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ABSTRACT OF DISSERTATION 

 

QUANTIFYING THE IMPACT OF TRANSPORTATION NETWORK COMPANIES 

(TNCs) ON TRAFFIC CONGESTION IN SAN FRANCISCO 

 

This research investigates whether Transportation Network Companies (TNCs), 

such as Uber and Lyft, live up to their stated vision of reducing congestion by 

complementing transit and reducing car ownership in major cities. The objective of this 

research study is to answer the question: are TNCs are correlated to traffic congestion in 

the city of San Francisco? If found to be so, do they increase or decrease traffic 

congestion for the case of San Francisco? If and how TNC pickups and drop-offs impact 

traffic congestion within San Francisco? And finally, how does the magnitude of this 

measured command of TNCs on congestion compare to that caused by pre-existing 

conventional drivers of traffic and congestion change? Apart from answering these 

questions, it is also sought to establish a framework to be able to include TNCs, a 

seemingly fledgling mode of transportation but one that is demonstrably shaping and 

modifying extant transportation and mode choice trends, as part of the travel demand 

models estimated by any geographic jurisdiction. 

Traffic congestion has worsened noticeably in San Francisco and other major 

cities over the past few years. Part of this change could reasonably be explained by strong 

economic growth or other standard factors such as road and transit network changes. The 

sharp increase in travel times and congestion also corresponds to the emergence of TNCs, 

raising the question of whether the two trends may be related. Existing research has 

produced conflicting results and been hampered by a lack of data.  

Using data scraped from the Application Programming Interfaces (APIs) of two 

TNCs, combined with observed travel time data, this research finds that contrary to their 

vision, TNCs are the biggest contributor to growing traffic congestion in San Francisco. 

Between 2010 and 2016, weekday vehicle hours of delay increased by 62%, compared to 

22% in a counterfactual 2016 scenario without TNCs. The findings provide insight into 

expected changes in major cities as TNCs continue to grow, informing decisions about 

how to integrate TNCs into the existing transportation system.  

This research also decomposes the contributors to increased congestion in San 

Francisco between 2010 and 2016, considering contributions from five incremental 

effects: road and transit network changes, population growth, employment growth, TNC 



 

 

volumes, and the effect of TNC pick-ups and Drop-offs. It is so done through a series of 

controlled travel demand model runs, supplemented with observed TNC data. The results 

show that road and transit network changes over this period have only a small effect on 

congestion, population and employment growth are important contributors, and that 

TNCs are the biggest contributor to growing congestion over this period, contributing 

about half of the increase in vehicle hours of delay, and adding to worsening travel time 

reliability. This research contradicts several studies that suggest TNCs may reduce 

congestion and adds evidence in support of a recent empirical analysis showing that their 

net effect is to increase congestion. This research gives transportation planners a better 

understanding of the causes of growing congestion, allowing them to more effectively 

craft strategies to mitigate or adapt to it. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

 The purpose of this study is to quantify the impact on congestion created by the 

emergence of Transportation Network Companies (TNCs) in the city of San Francisco. 

The primary services provided by companies like Uber around the globe, Lyft in the 

United States, Cabify in South America, Ola in India, or Didi in China is described as 

ride-hailing, ridesourcing, or TNCs. They are app-based services providing mobility and 

rides as a service (MaaS) where rides are arranged through a mobile app to connect the 

passenger with a driver, often a private individual driving their personal vehicle (TRB 

Special Report 319, 2016). TNCs are one of a number of fledgling forms of shared 

mobility and one form of MaaS. The current system is commonly viewed as a bridge 

technology that may be replaced by fleets of self-driving cars if and when that technology 

is ready (Zmud and Sener 2017; Fagnant and Kockelman 2018).  

Transportation Network Companies (TNCs) have grown rapidly in recent years 

(Iqbal 2019). In 2016, TNCs were 15% of all intra-San Francisco vehicle trips, which is 

12 times the number of taxi trips, while in New York in 2016 (TNCs Today 2017, 

SFCTA), TNC ridership equaled that of yellow cab and doubled annually between 2014 

and 2016 (Shaller 2017). Presently, TNCs are not a fringe mode of transportation any 

more, and given their substantial presence on our road networks, it is vital to assess their 

impact on important traffic performance metrics. This research also proposes a method to 

do this, the data set that would be required to complete such an analysis and points out 
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various factors that should be studied to reach at a conclusive statement to carry out a 

study at a scale that it has been carried out on in this study. 

With this growth, the question of their effect on the broader transportation system 

becomes important.  The Uber mission statement at one point included a claim that they 

are tackling the problem of “reducing congestion in major cities by getting more people 

into fewer cars” (Uber n.d.), while the founder of Lyft claims inspiration from a college 

urban planning class and presents a vision of reduced dependence on cars with road space 

dedicated to other uses (Zimmer 2016).  Supporters of this vision group TNCs with other 

shared mobility and argue that “Shared modes largely complement public transit, 

enhancing urban mobility” (Feigon and Murphy 2016) and “TNC use is associated with 

decreases in respondents’ vehicle ownership and single‐occupancy vehicle trips” (Feigon 

and Murphy 2018).  It is true that by wielding their potential to incentivize pooled rides, 

TNCs can inherently increase capacity of the existing roadway network. TNCs can make 

carpooling and ridesharing more accessible to the masses as compared to when users had 

to schedule rides themselves and potentially, only with commuters they personally knew. 

While this is true, it is imperative to seek if in their current state of operation provides 

any quantifiable evidence to this being the case. 

Do TNCs really live up to this stated vision?  The remainder of Chapter 1 

illustrates that there have been a limited number of existing studies on the topic, and the 

results of those studies have been mixed.  The major challenge is that existing research 

has been hampered by a lack of data (Cooper et al. 2018).  While we live in the era of Big 

Data, those data are not necessarily available for research purposes.  Specifically, the 

TNCs have a wealth of data, including details of the trips made, driver movements, and 
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potentially location data of customers purely from the TNC apps running in the 

background of user’s smartphones.  Requests to a major TNC to access a privacy-

protected and aggregate version of these data for this research were denied.  Instead, this 

research relies on a data set scraped from the Application Programming Interfaces (APIs) 

of the two largest TNCs.  This data set was collected by researchers at Northeastern 

University in partnership with the San Francisco County Transportation Authority 

(SFCTA) (Jiang et al. 2018; Cooper et al. 2018) and made available for this research.  It 

provides a snapshot of TNC use in San Francisco for a 6 week period in Fall 2016, and is 

a unique opportunity to quantify the use of TNCs and their effect.  The data and their 

processing are described in further detail in Chapter 2.   

A parallel set of research is examining the effect of TNCs on transit ridership 

(Mucci 2017; Graehler, Mucci, and Erhardt 2019).  This research is concerned with the 

effect of TNCs on traffic congestion.  Specifically, it aims to answer the question: Do 

TNCs increase or decrease traffic congestion in San Francisco and by how much?   

1.2 Literature Review: The Effect of TNCs on Congestion 

Clewlow and Henao (2019), in a recent report, presented a framework (Figure 1) 

that makes it possible to understand the effect of the presence of TNCs on congestion. 

This framework proposes multiple steps and asks several questions, answers to which 

would ideally address the probable correlation between TNCs and congestion (and other 

indicators of network performance like Vehicle Miles Traveled).  
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Figure 1 Defining a framework to attain answer to the question: Does TNC use increase or decrease VMT? 

Source: Clewlow and Henao 2019, TRB 2019 workshop presentation 

 

The referred framework, however, is devoid of spatial and temporal differences 

across the network within any proposed study area. These left-out spatial and temporal 

trends are critical in the discussion about whether TNCs affect traffic congestion and 

travel time since TNCs, as a factor, are not independent of any interaction between them 

and the pre-existing drivers of congestion. Instead, they are an additional potential source 

of congestion. Their contribution to congestion occurs in combination with the 

conventional drivers of congestion and this combined output, i.e., the present-day traffic 

congestion, can only be precisely quantified when tracked through staggered points in 

time and space. As controlled experiment within the same temporal snapshot has not been 

possible in several past, recent and concurrent studies, this study has drawn comparisons 

between congestion data sourced from the same study area across two snapshots of time. 
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1.2.1 Vehicle Ownership 

Some have speculated that by providing a convenient alternative to owning a car, 

TNCs could incentivize people to own fewer cars, and by extension induce them to shift 

other trips to transit or non-motorized modes, potentially reducing their total vehicle 

travel (Feigon and Murphy 2016; Feigon and Murphy 2018). TNCs do have the potential 

to reduce the existing reliance on private cars in the longer scheme of things. The TNCs 

themselves present a vision of the future in which they reduce traffic congestion and 

allow roads to be repurposed to other uses (Uber Newsroom 2017; Zimmer 2016). 

Clewlow and Mishra (2017) found that while ride-hailing transit users have lower vehicle 

ownership rates than non ridehailing transit users by about 6%-11%, about 91% of TNC 

users have not made any changes with respect to vehicle ownership. While at present it 

might be too soon to predict the long-reaching effect on vehicle ownership as a result of 

TNC use at this time since the average lifetime of a private vehicle in the United States is 

about 15 years (Weisbaum 2006), they also found no difference among non-transit users 

in vehicle ownership rates between ridehailing users and non-ridehailing users. This 

potentially indicates that usage of transit might be a more telling feature that 

differentiates vehicle owners from non-owners for the long term as compared to TNC 

usage. 

1.2.2 Mode Shift (Long Range) 

Existing studies have produced a spectrum of assessments about the impact of 

TNCs on long term modal shifts. Studies published by the Shared Use Mobility Center 

(SUMC) and Hall et al. (2018) demonstrate how increasing use of TNCs can result in 

increasing patronage for public transit. TNCs have the potential to ‘fill in the gaps’ of 
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transit, making transit more lucrative and accessible for people, especially at non-peak 

service hours. The SUMC report argued that shared mobility services have great 

untapped potential to serve as bridges between trip beginning points to historically 

established transit pick up points. Hall (2018) in his paper described the effect of Uber 

penetration on the ridership of fixed-route, fixed-service transit facilities using a 

difference in difference calculation framework and found that greater Uber penetration 

complemented transit, and promoted off-peak travel since people now have greater 

assurance of reaching home post alighting from transit (especially smaller transit 

agencies) run vehicles. Clewlow and Mishra (2017) found that TNC usage could be 

attributed to bring about a 3% rise in transit usage due to improved accessibility. The 

same study also found that the substitutive versus complementary nature of ride-hailing 

varies greatly based on the type of transit service in question, a notion measured and 

confirmed by a dedicated transit ridership study by Mucci et al. (2018). 

However, the long-term effect of TNCs on transit ridership is an ambiguous 

subject as established by the conclusions of a number of different studies. Theoretically, 

TNCs are also likely to siphon off otherwise loyal transit patrons by offering a more 

personalized travel experience for the individual traveler. If this possibility of TNCs 

acting as competitors to transit rather than serving as their complement becomes reality, 

they can potentially choke the network by increasing in-use Passenger Car Equivalents 

manifold. Some existing studies have remarked upon this substitution versus addition 

effect of TNCs.  Henao (2018) found that about 22% of TNC trips within his sample 

database were defected from public transit modes. On the same track, a report on the 

TNC use patterns in the greater Boston region by Gehrke et al. (2018) found that this 
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transit-to-TNC substitution rate is about 42%. This, admittedly, was higher than some 

other concurrent research studies. Clewlow and Mishra (2017) found this statistic to be 

about 15% in a nationwide study of disruptive transportation, whereas another recent 

MBTA customer satisfaction survey study by the Massachusetts Department of 

Transportation found the defection rate to be about 30%. In light of such conflicting long-

range travel trends that TNC usage purportedly causes, it is imperative to study their 

effect in a greater, more quantifiable manner. 

1.2.3 Mode Shift (Short Range) 

Previous studies to interpret how TNCs affect the existing transportation 

environment have also included a comprehensive analysis of the methods such 

companies employ to incentivize and consequently, improve the operation of TNC cabs 

within the roadway network.  

Whether a trip made by TNC adds traffic to the road also depends on which mode 

would have been used for the trip if TNC were not available. Between 43% and 61% of 

TNC trips substitute for transit, walk, or bike travel or would not have been made at all 

(Rayle, Dai, Chan, Cervero and Shaheen 2016; Clewlow and Mishra 2017; Henao 2017; 

Gehrke, Felix and Reardon 2018), adding traffic to the road that otherwise would not 

have been there. Henao (2018) found through surveying active TNC riders that about 

10% of the riders in his sample would have otherwise biked or walked. This category of 

modal substitution represents induced demand for trips facilitated by the accessibility of 

TNCs, that is, these trips would otherwise not have been made by automobile modes. 

Clewlow and Mishra (2017) found the combined percentage of non-auto modal shift and 

induced additional trips to be between 49% to 61%. The report on Boston travelers by 
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Gehrke, Felix and Reardon (2018) found the non-auto modal shift to be about 12% 

whereas induced travel demand to be about 5%. Overall, it found the combined percent of 

additional trips as a substitution to transit, walk/bike and no-trip modes to be about 59%. 

1.2.4 Pooling  

A popular adage to the increasing popularity of TNCs is the shared or pooled ride feature. 

In operation, it is similar to carpooled trips except for the fact that TNCs provide for 

greater ease of use for riders wanting to carpool without being responsible for the 

scheduling themselves (the app does it for them). Pooled rides are a great way to increase 

vehicle occupancy, and to reduce VMT and deadheading. However, in its current state of 

operation, where pooled rides are only offered to densely populated and/or geographical 

locations of heavy TNC use, the actual share of pooled rides opted for would help 

quantify whether these benefits could be regarded eponymous with the rapid rise of TNC 

use. The study of Boston travelers by Gehrke, Felix and Reardon (2018) concluded that 

about 80% of all TNC trips were non-pooled. Similarly, Schaller (2019) reported that 

about 78% of all ride-hailing trips made within New York city were standard, unpooled 

trips. Keeping in mind the low adoption rates of pooled TNC rides in such densely 

populated urban areas currently, it is unlikely that the cornucopia of benefits associated 

with pooled trips can be attributed to the present day use of TNCs. 

1.2.5 Deadheading 

Deadheading, or out-of-service movement, is the movement of a vehicle with no 

passenger. TNCs and taxis deadhead to look for fares or reposition before or after a paid 

trip. Out-of-service travel is estimated at about 50% of TNC vehicle miles traveled 
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(VMT) in New York (Shaller 2017) and 20% in San Francisco (TNCs Today 2017, 

SFCTA).  

A novel study by Henao (2018) asserted that for every 100 miles of TNC use that 

clocks with a passenger inside a car, drivers traveled an additional 69 miles in 

deadheading. This study was specifically designed to answer questions related to how 

TNCs affect Vehicle Miles Traveled (VMT), deadheading, land use problems like 

parking and ethno- demographic travel behavior. Two interconnected datasets, namely, 

“driver dataset” and “passenger dataset” were created. The former exclusively 

incorporated data that TNCs make publicly available, like travel times and distances, 

passenger cost, and driver earnings. The latter was obtained through creating a targeted 

experiment wherein the researcher drove as an Uber/Lyft driver to track the number of 

hours and miles spent traveling with and without passengers. Some other metrics 

obtained through this method were recording pickup and drop-off locations, time spent 

travelling between the location of accepting a ride and picking a passenger up, “cruising 

to park time”, etc. Randomness of passenger destinations helped to create a holistic 

purview for the research and so did shifting the time at which the researcher/driver chose 

to drive around. The starting location was varied as well to upkeep the randomness of the 

experimental data. The study found that the time efficiency rate for ride-sourcing was 

about 39% when accounting for the commuting time at the start and end of a shift (from 

the driver’s perspective), whereas the mileage efficiency rate was about 59%. This study 

also examined the shift in mode through designing a survey which was handed over to 

passengers riding the researcher’s Uber/Lyft wherein individual responses to 

counterfactual modes were inquired about. This information was categorized and 
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disseminated based on date and time of rides, age, gender, travel distances, number of 

people carpooling if the alternative mode was carpool, relation to other modes of 

transportation, number of passengers and trip-mode replaced. Based on the responses, the 

study concluded that the increase in VMT attributable to use of ride-sourcing in Denver is 

about 85%. Also, with the advent of increased mobility that TNCs promise, an increase 

of 12% in total number of trips was estimated. 

1.2.6 Disruptive Driving 

TNC pick-ups and drop-offs (PUDO) contribute to congestion on urban streets by 

disrupting traffic flow in the curb lane, similar to the congestion effects found in areas 

that rely heavily on taxis (Golias and Karlaftis 2001). Simulation studies using taxi-to-

passenger cars equivalence factors found that effects of taxi traffic in Athens were 

dependent on the number of lanes. Whether non-curb lanes sufficed to accommodate 

disrupted traffic from taxi pickups and drop-offs influenced the total number of seconds 

for which the regular flow of traffic was interrupted. Another significant problem with 

taxi traffic, which for the purpose of quantifying TNC pickups and drop-offs for this 

study, is analogous to TNC traffic, was found to be the location of the (PUDO) stops; that 

is, in the context of Athens, a city that relies heavily on taxis, the curbside stopping of 

taxis to drop-off-/pick-up passengers. It was surmised that by assuaging this problem, 

traffic speeds in the central business district could be increased by about 12% during 

morning peak hours. The central business district and the core areas of San Francisco, in 

recent years, has also been found to rely heavily on TNCs and curbside pickups and drop-

offs of passengers. This has the potential to cause similar disruptions to the traffic flow. 
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1.2.7 Spatial Distribution 

How TNCs are spread across the city is an important subject to examine. Areas of 

the city where they are the most popular among commuters and consequently, the most 

profitable to operate in would have a significant bearing on the total increment of travel 

time, vehicle delay and/or decline in speed that they are assessed to be contributing to in 

the network. Existing research has found that TNCs in urban centers such as those of San 

Francisco and New York City are the most concentrated in the downtown cores (Feigon 

& Murphy 2018, Shaller 2018, and TNCs Today SFCTA 2017).  

 

 

Figure 2  Weekday Pickup Hotspots – TNCs Today Report 2017; The dense yellow links in the 

northeast quadrant of the city represent the substantially high number of pickup activities taking 

place here as compared to the rest of the city. 
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This valuation seems intuitively sensible, since TNCs could be assessed to be 

most popular among people looking to forgo daily commute through private passenger 

cars in areas charging high parking rates, vis-à-vis the traditional central business 

districts/downtown areas. In addition, one can understandably assume an inherent 

correlation between the demographic that could be supposed to be giving up private 

ownership of cars and those who are employed in or frequently visit the downtown core 

areas of such cities during peak hours. TNC volumes being the highest in such areas pose 

an operational problem: such areas are already highly congested to begin with. Even a 

small addition in the total traffic volumes in these areas would lead to a significant 

decline in the operational conditions of the network, leading to increased hours of delay, 

vehicular emissions and traffic gridlocks (explained later in Chapter 2). Figure 2 shows a 

map referred from TNCs Today, a report published by the San Francisco County 

Transportation Authority in 2017, that demonstrates how TNCs are mostly concentrated 

in the core areas that are already prone to frequent network performance failures.  

1.2.8 Temporal Distribution 

When do TNC trips occur? Evaluating this question bears significant impact on 

checking if and how much TNCs Dr.aw from the share of conventional modes of 

transport including public transit as forms of daily commuter transport. Also, if TNC trips 

are made during peak hours, how much traffic volume does this new mode effectively 

add to the network? TNC trips are originally considered to be mostly made during off 

peak hours and weekends, for example, trips to restaurants, bars and entertainment 

centers in the evening period during weekdays and towards the evening shoulders during 

weekends. Recently collected TNC volume data by Feigon and Murphy (2018) for 
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Chicago, Washington DC, Los Angeles, Nashville and Seattle is shown in Figure 3. 

Total TNC pickup data for San Francisco is shown in Figure 4. While trends of TNC use 

vary across the various cities, it should also be noted that there exist certain fundamental 

differences between the distribution of modes, demographics, population densities and 

metropolitan/urban area setting across these cities. Densely populated cities like San 

Francisco, Chicago and Washington DC have lower levels of solo car commuting, fewer 

cars per household, and greater levels of transit ridership per capita. Nashville, with the 

least dense population, was observed to have the highest proportion of car commuters, 

and the lowest per capita transit ridership (Feigon and Murphy 2018). In Seattle’s 

compact core, commute mode split and car ownership are like the three dense-core cities 

(Feigon and Murphy 2018). Figure 5 displays a TNC volume graph featured in the TNCs 

Today report by the San Francisco County Transportation Authority (SFCTA) that tracks 

TNC presence by time of day during weekdays. 
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Figure 3 Total TNC trip volume by hour and day in the five study regions. Panels are 

organized by day (columns) and region (rows), with hours of each day on the bottom 

horizontal scale. Source: TNC trip data (Feigon and Murphy 2018) 

 

 

Figure 4  TNC pickups by hour and day, San Francisco. Panels are organized by day, with hours of each 

day on the bottom horizontal scale. Source: SFCTA modeled data of intracity trips in the city of San 

Francisco (Feigon and Murphy 2018) 
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Figure 5  Intra-San Francisco TNC and Taxi vehicles on street on an average Wednesday 

by time-of-day. Source: TNCs Today by San Francisco County Transportation Authority 

(SFCTA – 2017) 

  

It can be observed by looking at the graphs in Figure 3, Figure 4 and Figure 5 

that while it is true that most TNC trips are made in the evening hours following the 

evening commuter peaks, there exist significant weekday diurnal peaks in the hourly 

volume peaks for all the cities included in study by Feigon and Murphy (2018). The 

number of TNC trips are seen to be consistent with the population densities of the 

respective cities, the diurnal nature of the morning and evening peaks mostly being a 

commonality among all the study areas. This observation supplicates the question 

whether TNCs should be started to being treated as any other major pre-existing mode of 

transport exhibiting similar diurnal volume peak trends and competing with conventional 

modes of public transit. Conclusions regarding the widespread use and presence of TNCs 
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similar to the above made observations can be drawn from a survey-based study by 

Gehrke, et al. (2018) for the case of Boston. Survey responders indicated that the highest 

share of home-based trips are made to work, thus rationalizing the diurnal nature of peaks 

observed in the Figure 3, Figure 4 and Figure 5. Neither that much evidence was 

gathered for TNCs being used as modes for first and last mile trips for transit-based trips 

to work that could potentially otherwise explain the peaks observed for TNC usage. This 

research also confirmed the earlier made observation that TNCs are most popular for 

after-work evening trips during weekdays.  

1.2.9 Net Effect 

It can be successfully established from the inferences of the previous titles of the 

chapter that researching the overall effects of TNCs on congestion and travel mode 

adoption is an important endeavor for transportation professionals. However, studies 

assessing the net effect of TNCs on congestion have produced mixed results, for example 

some of them concluded that: 1.) TNCs decrease congestion (Li and Hong 2016): They 

combined data from Uber and the Urban Mobility Report, and empirically examined 

whether and how the entry of Uber car services affects traffic congestion using a 

difference-in-difference framework. They compared cities with and without Uber 

services and measured travel time index, delay cost, delay time and commuter stress 

index while controlling for roadway geometry variables and traveler characteristics. 2.) 

TNCs add to VMT or increase congestion. Henao (2017) demonstrated that TNCs 

introduce substantial deadheading which is even more pronounced due to their sheer 

numbers and found that increase in VMT is significantly correlated to TNC presence; 

Shaller (2017, 2018) concluded that most trips in New York City are non-pooled and that 
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TNC presence was expressively associated with increased hours of delay; Gehrke, Felix 

and Reardon (2018) found that increased TNC use was directly associated with decline in 

public transit ridership and increased sensitiveness to transit fares., or 3.) TNCs “did not 

drive the recent increase in congestion” (City of New York 2016), or been inconclusive 

(Rayle et al. 2016; Clewlow and Mishra 2017). 

Another recent survey-based study of Uber users in Santiago, Chile by Tirachini 

and Gomez-Lobo (2019) found that unless such ride-hailing services considerably 

increase, popularize and/or incentivize shared or ‘pooled’ rides, their usage significantly 

adds vehicle kilometers traveled on to the network. Their study used Monte Carlo 

simulations to the possible realms of the model parameters used to assess TNC use 

behavior among ride-hailing patrons.  

1.3 Other Relevant Literature 

 This section includes a review of other relevant literature that does not directly 

address the mechanisms by which TNCs may affect congestion.   

1.3.1 Other Congestion-Related Studies 

Some earlier studies explored the impulse and effect of TNC’s. A report outlining 

the compact urban development impact on congestion published in 2016 by Mosammam 

et al. analyzed latest traffic data, which is presumed to reflect TNC vehicles on the road 

(TNCs were not explicitly monitored, measured or counted, but a real time traffic 

network was analyzed that has significant TNC presence), to measure the annual delay 

per capita. This delay was calibrated against the expected rise in delay due to the 

projected increase in background traffic on account of increasing population, 
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employment, income, fuel price, change in highway capacity, vehicle miles travelled, 

compactness index and GDP growth within the defined study boundaries. Congestion 

here was defined in terms of travel time and the elasticities of the various explanatory 

variables were calculated. Data was sourced from INRIX and Urban Sprawl Statistics 

from the Texas Transportation Institute (TTI). The results indicated that higher per capita 

income was correlated to higher transit passengers, whereas steeper fuel prices were 

found to be correlated with a reduction in traffic congestion for both TNCs and private 

vehicles. The study space for this research indubitably qualifies to be playing home to 

such a demographic. This prerogative also raises a corresponding question about the 

viability and equitability of TNC services in areas of the city that are not as profitable to 

such private service providers as others as they currently poise to draw ridership shares 

from transit services. 

Increase in freeway capacity was associated with greater travel times and delays. 

Whether this is due to additional demand induced by an increased freeway capacity, the 

impact of the introduction of newer modes of transportation (TNC’s), or reflective of 

altered and adjusted rush hour congestion characteristics needs to be determined by 

resolving the data further. Compact urban sprawling and average annual delay were 

found to be positively correlated and their combined consequence were believed to have 

effectively cancelled out each other.  

1.3.2 Regulatory Environment 

A report on Transportation Network Companies by the Texas Transportation Institute 

(TTI) (Goodin and Moran, 2016) states that as of May 2016, 33 states and the District of 

Columbia have enacted legislation to legalize and regulate TNC activity. This may 
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include amending permits and operation fees, insurance, licensing and financial 

responsibilities, passenger protections, etc. Consequently, these prices trickle down to the 

user base, which when combined with the monetary value of time, might end up costing 

the users higher than their perceived fare. 

1.3.3 Socioeconomic Characteristics of TNC Users 

An assessment of UberX wait times in Greater Seattle by Hughes and Mackenzie 

(2016) revealed the associated socioeconomic identifiers. Spatial regression with locally 

weighted regression heat maps were generated to indicate specific time of the year, time 

of day, and geographically evaluated location indicators that influence wait times in the 

city. By extending the definition of wait time, it can be established that these attributes 

were indicative of factors which would relate to better served areas and population. It was 

gauged that transportation network companies offer higher performance in dense urban 

areas. Whether this suggests a supplement or a competition to public transit, which also 

operates in dense inner-city zones, understandably due to higher demand, needs to be 

evaluated by further studies. A few other manifestations of this study were that areas with 

lower average per capita income nevertheless experience better service. The outcome of 

population density is weakest shortly after the morning rush hour, and that of 

employment density is weakest around the evening rush hour. A possible explanation for 

this is that the pool of available drivers in high-density residential areas depletes 

following the morning rush, while the same happens in high-density employment centers 

following the afternoon rush. 

In another study, Nguyen-Phuoc, Currie and De Gruyter (2017) examined the 

interrelationship between socioeconomic indicators, public transport and the 
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susceptibility of mode shift to passenger car in the role of a driver, i.e., using passenger 

cars in lieu of either TNCs or transit, using a multinomial logit model. This research was 

a survey-based study. The idea behind reviewing the statistics related to this study for this 

research is to operate under the assumption that individuals with propensity to replace 

seamlessly public transport were nearly as likely to substitute public transit with shared 

mobility vehicles. Majority of the survey responders indicated the affinity to shift to car 

as a driver, whereas larger proportion higher income individuals expressed the same 

tendency. More trips to the central business district (CBD) would be in the risk of being 

cancelled in comparison to trips made to non-CBD areas in the event of a disruption to 

public transit since transit most heavily serves the core and downtown areas of the city. If 

the results of this study are indicative of analogous trend for TNC usage, these areas 

within an urban environment are intuitively more likely to attract TNC users with similar 

trip purposes with respect to another group of travelers like say, educational trip makers.  

1.3.4 Factors Affecting TNC Use 

Mo, Lee, Wang and Cheung (2017) sought to quantify passenger tolerance for 

increased travel time through their study to maximize the utilization of the Shared Dial-

A-Ride (SDAR) service. Interestingly, no additional monetary discount was provided to 

passengers whose travel times were increased through shared mobility and the incumbent 

tolerance to the increment in delay was observed. The study surmised that a 10-minute 

tolerance in pick-up and drop-off times resulted in an 8.4% rise in the number of 

passengers served. The takeaway from this exercise would be to scout for a similar 

threshold for travel time when comparing transit service users and TNC users and the 



21 

 

shift from one mode to another through the study period, while accounting for the 

demographics and urban characteristics of the study area. 

An intercept survey-based research study comparing taxi and ride-sourcing trips 

and user characteristics in San Francisco (SF) by Rayle, Shaheen, Chan, Dai and Cervero 

(2014) identified three SF hotspots for ride-sourcing to question riders. This limited the 

socioeconomic characteristics of the urban area as well as the demographic features of 

the survey responders. Keeping an account of this, the key independent attributes were 

transit time reduction exclusively due to ride-sharing, ease of payment, short wait-times, 

fastest route to reach destination, reliability, unavailability of another mode, avoiding 

driving under influence, parking unavailability and/or undependability, parking cost, 

comfort and safety, fare, ease of access, and impact of vehicle ownership. It should be 

noted that wait times for TNC’s in San Francisco are significantly lower than those for 

taxi services. The authors also prompt their concern about the possibility to have 

underestimated taxi trip waiting times, which is assumed five minutes for the purpose of 

this study. Intuitively, insurance and operational costs associated with owning a vehicle 

in San Francisco and the safety laws regarding TNC’s helped make ride-sourcing an 

attractive option to the central business district crowd in SF. Additionally, many 

responders replied that they utilized TNC’s primarily as a mode to access public transit 

thus considerably reducing their total transit time. Remarkably, this is seen to have 

resulted in a small, induced travel effect within people who took trips they would not 

have otherwise taken and walked instead. Quantifying this demand generation would be 

one of the chief tasks in the current research study.  
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Shirgaokar (2017) looked to determine the barriers that prevent seniors from 

accessing TNC services. This study, which included independent elements like gender, 

season (change in mobility demand due to season), ambiguity and unfamiliarity with 

online financial transactions, and technological challenges associated with online ride-

hailing, revealed that older women are more likely to seek training and take a stab at 

using TNC services than older men.  

1.3.5 Simulation Studies of the Integration with Other Modes 

Martinez and Viegas (2016) studied the impact of the newly prosperous urban 

shared mobility alternatives through an agent-based simulation for the city of Lisbon, 

Portugal. The typical features of the simulation were high acceptability of the assigned 

rides and nested categories each for passenger car based transit and larger vehicle transit 

options. This study examined the ramifications on congestion if passenger cars and public 

transport are replaced by shared mobility services. Even low occupancy transit systems 

ended up reducing vehicle miles travelled and congestion when deployed in conjunction 

with shared mobility services. However, the study did not include the rather disruptive 

use-case of a complete (or near complete) substitution of public transport by shared 

mobility services.  

Burnier, Jacobi, Torng and Gross (2014) computed the percent utilization and 

average time spent travelling in a bid to uncover the impact of coordinating human 

services with transportation. Coordination between existing modes of transportation and 

services like TNCs was the independent variable that proved intuitively that better 

coordination between the two increased resource utilization. However, when applied to 

individual travelers, this model was inconclusive in determining the result of human 
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service coordination. Vakayil, Gruel and Samaranayake (2017) attended to integrate 

shared-vehicle mobility-on-demand systems with public transit by invoking the 

NetworkX library of Python to derive link-level travel times and corresponding fares. 

This study did not use simulated data and instead, made use of the car2go data interface. 

Empty and occupied vehicles were justly differentiated in this study owing to their 

difference in nature in impacting travel-times and affecting the demand-fare dynamics. 

Irrespective of mode choice and fleet size, vehicular emissions, as well as congestion was 

observed to have been reduced when mass transit and AMoD operated in complement. 

However, only the effect of car2go AMoD with pre-existing mass transit services were 

considered in this study and it is presumed that the inclusion of more AMoD may change 

the conclusions.  

1.3.6 Airport Access 

Airport travel is another major trip attractor especially in the case of TNCs. 

Hermawan and Regan (2017) performed a nested logit model study to quantify the 

elasticity if travel time and cost related to such trips. Data from On-Demand, application 

based ride services like Lyft Line and Uber Pool, shared TNC services most popular for 

airport travel was used. It is widely speculated that TNC’s foraying into higher 

occupancy vehicle territories is both beneficial, in terms for congestion reduction, as well 

as damaging, if a perceived encroachment into designated passenger share of public 

transit services is taken into account. This coupled with the fact that TNC services are 

currently only about 55% of the average fare of hauling a taxi, it was estimated that if 

fares were to increase to match the cost of taxis, the demand for TNC’s would fall from 

9% to 7%. Meanwhile, if fares were cut by 50% and travel time increased by ten minutes, 
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the demand would rise by about 1.5%, successfully offsetting the approximate time value 

of money as implied by Mo et al (2017). In addition, a negative binomial study carried 

out by Contreras and Paz (2017) concluded that the decrease in taxicab ridership in Las 

Vegas, Nevada was a function of the comparatively delayed advent of TNCs in the city. 

On the contrary, a survey-based, mode choice model development by Chavis and Gayah 

(2016) asserted that familiarity trumps over insignificant monetary gains through a study 

which exercised a multinomial logit model on wait times, walk times, GPS tracking 

services and financial savings. 

1.3.7 The Effect of TNCs on Transit Ridership 

It is important to assess the impact of the rising popularity on transit, both in 

terms of ridership as well as service reliability when addressing the question on traffic 

congestion. This is because by adhering to the concept of independent and irrelevant 

alternatives (IIA), any new mode of transportation will be expected to be drawing equally 

from the existing modes. By this tenet, TNCs can be projected to potentially add more 

vehicles to the network as it bites into the passenger share of transit services. 

Mucci (2017) explored transit ridership trends for system of interest ‘MUNI’, the 

bus and light rail system in light of the growing popularity of TNCs in San Francisco. 

Transit ridership trends in San Francisco has undergone a major shift or a ‘diverging 

growth’ during the past decade (Erhardt et al. 2017) with bus ridership declining and rail 

ridership growing significantly. Direct Ridership Models (DRMs), with a fairly precise 

predicting power (within 10% of the total observed change), were employed to determine 

what factors were influencing MUNI light rail and bus ridership. This study found 

variables like employment and housing density to be correlated to each other. Mucci used 
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fixed-effects panel models to assign an intercept to every stop to remove any existing 

spatial correlation. TNC variables were introduced to the panel models to quantify their 

effect on MUNI bus and light rail ridership. It was found that the addition of a TNC 

variable and elimination of multi-collinearity helped the panel models predict ridership 

better than the daily and time-of-day DRMs, both within 5% of the observed change. 

TNCs were found to complement MUNI light rail and compete with MUNI buses, an 

observation that seems intuitively rational as TNCs are more comparable to buses in 

terms of fares and typical lengths of trips than to light rails, a mode for which they can be 

assumed to provide first and last mile rides. Mucci inferred from his research study that 

TNCs contributed to a 7% growth in light rail ridership and were responsible for a 10% 

decline in bus ridership. These findings suggested that TNCs have a complex relationship 

with transit modes and that any assumption treating the two modes as one should be 

avoided. 

The Shared Use Mobility Center (SUMC) of San Francisco express their 

perception as they study the influence of Transportation Network Companies and the way 

they streamline urban traffic and transit demands. In this report they summarized a survey 

study in which transit agencies of seven major cities participated (Murphy, Feigon and 

Colin 2016). In this study, SUMC envisioned that shared-use mobility will reduce 

congestion and costly parking requirements, thus effectually redefining land use in 

certain parts of the city. It is noteworthy that while it is relatively easy to police and 

improve zoning ordinances to reduce parking requirements that are located near transit 

and include Travel Demand Management (TDM) measures, defining the same for shared 

mobility contributed by TNC operations is more complicated. Currently, qualified TDM 
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programs include carpooling, vanpooling, on-site car share parking, transit passes, 

electric vehicle charging, alternative fuel vehicle priority parking, guaranteed ride home, 

telecommuting, parking cash out, education and programmatic support, emergency 

transportation, transit shuttles and bicycle commuter facilities.  

Notably, the Associated Press depreciated the use of the term ‘ridesharing’ to be 

associated with TNCs as they are considered to be operating more as a ‘ride-hailing' 

service rather than a ridesharing or carpooling service, says Zenner (2015). While there 

are web-based applications designed to facilitate traditional carpooling, such as Waze 

Carpool and Carma, they often need to face stigmas associated with lumping these two 

modes together when evidentially, only about 20% of all TNC trips are pooled (Shaller 

2017). Traditional carpooling operates such that commuters or riders travelling on 

common routes are matched using application-based services to optimize their routes and 

travel time. ‘Slugging’ is also a common practice in large metropolitan areas where 

drivers pick up strangers from ‘designated’ carpooling zones to be able to use exclusive 

carpool lanes and/or reduction in tolls associated with carpoolers. TNCs, on the other 

hand, are more closely analogous to Demand Response Transportation (DRT), even when 

it comes to shared rides. Traditional providers of DRT services, most popularly for 

paratransit riders, have financially struggled to keep up with expenses owing to fixed 

variable like scheduled dialysis appointments for senior citizens (Herzog 2018). He notes 

that in order to cut down operational costs, a growing number of paratransit agencies are 

choosing to reimburse passengers for trips provided by taxi companies or TNCs as they 

can be up to 70% cheaper than conventional paratransit (Cmar 2017). While TNCs may 

provide your passengers a fashionable user experience (through an app), many drivers do 
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not have the same kind of professional training to serve elderly and disabled passengers 

as paratransit drivers. TNCs cannot, in their current state, be thought to replace 

paratransit service providers. As such, there is a clear need to study the intricacies of such 

policies on the standard network performance metrics. 

In tow with the conclusions of Rayle et al. (2014), SUMC shares the vision of 

bike-sharing, ride-sourcing and other shared modes serving as feeder transportation or 

first/last mile connections to transit trips. The effect of the presence of TMC’s on transit 

operations as well as transit ridership is yet to be calibrated, although it is reasonable to 

believe that few users would likely want to swap a 15-mile train ride for a daily ride-

sourced trip in rush-hour traffic. Lyft has noted that 25% of its trips in the San Francisco 

area are to or from Caltrain stations. To estimate the benefits of TNC’s, controlled 

experiments need to be carried out to assign an impact-portfolio to each mode of public 

transport, namely, MUNI bus, MUNI rail, Caltrain, etc. as well as the ride-sourcing 

modes, which would compare transportation behavior with and without shared-use 

modes.  

This vision is shared by a study conducted by Hall et al. (2018) which assessed 

the heterogeneity among the different classifications of transit facilities that TNCs can 

possibly affect. A difference-in-difference methodology was used to estimate the effect of 

Uber, standardized by their market penetration in different locations across the United 

States and their time of entry into the said market. It observed an overall increase in 

transit ridership in areas with larger population where people taking transit can 

simultaneously afford TNC fares as well as in smaller transit agencies. On the other hand, 

larger transit agencies and smaller metro areas recorded a decrease in average transit 
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ridership that correlated to TNC operations.  This study also found that greater popularity 

and use of TNCs related to a decrease in rail ridership while a boost in bus ridership was 

observed. This is in contrast to other studies that stated that since TNC trip lengths are 

comparable to those by buses as opposed to rails, transit ridership of buses were affected 

negatively. Such studies also claimed that TNCs serve as effective first and last mile 

modes that potentially increased the accessibility to rails for longer trips. As evident, 

there remains a unambiguity in conclusions between studies carried out in different 

locations and with distinct methodologies. 

1.3.8 Relevance to Automated Vehicles 

Hyland and Mahmassani (2017) proposed a taxonomy of shared autonomous 

vehicle-fleet management problems to inform future transportation mobility, keeping in 

view the growing interest of TNC services (including Uber, Lyft, Google, etc.) to employ 

AV fleets. A mesoscopic classification to optimize the AV fleet management problems 

by ascertaining new categories was carried out. This may prove helpful when creating the 

estimation datasets for analyzing TNC data in future studies relating travel time 

optimization and presence of AVs (TNCs or otherwise). These include identifying the 

underlying network, congestion on travel links independent of being a function of the 

user vehicles, fleet size elasticity, pricing, arc directionality (to or from destination in 

both home based or  non-home based trips), pick-up versus Drop-off trips, objective (vis-

à-vis minimizing cost, maximizing profit, minimizing travel time, minimizing number of 

functioning vehicles in the network, minimizing vehicle miles travelled: these categories 

would be analogous to classifying between public service transport options against 
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private sector services), accept/reject decision, and reservation timeframe (essentially 

time-of-day), etc.. 

1.4 Vision for present study 

1.5 Overview of research stages 

This research study first employs an empirical approach to determine the 

coefficients associated with introducing this new mode of transportation as a function of 

travel time. The primary motive at this stage of the study is to determine if TNCs and 

their respective operational maneuvers are identified as significant contributors to the 

difference (increase) in travel time (or in other words, increase in network congestion) 

observed between two points in time that are addressed in this study. This effect is 

notably attenuated by the background factors like the increase in employment and 

population, change in network and transit operations, change in trip making incentives 

and travel behavior of commuters in general that would naturally have increased traffic 

congestion during this period. After being found so, a parameter is estimated that denotes 

the magnitude to which they are assessed to be affecting this increase in travel time. This 

coefficient has then been applied to the activity-based model deployed by the county of 

San Francisco by introducing TNC volumes as additional loads on the model network. A 

model-based analysis is thus borne that incrementally tests the individual contribution of 

each major background factor to the increase in traffic congestion (represented by travel 

time and delay) and travel time reliability (represented by Planning Time Index) within 

the primary arterial network. These quantifications of delay contributions are compared 
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to those made by TNCs and their pickup and drop-off maneuvers to quantitatively gauge 

the degree to which TNCs have affected the standard network performance measures 

within the study area. 
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CHAPTER 2. THE EMPIRICAL STUDY 

 

2.1 Introduction 

Transportation planners and policy makers are interested in understanding the 

congestion effects of TNCs as they face decisions about how to regulate TNCs and how 

to integrate them into the existing transportation system (Kuhr, Bhat, Duthie and Ruiz 

2017; Moran and Laslev 2017). There is a need for further research to adjudicate these 

differences, but research on the topic has been hampered by a lack of data (Gerte, 

Konduri and Eluru 2018; Cooper, Castiglione, Mislove and Wilson 2018). This debate 

has been entered to address the question: Do TNCs decrease or increase traffic 

congestion?  

This is done for the case of San Francisco, where a data set scraped from the 

Application Programming Interfaces (APIs) of the two largest TNCs provides a unique 

insight into their operations. These data were collected and processed as described by 

Cooper et al. (2018). The data was further processed to associate TNC volumes, pick-ups 

and drop-offs to each road segment in San Francisco by time-of-day.  

This section of the research is structured as a before-and-after assessment between 

2010 conditions when TNC activity is negligible and 2016 conditions when it is not, 

focusing on the change in average weekday conditions. Measures of roadway conditions 

in both years were derived from GPS-based speed data licensed from INRIX. The 
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relationship between the change in TNC activity and the change in roadway travel time 

was estimated, assuming zero TNCs in 2010.  

To control for other factors that may also affect congestion over this period, San 

Francisco’s travel demand model, SF-CHAMP, was used which produces estimates of 

traffic volumes on all roads in San Francisco and is sensitive to changes in population 

and demographics, employment, transportation networks and congestion. Since SF-

CHAMP’s initial development (Jonnalagadda, Freedman, Davidson and Hunt 2001), it 

has been further enhanced (Erhardt, Charlton, Freedman, Castiglione and Bradley 2008; 

Zorn, Sall and Wu 2012), extensively tested (Outwater and Charlton 2006), and 

successfully applied to analyze policy and infrastructure changes (Castiglione, Hiatt, 

Chang and Charlton 2006; Brisson, Sall and Ang-Olson 2012). The version of SF-

CHAMP used in this study was calibrated to 2010 conditions, and does not account for 

TNCs. This means that when the model is run for current-year inputs, it represents a 

counterfactual case where TNCs do not exist. 

The relationship between demand and traffic speed is non-linear, such that adding 

vehicles in already congested conditions has a bigger effect than adding them in 

uncongested conditions. Therefore, it is not just the total VMT change that matters, but 

when and where that change occurs. The analysis was conducted directionally for 

segments known as Traffic Messaging Channels (TMCs), which average 0.3 miles long. 

For each year, all the data was aggregated to these TMC links and averaged across days 

to represent average weekday conditions for five times-of-day (TODs). These link-TOD-

year combinations are more detailed than past TNC studies which are either more 

aggregate, i.e., carried out on a system wide or network-wide scale as opposed to 
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roadway link-scales (Shaller 2017; Feigon and Murphy 2018; Li, Hong and Zhang 2016; 

City of New York 2016), or based on smaller user surveys (Rayle et al. 2016; Clewlow 

and Mishra 2017; Feigon and Murphy 2016; Henao 2017; Gehrke, Felix and Reardon 

2018) that cannot be expanded to the network  link level. 

After estimating the relationships between the change in travel times, TNCs and 

control variables, the estimated model was applied to evaluate network performance 

metrics for 2010, 2016 and a counterfactual 2016 scenario with no TNCs. The congestion 

levels in these two scenarios were compared to evaluate the research question. 

 

2.2 Observations and Hypotheses  

Like New York (Shaller 2017; City of New York 2016), San Francisco has 

experienced a notable increase in congestion over the past few years (San Francisco 

County Transportation Authority 2017) (Figure 6). The speed data used in this study 

confirm this trend, showing that the average speed decreases from 25.6 miles per hour 

(mph) in 2010 to 22.2 mph in 2016, and that the vehicle hours of delay (VHD) increase 

by 63% over the same period. Delay is defined as the difference between the congested 

travel time and the travel time under free-flow conditions. Areas with lower LOS 

increased manifold in 2016 as compared to those observed in 2015. 
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   A                                                                                         B 

Figure 6  PM peak period roadway level-of-service (LOS) in San Francisco in (A) 2009 and (B) 2017 (San 

Francisco County Transportation Authority 2017). LOS grades roadways by vehicle delay, with LOS A 

representing free flow and LOS F representing bumper-to-bumper conditions. Data and an interactive 

mapping tool are available at congestion.sfcta.org. 

 

 

Figure 7  Daily TNC pickups and drop-offs for an average Wednesday in Fall 2016 (TNCs Today SFCTA 

2017). Darker colors represent a higher density of TNC activity (pickups in this case). Data and an 

interactive mapping tool are available at tncstoday.sfcta.org. 



35 

 

This change corresponds to the period in which TNCs emerged. Figure 7 shows 

the distribution of the TNC pick-ups and drop-offs for an average Wednesday in Fall 

2016. The data show that TNCs are concentrated in the downtown area, consistent with 

findings elsewhere (Feigon and Murphy 2016; Clewlow and Mishra 2017), and in the 

locations where level-of-service (LOS) deterioration is worst.  

Several other changes also may affect congestion. Between 2010 and 2016, San 

Francisco population grew from 805,000 to 876,000 (U.S. Census Bureau 2016) and 

employment grew from 545,000 to 703,000 (U.S. Bureau of Labor Statistics 2016). 

Important network changes include a rebuild of the Presidio Parkway, the introduction of 

turn restrictions on Market Street, several “road diets”, and bus improvements (SFMTA). 

These changes have been accounted for through SF-CHAMP. In addition, a list of active 

construction projects during the 2016 analysis period was reviewed to evaluate whether 

these construction activities were associated with disproportionate speed decreases and 

was not found that they were.  

The data do not show the share of ride-splitting in San Francisco, but it is between 

13% and 20% elsewhere (Henao 2017; Gehrke, Felix and Reardon 2018), with some of 

those trips carrying no additional passengers (TRB Special Report 319, 2016; Gehrke, 

Felix and Reardon 2018). Rail ridership grows substantially over this period and bus 

ridership does not (Erhardt 2016), consistent with other findings that TNCs may 

complement rail and compete with bus (Clewlow and Mishra 2018; Mucci 2017). A 

meaningful change in car ownership was not observed, with an average of 1.08 cars per 

household in 2010 and 1.10 cars per household in 2016 (U.S. Census Bureau).  
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In addition to the 20% of TNC VMT that is out-of-service, 70% of San Francisco 

TNC drivers live outside the city (TNCs Today SFCTA 2017). While this was not 

explicitly tracked in this study, the drivers’ commutes into the city may also add more 

VMT to the network.  

Some argue that TNCs have little effect on traffic operations because they occur 

in the evening when congestion is less severe (Feigon and Murphy 2016; Feigon and 

Murphy 2017). The data show that 43% of TNC VMT occur between 6:30 PM and 3 

AM, but they also show that 26% of TNC VMT occurs in the 3-hour AM or PM peak 

periods, compared to 40% for 4-hour peaks in Boston (Gehrke, Felix and Reardon 2018).  

Given these observations, it is suggested that the gap between the background 

changes predicted by SF-CHAMP and the observed change in travel times is an indicator 

of TNC impact. Specifically, it is hypothesized that:  

1. If TNCs have no effect on congestion, the background changes should reasonably 

predict the observed travel time changes.  

2. If TNCs decrease congestion, then the observed change in travel time should be 

better than the background changes would predict.  

3. If TNCs increase congestion, then the observed change in travel time should be 

worse than the background changes would predict. The gap is expected to be the 

widest for times and locations with high levels of TNC activity.  

To test these hypotheses, this study was structured as a before-and-after 

assessment between 2010 conditions where TNC activity is assumed to be negligible and 

2016 conditions when they are not. For each year, an estimation data file is compiled 
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with one observation on each road segment and time-of-day combination. The data 

represent average weekday conditions in the fall of each year.  

Fixed-effects panel data models were estimated where the dependent variable was 

the observed travel time converted to implied volumes using volume-delay functions 

(VDFs). This time-implied volume is the model’s dependent variable, and the conversion 

ensures that it is linearly related to the background and TNC volumes. The physical 

interpretation of this conversion would be that instead of treating congested travel time as 

the dependent variable in the panel regression model, “volume implied by congested 

travel time” be treated as the y-variable now. Since travel time is a function of volume, 

back-applying the volume-delay function (VDF) gives us an estimate of the traffic 

volume that brought about the observed congested travel time in the first place. The 

fixed-effects models estimate coefficients based on the change between 2010 and 2016 

conditions. There is precedent for using both before-and-after analysis and panel data 

models in transportation analysis, including to study changes in congestion (Hanna, 

Kreindler and Olken 2017), TNC growth (Gerte, Konduri and Eluru 2018), and the 

effects of new technology (Tang and Thakuriah 2012). The estimated coefficients are 

applied to produce a modeled estimate of 2010 and 2016 network conditions, as well as a 

2016 counterfactual scenario that excludes the effect of TNCs.  

2.3 Data  

The analysis relies on three sources of data: background traffic estimates, TNC 

data and network wide link-level speed data. Those data and their processing are 

described below. 
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2.3.1 Background Traffic Estimates  

To estimate the net effect of TNCs on congestion, it is necessary to control for 

other factors that are also expected to change congestion levels, including changes to 

population, employment and road, any significant construction projects or public 

activities expected to impact traffic, and transit networks. To control for these changes, 

this research uses San Francisco’s travel demand model, SF-CHAMP.  

SF-CHAMP is an activity-based travel demand microsimulation model that is 

sensitive to a broad array of conditions that influence travelers’ choices. The model 

predicts the typical weekday travel patterns for approximately 7.5 million San Francisco 

Bay Area residents, including choices of vehicle availability, activity participation, 

destinations, travel modes, and travel times. The simulated travel patterns are sensitive to 

changes in population and demographics, employment, transportation networks and 

congestion. The model incorporates detailed information about demographics and land 

use, using block, block group, and tract level geographies, and six broad employment 

sectors. It also incorporates a detailed representation of the entire Bay Area multimodal 

transportation system including roadways, transit routes, and non-motorized facilities, as 

well as information about how these change by time-of-day. The core behavioral 

components are based on detailed travel surveys and capture time and cost tradeoffs and 

other factors that influence traveler choices, such as the effects of demographics and the 

availability and quality of alternatives. The model has been used extensively in practice 

for almost two decades to evaluate long range transportation plans, transportation 

infrastructure investments, pricing policies, and land use development proposals.  

SF-CHAMP uses a detailed representation of the road network, including a link 

for every street and in the city, along with attributes that include length, number of lanes, 
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capacity, turn restrictions, and facility type. The outputs include an estimate of the 

average weekday traffic volume and congested travel time on each link for each of five 

times-of-day (TODs): 3-6 AM, 6-9 AM, 9 AM-3:30 PM, 3:30-6:30 PM, and 6:30 PM-

3:00 AM.  

The analysis uses version 5.2.0 of SF-CHAMP, run using 2010 and 2016 inputs. 

The model runs uses actual inputs, not forecasts, avoiding inaccuracies associated with 

errors in the inputs. The referred input inaccuracies were dealt with by cross examining 

the SF-CHAMP recorded congested speed (or speed-implied volume, explained later in 

the chapter) with that observed in real-time within the INRIX database. This version of 

SF-CHAMP was calibrated to 2010 conditions, and does not account for TNCs. Normally 

this would be a limitation, but in this case it is beneficial because it means that when the 

model is run for 2016 population, employment and network inputs, it represents a 

counterfactual case where TNCs do not exist.  

 

2.3.2 TNC Data  

Complementing SF-CHAMP are the TNC data, which were collected and 

processed as described by Cooper et al. (2016). The raw data show the locations and 

timestamps of out-of-service TNC vehicles collected in 5-second increments for a 6-week 

period in Fall 2016, totaling about 12 terabytes of raw data. When a driver accepts a ride, 

that vehicle no longer appears in the traces, and after the driver drops off the passenger, 

the vehicle re-appears. This structure allows the analyst to infer that a trip was made 

between those two points. The point at which the driver disappears from the trace is 

inferred as the location of a passenger pick-up, and the point at which it reappears is 
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inferred as the passenger drop-off location. There is some uncertainty associated with the 

pick-up location because the driver must travel from his/her current location to the 

location where the passenger is waiting, but given the density of TNCs in San Francisco, 

the passenger wait time is usually short. City-wide, the average wait time is 3 minutes 

(Emerging Mobility Evaluation Report SFCTA 2018), and in popular experience, it is 

often 1-2 minutes in the core of the city. The TNC data were further processed for this 

study in several ways. The out-of-service TNC vehicles were attached to directional SF-

CHAMP road links by time-of-day using a spatial matching process that accounts for the 

trajectory of points. The in-service TNC volumes were attached to directional road links 

by assigning each to the shortest path between the inferred pick-up and drop-off 

locations, where the shortest path is calculated based on the congested SF-5 CHAMP 

networks. 

Finally, the pick-up and drop-off locations were assigned to directional road links, 

allowing for their effect on congestion to be measured. The end-result is a set of SF-

CHAMP road networks that include the background traffic volumes and other link 

attributes and are annotated with 2016 TNC activity. These are for average weekday 

conditions, segmented by SF-CHAMP’s five time periods. To the extent that in-service 

TNC volumes substitute for other auto trips, some overlap is expected between these and 

the background SF-CHAMP volumes.  

To understand the potential effect of the error in pick-up locations, a different 

assumption was tested. Rather than assuming that the pick-up occurs at the point where 

the ride is accepted, it could instead be assumed that pick-ups are symmetrical with drop-

offs. To test this assumption, a sensitivity test was run in which a model was estimated 
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that includes only Drop-off locations, and excludes pick-up locations. In doing this, a 

model that includes only Drop-offs has a drop-off coefficient that is about twice as large 

as the pick-up/drop-off (PUDO) coefficient was arrived at. This is logical, because there 

are half as many drop-offs as there are PUDO. This is true since by definition, each TNC 

trip connects one pick-up to one drop-off. Therefore, it has two PUDO. Though it is 

correct to note that the pick-up and drop-off of a trip occur in different locations, 

nonetheless, it was observed that a correlation exists between the pick-ups and drop-offs, 

suggesting that on TMCs where one TNC picks up a passenger, there is often another 

who drops a different passenger off. This is what one would expect, given that TNC trips 

are concentrated in the northeast quadrant of the city, and that drivers have an incentive 

to find a new ride near their Drop-off location to minimize any deadheading. It was 

assumed that the Drop-off coefficient should be about twice as large as the PUDO 

coefficient. This occurs because there are half as many Drop-offs as PUDO. Since the 

size of the descriptive variable is reduced, the model estimation produces a larger 

coefficient to result in a similar net effect. This does not have a large effect on the overall 

result. Some potential limitations are addressed in Appendix A. 

2.3.3 Speed Data  

Archived speed data were used from INRIX, a commercial vendor, that is 

available in 5-minute increments for each day from 2010 through the present, allowing 

both the average travel time and reliability metrics to be calculated. Spatially, the data are 

available directionally for segments known as Traffic Messaging Channels (TMCs), 

which in San Francisco average about 0.3 miles in length, or about 3 city blocks. TMCs 

exclude many local roads, but otherwise provide good coverage throughout the city. 
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Links associated with TMCs carry about 70% of the total VMT in San Francisco. This 

study uses INRIX speed data, at a 5-minute temporal resolution, for non-holiday 

weekdays for the 6-week period in November and December 2016 when TNC data were 

collected, and for a comparable 6-week period in November and December of 2010. The 

data is provided for each TMC segment with day and time stamps. A reference speed is 

also available in the dataset representing speed under uncongested condition.  

The speed data depend upon probe vehicles and therefore varies in confidence 

scores depending upon the time of day and presence of vehicles on each TMC link that 

provides this data. For the purpose of this study, INRIX speeds pertaining only to the 

highest INRIX confidence score are used to calculate a reliable estimate for link-resolved 

travel-time. Further, a comprehensive evaluation of the data was conducted, including a 

comparison to speed data from San Francisco’s Congestion Management Program (CMP) 

(Congestion Management Program SFCTA 2017). TMC links with unreasonable speeds 

were excluded from the analysis. For example, a surface street running parallel to a 

freeway showed unreasonably high speeds, which, it is suspected, is the link picking up 

probe vehicles from the adjacent freeway. Additional data assurance is performed to 

identify and exclude data labeled with the wrong travel direction. 

2.3.4 Relating Multiple Networks 

The study derives quality, network identification, geometric and operational data 

from three networks: INRIX TMC links, CHAMP links and Congestion Management 

Program defined links (CMP). CHAMP segments are usually smaller than TMC links; 

the three networks relate to each other as shown in Figure 8. In essence, the length of the 

CMP segments are longest, followed by TMC and CHAMP respectively. In the table 
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shown in Figure 8, each row corresponds to one CHAMP segment. In this initial step, 

each CHAMP segment is associated with the same number of TMC’s as its 

corresponding CMP link. For example, CHAMP segment 24499-24494 is associated with 

CMP segment 1, which in turn is associated with five TMC segments. In the subsequent 

step, each CHAMP segment will be assigned a shape file with its corresponding TMC’s 

and the nearest neighboring TMC segment will be sought and assigned to it.  

A straightforward spatial join between SFCHAMP and TMC segments is 

impractical due to two reasons: a.) Excessive run time due to the sheer volume of 

CHAMP segments, and b.) The TMC shapefile is not an accurate overlay on the CHAMP 

network. 
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Legend: 

 

Figure 8  Example demonstrating how links from three different networks were conjoined to form the 

resultant link which in turn, formed the main analysis network. The red link(s) are the links of interest in 

this particular case. This image is spatially magnified to the scale of 1:5000. Note how link nodes (denoted 

by blue colored points) do not align with the link nodes (ends) of other networks. This figure demonstrates 

the uncertainty of GPS points. 

 

It does not follow the roadway network because the TMC shapefile was generated 

by a straight-line interpolation between the TMC start and end latitudes and longitudes. 

Due to this, in the worst case scenarios like the one shown below, a TMC segment in the 

N-S direction may intersect or be closer to a CHAMP segment in the E-W direction. In 

cases not as extreme as this, there may still exist a discrepancy between the appropriate 

TMC correspondence and the associated CHAMP segment. Thus, a shapefile containing 

exclusively those TMC’s that correspond to a CHAMP segment for each CHAMP 

segment in the network is created. This creates a list of TMC's "in the running" only 

among from which each CHAMP segment is subjected to nearest neighbor analysis. 

Next, these associations were validated manually. The end result of this data preparation 

process is a unified data set with one observation for each directional TMC.  Associated 

with that TMC will be the INRIX travel times and speeds, measures of TNC usage, and 

measured transferred from SF-CHAMP including the facility type, number of lanes, and 

background traffic estimates.  A paired data set is created, allowing us to measure the 

change of each between 2010 and 2016. 
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Some TMC segments are “filler segments”. Links lying between two stop bars at 

a traffic signal or unsignalized intersections, links denoting the change in direction of a 

roadway, etc. are some examples of filler segments. Since these links are extremely short 

in length (typically, shorter than 0.025 miles), and more importantly, not representative of 

a typical roadway segment, they are excluded from the analysis. In total, 23% of TMCs 

were excluded from the analysis, but these TMCs account for less than 4% of the total 

TMC road length. The thick lines are TMCs. The colored lines in Figure 9 are those for 

which data exists in this study, while the thick gray lines are TMCs that have been 

excluded from the analysis. The TMCs excluded most of the local roads in residential 

neighborhoods, but have good coverage of minor arterials and above, as well as a smaller 

number of collectors/locals. Roads associated with TMCs carry about 70% of the VMT in 

San Francisco. In terms of TMCs that are excluded, 23% of TMCs have been excluded, 

but this accounts for only 4% of the total road length associated with TMCs. This is 

because many of the exclusions are for very short TMCs, less than 0.025 miles long. 

Below,  summarizes the reasons TMCs have been Dropped from the analysis. 

To incorporate the predicted volume obtained from the SF-CHAMP model, as 

well as normalizing the growth in background traffic attributable to the typical non-TNC 

factors, it is required to create an association between the TMC network and the SF-

CHAMP network. The remaining TMC links are associated with the corresponding SF-

CHAMP links. In most cases, SF-CHAMP links aggregate to TMC links. In instances 

when a CHAMP segment is longer than a TMC segment, multiple TMC segments were 

merged together to form one composite TMC segment and correspond to the said 

CHAMP segment. In a few cases, such as in some of the more complex freeway 
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interchanges, a clean correspondence could not be identified between the SF-CHAMP 

links and the TMC links. Those cases are excluded from the analysis.  

In order to create a temporally bound and uniform data  framework, the 5-minute 

speed data were aggregated to average weekday measures for each of the five SF-

CHAMP time periods. During this aggregation, several speed metrics were calculated, 

including the mean, the standard deviation, the 5th percentile and the 20th percentile. The 

highest observed average hourly speed on each TMC link over the observation period 

was assigned as the free-flow speed for that link. Examination of this dataset shows that 

the free-flow speed on a segment remained largely unchanged between 2010 and 2016. 

 

Table 1 Summary of Reasons for Dropping TMC Links 

Reason Dropped Number Length 

Bad INRIX Data 10% 20% 

Flagged in Manual 

QA/QC 
4% 20% 

Incorrect Segment 3% 7% 

Interchange 9% 27% 

Intersection Segment 3% 3% 

No CHAMP Link Found 2% 3% 

Very short TMC Links 69% 21% 

Total of all Dropped 

TMCs 
100% 100% 
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Figure 9  A diagrammatic representation of automating the TMC-CHAMP association process 
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 2.3.5 Merging the Data 

The data are merged, such that TMC links serve as the common spatial units for 

the remainder of the analysis. When the data are aggregated from SF-CHAMP links to 

TMC links, the link attributes are aggregated as well. Volumes and capacities are 

combined using a length-weighted average. There are two measures of distance: one from 

the SF-CHAMP links and one from the TMC links. The SF-CHAMP links are more 

spatially accurate, so the sum of the SF-CHAMP link length is used as the primary 

measure of length in the combined data set. In the event where multiple TMC segments 

need to be aggregated, the space mean speed is estimated by dividing the combined TMC 

length by the sum of travel time across all TMCs. The speed is then applied to the length 

of the combined SF-CHAMP links.  

All of this is done for both 2010 and 2016 scenarios. The 2010 and 2016 data are 

matched for each TMC segment, and if there is missing data in one or the other, both 

records are Dropped. This can happen, particularly in the 3-6 AM time period, if there are 

insufficient probe vehicles to achieve the highest confidence score in the INRIX data. 

The end result is a matched panel with 2010 and 2016 for a total of 7082 TMC link-TOD 

combinations. This corresponds to 1450 TMC links with up to five times-of-day each.  

2.4 Methods  

 Figure 10 pictorially represents the mathematical framework proposed to address 

the research problem. The null hypothesis assumed in this diagrammatic representation is 

an ideal scenario in which TNCs add no additional vehicles on to the network, that is, 

every TNC vehicle replaces an otherwise existing passenger car. It has been established 
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that the total traffic volume in 2016 is the combination of TNC and non-TNC volumes. In 

Figure 10, V2 is defined as the organically increased volume in the year 2016, 

irrespective of the presence/introduction of TNCs. VOverlap represents the number of 

passenger cars that are double counted for being part of the natural increase in traffic as 

well as being identified as a TNC vehicle. V2 is therefore representative of the traffic 

volume which would have existed had TNCs not existed within the network, that is, the 

predicted traffic volume in 2016 by travel models such as SFCHAMP (used in this 

study). This volume is also termed as ‘background growth volume’. In the current 

context, V2 is the number of vehicles in the network that includes the volume of 

conventional passenger vehicles in conjunction with those vehicles that are substituted by 

TNCs. In addition, VTNC is the number of vehicles identifying themselves as TNCs in the 

network. 

To estimate the effect of TNCs, a fixed-effects panel data regression model was 

used (Greene 2003). The fixed-effects standardize the link-dependent unexplained 

constancy or variance that might affect the regressed variable. Some examples of link-

specific characteristics are location of links near high foot traffic, recreational areas, 

special roadway geometry, etc. The temporal unit used by the panel is ‘2’, warranted by 

the before-after nature of the study. Each data point in the dataset is a unique combination 

of a TMC, time of day (TOD) and observation year. Since there are only two points in 

time, this is equivalent to estimating an ordinary least squares (OLS) model on the 

change on each TMC for each time-of-day.  
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Figure 10  Pictorial representation of the mathematical framework followed by the 

statistical models 
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2.4.1 Converting Travel Time to Implied Volume  

 

Figure 11  A typical volume delay function with multiple curves for multiple volume-to-

capacity ratios represented in the x-axis. Source: Heinz Speiss at 

www.spiess.ch/emme2/conic/conic.html 

 

A challenge in estimating the regression models required to evaluate the 

relationships between the congestion and volume-impacted travel-time that they assume a 

linear relationship between the dependent variable and the regressors, but the relationship 

between volume and travel time is non-linear as shown in Figure 11 and take the form 

given in Equation 1. To deal with this, the volume-delay functions (VDFs) from SF-

CHAMP were used to convert the observed travel times into implied passenger car 

equivalent (PCE) volumes. The original volume delay functions take the form:  

                                            T = γT0 (1 + α (
v

c
)

β

)                             Equation 1 

http://www.spiess.ch/emme2/conic/conic.html
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where 𝑇 is the congested travel time, 𝑇0 is the free-flow travel time, 𝑉 is the 

traffic volume in PCEs, 𝐶 is the link capacity, and 𝛼 and 𝛽 are calibrated parameters 

explained later in this section. Solving for 𝑉, one gets:  

                                             𝑉1 = 𝐶 (

𝛾𝑇

𝑇0
−1

𝛼
)

1∕𝛽

                        Equation 2 

where the subscript on 𝑉1 is used to designate a time-implied volume as opposed 

to an expression of travel-time influenced by traffic volume, as derived from the travel 

times. The panel models use 𝑉1 as their dependent variable. It is in units of PCEs, so is 

linearly related to the volume measures in the descriptive variables: volume, capacity, 

link travel time and free flow travel time. The expression given in Equation 2 relate 

travel-time linearly to volume through the use of the parameters α, γ and β. The values of 

the parameters α and β used for this study were those ascertained in the SF-CHAMP 

model. They are characteristics of the functional classification, roadway geometry and 

average daily traffic of the roadway links for which the volume delay function is being 

evaluated. Another parameter that affects the valuation of the function is γ. This is an 

empirical factor used by SF-CHAMP to scale up the volume-delay function evaluation 

for certain arterial and freeway roadway functional classes for which, it is ascertained by 

the regional transportation planners, the Bureau of Public Roads (BPR) VDF is not 

sufficiently steep enough. Volume to capacity ratios are another parametric requirement 

that need to be normalized for the respective number of lanes. The values of these 

parameters are presented in Table 2. 

 

  



53 

 

Table 2 Parameter values for volume-delay function used in SF-CHAMP assignment model 

 

Roadway Classification α β δ 

Freeway-to-Freeway 

Connector 
0.83 5.5 1.3 

Freeway 0.83 5.5 1 

Expressway 0.71 2.1 1 

Collector 0.6 8.5 1.8 

Ramp 0.83 5.5 1.3 

Major Arterial 0.6 3.5 1.8 

Alley 0.6 8.5 1.8 

Local Street 0.6 8.5 1.8 

Minor Arterial 0.6 3.5 1.8 

Super Arterial 0.6 3.5 1.8 

 

The analysis is conducted for five multi-hour time-periods, so it is important that 

all volumes and capacities be either hourly, or for the period as a whole. Here, they are 

defined for the period as a whole, and scale the hourly capacities to the period total using 

the same peak-hour factors (PHFs) that are used by SF-CHAMP. The PHF values for the 

five times of day are mentioned in Table 3. 

Table 3  Peak Hour Factors by five times of day used in SF-CHAMP assignment model 

 

Time of Day PHF 

EA - Early (AM) Morning: 03:00-06:00 0.463 

AM - Morning (AM) Peak: 06:00-09:00 0.348 

MD - Midday: 09:00-16:00 0.154 

PM - Evening (PM) Peak: 16:00-19:00 0.337 

EV - Evening: 19:00-03:00 0.173 

2.4.2 Congestion Effects of Pick-ups and Drop-offs  

In considering the effect of TNC pick-ups and Drop-offs (PUDO) on congestion, 

it is useful to consider other scenarios in which a vehicle movement has an effect on 

congestion beyond simply driving on the roadway. Several examples where this occurs 
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include taxis (Golias and Karlaftis 2001), delivery trucks (Chiabaut 2015), and 

movements into or out of on-street parking spaces (Yousif 1999; Biswas, Chandra and 

Ghosh 2017). Wijayaratna (2015) provides a useful method for considering the 

congestion effect of on-street parking that follows the capacity adjustment approach used 

frequently in the Highway Capacity Manual (HCM) (Transportation Research Board 

2010). The approach scales the capacity of the road lane adjacent to the on-street parking 

based on the share of time that the lane is blocked. To model the effect of TNC PUDO, a 

similar approach has been adopted, but the PUDO effect has been defined in PCEs so it is 

in the same units as the dependent variable, and express the effect as:  

                                         β𝐴𝑣𝑔𝐷𝑢𝑟 ∗
PUDO∗PHF

3600
∗

c

L
                              Equation 3 

Where PUDO is the number of pickups and Drop-offs (PUDO) in the period, PHF 

is the peak hour factor to convert the PUDO to an hourly value, 𝐶 is the capacity of the 

link, L is the number of lanes, and 𝛽AvgDur is an estimated model parameter. For 

simplicity, this term, excluding the estimated coefficient, has been expressed as 𝑉AvgDur  

βAvgDur can be interpreted as the average duration for which each PUDO blocks or 

disturbs traffic in the curb lane. In congested conditions, this can be longer than the 

duration of the stop itself, because it can take some time for a queue to dissipate if it 

builds up behind a stopped vehicle and for traffic to recover to its pre-PUDO condition. 

𝛽AvgDur can also be shorter than the actual duration of a stop if there is some probability 

that the stopping vehicle can pull out of traffic, or if volumes are low enough that the 

probability of a vehicle arriving behind the stopped vehicle is low.  
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2.4.3 Fixed Effects versus Random Effects versus Mixed Effects Panel Regression Model 

Fixed-effects panel data models (Greene 2013) are estimated where the dependent 

variable is a transformed version of the observed travel time, and the descriptive variables 

include the background traffic levels, TNC volumes and TNC pick-ups and Drop-offs 

(PUDO). Any changes occurring within the individual data points between 2010 and 

2016 not accounted for by the independent variables of the regression model will be 

absorbed by the error terms. Another panel regression tool, the random effects test, can 

be run when endogeneity exists between the explanatory variable(s), that is, when 

different entities acting as the descriptive variables have the tendency to affect the 

outcome in a manner exclusive to their identity. A fixed effects model accounts for any 

extant constancy across individual explanatory variables. Fixed effects are estimated 

using least squares (or, more generally, maximum likelihood) and random effects are 

estimated with shrinkage and partial pooling as opposed to fixed effects (“linear unbiased 

prediction” in the terminology of Robinson, 1991). It is possible to have a dataset where 

both these effects are exhibited (mixed effects model). Therefore, using the fixed effects 

linear model for the panel data was arrived at by performing the Wu-Hausman test, which 

checks for endogeneity between the explanatory variables in addition to determining 

whether a random effects model should be used to explain the distribution of the y-

variable in the panel dataset instead. The Durbin-Wu-Hausman test checks whether the 

use of the random effects model (which is more data sensitive and thus rigorous) can be 

rejected (use of the random effects model is the null hypothesis being tested). It does so 

by testing the significance of the differences between variances of the explanatory 

variables under each of the two testing scenarios, thus also commenting on any 
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significant endogeneity existing between the regressing x-variables. The Wu-Hausman 

test statistic is defined in Equation 4 below: 

 H = (b1 – b0)’ (Var(b0) – Var(b1))
+(b1 – b0)                     Equation 4 

Where + denotes the Moore-Penrose pseudoinverse (of the matrix ‘Var(b0) − 

Var(b1)’). Under the null hypothesis, this statistic has the chi-squared 

distribution asymptotically with the number of degrees of freedom equal to the rank of 

matrix Var(b0) − Var(b1). b0 and b1 are coefficients of the two independent variables 

being tested for endogeneity. 

The Wu-Hausman test rejected the presence of endogeneity between any 

combinations of x-variables used in the final model (also explained later by the post-hoc 

model validation test through Variance Inflation Factor calculations). 

2.4.4 Model Estimation  

As explained in the section above, to estimate the effect of other factors on the 

change in implied volume, a fixed-effects panel data regression model is used (Greene 

2003). The fixed-effects standardize the link-dependent unexplained constancy or 

variance that might affect the regressed variable. Some examples of link-specific 

characteristics are location of links near high foot traffic, recreational areas, special 

roadway geometry, etc. Since these characteristics do not change between the 2010 and 

2016, their influence is absorbed into the fixed effect, preventing them from biasing the 

other parameter estimates. The temporal unit used by the panel is ‘2’, warranted by the 

before-after nature of the study. Each data point in the dataset is a unique combination of 

a TMC, time of day (TOD) and observation year. Since there are only two points in time, 
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this is equivalent to estimating an ordinary least squares (OLS) model on the change on 

each TMC for each time-of-day. The estimated model can be expressed as: 

 

VI:i,t = β1𝑉SF + β2𝑉𝑇𝑁𝐶:𝑖,𝑡 + β3𝐹𝑇𝑀𝑎𝑗𝐴𝑟𝑡:𝑖 ∗ 𝑉𝐴𝑣𝑔𝐷𝑢𝑟:𝑖,𝑡 + β4𝐹𝑇MinArt:i ∗ 𝑉𝐴𝑣𝑔𝐷𝑢𝑟:𝑖,𝑡 +

β5𝑃𝑅𝐸𝑆𝐼𝐷𝐼𝑂𝑖,𝑡 ∗ 𝑉𝐼:𝑖,2010 + 𝐹𝐸𝑖 + ε𝑖,𝑡                                                            Equation 5 

 

Where the entities i are TMC links by time-of-day, and the time periods, t, are either 

2010 or 2016, and each is used to index the remaining variables. VI:I,t is the time-implied 

volume. VAvgDur: I, t is the volume predicted by SF-CHAMP in passenger car equivalents, 

giving some additional weight to trucks and buses. VAvgDur: I, t is the average duration 

variable, as defined above. FTMajArt: i is a binary facility type flag indicating whether or 

not the link is a major arterial, and FTMinArt: i is a binary facility type flag indicating 

whether or not the link is a minor arterial. These facility type flags do not change 

between the two years. PRESIDIOi, t is a binary flag identifying links on the Presidio 

Parkway and Veterans Boulevard, where there was major construction in 2010 but not in 

2016. PRESIDIOi ,t is defined to be 0 in 2010 and 1 in 2016 such that the effect of a 

change can be estimated. VI:I, 2010 is the time-implied volume in period 1 (2010), which 

allows the effect of the construction change to be proportional to the starting volume on 

the link, as opposed to additive and the same on every link. FEi is the fixed-effect, which 

is effectively a constant on each entity, and 𝜀i,t is a random error term. In this 

specification, the Presidio flag PRESIDIOi, t and the TNC terms (VTNC:i,t, VAvgDur: I, t) are 

zero in 2010, so the 2010 time-implied volume is simply a function of the SF-CHAMP 

volume plus the fixed effect and an error term. Each observation within the constructed 
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panel database is therefore a unique combination of year (2010 or 2016) and one of the 

five mentioned times of day. Each such observation lists the INRIX travel-time-implied 

volume which acts as the measure of speed, a Presidio Parkway flag, In-service and out-

of-service TNC volume, and the PCE-worth of each pickup and drop-off maneuver 

occurring within the respective time frame. 

2.4.5 Model Application  

After the model was estimated, it was applied to all links to predict the 𝑉I:I,t for 

2010 and 2016. It is also applied to predict a 2016 counterfactual scenario with no TNCs 

by setting 𝑉TNC:I,2016 and 𝑉AvgDur:I, 2016 to zero, and otherwise applying the model to 2016 

data. These predicted PCEs are then used to calculate the travel times using the volume 

delay functions (Equation 6).  

The non-PCE volume on each link is calculated as:  

                                 𝑉i,t = 𝑉𝑆𝐹−𝐶𝐻𝐴𝑀𝑃:𝑖,𝑡 + β2𝑉𝑇𝑁𝐶:𝑖,𝑡                        Equation 6  

Where 𝑉i,t is the traffic volume in units of vehicles instead of PCEs and 𝑉SF-

CHAMP:i,t is the SF-CHAMP volume. 𝛽1 is excluded such that the full SF-CHAMP traffic 

volume is counted, (but) not their estimated effect on speed. The inclusion of 𝛽2 (which is 

less than one) accounts for the partial overlap between the TNC volumes and the 

background volumes. These volumes are combined with the link lengths to calculate 

vehicle miles traveled (VMT), and combined with travel times to calculate vehicle hours 

traveled (VHT) and vehicle hours of delay (VHD). The average speed is calculated as 

VMT / VHT. The same volumes are used in combination with observed travel times to 

calculate observed VHT, VHD and average speed. In addition, a set of reliability metrics 

are calculated as described below.  
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2.4.6 Travel Time Reliability Metric  

This study employs planning time index 80 (PTI80) as the measure of travel time 

reliability. It is defined as: 

                                                      PTI80 =
T80

T0
                                        Equation 7  

Where 𝑇80 is the 80th percentile travel time and 𝑇0 is the free flow travel time. A 

PTI80 value of 1.5 means that for a 30 minute trip in light traffic, 45 minutes should be 

planned to ensure on time arrival 80% of the time.  

PTI80 can be calculated directly using measured travel times, or estimated as a 

function of the travel time index (TTI) (Cambridge Systematics Inc. et al 2012), which is 

the ratio between the average travel time and the free-flow travel time. The estimated 

relationship for each observation i takes the form:  

                                              PTI80𝑖 = γ1TTI𝑖
𝛾2                                      Equation 8  

Where 𝛾1 and 𝛾2 are estimated model parameters. These parameters were 

estimated for this study from the observed travel time data from both 2010 and 2016, 

with one observation for each TMC, TOD, and year combination. The relationships are 

specific to each facility type. Table 4 shows the results of that estimation.  

Table 4  Estimated relationships between PTI80 and TTI 

Facility Type  𝛾1 𝛾2 R-squared 

Freeways and Expressways 1.029 1.498 0.831 

Arterials 1.101 1.361 0.862 

Collectors and Locals 1.131 1.440 0.762 

 

PTI80 is calculated for each TMC link, TOD and year combination, and 

aggregated to the network level using a VMT-weighted average. The idea of following 
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through on calibrating SF-specific parameters establishing the relationship between 

Travel Time Index and Planning Time Index was subsequently hatched after making a 

previous attempt to import facility type-specific relationships between PTI80, free flow 

speeds and travel time indices from chapter LR3 of the SHRP2 study detailing advisories 

about extant interrelationships between the three quantities since quality-controlled speed 

data was available on hand. 

2.5 Model Estimation Results 

Table 5 shows the model estimation results from the fixed-effects models. The 

SF-CHAMP background volume parameter estimate is 0.92, not significantly different 

from 1. This is logical, because it is expected that each vehicle added in background 

traffic should have an effect on congestion of adding 1 vehicle to the implied volume. 

The Presidio Parkway scaling factor accounts for major construction that was underway 

on those links in 2010 but not 2016, and is equivalent to reducing the 2010 implied traffic 

volume by 36%. 

Two measures of time and location-specific TNC activity are studied as part of 

this dataset. The TNC volume parameter measures the net effect of TNCs. If TNCs 

purely substitute for other car trips, the estimated TNC parameter should be 0 as they 

substitute for other vehicles already counted in the background volumes. Negative values 

would be consistent with TNCs reducing traffic, while a value of positive 1 would be 

consistent with TNCs purely adding to background traffic. The estimated coefficient of 

0.69 can be interpreted as an addition of 1 TNC vehicle, partially offset by a subtraction 

of 0.31 non-TNC vehicles. 
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The PUDO parameters represent the average number of seconds that a pick-up or 

Drop-off disrupts traffic in the curb lane. Locally collected data show that the average 

time needed for a passenger to board or alight from passenger vehicles such as TNCs and 

taxis is about 1 minute. The higher average impact durations estimated in these models 

suggest that the traffic disruption persists after the stopped vehicle departs because 

additional time is needed for traffic flow to recover to its pre-PUDO condition. 

The estimated model was applied to assess network-wide performance metrics for 

three scenarios: 

 2010: Reflecting observed 2010 conditions, when no TNCs were present; 

 2016 No TNC: Represents a counterfactual scenario of what 2016 conditions 

would be if there were no TNCs; 

 2016 with TNC: The full application of the model to 2016 conditions. 

Table 5  Fixed-effects panel estimation results with TNC variables included 

 

Parameter Estimates 

Variable Parameter Standard 

Error 

T-statistic 

SF-CHAMP background volume  0.9172 0.0541 16.952 

Presidio Parkway scaling factor  -0.3648 0.0189 -19.327 

TNC Volume 0.6864 0.0720 9.5387 

Average impact duration of TNC PUDO on major arterials (s)  144.75 7.7195 18.751 

Average impact duration of TNC PUDO on minor arterials (s) 79.486 12.114 6.5617 

 

Model Statistics  

Number of Entities 7081 

Number of Time Periods 2 

R-squared between groups 0.5819 

R-squared within groups 0.2985 
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2.5.1 Model Diagnostics  

Since the estimated model includes both TNC volumes and TNC PUDO as the 

descriptive variables, it was imperative that one considers about the possibility and 

implications of multicollinearity within these two explanatory variables. Any existing 

correlation between the TNC volume and the TNC PUDO terms was observed by testing 

different model specifications. If the PUDO variables are removed, the TNC volume 

coefficient increases in magnitude, and vice-versa. This also suggests that it may be 

difficult to precisely estimate how their combined descriptive power is allocated between 

these two variables, so the risk is the possibility of over-estimating one while under-

estimating the other.  However, the risk may be greater in excluding one of the two 

variables, because the effect of the other may be overestimated. When this experiment 

was done, it was found that the remaining variables in the model, including the SF-

CHAMP volume, stay quite stable. This means that one can be more confident in 

attributing the TNC volume and PUDO effect to TNCs and the potential to falsely 

allocate the blame of worsening traffic congestion is largely restricted within these two 

variables. This minimizes the propensity of encountering the “missing variable” 

conundrum within the estimated parametric model. 

To further check whether multicollinearity poses a challenge to the current 

interpretation of the model results, the standard symptoms of multicollinearity within the 

variables of concern were sought out. It was noted that each variable of concern exhibited 

individually significant slopes and the correlations among pairs of predictor variables 

were not large. The latter was done by calculating the Variance Inflation Factor (VIFs) 

for all the descriptive variables. 
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A VIF quantifies how much the variance (and consequently, their contribution to 

the R-squared of the model) is inflated. VIFs test not only for the pairwise correlation 

between variables, but for multicollinearity, which could be due to a combination of 

variables. VIFs above ‘5’ are generally considered to indicate high levels of collinearity. 

It is known that the variance of the estimated coefficient bk in a model where only one 

predictor ‘x’ exists is: 

                                  Var(bk)min = 
σ2

∑ (Xik−X(avg)k)
2n

i=1

                         Equation 9 

Where, σ = Standard deviation of the variable of which bk is a coefficient, 

 Xik = value of the predictor ‘x’ at the ith data point, 

 The ‘min’ subscript denotes the minimum possible value for the variance 

of the coefficient bk since only one predictor variable is considered in this specific 

example 

On the other hand, if one considers a model where more than one predictor 

variables exist, where some of the other predictors are correlated with the predictor Xk, 

then the variance of bk gets inflated, that is, it does not stay confined to its minimum 

value calculated in Equation 9. It can then be shown that the variance of bk is: 

Var(bk)min = 
σ2

∑ (Xik−X(avg)k)
2n

i=1

X 
1

1−Rk
2                        Equation 10 

Where, Rk
2  is the R2 value obtained by regressing the kth predictor on the 

remaining predictors. The greater the linear dependence among the predictor Xk and the 

other predictors, the larger is the value of Rk
2 . Also, the larger the Rk

2  value, the larger is 

the variance of bk.  
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The variance inflation factor is obtained by comparing the increase in R-squared 

by adding each successive regressor variable for all pairs of variables included in a 

model. A Variance Inflation Factor exists for each of the k predictors in a multiple 

regression model, or in this case, the panel regression model. Since a VIF is a measure of 

the “inflation” of the variance due to the presence of correlation between the explanatory 

variables within a model, a VIF of 1 indicates that there exists no correlation between the 

kth predictor and the remaining predictors variables implying that the variance of bk is not 

inflated at all. The generally accepted norm is that VIFs exceeding ‘4’ warrant further 

investigation into the inclusion of the represented correlated variables, and VIFs 

exceeding ‘10’ exhibit signs of severe multicollinearity requiring correction. Therefore, 

one can calculate the ratio of the two variances, the inflated variance to the minimum 

variance, and come up with the expression: 

VIFk =
1

1−Rk
2                                                Equation 11 

 Table 6 presents the calculated VIFs. We see that none of the VIFs are close to 5, 

which as mentioned before, would have presented a cause for concern related to variable 

endogeneity. 

Table 6  Variance Inflation Factors (VIFs) 

 

Variable VIF 

CHAMP_VOL 1.5 

TNC_VOL 2.4 

AVG_DUR_MAJOR_ARTERIALS 1.7 

AVG_DUR_MINOR_ARTERIALS 1.2 

BASE_INRIX_VOL_PRESIDIO 1.0 

 

 

It was observed that the VIFs are modest and do not indicate a major cause for 

concern.  
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Endogeneity is the correlation between the X variable and the error term in a 

model. Figure 12 shows a scatterplot of the fitted values versus the model’s residuals. It 

does not show any obvious correlation. The possibility of endogeneity due to a missing 

variable, including speculation about what such a missing variable may be has been 

discussed before. It can also be noted that the use of a fixed effects model (as opposed to 

a cross-sectional model) is considered to be a preferred intervention when endogeneity 

is a concern. This is because any confounding factor that is present cross-sectionally but 

stable in time simply falls out of the model.  

 

Figure 12  Correlation between fitted values and residuals 

2.5.2 Supplemental Model Estimation 

One notable variation in the models tested relates to the proposed hypothesis that 

TNCs have no effect on traffic congestion. If this were true, one would expect the change 

in background volume alone to reasonably predict the change in time-implied volume 
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(𝑉1). Table 7 shows the estimation results testing this hypothesis. It includes only two of 

the above parameters: the background volume as estimated by SF-CHAMP, and a scaling 

factor applied to the Presidio Parkway and Veterans Boulevard. The Presidio parameter 

can be interpreted as a travel time increase equivalent to reducing the 2010 implied traffic 

volume by 39%. The background volume is highly correlated with 𝑉I, with a coefficient 

of 1.78. This suggests that time-implied volumes are increasing by 78% more than SF-

CHAMP would predict. It appears that the employment, population and network changes 

do not fully describe the congestion changes observed during this period, and more terms 

are needed to do so. 

Since the distribution of congestion effects is not uniform throughout the network 

or throughout the day, it is desired that one look into the variations that occur when the 

dataset is sliced across different times of day and across various categories of areas across 

the city. Figure 13 maps the speed difference between the TNC scenario and the no-TNC 

counterfactual for four times of day. TNCs have a larger effect on congestion in the 

downtown area and on arterial roadways. One might argue that since the inner core and 

downtown areas have always been congested to begin with, it is only natural that the 

worst decline be experienced within those areas. It should be noted that the dependent 

variable in the fixed-effects model is the INRIX-implied volume, which is linear with 

respect to changes in the traffic volume. The positive coefficients on TNC volume and 

TNC PUDO suggest that the INRIX-implied volume increases more on TMCs and in 

time periods with high TNC concentrations that would be expected from other 

background factors. Changes beyond what is expected that are concentrated on other 

links, occur uniformly, or occur randomly would be absorbed by the model’s error term, 
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not by these coefficients. TNCs are also shown to have a disproportionately large effect 

on evening congestion, but they also increase congestion in the peak periods: a 48-52% 

increase in VHD in the AM and PM periods with TNCs, versus an 18-23% increase for 

the no-TNC counterfactual. 

 The more complete specification, as reported in Table 5, has a better fit and 

further, includes a coefficient on the SF-CHAMP volume that is close to 1. This means 

that once the effects of TNCs has been accounted for, the change in SF-CHAMP volume 

reasonably predicts the remaining change. A number of variations on this specification 

were attempted before arriving at the preferred model. For example, specifications were 

tested that split the TNC volume into separate in-service and out-of-service volumes or 

segmented the PUDO coefficients in different dimensions. One notable variation relates 

to the hypothesis that TNCs have no effect on traffic congestion. If this were true, one 

would expect the change in background volume alone to reasonably predict the change in 

time-implied volume (𝑉1). Estimating such a model reveals that the background volume 

is highly correlated with 𝑉1, with a coefficient of 1.78. This suggests that time-implied 

volumes are increasing by 78% more than SF-CHAMP would predict. It appears that the 

employment, population and network changes do not fully describe the congestion 

changes observed during this period, and more terms are needed to do so. 
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Table 7  Fixed-effects panel model estimation results only accounting for background 

traffic 

 

Parameter Estimates    

Variable Parameter 
Standard 

Error 
T-statistic 

SF-CHAMP background volume 1.7816 0.0468 38.052 

Presidio Parkway scaling factor -0.3869 0.0202 -19.144 

 

Model Statistics 

   

Number of Entities  7081  

Number of Time Periods  2  

R-squared between groups  0.7192  

R-squared within groups  0.1941  

2.6 Model Application Results 

The model was applied to all TMCs, as described in Section 2.4.5 for three 

scenarios: 2010, 2016 without TNCs, and 2016 with TNCs.  Table 8 presents network 

performance metrics for these three scenarios. VMT grows by 13% between 2010 and 

2016, with almost half of the VMT increase attributable to TNCs. Vehicle hours traveled 

(VHT), vehicle hours of delay (VHD) and average speed using both modeled travel 

times and, where available, observed travel times have been calculated. In the absence 

of TNCs, VHT would be 12% higher in 2016 than 2010, VHD would be 22% higher, 

and average speed would be 4% lower. With TNCs, VHT is 30% higher, VHD is 62% 

higher and speeds are 13% lower. The R-squared within groups is 0.2985 and the R-

squared between groups is 0.5819. These values are in line with what can be reasonably 

expected for a system like transportation. The explanatory variables that are included in 

the model are highly significant. 

In addition, travel time is becoming less reliable, as measured by the planning 

time index 80 (PTI80). PTI80 is the ratio between the 80th percentile travel time and the 
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free-flow travel time. It is a measure of the day-to-day variability of travel time. The 

PTI80 value of 1.8 means that for a 10-minute trip in uncongested condition, 18 minutes 

should be planned to ensure on time arrival 80% of the time. Between 2010 and 2016, 

PTI80 increases by 15% with TNCs or 6% without. 

 

Table 8  Network Performance Metrics in Base Year, Counterfactual Year 2016 and 

Actual Year 2016 along with Percent Difference between Base Year and the others 

 

 

Network Performance Metrics 

Vehicle 

Miles 

Traveled 

Based on Modeled Travel Time Based on Observed Travel Time 

Scenario 

Vehicle 

Hours 

Traveled 

Vehicle 

Hours of 

Delay 

Average 

Speed 

(mph) 

Planning 

Time 

Index 80 

Vehicle 

Hours 

Traveled 

Vehicle 

Hours of 

Delay 

Average 

Speed 

(mph) 

Planning 

Time 

Index 80 

2010 4,923,449 205,391 64,863 24.0 1.83 204,686 64,158 24.1 1.83 

2016 No TNC 5,280,836 230,642 79,449 22.9 1.94 N/A N/A N/A N/A 

2016 with 

TNC 

5,559,412 266,393 105,377 20.9 2.12 269,151 108,134 20.7 2.21 

Scenario 

Percent Change from 2010 

Vehicle 

Miles 

Traveled 

Based on Modeled Travel Time Based on Observed Travel Time 

Vehicle 

Hours 

Traveled 

Vehicle 

Hours of 

Delay 

Average 

Speed 

(mph) 

Planning 

Time 

Index 80 

Vehicle 

Hours 

Traveled 

Vehicle 

Hours of 

Delay 

Average 

Speed 

(mph) 

Planning 

Time 

Index 80 

2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2016 No TNC 7% 12% 22% -4% 6% N/A N/A N/A N/A 

2016 with 

TNC 

13% 30% 62% -13% 15% 31% 69% -14% 21% 

 

The changes summarized in Table 8 are not evenly distributed throughout the 

network or throughout the day.  Figure 13 shows the speed difference between the 2016 

scenario with TNCs and that for the no-TNC counterfactual.  The warmer colors show a 

greater drop in speed with the addition of TNCs.  The figures show that the speed drops 

are concentrated in the northeast quadrant of the city, which includes the downtown 

area, the most existing congestion, and the highest density of TNC use.   
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A                                               B 

  

C                                                          D 

  

Figure 13  Speed (mph) difference between 2016 scenario with TNCs and a counterfactual 2016 scenario 

without TNCs for (A) 6-9 AM, (B) 9 AM-3:30 PM, (C) 3:30-6:30 PM, and (D) 6:30 PM-3:00 AM. 

 

 Table 9 shows the network performance metrics segmented by time-of-day. The 

results show that the 2016 scenario with TNCs higher VMT, VHT, VHD and BTI80 and 

lower speeds than the 2016 no TNC scenario throughout the day, including in the AM 

and PM peak periods.  
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Table 9  Modeled and Observed Network Performance Metrics by Time-of-Day and 

Percent Changes from the Base Year 

 

Network Performance Metrics 
   Based on Modeled Travel Time Based on Observed Travel Time 
 

Time-of- 

Day 

 

Scenario 
Vehicle 

Miles 

Traveled 

Vehicle 

Hours 

Traveled 

Vehicle 

Hours of 

Delay 

Average 

Speed 

(mph) 

Planning 

Time 

Index 80 

Vehicle 

Hours 

Traveled 

Vehicle 

Hours of 

Delay 

Average 

Speed 

(mph) 

Planning 

Time 

Index 

80 

6:00 

AM- 

9:00 AM 

2010 805,002 32,718 10,180 24.6 1.79 32,955 10,417 24.4 1.95 

2016 No TNC 860,180 36,661 12,509 23.5 1.90 N/A N/A N/A N/A 

 2016 with 

TNC 

891,673 40,739 15,467 21.9 2.04 40,651 15,379 21.9 2.33 

9:00 

AM- 

3:30 PM 

2010 1,848,690 77,735 24,391 23.8 1.74 77,125 23,781 24.0 1.69 

2016 No TNC 1,988,010 88,154 30,587 22.6 1.86 N/A N/A N/A N/A 

 2016 with 

TNC 

2,065,117 99,575 39,288 20.7 2.02 101,153 40,867 20.4 2.19 

3:30 

PM- 

6:30 PM 

2010 1,027,916 49,206 19,485 20.9 2.43 48,137 18,415 21.4 2.32 

2016 No TNC 1,086,243 54,516 23,005 19.9 2.58 N/A N/A N/A N/A 

 2016 with 

TNC 

1,126,449 61,819 28,832 18.2 2.80 64,097 31,111 17.6 2.68 

6:30 

PM- 

3:00 AM 

2010 1,107,141 41,199 9,917 26.9 1.52 41,983 10,700 26.4 1.59 

2016 No TNC 1,196,599 46,103 12,224 26.0 1.59 N/A N/A N/A N/A 

 2016 with 

TNC 

1,316,689 58,572 20,473 22.5 1.82 57,306 19,207 23.0 1.86 

3:00 

AM- 

6:00 AM 

2010 134,700 4,532 890 29.7 1.39 4,487 844 30.0 1.39 

2016 No TNC 149,803 5,208 1,124 28.8 1.43 N/A N/A N/A N/A 

 2016 with 

TNC 

159,485 5,689 1,316 28.0 1.47 5,943 1,570 26.8 1.51 

Total 2010 4,923,449 205,391 64,863 24.0 1.83 204,686 64,158 24.1 1.83 
 2016 No TNC 5,280,836 230,642 79,449 22.9 1.94 N/A N/A N/A N/A 
 2016 with 

TNC 

5,559,412 266,393 105,377 20.9 2.12 269,151 108,134 20.7 2.21 

Percent Change from 2010 
   Based on Modeled Travel Time Based on Observed Travel Time 
 

Time-of- 

Day 

 

Scenario 
Vehicle 

Miles 

Traveled 

Vehicle 

Hours 

Traveled 

Vehicle 

Hours of 

Delay 

Average 

Speed 

(mph) 

Planning 

Time 

Index 80 

Vehicle 

Hours 

Traveled 

Vehicle 

Hours of 

Delay 

Average 

Speed 

(mph) 

Plannin

g 

Time 

Index 80 

6:00 

AM- 

9:00 AM 

2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2016 No TNC 7% 12% 23% -5% 6% N/A N/A N/A N/A 

 2016 with 

TNC 

11% 25% 52% -11% 14% 23% 48% -10% 19% 

9:00 2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Table 9, continued” on 2nd page of table 
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AM- 

3:30 PM 

2016 No TNC 8% 13% 25% -5% 7% N/A N/A N/A N/A 

 2016 with 

TNC 

12% 28% 61% -13% 16% 31% 72% -15% 30% 

3:30 

PM- 

6:30 PM 

2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2016 No TNC 6% 11% 18% -5% 6% N/A N/A N/A N/A 

 2016 with 

TNC 

10% 26% 48% -13% 15% 33% 69% -18% 16% 

6:30 

PM- 

3:00 AM 

2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2016 No TNC 8% 12% 23% -3% 4% N/A N/A N/A N/A 

 2016 with 

TNC 

19% 42% 106% -16% 19% 36% 79% -13% 17% 

3:00 

AM- 

6:00 AM 

2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2016 No TNC 11% 15% 26% -3% 3% N/A N/A N/A N/A 

 2016 with 

TNC 

18% 26% 48% -6% 5% 32% 86% -11% 8% 

Total 2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 
 2016 No TNC 7% 12% 22% -4% 6% N/A N/A N/A N/A 
 2016 with 

TNC 

13% 30% 62% -13% 15% 31% 69% -14% 21% 

 

 

Table 10  Network Performance Metrics by Area Type 

Network Performance Metrics 
   Based on Modeled Travel Time Based on Observed Travel Time 
 

Area 

Type 

 

Scenario 

Vehicle 

Miles 

Traveled 

Vehicle 

Hours 

Traveled 

Vehicle 

Hours 

of 

Delay 

Average 

Speed 

(mph) 

Plannin

g Time 

Index 

80 

Vehicle 

Hours 

Travele

d 

Vehicle 

Hours 

of 

Delay 

Average 

Speed 

(mph) 

Plannin

g Time 

Index 

80 

Regiona

l Core 

2010 380,981 28,578 10,214 13.3 2.05 28,529 10,165 13.4 2.08 

2016 No TNC 431,106 34,200 13,516 12.6 2.22 N/A N/A N/A N/A 
 2016 with 

TNC 

481,326 46,321 23,202 10.4 2.86 46,652 23,533 10.3 2.87 

Central 

Business 

District 

2010 1,128,774 57,469 19,526 19.6 2.13 56,550 18,608 20.0 2.01 

2016 No TNC 1,213,840 65,430 24,459 18.6 2.28 N/A N/A N/A N/A 

2016 with 

TNC 

1,314,005 78,652 33,814 16.7 2.52 80,327 35,489 16.4 2.67 

Urban 

Business 

2010 1,960,197 63,672 18,420 30.8 1.70 63,357 18,105 30.9 1.74 

2016 No TNC 2,107,126 71,715 23,113 29.4 1.81 N/A N/A N/A N/A 
 2016 with 

TNC 

2,193,400 78,972 28,060 27.8 1.93 79,536 28,624 27.6 2.08 

Urban 2010 1,453,498 55,673 16,704 26.1 1.73 56,249 17,280 25.8 1.76 
 2016 No TNC 1,528,763 59,297 18,361 25.8 1.76 N/A N/A N/A N/A 
 2016 with 

TNC 

1,570,681 62,448 20,301 25.2 1.82 62,635 20,489 25.1 1.82 

Table 10, continued” on 2nd page of table 
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Total 2010 4,923,449 205,391 64,863 24.0 1.83 204,686 64,158 24.1 1.83 
 2016 No TNC 5,280,836 230,642 79,449 22.9 1.94 N/A N/A N/A N/A 
 2016 with 

TNC 

5,559,412 266,393 105,377 20.9 2.12 269,151 108,134 20.7 2.21 

Percent Change from 2010 
   Based on Modeled Travel Time Based on Observed Travel Time 
 

Area 

Type 

 

Scenario 

Vehicle 

Miles 

Traveled 

Vehicle 

Hours 

Traveled 

Vehicle 

Hours 

of 

Delay 

Average 

Speed 

(mph) 

Plannin

g Time 

Index 

80 

Vehicle 

Hours 

Travele

d 

Vehicle 

Hours 

of 

Delay 

Average 

Speed 

(mph) 

Plannin

g Time 

Index 

80 

Regiona

l Core 

2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2016 No TNC 13% 20% 32% -5% 9% N/A N/A N/A N/A 
 2016 with 

TNC 

26% 62% 127% -22% 39% 64% 132% -23% 38% 

Central 

Business 

District 

2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2016 No TNC 8% 14% 25% -6% 7% N/A N/A N/A N/A 

2016 with 

TNC 

16% 37% 73% -15% 18% 42% 91% -18% 33% 

Urban 

Business 

2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2016 No TNC 7% 13% 25% -5% 7% N/A N/A N/A N/A 
 2016 with 

TNC 

12% 24% 52% -10% 14% 26% 58% -11% 19% 

Urban 2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 
 2016 No TNC 5% 7% 10% -1% 2% N/A N/A N/A N/A 
 2016 with 

TNC 

8% 12% 22% -4% 5% 11% 19% -3% 4% 

Total 2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 
 2016 No TNC 7% 12% 22% -4% 6% N/A N/A N/A N/A 
 2016 with 

TNC 

13% 30% 62% -13% 15% 31% 69% -14% 21% 

 

 Table 10 shows the network performance metrics segmented by area type. Figure 

14 shows a map of the area types. The metrics show that the effect of TNCs is biggest in 

the densest area types. There are six area type categorizations mapped in this figure, 

namely, the regional core, central business district, urban business district, urban, 

suburban and rural. For example, in the regional core, the model shows that VHD is 

112% higher in 2016 than in 2016, compared to only 13% higher for the no-TNC 

counterfactual. Table 11 documents the results of the analysis segmented by the three 

facility types. It is observed that the facility type arterials (both major and minor) are the 

most severely affected functional classifications when the increase in travel time is 
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compared both to the base year as well as the counterfactual 2016 scenarios. This 

implication also falls in accordance with the existing research which designates arterials 

as the most common hotspots for pickups and Drop-offs and general TNC presence. 

 

Figure 14  Area type map on SF-CHAMP links 

 

 

Table 11 Modeled and Observed Network Performance Metrics by Facility Type and 

Percent Changes from the Base Year 

Network Performance Metrics 
   Based on Modeled Travel Time Based on Observed Travel Time 

 

Facility 

Type 

 

Scenario 

Vehicle 

Miles 

Traveled 

Vehicle 

Hours 

Travele

d 

Vehicle 

Hours 

of 

Delay 

Average 

Speed 

(mph) 

Plannin

g Time 

Index 

80 

Vehicle 

Hours 

Travele

d 

Vehicle 

Hours 

of 

Delay 

Average 

Speed 

(mph) 

Plannin

g Time 

Index 

80 

Freeways 

& 

Ramps 

2010 2,201,707 47,332 13,368 46.5 1.77 46,651 12,687 47.2 1.75 

2016 No TNC 2,347,348 51,807 15,602 45.3 1.85 N/A N/A N/A N/A 

 2016 with 2,416,922 54,503 17,233 44.3 1. 91 56,401 19,132 42.9 2.16 

Table 11, continued” on 2nd page of table 
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TNC 

Major 

Arterials 

2010 1,943,506 102,528 33,687 19.0 1.91 102,817 33,976 18.9 1.94 

2016 No TNC 2,102,905 117,620 42,919 17.9 2.05 N/A N/A N/A N/A 
 2016 with 

TNC 

2,241,568 139,511 59,512 16.1 2.33 139,680 59,682 16.0 2.29 

Minor 

Arterials 

2010 524,855 37,767 12,639 13.9 1.93 37,520 12,392 14.0 1.87 

2016 No TNC 560,389 41,534 14,700 13.5 2.01 N/A N/A N/A N/A 
 2016 with 

TNC 

605,131 49,020 20,006 12.3 2.26 49,578 20,564 12.2 2.23 

Collector

s & 

Locals 

2010 253,381 17,765 5,170 14.3 1.69 17,698 5,103 14.3 1.72 

2016 No TNC 270,194 19,681 6,229 13.7 1.76 N/A N/A N/A N/A 

 2016 with 

TNC 

295,791 23,360 8,625 12.7 1.93 23,492 8,757 12.6 1.98 

Total 2010 4,923,449 205,391 64,863 24.0 1.83 204,686 64,158 24.1 1.83 
 2016 No TNC 5,280,836 230,642 79,449 22.9 1.94 N/A N/A N/A N/A 
 2016 with 

TNC 

5,559,412 266,393 105,377 20.9 2.12 269,151 108,134 20.7 2.21 

Percent Change from 2010 
   Based on Modeled Travel Time Based on Observed Travel Time 

 

Facility 

Type 

 

Scenario 

Vehicle 

Miles 

Traveled 

Vehicle 

Hours 

Travele

d 

Vehicle 

Hours 

of 

Delay 

Average 

Speed 

(mph) 

Plannin

g Time 

Index 

80 

Vehicle 

Hours 

Travele

d 

Vehicle 

Hours 

of 

Delay 

Average 

Speed 

(mph) 

Plannin

g Time 

Index 

80 

Freeways 

& 

Ramps 

2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2016 No TNC 7% 9% 17% -3% 5% N/A N/A N/A N/A 

 2016 with 

TNC 

10% 15% 29% -5% 8% 21% 51% -9% 24% 

Major 

Arterials 

2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2016 No TNC 8% 15% 27% -6% 8% N/A N/A N/A N/A 
 2016 with 

TNC 

15% 36% 77% -15% 22% 36% 76% -15% 18% 

Minor 

Arterials 

2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2016 No TNC 7% 10% 16% -3% 4% N/A N/A N/A N/A 
 2016 with 

TNC 

15% 30% 58% -11% 17% 32% 66% -13% 19% 

Collector

s & 

Locals 

2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2016 No TNC 7% 11% 20% -4% 4% N/A N/A N/A N/A 

 2016 with 

TNC 

17% 31% 67% -11% 14% 33% 72% -12% 15% 

Total 2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 
 2016 No TNC 7% 12% 22% -4% 6% N/A N/A N/A N/A 
 2016 with 

TNC 

13% 30% 62% -13% 15% 31% 69% -14% 21% 
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2.7 Discussion 

Our results show higher VMT and more congestion in the 2016 TNC scenario 

than in the no-TNC counterfactual. These results are consistent with the subset of TNC 

rider surveys that were able to assist in drawing a conclusion about the net VMT effect 

of TNCs (Henao 2017; Gehrke, Felix and Reardon 2018), and they provide 

complementary evidence to the subset of surveys that were inconclusive regarding the 

net effect of TNCs on VMT (Rayle et al. 2016; Clewlow and Mishra 2017). The results 

of this study are also consistent with the most recent findings in New York that TNCs 

add VMT and increase congestion (Shaller 2017). 

2.7.1 Comparison to existing literature 

Our findings differ from the conclusions of several other studies (Martinez and 

Viegas 2017; Feigon and Murphy 2016; Feigon and Murphy 2018; Li, Hong and Zhang 

2016; City of New York 2016). The relationship between the findings of this research 

and those of these other mentioned studies are discussed below. 

A study by Li, Hong and Zhang finds “reasonable evidence that the entry of Uber 

significantly decreases traffic congestion in the urban areas of the U.S.” (Li, Hong and 

Zhang 2016). This study estimates models of the change in annual congestion in 

metropolitan areas from 1982 to 2014 as measured by the Urban Mobility Report 

(Schrank, Eisele, Lomax and Bak 2015). It introduces a binary variable into the model 

based on the year of Uber’s entry into each market and uses the negative coefficient 

estimate as the basis for their conclusion. There are two issues with this approach. First, 

it does not reflect spatial detail in the distribution of TNCs, which are heavily 

concentrated in downtown areas, so the aggregate nature of the study may obscure the 
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underlying effect. Second, it does not capture the quantity of TNC use, which varies 

between cities and continues to grow after entering a market. This study does better on 

both accounts. 

The City of New York (2016) used New York’s travel demand model to develop 

2010 and 2020 VMT estimates, and examined e-dispatch trip records in comparison to 

those total VMT estimates. They based their conclusion that TNCs did not drive the 

recent increase in congestion on a projection that TNCs largely substitute for yellow 

taxi trips, and on a lack of evidence for congestion effects associated with PUDO. The 

results show that, at least in San Francisco, substitution for taxis and cars only offsets a 

portion of the TNC volume, and they provide evidence of a PUDO effect. 

Simulations, such as the “Portugal Study”, showing large benefits from ride-

splitting assume full participation and centralized optimization (Martinez and Viegas 

2017).  These assumptions do not reflect the way in which TNCs operate today. While 

the present data do not include vehicle occupancy, other survey data show a modest share 

of ride-splitting (Henao 2017; Gehrke, Felix and Reardon 2018), and the current study 

results suggest that it is not sufficient to offset the ways in which TNCs add to 

congestion. Such simulations can be useful in establishing the positive potential of ride-

splitting if such a system were effectively managed to achieve socially desirable 

outcomes, but do not imply that TNCs will achieve those outcomes on their own. 

Two notable studies by Feigon and Murphy (2016 and 2018) promote the idea of 

TNCs as a complement to public transit. These studies base their conclusions primarily 

on data summaries generated from surveys of shared mobility users. Feigon and Murphy 

conclude that because TNC use is high in the evening and weekend periods when transit 
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service is less frequent, TNCs largely complement public transit and enhance urban 

mobility. However, their own data show (Feigon and Murphy 2018), and ours confirm, 

that TNC use is also high during the peak periods when congestion is worst and transit 

service is frequent. Feigon and Murphy find that a greater use of shared modes is 

associated with more frequent transit use (2016). However, this finding should not be 

taken to imply a directional relationship, as it could be that frequent transit users are 

likely to switch some trips to TNC, adding traffic to the roads. Feigon and Murphy also 

note that TNC use is associated with decreases in respondents’ vehicle ownership and 

private vehicle trips. 

While this may be true for specific users, no aggregate changes were observed in 

vehicle ownership in San Francisco between 2010 and 2016. Further, this finding only 

accounts for the subtraction of private vehicle trips, not the addition of TNC vehicle trips. 

The results of this study indicate that the net effect of TNCs is to add more vehicles to the 

road. 

2.7.2 Limitations 

Some limitations of this study are worth being cognizant of and are addressed in 

this section. 

1. The analysis relies on VDFs that are limited in their ability to capture the underlying 

complexity of traffic flow (Chiu et al. 2011). They should be viewed as a means of 

understanding the aggregate relationships observed in the data, not of the expected 

operations at a specific location. 

2. While the predicted background traffic changes account for several important control 

variables, there remains a risk that the present results are confounded by another 
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factor. For example, this analysis controls for demographic and socioeconomic 

changes over this period, but like all travel models, SF-CHAMP assumes that the 

relationship between those inputs and the resulting travel behavior remains stable. If 

there are major behavioral changes over this period, it could affect the result. 

Similarly, some have hypothesized that growing freight and commercial vehicle 

traffic, attributable to the rise in e-commerce (Pettersson, Hiselius and Koglin 2018, 

Uber spokespeople 2018), may be an important contributor to growing congestion. 

SF-CHAMP accounts for the growth in delivery trucks and freight traffic as per the 

standard increase in demand of these services generated by the growing population 

and employment. Whether delivery trucks themselves are responsible for the growth 

in congestion cannot be measured specifically since data encompassing this mode of 

transport is not available and is outside the purview of this study. It is assumed that 

this effect is accounted for in the background traffic growth. One additional thing to 

keep in mind is that the empirical study implied that the most severe worsening in 

congestion is observed in the core of the city. This is reasonable since this area was 

the most congested to begin with and thus lies on the extreme right and exponential 

area of the volume delay curve. Presence of Commercial Vehicle Loading Zones 

(CVLZs) are the norm in this part of the city and it is very uncommon, not to 

mention, impractical/very challenging, for delivery trucks to park anywhere other 

than these designated zones in this part of the city. CVLZs are present in most arterial 

roadways within the city, which is why it is found safe to assume that their 

contribution to increasing congestion in the city is not underestimated. This analysis 

reflects growth in truck travel associated with growing employment, but it does not 
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account for structural changes such as a large shift from in-person to online shopping. 

Such a shift could increase delivery truck volumes, but decrease personal shopping 

trips (Petterson, Hiselius and Koglin 2018). The net effect of this trade-off is not 

clear, and depends on factors such as how efficiently the delivery vehicle can chain 

multiple deliveries together, what time-of-day the different trips would occur, and 

whether the deliveries are to commercial locations in the downtown area or to less 

congested residential areas. Unfortunately, the commercial vehicle data necessary to 

evaluate that effect is found lacking.  

As the possibility of other uncontrolled factors are considered, it is worth keeping 

in mind a few aspects of this research. To have an effect, any uncontrolled factors 

must be different between 2010 and 2016. Also, these estimation results show that 

congestion is growing more than expected specifically on the links and in time 

periods with high levels of TNC activity. The most problematic factors would be 

those that are spatially and temporally correlated with TNCs, occurring on those same 

links in the same time periods. 

3. The analysis presented here is specific to a single city with a dense urban core and a 

rich transit system. The data show that TNC use is heavily concentrated in the densest 

portion of that city, consistent with evidence from other cities (Feigon and Murphy 

2018). While one may expect similar results in other comparable cities, further 

research is needed to confirm that expectation. Moreover, a framework supplemented 

with comparable datasets to carry out similar studies in areas not surrounded by a 

coastline and heavy traffic along it unlike San Francisco, has been attained. Given a 

background traffic modelling/estimating platform such as SF-CHAMP, a database of 
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TNC trips enlisting in-service and out-of-service TNC volumes, pickup and drop-off 

locations and volumes, consistent estimates of speed and travel time reliability, this 

study can be replicated for similarly dense metropolitan cities. The effects of TNCs 

may be quite different in smaller cities, in less compressed roadway networks, less 

dense areas, or in places with very different combinations of populations, detour route 

options or regulatory environments. In such cases, it is expected that a vigorous 

activity-based model, such as SF-CHAMP, will be designed to be sensitive enough to 

respond to rerouting maneuvers that could potentially calm down extremely 

congested conditions.  

Several extensions would complement this research: better understanding the 

contributors to background growth, assessing the TNC effect on transit ridership, and 

considering how worsening congestion and travel time reliability affect transit 

operations. Finally, the study should be repeated elsewhere to understand how the 

results vary in cities of different sizes and compositions. 

2.8 Conclusions 

This study examines the effect of TNCs on traffic congestion and reliability in San 

Francisco. It is intended to adjudicate between competing arguments about whether 

TNCs decrease or increase congestion. 

The results show that the observed changes in travel time are worse than the 

background changes would predict. The estimated TNC volume and PUDO coefficients 

show that travel times get worse on roads with more TNC activity than on roads with less 
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TNC activity after controlling for background traffic changes. This result supports the 

hypothesis that TNCs increase congestion, at least in San Francisco. 

The results show some substitution between TNCs and other car trips, but that most 

TNC trips are adding new cars to the road. The estimated models show that TNC vehicles 

stopping at the curb to pick-up or drop-off passengers have a notable disruptive effect on 

traffic flow, especially on major arterials. 

The model is applied to estimate network-wide conditions for 2016 and for a 

counterfactual scenario that estimates what conditions would be in 2016 if there were no 

TNCs. Both are compared to a 2010 baseline, before TNCs. VMT, VHT and VHD 

increase by 13%, 30% and 62%, respectively, from 2010 to 2016. Without TNCs, those 

same metrics would have increased by 7%, 12% and 22%. Average speeds decrease by 

13%, compared to a 4% decrease without TNCs. TNCs are associated with worsening 

travel time reliability, thus requiring travelers to further buffer their travel times if they 

wish to consistently arrive on-time. These results lead us to conclude that TNCs are the 

biggest factor driving the rapid growth of congestion and deterioration of travel time 

reliability in San Francisco between 2010 and 2016, exceeding the combined effects of 

population growth, employment growth and network changes. These findings are of 

interest to transportation planners, to policy makers, and to the general public in San 

Francisco and other large cities. It is in the public interest that decisions about the 

regulation of TNCs, the allocation of curb space and right-of-way, and the integration of 

new mobility services with existing transit operations be based on independent analysis 

as presented here. 
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CHAPTER 3. THE MODEL-BASED VALIDATION STUDY 

 

3.1 Overview 

In this section, the research detailed in the preceding chapter has been built upon 

to further decompose the factors contributing to the rapid growth of congestion in San 

Francisco between 2010 and 2016. Following a review of the possible explanations for 

growing congestion, each of them is evaluated by conducting a series of controlled 

experiments using the regions travel demand model, SF-CHAMP. In doing so, Axelrod’s 

model of simulation as a “third way of doing science” was followed (Axelrod 2006). As 

mentioned in the previous chapter, to evaluate the effect of TNCs, an observed TNC trip 

table derived from data scraped from the Application Programming Interfaces (APIs) of 

two TNCs (Cooper et al. 2018) had been incorporated. This section builds upon the 

results of the previous section which was an assessment of the TNCs’ effect on 

congestion by considering TNCs’ substitution with other modes in a more direct and 

thorough fashion, by considering diversion effects within the network, and by 

decomposing the factors affecting congestion in more detail. In that chapter, it was 

established that congestion increased sharply between 2010 and 2016 due to factors not 

solely limited to the conventional drivers of congestion. While it was inferred that a rise 

in congestion and travel time was inevitable between the two study years due to the rapid 

increase in both population and employment in this post-recession period of study, it was 

also proven that not all of the decline in network performance can be attributed to these 
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typical factors of congestion growth alone. The analysis detailed in chapter 2 empirically 

estimated the increase in total vehicle hours traveled in a counterfactual 2016 scenario to 

be about 12% as compared to base year (2010) conditions. The observed increase in same 

was about 31% in 2016 and the modelled increase in VHT in 2016 was about 30%. 

Similar differences between the year 2010, counterfactual 2016 and observed (along with 

modelled conditions for 2016) 2016 were observed for other performance measures like 

average speed, vehicle hours of delay and planning time indices as well. This chapter 

aims to explain the staggering difference between the actual (both modelled and 

observed) conditions in 2016 and that modeled for the counterfactual scenario while also 

attempting to unravel the distinct contributions of the three conventional factors of 

congestion growth: population, employment and changes in network that make up the 

12% increase in the no-TNC scenario. The results of this study aim to provide 

transportation planners and policy makers with a better understanding of the problem, so 

they can more effectively evaluate and manage congestion.  

3.2 Possible Causes 

 There are a number of possible explanations for the causes of increased traffic 

congestion over this period. The focus here is on the change between t h e  two 

study years, allowing cross- sectional factors, such as different urban forms or different 

population compositions that may be important in describing congestion in different 

cities to be discounted unless they are assumed to have changed over the analysis 

period. The factors that are reasonably thought to have changed apart from the variable of 
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interest in this study, ‘TNCs’, are described below, drawing, where appropriate, from 

relevant literature. 

3.2.1 Socioeconomic Factors 

 

It is well-established that levels of congestion and vehicle miles traveled are 

related to socioeconomic factors, including population, employment and household 

income (Marshall 2016; Chang, Lee, and Choi 2017; Bastian, Börjesson, and Eliasson 

2016; Stapleton, Sorrell, and Schwanen 2017). This is logical as more people living in an 

area, going to work, and going shopping or to socialize should generate more vehicle 

demand and more congestion, although the effect is not necessarily linear as factors such 

as density and the built environment are at play as well (Ewing and Cervero 2010). In 

San Francisco between 2010 and 2016, median household income increased from 

$79,000 to $104,000 in 2016 dollars (U.S. Census Bureau, n.d.). This sharp increase in 

income also signal a considerable rise in population and employment within the city. 

During the study period, population grew from 805,770 to 876,103 (U.S. Census Bureau, 

n. d.), whereas number of jobs in the county increased from 545,000 in 2010 to 703,000 

in 2016 (Bureau of Labor Statistics, n. d.) . 

From a policy perspective, congestion is sometimes viewed as an indicator of 

success because of its correlation to economic factors (Marshall 2016; Mondschein and 

Taylor 2017). Hence, while it is clearly desirable to minimize congestion, it should not 

be sought to achieve that goal simply through lower economic performance. Therefore, 

it is important to understand and account for the share of the growth in congestion that 

is attributable to these socioeconomic factors versus other factors over which planners 

may be able to exert more control, as is done in this section of the research study. 
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3.2.2 Road and Transit Network Changes 

Changes to the road and transit networks are expected to affect the level of 

congestion, with more arterial capacity cross-sectionally associated with less congestion 

(Marshall 2016), although capacity increases are generally viewed to be at least partially 

offset by induced demand (Cervero 2002; Kavta and Goswami 2018; Litman 2018). 

Similarly, increased transit service can be expected to reduce congestion (Aftabuzzaman 

2011; Nguyen, Currie, and Young 2015). 

There are several relevant transportation network changes in San Francisco over 

this period, including the reconstruction of the Presidio Parkway, the rollout of the Muni 

Forward transit improvements, the introduction of turn restrictions on Market Street, and 

a number of “road diet” projects (SFCTA 2017; SFMTA 2017). The road and transit 

expansion projects are expected to reduce congestion, the net effect of the turn 

restrictions is not clear, and the road diets are worth considering as a potential source of 

increased congestion. Road diets are reconfigurations of streets that reduce car capacity, 

often with corresponding improvements to add bicycle lanes, improve conditions for 

pedestrians, and slow travel speeds (Burden and Lagerwey 1999). Several studies have 

considered livability enhancements associated with road diets (Sohn 2011), and found 

positive safety benefits (Huang, Stewart, and Zegeer 2002; Pawlovich et al. 2006; Noland 

et al. 2015). Their effect on travel times has been found to be modest, and 

sometimes insignificant (Burden and Lagerwey 1999; Noland et al. 2015; Figliozzi and 

Glick 2017). These road diets and other network changes in this analysis are accounted 

for to examine their effect on congestion in the context of San Francisco. 
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3.2.3 Non-Recurring Congestion 

Some of the literature on the causes of congestion focuses on distinguishing 

between recurring and non-recurring congestion (Cambridge Systematics, Inc. and Texas 

Transportation Institute 2005; Soltani-Sobh et al. 2017). These studies break out the 

portion of congestion due to recurring causes such as capacity constraints and signal 

timing, versus those that vary from day to day, such as bad weather, traffic incidents and 

work zones, although the magnitude of the effect is based on a limited number of 

corridors and varies dramatically between the studies. 

This section of the analysis focuses primarily on recurring congestion, as 

measured by average weekday travel speeds. It does, however, implicitly consider non-

recurring congestion through the use of travel time reliability metrics. Travel time 

reliability is a measure of the day-to-day variation in travel time, and is affected by the 

non-recurring factors described above. As recurring congestion increases, traffic flow 

becomes less stable and travel times can be subject to large increases given a minor 

disruption. Recent research explored this issue, and developed a methodology to estimate 

travel time reliability as a function of the travel time index (TTI), which is the ratio of the 

average congested travel time to the free flow time (Cambridge Systematics, Inc. et al. 

2012). The locally estimated reliability functions are applied based on travel time and 

area type from Chapter 2 to generate travel time reliability metrics for unravelling the 

effect of the different contributors to traffic congestion in this section of the analysis. 

3.2.4 Magnitude of TNC operations in San Francisco 

Profiling TNC activities in San Francisco (San Francisco Count Transportation 

Authority 2017) found that there were about 170,000 TNC vehicle trips on a typical 
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weekday, which is about 15% of intra-San Francisco vehicle trips. An average TNC trip 

is 2.6 miles long, and the trips are heavily concentrated in the densest and most congested 

parts of San Francisco. On weekdays, TNC trips follow a time-of-day 20 distribution 

with peaks during the AM and PM peak periods. About 20% of TNC vehicle miles 

traveled (VMT) are out-of-service or deadhead miles in which the vehicle is traveling 

with no passenger beyond the driver. In addition, most TNC drivers come from outside 

San Francisco, adding more VMT the network as they drive into the city to find 

passengers. Data on the growth of TNCs in San Francisco is not directly available, but 

worldwide, the cumulative rides booked on Uber and Lyft grew from 200 million in 2014 

to over 2 billion in 2016 (Dogtiev 2018). In New York, the number of trips served per 

month doubled annually between 2014 and 2016 (Shaller 2017). 

Some have argued that TNCs are likely to reduce traffic congestion by 

encouraging ridesharing, complementing transit, or enabling people to own fewer cars 

(Uber 2017; Zimmer 2016; Feigon and Murphy 2016, 2018).  However, as established 

earlier, several factors compete with these and were demonstrated to cause TNCs to 

increase congestion, including deadheading and pick-up and Dropping-off maneuvers. In 

the previous chapter, it was found, through an empirical evaluation combining the 

scraped usage data with speed data from probe vehicles, that TNCs are a net contributor 

to increased congestion in San Francisco. Specifically, it was determined that vehicle 

hours of delay increased by 62% between 2010 and 2016 and that TNCs are responsible 

for two-thirds of that increase. In this section, some unanswered questions are assessed 

from the empirical study. First, the empirical evaluation only considered the contributions 

of TNCs versus every other conventional factor to increased congestion, whereas here, 
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these conventional factors are decomposed in more detail. Secondly, the empirical 

study’s consideration of TNCs substitution with other modes was implicit, finding that 

69% of TNC volumes are new traffic without considering which other modes those trips 

are drawing from. Here, that modal substitution has been broken out. Third, that study did 

not explicitly consider the effects of re-routing. One would expect that as traffic 

congestion becomes worse on main streets, a portion of traffic be diverted to parallel 

routes including local and collector streets. This follow-up analysis accounts for that 

possibility using a more detailed road network. Collectively, this model-based analysis 

serves to test the conclusions of the empirical study using a different methodology, and to 

provide more information that is detailed. 

3.3 Data and Methods 

 This analysis considers the change in congestion in San Francisco between 2010 

and 2016. This was achieved using six scenarios, with each building incrementally upon 

the previous scenario. Table 12 shows a summary of these six scenarios, and the inputs 

used for each. 

Table 12  Summary of Scenarios Tested to unpack the Effects of Background Factors 

and Compare them to TNCs 

 

Scenario Network Population Employment TNC 

Volumes 

TNC 

PUDO 

Notes 

2010 Base Case 2010 2010 2010 No No 2010 Base 

Conditions 

Network Change 2016 2010 2010 No No  

Population Change 2016 2016 2010 No No  

Employment 

Change 

2016 2016 2016 No No No-TNC 

counterfactual 

TNC Volume 2016 2016 2016 Yes No  

TNC PUDO 2016 2016 2016 Yes Yes Best estimate -actual 

2016 conditions 
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Each scenario was tested using San Francisco’s SF-CHAMP travel demand model 

(Jonnalagadda et al. 2001; Zorn, Sall, and Wu 2012). SF-CHAMP is an activity-based 

travel demand (Bowman and Ben-Akiva 2000; Davidson et al. 2007) model that 

simulates the daily movements of individual travelers for a synthetic population in the 9-

county San Francisco Bay Area. It has a long history of being successfully used to 

evaluate a range of policy and planning scenarios (Castiglione et al. 2006; Sall et al. 

2010; Brisson, Sall, and Ang-Olson 2012). The version 5.2.0 is used in this study, which 

was calibrated to 2010 conditions and does not, on its own, include TNCs as a mode. 

Instead, TNCs are accounted for, as described later in this chapter. The remaining inputs, 

including transportation networks, population and employment data are not forecasts, but 

have been updated to reflect actual 2010 and 2016 conditions. 

For each scenario, five network performance metrics are reported: vehicle miles 

traveled (VMT), vehicle hours traveled (VHT), average speed, vehicle hours of delay 

(VHD) and planning time index 80 (PTI80). VMT and VHT are standard metrics. 

Average speed is in miles per hour (mph) and calculated as VMT / VHT. Delay is 

defined as the difference between congested travel time and what the travel time would 

be under free-flow conditions. PTI80 is a measure of travel time reliability defined as the 

ratio of the 80th percentile travel time to the free-flow travel time. It indicates how much 

extra time a traveler must plan on to arrive on-time 80% of the time. Following is a 

discussion of additional details related to how each of the six scenarios are modeled. 
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3.3.1 2010 Base Case 

This first base conditions for the year 2010, assuming no TNCs are present. This 

serves as a constant comparison scenario against which all subsequent traffic 

assignments and their resultant performance statistics are measured. This scenario was 

run using the best available estimate of 2010 socioeconomic conditions, and with a set of 

networks that are consist with the 2016 networks except for project-related changes. 

3.3.2 Network Change 

Starting from the 2010 base case, this scenario incorporates the road and transit 

network changes that occurred between by 2016, while retaining the 2010 socioeconomic 

inputs and assuming no TNCs. This also includes any accounted prolonged construction 

activities on the network during the study period. Any potential impacts on lane 

obstructions, lane closures or turn restrictions introduced in this period as a result of these 

factors are accounted for in this scenario. 

3.3.3 Population Change 

 Starting from the network change scenario, the population change scenario 

accounts for the growth in population and the change in demographics that occurred 

between 2010 and 2016. Because SF-CHAMP operates using a synthetic population 

(Beckman, Baggerly, and McKay 1996; Müller and Axhausen 2011), it was necessary to 

re-generate that synthetic population before running the model. This was done using 2016 

totals for the number of households in each traffic analysis zone (TAZ), as well as 2016 

control totals for household size, income and demographics, but the 2010 control totals 

for the number of workers per household were retained. This was done to separate out the 

effect of the growing population and changing demographics from the effect of those 
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same people having a higher level of employment and therefore traveling more frequently 

to and from work. 

3.3.4 Employment Change 

Starting from the population change scenario, the employment change scenario 

accounts for the change in employment between 2010 and 2016. To do this, the 2016 

employment in each TAZ by industry was incorporated, with those employment 

estimates based on a combination of data from state unemployment insurance records and 

city Planning Department data. The synthetic population was also regenerated to include 

2016 control totals for workers per household, reflecting a higher employment rate within 

the population. 

3.3.5 TNC Volume 

Starting from the employment change scenario, the TNC volume scenario 

accounts for the net effect of adding TNC vehicles to the network. There are three related 

components to this effect. Deadhead or out-of-service TNC vehicles purely add traffic to 

the network. In- service TNC trips (those carrying a passenger) also add traffic to the 

network, but if they substitute for taxi or car trips, there would be a corresponding 

reduction in traffic generated by those modes. If in-service TNC trips substitute for 

transit, walk or bike trips, then there is no corresponding reduction in traffic by other 

modes. The same is true if the TNC trips represent induced demand, meaning that they 

would not have occurred if TNCs did not exist. To understand the net effect of in-service 

TNC trips on traffic volumes, it is necessary to estimate which modes those trips would 

have used, if TNC were not available. SF-CHAMP does not, on its own, account for 

TNCs as a travel mode. One important reason for this is that data were not previously 
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available with which to calibrate a model. For this study, the newly available scraped 

TNC data to evaluate the TNC effects is used. 

3.3.5.1 Processing TNC volume data 

For this study, those data was further processed to associate out-of-service TNC 

volumes with directional links in the SF-CHAMP road network. The said data were also 

processed to create an observed TAZ-to-TAZ trip table of TNC trips. Both represent 

average weekday, non-holiday conditions and are limited to trips with both ends in San 

Francisco. The TNC data were collected over a six-week period in November and 

December 2016. 

SF-CHAMP uses a multi-class user-equilibrium traffic assignment for each of 

five times-of- day (TODs): 6:00-9:00 AM, 9:00 AM-3:30 PM, 3:30 PM-6:30 PM, 6:30 

PM-3:00 AM and 3:00-6:00 AM. Both the TNC out-of-service volumes and in-service 

trip tables were segmented by these same five TODs. The out-of-service TNC vehicles 

are accounted for by including them as a pre-loaded volume in the traffic assignments. 

The TNC in-service vehicles were accounted for by including the trip tables as an 

additional class in the traffic assignments. To estimate how much non-TNC vehicle 

demand should be reduced due to substitution with TNC trips, some additional 

processing was conducted as described below. Because the geographic scope of the data 

collection method used was limited to the San Francisco County, only TNC trips with 

both ends in San Francisco were considered for the purpose of this research. 

Prior to carrying out the traffic assignment, the simulated trips from SF-CHAMP 

are compiled into TAZ-to- TAZ person trip tables, segmented by mode and TOD. This 

was begun by converting the observed in-service TNC vehicle trip tables to person trips, 

assuming an average occupancy of 1.49 passengers (excluding the driver) per vehicle. 
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This average occupancy is calculated from the occupancy rates reported in a survey of 

TNC users in Boston (Gehrke, Felix, and Reardon 2018). The study data of this 

research do not reveal the demographic or socio-economic characteristics of TNC users, 

nor do they directly reveal what TNC users otherwise would have done if TNC were 

unavailable. Therefore, a simple assumption is  made to estimate what otherwise would 

have happened: it is assume that within a zone pair and a TOD, the introduction of a 

new mode (TNC) draws from all other modes proportionally to their existing mode 

share. This is equivalent to the well-known independence of irrelevant alternatives (IIA) 

property of the multinomial logit model. For example, if a zone pair previously 

contained 90 car trips and 10 transit trips, and the data for this research show 10 TNC 

person trips for that zone pair, it is assumed that 9 of those trips substitute for car, and 

one substitutes for transit, leaving 81 car trips, 9 transit trips and 10 TNC trips for the 

same total person trips. If the total TNC person trips in a zone pair exceeds the total 

number of trips on other modes, it is not allowed that the non-TNC trips turn negative. 

Instead, it is assume that TNC trips first substitute for all available non-TNC trips, and 

any excess TNC trips are added as “non-shifted” trips. These non-shifted TNC trips 

could theoretically represent induced demand, but it is also possible that they occur 

simply because of imperfect data in either the modeled trip tables or the TNC trip tables 

in a detailed zone system. 

The end result of this process is a modified set of person trip tables by mode and 

TOD, with fewer trips than the original trip tables due to some of those trips shifting to 

TNC. Table 13 summarizes the change in intra-San Francisco person trips that is output 

from this process. The results show that 26% of TNC trips substitute for car trips, 1% 
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substitute for taxi, 14% for transit and 44% for walk or bike. The remaining 15% of TNC 

trips are “non-shifted” and are not substituted for another mode. In terms of the change to 

existing trips by mode, the results show that introducing TNCs reduces the number of car 

trips by 5.1%, taxi trips by 8.1%, transit trips by 6.1% and walk and bike trips by 7.5%. 

These results are based on the existing mode shares in those zone pairs at the appropriate 

time-of-day, so they suggest that TNCs are more likely to occur in zone pairs with a high 

walk, bike or transit mode share than car. 

Table 13. Change in Intra-San Francisco Person Trips 
 
 

Table 13  Change in Intra-San Francisco Person Trips 

 

Mode Person Trips 

without TNCs 

Person Trips 

with TNCs 

Difference Percent 

Difference 

Percent of 

TNC 

Trips 

Car 1,269,769 1,205,143 -64,626 -5.1% 26.1% 

Taxi 33,008 30,334 -2,674 -8.1% 1.1% 

Transit 556,407 522,492 -33,916 -6.1% 13.7% 

Walk & Bike 1,440,941 1,332,261 -108,680 -7.5% 44.0% 

TNC 0 247,267 247,267 N/A 100.0% 

Total Trips 3,300,125 3,337,496 37,371 1.1% N/A 

 

The person trip tables are converted to vehicle trips by dividing by the average 

occupancy: 1 for drive alone, 2 for shared ride 2, and 3.5 for shared ride 3+. The original 

TNC trip table is in vehicle trips already and does not require further conversion. Table 

14 shows the change in vehicle trips when TNCs are introduced using this method. 

Within San Francisco, 166,000 TNC trips are added to the network. This is partially 

offset by a reduction of 48,000 car trips and 1,600 taxi vehicle trips. These results suggest 

that about 70% of TNC trips are new vehicle trips that add traffic to the network, adding 

a net of 116,000 vehicle trips to the network, which is a 12% increase in intra-San 

Francisco vehicle trips. 
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Table 14  Change in Intra-San Francisco Vehicle Trips 

 

Mode Vehicle Trips 

without TNCs 

Vehicle Trips 

with TNCs 

Difference Percent 

Difference 

Percent of 

TNC 

Trips 

Car 946,197 897,721 -48,476 -5.1% 29.2% 

Taxi 19,884 18,273 -1,611 -8.1% 1.0% 

TNC 0 165,951 165,951 N/A 100.0% 

Total Trips 966,082 1,081,945 115,863 12.0% 69.8% 

 

To generate the estimates for the TNC Volume scenario for the purpose of this 

research study, these modified car and taxi vehicle trip tables were assigned to the 

network, along with the TNC in-service vehicle trip table and the TNC out-of-service 

preloaded volumes. 

3.3.6 TNC Pick-ups and Drop-offs (PUDO) 

Starting from the TNC volume scenario, the TNC PUDO scenario also accounts 

for the disruptive effect of curbside TNC pick-ups and drop-offs on traffic flow. Past 

research has shown delivery trucks, taxis and TNCs stopping curbside to load or 

unload passengers or freight are important contributors to urban traffic congestion 

(Golias and Karlaftis 2001; Chiabaut 2015; Erhardt, Roy, Cooper, Sana, Chen and 

Castiglione in review). 

To account for this effect, the approach developed in Chapter 2 has been 

followed that converts each PUDO into passenger car equivalents using the capacity of 

the curb lane and the amount of time each PUDO blocks or disrupts traffic in the 

PUDO. The average duration coefficient estimated the average number of seconds that 

a PUDO blocks or disrupts traffic in the curb lane. This was assessed to be 145 seconds 

and 79 seconds in the previous chapter for major and minor arterials respectively (it 
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was found to be insignificant for collectors and local streets), which is what is plugged 

into the model when the network is preloaded using PUDO numbers for the said 

facility type(s). The higher values on higher-class roads suggest that it can take some 

time for traffic to recover to its pre-PUDO state on higher volume facilities. 

The TNC data allow for the pick-up location to be inferred based on where the 

driver accepts a ride and the drop-off location to be inferred based on where the vehicle 

becomes available again after serving a passenger. It is expected that the drop-off 

locations are more spatially accurate because the vehicle may drive some distance 

before picking up a passenger, although with a high density of TNCs as found in San 

Francisco, this distance is usually modest.  For this study, each PUDO in the observed 

TNC data is associated with a directional SF-CHAMP link by time-of-day. The above 

conversion is then applied to PCEs, and those PCEs are included as a ‘preload’ in the 

traffic assignments. These PCEs are counted for their effect on congested travel times, 

but not when tabulating the total traffic volume on the link. The results of this scenario 

represent the best conceivable estimates of actual 2016 conditions. 

3.4 Results 

 Table 15 shows the network metrics for the six tested scenarios. The first set of 

numbers 

shows the totals from each set of assignments, and the second set shows the change 

from the previous scenario. The third set of numbers shows the cumulative percent 

change relative to the 2010 base case, and the fourth set shows the percent of the total 
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change associated with each increment. These metrics are reported for all links in San 

Francisco, excluding centroid connectors, summed across the five times-of-day. 

 

Table 15  Network Performance Metrics for Tested Scenarios mentioned in Table 14 

 

Network Metrics 

Scenario Vehicle Miles 

Traveled 

Vehicle Hours 

Traveled 

Average 

Speed (mph) 

Vehicle Hours 

of Delay 

Planning 

Time Index 

80 

2010 Base Case 8,105,226 371,147 21.8 154,992 2.24 

Network Change 8,111,757 372,388 21.8 155,965 2.25 

Population Change 8,468,384 393,354 21.5 166,907 2.29 

Employment 

Change 

8,734,445 411,398 21.2 177,485 2.34 

TNC Volume 9,289,667 448,174 20.7 196,492 2.38 

TNC PUDO 9,292,047 453,359 20.5 201,343 2.42 

Change from Previous Scenario 

Scenario Vehicle Miles 

Traveled 

Vehicle Hours 

Traveled 

Average 

Speed (mph) 

Vehicle Hours 

of Delay 

Planning 

Time Index 

80 

Network Change 6,532 1,241 -0.1 973 0.01 

Population Change 356,626 20,966 -0.3 10,942 0.04 

Employment 

Change 

266,061 18,044 -0.3 10,578 0.06 

TNC Volume 555,223 36,776 -0.5 19,007 0.04 

TNC PUDO 2,379 5,185 -0.2 4,852 0.03 

Total Change 1,186,821 82,212 -1.3 46,352 0.18 

Percent Change from 2010 Base Case 

Scenario Vehicle Miles 

Traveled 

Vehicle Hours 

Traveled 

Average 

Speed (mph) 

Vehicle Hours 

of Delay 

Planning 

Time Index 

80 

Network Change 0% 0% 0% 1% 0% 

Population Change 4% 6% -1% 8% 2% 

Employment 

Change 

8% 11% -3% 15% 5% 

TNC Volume 15% 21% -5% 27% 7% 

TNC PUDO 15% 22% -6% 30% 8% 

Total Change 15% 22% -6% 30% 8% 

Percent of Total Change 

Scenario Vehicle Miles 

Traveled 

Vehicle Hours 

Traveled 

Average 

Speed (mph) 

Vehicle Hours 

of Delay 

Planning 

Time Index 

80 

Network Change 1% 2% 4% 2% 6% 

Population Change 30% 26% 19% 24% 21% 

Employment 22% 22% 22% 23% 31% 

Table 15, continued” on 2nd page of table 
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Change 

TNC Volume 47% 45% 37% 41% 23% 

TNC PUDO 0% 6% 17% 10% 17% 

Total Change 100% 100% 100% 100% 100% 

 

For the total effect of all changes, the results show VMT increasing by about 1.2 

million or 15%, VHT increasing by 82,000 or 22%, average speed decreasing by 1.3 

mph or 6%, and VHD increasing by 46,000 or 30%. They also show that travel times 

become less reliable over this period, as indicated by the PTI80 increase. 

 The results show that across all categories, TNC volumes are the largest 

individual contributor to increased traffic congestion, and network changes are the 

smallest individual contributor. Considering TNC volumes and PUDO together, TNCs 

are associated with 47% of the VMT increase, 51% of the VHT increase, 55% of the 

speed decrease and 51% of VHD increase. TNCs are associated with 41% of the 

increase in PTI80. Depending on the metric, one can summarize these results as TNCs 

being associated with about half of the increase in congestion over this period. 

The possibility was considered that these results may be affected by the order in 

which the scenarios are run as well. To test for this possibility, running select scenarios in 

a different order was attempted, and it was found that while the numerical results did 

change, the relative ordering of the contribution from each scenario remained the same. 

Also, the network metrics w e r e  c o m p a r e d  to an equivalent set of metrics 

calculated using observed travel times. One can only compare the 2010 Base Case and 

the TNC PUDO scenarios, each of which is the best possible estimate of actual 

conditions in their respective year given the research methodology of this study. The 

observed travel time data was sourced and used from the commercial vendor INRIX, 
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who derive their estimates from probe vehicle traces. The data are for non-holiday 

weekdays for the six-week period in 2016 when the TNC data were collected and the 

corresponding six-week period in 2010. They are filtered and processed in the same 

manner as in the previous chapter. The observed speed data are available on road 

segments known as traffic messaging channels (TMCs), which average about 3 city 

blocks in length and cover major roads in San Francisco. The comparison is therefore 

limited to network links that underlie TMCs, with observed speeds allocated to the 

underlying SF-CHAMP links. Modeled traffic volumes are used with both modeled and 

observed travel times for calculating VHT, VHD, average speed and PTI80. 

Table 16 shows the results of this modeled versus observed comparison. The 

comparison shows that the modeled speeds are 4% too slow in 2010, and 5% too fast in 

2016, and thus the model substantially underestimates the observed drop in speed 

between the two years. The equivalent is true of VHT. The model reasonably captures the 

observed VHD in 2016, but overestimates it in 2010, so underestimates the increase in 

VHD by 43%. Similarly, the model reasonably estimates PTI80 in 2016, but 

overestimates it in 2010, thus underestimating the degree to which reliability deteriorates. 

The changes are not uniformly distributed throughout the network or across times 

of day. A deeper dive is taken into how these changes vary over the time of day in the 

next chapter. Figure 15 shows the change in congested speed for each scenario, relative 

to the previous scenario, for four times-of-day. To make the plots more readable, the 

results are limited to segments associated with TMCs. 
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Table 16  Modeled vs Observed Network Performance Metrics for 2010 and 2016; 

Percent Changes from 2010 to 2016 for Links at SF-CHAMP level disaggregation 

 

Using Modeled Travel Times 

Scenario Vehicle Miles 

Traveled 

Vehicle 

Hours 

Traveled 

Average 

Speed (mph) 

Vehicle 

Hours of 

Delay 

Planning 

Time Index 

80 

2010 Base Case 5,476,943 226,437 24.2 90,103 2.07 

TNC PUDO 6,179,581 271,741 22.7 115,955 2.22 

Change 702,638 45,305 -1.4 25,852 0.15 

Using Observed Travel Times 

Scenario Vehicle Miles 

Traveled 

Vehicle 

Hours 

Traveled 

Average 

Speed (mph) 

Vehicle 

Hours of 

Delay 

Planning 

Time Index 

80 

2010 5,476,943 216,932 25.2 67,941 1.82 

2016 6,179,581 284,636 21.7 113,619 2.19 

Change 702,638 67,704 -3.5 45,678 0.37 

Percent Difference 

Scenario Vehicle Miles 

Traveled 

Vehicle 

Hours 

Traveled 

Average 

Speed (mph) 

Vehicle 

Hours of 

Delay 

Planning 

Time Index 

80 

2010 0% 4% -4% 33% 13% 

2016 0% -5% 5% 2% 1% 

Change 0% -33% -59% -43% -58% 

3.5 Discussion 

 Our analysis in this section examined the contributors to growing traffic 

congestion in San Francisco through a series of controlled experiments with a travel 

demand model. Four of the six scenarios tested were relatively straight-forward model 

runs. The remaining two scenarios, which considered the effect of TNC volumes and 

TNC PUDO required revisions to the standard modeling process to reasonably represent 

TNCs. 
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For the TNC Volume scenario, out-of-service TNCs were included as a preload in 

network assignment as mentioned before, and an observed TNC trip table was assigned 

for in-service TNCs. Modification of the existing trip tables was also required to account 

for trips that switched to TNCs, and it was done by assuming that the substitution to 

TNCs was proportional to the existing mode shares within a given zone pair and time-of-

day. The results of that analysis show that 27% of TNC person trips substitute for car or 

taxi trips, 58% substitute for walk, bike or transit trips, and 15% are added with no 

substitution for another mode. Past surveys of TNC users show that 43% to 61% of TNC 

trips substitute for transit or non-motorized modes or would not otherwise have been 

made (Rayle et al. 2016; Clewlow and Mishra 2017; Henao 2017; Gehrke, Felix, and 

Reardon 2018).  
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Figure 15  Change in Speed Compared to Incrementally Added Scenarios, by Time-of-Day; Color Red 

represents highest and most significant drops in speed, Yellow represents moderate drop in speeds while 

Green represents least pronounced drops in speed 
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The results for non-car substitution are within this range, but they exceed this 

range when the non-shifted trips are included. San Francisco is a dense city with a high 

non-car mode share, so it is logical for the non-car substitution to be higher, although a 

more sophisticated mode choice analysis may show a greater tendency to substitute with 

one mode or another. It makes sense that TNCs would substitute heavily for walk, bike 

and transit modes because TNC trips tend to be heavily concentrated in downtown areas 

(Feigon and Murphy 2018; Clewlow and Mishra 2017; Erhardt et al. in review) where 

non-car mode shares are highest. TNC trips also tend to be short, averaging 2.6 miles 

long (San Francisco Count Transportation Authority 2017), compared to an average trip 

length of 0.7 miles for walk, 2.3 miles for bike, and 9.8 miles for car (National 

Household Travel Survey 2009). For transit in San Francisco, the average trip length is 

2.3 miles for local bus, 2.7 miles for light rail, 13.5 miles for heavy rail, and 26.6 miles 

for commuter rail (National Transit Database 2016c, 2016b, 2016a). Due to the similar 

lengths, it is logical that they would substitute for bus trips while complementing longer 

rail trips (Clewlow and Mishra 2017; Mucci 2017; Graehler, Mucci, Erhardt 2019). 

When converted to vehicle trips, the study results show that 70% of in-service 

TNCs are new vehicle trips that add traffic to the roads. The empirical evaluation of 

TNCs in San Francisco found that the net effect of each additional TNC vehicle on a 

link contributed 0.69 PCEs to congestion, which is equivalent to adding one TNC 

vehicle partially offset by a subtraction of 0.31 other vehicles (Chapter 2). Most TNC 

drivers in San Francisco come from outside San Francisco (San Francisco Count 

Transportation Authority 2017), and it appears that they do so because there is high 

demand for TNCs in places with a high density of people who would otherwise be 
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without a car. As inferred from the empirical analysis of chapter 2, each such additional 

TNC vehicle can be potentially counted as adding almost 0.69 passenger car equivalent 

(PCE) to the network which would not have been present otherwise in addition to 

increasing vehicle miles traveled outside the city limits. That 0.69 estimate included 

both in-service and out-of-service TNCs, and this estimate is reasonable in comparison. 

When applied to 2010 and 2016 conditions, the model underestimates the observed 

increase in congestion. One explanation for this difference may be that it reflects 

limitations of the model’s volume-delay functions (VDFs). If the VDFs are not steep 

enough they may show modest travel time degradation at too low of a volume-capacity 

ratio, and travel times may not increase fast enough once the volume-capacity ratio 

passes a certain critical threshold. Such a shape would be consistent the observations 

here where the base year speeds show too much congestion, but that congestion does not 

increase fast enough. 

Much attention has been given to developing better volume delay functions for 

traffic assignment models, and rightly so given the challenges in balancing the desire to 

match speeds, traffic volumes and to achieve a stable model convergence (Akcelik 1991; 

Dowling and Skabardonis 2008; Cetin et al. 2012; Foytik, Cetin, and Robinson 2013; So 

Jaehyun (Jason), Stevanovic Aleksandar, and Ostojic Marija 2017; Slavin, Lam, and 

Nandur 2015). The recalibration of these VDFs is left as a future improvement, as it is 

taken for now as a limitation of the analysis. Although the VDFs used by SF-CHAMP do 

include scaling factors for high density roads (the parameter δ), if the shape of the VDFs 

is the source of the difference between the modeled and observed travel times, then one 

would expect the absolute contribution of all contributors to growing congestion to be 
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higher than is reported here. This difference between modeled and observed changes 

could also be explained by some other change that is not accounted for in this analysis, 

such as the effect of TNC trips with one or both ends outside San Francisco city limits. 

A second limitation is that an assumption that  TNCs  Dr.aw from  all  other 

modes  within  a zone pair and  time of day proportionally to the existing mode shares 

has been relied upon. It is reasonable to expect that TNC users are more likely to 

substitute for some modes than others, but no data has been found to know which, or by 

how much. Therefore, it would be valuable the travel survey data sufficient to estimate a 

full set of mode choice models in order to better understand this substitution. Given the 

rapid growth of TNCs, that data collection effort would need to be contemporary, and it 

may require a design to oversample TNC users in order to capture sufficient observations 

for model estimation. Finally, it would be valuable to extend this analysis to other cities, 

subject to data availability, to understand how the results may vary based on the size and 

other characteristics of the city. 

When applied to the set of six scenarios, the study results show that network 

changes result in a small increase in congestion, which is consistent with past evaluations 

of the effect of road diets on car travel times (Noland et al. 2015; Figliozzi and Glick 

2017). Population growth and employment growth both contribute to increased 

congestion, again consistent with other evidence (Marshall 2016; Chang, Lee, and Choi 

2017). The present study results show that TNC volumes contribute about half of the 

VMT increase over this period and are associated with 37% of the decrease in  speed. 

TNC  PUDO do  not add  additional  vehicle miles, but  they are associated with 

another 1% of the speed decrease over this period. Both contribute to worsening 
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reliability. While the precise magnitude differs due both to a different methodology and a 

broader set of links considered, these results confirm the recent empirical assessment that 

TNCs are the biggest single contributor to increasing congestion in San Francisco 

(Erhardt et al. in review). These results consistent with a portion of research in chapter 2 

showing that TNCs contribute to increased traffic and congestion and other existing 

literature (Henao 2017; Henao 2018; Schaller 2017; Gehrke, Felix, and Reardon 2018; 

Schaller 2018) whereas differ from claims that TNCs primarily complement transit and 

reduce congestion (Uber n.d.; Zimmer 2016; Feigon and Murphy 2016, 2018; Li, Hong, 

and Zhang 2016). Another subset of studies could not Dr.aw conclusions about the net 

effect of TNCs on traffic volumes (Rayle et al. 2016; Clewlow and Mishra 2017). Several 

of the assessments suggesting that TNCs may reduce congestion are either based on 

theoretical arguments (Uber n.d.; Zimmer 2016; Feigon and Murphy 2016, 2018) or on 

very aggregate data (Li, Hong, and Zhang 2016), so it appears that when detailed data are 

available, they point in the same direction. 

3.6 Conclusions 

In this section, the rapid increase in congestion observed in San Francisco 

between 2010 and 2016 was examined, and the factors contributing to that increase were 

decomposed. It was done through a series of virtual experiments using a travel demand 

model. This analysis revealed that standard factors, including network changes, 

population growth and employment growth all contributed to increased congestion, 

but that those factors alone were insufficient to explain the full increase. 
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The effects of TNCs on congestion using a unique data set scraped from the 

APIs of two TNCs were further considered. Those TNC data allow us to directly 

observe out-of-service TNC trips, and allow us to infer the locations and timing of in-

service TNC trips. Both of these were accounted for in the analysis, and the substitution 

of TNC trips for other modes was considered by assuming that they Dr.aw from existing 

modes within a zone pair and time-of-day proportionally to the existing mode shares. 

Because TNC trips are concentrated in zone pairs with a high walk, bike and transit 

mode share, this analysis suggests that TNCs Dr.aw more from walk, bike and transit 

modes than from car modes. In addition to the 100% of out-of- service TNC trips that 

add traffic to the roads, it was found that 70% of in-service TNCs are new vehicle trips 

that add traffic to the roads. The result is that TNCs are associated with about half the 

increase in VMT between 2010 and 2016 and TNC volumes are the biggest single 

contributor to increased congestion over this period. In addition, It was also revealed 

that TNCs stopping curbside to pick-up and drop-off passengers disrupt traffic flow and 

contribute to increased congestion. 

These results provide more evidence to confirm the conclusion that TNCs 

increase congestion in San Francisco, and counter the arguments that they decrease 

congestion. The results show that road and transit network changes are only a small 

factor in the growing congestion over this period, and provide an understanding of the 

role that the high growth in population and employment play. The results are important 

to transportation planners and policy makers as they decide how to best manage 

congestion and provide mobility within their cities. 
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CHAPTER 4. COMBINED EMPRICAL AND MODEL-

BASED RESULTS, AND RESULTING POLICY 

CONSIDERATIONS 

4.1 Overview 

This chapter delves deeper into the perceptions gained by the empirical study and 

the model-based study from chapters 2 and 3. The big picture question that these chapters 

answer are if TNC’s affect congestion independently when employment, population and 

network capacity shifts (such as for a bus or bicycle lanes, turn restrictions, etc.) are 

accounted for. When compared to the conventional factors that bring about a standard 

increase in traffic congestion, the contribution of TNCs were attributed to approximately 

50% of the net change in congestion in San Francisco between 2010 and 2016. This was 

defined by the following congestion measures: vehicle hours of delay, vehicle miles 

travelled, vehicle hours travelled Planning Time Index (signifying travel time reliability) 

and average speeds. Employment and population growth, encompassing citywide non-

TNC driving activity by residents, local and regional workers, and visitors, are primarily 

responsible for the remainder of the change in congestion. In this chapter, the conclusions 

of the previous chapters are sliced into various classes, such as time of day, most affected 

areas of congestion, scenario analyses and identifying the chronology of declining 

roadway performance in the city. This chapter also draws parallels between the empirical 

study and the model based analyses to arrive at a more assertive quantification of the 

impacts of TNCs on the studied roadway performance measures. The delay statistics 

drawn using the results of the estimated parameters in the empirical analysis, though 
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pointing towards the same direction as that concluded by the model-based study, are 

applicable for a more restricted network coverage when compared to those asserted by 

the model-based study. The empirical study exclusively covers network links embodied 

by TMC link coverage provided by INRIX. It is known that vehicle rerouting, modified 

demand and trip generation and traffic assignments influenced by changing affinities to 

newer modes of travel are often subjected to changes in even seemingly inconsequential 

traffic volumes, especially on congested networks. The model-based study, in addition to 

covering the links that INRIX does, also takes into account the changes in network 

imparted by lower classes of network links (CHAMP network links). Therefore, in the 

model based study, the total vehicle miles travelled, and vehicle hours travelled and delay 

quantifiers are therefore scaled to a higher order. Here, the parameter estimate based 

performance quantifiers were scaled from the empirical study to the order of the model 

based study in order to arrive at a comparable, ascendable and unequivocal estimate of 

the network performance metrics. According to the model-based study, TNCs were 

accountable for the following rises in network congestion. 

1.) Daily vehicle hours of delay (VHD) on the roadways studied increased by 

about 40,000 hours during the study period. It was estimated that TNCs 

account for 51% of this increase in delay, and for about 25% of the total delay 

on San Francisco roadways and about 36% of total delay in the downtown 

core in 2016, with employment and population growth accounting for most of 

the balance of the increase in delay.  
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2.) Daily vehicle miles travelled (VMT) on study roadways increased by over 

630,000 miles. It was estimated that TNCs account for 47% of this increase in 

VMT, and for about 5% of total VMT on study roadways in 2016.  

3.) Average speeds on study roadways declined by about 3.1 miles per hour. It 

was estimated that TNCs account for 55% of this decline. 

4.2 Methodology 

 As mentioned in the network preparation section of Chapter 2, TMC links sourced 

from INRIX were associated and aggregated to corresponding CHAMP links to import 

operational and geometric link characteristics. In order to compare the performance 

metrics produced by the two analysis methodologies, links that were common to both the 

empirical and model-based analyses were extracted from the CHAMP links dataset. The 

two discussed stages of analysis result in network performance metrics for a total of five 

scenarios, three of which are available in both stages of analysis: 2010 Base, 2016 

Counterfactual, and 2016 with TNCs. For the three overlapping scenarios, the relative 

contribution of TNCs to the change in congestion is similar in direction and magnitude, 

with the empirical analysis (which directly reflects observed speed changes) showing a 

somewhat greater share of the increase in congestion attributable to TNCs. This allows 

for making two-way comparisons between INRIX-observed speeds (from empirical 

study) and parametrically predicted speeds (from empirical study) with the corresponding 

data, model-predicted speeds with TNCs and PUDO included in the traffic assignment 

(from model-based study) and the speeds predicted by a traffic assignment that did not 

include TNCs/PUDO. It should also be noted that in the SF-CHAMP model based 
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analysis, addition of TNC volumes (and accounting for capacity reduction on arterials 

due to PUDO) to the network potentially redistributes traffic over the network, 

theoretically improving lane capacity usage in a (more expansive than the empirical 

analysis) network that also includes lower class road links. This is a categorical 

difference between the scales of exploration by the two methods that serves as a potential 

source of discrepancy between the results of the two analyses. As such, the distinguishing 

feature of both stages of the analysis was that they were performed at disaggregate levels, 

using the previously described directional TMC segments, and across five times of day. 

The spatial and temporal details are important because adding vehicles does not always 

have the same effect on travel speeds. For example, an additional vehicle on an 

uncongested segment in the early AM has a very different effect on delay than an 

additional vehicle on a downtown segment during the PM peak. Table 17 shows the 

relative contribution of TNCs to each of the congestion metrics for the two stages of the 

analysis. 

4.2.1 Intermediate observations and discussion 

It was observed that the estimated attribution of total increase in delay to TNC 

operations and PUDO maneuvers in the empirical study was categorically lower than that 

forecasted by the scenario analysis based study where each contributing factor was 

incrementally assigned towards recalculating the delay. The objective of combining the 

two study methodologies is to arrive at a conservative, yet quantifiable estimate of the 

share of TNCs and PUDO to total increase in VMT, VHT, VHD and worsening of travel 

time reliability. The main merit of the scenario based study can be inferred by 

recognizing its capacity to classify and separate the four main identified sources that 
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increase network congestion within San Francisco. From this study, one can extract its 

main takeaway: the ratio of attribution of each of the four factors to declining network 

performance as opposed to relying completely on the absolute increase in delay it states 

occurred (or would have occurred, in the case of the counterfactual scenario) between the 

study years. On the other hand, the empirical analysis commendably determines the ratio 

of absolute increase of delay and vehicle hours travelled from 2010 to the counterfactual 

year 2016, and the present-day year, 2016. This can be verified by comparing the close to 

equal increase in ratios predicted by the fixed effects model and the real-time data 

sourced from INRIX. Thus, to keep the claim of TNCs’ contribution to declining network 

performance limited to the lower bound of the speculating spectrum, the shares of delay 

from the scenario analysis were applied to the total change in congestion from the 

empirical analysis in order to obtain the best estimate of the specific contribution of each 

factor to changes in network performance. Table 17 demonstrates how the contribution 

of TNCs to the decline of performance measures compare to each other in the two stages 

of the analysis after the described scaling procedure was completed. As an example, let 

us assume that on a particular network link, the empirical analysis predicts a total of 20% 

increase in delay between 2010 and 2016 (that includes TNC volume and the parameter 

estimates of 0.67, 144 seconds and 78 seconds on TNC volumes and pickups and drop-

offs respectively). Further, assume that the SF-CHAMP model based scenario predicts a 

40% contribution of TNCs and PUDO to total increase in delay between 2010 and 2016 

on the same link. In this case, the fraction “40%” was applied to the total increase in 

delay (20%), and conclude that the contribution of TNCs to increase in delay is 8%.  
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Table 17  Contribution of TNCs to Change in Congestion by Analysis Stage 

Metric 
Empirical 

Analysis 

Scenario 

Analysis 

Vehicle Hours of Delay 64% 51% 

Vehicle Miles of Travel 44% 47% 

Speed 65% 55% 

 

4.3 Validation of Assumptions Tying the Empirical and Model-based Analysis 

Together 

The first stage of this study quantifies the contribution of TNCs to changes in 

congestion in San Francisco between 2010 and 2016 by estimating a statistical fixed-

effect panel regression model and then applying this model to identify the relationship 

between the change in TNC activity and the change in roadway congestion measures 

between 2010 and 2016, assuming zero TNCs in 2010 and observed TNC levels in 2016. 

Estimates of the combined effect of the growth of non-TNC factors such as population, 

employment, and network changes are derived from the SFCHAMP activity-based model 

system. Because the estimated model relies on the transformation of the observed speed 

data as the dependent variable in the regression analysis, this stage has  been referred to 

as the empirical analysis. In the second stage, a scenario analysis, the SF-CHAMP 

activity-based demand model was again used, this time to systematically estimate the 

individual contributions to changes in roadway congestion of the factors of transportation 

network supply change, population change, employment change, and TNCs. The 

estimated parameter on the SF-CHAMP background volume is approximately 0.92, not 

significantly different than 1. This is logical, because it is expected that each vehicle 
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added in background traffic should have an effect on congestion of adding about ‘1’ 

vehicle to the implied volume. The Presidio Parkway scaling factor accounts for major 

construction that was underway on those links in 2010 but not 2016. Two measures of 

time and location-specific TNC activity have been included. The TNC volume parameter 

measures net effect of TNCs. If TNCs purely substitute for other car trips, the estimated 

TNC parameter should be 0 as they substitute for other vehicles already counted in the 

background volumes. Negative values would be consistent with TNCs reducing traffic, 

while a value of positive 1 would be consistent with TNCs purely adding itself to 

background traffic. The estimated coefficient of 0.69 can be interpreted as meaning that 

TNCs do not purely add to traffic through induced travel or shifts from non-vehicular 

modes. 

4.4 Combined Results 

What should be noted here is that in the densest part of the city, TNC activities 

are highest, irrespective of the fact whether they replace or add volume to the network. 

While one is aware that these areas lie in the exponential area of the volume delay curve, 

which implies that even a slight increase in traffic volume has the potential to 

significantly worsen congestion. Just as one should keep in mind that this is where one 

would expect congestion to worsen the most, at the same time, it is also true that these are 

the areas where even a minor addition of volume brought about by TNCs (as opposed to 

their stated vision of substitution) could potentially make network performance 

expressively worse. 
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Figure 16 shows a breakdown of the shares of the four calculated factors that 

affect the increase in vehicle delay, VMT and VHT. For all the three performance 

measures portrayed in the figure, it can be seen that TNCs are the leading source of 

influence. It can be argued that the impact of TNCs is more pronounced since they are 

added to the already present contribution of the other three factors, it is still relevant since 

the other pre-existing factors would have been present nevertheless and TNCs are the 

newest source of change. Also, contributing to the influence of TNCs are the popularity 

of TNCs in the downtown core, the most congested area of the city to begin with, and 

their most profitably viable hours of operation (detailed later in this chapter), peak hours, 

where again, the network is the most congested to begin with. 

The model-based analysis from Chapter 3 indicated that daily vehicle hours of 

delay increased on study roadways from approximately 65,000 hours in 2010 to over 

105,000 hours in 2016 with TNCs, an increase of 62%. In the counterfactual 2016 

scenario, where TNCs are unavailable and travelers use other modes, the daily vehicle 

hours of delay are approximately 79,000, an increase of 22% over 2010. This suggests 

that TNCs are responsible for about 25% of the total delay on monitored streets (the 

difference between 105,000 hours and 79,000 hours of delay in 2016). It also illustrated 

how much each of the factors contributes to changes in delay between 2010 and 2016. 

TNCs account for 51% of the increase in delay. Population change and employment 

change are responsible for just under 47% of the increase in delay, and network changes 

account for only about 2% of additional delay. 
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Figure 16  (a) Share of Change in Total Vehicle Hours of Delay by Factors (b) Share of Change in VMT 

by Factors (c) Share of Change in VHT by Factors. Source: TNCs and Congestion, SFCTA (Collaborated 

work) 

4.4.1 TNC effects on Congestion by Time of Day 

TNC usage varies by time-of-day, and thus affects congestion differently at 

different times of day. An additional vehicle on the roadway during congested time 

periods results in more congestion than an additional vehicle during uncongested time 

periods. The following summaries use five times of day derived from the SF-CHAMP 

model, which vary in length: the AM peak, PM peak, and early AM periods are 3 hours 

long, while the midday and evening periods are 6.5 and 8.5 hours long, respectively. The 

figures below demonstrate that TNCs significantly contribute to increased congestion 

across all times of day, especially in the evening, but during the AM and PM peaks and 

the midday as well. 
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Figure 17 compares the VHD from 2010 to the 2016 No TNC scenario in which 

TNCs don’t exist, and to the 2016 with TNC scenario. This figure shows that TNCs 

increased VHD in all time periods relative to 2016 No TNC scenario. The greatest total 

increases in delay occurred during the midday and evening period. It was observed that 

the mid-day period, which is not traditionally associated with the highest daily traffic 

volumes, contributes largely to the increase in delay due to the fact that pre-existing delay 

is much lower during mid-day than during the other time periods. Deadheading per in-

service TNC (scaled to hourly volumes) is much more in mid-day than the other periods 

once peak-hour traffic volumes are used to normalize this measure. One can also argue 

that the evening shoulder,  post the peak-hour evening rush is contributed to mostly by 

induced demand by people going out for dinner and entertainment who would have 

otherwise walked, taken the transit (as these modes would likely be much less crowded, 

cheap and travel-time reliable at these hours) or resorted to non-motorized modes of 

traffic. TNCs increase delay in the evening from 23% without TNCs to 106% in reality, 

increase the delay in the midday from 25% without TNCs to over 60%, and also increase 

delay significantly in the PM and AM peak periods albeit making ride-splitting and car 

sharing more lucrative and practicable. This is in contrast with their stated vision that by 

making first and last mile rides to transit centers more accessible, they could theoretically 

reduce travel time, increase transit ridership and in extension, take more vehicles off the 

road than those being added. Even if no further performance measure is considered, their 

contribution to the increase in overall person/vehicle delay itself contradicts this vision. 

Figure 18 illustrates the total increase in delay between 2010 and 2016, as well as 

the share of this delay caused by TNCs, network changes, population changes and 
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employment changes. During the AM peak, midday, and PM peak periods, TNCs cause 

between 43% and 48% of the increased delay and about 20% of total delay. Employment 

growth and population growth combined account for just over half of the increased delay, 

which would have been experienced in a counterfactual world and for all practical 

purposes, unavoidable under the existing infrastructure. In the evening time period, TNCs 

are responsible for almost 70% of the increased delay, and for about 40% of the total 

delay. 

 

Figure 17  Vehicle Hours of Delay by Time Period. Source: TNCs and Congestion, SFCTA (Collaborated 

work): The y-axis shows the total hours of delay experienced by the network fleet in 2010 and 2016. The x-

axis shows the 5 time periods within the day: Early AM, AM peak, Mid-day, PM peak and Evening 

shoulder 
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Figure 18  Change in vehicle hours of delay by time period by contributing factors. Source: TNCs and 

Congestion, SFCTA (Collaborated work): The y-axis shows the total hours of delay experienced by the 

network fleet in 2010 and 2016, the x-axis shows the five times of day: Early AM, AM peak, Mid-day, PM 

peak and Evening shoulder 

 

 

Figure 19 compares the VMT from 2010 to the 2016 No TNC scenario in which 

TNCs do not exist, and to the 2016 with TNC scenario. This figure shows that TNCs 

increased VMT in all time periods relative to 2016 No TNC scenario, with the greatest 

increases occurring during the midday and evening period. VMT effectively equips us 

with a performance measure that can be used to quantify extra TNC miles, and by 

extension, deadheading miles given in-service TNC vehicle miles can be attributed to 

substituting counterfactual volumes, as opposed to additional volumes. Figure 20 

illustrates the total increase in VMT between 2010 and 2016, as well as the share of this 

delay caused by TNCs, network changes, population changes and employment changes. 

TNCs contribution to increased VMT varies by time period. During the AM peak, 
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midday, and PM peak periods, TNCs cause about 40% of the increased vehicle miles 

travelled, while employment and population growth combined are responsible for about 

60% of the increased VMT. However, in the evening time period, TNCs are responsible 

for over 61% of the increased VMT and for about 9% of total VMT. 

 

Figure 19  VMT by Time Period. Source: TNCs and Congestion, SFCTA (Collaborated work): The y-axis 

shows the total vehicle miles travelled by the network fleet in 2010, 2016 no-TNC scenario and 2016 with 

TNCs included, the x-axis shows the five times of day: Early AM, AM peak, Mid-day, PM peak and 

Evening shoulder 
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Figure 20  Change in VMT by time period by contributing factors. Source: TNCs and Congestion, SFCTA 

(Collaborated work): The y-axis shows the change in total vehicle miles travelled, the x-axis shows the five 

times of day: Early AM, AM peak, Mid-day, PM peak and Evening shoulder 

 

Figure 21 compares speeds from 2010 to the 2016 No TNC scenario in which 

TNCs don’t exist, and to the 2016 with TNC scenario. This figure shows that average 

speeds have declined across all time periods, but that this decline has been exacerbated 

by TNCs. Figure 22 shows the decrease in average speeds between 2010 and 2016, as 

well as the share of this delay caused by different factors. The decline in average evening 

speeds has been most precipitous, dropping over 4 miles per hour, with almost 75% of 

this change attributable to TNCs. Speed decreases during the other time periods were 

about 3 miles per hour, with about 45%-55% of this decrease caused by TNCs. 
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Figure 21  Speed in mph by time period. Source: TNCs and Congestion, SFCTA (Collaborated work): The 

y-axis shows average speed for the network fleet in 2010, 2016 no-TNC scenario and 2016 with TNCs 

included, the x-axis shows the five times of day: Early AM, AM peak, Mid-day, PM peak and Evening 

shoulder 

 

 

Figure 22  Change in average speed between 2010 and 2016 by time period by contributing factors. 

Source: TNCs and Congestion, SFCTA (Collaborated work): The y-axis shows change in average speed for 
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the network fleet in 2010, 2016 no-TNC scenario and 2016 with TNCs included, the x-axis shows the five 

times of day: Early AM, AM peak, Mid-day, PM peak and Evening shoulder 

 

4.4.2 TNC effects on Congestion by Supervisory Districts 

TNC usage varies across the city, and thus affects congestion differently in 

different neighborhoods. An additional vehicle on the roadway in more congested areas 

results in more congestion than an additional vehicle in less congested areas. The 

following sections first use maps to illustrate overall changes in the congestion measures 

on the INRIX segments, followed by supervisorial district-level charts. Figure 23 

illustrates the 11 San Francisco Supervisor districts. The subsequent figures demonstrate 

that TNCs significantly contribute to increased congestion, especially in the densest parts 

of the city. Figure 24 shows the percent increase in VHD between the 2016 No TNC 

scenario in which TNCs do not exist, and to the 2016 with TNC scenario. It indicates that 

the greatest increases in delay occurred in the core northeastern quadrant, as well as along 

key corridors such the Mission corridor. 

 

Figure 23  San Francisco Supervisory Districts. Source: TNCs and Congestion, SFCTA (Collaborated 

work) 
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Figure 24  Percent change in delay between 2010 and 2016 by INRIX segments. Source: TNCs and 

Congestion, SFCTA (Collaborated work) 

 

Figure 25 compares the delay from 2010 to that in 2016 counterfactual scenario 

that does not account for any TNCs, and to the present-day 2016 scenario that does 

account for TNC operations including pickups and drop-offs. It shows that TNCs 

increased delay in all districts relative to the counterfactual 2016 scenario. The greatest 

total increase in delay occurred in District 3 and District 6. The greatest relative increase 

in delay occurred in District 3, while the greatest total amount of delay occurred in 

District 6. Figure 26 illustrates the total increase in delay between 2010 and 2016, as 

well as the share of this delay caused by TNCs, network changes, population changes and 

employment changes. The greatest increases in delay occurred in Districts 3 and 6, with 
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approximately 73% of the increase in delay in District 3 due to TNCs, and about 45% of 

the increase in delay in District 6 due to TNCs.  

 

Figure 25 Delay by Supervisory Districts. Source: TNCs and Congestion, SFCTA (Collaborated work): 

The y-axis shows total hours of vehicle delay for the network fleet in 2010, 2016 no-TNC scenario and 

2016 with TNCs included, the x-axis shows the eleven supervisor districts within San Francisco 

 

 

Figure 26  Hours of Delay by Supervisory Districts showing contribution of various factors. Source: TNCs 

and Congestion, SFCTA (Collaborated work): The y-axis shows total hours of vehicle delay for the 

network fleet in 2016, the x-axis shows the eleven supervisor districts within San Francisco 
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It is estimated that approximately 36% of total delay in District 3 and District 6 

combined is due to TNCs based on the percentage shares applied to the total increase in 

delay derived using the empirical analysis. The remaining districts exhibit increases in 

delay between 25% to 70% with the contribution of TNCs ranging from 20% to 45%. 

Figure 27 shows the percent increase in VMT between the 2016 No TNC scenario in 

which TNCs don’t exist, and to the 2016 with TNC scenario. It indicates that the greatest 

increases in vehicle miles travelled occurred along key corridors, and with general 

increases in the northeast quadrant. 

 

Figure 27  Percent change in Vehicle Miles Travelled between 2010 and 2016. Source: TNCs and 

Congestion, SFCTA (Collaborated work) 
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Figure 28 compares the VMT from 2010 to the 2016 No TNC scenario in which 

TNCs don’t exist, and to the 2016 with TNC scenario. The percentage change shown is 

relative to the 2010 Base scenario. This figure shows that TNCs increased VMT in all 

districts relative to 2016 No TNC scenario, with the greatest total increases occurring in 

Districts 6 and District 10, and the greatest relative increase occurring in District 3. 

 

 

Figure 28 Vehicle Miles Travelled by Supervisory Districts. Source: TNCs and Congestion, SFCTA 

(Collaborated work). The y-axis shows total vehicle miles traveled for the network fleet in 2010, 2016 no-

TNC scenario and 2016 with TNCs included, the x-axis shows the eleven supervisor districts within San 

Francisco 
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Figure 29  Change in Vehicle Miles Travelled by Supervisory Districts by Factor. Source: TNCs and 

Congestion, SFCTA (Collaborated work). The y-axis shows total vehicle miles traveled for the network 

fleet in 2016, the x-axis shows the eleven supervisor districts within San Francisco 

 

Figure 29 illustrates the total increase in VMT between 2010 and 2016, as well as 

the share of this delay caused by TNCs, network changes, population changes and 

employment changes. As noted, the greatest total increases occurred in Districts 6 and 10. 

TNCs accounted for 44% and 35% the increased VMT in these districts, respectively. 

While the total increase in VMT in Districts 3 and 5 were less than observed in other 

districts, the share of this increase attributable to TNCs in these districts was over 70%, 

the highest in the city. 
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Figure 30  Percent Change between 2010 and 2016 in Speed by INRIX segments*. Source: Data 

Visualization tool by SFCTA (Collaborated work) 

 

*The Data visualization tool developed in collaboration with Bhargava Sana at the San 

Francisco Transportation Authority can be found at http://tncsandcongestion.sfcta.org/ 

 

Figure 30 shows the percent decrease in speed between the 2016 No TNC 

scenario in which TNCs don’t exist, and to the 2016 with TNC scenario. It indicates that 

the greatest decreases in speeds occurred South of Market, Downtown, and along the 

Embarcadero and with general increases in the northeast quadrant. 
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Figure 31  Speed in mph by supervisory districts. Source: TNCs and Congestion, SFCTA (Collaborated 

work): The y-axis shows the average speed for the network fleet in 2010, 2016 no-TNC scenario and 2016 

with TNCs included scenario, the x-axis shows the eleven supervisor districts within San Francisco 

 

Figure 30 compares speeds from 2010 to the 2016 No TNC scenario in which 

TNCs don’t exist, and to the 2016 with TNC scenario. The percentage change shown is 

relative to the 2010 Base scenario. This figure shows that average speeds have declined 

in all districts, with the greatest relative declines between the 2016 No TNC and 2016 

With TNC scenarios occurring in Districts 3, 6, 5 and 9. Overall speeds were lowest in 

District 3 and highest in District 10. Figure 31. exhibits the decrease in average speeds in 

each District between 2010 and 2016, as well as the share of this delay caused by 

different factors. The greatest declines in speed occurred in Districts 9 and 10. While 

almost 50% of this decline was due to TNCs in District 9, only 27% of the decline in 

District 10 was due to TNCs. Districts 3 and 6 also experienced notable declines in speed, 

with 82% of the decline in speed in District 3 attributable to TNCs. Note that more than 

half of the decline in speeds in District 6 is attributable to employment and population 

growth. 



132 

 

 

Figure 32  Change in speed by supervisory districts by factor. Source: TNCs and Congestion, SFCTA 

(Collaborated work): ): The y-axis shows the change in average speed for the network fleet between 2010 

and 2016, the x-axis shows the eleven supervisor districts within San Francisco 

4.5 Possible Policy Interventions 

 Several potential cases for policy changes can be suggested as outcomes of the 

findings of this research study. It should be borne in mind that these policy-based 

interventions are recommended based solely on its academic theory merit-based 

implications and should not be treated as holistically evaluated suggestions. It should be 

kept in mind that the operational cost of a TNC ride is much more than the user pays for 

it. In fact, passenger fares only cover about 40% of the total cost of each ride (Cole 

2016). Investor capital foots the remaining 60%. These trips could be more expensive 

since the facility cost of owning and operating each TNC vehicle is paid by the non-users. 

Any additional cost difference between TNCs and public transit comes from operating 

smaller, less expensive modes. Keeping aside even the operational cost, it can be argued 

that the true cost of running a TNC vehicle on the road spills over both user and investor 

footed expenses. The monetary value of the benefit notched by a TNC rider is a function 
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of a combination of factors like total time saved by not taking public transit, delay caused 

to passengers who did choose to ride public transit by increasing net operating vehicles 

and revenue lost by public transit which, in the long term, can potentially turn public 

transit sufficiently unprofitable which may lead to service cuts to traditionally 

underserved or unprofitable areas. Within the foreseeable future, if and when TNC 

service providers run out of investor capital, and offering rides at a fraction of what their 

costs are is  not economically feasible any longer, the fares of such rides is estimated to 

increase. If public transit fails to keep up with the competition it receives from TNC 

operations owing to their deep discounts, transportation, a basic requirement within and a 

pointer of the health of any economy, will become an untenable luxury for the multitudes. 

Even today, TNCs are not accessible to every section of the society partly due to their 

functioning platform and partly due to user unawareness. Transportation equity provided 

by public transit can therefore not be guaranteed or replaced solely or exclusively by 

privately held and operated travel facilitators.  

Factoring in all these costs is a necessary endeavor to attain the true user benefit 

derived out of using a TNC over the pre-existent modes as TNCs have yet to exhibit their 

sustainability to maintain their ever intensifying grasp on travel mode shares sans the 

massive losses they are presently experiencing at the cost of their investor capital 

(Somerville 2017). Owing to the number of hours of delay and loss in travel time 

reliability that have been demonstrably attributed to the presence and operation of TNCs 

through this study, there exist several strategy programs and steps that can be taken to 

limit and mitigate the effect of TNCs within a congested roadway network as that of San 

Francisco. Some of them are mentioned here: 
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4.5.1 Congestion Pricing  

A system of surcharging riders and drivers based on time of day could be an 

effective tool to utilize to discourage excessive vehicles from operating within peak 

congestion hours. Vehicles subject to increase congestion in historically observed peak 

hours could possibly be charged to use public-owned facilities and creating excessive 

demand. The revenue generated through congestion pricing can be further reinvested in 

the system to improve existing mobility options, such as increasing frequency of trains 

and other public transit modes on high-demand routes, maintenance and operation of 

transit cars and stations, increasing the incentive to use public transit over passenger cars. 

There are a number of different ways through which congestion pricing can be executed 

in the transportation domain within San Francisco. For instance, a system exclusively (or 

preferably, staggeringly) charging single occupancy vehicles (SOVs) over shared rides 

can be deployed, which attains a two-way advantage: it promotes ridesharing/carpooling 

increasing vehicle occupancy, and at the same time, encourages people to get off of 

passenger cars, effectively reducing demand of passenger-car based rides, and use public 

transit, increasing travel time reliability of transit. Another way to execute congestion 

pricing would be to charge drivers, based on the type of passenger car being used, for 

using traffic-clogged roadways primarily during peak hours. The two-fold hindrance thus 

created: firstly, potentially reduced travel time reliability and increased travel time by 

using an already congested network facing the driver, and secondly, the impending 

surcharge to use the non-optimally functioning roadway, would help divert/reduce the 

total number of cars attempting to use the facilities off the most densely congested parts 

of the city. This monetary value of the mentioned surcharge can be exercised by either a 

fixed or a dynamic pricing system that can be designed keeping in mind the most 
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effectively and justly ascertain the user-cost of the roadway facilities depending upon the 

complexity and time-sensitiveness of the congestion being priced. In a dynamic pricing 

system, the value of the surcharge will be a proportional and continuously derived 

function of the total number of vehicles operating within the city (or a defined congested 

area) bounds. Alternatively, a fixed system of surcharge varying across the five times of 

days using historic traffic counts within each of those periods could be a simplistic 

approach to the same. The pricing could also be made subject to a function of the 

occupancy, real-time or average, of the vehicle in order to incentivize HOVs. 

4.5.2 Cordon Capping of Vehicles 

 A fixed-time cap on the total number of commercially operated passenger cars, 

synonymous to a fleet that is mostly comprised of TNCs in the present-day scenario, can 

also be a working solution to decreasing and averting the number of passenger cars 

operating in the most densely congested part (mostly downtown or the northeastern 

quadrant) of San Francisco. A geometric cordon within which the cap will be effective 

can be established which targets the most problematic areas within the jurisdiction. 

Within these boundaries, only a fixed number of passenger cars, identified by the type 

(TNCs, taxis, privately owned vehicles, buses, vans, and any other modes of private 

transportation) under which each vehicle can  be classified, would be allowed to operate. 

This number will have to be ascertained after a dedicated study of operational conditions 

that arise as an outcome of a specific number of functional vehicles. Through this move, 

transportation planners can exercise substantial control over the performance of the 

sought after network which can then be suitably optimized . In a pilot move by the city of 

New York as part of which the city established a cap on the number of ridehailing service 
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passenger cars operating within the city, the proposed requirement (which was eventually 

voted on and approved) applied only to the “high-volume for-hire service” (those that 

provide equal to or more than 10,000 trips per day) cars so as not to affect singly owned 

vehicles. This move has the potential to provide at least a semblance of regulation of 

municipalities over the operations of TNCs. Another customization to this proposal could 

be limiting or charging the total time each vehicle, HOV or otherwise, spends inside the 

cordon, in order to be more equitable to commuters desiring to travel to the inside of the 

cordon and enabling minimum time spend within the set boundary. 

4.5.3 Conversion of Parking Spaces into TNC Pickup/Drop-off Zones 

 In light of the potential benefits of the rising popularity of TNCs, it can be argued 

that parking requirements within the city do not hold as much prominence as they did in 

the pre-TNC era. It should be kept in mind that in a city as congested as San Francisco, 

parking is limited to begin with. Nevertheless, a case can be made for several on-street 

parking spots to be potentially converted into dedicated pickup and drop-off zones. This 

move could be directed towards reducing the number of TNC pickups and drop-offs 

being made on haphazard locations on the curb lane across the city that evidently affects 

traffic flow on these lanes as demonstrated in this study. Commuters shifting from 

driving their own vehicles and thus requiring fewer parking spots than in an otherwise 

unsubstituted for travel modes can therefore be benefitted from conversion of a number 

of parking spots into PUDO zones. This move will also be helpful in creating amendable 

regulations related to TNC pickups and drop-offs such that TNC drivers would then have 

clearly marked places to maneuver PUDO from and failure to comply with such 

regulations can be accordingly and suitably handled. 
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4.5.4 Potential Collaboration between the City and TNCs to Regulate or Incentivize TNC 

services to Transit Stations  

In order to combat the declining transit ridership and TNCs potentially affecting 

transit mode shares as discussed in detail in chapter 3, a successful collaboration between 

the city and TNCs has the potential to enhance traffic flow, transit operations, transit 

ridership, TNC and transit revenue generation, and overall enhanced rider and commuter 

experience greatly. A systematic arrangement to incentivize TNC trips to and from transit 

stations would increase transit ridership while also taking additional passenger cars 

introduced as an outcome of rising popularity of TNCs off the network. The user cost 

benefit gained in an efficiently planned commuting provision, such as this, can then be 

split between the providers of this system proportionally. The enhancement of mobility as 

a consequence of such a system should be explored in context of demarcated service 

zones defined by the catchment areas of existing and emerging public transit modes and 

that of TNCs. Instinctively, it can be inferred that the congestion benefits of a move of 

such nature would be considerable and need to be further quantified through simulations 

or pilot studies. A few such collaborative studies are already in motion such as that 

declared between the Cincinnati Mobility Lab and Uber, undertaken by the Ohio-

Kentucky-Indiana Regional Council of Governments in partnership with the Southwest 

Ohio Regional Transit Authority and the Transit Authority of Northern Kentucky. A 

greater push towards moves of such nature based on the successful completion and a 

thorough review of the outcomes of these pilot studies are the need of the hour to tackle 

successfully the growing congestion problem in high density urban areas such as San 

Francisco (Acton, Delagardelle, Kester and Vachiraadisorn 2017; Kuhr, Bhat, Duthie and 

Ruiz 2017). A few other examples of undertaken pilot initiatives are mentioned below: 
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a.) The Pinellas Suncoast Transit Authority (PSTA) branded as ‘Direct Connect’ 

(Pinellas Suncoast Transit Authority 2016), 

b.) Dallas Area Rapid Transit (in collaboration with Lyft and MV Transportation) 

aimed at paratransit users (Shared Use Mobility Center 2017),  

c.) Cascades East Transit partnership with Uber in Central Oregon for providing 

transportation and/or transit discounts for special events (Cascades East Transit 2017), 

d.) The Go Centennial pilot partnership with CH2M, the city of Centennial, the 

Denver South Transportation Management Association, Lyft, the Southeast Public 

Improvement Metropolitan District (SOUND), Via Mobility Services (Via) and Xerox 

(Conduent) addressing first and last mile transportation services to transit centers (Xerox 

Press release 2016), 

e.) The Regional Transportation Commission of Southern Nevada (RTC) and Lyft 

in Las Vegas aimed at providing enhanced service to Southern Nevada Transit Coalition 

paratransit users. (Regional Transportation Commission 2018) 

A move of this measure could also be considered as a step in the direction of a 

fruitful partnership between the municipality and the private TNC companies paving a 

way for bidirectional and rational dialog between the two agencies where the city 

earmarks certain facilities for the unhindered operation of TNCs while also ensuring 

smooth and uninterrupted flow of traffic on its own facilities. 

4.5.5 Allocation of Urban Right-of-Way  

Another possible avenue to research potential policy programs to accommodate 

the growing urban TNC presence more sustainably would be a predetermined allocation 
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of right of way to each mode of transportation operational on a specific network. 

Execution of this policy can be based on varying geographical scales ranging from a few 

blocks, for example, limited to the core or downtown areas of the city where the impact 

of any additional mode of personal transportation is felt the most, to possibly a 

supervisory district level. Regulations dividing up the right-of-way (ROW) into multiple 

fractions to promote a more equitable distribution of travel time among users of the 

facility could be proposed. This, in its essence, is not unlike the red-carpet lanes assigned 

to buses and streetcars to promote public transit in the central business district and the 

downtown areas in San Francisco during the busiest hours of the day. The ROW can be 

distributed within both conventional and non-conventional modes like bikes, pedestrians, 

transit, passenger cars, TNCs, light rails, etc. How much ROW gets allocated to each of 

these modes in order to arrive at the most optimum user-cost (time cost) balance can be a 

possible subject for future research. 

4.6 Future Work 

 This study can be expanded to include the contexts of multiple cities, differing in 

size, population, popularity of transit and demographic characteristics. Attributes like 

deadheading, parking requirements, right-of-way allocations are extremely dynamic in a 

future that promises the emergence of autonomous vehicles and any policy change should 

be subject to thorough reviews and studies of what that means in terms of the quality of 

mobility in the present (and future) world. As carpooling services offered by TNCs 

continue their widespread assimilation, it is imperative to differentiate between the 

impacts caused by single occupancy and pooled TNC services in terms of network 
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performance. Any such study investigating distinctions between these highly correlated 

modes would require exceedingly granular data. Therefore, potential data sharing 

agreements, promoting data-driven, accurately informed inference-drawing and 

consequently, decision-making, between cities and companies like Uber and Lyft are the 

need of the hour. This study extricated TNCs as a mode from other conventional modes 

used to conventionally model travel demand which can be further benefitted by finer 

spatial and temporal resolution of TNC data. Accounting freight and delivery truck 

volume and studying their dedicated effect on congestion in congested urban areas such 

as San Francisco would also help increase the practice-readiness of research studies like 

this one. Development of state-of-the-art volume delay functions that more accurately 

represent current traffic behavior and relationships between increasing traffic volume and 

travel time including novel modes such as TNCs and autonomous vehicles would also 

greatly advantage the field-relatability of similar research studies. 

4.7 Conclusions 

The objective of this research study was to find out if TNCs are correlated to 

traffic congestion in the city of San Francisco. Since TNCs are demonstrated to have both 

positive and negative repercussions on factors like vehicle ownership, change in total and 

personal vehicle delay and transit ridership and popularity that have significant 

implications on traffic congestion, if found correlated, this research investigated whether 

they increase or decrease traffic congestion for the case of San Francisco. How do TNC 

pickups and drop-offs influence traffic congestion within San Francisco? And lastly, how 
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does the magnitude of the impact of TNCs on congestion compare to that caused by pre-

existing conventional drivers of traffic and congestion change? 

 It was established that network performance in San Francisco declined between 

2010 and 2016, increasing congestion. The San Francisco Transportation Authority’s 

Congestion Management Program (CMP) monitoring indicated that average AM peak 

arterial travel speeds decreased by 26% when compared to that in 2009, while PM peak 

arterial speeds have decreased by 27% during this period. Vehicle hours of delay on the 

study network increased by 40,000 hours for a typical weekday, while weekday vehicle 

miles travelled on study roadways typically increased by over 600,000 miles. Travel time 

reliability too has taken a deep hit. It is also equally noteworthy that during the study 

period, significant changes occurred within San Francisco. Roadway and transit networks 

changed, including the rebuilding of Doyle Drive (Presidio Parkway), the laying of transit 

red carpet lanes was implemented, and the bicycle network was expanded. Additionally, 

San Francisco added 70,000 new residents and over 150,000 new jobs, and these new 

residents and workers were expected to add more trips to the city’s transportation 

network. Finally, new mobility alternatives, most discernibly TNCs, emerged. The 

duopoly of TNCs have witnessed a rapid evolvement to become an important travel 

option in San Francisco. By late 2016, TNCs were estimated to generate over one million 

intra-San Francisco vehicle trips in a typical week, accounting for approximately 15% of 

all intra-SF vehicle trips (Cooper et al. 2018). The number and share of TNC trips in San 

Francisco have unquestionably continued to increase since 2016, which was the observed 

treatment period for this study. The combined effects of all these changes on traffic 

congestion in San Francisco was studied as part of this research using a two-stage 
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approach. In the first step, an empirical relationship between the increasing number of 

passenger cars within the network and the volume of TNCs, and the number and location 

of TNC pickups and drop-offs was established. This empirical model was validated 

against the observed present-day network conditions to control for its accuracy. Next, the 

observed network performance measures were compared to a modelled no-TNC scenario 

to ascertain their lone-factor impact on the calculated performance measures. In the 

second stage of the research, multiple SFCHAMP traffic assignments were run 

incrementally introducing each above-mentioned driver of congestion change to get an 

estimate of the contribution of each factor to the growing congestion in the study area. In 

order to avoid overestimating the effect of TNCs the fractional empirical constant 

obtained in the first stage of the research was applied to TNC volumes and TNC pickups 

and drop-offs that scaled down their culpability to the total increase in VMT, VHT and 

VHD on the network in light of their positive accountability in substituting single use 

vehicles within the network.   

The results show that despite some substitution between TNCs and other car trips, 

most TNC trips are adding new cars to the network and that TNC vehicle trips have 

significantly underwritten the increased traffic congestion within the city. After 

normalizing this increase in congestion for the weight of increased employment and 

population, and transportation network changes, TNCs are estimated to have caused 51% 

of the total increase in vehicle hours of delay, 47% of the total increase in vehicle miles 

traveled, and 55% of the overall decline in speeds citywide between 2010 and 2016. That 

the effect of TNCs on congestion varies considerably by time-of-day should be noted in 

light of this study’s significant policy repercussions. During the major portion of a typical 
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weekday, approximately 40% to 50% of the increase in vehicle hours of delay is inferable 

to TNCs, but during the evening peak and shoulder, almost 70% of the increase in vehicle 

delay is attributable to TNCs. Similarly, during most of the day approximately 40% on 

the increase in vehicle miles traveled is due to TNCs, but in the evening TNCs account 

for over 60% of the overall increased VMT. Average travel speeds have declined by 

about 2 to 3 miles per hour during most of the day, with TNCs accounting for about 45% 

to 55% of this decrease. However, evening speeds declined by almost 4.5 miles per hour 

on the study network, with TNCs having been estimated to cause 75% of this decrease. 

The effects of TNCs on congestion also varies significantly by location. The greatest 

surges in vehicle hours of delay occurred in supervisorial districts 3, 5 and 6. Over 70% 

of the increase in delay in Districts 3 and 5, and about 45% of the increase in delay in 

District 6 occurred due to TNCs. Vehicle miles traveled went up most significantly in 

Districts 6 and 10, with TNCs accounting for 41% and 32% of this increase respectively. 

While the total increase in VMT in Districts 3 and 5 were less than observed in other 

districts, the share of this increase attributable to TNCs in these districts was between 

65% and 75%, the highest in the city. Average speeds have declined in all districts, with 

the greatest relative declines occurring in Districts 3, 6, 5 and 9. 

Table 18 recalls the framework referred in Chapter 1 and seeks to summarize the 

issues raised by extant literature and points to the ones answered in this research study. 

Broadly, we conclude that TNCs are an important contributor to growing traffic 

congestion in San Francisco. 
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Table 18  Summary of results and issues tackled by this research 

Topic Evidence 

Car Ownership No change 

Mode Shift  (long-range) No evidence 

Mode Shift (short-range) 
70% of TNC trips are new vehicle trips, substituting 

for walk, bike or transit 

Pooling 
No direct evidence. Literature: 13-20% select 

shared option 

Deadheading 20% of VMT (50% in NY) 

Disruptive driving 
Each pick-up or drop-off leads to 140s of disruption 

on major arterials and 80s on minor arterials 

Interaction with other 

traffic 
Evidence 

Spatial Distribution 
Concentrated in downtown area, further 

exasperating existing congestion 

Temporal Distribution 
Heaviest in PM peak and into the evening, with a 

second peak in the AM 
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APPENDIX A: Addressing possible limitations and concerns 

raised 

A.1 Section 2.4.2 TNC Data 

 

Duplicate traces are removed to avoid double-counting drivers who work for both 

TNCs and vehicles recorded by multiple clients. While this assumption potentially adds 

error to the pick-up location estimation, there is no evidence to suggest that it 

systematically overestimates the impact of pick-ups, nor is it evidenced to suggest that 

pick-ups are more likely to happen in isolated areas (not covered by the TMC network 

used in this analysis). In inspecting this data, locations were reviewed that showed a high 

frequency of pick-ups and a high frequency of drop-offs. Locations that stood out in the 

inspections of both pick-ups and drop-offs included the streets surrounding Union 

Square, major hotels, and 4th Street in front of the Caltrain station. In fact, a recent pilot 

program implemented by Lyft recognizes that pick-ups on main streets are both common 

and problematic, and seeks to divert them to side streets, as shown in Figure A 1. 

Recognizing that there is some error in the method to identify the pick-up location, it is 

aimed to bound that error and to understand the potential effect of that error. In terms of 

bounding the error, the error is expected to be larger for trips with a longer wait time 

because there is an opportunity for the driver to travel farther during that wait time. 

Another potential issue with measuring PUDO impacts is that they are expected to 

vary by time-of-day. To begin with, it was acknowledged that the number of PUDO 

varies by time-of-day, but the PUDO coefficients were calculated as a constant across the 

five different times-of-day. To address the potential concern mentioned above, a model 
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was tested that segments the PUDO coefficients by time-of-day. In the resulting model, 

the time-of-day differences on minor arterials were not statistically significant, and the 

time-of-day differences on major arterials were marginally significant. Given the limited 

benefit of this more detailed specification, the more parsimonious model was preferred 

that was begun with prior to testing this additional hypothesis. 

 

Figure A 1 Data from Lyft pilot program to divert pick-ups from Valencia Street to less congested side 

streets. 

A.2 Section 2.7 Additional Model Estimation 

A concern that speed limit changes can potentially affect the baseline speed at 

which a typical vehicle is assumed to operate on an arterial in a two-fold answer is 

addressed here. Like mentioned before, in this study, delay is defined as the difference 

between average travel time and free flow travel time. Therefore, demonstrating the 

relationship between free flow speed and the corresponding speed limit on each 
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network link should intrinsically suffice in establishing the association between 

baseline speeds and operating speeds. As part of this study, speed limits were not used 

to arrive at estimates of free flow speed/travel time. Instead, the highest average hourly 

weekday speeds derived on link-level granularity assessed from five-minute interval 

real time speed data sourced from INRIX were established as free flow speeds. 

Consequently, in order to address potential concerns that speed limit reductions on 

certain links would definitively result in lowering of baseline (free-flow) speeds, 

whether the extant estimates of free flow speeds are significantly correlated with the 

changes in speed limits has been ascertained. In order to do that, z-tests were carried 

out on three snapshots of the free flow speed data corresponding to the two sets of free 

flow speed estimates, one each for the years 2010 and 2016. Links where speed limits 

were updated between the two study years within the INRIX network were identified. 

The three sets of data correspond to  

a.) Links where speed limits were reduced in 2016 from those posted in 2010,  

b.) Links where no speed limit changes were observed, and  

c.) Combined set of links in a.) and b.).  

Since the universe of this discussion is comprised of the arterials and freeways of 

the county of San Francisco, it can be assumed that the standard deviation of the free 

flow speed estimates are known. Since these variances are known, a z-test can be used 

in lieu of a t-test since z-test assumes that the observations belong to a normal 

distribution rather than the Student t-test distribution (t-test assumes this). Another 

argument in support of using the z-test over a t-test is that since the population 

variances have already been input, when the z-test are carried out, one does not have to 
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make a choice between using equal or unequal variances t-test. The results of the z-test 

(shown in Table A 1) demonstrate that in none of the three cases were the free flow 

speeds significantly different between the years 2010 and 2016. This, in extension, 

also suggests that the changes observed in free flow speeds between the two years are 

not a function of the speed limit drops deployed within the study network. 

Table A 1  Z-test for exploring relationship between speed limit reductions and free flow speed estimates 

z-test: Two Sample for Means 

Scenarios 

Speed Limit 

Reductions Only 

No Speed Limit 

Changes All links combined 

Free Flow Speed for year 2010 2016 2010 2016 2010 2016 

Mean 38.23 40.01 37.41 38.14 37.44 38.25 

Known Variance 147.84 217.47 175.5 284.1 174.2 280.16 

Observations 137 137 1855 1855 1992 1992 

Hypothesized Mean 

Difference 
0 0 0 

z -1.09 -1.47 -1.69 

P(Z<=z) one-tail 0.1373 0.0709 0.0456 

z Critical one-tail 1.6449 1.6448 1.6448 

P(Z<=z) two-tail 0.2746 0.1418 0.0912 

z Critical two-tail 1.9600 1.9600 1.9600 

A.3 Section 4.2 Methodology 

A.3.1 Accounting of visitor travel 

Visitor travel in San Francisco has also increased significantly between 2010 and 2016. 

According to research prepared for the San Francisco Travel Association, the number of 

annual visitors to San Francisco increased 58% from 15.9 million in 2010 to 25.2 million 

in 2016 (Armstrong 2011; Bay City News 2017). The SF-CHAMP model includes visitor 

travel. Further investigation reveals that the reporting of visitor numbers changed in 

2015, such that numbers before 2015 include only leisure visitors, while numbers after 

2015 include total visitors (San Francisco Center for Economic Development 2012, 2015, 

2016; San Francisco Travel Association 2016). Therefore, the actual growth in tourism in 
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San Francisco is much less than the earlier mentioned 25.2 million, as summarized in 

Table A 2.  

Table A 2  Annual Visitors to San Francisco 

 Year Leisure Visitors 

(millions) 

Total Visitors 

(millions) 

Growth from 2010 

2010 15.9   

2011 16.4  3% 

2012 16.5  4% 

2013 16.9  6% 

2014 18.0  13% 

2015 18.9 24.6 19% 

2016* 19.4 25.2 22% 

* Leisure visitors in 2016 are interpolated based on the growth in total visitors. 

 

 

In the 2010 base case, visitor travel represented approximately 4.5% of all intra-

San Francisco travel.  However, the SF-CHAMP model does not produce a 58% increase 

in visitor travel because the number of hotel rooms in San Francisco, which have not 

increased significantly increased during this time-period primarily influences it.  The 

increase in visitor travel may be at least partially explained by the growth in the number 

of home share options such as AirBnB.  In 2015, it was estimated that there were 34,000 

hotel rooms, and almost 5,000 AirBnB listings in San Francisco (Pender 2015). In SF, 

visitors use TNCs and transit more than passenger vehicles.  Research for the San 

Francisco Travel Association shows that TNCs are the third most commonly cited 

transportation mode for intra-San Francisco visitor travel, exceeded only by BART and 

Muni (two transit operators in San Francisco), and followed by cable cars, personal 

automobiles, rental cars and taxis. Therefore, while one cannot precisely estimate the 

share of increased congestion due to visitor travel, it is likely small due to the overall size 

of the visitor market and the preference for visitors to use non-auto modes. In addition, 

recent survey data indicates that TNCs are used less frequently by visitors than Muni and 
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BART, although this is likely changing as TNCs become more ubiquitous. Increases in 

pedestrian travel might also impede traffic flow due to turning movements or other 

conflicts, but there is no data available to indicate whether increases in pedestrians in San 

Francisco have reduced auto speeds.  

A.3.2 Addressing freight volume in San Francisco 

Online shopping, and by extension, freight and delivery truck traffic are expected 

to have significantly increased during the study period as well. There is no observed data 

on the size of the universe of commercial and freight delivery services in San Francisco, 

nor any observed data on how this has changed between 2010 and 2016.  The SF-

CHAMP model does include a basic truck and commercial model driven by employment 

and population assumptions, and thus there are higher numbers of truck and commercial 

vehicles in SF-CHAMP in 2016 than in 2010. There is observed data from the San 

Francisco Planning Department about the durations of TNC (2018), taxi and commercial 

and freight delivery durations, and the duration of deliveries is, unsurprisingly, 

significantly longer that TNC pick-ups and drop-offs. However, commercial and freight 

deliveries typically use commercial vehicle loading zones, and do not interrupt flow.  In 

fact, recent data from the San Francisco Police Department indicates that in the densest 

parts of San Francisco, TNCs (not commercial vehicles) account for 2/3 of congestion 

related traffic violations and for over 75% of citations for blocking lanes of traffic 

(Rodriguez SFPD 2017).  

To summarize, the SF-CHAMP model does incorporate some growth in 

commercial and freight delivery volumes, and a recent study by the SFPD shows that 

TNC loading and not deliveries are the dominant cause of flow-impeding traffic 
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violations. Changing demographics may also contribute to increased TNC usage, as the 

National Household Travel Survey indicates that people with higher incomes appear to 

make more TNC trips. Finally, while this research does address changes in network 

capacity resulting from major transportation and land use projects, due to a lack of data it 

could not incorporate temporary unpermitted disruptions in traffic resulting, for example, 

from short-term construction activities. 

A.3.3 Incorporating an interim year of analysis to account for possible sources of 

disruption in traffic trends between 2010 and 2016 

One might argue that the period between 2010 and 2016 was subjected to severe 

economic hardship and consequent financial recovery. Due to the existence of the 

massive disruption of demographic trends and employment that theoretically shaped the 

travel patterns one encounters today, the question of forecast accuracy begs crucial 

examination; fortunately this is a problem that has been studied to some degree in the 

literature. An important aspect of that is to understand the reasons for forecast 

inaccuracies. One distinction that is commonly made is between the accuracy of inputs to 

the travel model, versus the accuracy of the model itself. Inputs include factors such as 

population and employment by TAZ and fuel price. In the example of the 2008-2011 

recession, a 2010 forecast made in 2005 that did not anticipate the recession would likely 

over-predict traffic in 2010, while a 2015 forecast made in 2010 that did not anticipate 

the economic growth coming out of the recession would likely under-predict traffic in 

2010. In a review of traffic forecast accuracy, Nicolaisen and Driscoll (2014) found that 

every study they reviewed cited these auxiliary forecasts as an important source of 

forecast inaccuracy. Andersson et al (2017) went further to quantify how much forecasts 
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could be improved if they got these inputs correct, using the case of past forecasts in 

Sweden. They found that adjusting the forecasts based on the actual population growth, 

fuel price, fuel economy, car ownership and GDP reduced the root mean square error of 

the forecasts from 0.38 to 0.12. They concluded that, “A very large share of forecast 

errors can be explained by input variables turning out differently than what was assumed 

in the forecasts.” This is a testimony of the explanatory strength of the models. What is 

important to bear in mind here is that this analysis is not a true forecasting exercise. 

Instead, it is a form of modeling exercise where the actual level of economic/employment 

growth coming out of the recession is known. While this model differs from those tested 

by Andersson et al (2017), it is reasonable to expect that knowing the inputs improves the 

accuracy of the modeling exercise. What remains important is that the relationship 

between employment levels and the level of travel remains consistent. In particular, it is 

important that that one locates the employment in the correct TAZs by the correct 

industries. Typically one can do this from a combination of data sources ultimately 

derived from unemployment insurance records, but this process requires a sufficient 

quality control effort to ensure that records are located on the correct side of a street, and 

are distributed to the locations where employees actually work, rather than to the 

headquarters of a company. It is standard practice in travel forecasting to develop and 

calibrate a model for base-year conditions, and apply that model to predict conditions in a 

different year. The travel demand model used to assess traffic conditions based on 

accurate data to reflect changes in the input parameters (e.g. population and employment) 

in this study makes this assessment different than traditional forecasting exercises where 

future conditions are predicted. Here, it is sought to model the past. It is envisioned that 
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an interim year would exhibit growth in congestion comparable to the ones projected for 

2010 and the counterfactual 2016. The network performance statistics for an interim year, 

say 2012, would be worse than those in 2010 and better off than those for 2016. The 

objective of this study is not to comment on the absolute condition of the network, and 

the performance measure thereof, but to capture, as precisely as possible, the worsening 

of these conditions over the study years. In order to test this hypothesis, the model was 

run using the previously estimated parameters for background traffic (assuming zero or 

negligible TNC volumes) for the year 2012. The SF-CHAMP model based estimation 

showed that with respect to 2010, a 2% increase in VMT was observed in 2012. This was 

predicted to be 7% in a counterfactual 2016 year with no TNCs and 12% in the modelled 

year 2016 with TNCs present (Refer Table A 3). The primary purpose of a travel 

forecasting model is to make predictions that go beyond a base year, especially when 

economic conditions and other factors change dramatically. In applying the model in this 

way, one is following in more than five decades of established practice. Whether a model 

calibrated for 2010 conditions would accurately predict 2016 traffic volumes in the 

absence of TNCs cannot be directly established using the SF-CHAMP model alone since 

the observed 2016 traffic volumes include TNCs, a mode that SF-CHAMP calibrated for 

2010 does not account for. The counterfactual scenario tests this. Thus, the question of 

validity of the model now shifts to that represented by the counterfactual scenario used to 

compare the outputs of the empirical analysis. One approach to validating the robustness 

of SF-CHAMP model would be to compare a similar activity-based model with a proven 

stellar record of accomplishment forecasting future travel demand calibrated for an 

analogous base year and subjected to near equal (or more aggressive) urban growth. A 
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study of the temporal stability of important structural relationships built into travel 

models (Mwakalonge and Badoe 2014) is referred to here. This study used data from 

three household surveys in the Greater Toronto area in the years 1986, 1996 and 2006. It 

found, for example, that the root mean square error of 2006 mode choice predictions 

made from 1996 was 1%, and for predictions made from 1986 it was 3.2%. Note that 

Toronto grew very rapidly over this period, much more so than San Francisco did 

between 2010 and 2016. In order to further validate this assumption of SF-CHAMP being 

able to correctly evaluate traffic volumes and network conditions in 2016 in the absence 

of TNCs, the estimated empirical model was applied to the year 2012, a year when TNCs 

could still be assumed to be a fledgling mode of transportation. The year 2012 was 

selected since Lyft began operations in June 2012, and UberX (the lower cost service) 

started in July 2012. It is expected that in 2012, the effect of TNC would still be small, 

but one is unsure about their magnitude in 2012. In order to determine the predicted 2012 

conditions, first, an SF-CHAMP model for a 2012 scenario was run, including the 

appropriate population and employment changes from 2010. Then those SF-CHAMP 

results were used to apply the existent panel model in the same way as it was applied to 

predict the 2016 counterfactual scenario, with the TNC variables set to zero. The results 

are listed in Table A 3. 

The results suggest that the predicted VMT, VHT, VHD, average speed and 

PTI80 all fall between the predicted 2010 and 2016 No TNC conditions, as one would 

expect. They are closer to 2010 conditions than to 2016 No TNC conditions, which one 

would also expect given the difference in years and the rates of growth in those years.  
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Table A 3  Network Performance Metrics including intermediate years 

Network Performance Metrics 

  Based on Modeled Travel Time Based on Observed Travel Time 

 

Scenario 

Vehicle 

Miles 

Traveled 

Vehicle 

Hours 

Traveled 

Vehicle 

Hours of 

Delay 

Average 

Speed 

(mph) 

Planning 

Time 

Index 80 

Vehicle 

Hours 

Traveled 

Vehicle 

Hours of 

Delay 

Average 

Speed 

(mph) 

Planning 

Time 

Index 80 

2010 4,923,449 205,391 64,863 24.0 1.83 204,686 64,158 24.1 1.83 

2012 5,028,567 211,077 67,376 23.8 1.84 N/A N/A N/A N/A 

2016 No 

TNC 

5,280,836 230,642 79,449 22.9 1.94 N/A N/A N/A N/A 

2016 with 

TNC 

5,559,412 266,393 105,377 20.9 2.12 269,151 108,134 20.7 2.21 

Percent Change from 2010 

  Based on Modeled Travel Time Based on Observed Travel Time 

 

Scenario 

Vehicle 

Miles 

Traveled 

Vehicle 

Hours 

Traveled 

Vehicle 

Hours of 

Delay 

Average 

Speed 

(mph) 

Planning 

Time 

Index 80 

Vehicle 

Hours 

Traveled 

Vehicle 

Hours of 

Delay 

Average 

Speed 

(mph) 

Planning 

Time 

Index 80 

2010 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2012 2% 3% 4% -1% 0% N/A N/A N/A N/A 

2016 No 

TNC 

7% 12% 22% -4% 6% N/A N/A N/A N/A 

2016 with 

TNC 

13% 30% 62% -13% 15% 31% 69% -14% 21% 

 

The goal of this exercise was to compare these results to the 2012 estimates of 

VHT, VHD, average speed and PTI80 based on observed travel times, as derived from 

the INRIX data. Unfortunately, an unexpected barrier was run into in the ability of this 

research to do so, which is that the 2012 INRIX data are no longer available. The regional 

partner of this study, the Metropolitan Transportation Commission (MTC) is the entity 

that contracts with INRIX to provide travel time data. They recently switched to a new 

data product called Roadway Analytics, based on a different segment definition, referred 

to as XD segments. The earliest date for which these XD data are available is 12/31/2013, 

making a 2012 (or 2013) comparison impossible, even if one could assume the data were 
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consistent with the TMC based data. Both MTC staff and INRIX staff were directly 

reached out to in an effort to have them recover an archived version of the 2012 data. 

After several weeks chasing these data, INRIX claims that the 2012 data no longer exist.  

In lieu of a comparison to the INRIX, the accessible speed trend data is presented 

instead, which is from San Francisco’s Congestion Management Program (CMP) that 

monitors AM and PM peak period travel speeds on designated roadways biennially. 

Table A 4 shows the observed auto speeds on arterials in the designated CMP network, 

and the percent change in auto speed from 2009. These speeds are not directly 

comparable to the speeds reported in Table A 3 because they cover different links, are 

limited to the peak periods, and are collected in odd-numbered years. Nonetheless, Table 

A 4 does show that there is only a small speed decrease in the 2009 to 2013 period, 

versus a much larger speed decrease in the 2013 to 2017 period. This larger speed 

decrease aligns with the emergence of TNCs. The smaller speed decrease in the 2009 to 

2013 period supports the idea that the modeled 2010 to 2012 speed change is reasonable. 

 

Table A 4  Observed Arterial Speeds from Congestion Management Program 

 

 

 Year Average Auto Speed on 

Arterials 

Percent Change from 2009 

 AM PM AM PM 

2009 18.4 16.7 0% 0% 

2011 17.6 16.6 -4% -1% 

2013 17.1 16.0 -7% -4% 

2015 14.6 12.7 -21% -24% 

2017 13.6 12.2 -26% -27% 
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SF-CHAMP was initially developed in the early 2000s (Cambridge Systematics, 

Inc. 2002; Jonnalagadda, Freedman, Davidson and Hunt 2001). It has undergone several 

enhancements since its initial development (Erhardt, Charlton, Freedman, Castiglione and 

Bradley 2008; Zorn, Sall and Wu 2012), with the model re-calibrated in coordination 

with those enhancements, but its basic structure has remained consistent. It has been the 

topic of dozens of publications and national conference presentations, providing 

opportunities for external review. Over this period, it has been used for virtually every 

project (https://www.sfcta.org/delivering-transportation-projects) and study 

(https://www.sfcta.org/completed-projects-and-studies) undertaken by the San Francisco 

County Transportation Authority. These have spanned the time periods before, during 

and after the 2008-2011 recession, providing some indication that the structural 

relationships built into the model are not merely a function of conditions during an 

anomalous time period. It is worth keeping in mind a few aspects of this research design 

and results. First, any uncontrolled factors must be different between 2010 and 2016. 

Second, the estimation results as reported in Table 5  Fixed-effects panel estimation 

results with TNC variables show that congestion is growing more than expected 

specifically on the links and in time periods with high levels of TNC activity. While it is 

possible the growth in another confounding factor is concentrated on those same links at 

those same times, the result further limits what those factors may be. Third, the 

magnitude of the results is large. Even if there is an important confounding factor that has 

been missed that serves to increase the growth in background traffic, it is likely that the 

effect would be to reduce the magnitude of the reported TNC effect rather than change its 

direction. 
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Also, as evidenced by the results of this section detailed later, these outer city 

vehicles potentially are sources of fractional increase of each PCE associated with their 

total numbers. This data do not provide a direct observation of what TNC users otherwise 

would have done, so they cannot speak directly to modal substitution. The data do allow 

us to infer the pick-up and drop-off locations and associate those locations with specific 

directional roadways. Given the prevalence of TNCs activity outside San Francisco city 

boundaries, one would expect drivers starting outside the city to get a pickup request 

outside the city and not have to deadhead into the city. On the other hand, That a driver 

may commute into the city is merely a comment on one of multiple possibility of how 

deadhead miles may accrue within the city network. Given the enhanced earning 

potential, even for significantly shorter trips, for a driver within the city boundaries due to 

high TNC demand within the city, it is more probable that a driver commute to the city 

looking for rides. Being matched to a trip originating outside the boundaries of the study 

area will, in that case, merely be an added opportunity for the driver, rather than being a 

conscious choice around which he/she plans her commute to the city. 

A.4 Addressing Potential Limitations 

It should be noted that deadheading is not limited to TNCs. Both TNCs and taxis 

are vehicles that deadhead. When any other type of vehicles deadhead, they contribute to 

congestion as well. For this analysis, it matters what this (increased) amount of 

deadheading is, and whether this quantity is expected to change between 2010 and 2016 

in an accountable way. These details have been considered for each of the vehicle types 

identified. Taxis are about 1% of vehicle trips within San Francisco and deadheading 
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accounts for 40-50% of taxi VMT (TNCs Today SFCTA 2017). Taxis are represented in 

SF-CHAMP, although it does not explicitly account for out-of-service taxi travel. It is 

expected that taxi travel reduced in 2016 from 2010 due to some taxi trips converting to 

TNC trips. 

Public transit vehicles are about 1% of vehicle trips within San Francisco (TNCs 

Today SFCTA 2017) (although they are a much larger share of person trips). SF-CHAMP 

also accounts for the congestion effect of in-service bus trips. It does not explicitly 

account for out-of-service bus trips, although this is expected to be a small share of the 

total bus trips since bus service routes are planned in a way that explicitly seeks to 

minimize deadheading. Nevertheless, according to SF-CHAMP, bus service miles are 

13% higher in 2016 than in 2010. Private car trips are 83% of vehicle trips within San 

Francisco (TNCs Today SFCTA 2017). Escort trips, such as dropping kids at school or 

taking a friend to the airport are included in SF-CHAMP within the “other” trip purpose. 

In the state of the art experience working with household travel surveys, it is found that 

the vast majority of escort trips are to escort children. Neither Uber nor Lyft allow 

children under the age of 18 to ride without being accompanied by an adult. No 

knowledge has been found that escort travel or the associated deadhead traffic has 

changed substantially between 2010 and 2016 beyond what has already been accounted 

for in the analysis. When considering the net effect of TNCs on congestion, what matters 

is a comparison of what happens versus what otherwise would have happened. If a person 

otherwise would have driven end-to-end in a private car, the VMT generated by a TNC 

would be greater for that same trip because there is some associated deadheading. It is 
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worth noting that the TNC trip would result in less demand for parking at the destination, 

which is a benefit to using a TNC, but does not affect congestion. 

 

 

Figure A 2  San Francisco Arterial and Freeway Speeds (2009-2017). Source: TNCs and Congestion, 

SFCTA (Collaborated work) 
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APPENDIX B: Supplemental Data 

The data and scripts used in this research are being archived as follows: 

1. The following data files are included with supplementary materials associated the 

publication of Erhardt, Roy et al (2019).  Please check the associated materials 

from Science Advances when the article is released.  

 Supporting data for Figure 6.  

 Supporting data for Figure 7.  

 Model estimation files for the empirical models presented in Chapter 2.  

 Model application results for the empirical models presented in Chapter 2.  

2. The following data files are included with supplementary materials associated the 

publication of Roy et al (in-review).  Please check the associated materials when 

the article is released.  

 Shape files of loaded road networks for each of the six model scenarios.  

 Shape file of the Traffic Analysis Zone (TAZ) layer.  

 Trip tables of TAZ to TAZ TNC trips in origin-destination format.  

3. The following data files were released with the publication of TNCs & 

Congestion, and are available at: https://www.sfcta.org/emerging-mobility/tncs-

and-congestion  

 ESTFILE_2010.csv – model estimation file with 2010 data for the 

empirical models presented in Chapter 2.  

 ESTFILE_2016.csv – model estimation file with 2010 data for the 

empirical models presented in Chapter 2. 

https://www.sfcta.org/emerging-mobility/tncs-and-congestion
https://www.sfcta.org/emerging-mobility/tncs-and-congestion
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4. An interactive data visualization of the results presented in Chapter 4 is available 

at: http://tncsandcongestion.sfcta.org/  

 

Additional working scripts were written primarily in python, and are stored in a GitHub 

repository.  Please contact the authors with any requests for additional information or 

scripts.  

  

http://tncsandcongestion.sfcta.org/


163 

 

APPENDIX C: Media Coverage 

This research, specifically the TNCs & Congestion report, has been featured in the 

following media articles.   

Saval, Nikil. “Uber and the Ongoing Erasure of Public Life,” The New Yorker, 

February 18, 2019. 

Said, Carolyn. “Uber, Lyft Cars Clog SF Streets, Study Says.” San Francisco 

Chronicle, October 16, 2018, Front Page.  

Fitzgerald Rodriguez, Joe. “Study: Half of SF’s Increase in Traffic Congestion Due to 

Uber, Lyft.” The San Francisco Examiner, Top News, October 16, 2018.  

Brekke, Dan. “City Analysis: Uber, Lyft Are Biggest Contributors to Slowdown in 

S.F. Traffic.” KQED News, October 16, 2018, Top News.  

Chronicle Editorial Board. “Editorial: Uber, Lyft Must Work with City to Ease 

Traffic Congestion.” San Francisco Chronicle, October 21, 2018.  

Asperin, Alexa Mae. “Uber and Lyft Are Being Blamed for Most of the Traffic in 

San Francisco.” KRON, October 16, 2018.  

Baldassari, Erin. “Uber, Lyft Responsible for Half of Growth in SF Traffic, Study 

Says.” San Jose Mercury News, October 16, 2018.  

Bay City News Service. “Report Links Increased Traffic Congestion To Uber, Lyft.” 

SFGate, October 17, 2018.  

Brinklow, Adam. “City Blames Half of New Congestion on Lyft, Uber.” Curbed SF, 

October 16, 2018.  

California News Wire Services. “Uber, Lyft To Blame For SF Traffic Congestion: 

Report.” Patch, October 17, 2018.  

CBS SF. “Report Links Increased San Francisco Traffic Congestion To Uber, Lyft.” 

KPIX, October 16, 2018.  
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Christien Kafton. “Uber-Lyft Dispute They’re to Blame for San Francisco’s Traffic 

Congestion.” KTVU, October 16, 2018.  

Cory Doctorow. “Study Blames Uber/Lyft for San Francisco Traffic, Uber/Lyft 

Blames Amazon, Propose Surge Pricing.” Boing, October 16, 2018.  

Day, Peter. “Understanding Lyft’s Impact on Congestion.” Sharing the Ride with Lyft 

(blog), October 15, 2018.  

Editor Team. “Uber and Lyft Are Worsening Traffic Congestion in San Francisco.” 

Invests, October 17, 2018.  

Gibson, Eleanor. “Uber and Lyft Blamed for San Francisco’s Congested Streets.” 

Dezeen, October 18, 2018.  

Hammerl, Teresa. “Uber, Lyft Main Reason for Increased Traffic Congestion in SF, 

Study Finds.” Hoodline, October 16, 2018.  

Holder, Sarah. “Is Uber the Enemy or Ally of Public Transit?” CityLab (The 

Atlantic), October 19, 2018.  

IT Online. “Ride-Sharing Contributes to Congestion.” IT Online, October 17, 2018.  

KCBS Radio. “Uber and Lyft Blamed For Slower Traffic.” KCBS, October 16, 2018.  

Marshall, Aarian. “Uber and Lyft Made Traffic Worse in San Francisco. But It’s 

Complicated.” Wired, October 16, 2018.  

Megan Rose Dickey. “Uber and Lyft Are Responsible for about Half of SF’s Rise in 

Traffic since 2010, SFCTA Says.” TechCrunch, October 16, 2018.  

Mojadad, Ida. “New Report Confirms Uber, Lyft Make S.F. Traffic Miserable.” SF 

Weekly, October 16, 2018.  

Rudick, Roger. “Data Confirms Uber and Lyft Jam up San Francisco.” Streetsblog, 

October 17, 2018.  

Said, Carolyn. “CA: Uber, Lyft Cars Clog SF Streets, Study Says.” Mass Transit 

Magazine, October 16, 2018.  
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Said, Carolyn. “County Study Blames Uber, Lyft for Much of SF’s Congestion 

Woes.” Government Technology, October 16, 2018.  

Sze, Kristen. “Study Says Uber, Lyft Making San Francisco Traffic Worse, but 

Drivers Disagree.” ABC7, October 17, 2018.  

Thomson, Iain. “Tech Hub Blames Tech: San Francisco Fingers Uber, Lyft Rides for 

Its Growing Traffic Headache.” The Register, October 16, 2018.  

Tribune News Service. “Data Study Faults Uber, Lyft for SF Traffic Woes.” 

Techwire, October 17, 2018.  

Wilderman, Theron. “Uber, Lyft Cars Clog SF Streets, Study Says.” Newsline, 

October 16, 2018.  

Young, Eric, Kel Hahn, and Lindsey Piercy. “Uber, Lyft Contributing to Congestion 

in Major US City, According to UK Researcher.” UKNow, October 18, 2018. 
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