT for the presence of significant

data dispersion, derived the Fisher information matrix for computing the estimated

parameter standard errors, and conducted a broad simulation study comparing the

ZICMP regression model fit to other standard ZI count regression fits. The model was

demonstrated to provide a nearly similar fit (in terms of its log-likelihood) relative

to the ZINB and ZIG regression fits, thus indicating the ZICMP regression’s ability

to characterize data dispersion. The authors have also made available their functions

related to this work in the R package COMPoissonReg [89].

1.8 ZI Models for Clustered Data

Longitudinal or panel study designs can also result in longitudinal or clustered ZI

count data. As noted in Feng and Zhu [90], ignoring the within-cluster correlation of

longitudinal data will lead to loss of efficiency and incorrect inference on the regression

coefficients. Most research in handling longitudinal ZI count data has been restricted

to the ZIP regression setting. In particular, a marginal model and a conditional model

for ZIP regression are two approaches commonly taken in the literature.

Hall and Zhang [26] framed the approach for finding the MLEs in marginal ZIP

regression models by using generalized estimating equations (GEEs). Following their

discussion, let yi ∈ Rni be a vector of responses for the ith cluster, i = 1, . . . ,M . In
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a marginal ZI count regression model, the random variable Yij associated with the

observation yij, j = 1, . . . , ni, follows a ZI distribution as defined in Section 1.2, but

where the count distribution must belong to the exponential dispersion family [91].

Let Rij be the indicator variable that Yij came from the degenerate distribution at 0.

Under independence, the complete data log-likelihood based on y = (yT
1 , . . . ,y

T
M)T

and R = (r11, . . . , rMnM )T separates as follows:

`c(β,α, φ;y, r) = `c(π(α);y, r) + `c(µ(β), φ;y, r),

where µ(β) = (µ1(β), . . . , µn(β))T and π(α) = (π1(α), . . . , πn(α))T have been used

to generically represent the conditional mean of both components, and we have re-

placed ϑ in (1.2) with the univariate scale parameter φ as defined in the exponential

dispersion family. Using an EM algorithm, at the tth iteration we maximize

Q
(
β,α, φ|β(t),α(t), φ(t)

)
= `c

(
π(α);y, r̂(t)

)
+ `c

(
µ(β), φ;y, r̂(t)

)
,

(1.36)

where r̂(t) is an estimate of the posterior membership probabilities calculated in the

E-step. The M-step requires maximizing Q with respect to α and β, and solving the

following respective equations:

M∑
i=1

{
∂πi(α)T

∂α

}[
(Ai(πi(α)))1/2 Ini (Ai(πi(α)))1/2

]−1
(r̂

(t)
i − πi(α)) = 0,

(1.37)

M∑
i=1

{
∂µi(β)T

∂β

}[
(Bi(µi(β)))1/2 Ini (Bi(µi(β)))1/2

]−1
W

(t)
i (yi − µi(β)) = 0.

(1.38)

In the above, Ini is the (ni × ni) identity matrix, Ai(πi(α)) = diag(πi1(α)(1 −
πi1(α)), . . . , πini(α)(1− πini(α))), W

(t)
i = diag(1− r̂(t)i1 , . . . , 1− r̂

(t)
ini

), and Bi(µi(β))

is an (ni × ni) diagonal matrix with entries composed of the conditional variance;

see [26] for how this last quantity is explicitly defined. In the above, the conditional

mean µ and mixing proportion π from Section 1.2 have been vectorized and written

explicitly as functions of the parameters to be estimated; i.e., µi(β) and πi(α). Then,

the scale parameter φ needs to be estimated.

The formulas in (1.37) and (1.38) have the form of (weighted) GEEs with working

correlation matrix equal to the identity matrix. Hall and Zhang [26] and Dobbie and
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Welsh [92] explore substituting the working correlation structures in the marginal

model approach with something other than the identity matrix, such as an exchange-

able or AR(1) structure. To guard against correlation misspecification, Hall and

Zhang [26] advocate using the GEE-1 approach of Liang et al. [93], which treats the

first and second moment parameters orthogonally. Finally, Iddi and Molenberghs

[94] extended the framework of Hall and Zhang [26] and presented a marginalized,

ZI, overdispersed model for correlated data.

The basic framework of the conditional model approach is to use mixed effects

models for g(µ) and h(π). This approach was first considered in Hall [24] for ZIP and

ZIB (zero-inflated binomial) regression with random intercepts, where the parameters

were estimated using an EM algorithm. Wang et al. [95] obtained the penalized

likelihood function by treating the random effects as unknown parameters, and then

using residual maximum likelihood (REML) for estimation. [96] and [97] have also

proposed mixed effects models to accommodate within-subject and between-subject

heterogeneity in the presence of zero-inflation. [98] take a semiparametric approach

to the model in [96] by relaxing the normality assumption of the random effects and

leaving the corresponding distribution unspecified.

For the mixed model version of ZIP regression, it is typically assummed that

yij|ai, bi ∼ ZIP(πij(α, ai), µij(β, bi)) where i = 1, . . . , n and j = 1, . . . , ni represent the

ith subject jth observation within subject, respectively. Similar to before, µij(β, bi) =

exp(xT
ijβ + σbbi) and πij(α, ai) = logit−1(wT

ijα + σaai). Moreover, it is typically

assumed that the random intercepts ai
iid∼ N (0, 1) and bi

iid∼ N (0, 1) for i = 1, . . . , n.

Typically, ai ⊥ bi, but some spatial models consider correlation of the two random

intercepts; see [99]. Also, some authors do not include the random intercept in the

zero-inflation state due the inability to establish heterogeneity in a latent process

[46]. The most common method of estimation for mixed models is maximizing the

marginal likelihood via Gauss-Quadrature. The likelihood function for the mixed

model is

`(β,α, σ2
a, σ

2
b ;y,a, b) =

n∑
i=1

ni∑
j=1

log(f(yij|ai, bi; πij(α, ai), µij(β, bi))) +
n∑
i=1

log(φ(ai;σ
2
a))

+
n∑
i=1

log(φ(bi;σ
2
b )),

(1.39)

where f(yij|ai, bi; πij(α, ai), µij(β, bi)) is the ZIP mass function, and φ(·;σ2) is the
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Gaussian density with variance σ2. Now, the random intercepts are unobservable,

and so we instead maximize the marginal likelihood

`m(β,α, σ2
a, σ

2
b ;y) =

∫
Rn

∫
Rn
`(β,α, σ2

a, σ
2
b ;y,a, b)dbda, (1.40)

which typically cannot be evaluated in closed form. Instead, we approximate the

integral using Gauss-Hermite quadrature. Gauss-Hermite quadrature approximates

integrals of
∫
R f(x)e−x

2
dx by

∑K
k=1wkf(xk), where xk are the nodes and wk are the

weights.

Maximization of (1.38) can be difficult due to the integration with respect to ai

and bi [24]. To mitigate this, we can treat (a, b, r) as missing data, where r denotes

the posterior memberships, and apply an EM algorithm with Gaussian quadrature

to obtain the MLEs. Let Θ = (α,β, σ2
a, σ

2
b ). The complete data likelihood is

`c(Θ;y, r,a, b) = log f(a;σ2
a) + log f(b;σ2

b ) + log f(y, r|a, b;θ)

=
n∑
i=1

log φ(ai;σ
2
a) +

n∑
i=1

log φ(bi;σ
2
b )

+
n∑
i=1

ni∑
j=1

[(
rij(w

T
ijα+ aiσa)− log(1 + ew

T
ijα+aiσa)

)
+ (1− rij)

(
yij(x

T
ijβ + biσb)− exp(xT

ijβ + biσb)− log(yij!)
)]

.

(1.41)

The EM Algorithm is:

1. E-Step - Calculate

Q(Θ|Θ(t)) = E(`c(Θ;y, r,a, b)|y,Θ(t)), (1.42)

where the expectation is taken with respect to the distribution (r,a, b)|y and the

current estimates of the parameters Θ(t). Then, by law of iterated expectation,

Q(Θ|Θ(t)) = E
[
E(`c(Θ;y, r,a, b)|y,a, b,Θ(t))|y,Θ(t)

]
, (1.43)

where the inner expectation is with respect to r|a, b,y, and the outer expectation is

taken with respect to a, b|y. Since `c(Θ;y, r,a, b) is linear in r, the inner expectation
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becomes `c(Θ;y, r(t+1),a, b), where

r
(t+1)
ij = P(Rij = 1|y,a, b; Θ(t))

=


0 yij > 0[

1 + exp
(
− (wT

ijα
(t) + σ

(t)
a ai + ex

T
ijβ

(t)+σ
(t)
b bi)

)]−1
yij = 0.

(1.44)

We’ll write r
(t+1)
ij (ai, bi) to denote that rij depends on (ai, bi).

Now, we need to compute the outer expectation with respect to (a, b)|y:

Q(Θ|Θ(t)) = E(`c(Θ;y, r(t),a, b))

∝
n∑
i=1

ni∑
j=1

∫
R

∫
R

{[
r
(t+1)
ij (ai, bi)(w

T
ijα+ σaai)− log(1 + ew

T
ijα+σaai)

]
+ (1− r(t+1)

ij (ai, bi))×
[
yij(x

T
ijβ + σbbi)− exp(xT

ijβ + σbbi)
]}

× f(ai, bi|yi; Θ(t))daidbi

=

n∑
i=1

ni∑
j=1

∫
R

∫
R

{[
r
(t+1)
ij (ai, bi)(w

T
ijα+ σaai)− log(1 + ew

T
ijα+σaai)

]
+ (1− r(t+1)

ij (ai, bi))×
[
yij(x

T
ijβ + σbbi)− exp(xT

ijβ + σbbi)
]}

× f(yi|ai, bi; Θ(t))φ(ai)φ(bi)daidbi ×
[ ∫

R

∫
R
f(yi|ai, bi; Θ(t))φ(ai)φ(bi)daidbi

]−1
.

(1.45)

Here, f(yi|ai, bi; Θ(t) =
∏ni
j=1 f(yij |ai, bi; Θ(t)), where f(yij |ai, bi; Θ(t)) is the ZIP

mass function. Then, employing Gauss-Hermite Quadrature, the E-Step becomes

Q(Θ|Θ(t)) ≈
∑
i,j

{∑ma
k=1

∑mb
l=1

[
r
(t+1)
ij (ak, bl)(w

T
ijα+ σaak)− log(1 + ew

T
ijα+σaak)

]∑ma
k=1

∑mb
l=1 f(yi|ak, bl; Θ(t))ckql

× f(yi|ak, bl; Θ(t))ckql

+

∑ma
k=1

∑mb
k=1

[
(1− r(t+1)

ij (ak, bl))×
[
yij(x

T
ijβ + σbbl)− exp(xT

ijβ + σbbl)
]]

∑ma
k=1

∑mb
l=1 f(yi|ak, bl; Θ(t))ckql

× f(yi|ak, bl; Θ(t))ckql

}
,

(1.46)
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where (ak, bl) are the quadrature points with associated weights (ck, ql).

Finally, setting vijkl = f(yi|ak, bl; Θ(t))ckql/g
(t)
i , where g

(t)
i =

∑ma
k=1

∑mb
l=1 f(yi|ak, bl; Θ(t))ckql,

(1.44) becomes

Q(Θ|Θ(t)) ≈
∑
i,j,k,l

vijkl
[
r
(t+1)
ij (ak, bl)(w

T
ijα+ σaak)− log(1 + ew

T
ijα+σaak)

]
+
∑
i,j,k,l

vijkl(1− r
(t+1)
ij (ak, bl))×

[
yij(x

T
ijβ + σbbl)− exp(xT

ijβ + σbbl)
]

= `c(α, σa; r
(t+1)) + `c(β, σb;y, r

(t+1)).

(1.47)

2. M-Step - Can be broken ito two steps:

a) M-Step for (α, σa) : Maximize `c(α, σa; r
(t+1)) via logistic regression. Define

the response vector for the (i, j) “observations” as

r∗ij = (rij(a1, b1), . . . rij(a1, bmb), rij(a2, b1), . . . , rij(a2, bmb), . . . )
T

which is of length ma ×mb. Then, define the response vector for the ith sub-

ject as r∗i = (r∗
T

i1 , . . . , r
∗T
ini

)T, and then the overall response vector as r∗ =

(r∗
T

1 , . . . , r∗
T

n )T, which is of length N∗ =
∑n

i=1(ni ×ma ×mb). Now define the

parameter vector as α∗ = (αT, σa)
T. Note that here r∗ = r∗

(t+1)
, where the

(t + 1) superscript has been suppressed for convenience. Moreover, define the

covariate vector for “observation” (i, j, k, l) as wijkl = (wT
ij , ak)

T. Note that the

covariate vector wijkl is constant across the l subscript; i.e., wijkl = wijkl∗ for

l 6= l∗. Define the matrix of explanatory variables for “observation” (i, j) by

concatinating the wijkl for a fixed i and j; i.e.,

W ∗
ij =

(
wij11, . . . ,wij1mb ,wij21, . . . ,wij2mb , . . .

)T
.

Then, define the N∗ × (q + 1) matrix of explanatory variables for all “observa-

tions” W ∗ as

W ∗ =



W ∗
11
...

W ∗
1n1

W ∗
21
...

W ∗
2m2

...


.
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Similarly, define the weight vector for “observation” (i, j) as

vij = (vij11, . . . vij1mb , vij21, . . . vij2mb , . . . )
T ,

and the weight vector for the ith “subject” as

vi =
(
vTi1, . . . ,v

T
ini

)T
.

Lastly, define the overall weight vector as v = (vT1 , . . . ,v
T
n )T. Now rewrite

`c(α, σa; r
(t+1)) as

`c(α, σa; r
(t+1)) =

∑
ijkl

vijkl
[
r
(t+1)
ij (ak, bl)(w

T
ijklα

∗)− log(1 + ew
T
ijklα

∗
)
]
. (1.48)

Therefore, the maximization of `c(α, σa; r
(t+1)) can be accomplished via logistic

regression of r∗ on W ∗ with weights v.

b) M-Step for (β, σb) : Similar to the previous M-Step, define y∗ij = yij × 1ma×mb ,

and y∗i = (y∗
T

i1 , . . . ,y
∗T
ini

)T. Then, set y∗ = (y∗
T

i , . . . ,y∗
T

n )T. Define xijkl =

(xT
ij , bl)

T, and then define the matrix of explanatory variables X∗ in a similar

manner to W ∗. Define the parameter vector as β∗ = (β∗
T
, σb)

T. Finally,

construct the weight vector u analougously to v with weights uijkl = vijkl(1 −
rij(ak, bl)).

Then, rewrite `c(β, σb;y, r
(t+1)) as

`c(β, σb;y, r
(t+1)) =

∑
ijkl

uijkl ×
[
yij(x

T
ijklβ

∗)− exp(xT
ijklβ

∗)
]
. (1.49)

Therefore, the M-Step can be performed via Poisson regression of y∗ on X∗

with weight vector u.

3. Iterate the E-Step and M-Step from t = 0, 1, . . . until convergence.

For more complicated random effect distributions, such as the conditionally autore-

gressive distribution for spatial processes, authors resort to Bayesian techniques for

estimation; see [46] and [99].

Count time series with extra zeros have also been explored in the literature. [95]

was one of the first papers to consider this general setup, and developed a Markov

ZIP regression model that allows for the frequency distribtuion to change according to

the states of a two-state discrete time Markov chain with the transition probabilities

associated with covariates through a logit link function. The model was then used

for analyzing the daily number of phone calls on a fault report. A similar Markov
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ZIP regression model was developed in [100], who employed a partial likelihood for

conducting statistical inference. Both these models employ an random effect with an

AR(1) covariance matrix. Furthermore, ZI integer-valued generalized autoregressive

conditional heteroskedasticity models have been developed for the negative binomial

and compound Poisson distribution in [101] and [102], respectively.

1.9 Zero-Inflation and Diagonal-Inflation in Multivariate Count Responses

Multivariate ZI models have been treated far less in the literature compared to their

univariate counterparts, especially in the presence of covariates. The practical impli-

cations of multivariate ZI count regression models is that they foster descriptions of

how a vector of correlated ZI count variables respond simultaneously to changes in

measured covariates. Some applications of multivariate ZI regression models include

development of a bivariate ZIP regression model for analyzing two types of occu-

pational injuries (musculoskeletal and non-musculoskeletal) at a teaching hospital

during different intervention trial time periods [95], a semiparametric bivariate ZIP

regression model for analyzing two populations of fish (common carp and channel

catfish) as a function of various environmental variables [103], and a bivariate ZINB

regression model [95] and a bivariate ZIGP regressioon model [104] for analyzing

healthcare utilization (doctor and non-doctor health professional visits) as a function

of various socio-economic variables.

Consider a bivariate random yector Y = (Y1, Y2)
T, which has support on N× N.

The the most common type of inflation in multivariate count data is straightforward

zero-inflation. In other words, there are excessive observed counts of y = (0, 0)T.

Another type of multivariate inflation is diagonal-inflation, where the counts y1 =

y2 = c for c ∈ N are observed at high frequencies. Diagonal inflation regression

models have been used to model pre and post treatment studies, where the treatment

may not have an effect on some patients for an unknown reason, and the number of

draws in various sports games; see [105].

1.10 Related Models

There are various models available for handling other issues with zero counts in an

observed dataset. Such models are often discussed along with ZI count regression

models. We briefly highlight some of these models in this section.

In contrast to ZI count regression models, which are two-component mixture mod-

els, hurdle regression models are two-part models where it is assumed that the positive
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counts are generated from a different process than the zero counts. Employing a sim-

ilar notation to (1.2), a hurdle model combines a zero-truncated count distribution

with a point mass at 0 as follows :

f(y;α,β,ϑ) = π(α)I{y = 0}+ (1− π(α))
p(y;µ(β),ϑ)

1− p(0;µ(β),ϑ)
I{y > 0} (1.50)

Notice, in contrast to the ZI regression model, zeros must come from the degenerate

component. Hurdle models were first proposed by [2] to analyze survey data on bev-

erage consumption. The pscl and glmmTMB packages in R, along with PROC NLMIXED

in SAS, can be used to estimate hurdle regression models.

A large number of zeros can also be present in continuous data, but the probability

of yielding a zero under a continuous distribution is 0. The setting can often be

characterized with a semi-continuous variable, which has a portion of responses equal

to a single value (commonly 0) and a continous, often right-skewed distribution,

for the remaining values [106]. As noted in [26], “for independent semi-continuous

data, there is little motivation for such as a ZI normal, because all observed zeros

are unambiguous; they necessarily come from the degenerate distribution, rather

than from the nondegenerate continuous distribution.” Thus, the likelihood for such

a model factors into terms for the zero and non-zero data, similar to the hurdle

regression model. See [107] for a discussion of ZI gamma regression and ZI lognormal

regression models, who also used those models to analyze data involving Parkinson’s

disease and driving capabilities.

A popular semi-continuous distribution used in insurance to model incurred loss is

the Compound Poisson-gamma distribution, which is a special case of the more general

family of Tweedie Distributions. Let N be the number of claims on an insurance

policy, with N ∼ Poisson(λ), and let Z1, . . . , ZN ∼ Gamma(α, γ) be the total loss

with the ith claim, where i = 1, . . . , N . Assume Zi ⊥ Zj|N for i 6= j. Set Y =
∑N

i=1 Zi,

which is the total incurred loss with a policy holder, so that Y |N ∼ Gamma(Nα, γ)

if N > 0, and Y |N = 0 ∼ 0. Then, we are interested in modeling the marginal

distribution of Y

f(y;λ, α, γ) =

∫
R
fY |N(y|n)P(N = n)dN

= e−λ +
∞∑
n=1

[
(Γ(nα)(γ)nα)−1ynα−1e−

y
γ
][

(n!)−1e−λλn
]

= e−λ + e−λ−γ
−1yy−1

∞∑
n=1

(λy
α

γα
)n

Γ(nα)Γ(n+ 1)
,

(1.51)
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which cannot be computed in closed form, however, numerical approximations utiliz-

ing series expansions and Fourier inversion can be employed; see [108].

As mentioned before, the compound Poisson-gamma distribution is a member of

the Tweedie distributions. While other definitions exist, the Tweedie distributions

can be defined as any random variable X+ =
∑N

i=1Xi for which each Xi is random

sample from an exponential dispersion family with the same canonical parameter

and possibly different index parameters [91]. Tweedie distributions have the property

that if E(X+) = µ, then Var(X+) = φµp, where φ is a scale parameter and p = 0

or 1 < p ≤ ∞. This family contains many familiar distributions for varying index

parameters p, such as the normal for p = 0, quasi-Poisson for p = 1, and gamma

for p = 2. It can be shown that the compound Poisson-gamma distribution has the

index parameter p such that 1 < p < 2 [109]. For the random variable Y above, the

Tweedie parameterization is

p =
α + 2

α + 1
, µ = λαγ, φ =

λ1−p(αγ)2−p

2− p
. (1.52)

Furthermore, as p gets closer to 1, the distribution is closer to a Poisson distribution,

whereas p closer to 2 shifts the distribution closer to a gamma distribution. Lastly,

for all p such that 1 < p < 2, the distribution has a positive point mass a zero, and

is continuous for X+ > 0.

For Tweedie regression, it is typically assumed that log(µ) = xTβ for a vector

of covariates x. Frequently, it is also neccesary to model the dispersion parameter

φ via log(φ) = wTξ for a vector of covariates w. Then, estimation of (ξ,β) is can

be performed via optimization methods for generalized linear models such as IRLS

or Newton-Raphson. Typically, estimation of p is done via grid search or by profile

likelihood [110]. Discussion of tweedie regression for insurance data can be found in

[109]. Software for the tweedie regression model include PROC HPGENSELECT in SAS,

and the glm function in R with the tweedie package [111].

Related to the ZI regression models for semi-continuous data is the zero-one in-

flated beta (ZOIB) regression model, which was introduced by [112]. ZOIB regression

can be used to model proportions with a high amount of observed zero and one pro-

portions. For example, [113] took a Bayesian approach to estimate the parameters

of a ZOIB regression model for modeling US county poverty rates, which yielded

comparable results to the US Census Bureau’s current small-area model for county

poverty estimation. [19] developed a ZOIB regression model to analyze grid-cell data

of a forest coverage ration as a function of two covariates. The zoib package [114] in
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R can perform Bayesian estimation and inference for ZOIB regression models.

Morevover, tree-based methods for zero-inflated count data were explored in [115].

The authors proposed the ZIP likelihood as a purity measure within a node. The

ZIP tree was then applied to the soldering data of AT&T, which was analyzed in [3].

The term zero-altered models (ZAP) is also found in the literature, which refers

to either hurdle models or, more generally, any model that reflects some secondary

behaviour of zero counts. Besides the models we discussed here, one could also have

zero-truncated models, where the mixing proportion in the ZI model is allowed to

be negative and, hence is no longer a true mixture distribution. More discussion on

the differences between these different types of zero-altered models can be found in

Chapter 11 of [22] and Chapter 17 of [65].

1.11 Example: Relationship Data

[116] presented data on n = 387 responses to a version of the Relational Pursuit-

Pursuer Short Form (RP-PSF), which was used to study the unwanted pursuit be-

havior (UPB) of recently split couples. The form consisted of 28 questions about the

pursuer’s behavior — e.g., “Did the pursuer leave unwanted gifts?” — each measured

on a five-point Likert scale (from 0 for never to 4 for over five times). The response

UPB is a discrete summary index to these 28 questions, where higher scores indicate

more perpetration. These data were analyzed using ZI count regression models by

[117] and [39], where the latter noted the clear presence of overdispersion since the

mean UPB is 2.284 and the corresponding variance is 23.302. The predictors of inter-

est are the anxious attachment level (continuous) between the previous couple, and

a binary indicator for education level (0 for lower than a bachelor’s degree and 1 for

at least a bachelor’s degree).

Figure 1.4 is a histogram of the frequency of UPB counts. The frequency was

truncated at 15 in order to focus on the majority of the data. There are nine UPB

counts greater than 15, and the maximum observed count is 34. We overlaid the fits

based on the Poisson, negative binomial, ZIP, and ZINB distributions. Clearly the

Poisson and ZIP fits are not appropriate as they noticeably deviate from the general

shape of the data. The negative binomial and ZINB fits, however, provide a noticeable

improvement. These fits were all obtained without accounting for covariates, but the

observations we made with the histogram suggest that using the negative binomial or

ZINB distribution for the count regression distribution should be a reasonable choice.

We next performed the boundary LRTs discussed in Section 1.3. The test of zero-
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Figure 1.4: Histogram of the relationship data, truncated to show values of 15 or
fewer for the UPB response. Fits for the four count distributions — Poisson, negative
binomial, ZIP, and ZINB — are overlaid. A visually better fit can be seen with the
estimated ZINB model.
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Figure 1.5: Q–Q plots of the randomized residuals for the fitted models: (a) Pois-
son regression, (b) negative binomial regression, (c) ZIP regression, and (d) ZINB
regression. Better fits are indicated by the negative binomial regression and ZINB
regression Q–Q plots.
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Table 1.7: Adjusted-R2 results when including education level, anxiety attachment
level, or both in the model. Results for both the ZIP regression and ZINB regression
models are reported.

Covariates
ZIP ZINB

Regression Regression
Education 0.523 0.016

Attachment 0.492 0.026
Education, Attachment 0.503 0.028

inflation for the Poisson regression and negative binomial regression settings, as well

as the test for using a ZIP versus a ZINB regression model, all have highly signifi-

cant results in favor of the alternative hypotheses; the largest p-value is 2.06× 10−7.

Thus, these tests indicate the presence of zero-inflation and, more specifically, the

use of the ZINB distribution. Table 1.7 gives the adjusted-R2 values for the ZIP and

ZINB regression models when including education level, anxiety attachment level,

or both covariates in the respective model. These covariates were included in both

the conditional mean model for the count distribution and the mixing proportion

model for the zero inflation. For the ZIP regression models, the largest adjusted-

R2 is obtained for the model with only education level as a covariate. For the ZINB

regression models, the largest adjusted-R2 is obtained for the model with both covari-

ates included. Since the boundary LRTs indicated the use of the ZINB distribution,

we use the adjusted-R2 results from this model and include both covariates in the

model. As one final check of the fit, we calculated the randomized quantile residuals

for the Poisson regression, negative binomial regression, ZIP regression, and ZINB

regression models, where both covariates are included. The quantile-quantile (Q–Q)

plots for these four estimated models are given in Figure 1.5. Clearly, better fits are

obtained using negative binomial regression or ZINB regression. In fact, the ZINB

regression model provides a slightly better fit for those values in the right-hand tail

of the distribution.

Lastly, a table of AIC and BIC values can be seen in Table 1.8. Again, we see

evidence that the ZINB provides the best fit, although the negative binomial provides

a quality fit as well.
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Table 1.8: AIC and BIC Values for Couple Data

Model AIC BIC ∆AIC ∆BIC
Poisson 2782.390 2794.266 1516.108 1500.275
NB 1285.919 1301.752 19.637 7.761
ZIP 1616.901 1640.652 350.619 346.661
ZINB 1266.282 1293.991 * *

1.12 Appendix

ECM Algorithm for ZINB

Suppose we observe a sample of size n, (y1,x
T
1 ,w

T
1 ), . . . , (yn,x

T
n ,w

T
n ), where the yi

are count responses, and xi and wi are (possibly uncoupled) p and q dimensional

vectors of covariates, respectively. Following similar notation as used in Section 1.2

of the main text, the conditional distribution of the counts given the covariates for

ZINB regression is

f(yi;β,α) = πi(α)I{yi = 0}+ (1− πi(α))p(yi;µi(β), θ) (1.53)

where

p(yi;β, θ) =
Γ(θ + yi)

yi!Γ(θ)

(
µi(β)

θ + µi(β)

)yi ( θ

θ + µi(β)

)θ
, µi(β), θ > 0 ∀i. (1.54)

Taking the traditional GLM approach for modeling µi(β) and πi(α), we assume

log(µi(β)) = xT
i β and logit(πi(α)) = wT

i α. (1.55)

Incorporating (1.55) into the loglikelihood based on (1.53), the observed data loglike-

lihood for the ZINB regression model is as follows:

`o(β,α, θ;y) =
∑
yi=0

log
(
ew

T
i α + (1 + θ−1ex

T
i β)−θ

)
−
∑
yi>0

[
yi log

(
1 + θe−x

T
i β
)

+ θ log(1 + θ−1ex
T
i β)
]

−
n∑
i=1

log(1 + ew
T
i α) +

∑
yi>0

log

(
Γ(θ + yi)

yi!Γ(θ)

)
.
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Now suppose we knew which state the zeros came from; i.e., suppose we could observe

Ri =

1, if Yi is from degenerate state;

0, if Yi is from the negative binomial state.

In other words, Ri is a Bernoulli random variable with rate of success logit−1(wT
i α).

Then, the complete data log-likelihood for the ZINB regression model is as follows:

`c(β,α, θ;y, r) =
n∑
i=1

log(f(ri|α)f(yi|ri,β))

=
n∑
i=1

[
riw

T
i α− log(1 + ew

T
i α)
]

−
n∑
i=1

(1− ri)
[
yi log

(
1 + θe−x

T
i β
)

+ θ log(1 + θ−1ex
T
i β)
]

+
n∑
i=1

(1− ri) log

(
Γ(θ + yi)

yi!Γ(θ)

)
= `c(α; r) + `c(β, θ;y, r)

where the r = (r1, . . . , rn)T are the hypothetically observed indicators. Thus, we can

maximize `c(α; r) and `c(β, θ;y, r) separately in an EM [118] framework. However,

note that maximizing `c(β, θ;y, r) is actually difficult since the negative binomial

distribution with unknown dispersion parameter does not belong to the exponential

family. But if we consider two separate conditional maximization steps for maximizing

`c(β, θ;y, r), then we can more easily compute the MLEs for the ZINB regression

model using an ECM algorithm [119].

ECM Algorithm

• E-Step: Let Q(Θ; Θ(t)) = E[`c(β,α, θ;y, r); Θ(t)], where Θ = (βT,αT, θ)T is

our parameter of interest and Θ(t) is the corresponding estimate at iteration

t = 0, 1, . . .. The value of Θ(0) corresponds to user-supplied starting values.

Estimate the probability of belonging to the perfect state by computing the

posterior membership probabilities at the tth iteration as follows:

r
(t+1)
i = P

(
Ri = 1|yi,Θ(t)

)
=


(

1 + ew
T
i α

(t)

(
1 + ex

T
i β

(t)

θ(t)

)−θ(t))−1
, if yi = 0;

0, if yi = 1, 2, . . . .
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• CM-Steps:

1. Calculate α(t+1) by maximizing Q(Θ; Θ(t)) with β and θ fixed at β(t)

and θ(t), respectively. In other words, this maximizes `c(α;y, r(t+1)) with

respect to α, which can be solved by performing an unweighted binomial

logistic regression of r
(t)
1 , . . . , r

(t)
n on w1, . . . ,wn [24].

2. Calculate β(t+1) by maximizingQ(Θ; Θ(t)) withα and θ fixed atα(t+1) and

θ(t), respectively. In other words, this conditionally maximizes `c(β, θ;y, r
(t))

with respect to β by using a fixed value of θ, namely θ(t). This is equiv-

alent to estimating a weighted negative binomial regression model at a

fixed dispersion parameter, which is a setting that puts the model in an

exponential family. Thus, to calculate β(t+1), we can employ IRLS as is

typically done when estimating parameters in GLMs.

3. Calculate θ(t+1) by maximizing Q(Θ; Θ(t)) with β and α fixed at β(t+1)

and α(t+1), respectively. In other words, this conditionally maximizes

`c(β, θ;y, r
(t+1)) with respect to θ by using a fixed value of β, namely

β(t+1). One could use, for example, a fixed point algorithm to calculate

θ(t+1) [120].

• Iterate between the E-step and the CM-steps until a convergence criterion is

reached, such as `o(β
(t+1),α(t+1), θ(t+1);y) − `o(β

(t),α(t), θ(t);y) < ε for some

small ε > 0.

Timing Results

In this section, we present the results from the simple time comparison study discussed

in the main text. We generated a single dataset from a ZIP regression model and

a ZINB regression model for each of the sizes n ∈ {10k : k = 2, . . . , 6}. For the

ZIP regression model, the data were generated using β = (−2.0, 3.0)T and α =

(1.0,−1.7)T . For the ZINB regression model, the data were generated using β =

(3.0, 1.2)T, α = (−0.5, 0.5)T, and θ = 6. The results for estimating the ZIP regression

model are given in Table 1.9. The results for estimating the ZINB regression model

are given in Table 1.10. Estimating each model is almost always most efficient using

PROC GENMOD.
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Table 1.9: Timing results for estimating each dataset of size n from the generated
ZIP regression model.

n zeroinfl vglm glmmTMB GENMOD NLMIXED COUNTREG

102 0.03 0.05 0.33 0.04 0.07 0.06
103 0.09 0.07 0.21 0.05 0.10 0.02
104 1.43 1.15 1.09 0.09 0.62 0.60
105 13.36 13.19 10.14 0.57 7.37 2.57
106 152.54 96.18 126.91 5.29 28.01 29.14

Table 1.10: Timing results for estimating each dataset of size n from the generated
ZINB regression model.

n zeroinfl vglm glmmTMB GENMOD NLMIXED COUNTREG

102 0.02 0.31 0.30 0.16 0.55 0.25
103 0.19 2.45 0.38 0.15 0.22 0.18
104 2.78 22.90 3.13 0.20 0.55 0.75
105 23.73 225.36 38.71 1.02 3.25 6.18
106 227.80 2416.67 399.230 8.76 33.68 60.58

Insurance Analysis Code

Posted below is JAGS code for the insurance analysis. The JAGS model is fit using

the “zeros trick”. To describe the “zeros trick”, let Z∗ = 0n be a “fake” response

vectors, where each Zi is an observed zero from a Poisson distribution with mean

exp(`i(Θ) + K). Here, `i(·) is the log-likelihood for the ith observation, and K is

a sufficiently large constant, say 10000. K makes sure that `i(Θ) + K > 0 for all

i = 1, . . . , n. Then, the log-likelihood of the data is

`(Θ) = log(
n∏
i=1

P (Zi = 0)) =
n∑
i=1

[
log(`i(Θ))

]
+ n log(K) (1.56)

Thus, we can construct any arbitrary likelihood by employing the zeros trick. This

trick, or the “ones trick”, is necessary when construncting a likelihood for a distribu-

tion that is not already built into JAGS.

### JAGS Code - Save as .bug extension to run ###

## Vector of zeros for zeros trick

data{

K <- 10000
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for(k in 1:N){

zeros[k] <- 0

}

}

## Constructing Model

model{

for(i in 1:N){

##Mixing Proportions

p[i] <- max(0.001,min(0.999,q[i]))

logit(q[i]) <- alpha[1] + alpha[2]*veh_value[i]

##Poisson Mean

log(mu[i]) <- log_exposure[i] + beta[1] + beta[2]*veh_value[i]+

beta[3]*LargeVan_ind[i] + beta[4]*TwoSeat_ind[i]+

beta[5]*Convt_ind[i] +

beta[6]*Bus_ind[i]+beta[7]*UTE_ind[i] +

beta[8]*areaD[i] + beta[9]*agecat2[i] + beta[10]*agecat3[i] +

beta[11]*agecat4[i] + beta[12]*agecat5[i] + beta[13]*agecat6[i]

##indicator for if y = 0 versus y >0

z[i] <- step(y[i] - 1)

## Likelihood Function

ll[i] <- (1-z[i])*log(p[i] + (1-p[i])*exp(-mu[i])) +

z[i]*(log(1-p[i]) + y[i]*log(mu[i]) - mu[i] - loggam(y[i]+1))

## Likelihood construction for zeros trick (add large constant)

phi[i] <- -ll[i] + K

## Fake zeros are poisson with mean -ll[i]+K

zeros[i] ~ dpois(phi[i])

}

## Assigning normal priors with mean zero and

##precision .1 for regression coeff

for(j in 1:13){

beta[j] ~ dnorm(0,.1)

}

for(j in 1:2){

alpha[j] ~ dnorm(0,.1)

}

}
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Furthermore, below is the R-Script using the RJAGS package [77], which allows

JAGS scripts to be executed in the R environment.

################## File Information #########################

#### Purpose- Analyze Car Insurance Data From Australia ####

car <- read.csv("car.csv")

############## EDA ####################

car$veh_body <- as.character(car$veh_body)

## Setting up vehicle body groups

car <- transform.data.frame(car,

vh_body_group = ifelse(veh_body == "MCARA" | veh_body =="PANVN"

,"MCARA,PANVN",

ifelse(veh_body=="RDSTR" | veh_body=="COUPE","RDSTR,COUPE",

ifelse(veh_body=="BUS","BUS",

ifelse(veh_body=="CONVT"|veh_body=="HDTOP","CONVT",

ifelse(veh_body=="UTE","UTE","General"))))))

library(pscl)

car$agecat <- as.factor(car$agecat)

car$aread_ind <- ifelse(car$area == "D",1,0)

car$veh_age <- as.factor(car$veh_age)

########### Model Fitting ###########

##### Bayes #####

library(rjags)

## JAGS data should be input as a list

jags.data <- list(’y’=car$numclaims,’veh_value’=car$veh_value,

’log_exposure’=log(car$exposure),

’LargeVan_ind’=as.numeric(car$veh_body=="MCARA"| car$veh_body=="PANVN"),

’TwoSeat_ind’ = as.numeric(car$veh_body=="RDSTR" | car$veh_body=="COUPE"),

’Convt_ind’= as.numeric(car$veh_body=="CONVT"|car$veh_body=="HDTOP"),

’UTE_ind’= as.numeric(car$veh_body =="UTE"),

’Bus_ind’= as.numeric(car$veh_body =="BUS"),

’areaD’=(car$area=="D"),
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’agecat2’=(car$agecat==2),’agecat3’=(car$agecat==3),

’agecat4’=(car$agecat==4),’agecat5’=(car$agecat==5),

’agecat6’=(car$agecat==6),’N’=nrow(car))

## Execture insurance_bayes.bug script with jags.data data set

jags <- jags.model("insurance_bayes.bug", data = jags.data)

## Obtain 5000 posterior samples

samples <- coda.samples(jags,

variable.names = c("alpha","beta"),n.iter = 5000)

Copyright c© Eric Roemmele, 2019.

47



Chapter 2 Semiparametric Extension to ZIP Regression via Local

Likelihood

2.1 Introduction

In Chapter 1, ZI regression models were introduced, and discussed from a parametric

perspective. ZI regression models are useful for studying the relationship between

a discrete response variable with excessive zeros and predictor variables of interest.

Recall that the ZI regression model can be written as the mixture model

Y |X = x,W = w ∼ π(α)I{y = 0}+ (1− π(α))p(y;µ(β),ϑ,x), (2.1)

where π(α) = h−1(wTα) and µ(β) = g−1(xTβ) for suitably chosen link functions h

and g. However, assuming h−1(·) = logit−1(·), the assumption of globally (logit) lin-

ear zero-inflation probabilities might be too strong, and thus, a more flexible model is

desired. In this chapter, we propose relaxing the parametric assumption of the mixing

proportions, and specify π(w) as a smooth function of continuous covariates, where

typically w ∈ R1. The assumption of the parametric mean of the count component,

µ(β) = g−1(xTβ), is still kept. Our semiparametric approach takes inspiration from

the semiparametric mixtures-of-regressions literature, such as the work seen in [121]

and [122]. For the rest of this chapter, we focus on the ZIP regression model, although

one-parameter exponential families can be treated similarly. Before we formally in-

troduce the semiparametric model and estimation, we first review the literature of

semiparametric mixtures-of-regressions and semiparametric ZI regression.

Literature Review of Mixtures of Regressions

Mixtures-of-regression models, or “switching regression”, were first developed in the

econometrics literature by [123]. The authors discussed estimation of the model

yi = xT
i β1 + ε1i with probability p

yi = xT
i β2 + ε2i with probability 1− p,

(2.2)

where ε1i
iid∼ N (0, σ2

1) and ε2i
iid∼ N (0, σ2

2) for i = 1, . . . , n. [123] discusses maximum

likelihood estimation of the model, and applies the model to predict the number of

housing starts by several economic variables. In 2.2, the switching probabilities p do
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not depend on covariates.

The extension of allowing p to depend on covariates was developed in the machine

learning literature by [124], which is called the hierarchical mixtures of experts (HME).

Overall, the HME model is similar to the Classification and Regression Trees (CART)

algorithm developed by [125], except the node splits are soft probabilistic splits as

opposed to the the hard splits in CART. Also, within a node, the HME model fits

a linear regression for prediction, as opposed to a constant (usually the mean) in

CART. [124] develop an EM Algorithm to estimate the HME model.

Recently, semiparametric mixtures of regression models have been receiving in-

creasing attention in the literature. [121] proposed a mixture-of-regressions model

f(yi|xi;φ) =
m∑
j=1

λj(xi)φ(yi;x
T
i βj, σ

2
j ), (2.3)

where the mixture components φ(·;xT
i βj, σ

2
j ) are the Gaussian density with mean

xT
i βj and variance σ2

j . Here, φ = (λ1(·), . . . , λm(·),β1, . . . ,βm, σ
2
1, . . . , σ

2
m). In their

model, the mixing proportions λj(xi) are assumed to be smooth function of covariates,

which are then estimated via kernel regression. The authors develop strategies for

choosing the number of mixture components m, and propose an “EM-like” algorithm

for model estimation that alternates between local estimation of λj(·) and global

estimation of each βj. The term “EM-like” will be further defined in Section 2. They

then apply their semiparametric mixtures-of-regressions model to study how gross

national product (GNP) per capita varies with the estimated carbon dioxide (CO2)

emissions per capita for a group of 28 nations. Thier model can be fit using the

mixtools package in R [126].

[122] further developed on [121] by proposing a one-step backfitting algorithm

for estimating 2.3, along with an “EM-like” for each of the back-fitting steps. The

authors established novel asymptotic theory, which includes the asympotic normality

of each β̂j, σ̂2
j , and λ̂j(w), at a fixed point w ∈ R. Also, the authors establish what

they call the asymptotic ascent property, which will be further defined in Section 2.

The asymptotic ascent property is analogous to the ascent property in classical EM

algorithms. The generalized likelihood ratio test was developed by [127] to test the

hypothesis

H0 : λj(z) = λj for all j = 1, . . . ,m

H1 : λj(z) 6= λj for some j = 1, . . . ,m.
(2.4)

In other words, we are testing whether the mixing proportions depend on the covari-

ates.
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In similar work to [122], [128] developed a ZI binomial regression model to study

how rainfall varies across time in Edmonton, Canada. Also, similar to [122], [129] de-

veloped a mixture of regressions model where the mixing proportions, mean functions

for the components, as well as the variance functions for the components are modeled

non-parametrically. The authors then apply their methodology to US housing price

index data.

Literature Review of Semiparametric ZI Regression

Among the first semiparametric ZI regression model was the partially linear ZIP

regression model developed by [97]. The authors developed the partially linear model

where it is assumed that
log(µi) = xT

i β + g(T )

logit(πi) = wT
i α,

(2.5)

T is an observed continuous predictor, and g(·) is an unknown smooth function.

Denoting the parameter space by Θ = (β,α, g), and noting that Θ is infinite dimen-

sional. [97] make inference about Θ via the sieve method. The key idea behind the

sieve method is to “approximate the infinite dimensional parameter space Θ by a

sequence of finite dimensional parameter spaces Θn, where Θn has larger dimension

as n→∞.” They then perform maximum likelihood estimation on Θn instead of Θ.

More rigorously, suppose β and α lie in bounded subsets A1 ⊂ Rp and A2 ⊂ Rq,

respectively. For simplicity, suppose T ∈ [0, 1]. Define the set

B = {g ∈ Cr [0, 1] : −∞ < m0 ≤ g(t) ≤M0 <∞,∀t ∈ [0, 1]}, (2.6)

where Cr [0, 1] denotes the class of r-order continuously differentiable functions on

[0, 1]. Then, Θ = A1 × A2 × B. The authors then approximate g by the B-spline

basis

Gm(t; b) =
m∑
j=1

(bj − bj−1
tj − tj−1

t− bjtj−1 − bj−1tj
tj − tj−1

)
I{tj−1 ≤ t < tj}, (2.7)

where (t0, . . . , tm) are the knots and b = (b0, . . . , bm)T are the vector of coefficents for

Gm. Here m is an integer with m = O(nk) for some 0 < k < 1. Then, define

Bn = {Gm(t; b) : m0 ≤ bj ≤M0, j = 1, . . . ,m}. (2.8)

Let Θn = A1 × A2 × Bn be the sieve space for Θ. For θ = (β,α, g)T ∈ Θ, select

b∗ = (g(t0), . . . , g(tm))T, and define the estimate of g as gn(·) = Gm(·; b∗). Then, the
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sieve MLE is defined as

θ̂n = (β̂n, α̂n, ĝn)T = argsup
θ∈Θn

1

n

n∑
i=1

`i(θ; yi), (2.9)

where `i(θ; yi) is the ZIP likelihood for the ith observation. For the asymptotic prop-

erties, see [97]. For more details on sieve estimation, see [130] and [131]. [132]

extended the sieve MLE work of [97] by assuming the zero-inflation probabilities

logit(πi) = wT
i α+ h(T ), where h is a smooth function of T .

Another novel work in the semiparametric ZI regression literature is the partially-

constrained GAM developed by [133]. Similar to the ZIP(τ) model developed in [3],

[133] allows for the effects of a predictor in the mean of the count component to

be proportional to the effect in the zero-inflation probability. This allows us, for

example, to answer the question of “does the temperature have similar influences in

affecting the presence/absence of the speices and the local biomass, given the species

is present in the location?”. In more detail, assume Yi|Ti,Ui,Vi,Wi follows the ZI

regression model for i = 1, . . . , n, where the count component belongs in the one-

parameter exponential family with mean µi. Here, Ti, Ui, Vi, and Wi are vectors of

covariates of length m1, m2, m3, and m4, respectively. Assume that the mean of the

count component can be written as

log(µi) = β0 +

m1∑
j=1

sj(tj) +

m2∑
k=1

hk(uk) +

m3∑
l=1

ηl(vl), (2.10)

where β0 is an intercept, sj, hk, and ηl are non-parametric smooth functions. For

identifiablity, we assume that each function has expectation zero. Similarly, suppose

the zero-inflation probability can be written as

logit(πi) = α0+δ1
∑
j1∈J1

sj1(tj1)+ · · ·+δm1

∑
jm1∈Jm1

sjm1
(tjm1

)+

m2∑
k=1

h∗k(uk)+

m4∑
s=1

ξs(ws),

(2.11)

where J1, . . . ,Jm1 are subsets of the indices {1, . . . ,m1} with
⋃m
k=1 Jk = {1, . . .m1}.

So, the covariate vectors of vl and ws are employed only in the count component and

degenerate state, respectively. Moreover, the covariate vector uj are used in both

states, but the functions hj and h∗j are unrelated. Lastly, the covariate vector tj is

utilized in both states, but the effect in the zero-inflation state is proportional to that

of the count component, where δj is the proportionally parameter. Model estimation

is performed via penalized likelihood and an EM algorithm, and this model is used
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to study jellyfish abundance by temperature, depth, and spatial-temporal variables.

The R package COZIGAM [134] can be used to fit the constrained GAM model.

Lastly, [90] developed a semiparametric ZIP model for longitudinal data. Simi-

lar to the notation in Section 1.8, suppose we observe n indpendent subjects Y =

(Y1, . . . ,Yn)T, where Yi = (Yi1, . . . , Yini). Then, assume that

Yij|bi ∼ ZIP(µij(β; bi), πij(α))

and
log(µij) = xT

ij + bi + f(tij)

logit(πij) = wT
ijα,

where f(·) is a smooth function of a continuous covariate T , and b1, . . . , bn
iid∼ N (0, σ2).

Here, f is approximated by splines with a q-order truncated power function as the

basis; see [135] for more details. The authors then develop a penalized likelihood

function with a Monte-Carlo expectation-maximization (MC-EM) algorithm for op-

timization. The methodology is then applied to a data set from a pharmaceutical

company to monitor the number of side effect episodes on a patient.

Overview of Chapter

The rest of this chapter is organized as follows. Section 2.2 discusses estimation of

our novel semiparametric ZIP regression model along with asymptotic properties of

the estimators. Section 2.3 presents a simulation study for our model, along with a

discussion of the Generalized Likelihood Ratio test. Section 2.4 shows an application

of the semiparametric ZIP regression model to two data sets involving Alzheimer’s

disease and meth lab seizures. Lastly, Section 2.5 is an appendix where proofs of

theorems and additional numerical work is displayed.

2.2 Estimation of Semiparametric Regression Models

Semiparametric ZIP Regression Model

Suppose that {(Yi,Xi,Wi)}ni=1 is a random sample, where the conditional distribution

of Y |Xi = xi,Wi = wi is distributed as

Y |Xi = xi,Wi = wi ∼ π(wi)I{yi = 0}+ (1− π(wi))p(yi;µi(β)), (2.12)
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p(·;µi(β)) is the Poisson mass function with mean µi(β) = exp(xT
i β), and the zero-

inflation probability π(wi) are nonparametric smooth functions of the covariates wi.

For simiplicity, we’ll assume that wi ∈ R1, and write wi instead of wi. The method-

ology can be easily extended to multivariate wi, but one needs to be cognizant of the

“curse of dimensionality” [136]. To overcome the curse of dimensionality, one typi-

cally assumes the structure of π(w) is additive, which is referred to as a generalized

additive model (GAM). In other words, one assumes

π(w) = α0 + π(w1) + π(w2) + · · ·+ π(wq),

where E(wi) to ensure identifiability. Another method to overcome the curse of

dimensionality is the partially linear model, which supposes π(w) can be written as a

linear function of covariates plus a nonparametric smooth function g(·) of a continuous

covariate T ; i.e.,

π(w, t) = αTw + g(t).

Identifiablity

Identifiability is a paramount concern in mixture models. For valid interpretation of

parameters, the following notion of identifiability is needed.

Definition 2.2.1. Suppose Y ∼ f(y;θ) with parameters θ and parameter space Θ.

The model f(y;θ) is said to be identifiable if for any θ1,θ2 ∈ Θ

f(y;θ1) = f(y;θ2) =⇒ θ1 = θ2. (2.13)

In other words, two different combinations of parameters can’t give rise to the

same likelihood. For more details on identifiability of finite mixture models, see

[137]. More details on identifiability of mixtures-of-regressions models can be seen in

[138].

In regards of identifiability of the ZIP regression model, [139] proved the iden-

tifiability of aforemetioned model for the univariate case of µ = β0 + β1x and for

any smooth function π(x). Under more general conditions, the identifiability of the

semiparametric ZIP regression model can be proved with the aid of a theorem from

[140], who studied identifiablity of nonparametric and semiparametric mixtures of

GLMs. The ZIP regression model can be viewed as a mixture of GLMs, where we

view the degnerate component as a Poisson distribution with rate parameter µ ≡ 0.
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For model 2.12, the conditions for identifiablity can be seen in Theorem 2.1. The

proof is given in the Appendix.

Theorem 2.2.1. Model 2.12 is identifiable if all of the following conditions are sat-

isfied:

1. The domain X of x contains an open set in Rp, and the domain W of w has

no isolated points.

2. π(w) > 0 are continuous functions.

3. The parametric ZIP model πI{y = 0}+ (1− π)p(y;µ) is identifiable.

Conditions (1) and (2) are assumptions on the domain space and parameter space,

thus, all that is left to show is condition (3).

Let θ = (β, π(·)), and let `(θ;y) denote the likelihood function for the sample

{(Yi,Xi,Wi)}ni=1. Since π(·) is nonparametric, ` is not ready for optimization. To

learn π(·), local-likelihood methodology will be employed. First, local likelihood

regression will be reviewed.

Local Likelihood

Assume Yi|Xi = xi ∼ f(y; θ(xi)) for i = 1, . . . , n, where f(·; θ(xi)) is a density (or

pmf) in the exponential family with canonical parameter θ(x). We assume θ(x) is

d-times differentiable fucnction of x. Often, it is assumed that d = 1 or d = 2. Then,

by Taylor’s Theorem, θ(x0) can be well approximated by a d-degree polynomial for

points in the domain “close” to x0. More formally, if for x ∈ R such that |x−x0| < h,

where h is sufficiently small, it follows that

θ(x) ≈ a0 + a1(x− x0) +
1

2
a2(x− x0)2 + . . .

1

d
(x− x0)d

= aTA(x− x0),
(2.14)

where a = (a0, . . . , ad)
T and A(v) = (1, v, . . . , 1

d
vd)T is the polynomial basis. Then,

at a fixed point x0 in the predictor space, define the smoothed-likelihood at x0 as

`Sx0(a) =
n∑
i=1

wi log f
(
yi|θ(x) = aTA(x− x0)

)
, (2.15)

where the wi = h−1K
(
xi−x0
h

)
are weights and K(·) is some kernel function with

bandwidth h. Let â be the maximizer of 2.15. Then, the local likelihood estimate of
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Table 2.1: Common Kernel Functions

Kernel K(u)
Uniform 1

2
I{|u| ≤ 1}

Epanechnikov 3
4
(1− u2)I{|u| ≤ 1}

Gaussian 1√
2π

exp(−1
2
u2)

θ(x0) is defined as

θ̂(x0) = â0. (2.16)

In essence, the local likelihood at x0 is a weighted average of the log densities of the

samples such that observations that are closer to x0 have more weight or influence

over the estimate of θ(x0). The bandwidth h controls the size of the neighborhood

around x0. To learn the function θ(x), typically we estimate θ(·) at a set of grid

points Z = {z1, . . . zN}, and then estimate θ(x) for x /∈ Z by linearly interpolating.

As in linear regression, a higher degree polynomial leads to estimates with less

bias, but higher variability in the estimate [141]. Therefore, lower-order first or second

degree approximations are preferred. Local constant approximations, also referred

to the Nadaraya-Watson estimate, as exhibit low variance and are compuationally

simple, but can suffer from boundary bias or more generally, bias in regions where

the data is sparse. The issue can be mitigated by choosing a proper bandwidth. The

local linear or local quadratic approximates correct the boundary/sparsity issues,

but with more computational burden. In our work, we will use the local constant

approximation, and investigate proper bandwidth selection.

Common choices of the kernel or weight function are the Uniform, Epanechnikov,

and Gaussian; see Table 2.1. The choice of kernel function in kernel regression is

typically inconsequential, but the choice of the bandwidth (or smoothing) parameter

h is critical [142]. If h is too small, the bias will be small, but the estimated regression

function will have high variability, leading to spurious features in the curve. On the

other hand, if h is too large, the estimated function will exhibit low variance, but

the bias will be high, which could lead to missing interesting features. Typically,

bandwidths are chosen by minimizing some criterion. For example, one common

measure is the integrated square error (ISE), which is

ISE(h) =

∫
R

(m̂h(x)−m(x)) fX(x)dx, (2.17)

where m̂h(·) is the estimate of the true regression function m(x), and X ∼ fX(x). So,
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ISE is the average mean-square error, where the expectation is taken with respect to

X. However, ISE is a random variable since it is a function of Y , and thus is difficult

to minimize. Therefore, we then consider the mean integrated squared error (MISE),

which is defined as

MISE(h) = E (ISE(h))

=

∫
· · ·
∫

ISE(h)f(x1, . . . , xn, y1, . . . , yn)dx1 . . . dxndy1 . . . dyn
(2.18)

where the expectation is taken with respect to the joint distribution of the observed

sample {(Xi, Yi)}ni=1. MISE is not a random variable, and a minimizer of 2.18 can

be derived; see [128] and [142]. When taking the Taylor series expansion of 2.18, the

quanity contains higher-order terms that are on the order of o(h4) and o((nh)−1). The

typical asymptotic conditons of kernel regression are h → 0 and nh → ∞, and thus

these higer order terms vanish, and so we can then consider the Asymptotic Mean

Integrated Square-Error (AMISE). The formula for the optimal bandwidth chosen

by AMISE can be seen in [143]. But, the minimizer of AMISE depends on unkown

quantities, such as m′′(x), which depends on the function we are estimating. This then

leads to the plug-in approach for bandwidth selection, where these unknown quantities

are replaced by estimates, such as those obtained by a polynomial regression fit.

Another common method for choosing the bandwidth, which is what we will em-

ploy, is cross-validation. Let L(m̂h(·),m(·)) be a loss function (ex. L2) for quantifying

the loss between the true function m and its estimate m̂. Ideally, we would like to

find argmin
h

L(m̂h(·),m(·)). But, m is unknown, and thus m is replaced with the

responses Yi’s, which is then can be seen of a measure of how well mh(x) predicts Y.

The issue is that many times this quantity can be made arbitrarily small by choosing

m̂h(·) to interpolate each of the Yi’s. For example, if we consider the average square

error loss (ASE), L(m̂h,Y ) = 1
n

∑n
i=1{mh(Xi) − Yi}2, we can then choose mh to

interpolate each Yi’s since the m̂h is trained on the Yi’s. To remedy this dilemma, we

will employ K-fold cross-validation (CV).

Cross-validation is performed as follows:

1. Consider a grid of candidate bandwidths H = {h1, . . . hM} where h1 < h2 <

· · · < hm.

2. Partition the whole data set D randomly into a training set Rj and test set Tj
for j = 1, . . . K such that Tj ∩ Tj′ = ∅ for j 6= j′.

3. For h ∈ H, do:
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a) For j = 1, . . . , K, do:

i. Train the model on Rj, and obtain m̂h(x).

ii. Output:

CV (j)(h) =
∑
l∈Tj

L(m̂h(Xl), Yl).

b) Output :

CV (h) =
K∑
j=1

CV (j)(h).

4. Output :

ĥ = argmin
h∈H

CV (h).

Typically K is set to 5 or 10. Cross-validation can exhibit high variability, so it

is recommended to repeat the procedure 30 to 50 times, and then taking the average

of the CV bandwidths. It can be shown that the ĥ = O(n−1/5), which doesn’t meet

the under-smoothing requirements for the asymptotic theory. A suggested adjusted

under-smoothed bandwidth by [144] is h̃ = ĥ × n−2/15 = O(n−1/3). In this chapter,

under-smoothing, CV-smoothing, and over-smoothing will be investigated.

Bandwidth selection is among the most highly debated issues in semiparametric

regression. Plug-in approaches are computationally simple and stable, but requires

estimating unknown quantities about the function of estimation. CV approaches opti-

mizes the bandwidth on independent validation sets, but is computationally expensive

and can exhibit high variability. For a more in depth discussion on the difficulty of

choosing bandwidths, refer to [145].

Another approach to bandwith selection can be found in the computer vision

subfield known as scale space theory. From the perspective of [146] and [147], adjusted

h is “like adjusting the focus on a camera” [148]. According to [148], “A larger h

gives a macroscopic view of the surface, showing only large-scale features, while a

small h gives a zoomed-in view to show small scale features”. In summary, the scale

space view of bandwidth selection looks at a range of bandwidths to help determine

which features are consistantly present across multiple bandwidths. [148] developed

a local likelihood regression “SIgnificant ZERo crossings of derivatives” (SiZer) map

applying some of the scale space ideas to local generalized linear models. Another

recent development in the vein of scale space theory is taking a confidence interval

approach to choosing h; see [149].
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Estimation

The challenge in estimating 2.12 is that it that it contains both parametric and

non-parametric functions. Similar to the estimation in [122], we propose a one-step

backfitting algorithm for estimation of β and π(·). Backfitting estimation alternates

between steps of local estimation and global estimation. The algorithm was first

proposed by [150], and then further studied by [151]. Before we propose a backfitting

algorithm for estimation of 2.12, let us review the backfitting algorithm in the context

of the partially-linear model (PLM), which is similar to our model in that it contains

both parametric and nonparametric parts. The summary below follows that from

Chapter 7.1 of [142]

The PLM can be written as

Y = XTβ +m(T ) + ε,

where ε is an error term with E(ε) = 0 and Var(ε) < ∞. Moreover, (XT, T )T ⊥ ε.

Then,

Y −XTβ = m(T ) + ε,

which implies

E
(
Y −XTβ

∣∣T ) = m(T ). (2.19)

Suppose we had an inital estimate β̂, say from a linear regression of Y onX. Plugging

in β̂, we can now estimate m(T ) by running a nonparametric regression of Y −XTβ̂

on T; call this m̂(T ). Then, fixing the nonparametric estimate m̂(T ), consider

E(Y − m̂(T )|X) = XTβ. (2.20)

Thus, we can update β̂ by running a linear regression of Y − m̂(T ) on X. We then

alternate between nonparametric estimation of m(·) and parametric estimation of β

until convergence.

Returning to the backfitting estimation of 2.12, let `(θ;y) denote the likelihood

of the sample, where θ = (β, π(·)). That is,

`(θ;y) =
n∑
i=1

log
[
π(wi)I{yi = 0}+ (1− π(wi))p(yi;µi(β))

]
. (2.21)

2.21 is not ready for optimization as it contains the nonparametric function π(·). Let

Z = {z1, . . . zN} be a set of grid points for local estimation. Define the smoothed
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likelihood at z ∈ Z as

`S1
z (π0,β;y) =

n∑
i=1

Kh(wi − z) log

[
π0I{yi = 0}+ (1− π0)p(yi;µi(β))

]
, (2.22)

where Kh(t) = h−1K(t/h) is a rescaling of the kernel function with bandwidth h. Here

π0 is the local constant in local likelihood regression to be estimated; i.e., π̂(z0) = π̂0,

where π̂0 is the maximizer of 2.22 . Maximization of 2.22 is difficult, so we’ll use

an “EM-like” algorithm similar to that seen in Section 1.3. The term “EM-like” is

used because we are no longer maximizing a true likelihood function, but instead a

weighted version of 2.21. Similar to Section 1.3, we can calculate a complete-data

local likelihood that is analagous to (1.11), but the kernel weights are incorperated

as an additional weighted component for the regressions. The complete-data local

likelihod at z ∈ Z is

`S1
C,z(π0,β;y) =

n∑
i=1

Kh(wi − z)
(
ri log(π0) + (1− ri) log(1− π0)

)
+

n∑
i=1

Kh(wi − z)(1− ri)
(
yi log(µi(β))− µi(β)

)
.

(2.23)

Thus, seperation of the Poisson component and binary regression component in the

complete-data local likelihood is achieved, and we can optimize π0 and β seperately.

Note here that the estimate of β is a function of z. The EM-like algorithm for max-

imizing 2.22 is as follows:

Step 1: For t = 0, 1, 2 . . . , til convergence, do:

1. For all observations i = 1, . . . n, update the posterior membership probabilities

r
(t+1)
i =


π(t+1)(wi)

π(t+1)(wi)+(1−π(t+1)(wi)) exp{−µi(β(t+1)(wi))}
yi = 0

0 yi > 0.
(2.24)

2. For all z ∈ Z do:

a) Update π(t+1)(z) by

π(t+1)(z) =

∑n
i=1 r

(t+1)
i Kh(wi − z)∑n

i=1Kh(wi − z)
, (2.25)

and β(t+1) via weighted Poisson regression of y on X with weight matrix

Q(t+1) = diag{(1− r(t+1)
1 )Kh(w1 − z), . . . , (1− r(t+1)

n )Kh(wn − z)}.
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3. For all observations i = 1, . . . , n, update π(t+1)(wi) and β(t+1)(wi) by linearly inter-

polating π(t+1)(z) and β(t+1)(z) for z ∈ Z.

4. Output π(t+1)(wi) and β(t+1)(wi) for all i = 1, . . . , n.

Call these intial estimates β̃(w) and π̃(w). Asymptotic properties of these estimates

will be discussed later in this section. Since β is a global parameter, β̃(w) will not

have
√
n-consistancy. Thus, we now want to perform a global estimation of β .

Step 2: Fix π̃(z) at its current estimate. Define then global likelihood as

`2(β;y, π̃(w)) =
n∑
i=1

[
π̃(wi)I{yi = 0}+ (1− π̃(wi))p(yi;µi(β))

]
. (2.26)

We can then run an EM algorithm to maximize 2.26.

For t = 0, 1, . . . , til convergence, do:

1. Update the posterior memberships:

r
(t+1)
i =

π̃(wi)

π̃(wi) + (1− π̃(wi)) exp(−µi(β(t+1)))
. (2.27)

2. Update β(t+1) via weighted Poisson regression of y onX with weight matrixQ(t+1) =

diag{1− r1, . . . , 1− rn}. Output β(t+1)

Call this global estimate β̂. This is the final estimate of β, and we will discuss

asymptotic properties later in this section.

Now, we end with a final estimate of the zero-inflation probabilities. Fix β̂ at the

estimate from Step 2. We now seek to maximize

`S3
C,z(π0;y, β̂) =

n∑
i=1

Kh(wi − u) log
[
π0 + (1− π0)p(yi;−µi(β̂))

]
. (2.28)

Maximization of 2.28 is completed via the following “EM-like” algorithm analagous

to Step 1:

Step 3: For t = 0, 1 . . . , til convergence, do:

1. For all observations i = 1, . . . , n, update the posterior probabilities

r
(t+1)
i =

π(t+1)(wi)

π(t+1)(wi) + (1− π(t+1)(wi)) exp(−µi(β̂))
. (2.29)

2. For z ∈ Z, do:
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a) Update π(t+1)(z):

π(t+1)(z) =

∑n
i=1Kh(wi − z)r(t+1)

i∑n
i=1Kh(wi − z)

. (2.30)

3. Update π(t+1)(wi) for all observations i = 1, . . . , n by interpolating π(t+1)(z) for

z ∈ Z.

4. Output π(t+1)(wi) for i = 1, . . . , n.

Call these final estimates π̂(z). Asymptotic properties will be discussed later in this

section.

Theoretical Properties of Estimation

Now, we examine some theoretical properties of the proposed estimation from the

“EM-like” algorithm, as well as ascent-type properties from using the local likelihood

functions as surrogates. The proofs follow mutatis mutandis from [122] and [128],

and are included in the Appendix. We first discuss asymptotic properties of the

estimators at each step of the backfitting process.

Asymptotic Properties of Estimators

The regularity conditions for the proofs are given in the Appendix. They are not

necessarily the weakest conditions possible for sufficiency, but help to facilitate the

proofs. Before we discuss asymptotic normality of estimators, we lay out some nota-

tion. Let {(Wi,Xi, Yi)} be a random sample from the population (W,X, Y ). Define,

qθ(θ;w,x, y) =
∂`(θ; y)

∂θ
,

qθθ(θ;w,x, y) =
∂2`(θ; y)

∂θ∂θT
.

Analagously, we can define qπ, qππ, qβ, qββ, and qβπ. Moreover, define

G(w) = E
[
qθ(θ(w),X, Y )|W = w

]
,

Γ(w) = E
[
qπ(θ(w);X, Y )|W = w

]
.
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Furthermore, define the localized versions of the Fisher information matrices as

Iθ(w) = −E
[
qθθ(θ(w);W,X, Y )|W = w

]
,

Iβ(w) = −E
[
qββ(θ(w);W,X, Y )|W = w

]
,

Iπ(w) = −E
[
qππ(θ(w);W,X, Y )|W = w

]
,

Iβπ(w) = −E
[
qβπ(θ(w);W,X, Y )|W = w

]
,

and,

ω(w,x, y) = Iβπ(w)ψ(w,x, y),

where ψ(w,x, y) is the first element of Iθ(w)qθ(θ;w,x, y). Let W ∼ g(w), with

support W . Then, for the first step of the EM-like algorithm, we have the following

convergence property.

Theorem 2.2.2. Fix z0 ∈ W, and let θ̃(z0) = (π̃(z0), β̃(z0)) be the maximizer of

2.22 at the fixed point z0. Let θ(z0) be the true value of θ at z0. Assume n → ∞,

h→ 0, and nh→∞. Then, under the regularity conditions in the Appendix,

√
nh{θ̃(z0)− θ(z0)− b(z0)h2 + o(h2)} L→ N (0, g−1(z0)I−1θ (z0)v), (2.31)

where v =
∫
K2(t)dt,

b(z0) = I−1θ (z0)

[
G′(z0)g

′(z0)

g(z0)
+

1

2
G′′(z0)

]
µ2, (2.32)

and µ2 =
∫
t2K(t)dt is the second moment of the kernel function. Moreover, G′(·)

and G′′(·) refer to the first and second derivatives of each component of the vector

G(·) with respect to w.

As alluded to before, estimating β locally will lead to a loss in efficiency. Therefore,

we investigate the limiting distribution of the maximizer of 2.26.

Theorem 2.2.3. Fix π̃(w) at the initial estimate from Step 1 of the backfitting proce-

dure. Let β be the true population value, and let β̂ be the maximizer of 2.26. Assume

nh4 → 0 and nh2 log(h−1) → ∞. Then, under the regularity conditions given in the

Appendix, it follows
√
n{β̂ − β} L→ N (0,B−1ΣB−1), (2.33)
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where B = E(Iβ(w)), and

Σ = Var

[
∂`(π(W ),β;W,X, Y )

∂β
− ω(W,X, Y )

]
.

Finally, we investigate the final estimate of the mixing proportions, π̂(w).

Theorem 2.2.4. Fix z0 ∈ W, and let π̂(z0) be the maximizer of 2.28. Let π(z0) be

the true population value. Assume n → ∞, h → 0, and nh → ∞. Then, under the

regularity conditions given in the Appendix, we have

√
nh{π̂(z0)− π(z0)− b∗(z0)h2 + o(h2)} L→ N (0, g−1(z0)I−1π (z0)v), (2.34)

where again v =
∫
K2(t)dt. The asymptotic bias b∗(z0) is given by

b∗(z0) = I−1π (z0)
{Γ′(z0)g

′(z0)

g(z0)
+

1

2
Γ′′(z0)

}
µ2,

where µ2 =
∫
t2K(t) .

Finally, we can show that that the final backfitting estimate π̂(w) is at least as

efficient and has bias that is less than or equal to that of π̃(w). We state this as a

theorem for reference.

Theorem 2.2.5. Fix z0 ∈ W. Then the asymptotic variance and asymptotic bias of

π̂(z0) are both less than or equal to the asymptotic bias and asymptotic variance of

π̃(z0).

A final note about selection of h is that h = hn needs to have large enough order

with respect to n for the asymptotic theory to hold. According to [142], the CV

bandwidth is h = o(n−1/5). For Theorem 2.2.3, it is assumed that nh4 → 0. Then,

n(ĥ−1/5)4 = O(n) × O(n−4/5) = O(n1/5) 6= o(1). Therefore, ĥ does not meet the

asymptotic requirements for Theorem 2.2.3. But, the undersmoothed bandwidth,

ĥ × n−2/15 = O(n−1/3) = o(1), and so the undersmoothed bandwidth meets the

asymptotic requirements.

Ascent Properties of EM-like Algorithm

Classical EM algorithms are known to possess the ascent property [118].

63



Definition 2.2.2. Let θ be a vector of parameters, and `o(θ) be the observed (marginal)

likelihood. The ascent property for EM algorithms is the property that

`o(θ
(t+1)) ≥ `o(θ

(t)) (2.35)

for all iterations t = 0, 1, . . . , of the algorithm.

In other words, the objective function is monotone increasing in each iteration

of the algorithm. For the EM-like algorithm presented, it is probably too strong to

claim that `(θ) is monotone increasing at each iteration, although [121] noticed in

their simulations that the observed likelihood was always monotone in the EM-like

algorithm. But, we can replace the classical ascent property with some weaker claims

about montonicity.

Theorem 2.2.6. The following statements hold:

1. For the EM-like algorithm in Step 1, assume that nh → ∞ as n → ∞ and

h→ 0. Suppose t→∞. Fix z0 ∈ W. Then,

lim inf
n→∞

P
{
n−1
[
`S1
z0

(θ(t+1);y)− `S1
z0

(θ(t);y)
]
≥ 0

}
= 1. (2.36)

2. For Step 2 of the algorithm, `2(β
(t+1);y) ≥ `2(β

(t);y).

3. At Step 3 of the algorithm, for any z0 ∈ W, `S3
z0

(π(t+1);y) ≥ `S3
z0

(π(t);y).

In interpretation, (1) implies that when the sample size is large, that the ascent

property holds in `S1
z (θ(t)) at a fixed z0 ∈ W at large iterations of t. We refer

to this as the asymptotic ascent property. Property (2) follows directly from the

theory of ordinary EM algorithms since it is a parametric estimation. Again, property

(2) means that the parametric likelihood `2(β;y) has the ascent property. Finally,

property (3) implies that the estimates from the EM-like algorithm are monotone

increasing in t for `S3
C,z0

(π(t);y) at any fixed z0 ∈ W .

2.3 Inference

After model fitting, we are interested in conducting inference. The first question of

interest may be “Given the subject is at risk for the event (i.e., observation comes

from count component), what factors lead to increase (decrease) in the number of

incidents?”. Moreover, interest may lie in estimating the probability of a subject not
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being at risk (i.e., degenerate component) for a given w, or we may want to study how

the mixing proportion changes with w. Finally, one may ask “Is the semiparametric

model an improvement over the parametric model?”.

With respect to studying how covariates affect µ and π, construction of confidence

intervals will be essential. Notice in the asymptotic results for β̂ and π̂ that the

asymptotic variance depend on unknown and intractable quantities. Therefore, the

bootstrap will be utilized for confidence interval estimation. First, we review the

parametric bootstrap.

Bootstrap Intervals

Suppose X1, . . . , Xn
iid∼ Fθ(x), where Fθ(x) is known except for θ. Suppose we have

an estimate θ̂(X1, . . . , Xn) of θ. Now we are interested in the limiting distribution of

Cn =
√
n(θ̂ − θ)

since this usually has a familar limiting distribution, such as the normal distribution.

The common issue is that even though we know the limiting distribution of Cn is say

normal, the asymptotic variance is intractable. Therefore, an approximation of the

distrubtion function for Cn is needed. The parametric bootstrap alogorthim is:

For t = 1, . . . , B, where is sufficiently large, do:

1. Generate X∗1 , . . . , X
∗
n

iid∼ F
θ̂
.

2. Estimate θ̂∗t from X∗1 , . . . , X
∗
n.

Let C∗n =
√
n(θ̂∗ − θ̂), and we approximate the limiting distribution of FCn by F̂C∗n ,

where

F̂C∗n(x) =
1

B

B∑
t=1

I{
√
n(θ̂∗t − θ̂) ≤ x}.

It can be shown that

sup
x∈R
|F̂C∗n − FCn|

p→ 0.

Therefore, the limiting distribution function of Cn can be approximated by F̂C∗n .

Hence, Var(θ̂) can be approximated by V̂ar(θ̂) = 1
B

∑B
t=1(θ̂

∗
t − θ̂)2.

After estimating the variance or limiting distribution of θ̂, we now seek interval

estimates for θ̂. For our proposed model, we know the limiting distribution is asym-

totically normal, and therefore an approximate 1−α confidence interval (CI) for θ̂ is

θ̂ ± z1−α/2
√

V̂ar(θ̂). (2.37)
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[152] investigate bootstrap intervals of the form 2.37 in the nonparametric regression

setting. The authors’ simulation studies show that when the asymptotic bias is

not addressed, the coverage rates can be significantly smaller than nominal. The

authors argue mitigating this problem by using the bootstrap to obtain an estimate

bias, or by using an locally“optimal” bandwidth h(w) at different grid points, which

they call local adaptive smoothing. Another possible solution proposed by [153] is

to use an “oversmoothed” bandwidth to fit the overall model, and then obtain a

bias estimate of the regression via bootstrap or by calculation. Then, using the bias

adjusted estimate of the curve, perform the bootstrap using the “optimal” bandwidth

to obtain estimates of variability at the grid points. Moreover, [154] proposes to use a

single under-smoothed bandwidth for the overall fit and the bootstrap fits to construct

confidence bands.

In addition to the normal-based intervals, percentile intervals can also be em-

ployed. Order the bootstrap samples

θ̂∗(1) ≤ θ̂∗(2) ≤ · · · ≤ θ̂∗(B). (2.38)

It was discussed above that we can view the resampling estimates, θ̂∗j , as (approxi-

mate) samples of the limiting distriubtion of θ̂. Therefore, an approximate 1− α CI

is given by [
θ̂∗(α1)

, θ̂∗1−(α2)

]
,

where α1 +α2 = α, 1−α2 > α1 for α1, α2 > 0. Moreover, θ̂∗(γ) denotes the sample γth

quantile.

Lastly, another bootstrap interval method is the Bias Corrected (BC) intervals.

BC intervals correct the for the bias of θ̂. A 1− α BC interval is defined as[
θ̂∗(α1)

, θ̂∗(α2)

]
,

where
α1 = Φ(2ẑ0 + z(α)),

α2 = Φ(2ẑ0 + z(1−α)).

Here, Φ(·) is the distribution function of the standard normal distribution, and z(α)

is the αth quantile of the standard normal distribution. Moreover, the bias correction

66



factor, ẑ0, is defined as

ẑ0 = Φ−1
(
B−1

B∑
t=1

I{θ̂∗(t) < θ̂}
)

.

BC intervals are part of a more general class of intervals called Bias Corrected and

Acclerated (BCa) intervals. The a stands for the accelaration constant, which corrects

for the common issue that the Var(θ̂) depends on the true value of θ [155]. The

quantity a can be difficult to estimate, and thus we will not consider BCa intervals

in our simulations. However, the normal-based, percentile, and BC intervals will be

studied.

The resampling procedure for the semiparametric ZIP regression model is similar

to the parametric bootstrap. The procedure is as follows:

For t = 1, . . . , B, do:

1. Generate Y ∗1 |W1,X1, . . . , Y
∗
n |Wn,Xn ∼ ZIP(π̂(wi), µi(β̂)).

2. Calculate β̂∗t and π̂∗(t)(·).

Output the three aformentioned confidence intervals.

Generalized Likelihood Ratio Test

In addition to constructing confidence intervals for the parameters, we may be in-

terested in testing whether the semiparametric model provides a better fit than the

fully parametric model. Formally, we want to test

H0 : π(w) ∈Mθ

H1 : π(w) /∈Mθ,
(2.39)

where Mθ are a class of parametric models indexed by θ. A special case of this

hypothesis is

H0 : π(w) = c

H1 : π(w) 6= c,
(2.40)

where c is a constant with 0 < c < 1. In other words, “Does the mixing proportion

depend on w?”.

[156] argue that that likelihood ratio test (LRT) can be employed to test 2.39 if

the nonparametric function is replaced with a quality estimater, such as a sieve MLE
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or a local regression estimate. Similar to the classic parametric LRT, the test statistic

is

λn(h) = 2{`(H1)− `(H0)}, (2.41)

where `(H1) and `(H0) are the likelihoods under the alternative and null hypothesis,

respectively. Typically, under H0,

rλn
D
≈ χ2

µn

for a sequence µn →∞ and a constant r, such that

(2µn)−1/2(rλn − µn)
L→ N (0, 1),

where µn and r are free of any nuisance parameters [157]; i.e., the null hypothesis

estimates of β and π(w). The authors dub this result as the Wilks’s phenomenon.

However, there is no well-defined degrees of freedom under H1 since it is a semi-

parametric model. Moreover, calculating µn and r can be intractable, but since the

limiting distribution of rλn does not depend on nuisance parameters, a parametric

bootstrap can be utilized to approximate the limiting distribution of λn under H0,

and then a bootstrap p-value can be calculated for the hypothesis test. The bootstrap

procedure is as follows:

1. For Y1|W1,X1, . . . , Yn|Wn,Xn ∼ ZIP(π(wi), µi(β)), fit both the semiparametric and

fully parametric models, and then calculate λn. Call the MLEs of π(w) and β under

the null hypothesis π(w) and β, respectively.

2. For t = 1, . . . , B, do:

a) Generate Y ∗1 |W1,X1, . . . Y
∗
n |Wn,Xn ∼ ZI(π(wi), µi(β)).

b) Fit both the fully parametric and semiparametric models, and compute λ∗t .

3. Compute the bootstrap p-value, pB = B−1
∑B

t=1 I{λ∗t > λn}. If pB < α, for a suitably

chosen type-1 error rate α, then reject H0.

A common issue encountered with the bootstrap LRT is negative bootstrap LRT

statistics, which is technically non-sensical since the null hypothesis is nested within

the alternative. Two possible reasons for this issue is the non-negligible smoothing

bias of the semiparametric estimation of π(·), and the fact that the parametric model

converges at the rate
√
n, whereas the semiparametric model converges at the slower
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rate of
√
nh. To mitigate the later issue, [142] recommends a bias-adjusted LRT

statistic. [157] also provides a bias-corrected LRT statistic.

Another matter in the LRT is choice of smoothing parameter, h. In general,

“smaller values of h will be more powerful against less smooth alternatives, and

larger values of h is more powerful against smoother alternatives.”[157]. [157] further

discuss methods of bandwidth choice such as grid search or the ad hoc bandwidth,

ĥ × n−1/45, where ĥ is the optimal bandwidth with respect to some criterion. In

our simulations, we study power with the under-smoothed, CV, and over-smoothed

bandwidths. Further discussion by eminent statisticians on the generalized LRT can

be seen in the discussion section of [157].

2.4 Simulation Studies

To examine the performance of the proposed model, two simulation studies were

conducted. The second simulation study is provided in the Appendix. For π and

β, accuracy of point estimates and coverage probabilities for interval estimates were

studied. Two samples sizes were examined : n ∈ {200, 400}. The data were generated

from the ZIP regression model with a single covariate, X, where X ∼ Unif(0, 1). The

true β = (.5, 1.5)T, and the true zero-inflation probability is

π(x) = .2 + .75 sin(πx).

To select the optimal bandwidth, 50 independent data sets were generated from the

aforementioned model. The CV process was applied to each data set, and the optimal

bandwidth, ĥ∗k, was recorded. Then, the bandwidth chosen for the optimal bandwidth

employed for the simulations is ĥ = 1
50

∑50
k=1 ĥ

∗
k. Three bandwidths were examined:

n−2/15ĥ, ĥ, and 2ĥ. These bandwidths correspond to under-smoothed, optimally

smoothed, and over-smoothed, respectively.

Accuracy of β̂ was judged by mean-square error (MSE); i.e., MSE(β̂k, βk) =

E
{

(β̂k−βk)2
}

for k = 1, 2. The accuracy of π̂(x) was determined by the root average

square errors (RASE) measure, which is defined as

RASE =

√√√√ 1

n

n∑
i=1

[π̂(xi)− π(x)]2.

For comparison, we include the fully parametric model in the simulation. Numerical

results can be seen in 2.2. Graphical displays of 2.2 can be seen in ??. With respect
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Figure 2.1: Estimated Curve for π(x)

Table 2.2: Examination of Average MSE and Average RASE.

Bandwidth(n = 200) Bandwidth(n = 400)

MSE .04 .08 .16 PAR .03 .07 .15 PAR

β0 0.240 0.0733 0.026 0.026 0.095 0.018 0.016 0.016
β1 0.131 0.070 0.046 0.046 0.057 0.026 0.026 0.026

RASEπ

π 0.107 0.097 0.133 0.233 0.090 0.084 0.130 0.232

to estimation of β, observe that that the MSE is smaller as the bandwidth increases.

The oversmothed bandwidth, which is the most “similar” to the parametric model,

has similar MSE for the estimation of β. Also, for n = 400, the MSE for the opti-

mal bandwidth is comparable to that of the oversmooted bandwidth and parametric

model. However, estimation of π is substantially poorer for the oversmoothed band-

width and the parametric model. Instead, the optimally smoothed bandwidth had

the smallest RASE for both sample sizes. Estimation of the curve for π(x) from one

Monte-Carlo sample can be see Figure 2.1.

Before we discuss confidence interval performance, we briefly discuss bootstrap

calibration. Rarely is the nominal coverage level equal to the actual coverage of a

bootstrap CI. Ideally, we would like to seek a mapping α 7→ λ such that coverage

probability of the interval (θ̂λ, θ̂1−λ) is equal to the nominal rate 1− α. One method

for finding λ is the double bootstrap method, which is a specific method of bootstrap
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calibration. Double bootstrap methods are computationally expensive, typically re-

quiring at least B2 resampling procedures. For more details on the double bootstrap,

see [158] Other methods include calibrating the quantiles, location, and standard

error of θ̂; see [159] . Bootstrap calibration is beyond the scope of this work, and

instead, ad hoc methods will be employed.

The coverage results for β can be seen in 2.3. We report the Z-intervals with the

standard error estimated with the bootstrap. We can see that for all sample sizes

and bandwidths, the coverage is near the nominal level. It is suprising to see that

there is a slight decrease in coverage as n increases, although, [122] reported similar

results in their semiparametric mixture of regressions article. Note in Theorem 2.2.3

that nh4 → 0, and therefore, the undersmoothed bandwidth is the closest to meeting

that requirement. Therefore, the undersmoothed bandwidth will provide the best

coverage.

The coverage results for π can be seen in 2.4. Coverage probabilites were examined

at the grid points x = .1, .2, . . . , .9. Observe that the Z-intervals (top entry in each

cell) are typically very conservative for the x in the interior; i.e., .2 ≤ x ≤ .8.

Moreover, the intervals have poor coverage near the boundary of the predictor space

(i.e., x = .1 or x = .9), regardless of the bandwidth. Thus, we conclude that the

Z-intervals are not reliable.

In contrast, the percentile intervals (middle row in each cell) are a bit more reliable.

But, they still suffer from poor coverage near the edge of the predictor space, and

the CV bandwidth is unreliable at various points of x. Hence, while the percentile

intervals are an improvement over the Z-intervals, the coverage probabilities are still

unsatisfactory.

Lastly, it seems that the BC intervals are the most reliable of the three. The type-
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1 error rate was ad-hoc calibrarted at γ = α/2 = .025. For the under-smoothed and

CV bandwidth, the coverage rates are near nominal levels for all x. This underscores

the importance of adjusting for the bias in the estimator of π. Another observation

is that for x = .5, the coverage rates are below nominal, even for the undersmoothed

and CV bandwidth. Notice that the true mixing proportion at x = .5 is π(.5) = .95,

and therefore, we are getting close to the boundary of the parameter space. It is of

interest on how to calibrate the interval using more rigorous methodology. Graphical

display of the coverage probabilities for the BC intervals when n = 400 can be seen

in 2.3.

One final observation is that, in general, the oversmoothed bandwidth provides

poor coverage at most values of x, regardless of the interval methodology being em-

ployed. This highlights the importance in choosing a reasonable smoothing parame-

ter. The oversmoothed bandwidth, while exhibiting less variance in estimation of π,

has large bias, which yield poor coverage.

Finally, we examine the power of the bootstrap LRT. The power function is esti-

mated under a sequence of local alternatives

H0 : π(x) = .2

H1 : π(x) = .2 + .75δ sin(πx)/
√
nh,

where δ ∈ {0, .5, 1, . . . , 2.5}. Here, δ expresses the amount of weight on the non-linear

component in H1, and
√
nh is analagous to the sample size in local regression. Note

that if δ = 0, then the alternative collapses into the null. Moreover, three type-I error

rates, α ∈ {.01, .05, .1}, were examined. For each n, δ, and h, M = 500 Monte Carlo

data sets were generated with the mixing proportion defined in H1, and from each

Table 2.3: Coverage Results for β

Parameter 95% 95%
n = 200,h = .04 n = 400,h = .04

β0 96.38 93.00
β1 96.00 95.16

n = 200,h = .08 n = 400,h = .08
β0 94.67 91.90
β1 95.43 93.32

n = 200,h = .15 n = 400,h = .15
β0 94.29 90.32
β1 96.00 93.49
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Table 2.4: Coverage Rates for Intervals for π. The three numbers in each cell represent
the coverage for the Z, percentile, and BC interval, respectively, for a value of x and
h.

n = 200 n = 400
h .04 .08 .16 .03 .07 .15

.1
99.81 89.90 0.00 40.40 0.50 0.00
97.52 83.24 5.33 96.99 62.94 0.00
92.57 94.29 32.38 95.99 89.82 3.01

.2
100.00 100.00 100.00 100.00 100.00 90.32
96.57 95.43 82.10 95.49 96.49 66.78
92.95 92.57 91.43 94.82 95.66 90.48

.3
100.00 100.00 100.00 100.00 100.00 100.00
97.71 93.52 75.24 96.66 73.79 55.43
95.24 95.24 88.38 96.66 95.99 83.97

.4
98.48 100.00 99.81 99.83 100.00 56.43
94.29 86.86 2.67 97.16 53.26 0.00
89.71 91.62 30.67 94.82 93.49 1.17

.5
99.81 100.00 80.95 99.83 100.00 0.00
95.05 79.05 0.00 95.99 70.12 0.00
89.33 91.81 1.90 91.15 89.65 0.00

.6
100.00 100.00 100.00 100.00 100.00 4.51
97.28 84.95 1.14 98.00 87.81 0.00
93.71 92.57 24.19 95.66 93.32 1.17

.7
100.00 100.00 100.00 100.00 100.00 100.00
98.28 92.95 61.33 96.99 96.83 31.05
94.10 93.71 85.90 97.16 95.49 74.29

.8
100.00 100.00 100.00 100.00 100.00 78.46
97.90 96.95 89.53 96.99 73.46 84.14
94.86 95.05 94.67 95.99 95.99 94.66

.9
99.81 26.48 0.00 63.94 0.00 0.00
97.90 86.29 9.52 96.83 73.46 0.50
95.05 96.00 42.86 96.33 95.16 6.84
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Figure 2.3: BC Intervals for π when n = 400

data set Monte Carlo rep, B = 500 bootstrap data sets were generated. Then, for

each data set and its corresponding 500 bootstrap data sets, the bootstrap LRT was

performed, along with the calculation bootstrap p-value. The acceptance/rejection

was then recorded for each α. The power function, pH1(δ, α, n, h), was then estimated

by p̂H1(δ, α, n, h) = M−1∑M
m=1 I{Rejection of H0 for the M th Monte Carlo Rep}.

A density plot of the bootstrap LRT statistics can be seen in Figure 2.4. The sim-

ulation results are presented in 2.5. Observe that for both n and all h, the simulated

type-I error rates are close to the nominal level. Moreover, the undersmoothed band-

width provides the highest power across all combination of n and α, followed by the

optimal bandwidth. The oversmoothed bandwidth provides the poorest power, which

coincides with the poor aforementioned estimation results. We can see all bandwidths

yield consistant tests; namely, the power approaches 1 as we deviate further from the

null hypothesis. Lastly, there is a spurious decrease in the power curve for the under-

smoothed bandwidth as δ goes from 2.5 to 3. The reason for that is when δ = 3, the

mixing proportions generated from H1 are close to the boundary of the parameter

space. For example, when h = .04, n = 200,δ = 3, π(.5) = .9955 ≈ 1, where π(x)

is of the form in the alternative hypothesis. Therefore, the spurious decrease is most

likely due to the mixing proportions approaching degeneracy.

2.5 Real Data Analysis

Alzheimer’s Data

The data set are from the Biologically Resilient Adults in Neurological Studies (BRAiNS)

study, and are provided by Dr. Dave Fardo and Dr. Pete Nelson from the University
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Figure 2.4: Histogram of bootstrap LRT statistics for a single Monte-Carlo replicate

of Kentucky’s Sanders-Brown Center on Aging. The goal of the of the BRAiNS study

is to further understand neurodegenerative diseases such as Alzheimer’s by examing

quantitative brain pathologies in the elderly. There are 126 participants to date who

were autopsied, during which the number of TDP-43 (TAR DNA-binding protein

43) inclusions in the subiculum, Triiodothyronine level (T3), age at death, sex, and

the patient’s score of the Mini-Mental State Examination (MMSE) were recorded.

TDP-43 is the chief protein that is present in the brain for many types of neurodeg-

nerative diseases, such as frontotemporal dementia (FTD) and amyotrophic lateral

scleros (ALS). An inclusion is an aggregates of proteins - in this case, TDP-43. The

subiculum is a subregion of the Hippocampus, which plays a critical role in memory

and attention control. Thus, higher counts of TDP-43 inclusions represent higher

amounts of cognitive degeneration and imperative. T3 is a hormone produced by

the thyroid gland, and has been shown to be positively associated with longer com-

pletion times on the Trail Making Test and Tower of London Test. Lastly, MMSE

is a cognitive exam to test patients memory and critical thinking skills. The score

ranges from 0 to 30, where a score of 0-12, 13 -20, 20-24, and >24 indicate severe

dementia, moderate dementia, mild dementia, and no dementia, respectively. Here,

we are interested in modeling the number of TDP-43 inclusions in the subiculum by

the covarates T3, age at death, sex, and MMSE score.

A histogram of inclusion counts, truncated at five inclusions, can be seen in Figure

2.6. Overall, 87/126 ≈ 69% of the patients had zero inclusions, with a maximum

count of 57 inclusions. The parametric and semiparametric model were fit with T3,

age at death, sex along with the interaction of age and sex , with MMSE in the zero-

inflation state. Bandwidth selection for the semiparametric model was performed
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Figure 2.5: Simulated Power Functions of the LRT

Table 2.5: Comparison of Beta Coefficients and log-likelihoods.

Model Intercept T3 Age Sex Sex*Age Log-like
Undersmoothed 3.3645 (0.5684) -0.0705 (0.0168) -0.0012 (0.0064) -2.3600 (0.8281) -0.0325 (0.0100) -318.6023

Optimal 3.3644 (0.5957) -0.0705 (0.0179) -0.0012 (0.0068) -2.3598 (0.8749) -0.0325 (0.0108) -321.5853
Oversmoothed 3.3645 (0.6300) -0.0705 (0.0172) -0.0012 (0.0073) -2.3598 (0.9168) -0.0325 (0.0112) -325.7847

Parametric 8.0840 (2.1869) -0.0705 (0.0148) -0.0661 (0.0265) -2.3598 (1.2257) 0.0324 (0.0144) -325.0125

via CV by a grid search of 20 equally spaced values between 2 and 15. The optimal

bandwidth was hopt = 6.5, but the undersmoothing (n−2/15×hopt) and oversmoothing

(1.5× hopt) were also examined.

A summary of the Poisson regression coefficients, along with log-likelihoods, of

the four models can be seen in 2.3. A partial dependency plot of the estimated

Poisson mean against T3 by sex can be seen in Figure ??. We see that as the level

of T3 increases, the average amount of inclusions decreases. In Figure ??, a partial

dependency plot of the estimated Poisson mean against age by sex is presented. For

the male group, increased age does not increase the average risk of inclusions, but

there is a lower average counts of inclusions as age increases for females.

A plot of the estimated zero-inflation for the four models can be seen in Figure
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Figure 2.6: Histogram of Subiculum Inclusions. Histogram is truncated at five.

2.8. In general, the four models indicate as the exam score increases, the probability

of a zero inclusion count increases. We would expect that less demented patients have

smaller inclusion counts, and so the models are consistant with expectations. Note

though the undersmoothed and oversmoothed bandwidths present noisy estimates of

π, which could be due to having no observed MMSE scores between 8 and 10. It is

well known that the Nadayara-Watson estimate performs poorly when there is “gaps”

in the data. Another clinical explanation is that MMSE scores become hard to assign

for severly demented patients due to their lack of response to questions. However, the

oversmoothed bandwidth and parametric model is consistant with what is expected

scientifically. The shape of oversmoothed and parametric curves are similar, with

the main differences coming from vertical shifts. This underscores the importance

of examining multiple bandwidths; namely, a bandwidth that is too small will show

spurious features in the curve. This could be a case where a locally adapted bandwidth

may be useful.

Kentucky Meth Lab

The data set consists of the number of clandestine lab seizures in each county of

Kentucky, Louisiana, and Illinois for the years 2011, 2012, and 2013. For this analysis,

we will focus on Kentucky in the year 2011. The number of seizures was obtained from
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Figure 2.7: Partial dependency plot for the Inclusion data set. The left figure shows
inclusions versus T3, whereas the right figure shows inclusions versus age at death.

 



0.4

0.5

0.6

0.7

0.8

0 10 20 30
MMSE

π̂

Model

CV
Over
Par
Under

Estimated Zero−inflation against MMSE

Figure 2.8: Zero-inflation Probability against MMSE

the US Drug Enforcement Administration (DEA) Clandestine Laboratory Seizure

report. Interest lies in predicting the number of meth lab seizures in a county of

Kentucky by socioeconomic variables, such as the median age, median income, percent

poverty, etc., along with the amount of pseudophedrine (PSE) sold (in grams) per

100 people (PSE). PSE is commonly used as a sinus decongestant, but is also a

main ingredient in making methamphetamine. The National Precursor Log Exchange

(NPLEx) tracks the sale of all non-prescription PSE medications, which is required

for all pharamacies. A histogram of the seizures can be seen in 2.9. Overall, 20% of

counties had no lab seizures, with a median count of 3. The counts range from 0 to

121, with the maximum count coming from Jefferson County. Moreover, a heat map

of lab counts for Kentucky can be seen in 2.10. Observe that higher counts tend to
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Table 2.6: Summary of Poisson regression coefficients for Kentucky meth lab data

Model h β0 β1 β2 β3 `o
ZIP * -8.0121 (0.4450) 0.09040 (0.0097) -0.1517 (.0078) 0.0048 (0.0009) -1042.4940

ZINB * -9.2810 (2.7363) 0.1012 (0.0573) -0.1103 (0.0382) 0.0034 (0.0037) -371.6723
Under 28.89 -8.0016 (0.4759) 0.0949 (0.0102) -0.1534 (0.0096) 0.0047 (0.0009) -1022.5950

CV 54.7 -8.0030 (0.5181) 0.0948 (0.0111) -0.1533 (0.0092) 0.0045 (0.0092) -1043.8010
Over 75 -8.0033 (0.5092) 0.0948 (0.0110) -0.1533 (0.0097) 0.0047 (0.0008) -1044.3400

cluster together, which suggests a spatial model could be useful.

Lab seizure counts were predicted by median income (scaled by 1000), median

age, and PSE, where the three covariates were utilized in the count component,

while PSE was employed in the zero-inflation component. The three semiparametric

regression models with undersmoothed, optimal, and oversmoothed bandwidths were

fit. Moreover, the parametric ZIP regression model and ZINB regression model were

fit. The log of the county population was applied as an offset.

A summary of the Poisson regression coefficients can be seen in 2.6. In interpreta-

tion, counties with larger average age and higher PSE sales tend to have higher counts

of meth lab seizures. In contrast, wealthier counties tend to have fewer meth lab op-

erations. The partial dependency plot of average counts against median earnings for

the Poisson count components can be seen in Figure 2.11. Lastly , note that the

ZINB provides a better fit to the data, which suggests the prescence of overdispersion

relative to the ZIP regression model.

A plot of the zero-inflation probability against PSE sales can be seen Figure 2.12.

All four models provide a similar relationship between π and PSE sold; namely, higher

sales of PSE leads to lower estimates of π. In interpretation, larger sales of PSE yield

low probabilites of not being at risk for the prescence of meth activity. Moreover, a

(random) zero observed from the count component would mean the county is at risk

for meth labs, but during the year of 2011, it was the case that we did not observe

any activity. Furthermore, a zero from the degenerate component suggests that the

county is at little risk for illegal meth activity.

Finally, it is of note that the PSE sales and the socio-economic variables are likely

to exhibit measurement error. Therefore, it is of interest to develop a model that

incorperates this source of error in the predictors.

79



0

25

50

75

100

 0  5 10 15 20
Lab Counts

C
ou

nt

Histogram of Lab Counts

Figure 2.9: Histogram of lab seizures truncated at 20.

Figure 2.10: Heat map for the state of Kentucky. Yellow represents higher
counts, with red representing lower counts.
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2.6 Appendix

Proof of Theorems

Proof of 2.2.1. Conditions 1 and 2 are assumptions on the predictor space and func-

tional properties of the mixing proportions. Thus, only condition (3) needs to be

shown. Rewrite the ZIP pmf as f(y;µ, π) = (1−π)I{y = 0}+πp(y;µ). Suppose that

f(y;µ, π) = f(y;µ∗, π∗). Then,

π

π∗
=

I{y = 0} − e−µ
∗
(µ∗)y

y!
I{y ∈ N}

I{y = 0} − e−µµy

y!
I{y ∈ N}

(2.42)

Thus, setting y = 0, 2.6 implies π
π∗

= 1−e−µ∗

1−e−µ . Moreover, setting y = 1, we obtain
π
π∗

= e−µ
∗
µ∗

e−µµ
. Therefore,

e−µ
∗
µ∗

e−µµ
=

1− e−µ∗

1− e−µ

which then implies
µ∗

µ
=

1 + eµ
∗

1 + eµ

Therefore, (
1+µ∗

µ∗

)(
1+µ
µ

) = 1 (2.43)

The function g(µ) = 1+eµ

µ
is monotone when µ > 0 since g′(µ) > 0. Thus, g(µ∗)

g(µ)
= 1,

which implies g(µ∗) = g(µ), and hence, µ∗ = µ. It follows immediately that π∗ = π.

Therefore, the ZIP model is identifiable, which completes the proof.

Asymptotic Properties of Estimators

We will assume the following regularity conditions:

1. π(w),β(w) ∈ C2.

2. g(w) ∈ C2 and f(w) > 0 for all w ∈ W .

3. K(·) is symmetric about 0 and has compact support in R.

4. The bandwidth h→ 0 such that as nh→∞.
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Proof of 2.2.2. For convience of notation, denote θ̃(z0) = θ̃ and θ(z0) = θ.

Note that θ̃ satisfies

∂

∂θ

[
`S1
z0 (θ)

]
|
θ̃

= n−1
n∑
i=1

Kh(Wi − z0)
{
qθ(θ;Wi,Xi, Yi) + qθθ(θ;Wi,Xi, Yi)(θ̃ − θ)

}
+ n−1Op(‖θ̃(z0)− θ(z0)‖2)

= 0.

Define

Wn = n−1
n∑
i=1

Kh(Wi − z0)qθ(θ;Wi,Xi, Yi)

∆n = −n−1
∑ n∑

i=1

Kh(Wi − z0)qθθ(θ;Wi,Xi, Yi).

Then, noting that G(z0) = 0,

E(Wn) = E
[
Kh(W − z0)qθ(θ;W,X, Y )

]
= E

[
E
[
Kh(W − z0)qθ(θ;W,X, Y )|W = w

]]
= E

[
Kh(W − z0)G(z0)

]
=

∫
Kh(w − z0)

[
G(z0)g(z0) + (Gg)′(z0)(w − z0)

+
1

2
(Gg)′′(z0)(w − z0)2 + . . .

]
dw

=
1

2
(Gg)′′(z0)µ2h

2 + o(h2)

=
1

2
(Gg)′′(z0)µ2h

2 + o(1).

Moreover,

Var(Wn) = n−1

[
E
[
K2(W − z0)qθ(θ;W,X, Y )qTθ (θ;W,X, Y )

]
− E(Wn)(E(Wn))T

]
= n−1E

[
K2(W − z)E

[
qθ(θ;W,X, Y )qTθ (θ;W,X, Y )|W = w

]]
+ o(1)

= n−1

[
E
[
K2
h(W − z0)Iθ(W )

]
+ o(1)

]
= n−1

∫
K2
h(w − z0)Iθ(w)g(w)dw + o(1)

= n−1

∫
K2
h(w − z0)

[
I(z0)g(z0) + o(1)

]
dw + o(1)

= (nh)−1g(z0)Iθ(z0)v + o(1).
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Furthermore, using similar arguments and Taylor Series expansions,

E(∆n) = E
[
Kh(W − z0)Iθ(W )

]
= I(z0)g(z0) + o(1)

Var(∆n(k, l)) ≤ n−1E
[
K2
h(W − z0)

{
∂2`(θ;WX, Y )

∂θl∂θk

}2]
= O((nh)−1)

= o(1).

Therefore,

∆n = Iθ(z0)g(z0) + op(1).

Notice that ‖θ̃ − θ‖2 = op(Wn). Then, from 2.6, it follows

√
nh(θ̃ − θ) = −∆n

√
nhWn + op(1)

D→ g−1(z0)I−1θ (z0)
√
nhWn + op(1). (2.44)

Now, we need to show W ∗ =
√
nhWn is asymptotically normal. It suffices to show

for any c ∈ Rp+1, that

{cTVar(W ∗
n)c}−

1
2{cTW ∗

n − cTE(W ∗
n)} L→ N (0, 1).

Let

ξi =
√
h/nKh(Wi − z0)cTqθ(θ;Wi,Xi, Yi).

Observe that cTW ∗
n =

∑n
i=1 ξi. We now show that Lyapunov’s condition holds. Recall

the Lypunov’s CLT, which is stronger than the Lindeberg-Levy CLT :

Lemma 2.6.1. Suppose {Xi}ni=1 is a sequence of independent random variables, each

with E(Xi) = µi <∞ and Var(Xi) = σ2
i <∞. Let s2n =

∑n
i=1 σ

2
i . Then, if for some

δ > 0, the Lyapunov’s condition

lim
n→∞

1

s2n

n∑
i=1

E
[
|Xi − µi|2+δ

]
= 0

is satisfied, then ∑n
i=1(Xi − µi)

sn

L→ N (0, 1).

So, note that

Var(cTW ∗
n) = cTVar(W ∗

n)c

= g(z0)v(cTIθ(z0)c) + o(1),

84



which does not depend on n. Thus, setting δ = 1, we need to show that
∑n

i=1 E(|ξi|3) =

nE(|ξ1|3) = o(1). Since, E
(
cTqθ(θ;Wi,Xi, Yi)

)
= M ≤ ∞, and K(·) has compact

support,

nE(|ξ1|3) ≤ nME(|Kh(W − z0)
√
h/n|3)

= n× (h/n)3/2 × h−2M∗

= O((nh)−1/2)

= o(1)

Thus, W ∗
n is asymptotically normal, and therefore

√
nh{Wn −

1

2
(Gg)′′(z0)µ2h

2 + o(h2)} L→ N (0, g(z0)Iθ(z0)v)

Then, applying Slutsky’s Theorem, with ∆n
P→ Iθ(z0)g(z0), it follows

√
nh{θ̃ − θ − b(z0)h2 + o(h2)} L→ N (0, g−1(z0)I−1θ (z0)v), (2.45)

where

b(z) = I−1θ (z)
[G′′(z)g′(z)

g(z)
+

1

2
G′′(z)

]
µ2.

Proof of 2.2.3. Note that β̂ satisfies

∂`(π̃(·),β)

∂β
= (β̂ − β)T

[
n−1

n∑
i=1

∂`(π̃(Wi),β;Wi,Xi, Yi)

∂β

]

+ (β̂ − β)T
[
n−1

n∑
i=1

∂2`(π̃(Wi),β;Wi,Xi, Yi)

∂β∂βT

]
(β̂ − β)

+ n−1Op(‖β̂ − β‖2)

=
√
n(β̂ − β)TAn +

√
n(β̂ − β)TBn

√
n(β̂ − β) + op(1)

= 0,

where An = n−
1
2
∑n

i=1
∂`(π̃(Wi);β;Wi,Xi,Yi)

∂β and Bn = −n−1
∑n

i=1
∂2`(π̃(Wi),β;Wi,Xi,Yi)

∂β∂βT .

Let β̂∗ =
√
n(β̂ − β). Then,

0 = β̂∗
(
An +Bnβ̂

∗),
which implies

β̂∗ = B−1n An + op(1).
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By the Weak Law of Large Numbers, Bn
P→ −E

[
∂2`(π̃(Wi),β;Wi,Xi,Yi)

∂β∂βT

]
= E(Iβ(Wi)).

Now taking a Taylor Series expansion of An around π̃(Wi), it follows

An = n−
1
2

n∑
i=1

∂`(π(Wi),β;Wi,Xi, Yi)

∂β

+n−
1
2

n∑
i=1

∂2`(π(Wi),β;Wi,Xi, Yi)

∂β∂π
{π̃(Wi)− π(Wi)}+Op(d1n)

= n−
1
2

n∑
i=1

∂`(π(Wi),β;Wi,Xi, Yi)

∂β
+ Tn1 + op(1),

where d1n = n−1/2‖π̃ − π‖2∞ = op(1). To proceed, we need the following Lemma.

Lemma 2.6.2. Assume the regularity conditions (1)-(4) hold, and assume nh → ∞ as

n→∞ and h→ 0. Let
√
nh(θ̃ − θ). Then, for all w ∈ W, we have

sup
w∈W
|θ̃ − g−1(w)I−1θ (w)∆n| = Op(h

2 + (nh)−1 log
1
2 (h−1)),

where ∆n =
√

h
n

∑n
i=1Kh(Wi − w)qθ(θ;Wi,Xi, Yi).

For the proof of this Lemma, see [122].
Therefore,

θ̃(Wi)− θ(Wi) = (nh)−1/2θ̃∗

= (nh)−1/2

[
g−1(w)I−1

θ (w)

√
h

n

n∑
j=1

Kh(Wj −Wi)
∂`(θ(Wi);Wi,Xi, Yi)

∂θ

+Op(h
2 + (nh)−1 log

1
2 (h−1))

]
= n−1g−1(w)I−1

θ (w)

n∑
j=1

∂`(θ(Wi);Wi,Xj , Yj)

∂θ
Kh(Wj −Wi)

+Op(d2n),

where d2n = (nh)−1/2h2 + (nh)−1 log1/2(h−1). Note, this then implies that

π̃(Wi)− π(Wi) = n−1g−1(Wi)
n∑
j=1

ψ(Wi,Xj, Yj)Kh(Wj −Wi).

By assumption, nh2(log(h−1))−1 →∞, so

n1/2d2n = n1/2((nh)−1/2h2 + (nh)−1 log1/2(h−1))

= h3/2 + n−1/2h−1
√

log(h−1)

= op(1).
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Then,

Tn1 = n−1/2
n∑
i=1

∂2`(π(Wi),β;Wi,Xi, Yi)

∂β∂π
{π̃(Wi)− π(Wi)}

+ n−1/2
n∑
i=1

∂2`(π(Wi),β;Wi,Xi, Yi)

∂β∂π

{
n−1f−1(Wi)

n∑
j=1

Iθ(Wi)
∂`(π(Wi),β;Zi,Xj , Yj)

∂β
Kh(Wj −Wi)

+Op(dn2)

}
= n−3/2

n∑
i=1

∂2`(π(Wi),β;Wi,Xi, Yi)

∂β∂π
f−1(Wi)

{ n∑
j=1

ψ(Wi,Xj , Yj)×Kh(Wj −Wi)

+Op(dn2)

}
= n−3/2

n∑
j=1

n∑
i=1

∂2`(π(Zi),β;Zi,Xi, Yi)

∂β∂π
f−1(Zi)ψ(Zi,Xj , Yj)Kh(Zi − Zj) +Op(n

1/2h2)

= Tn2 +Op(n
1/2h2).

Let

ω(Wj ,Xj , Yj) = −E(W,X,Y )

{
∂2`(π(W ),β;W,X, Y )

∂β∂π
f−1(W )φ(W,Xj , Yj)Kh(W −Wj)

}
= Iβπ(Wj)φ(Wj ,Xj , Yj)

and Tn3 = −n−1/2
∑n

j=1 ω(Wj,Xj, Yj). Then,

Tn2 − Tn3 = n−3/2
n∑
j=1

n∑
i=1

[∂2`(π(Wi),β;Wi,Xi, Yi)

∂β∂π
f−1(Wi)ψ(Wi,Xj , Yj)Kh(Wi −Wj)

− ω(Wj ,Xj , Yj)
]

= n−3/2[ n∑
j=1

n∑
i=1

Cji
]
.

Note that E(Cji) = 0, and that the components of Cij are bounded random variables,

and hence, the diagonal components of the second moment matrix E
[
(Tn2−Tn3)(Tn2−

Tn3)
T
]

are on the order of O(Mn−9/4n2) = o(1) for some constant M > 0. Therefore,

Chebychev’s inequality gives us that each component of Tn2 − Tn3
P→ 0, and so that

Tn2 − Tn3 → 0. Moreover, we assumed that nh4 → 0, it follows that Op(n
1/2h2) =
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op(1). Thus,

An = n−1/2
n∑
i=1

∂`(π(Wi),β;Wi,Xj, Yj)

∂π
+ Tn1 + op(1)

= n−1/2
n∑
i=1

∂`(π(Wi),β;Wi,Xj, Yj)

∂π
+ (Tn2 − Tn3) + Tn3 + op(1)

= n−1/2
n∑
i=1

{∂`(π(Wi),β;Wi,Xj, Yj)

∂π
− ω(Wi,Xj, Yj)

}
+ op(1).

Then, Var(An) = Σ by definition, and so

E(An) =
√
nE
{
∂`(π(W );β;W,X, Y )

∂β
− ω(W,X, Y )

}
.

It can shown that the score function E
(∂`(π(W ),β;W,X,Y )

∂β

)
= 0; see [160]. Moreover,

E{ω(W,X, Y )} = −E{Iβπ(W )ψ(W,X, Y )}.

Given E(∂`(π(Z),β;Z,X,Y )
∂β

) = 0, it follows that

E{ω(W,X, Y )} − EWEX,Y |W {Iβπ(W )ψ(W,X, Y )|W}

= EWIβπ(W )EX,Y |W
[(
Iθ(W )

∂`(π(W ),β;W,X, Y )

∂θ

)
1
|W
]
,

where ()1 denotes the first element of the vector. Note that Iθ(W ) is constant with respect

to the inner expectation, and so if we can show that E
(∂`(π(W ),β;W,X,Y )

∂θ

∣∣W ) = 0, then

E(∂`(π(W ),β;W,X,Y )
∂β ) = 0. But,

E
(∂`(π(W ),β;W,X, Y )

∂θk
|W
)

=

∫
∂

∂θk
log dF (W,X, Y )dFX,Y |W

=

∫ ∂
θk
dF (W,X, Y )

dF (W,X, Y )
dFX,Y |W

=
∂

θk

∫
dFX,Y |W

= 0.

Thus, E(ψ(W,X, Y )) = 0, so that E{ω(W,X, Y )} = 0. Hence, E(An) = 0, and it

follows that An = op(
√
n).
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Therefore, by the Central Limit Theorem and Slutsky’s Theorem,

β∗ = B−1n An + op(1)

= B−1n
√
n(n−1/2An) + op(1)

L→ N (0, B−1ΣB−1).

Proof of 2.2.4. Similar to the proof of 2.2.2, π̂(z0) satisfies

√
nh{π̂(z0)− π(z0)} = g−1(z0)I−1π (z0)W̃n + op(1),

where

W̃n =

√
h

n

n∑
i=1

∂`(π(z0), β̂;Wi,Xi, Yi)

∂π
Kh(Wi − z0).

Using a similar Taylor Series expansion around β̂ in the proof of 2.2.3,

W̃n =

√
h

n

n∑
i=1

∂`(π(z0),β;Wi,Xi, Yi)

∂π
Kh(Wi − z0)

+

√
h

n

[ n∑
i=1

∂2`(π(z0),β;Wi;Xi, Yi)

∂π∂β
Kh(Wi − z0)

]
(β̂ − β) + op(1)

=

√
h

n

n∑
i=1

∂`(π(z0),β;Wi,Xi, Yi)

∂π
Kh(Wi − z0) + Cn + op(1).

We showed in the proof of 2.2.2 that
√
n(β̂−β)→ N (0,B−1ΣB−1). Moreover, n−1/2Cn

P→
Iβπ(z0)g(z0). Therefore,

Cn =
√
h(n−1/2Cn)

(√
n(β̂ − β)

)
L→ 0× ITβπ(z0)g(z0)×N (0,B−1ΣB−1)

= 0

Therefore, since Cn converges in distribution to a constant, Cn = op(1).

Hence, √
nh{π̂(z0)− π(z0)} = f−1(z0)I−1π (z0)Wn + op(1),

where

Wn =

√
h

n

n∑
i=1

∂`(π(z0),β;Wi,Xi, Yi)

∂π
Kh(Wi − z0) + op(1).
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Using a similar calculation as in the previous proofs,

E(Wn) =

√
nh

2

{
Λ′′(z0)f(z0) + 2Λ′(z0)g

′(z0)
}
h2µ2 + op(1)

Var(Wn) = Iπ(z0)g(z0)v0 + op(1).

Similar to the proof of 2.2.2, we can show Lyapunov’s condtion holds; thus

Wn
L→ N (0, Iπ(z0)g(z0)v0).

Therefore, Slutsky’s Theorem gives us

√
nh{π̂(z0)− π(z0)− b̂(z0)h2 + o(h2)} L→ N (0, g−1(z0)I−1π (z0)v0)

where

b̂(z) = I−1π (z)µ2

[g′(z)Λ′(z)
g(z)

+
1

2
Λ′′(z)

]

Proof of 2.2.5. Note that Iπ(z0) is the (1,1) element of Iθ(z0), and Λ(z) is the first entry

of G(z). Let
[
I−1θ (z0)

]
kl

denote the k, l element of I−1θ (z0). Then, Iπ(z0) ≤
[
I−1θ (z0)

]
11

.

Therefore, the asymptotic variance of π̂(z0) is less than or equal to that of π̃(z0). We now

show the asymptotic bias of π̂(z0) is less than that of π̃(z0). Let ηj denote the jth entry of

b(z0).

Then,

|̂b(z0)| = |I−1π (z0)η1|

= |
[
I−1θ (z0)

]
11
η1|

≥ |
[
I−1θ (z0)

]
11
η1 + a1I−1θ a2|

= |b1(z0)|,

where a1 = (1, 0, . . . 0)T and a2 = (0, η2, . . . , ηp+1)
T. Since a1I−1θ a2 > 0, it follows that

|̂b(z0)| ≤ |b1(z0)|, and hence, the asymptotic bias of π̂(z0) is less or equal to that of π̃(z0).

Ascent Properties

Proof of 2.2.6. 1. Define the class membership indicator as

Ci =

0 if Yi from Poisson state

1 if Yi from degenerate state.

90



Assume that the complete data are {(Wi,Xi, Yi, Ci}ni=1 random samples from the

population (W,X, Y, C). Then, the distribution of C|W,X, Y is

P
(
C = 1|W,X, Y ;θ

)
=


π(w)

π(w)+(1−π(w)) exp(−µ) Y = 0

0 Y > 0
. (2.46)

Consequently,

P
(
C = 0|W,X, Y ;θ

)
=


(1−π(w)) exp(−µ)

π(w)+(1−π(w)) exp(−µ) Y = 0

1 Y > 0
. (2.47)

Letting θ(t)(Wi) = {π(t)(Wi),β
(t)(Wi)}, then P(C = 1|Wi,Xi, Yi;θ(Wi)) = r

(t+1)
i .

Then,

`S1
z0 (θ) =

n∑
i=1

log
[
f(yi|Wi,Xi;θ)

]
Kh(Wi − z0)

=

n∑
i=1

log
[
f(yi|Wi,Xi;θ)

](
r
(t+1)
i + (1− r(t+1)

i )
)
Kh(Wi − z0)

=

n∑
i=1

[
log
[
f(yi|Wi,Xi;θ)

]
r
(t+1)
i Kh(Wi − z0)

+ log
[
f(yi|Wi,Xi;θ)

]
(1− r(t+1)

i )Kh(Wi − z0)
]
.

(2.48)

Note, that if yi = 0, then 2.46 and 2.47 imply

log
[
f(0|Wi,Xi;θ)

]
=


log
[
(1− π(wi))µi

]
− log

[
P
(
C = 0|W,X, Y ;θ

)]
Ci = 0

log(π(wi))− log

[
P
(
C = 1|W,X, Y ;θ

)]
Ci = 1.

(2.49)
Then, substituting 2.49 into 2.48, we obtain

`S1
z0 (θ) =

∑
{yi=0}

[(
log(πi)− log

(
P(C = 1|Wi,Xi;θ)

))
r
(t+1)
i

+

(
log
(
(1− π(wi))µi

)
− log(P(C = 0|Wi,Xi;θ))

)
(1− r(t+1)

i )

]
×Kh(Wi − z0)

+
∑
{yi>0}

log
[
(1− π(wi))p(yi|xi;µi)

]
(1− r(t+1)

i )Kh(Wi − z0)

=

n∑
i=1

r
(t+1)
i log(π)Kh(Wi − z0) +

n∑
i=1

(1− r(t+1)
i ) log

[
(1− π)p(yi|xi;µi)

]
Kh(Wi − z0)

−
n∑
i=1

[
log(P(C = 1|Wi,Xi, Yi;θ))r

(t+1)
i + log(P(C = 0|Wi,Xi, Yi;θ))(1− r(t+1)

i )

]
.

(2.50)
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Therefore,

n−1[`S1
z0 (θ(t+1))− `S1

z0 (θ(t))
]

= n−1

[{
`S1
z0,C

(θ(t+1))−
n∑
i=1

[
log(P(C = 1|Wi,Xi, Yi;θ

(t+1)))r
(t+1)
i

+ log(P(C = 0|Wi,Xi, Yi;θ
(t+1)))(1− r(t+1)

i )

}
−
{
`S1
z0,C

(θ(t))−
n∑
i=1

[
log(P(C = 1|Wi,Xi, Yi;θ

(t)))r
(t+1)
i

+ log(P(C = 0|Wi,Xi, Yi;θ
(t)))(1− r(t+1)

i )

}]
= n−1[`S1

z0,C
(θ(t+1))− `S1

z0,C
(θ(t))

]
− n−1

n∑
i=1

[
log

(
P(C = 1|Wi,Xi, Yi;θ

(t+1))

P(C = 1|Wi,Xi, Yi;θ(t))
r
(t+1)
i

+ log

(
P(C = 0|Wi,Xi, Yi;θ

(t+1))

P(C = 0|Wi,Xi, Yi;θ(t))
(1− r(t+1)

i )

)]
×Kh(Wi − z0).

We know that n−1
[
`S1
z0,C

(θ(t+1)) − `S1
z0,C

(θ(t))
]
≥ 0 based on the M-Step. Thus,

we need to show in the second term

− liminf
n→∞

n−1
n∑
i=1

[
log

(
P(C = 1|Wi,Xi, Yi;θ

(t+1))

P(C = 1|Wi,Xi, Yi;θ(t))
r
(t+1)
i

+ log

(
P(C = 0|Wi,Xi, Yi;θ

(t+1))

P(C = 0|Wi,Xi, Yi;θ(t))
(1− r(t+1)

i )

)]
×Kh(Wi − z0)

= limsup
n→∞

− n−1
n∑
i=1

[
log

(
P(C = 1|Wi,Xi, Yi;θ

(t+1))

P(C = 1|Wi,Xi, Yi;θ(t))
r
(t+1)
i

+ log

(
P(C = 0|Wi,Xi, Yi;θ

(t+1))

P(C = 0|Wi,Xi, Yi;θ(t))
(1− r(t+1)

i )

)]
×Kh(Wi − z0)

≥ 0

(2.51)

in probability. Equivalently, we will show that

limsup
n→∞

n−1
n∑
i=1

[
log

(
P(C = 1|Wi,Xi, Yi;θ

(t+1))

P(C = 1|Wi,Xi, Yi;θ(t))
r
(t+1)
i

+ log

(
P(C = 0|Wi,Xi, Yi;θ

(t+1))

P(C = 0|Wi,Xi, Yi;θ(t))
(1− r(t+1)

i )

)]
×Kh(Wi − z0)

≤ 0

Note that if Yi > 0, then r
(t+1)
i = 0 and log

(
P(C = 1|Wi;Xi, Yi;θ

(t+1))
)

= −∞.
Thus, we will use the usual measure-theoretic convention that 0×∞ = 0.
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Define

Lg = n−1
n∑
i=1

[
log

(
P(C = 1|Wi,Xi, Yi;θ

(t+1))

P(C = 1|Wi,Xi, Yi;θ(t))
r
(t+1)
i

)

+ log

(
P(C = 0|Wi,Xi, Yi;θ

(t+1))

P(C = 0|Wi,Xi, Yi;θ(t))
(1− r(t+1)

i )

)]
×Kh(Wi − z0),

and

LJ = n−1
n∑
i=1

log

[{
P(C = 1|Wi,Xi, Yi;θ

(t+1))

P(C = 1|Wi,Xi, Yi;θ(t))

}
r
(t+1)
i

+

{
P(C = 0|Wi,Xi, Yi;θ

(t+1))

P(C = 0|Wi,Xi, Yi;θ(t))

}
(1− r(t+1)

i )

]
×Kh(Wi − z0).

Note, since log(·) is convex, Jensen’s inequality gives Lg ≤ LJ . We now show
limsup
n→∞

P(‖LJ‖2ε) = 0 for any ε > 0. For simplicity, when Yi = 0 assume that

r
(t)
i ≥ a > 0 for small a. This can always be done in practice by taking the

minimum of the r
(t+1)
i . Notice,

E(LJ) = E

(
log

[{
P(C = 1|W,X, Y ;θ(t+1))

P(C = 1|W,X, Y ;θ(t))

}
P(C = 1|W,X, Y ;θ(t+1))

+

{
P(C = 0|Wi,Xi, Yi;θ

(t+1))

P(C = 0|Wi,Xi, Yi;θ(t))

}
P(C = 0|W,X, Y ;θ(t+1))

]
×Kh(Wi − z0)

)
.

Define,

∆n(X, Y ) := E

(
log

[{
P(C = 1|W,X, Y ;θ(t+1))

P(C = 1|W,X, Y ;θ(t))

}
P(C = 1|W,X, Y ;θ(t+1))

+

{
P(C = 0|Wi,Xi, Yi;θ

(t+1))

P(C = 0|Wi,Xi, Yi;θ(t))

}
P(C = 0|W,X, Y ;θ(t+1))

]
×Kh(Wi − z0)|X, Y

)
.

Note that the random variable we are taking the expectation with respect to is dominated by the

quantity Q = log

{
a−1

(
P(C = 1|W,X, Y ;θ(t+1)) +P(C = 0|W,X, Y ;θ(t+1))

)}
×Kh(Zi− z0), which

has finite expectation. Moreover, when conditioning on X, Y , for sufficiently large t,

lim
n→∞

P(C = c|W,X, Y ;θ(t+1))

P(C = c|W,X, Y ;θ(t))
= 1

Therefore, by the Lebesgue Dominated Convergence Theorem,

liminf
n→∞

∆n(X, Y ) = E

(
liminf
n→∞

{ 1∑
c=0

P(C = c|W,X, Y ;θ(t+1))

P(C = c|W,X, Y ;θ(t))
P(C = c|W,X, Y ;θ(t+1))

})
= E

(
log(1)×Kh(W − z0)|X, Y

)
= 0.
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Since ∆n(X, Y ) is bounded, it follows by law of total expectation that

liminf
n→∞

E(LJ) = liminf
n→∞

E(∆n(X, Y )) = 0.

We now calculate the Var(LJ). Notice that the Var(LJ) is dominated by

S = n−1E

(
log

[ 1∑
c=0

P(C = c;W,X, Y ;θ(t+1))

P(C = c;W,X, Y ;θ(t))
P(C = c;W,X, Y ;θ(t+1))

]
Kh(W − z0)

)2

= n−1

∫ (
log

[ 1∑
c=0

P(C = c;W,X, Y ;θ(t+1))

P(C = c;W,X, Y ;θ(t))
P(C = c;W,X, Y ;θ(t+1))

]
Kh(W − z0)

)2

f(w)dw

= n−1

∫ (
log

[ 1∑
c=0

P(C = c;W,X, Y ;θ(t+1))

P(C = c;W,X, Y ;θ(t))
P(C = c;W,X, Y ;θ(t+1))

]
Wh(z − z0)

)2

(
f(z0) + f ′(z0)(w − z0) +O(‖w − z0‖2)

)
dw

≤ a−1(nh)−1(f(z0)

∫
h−1K2(h−1(w − z0))dw + f ′(z0)

∫
h−1K2(h−1(w − z0))(w − z0)

+O(‖z − z0‖2)
)

= O((nh)−1)

= o(1).

Therefore, limsup
n→∞

E(‖{LJ‖2) = 0; hence, limsup
n→∞

LJ ≤ 0 in probability.

Thus, limsup
n→∞

n−1
[
`(θt+1(z0))− `(θ(t)(z0))

]
≥ 0, which completes the proof.

2. The ascent property of `2 follows immediately from the ascent property of or-

dinary EM algorithms.

3. Notice that

`S3
z0 (π(t+1))− `S3

z0 (π(t)) =

n∑
i=1

log

{
f(yi|wi,xi; β̂, π(t+1))

f(yi|wi,xi; β̂, π(t))

}
Kh(wi − z0)

=

n∑
i=1

log

{[ π(t)I{yi = 0}
f(yi|wi,xi;π(t), β̂)

][π(t+1)I{yi = 0}
π(t)I{yi = 0}

]
+
[ (1− π(t))p(yi; β̂)

f(yi|wi,xi;π(t); β̂)

][π(t+1)p(yi; β̂)

π(t)p(yi; β̂)

]}
Kh(wi − z0)

=

n∑
i=1

log

{
r
(t+1)
i

[π(t+1)I{yi = 0}
π(t)I{yi = 0}

]
+ (1− r(t+1)

i )
[π(t+1)p(yi; β̂)

π(t)p(yi; β̂)

]}
Kh(Wi − z0)

Based on Jensen’s inequality, it follows

`S3
z0 (π(t+1))− `S3

z0 (π(t)) ≥
n∑
i=1

[
r
(t+1)
i log

[π(t+1)I{yi = 0}
π(t)I{yi = 0}

]
+ (1− r(t+1)

i ) log
[π(t+1)p(yi; β̂)

π(t)p(yi; β̂)

]]
= `S3

z0,C
(π(t+1), β̂)− `S3

z0,C
(π(t), β̂)

≥ 0
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Table 2.7: Examination of Average MSE and Average RASE.

Bandwidth(n = 200) Bandwidth(n = 400)

MSE 1.07 2.18 4.36 PAR 1.07 2.18 4.36 PAR

β0 0.016 0.0160 0.0202 0.3425 2e−4 1e−5 3e−4 0.2052
β1 0.0004 0.0004 0.0005 1.6191 3e−5 2e−5 2e−6 1.6834

RASEπ

π 0.0727 0.08423 0.0898 0.0962 0.0508 0.0705 0.0768 0.0856

where the final inequality is based on the M-Step of the complete local likeli-

hood.

Additional Simulation Study

Y is generated from the ZIP Regression model with a single covariate X ∼ Unif(0, 10),

where X is applied in both the Poisson and zero-inflation state. The true β = (.1, .2)T, and

the zero-inflation probability has the form

π(x) = (3 + sin(x))−1.

Again, we study MSE of β̂ and RASE of π̂(·) of the undersmoothed, CV, and oversmoothed

bandwith, along with the parametric ZIP regression model. The numerical results can be

seen in Table 2.7. We see that in general, the undersmoothed bandwidth performs the

best for both estimation of β and π. The CV and oversmoothed bandwidth gives similar

accuracy for estimation of β, but the oversmoothed bandwidth does poorly at estimating

π. Lastly, the parametric model is unsatisfactory at estimating both parameters.

We then examine coverage rates for the bootstrap Z, percentile, and BC intervals de-

scribed previously. The Z-intervals coverage for β is given in Table 2.8. Overall, the coverage

rates are under the nominal level. This could be a situation in which bootstrap calibration

may be useful due to the high curvature of π, which leads to signifcantly underestimating

the standard errors. In general, the three models have similar coverage across n = 200 and

n = 400. As with the first simulation study, we do see a drop in coverage as n increases.

The estimation of π from a single Monte-Carlo replicate can be seen in Figure ??. We

see that the true function is quite varialbe across the range of 0-10, and thus it is unsuprising

that it is difficult to estimate. From the figure, we see that the undersmoothed bandwidth

does the best job of estimating π, and the parametric and oversmoothed models cannot

correctly estimated the curvature of π. Moreover, there is critical points at π/2 and 5π/2,
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Table 2.8: Coverage Resuls β.

Parameter 95% 95%
n = 200,h = 1.07 n = 400,h = 1.07

β0 89.80 84.80
β1 91.20 89.20

n = 200,h = 2.18 n = 400,h = 2.18
β0 89.20 82.60
β1 91.80 87.60

n = 200,h = 4.36 n = 400,h = 4.36
β0 82.60 78.80
β1 90.00 86.00

and no estimates the critical points correctly. This is a case where a local polynomial fit

would be useful, or possibly a locally adaptive bandwidth.

The coverage results for π can be seen in 2.9. Overall, we see again that the un-

dersmoothed bandwidth with the BC intervals have the best coverage, which is the only

interval that consisantly gets near nominal coverage, although no interval is desirable. The

explanation for this is that π(·) has large total variation, especially compared to π(·) from

the first simulation study.
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Table 2.9: Coverage Rates for Intervals for π. The three numbers in each cell represent
the coverage for the Z, percentile, and BC interval, respectively, for a value of x and
h.

n = 200 n = 400
h 1.07 2.18 4.36 1.07 2.18 4.36

1
92.40 80.00 58.60 89.40 59.40 30.60
92.40 67.00 52.20 82.40 35.20 24.60
94.20 82.80 56.00 92.00 61.60 23.00

2
89.40 65.40 51.20 79.80 38.20 25.60
81.60 57.80 49.00 60.00 27.80 21.60
93.20 71.80 48.80 87.20 40.00 17.60

3
90.20 86.20 85.40 85.60 77.00 78.80
91.80 87.00 78.6 83.00 74.80 72.80
92.20 88.00 83.20 89.20 73.40 73.60

4
88.60 57.20 25.00 85.50 34.40 5.80
83.60 44.80 22.60 73.00 19.20 4.40
91.40 69.20 35.00 88.60 46.60 12.40

5
74.40 19.40 5.00 60.80 3.40 0.20
57.80 10.60 3.60 32.80 0.20 0.00
84.40 31.20 8.40 69.20 6.40 0.02

6
93.20 89.60 80.40 94.60 90.40 73.80
94.40 86.20 76.00 95.00 82.20 70.60
93.00 91.80 83.00 92.20 90.40 77.40

7
91.60 71.80 65.40 86.20 48.60 43.80
86.00 69.60 62.00 78.80 46.40 37.60
93.40 73.20 65.00 90.20 52.80 40.40

8
92.80 68.60 46.60 82.20 41.60 20.40
87.00 60.00 48.60 78.40 28.80 22.20
93.60 74.00 48.00 91.80 54.20 18.20

9
96.20 93.60 81.80 93.00 92.00 73.40
97.20 91.80 76.40 94.80 95.80 59.00
95.20 94.20 84.20 93.40 91.20 73.00
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Chapter 3 Conclusions and Future Directions

3.1 Conclusions

In Chapter I, the utility of zero-inflated regression models was discussed, along with re-

cent contributions to the literature. In Chapter 2, taking inspiration from the mixture-of-

regressions literature, a novel semiparametric ZIP regression model was developed. The

assumption of globally logit-linear zero-inflation probabilites was relaxed, and instead a

non-parametric form for the mixing proportion was assumed. This weaker condition allows

us flexibility in modeling the zero-inflation probabilies, and allows us to evaluate the as-

sumption of logit linear mixing proportions in the parametric model. This could be useful

because we do not observe the “switching-process” of the degenerative state and Poisson

state, and the semiparametric model gives us a way to evaluate goodness of fit of the

parametric switching process.

Since our model is similar to the partially linear model, a three step backfitting proce-

dure was proposed for estimation of the parameters. The backfitting algorithm alternates

between non-parametric and parametric estimation. A “EM like” algorithm was utilized at

each estimation step. Asymptotic properties of the backfitting estimators was established,

along with ascent properties of the objective functions at each estimation step.

Further, inference in the semiparametric framework was discussed. The asymptotic

variance of both β and π was estimated via the bootstrap, and confidence intervals for π(z)

were constructed by three methods - Z, percentile, and BC intervals. From our simulations,

the BC intervals for π(z) were the most reliable in terms of coverage probability. For β, the

Z-intervals were found to have satisfactory coverage probabilites, although there seems to

be an unexpected decrease in coverage as n increases. This may signify the standard errors

are being underestimated for large n, and some calibration is needed.

After discussing confidence intervals, hypothesis testing in the semiparmetric setting

via the bootstrap LRT was discussed. Our simulations indicate that the bootstrap LRT is

a consistant test, along with preserving the nominal type-I error rate. Issues arose around

negative bootstrap LRT statistics, but we anticipate that the issue can be mediated with

either a bootstrap estimation of bias, or using an undersmoothed bandwidth for testing.

Finally, the proposed semiparametric ZIP model was utilized on an Alzheimer’s and

meth lab seizure data set. It was seen that the semiparametric regression model confirmed

the reasonableness of the parametric ZIP regression model. Moreover, in practice, it is

imperative to examine multiple bandwidths since undersmoothed and CV bandwidths can

give spurious results, but the oversmoothed bandwidth can miss interesting features.
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3.2 Future Directions

Semiparametric Regression Model

From the second simulation study in Section 2.6, it was seen that the bias of the local con-

stant kernel estimator for π(·) is substantial when the curve has substantial total variation.

We anticipate that this issue can be resolved by using local polynomial regression with

degree 2 or 3. Therefore, even though the regression function in Section 2.6 is unlikely to

be seen in practice, it may be desirable to fit a higher degree polynomial (locally) to reduce

the bias. Moreover, polynomials of degree d allow us to estimate the 1st, , . . . , dth derivative

of π(·), which may be of importance in practice for estimating critical or inflection points.

The tradeoff is the “EM-like” algorithm for estimation would be more computationally

intesive; although, the locfit package in R [141] gives computationally efficient estimation

via local likelihood. Another solution to the intense compuational time would be to apply

the one-step local quasi-likelihood estimator of [161]. In this paper, the authors propose a

one-step solution to local likelihood estimation to mitigate the compuational resources.

In addition to higher degree polynomial fits, it would also be desired to extend model

2.12 to the ZINB distribution. As noted before, the ZINB model allows for overdispersion,

which is common in practice. We anticipate estimation of a semiparametric ZINB regres-

sion model would be analagous to the estimation steps discussed in Section 2.3, with the

challange in estimation of the dispersion parameter, θ. A possible solution would be to

combine the ECM algorithm for ZINB regression in Section 1.11, with the estimation steps

in Section 2.3. Thus, a “ECM-like” algorithm could be developed. Whether the ascent

properties and asymptotic normality of estimators follow would be of theoretical interest.

Related to a local ZINB regression model, it may be of use to model the dispersion pa-

rameter locally by a continuous covariate. The first property that would need to established

is identifiability of the model, since the NB model is not in the GLM family when the dis-

persion parameter is unknown. Hence, the theorem for identifiability of mixtures-of-GLMs

given in [140] would not apply.

Future Research Problems for Zero-Inflated Models

The seminal paper of [3] introduced the ZIP regression model and provided details about

the likelihood estimation of the parameters. Many advancements with ZI count regression

models have been made in the 26 years since the publication of that paper. We propose

some interesting directions for research about ZI count regression models.

• [60] presented a novel measurement error (ME) regression model that accounts for

both MEs in the covariates and zero-inflation for estimating the distributions of di-

etary intakes. The authors performed extensive empirical work and demonstrated
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efficacy of this model in relating multiple dietary components and patterns with

health outcomes. However, research needs to be performed in the context of ZI count

regression models under different ME structures. For example, suppose that we are

interested in relating our ZI count Y to a vector of covariaters, X; however, X cannot

be observed in practice. Instead, we observe V . Classical ME is where V = X +U

such that each component of U , Uj for j = 1, . . . , p, is Ui ∼ N (0, σ2). Berkson ME

is where X = V + U (additive) or X = V U (multiplicative), such that V ⊥ U ,

and E(U) = 0 or E(U) = 1, respectfully. Therefore, E(X|V ) = V . Estimators and

their properties for ZI count regression models need to be studied, as well as when

ME occurs in the covariates for modeling the mixing proportion π. Some of the work

of [162], who discussed ME in the context of non-ZI Poisson regression, could be

leveraged for this research.

• Big data problems are of broad and current interest to researchers and data ana-

lysts. Zero-inflation can also occur in such big data problems, as highlighted with

the census application [34]. One issue highlighted by the authors is the need for

efficient computng routines when estimating ZI models applied to big data. In par-

ticular, routines are necessary to handle ultra-high dimensional variable selection in

ZI count regression models. Such routines coculd be developed in the spirit of the

iteratively sure independent screening approach of [163]. Perhaps even more benefi-

cial will be including these computational routines in a statistical package devoted

to modeling and inference tools for ZI count regression models. In Section 1.5, we

highliighted major routines available in statistical software packages. However, most

of these simply estimate ZIP and ZINB regression models, with options for obtaining

simple residual summaries. A package that encompasses may of the modern methods

that we discussed, including routines for big data problems, will make an invaluable

contribution.

• Later in this chapter, we will note some Bayesian hierarchical models that have been

developed for ZI counts in spatial data. One specific type of spatial data is areal data,

which is aggregated quantities for each measured (areal) unit within some meaningful

partition of a given region, such as counties within a state. A growing research

topic is developing efficacious spatial regression models that caputure not only zero-

inflation, but more generally characterize data dispersion for areal count data. Such

models could better address problems related to the spread of diseases [164], trends in

emergency department visits [99, 165], and changes in the status of housing units for

conducting censuses [166]. One alternative to the models proposed for these applied

problems is development of a spatial CMP regression model, which could provide a

flexible framework for caputring the data dispersion.

101



• In Section 1.9, we discussed the notion of zero-inflation and diagonal-inflation in mul-

tivariate count regression models, with an emphasis on multivariate Poisson regression

models. We noted some applied work where zero-inflation has been investigated for

other multivariate count regression models. However, there is a need for a more

rigorous development and treatment of ZI and DI count regression models beyond

the multivariate Poisson regression setting. More generally, it would be beneficial

to develop a unified framework about zero-inflation and diagonal-inflation in multi-

variate count regression models, regardless of the assumed count distribution. Such

work could further inform more complex data structures, such as ZI counts in ten-

sor regression. [167] developed an effective framework for tensor regression models

that allows for discrete responses. However, the notion of zero-inflation has, to our

knowledge, not been investigated.

• Variable selection in ZI regression models, and more generally mixtures-of-regressions

models, is non-trivial task. This is due to the fact that covariates must be selected

for both the count mean state and the zero-inflation state. Commonly, analysts rely

on BIC to decide between competing models. Recently, [168] studied the smoothly

clipped absolute deviations (SCAD) penalty for variable selection. To our knowledge,

no other methodology has been studied for variable selection in ZI regression models.

3.3 Zero-Inflation in Spatial Data

CAR Regression Model

Most zero-inflated spatial regression models employ a conditionally autoregressive (CAR)

covariance structure to model dependency. [46] was the first to utilize the CAR process to

model abundance of isopod nest burrows. In similar work, [99] developed a Poisson hurdle

model with a CAR prior to model ER visits in Durham County, NC. Lastly, [169] applied

the CAR random effect model and a AR(1) time dependency to investigate harbor seal

abundance. Due to the complexity of the likelihood function, the CAR ZI regression model

is typically estimated via a Bayesian approach.

Before discussing the CAR model in the zero-inflation context, for illustration, we dis-

cuss the CAR model in the Gaussian data context. This is a summary of the discussion of

[170]. Let s ∈ R2, with Y (s) denoting the outcome at at the grid location of s. We can

think of Y (s) = Y {(s1, s2)} as the outcome at a longitude of s1 and latitude s2. The CAR

model assumes that

Y (si)|{y(sj)}j 6=i = µi + ρ
n∑
j=1

cij
(
y(sj)− µj

)
+ εi, (3.1)
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where εi ∼ N (0, τ2), with

cij =


0 i = j

1 sites i and j are spatial neighbors

0 otherwise .

Here, ρ is a correlation parameter with −1 < ρ < 1. In interpretation, model 3.1 implies

that the outcome at location si given the observed outcomes of i 6= j has a site mean µi,

and then the overall site mean is adjusted by the observed values, y(sj), and site means, µj ,

for the neighboring locations sj of si. Here ρ controls the amount of correlation between

the spatial neighbors sj of si. It can be shown using Brook’s Lemma [171] that the joint

distribution of

Y = (Y (s1), . . . , Y (sn))T ∼ Nn
(
µ, τ2(I − ρC)−1

)
,

where C is the n× n matrix with Cij = cij .

The extension to the Spatial ZIP Regression model with CAR covariance sturcture is

via mixed model. More formally,

log(µ(si)) = xT
i β + δ1i,

logit(π(si)) = wT
i α+ δ2i,

(3.2)

where δk ∼ N (0, τ2k (I − ρkC)−1) for k = 1, 2. Some authors do not include δ2i [46] in the

model. Meanwhile other authors assume that δ1 ⊥ δ2, while other authors [99] assume

there may be dependence between δ1 and δ2. Let θ = (β,α). Then, the likelihood then is

L(θ;y, δ1, δ2) =
n∏
i=1

f(yi|δ1i, δ2i;θ)g(φi), (3.3)

where f(·) is the ZIP mass function and g(·) is the joint distribution of φi = (δ1i, δ2i)
T.

The likelihood in 3.3 is difficult to maximize, and thus MCMC is typically utilized, with

“uninformative” priors on the parameters.

Spatial Meth Data Analysis

It was noted in from the heat map in Section 2.6 that a spatial model could be of use

for analyzing the meth lab seizure data set. Therefore, a Poisson negative binomial, and

ZIP CAR regression model was fit. The ZIP CAR model was fit using the CARBayes [172]

package in R. The covariates examined were percent poverty, the percent of rural area in a

county, the amount of PSE sold in the county, and an indicator whether the county is off

the I-65 or Cumberland Parkway (Off-High). Since most counties in Kentucky are rural,

percent of rural area was made into an indicator of whether percent of rural area was bigger
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Table 3.1: Summary of results for CAR model.

Model β0 Off-High(β1) % Rural(β2) % Poor(β3) α0 PSE (α1) ρ
Poisson -8.9866 (-9.1507,-8.8211) 1.6352 (1.3561,.9200) * * * * 0.4128 (0.1421,0.7457)

ZIP -8.8322 (-9.0245,-8.6305) 0.4797 (0.1982,0.7972) * * -3.6612 (-6.6794,-1.9799) -0.7886 (-4.9693,2.1467) .5838 (0.2845,0.8915)
NB -9.2814 1.1350 0.6653 0.0357 * * 0.7012

ZINB -8.5879 (-9.0601,-5.9562) 0.4914 (-0.0131,0.9960) 0.6117 (0.1927,1.0308) * -4.514 (-7.4873,-1.541) * *

Table 3.2: Prediction accuracy on 2012 data set.

Model L
Poisson 8.1254

NB 9.0765
ZIP 5.0663

ZINB 6.0049

tha 95%. Likewise, PSE sales was employed as indicator for PSE sales larger than 50 mg

per 100 people. The priors were taken to be

β ∼ N (0, 100I4×4),

α ∼ N (0, 2),

τ2 ∼ Inv-Gamma(1, .001),

ρ2 ∼ Unif(−1, 1),

,

where τ2 and ρ are covariance parameters for the CAR model. The priors were taken to be

more informative for α since the MCMC sampler would not converge under larger variances.

Different covariates were utilized in the models due to issues of convergence.

Moreover, the negative binomial CAR regression model was fit using the copCAR [173]

package. Priors for β were similar to that of the ZIP regression model. The ZINB CAR

model was not considered since we couldn’t find any work in the spatial literature employing

such a model, which could indicate non-identifiability or computational issues. However, a

ZINB regression model was fit with area development district (ADD) as a random effect.

A summary of the model results can be seen Table 3.1. The inferences across regression

parameters (that are similar.

For model comparison, the 2012 data set was utilized as a test set. Absolute loss,

L(y, ŷ) = n−1
∑n

i=1 |yi − ŷi|, was employed for determining prediction accuracy. A com-

parison of the aforementioned models can be seen in 3.2. Observe that the most accurate

model is the ZIP spatial model.

County specific predictions for Fayette and Jefferson county for 2012 can be seen in Table

3.3. Observe that the Poisson, NB, and ZIP largely overpredict for Fayette county, while

the ZINB is fairly accurate. Conversely, the ZINB massively underpredicts for Jefferson

county, while the Poisson and NB largely overpredicts, but the ZIP is somewhat accurate.
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Table 3.3: Predictions for Fayette and Jefferson County in 2012.

Model Poisson NB ZIP ZINB Observed
Fayette 36.9975 52.8030 42.6333 3.5229 6

Jefferson 475.5564 387.3297 172.5647 4.9506 129
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[98] M. Alfò and A. Maruotti. Two-Part Regression Models for Longitudinal Zero-Inflated

Count Data. The Canadian Journal of Statistics, 38(2):197–216, 2010.

[99] B. Neelon, P. Ghosh, and P. F. Loebs. A Spatial Poisson Hurdle Model for Explor-

ing Geographic Variation in Emergency Department Visits. Journal of the Royal

Statistical Society, Series A (Statistics in Society), 176(2):389–413, 2013.

[100] M. Yang, G. K. D. Zamba, and J. E. Cavanaugh. Markov Regression Models for

Count Time Series with Excess Zeros: A Partial Likelihood Approach. Statistical

Methodology, 14:26–38, 2013.

[101] F. Zhu. Zero-Inflated Poisson and Negative Binomial Integer-Valued GARCH Models.

Journal of Statistical Planning and Inference, 142(4):826–839, 2012.
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