
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Mathematics Mathematics

2019

On the Role of Ill-conditioning: Biharmonic Eigenvalue Problem On the Role of Ill-conditioning: Biharmonic Eigenvalue Problem

and Multigrid Algorithms and Multigrid Algorithms

Kasey Bray
University of Kentucky, kasey.bray@uky.edu
Digital Object Identifier: https://doi.org/10.13023/etd.2019.173

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Bray, Kasey, "On the Role of Ill-conditioning: Biharmonic Eigenvalue Problem and Multigrid Algorithms"
(2019). Theses and Dissertations--Mathematics. 62.
https://uknowledge.uky.edu/math_etds/62

This Doctoral Dissertation is brought to you for free and open access by the Mathematics at UKnowledge. It has been
accepted for inclusion in Theses and Dissertations--Mathematics by an authorized administrator of UKnowledge. For
more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/math_etds
https://uknowledge.uky.edu/math
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Kasey Bray, Student

Dr. Qiang Ye, Major Professor

Dr. Peter Hislop, Director of Graduate Studies

On the Role of Ill-conditioning: Biharmonic Eigenvalue Problem and Multigrid
Algorithms

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Arts and Sciences

at the University of Kentucky

By
Kasey Bray

Lexington, Kentucky

Director: Dr. Qiang Ye, Professor of Mathematics
Lexington, Kentucky

2019

Copyright© Kasey Bray 2019

ABSTRACT OF DISSERTATION

On the Role of Ill-conditioning: Biharmonic Eigenvalue Problem and Multigrid
Algorithms

Very fine discretizations of differential operators often lead to large, sparse matrices
A, where the condition number of A is large. Such ill-conditioning has well known
effects on both solving linear systems and eigenvalue computations, and, in general,
computing solutions with relative accuracy independent of the condition number is
highly desirable. This dissertation is divided into two parts.

In the first part, we discuss a method of preconditioning, developed by Ye, which
allows solutions of Ax=b to be computed accurately. This, in turn, allows for accurate
eigenvalue computations. We then use this method to develop discretizations that
yield accurate computations of the smallest eigenvalue of the biharmonic operator
across several domains. Numerical results from the various schemes are provided to
demonstrate the performance of the methods.

In the second part we address the role of the condition number of A in the context
of multigrid algorithms. Under various assumptions, we use rigorous Fourier analysis
on 2- and 3-grid iteration operators to analyze round off errors in floating point
arithmetic. For better understanding of general results, we provide detailed bounds
for a particular algorithm applied to the 1-dimensional Poisson equation. Numerical
results are provided and compared with those obtained by the schemes discussed in
part 1.

KEYWORDS: Accuracy, biharmonic operator eigenvalue problem, preconditioning,
multigrid algorithms, rigorous Fourier analysis, roundoff errors

Author’s signature: Kasey Bray

Date: May 2, 2019

On the Role of Ill-conditioning: Biharmonic Eigenvalue Problem and Multigrid
Algorithms

By
Kasey Bray

Director of Dissertation: Qiang Ye

Director of Graduate Studies: Peter Hislop

Date: May 2, 2019

ACKNOWLEDGMENTS

I would first like to acknowledge my advisor, Dr. Qiang Ye, for providing continued

support, guidance, insight, and suggestion. This project, it’s approaches, ideas, and

execution, would not have been possible with out him. Thank you to my commit-

tee members for your time and input over the years. And thank you to countless

department faculty and staff for your availability and willingness to help.

A special shout out to R.Rogers for being the most supportive friend, even from

900 miles away; to SheOpenstheBills for keeping me grounded and not getting too

big for my britches; to LaLa and Nicoleslaw for always making me feel like a rockstar;

and to my okayest friend in KY, our unexpected friendship has been such a delight

and truly made my time here better. Y’all the real MVP.

And finally to friends and family acquired through the math department: thanks

for all the adventures in golf, concerts, karaoke, grilling, and backyard games. Thanks

for therapeutic complaining sessions, keeping imposter syndrome in check, and some

semblance of school-life balance. Here’s to educated degenerates and lasting friend-

ships.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . vi

List of Figures . vii

Chapter 1 Introduction . 1
1.1 Preliminaries and Notation . 2

I The Biharmonic Eigenvalue Problem . 4

Chapter 2 Ill-conditioning and the Biharmonic Eigenvalue Problem 5
2.1 Issues in Computing Smaller Eigenvalues of Ill-conditioned Matrices . 6

Chapter 3 Accurate Preconditioning . 8
3.1 Inverse-equivalent Accuracy and Rank-revealing Decompositions . . . 8
3.2 Accurate LDU Factorization . 9
3.3 Accurate Preconditioning Method . 12

Chapter 4 Accurate Computations of a Biharmonic Eigenvalue 15
4.1 Unit Interval: Ω = [0, 1] . 16
4.2 Unit Square: Ω = [0, 1]2 . 17
4.3 Unit Circle: Ω = B(0, 1) . 22
4.4 Conclusion . 26

II Multigrid Algorithms . 27

Chapter 5 Motivation and Model Problem 28
5.1 Introduction . 28
5.2 Motivation . 28
5.3 Model Problem . 29

Chapter 6 Multigrid Algorithms . 33
6.1 Basic Multigrid . 33
6.2 Coarse Grid Correction and Structure of the 2-Grid Operator 34
6.3 Multigrid V-cycle and Full Multigrid 36
6.4 Multigrid Components and Convergence 37
6.5 Rigorous Fourier Analysis . 41
6.6 Eigenmatrix Representations of Multigrid Operators using Rigorous

Fourier Analysis . 43

iv

Chapter 7 Error Analysis of Computed Multigrid Solutions 48
7.1 2-Grid Analysis . 48
7.2 3-Grid Analysis . 51
7.3 l-Grid Analysis . 55

Chapter 8 Application to Model Problem . 58
8.1 Model Problem 2-Grid Analysis . 58
8.2 Model Problem 3-Grid Analysis . 63
8.3 Model Problem Generalizations . 69
8.4 Conclusions and Future Work . 70

Bibliography . 71

Vita . 74

v

LIST OF TABLES

4.1 The smallest eigenvalue of the 1-dimensional biharmonic eigenvalue prob-
lem on Ω = [0, 1] is computed using inverse iteration together with the
Cholesky factorization on AN (λchol1) and the accurate LDU factorization
of TN in an accurate preconditioning scheme (λaldu1). For comparison, we
include the results of using the built-in MATLAB function eigs on AN
(λeigs1). 17

4.2 Computations of the smallest eigenvalue of the 2-dimensional biharmonic
eigenvalue problem on Ω = [0, 1]2 using MATLAB’s built in eigs on AN×N ,
and then inverse iteration together with the Cholesky factorization of
AN×N (λchol1) and the eigenvalue decomposition of TN×N in an accurate
preconditioning scheme (λFFT1). 21

4.3 Computations of the smallest eigenvalue of the biharmonic eigenvalue
problem on Ω = B(0, 1) using inverse iteration together with the LU
factorization of AN (λlu1) and the ALDU factorization of B in an accurate
preconditioning scheme (λaldu1). For comparison, we include the built-in
MATLAB eigenvalue function eigs on AN (λeigs1). 25

5.1 Example 5.1: The discrete boundary value problem eq. (5.4) with fh(i) =
3 sin(2πx(i)) and exact solution vh(i) = 3

4π2 sin(2πx(i)) is solved using
full multigrid, MATLAB’s built-in backslash, and the inverse-equivalent
ALDU algorithm. The table shows relative errors for increasingly ill-
conditioned systems. 31

vi

LIST OF FIGURES

6.1 General iterative scheme for solving Ahvh = fh 34
6.2 Structure of a single iteration of the 2-grid cycle given by Algorithm 6.1.

The two levels are representative of the two grids: Gh on top and G2h on
bottom. Vertical arrows denote transferring between grids while horizontal
arrows represent computations on the current grid. 35

6.3 Structure of a multigrid V-cycle (left) and the full multigrid scheme (right). . 37

vii

Chapter 1 Introduction

In this thesis we are concerned with accurate computations of solutions to large scale
linear algebra problems where the coefficient matrix A is ill-conditioned. That is,
where the condition number κ(A) := ‖A‖‖A−1‖ is large. We focus on the large, sparse
systems which arise from the discretization of differential operators and, specifically,
we use only the finite difference method for obtaining discretized systems. These
matrices have condition numbers that increase as the discretization meshsize h de-
creases. In particular, the condition number of a second order operator (such as the
Laplacian ∆) is of order O(h−2), while the condition number of a fourth order op-
erator (such as the biharmonic operator ∆2) is typically of order O(h−4). Moreover,
ill-conditioning has well known (negative)effects on solving linear algebra problems,
which puts us in an unfortunate situation: finer discretizations yield discrete systems
whose exact solution better approximates the true continuous solution; however, the
resulting large condition number produces roundoff errors in floating point arithmetic
which prevent accurate computations of the discrete solutions.

In practice, ill-conditioning has two general effects on linear equation solving: it
reduces the rate of convergence of iterative algorithms, and it limits the accuracy to
which Ax = b can be solved in finite precision. Preconditioning is a well known tech-
nique for addressing the convergence issue, but, historically, there seems to be a lack
of good remedies for addressing the accuracy issue. Standard backward stable algo-
rithms (e.g. Cholesky) compute a solution x̂ with relative error bounded byO(ε)κ2(A)
– which may be unsatisfactory for ill-conditioned problems. Ill-conditioning has sim-
ilar effects on solving eigenvalue problems. In fact, as we will see in Chapter 2, the
inability to accurately compute smaller eigenvalues boils down to an inability to ac-
curately solve a linear system. In short, an ill-conditioned matrix is often associated
with a clustered spectrum, which results in slow convergence of iterative eigenvalue
solvers; slow convergence is circumvented by applying the algorithm at hand to A−1

(which has a much better spectral gap), but this requires the availability of A−1 ex-
plicitly, or that we solve a linear system to obtain it. Therefore, existing eigenvalue
algorithms (e.g. Lanczos) compute smaller eigenvalues with relative error of order
O(ε)κ2(A), and we may expect little accuracy out of these algorithms when A is ill
conditioned.

For these reasons, computing solutions with relative accuracy independent of the
condition number of A is highly desirable, and is the focus on this thesis. We pri-
marily study a fourth order biharmonic (∆2) eigenvalue problem and a second order
linear system based on the Laplacian operator ∆, and the methods for solving these
problems separates this thesis into two parts.

Part I deals with accurate computations of the smallest eigenvalue of the bihar-
monic operator: discretizations which allow for the application of the accurate pre-
conditioning scheme are paired with classical iterative eigenvalue algorithms in order
to compute the smallest eigenvalue of the biharmonic eigenvalue problem with Dirich-
let boundary conditions to high accuracy. We solve this problem on three different

1

domains: the unit interval, the unit square, and the unit circle.
In Part II we turn our attention to the accuracy of a different set of techniques for

solving partial differential equations – multigrid algorithms. Using rigorous Fourier
analysis, we analyze roundoff errors in a multigrid V-cycle, then apply the results to
a Model Problem (Poisson’s equation) using a Model Algorithm. In this case, explicit
dependence on the condition number is not found, but we do find that the relative
error of a solution computed using an l-grid V-cycle is of order O(N2), and, for Pois-
son’s equation, κ2(A) is O(N2). This suggests that the condition number might play
a small role; furthermore, a numerical example reveals that a full multigrid algorithm
outperforms a backward stable algorithm (which depends on the condition number)
for large N , but under-performs compared with condition number independent meth-
ods from Part I. The work of Chapter 7 and Chapter 8 does not yet explain the results
of this example, but these preliminary results lay a foundation a deeper exploration
of the explicit role of the condition number.

Future work on this problem involves the application of a standard multigrid
algorithm to a fourth order operator in order to explore the N2 dependence; extension
to the full multigrid algorithm; and, revisiting the methods and approach of Chapter 7
in search of an explicit dependence or independence on the condition number.

1.1 Preliminaries and Notation

Throughout this paper, ‖ · ‖ denotes a general vector norm and its induced operator
norm for matrices. ‖ · ‖p denotes the p−norm, while inequalities and absolute values
involving matrices and vectors are entrywise. For future use and completion, we note
a few essential properties of norms in the following lemma.

Lemma 1.1. 1. ‖Ax‖ ≤ ‖A‖·‖x‖ for a vector norm and its corresponding matrix
norm. And, ‖AB‖ ≤ ‖A‖ · ‖B‖ for any operator norm.

2. ‖QAZ‖ = ‖A‖ if Q and Z are orthogonal.

3. ‖A‖2 = maxi |λi(A)| if A is normal. And for any A, ‖A‖2 =
√
λmax (A∗A).

Most commonly, we will employ the 2-norm ‖ · ‖2, but note that in finite dimen-
sional space, any two norms are equivalent. Unless explicitly stated otherwise, κ(A)
will denote the condition number of A using the 2-norm.

For error analysis in floating point arithmetic, ε denotes the machine round off
unit, and O(ε) denotes a term bounded by p(N)ε for some polynomial p(N) in N . We
use fl(z) or ẑ to denote the computed result of an algebraic expression z. We assume
throughout that matrices and vectors given have floating point number entries. We
assume the following standard model for roundoff errors in basic matrix computations:

fl(x+ y) = x+ y + e with |e| ≤ ε(|x+ y|), (1.1)

fl(Ax) = Ax + e with |e| ≤ εM |A||x|+O(ε2), (1.2)

2

where M is the maximal number of nonzero entries per row of A, and absolute value
inequalities are entrywise. In general, we may rewrite eq. (1.2) as

‖fl(Ax)− Ax‖ ≤ O(ε)‖A‖‖x‖. (1.3)

It is worth noting that the condition number κ(A) := ‖A−1‖‖A‖ is explicitly the
condition number with respect to the problem of matrix inversion. It measures the
relative change in the answer (x̂) as a multiple of the relative change in the data (A).
Geometrically, the condition number can be characterized in the following way: if
A is nonsingular, then the relative distance to the nearest singular matrix (ill-posed
problem) is the reciprocal of the condition number.

Copyright© Kasey Bray, 2019.

3

Part I

The Biharmonic Eigenvalue Problem

4

Chapter 2 Ill-conditioning and the Biharmonic Eigenvalue Problem

Consider a vibrating plate on a domain Ω, clamped on the boundary ∂Ω as described
by the biharmonic eigenvalue problem with Dirichlet boundary conditions:∆2v = λv in Ω

v =
∂v

∂n
= 0 on ∂Ω.

(2.1)

A discretization with mesh-size h ∼ 1
N

of such an operator typically results in a large,
sparse N ×N matrix, AN . Using a very fine discretization means the computed ma-
trix eigenvalue is a better approximation to the true eigenvalue of eq. (2.1); however,
a very fine discretization results in an AN which may be extremely ill-conditioned,
causing large round-off errors in the computed eigenvalue. In general, as h decreases,
the condition number increases and the relative accuracy of smaller eigenvalues as
computed by existing algorithms deteriorates ([11], [28]). In fact, for a fourth order
operator, κ(AN) is of order O(h−4) which implies that existing eigenvalue algorithms
may compute smaller eigenvalues with little or no accuracy in standard double pre-
cision for h smaller than ≈ 10−4.

Bjørstad and Tjøstheim [2] present solutions to eq. (2.1) and the buckling plate
problem using a highly accurate spectral Legendre-Galerkin method in which a clever
basis developed by Shen [20] is combined with a fast solution algorithm [3] to accu-
rately compute eigenpairs. Their computations agree with various known theoretical
properties of eigenpairs; however, in order to obtain both precision and accuracy,
they had to use quadruple precision to compute the eigenvalues of a matrix obtained
from up to 5000 basis functions. Existing matrix eigenvalue solvers implemented in
standard double precision do not provide satisfactory accuracy at this resolution.

Here, in Part I, we use the work of Ye in [26], [27], and [28] on combining existing
matrix eigenvalue solvers together with a preconditioning scheme to solve a matrix
eigenvalue equation. Specifically, we use standard finite difference methods applied to
eq. (2.1) to accuratly compute the smallest eigenvalue λ1. Ill-conditioning encountered
in this approach presents two general issues: convergence and accuracy.

The slow convergence of iterative algorithms on ill-conditioned matrices can be
overcome by preconditioning, but this is only practical if the preconditioned system
can be formed exactly or sufficiently accurately. In particular, if the preconditioner
can be solved with inverse-equivalent accuracy (which is equivalent to multiplying
exact inverses), then we can solve both the convergence and the accuracy issue caused
by ill-conditioning in eigenvalue problems [26]. We will show that, in spite of extreme
ill-conditioning, high accuracy is achieved in the computed eigenvalues. Since the
eigenvalues at the left end of the spectrum of the differential operator are typically
of interest in practical problems, we focus on computing the smallest eigenvalue, λ1.

We begin by addressing in some detail the convergence and accuracy issues en-
countered when computing a few smaller eigenvalues of an extremely ill-conditioned

5

matrix A. Subsequent chapters are dedicated to the schemes for addressing these
issues, and an application of the schemes to eq. (2.1).

2.1 Issues in Computing Smaller Eigenvalues of Ill-conditioned Matrices

In this section, we summarize the discussion and some conclusions of [28, Section
3] on the computations of smaller eigenvalues of extremely ill-conditioned matrices.
The discussion is restricted to a matrix A that is symmetric positive definite.

Consider an ill-conditioned matrix A with eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λN .
In this case, λ1 has relative spectral gap

λ2 − λ1
λN − λ2

=
λ2 − λ1
λ1

1

λN/λ1 − λ2/λ1
≈ λ2 − λ1

λ1

1

κ(A)
,

where, unless λ2 ≈ λN , this spectral gap is small (i.e. λ1 is clustered). And since
the speed of convergence of classical eigenvalue algorithms (such as Lanczos) is de-
termined by the relative spectral gap, a direct application to A will result in slow or
no convergence. A−1, on the other hand, has a better relative spectral gap:

λ−11 − λ−12

λ−12 − λ−1N
>
λ2 − λ1
λ1

.

This suggests that we can deal with clustering by applying Lanczos to A−1 to com-
pute the largest eigenvalue µ1 = λ−11 , from which we can recover λ1. Unfortunately,
µ1 can only be computed accurately if A−1 is explicitly available, or if matrix-vector
multiplication with A−1 can be accurately computed (i.e. if we can solve a linear sys-
tem Ax = b accurately). But when A is ill-conditioned, this is not possible because
backward stable algorithms produce computed solutions x̂ to linear systems Ax = b
of order ε‖A−1‖‖A‖‖x̂‖ = εκ(A)‖x̂‖.

This point is further illustrated in [28] by looking at the Rayleigh quotient. All
iterative methods are based on constructing an approximate eigenvector x1 then com-
puting an approximate eigenvalue via the Rayleigh quotient

ρ1 =
xT1A

−1x1
xT1 x1

.

It is clear that the accuracy of the computed Rayleigh quotient depends on the
accuracy of computing A−1x1, and hence it is shown ([28]) that the computed ρ̂1
satisfies

|ρ̂1 − ρ1| ≤ O(ε)κ2(A)µ1.

With ρ1 ≤ µ1 the relative error of the computed Rayleigh quotient is expected to be
of order O(ε)κ(A). What’s further, this bound is independent of the algorithm used
to obtain the eigenvector x1 – in fact, this is the case even if x1 is available exactly.
We refer the reader to [28] and the references therein for further details and theory
on the computed accuracy of smaller eigenvalues of a matrix.

6

This brief survey, however, is enough to highlight that the root cause of an inability
to compute eigenvalues accurately is in the roundoff errors encountered in computing
matrix-vector multiplication with A−1. This also suggests a remedy: computed A−1

(or solve Ax = b) more accurately. Chapter 3 addresses a scheme for achieving this
remedy.

Copyright© Kasey Bray, 2019.

7

Chapter 3 Accurate Preconditioning

This chapter addresses the issue of roundoff errors accrued in solving ill-conditioned
linear systems. First, in Section 3.1, the inverse-equivalent accuracy measure of
[26] is defined, and relevant discussion on when an how such an accuracy can be
achieved is provided. Section 3.2 states the Accurate LDU algorithm, originally
developed in [27], as the predominant inverse-equivalent algorithm used in our work
of Chapter 4. Finally, Section 3.3 outlines the idea of accurate preconditioning from
[26] and sufficient requirements for the process.

3.1 Inverse-equivalent Accuracy and Rank-revealing Decompositions

In solving Ax = b, one may ideally strive for full accuracy from the computed solution
x̂ such that

‖x̂− x‖
‖x‖

≤ O(ε).

But in the absence of very stringent conditions on the original system, this is unreal-
istic. Traditionally, the best accuracy one can hope for is that of a backward stable
algorithm in which the solution error is bounded as

‖x̂− x‖
‖x‖

≤ O(ε)κ(A), (3.1)

but when κ(A) is large (as is the case in many differential eigenvalue problems),
this bound is simply not good enough. Somewhere in between the unrealistic full-
accuracy and the unsatisfactory backward stability is the inverse-equivalent accuracy
introduced in [26], which proves to be sufficient in many applications.

Definition 3.1. ([26]) We say that an algorithm for solving linear systems with
coefficient matrix A is an inverse-equivalent algorithm if, for any vector b, it
produces in floating point arithmetic a computed solution x̂ to Ax = b such that

‖x̂− x‖ ≤ O(ε)‖A−1‖ · ‖b‖. (3.2)

Similarly, we say that a solution x̂ satisfying eq. (3.2) is an inverse-equivalent
solution.

Per its suggestive name, an inverse-equivalent algorithm produces solutions that
are comparable to the one obtained by multiplying the exact inverse with the right-
hand side vector, and such an accuracy is highly satisfactory in eigenvalue computa-
tions with inverse iteration [26]. The existence of inverse-equivalent algorithms arise
most notably from accurate rank-revealing decompositions (RRD). First introduced
by Demmel et. al. in [11], the accurate RRD was further explored by Dopico and
Molera in [14] where solutions to linear systems computed via the accurate RRD are
shown to be inverse-equivalent. Explicitly, we have the following.

8

Definition 3.2. ([11]) A factorization A = XDY is said to be rank-revealing if
X and Y are well conditioned and D is diagonal and nonsingular; furthermore, the
factorization is said to be accurate rank-revealing if the computed factors X̂, D̂,
and Ŷ satisfy

‖X̂ −X‖
‖X‖

≤ ε · p(N);
‖Ŷ − Y ‖
‖Y ‖

≤ ε · p(N); and
|D̂ −D|
|D|

≤ ε · p(N), (3.3)

where ε is the machine roundoff unit and p(N) is a polynomial in N.

Using the accurate RRD of a coefficient matrix to solve linear systems is an
inverse-equivalent algorithm.

Theorem 3.1. ([14]) Let X̂, D̂, and Ŷ be the computed factors of an accurate rank-
revealing factorization (i.e. they satisfy (3.3)), and let X, D, and Y be the corre-
sponding exact factors of the rank revealing factorization A = XDY . Assume that the
systems Xs = b, Dw = s, and Y x = w are solved with a backward stable algorithm
that, when applied to any linear system Bz = c, computes a solution ẑ that satisfies
(B + ∆B)ẑ = c; with ‖∆B‖ ≤ εq(N)‖B‖ where q(N) is a modestly growing function
of N such that q(N) ≥ 4

√
2/(1−12ε). Let g(N) := p(N)+ q(N)+ εp(N)q(N). Then,

if x̂ is the computed solution of Ax = b through solving

X̂s = b; D̂w = s; and Ŷ x = w, (3.4)

and if εg(N)κ(Y) < 1 and εg(N)(2 + εg(N))κ(X) < 1, then

‖x̂− x‖
‖x‖

≤ (εg(N) +O(ε2))max{κ(X), κ(Y)}‖A
−1‖‖b‖
‖x‖

(3.5)

where ‖ · ‖ is any norm satisfying ‖diag{di}‖ = maxi|di|.

We note that if two matrices A1 an A2 both have an accurate RRD, then solving
the system A1A2x = b through A1w = b and A2x = w will produce an inverse-
equivalent solution provided ‖A−11 ‖‖A−12 ‖/‖(A1A2)

−1‖ is a modest number [28].
There are several classes of matrices that have been shown to have an accurate

RRD (see [11]), but for our purposes we focus on the class of diagonally dominant
matrices, whose accurate RRD can be obtained from the accurate LDU algorithm of
[27].

3.2 Accurate LDU Factorization

Diagonally dominant matrices arise in many applications – specifically, the discretiza-
tion matrix of the Laplacian operator, ∆, is diagonally dominant, and has a domi-
nating presence throughout this work. In this section we present the algorithm for
accurately factoring diagonally dominated matrices from [27], as well as a related
result which is key in the success of the methods employed in Chapter 4.

9

Definition 3.3. A matrix A = (aij) is said to be column diagonally dominant
if

|aii| ≥
N∑

j=1,j 6=i

|aji|. (3.6)

Similarly, A is said to be row diagonally dominant if

|aii| ≥
N∑

j=1,j 6=i

|aij|. (3.7)

Diagonally dominant matrices have several nice properties, many of which are ex-
ploited in [27] to develop a variation of Gaussian elimination called the accurate LDU
(ALDU) factorization. This algorithm computes an accurate LDU factorization of
a diagonally dominant matrix with computational complexity similar to that of the
classic LDU factorization, and is shown to be an accurate rank-revealing decompo-
sition. Throughout this section we will employ the ALDU algorithm as our primary
method for obtaining an accurate RRD. For completion and convenince, we include
here both the accurate LDU algorithm, and relevant theorem characterizing the ac-
curacy it achieves. We first need some notation associated with reparameterizing a
diagonally dominant matrix.

Definition 3.4. ([27]) Given a matrix M = (mij) ∈ RN×N with zero diagonals and
v = (vi) ∈ RN , we use D(M,v) to denote the matrix A = (aij) whose off-diagonal
entries are the same as M , and whose ith diagonal entry is vi +

∑
j 6=i |mij|. That is

aij =

{
mij i 6= j

vi +
∑

j 6=i |mij| else.

In this notation, a diagonally dominant matrix A satisfies

vi = aii −
∑
j 6=i

|aij| ≥ 0. (3.8)

Moreover, for any matrix A = (aij), let AD be the matrix with zeros on the diag-
onal and off diagonal entries are the same as those of A, and let v = (vi) be as in
eq. (3.8). Then we can write A = D(AD,v) – the representation of A by its diagonally
dominant part v. This representation is desirable because under entrywise perturba-
tions, (AD,v) determines all the entries of A to the same relative accuracy, but not
vice versa. Namely, (AD,v) contains more information than do the entries of A (see
[27], [28]). Now, the accurate LDU factorization carries out Gaussian elimination on
(AD,v) – in which case the entries of v can be carried out with no subtraction.

10

Algorithm 3.1. ([27]) Accurate LDU factorization of D(AD,v)

1 Input: AD = (aij) and v = (vi) ≥ 0;

2 Initialize: P = I, L = I, D = 0, U = I.

3 For k = 1 : (N − 1)

4 For i = k : N

5 aii = vi +
∑N

j=k,j 6=i |aij|;
6 End For.

7 If maxi≥k aii = 0, stop;

8 Else choose a permutation P1 for pivoting s.t. A = P1AP1 satisfies one of:

8a (a) if diagonal pivoting: akk = maxi≥k aii;

8b (b) if column diagonal pivoting: 0 6= akk ≥
∑N

i=k+1 |aik|;
9 P = P1P ; L = P1LP1; U = P1UP1; dk = akk;

10 For i = (k + 1) : N

11 lik = aik/akk; uki = aki/akk; aik = 0;

12 vi = vi + |lik|vk;
13 For j = (k + 1) : N

14 p = sign(aij − likakj);
15 s = sign(aij)p;

16 t = −sign(lik)sign(akj)p;

17 If j = i

18 s = 1; t = sign(lik)sign(aki);

19 End If

20 vi = vi + (1− s)|aij|+ (1− t)|likakj|;
21 aij = aij − likakj;
22 End For

23 End For

24 End For

25 ann = vn; dn = ann.

In the output of Algorithm 3.1 we have PAP T = LDU , where the column diagonal
dominance pivoting ensures that L is column diagonally dominant while U is still row
diagonally dominant. This theoretically guarantees that L and U are well conditioned
(see [27],[28]):

κ∞(L) ≤ N2 and κ∞ ≤ 2N.

Moreover, the computed factors L̂, D̂ and Û are characterized by the following theo-
rem.

Theorem 3.2. ([13],[27]) Let L̂ = (l̂ik), D̂ = diag{d̂i}, and Û = (ûik) be the com-
puted factors of the LDU-factorization of D(AD,v) by Algorithm 3.1 and let L = (lik),

11

D = diag{di} and U = (uik) be the corresponding factors computed exactly. Then we
have

‖L̂− L‖∞ ≤
(
NνN−1ε+O(ε2)

)
‖L‖∞,∣∣∣d̂i − di∣∣∣ ≤ (ξN−1ε+O(ε2)

)
di, for 1 ≤ i ≤ N,

‖Û − U‖∞ ≤
(
νN−1ε+O(ε2)

)
‖U‖∞,

where νN−1 ≤ 14N3 and ξN−1 ≤ 6N3.

The above theorem states that the computed L and U are norwise accurate,
while the computed D is entrywise accurate. But, perhaps more importantly, the
theorem implies via Theorem 3.1 that the ALDU factorization is a rank revealing
factorization. Thus, in the event that a differential operator can be disctretized
as a diagonally dominant matrix (or a product of diagonally dominant matrices) the
ALDU algorithm can be applied directly to A to obtain an inverse-equivalent solution
x̂ to the linear system Ax = b.

Unfortunately, the discretization matrix A often does not posses this necessary
diagonal dominance structure, making the direct application of ALDU impossible.
In such a case, we look to solve Ax = b by preconditioning with a matrix for which
an accurate RRD is known.

3.3 Accurate Preconditioning Method

In this section, we summarize the work of Ye in [26] which develops a preconditioning
technique to address accuracy issues arising in the presence of ill-conditioning.

Preconditioning is a standard technique used to speed up convergence of iterative
algorithms when solving ill-conditioned linear systems. The basic idea of precondi-
tioning is as follows: Find a preconditioner M such that M ≈ A and M−1A is well
conditioned. Then applying an iterative method to the new system

M−1Ax = M−1b (3.9)

results in accelerated convergence. Because this new system eq. (3.9) is well con-
ditioned, one might argue that solving the system should produce more accurate
solutions (thereby alleviating our need for the methods discussed in the previous
sections). This, in general, is not the case.

Given the matrix M , suppose we solve for the desired preconditioner M−1 using
a backward stable algorithm. Then by eq. (3.1) we have that fl(M−1b) = M−1b +
f where ‖f‖ ≤ O(ε)κ(M)‖M−1b‖. Similarly, the computed matrix multiplication
M−1A satisfies

fl(M−1A) = M−1A+ F

where ‖F‖ ≤ O(ε)κ(M)‖M−1A‖.
Thus, in a best-case scenario, the exact solution y of the computed preconditioned

system fl(M−1A)y = fl(M−1b) can only be bounded as

‖y − x‖
‖x‖

≤ O(ε)κ(M)κ(M−1A). (3.10)

12

At first glace, the bound in eq. (3.10) seems promising – it looks independent of
κ(A) after all. Let us take a closer look at the right hand side. First, note that

κ(A)

κ(M−1A)
≤ κ(M) ≤ κ(M−1A)κ(A). (3.11)

This means that for M−1A to be well conditioned, M is necessarily ill-conditioned (or
has a condition number comparable to that of A), and that the bound from eq. (3.10)
O(ε)κ(M)κ(M−1A) is approximately O(ε)κ(A) [26].

Roundoff errors accumulated in inverting M via a standard backward stable algo-
rithm change both the preconditioned system and the final solution. This prevents the
improvement of solution accuracy through general preconditioning, but also prompts
the following question: Can more accurately inverting M lead to a more accurate
solution of the original system? In fact, it can [26].

In general, the success of preconditioning (i.e. faster convergence and more ac-
curate solutions) relies upon the ability to accurately invert the preconditioner, and
preconditioning with a matrix whose inverse is solved for using an inverse-equivalent
algorithm will produce inverse-equivalent solutions to the original system. The fol-
lowing two theorems from [26] provide an explicit error analysis to substantiate this
claim. In particular, let A = M + K where K is small in norm, and M is such that
there is an inverse-equivalent algorithm for computing M−1. Then we address the
accuracy of solutions of the system

Bx = c where B := I +M−1K and c := M−1b (3.12)

computed via a direct method and an iterative method, respectively.

Theorem 3.3. ([26]) Let A = M+K with A and M being invertible and let Ax = b.
Assume that there is an inverse-equivalent algorithm for inverting M so that the
computed results of B := I +M−1K and c := M−1b satisfy:

B̂ = B + E with ‖E‖ ≤ O(ε)
(
1 + ‖M−1‖‖K‖

)
, (3.13)

and

‖ĉ− c‖ ≤ O(ε)‖M−1‖‖b‖. (3.14)

Let x̂ be the computed solution to B̂x = ĉ by a backward stable algorithm so that x̂
satisfies (

B̂ + F
)

x̂ = ĉ with ‖F‖/‖B̂‖ ≤ O(ε). (3.15)

Let δ := (‖E‖+ ‖F‖) ‖B−1‖ and assume that δ < 1. Then

‖x̂− x‖
‖A−1‖‖b‖

≤ O(ε)
κ(B)

1− δ

(
4 +
‖K‖‖x‖
‖b‖

)
. (3.16)

In particular, if ‖M−1‖‖K‖ < 1, then

‖x̂− x‖
‖A−1‖‖b‖

≤ O(ε)

(1− δ)(1− ‖M−1‖‖K‖)2
. (3.17)

13

For large scale systems it is generally more desirable to solve eq. (3.12) using an
iterative method. In this case, we have the following result.

Theorem 3.4. ([26]) Consider solving eq. (3.12) by an iterative method where the
matrix-vector product Bv = v + M−1Kv is computed by an inverse-equivalent algo-
rithm for inverting M . Assume that the iterative method produces an approximate
solution xL with ‖c − BxL‖ ≤ O(ε) (1 + ‖M−1‖‖K‖) ‖v‖ and ‖b − AxL‖ ≤ ‖b‖.
Then

‖x− xL‖
‖A−1‖‖b‖

≤ O(ε)κ(B)

(
1 +
‖K‖‖xL‖
‖b‖

)
(3.18)

≤ O(ε)κ(B)
(
1 + 2‖A−1‖‖K‖

)
. (3.19)

In light of these results, we seek to write the discretization matrix A as the sum
A = M +K, where K is small in norm and M has an accurate RRD. Then, solving
the preconditioned system (

I +M−1K
)

x = M−1b (3.20)

using any backward stable algorithm will result in an inverse-equivalent solution x̂
of the system Ax = b. We reiterate that the necessary component here is that for
any preconditioner M , M−1 is either available exactly, or has an inverse-equivalent
algorithm. See [26] for proofs of Theorem 3.3 and Theorem 3.4 and further error
analysis of this so-called accurate preconditioning process.

In Chapter 4 we use accurate preconditioning schemes together with standard
iterative eigenvalue solvers in order to compute highly accurate smaller eigenvalues
of the biharmonic operator eq. (2.1).

Copyright© Kasey Bray, 2019.

14

Chapter 4 Accurate Computations of a Biharmonic Eigenvalue

In this chapter we present discretizations for accurate computations of the smallest
biharmonic eigenvalues across several domains. In particular, we solve a matrix eigen-
value problem ANv = λv (where AN depends on the domain) by applying inverse
iteration together with accurate-preconditioning to compute accurate solutions of the
differential eigenvalue problem eq. (2.1). In a demonstration of the success of this
approach, we employ two particular inverse-equivalent algorithms for computing the
preconditioner M−1: the accurate LDU and a known accurate RRD.

Direct discretization matrices of the biharmonic operator ∆2 are not typically
diagonally dominant. However, under certain conditions, when ∆2 is decoupled into
the composition of two second order Laplacian operators ∆ the resulting discretization
matrix of ∆2 is the product of two diagonally dominant matrices.

Consider, for example, the 1-d biharmonic eigenvalue problem ∆2v = λv on [0, 1],
subject to the natural boundary conditions v(0) = v′′(0) = v(1) = v′′(1) = 0. The
two decoupled Laplacian operators with which this problem is composed have the
same natural boundary conditions and hence have the same discretization matrix

TN =


2 −1
−1 2 −1

.

−1 2 −1
−1 2

 . (4.1)

This results in a final discretization matrix of ∆2 which has the product form
AN = T 2

N . Clearly TN is diagonally dominant, and thus inverse iteration together
with the ALDU factorization can be directly applied to accurately compute smaller
eigenvalues. In the analogous 2-d case with domain [0, 1]2 and natural boundary con-
ditions, we have a final discretization matrix AN×N = T 2

N×N = (I ⊗ TN + TN ⊗ I)2,
where ⊗ is the Kronecker product. As before, this is the product of two diagonally
dominant matrices. The eigenvalues of both TN and TN×N are known exactly and [28]
demonstrates the success in employing the ALDU algorithm to achieve high accuracy
computations.

Unfortunately, under Dirichlet boundary conditions, this highly desired product
form is not as readily available. It is possible to derive a suitable discretization at
the boundary so that the resulting matrix can be written as the product of two
diagonally dominant matrices; [28] does this for the 1d biharmonic operator with
Dirichlet boundary conditions, but it is not clear that this method can be applied
across many domains. Explicitly, [28] does not address the 2d biharmonic operator
with Dirichlet boundary conditions, citing that the standard 13 point discretization
does not possess the desirable product form. Instead, we focus on a more general
approach of using standard discretizations of the biharmonic operator under Dirichlet
boundary conditions together with the accurate preconditioning method described in
Section 3.3 to achieve a desired accuracy.

15

We first solve eq. (2.1) on the unit square in both one and two dimensions, and
to argue the applicability of this approach to other domains, we consider the unit
circle Ω = B(0, 1). We note that the results of Section 4.1 compare with those of
[28], but here we have the advantage of not having to derive a suitable discretization
that is the product of two diagonally dominant matrices. The results of Section 4.2
and Section 4.3, on the other hand, show an accuracy which cannot, to the authors
knowledge, be found in the literature.

In each example inverse iteration is applied to AN to compute the smallest eigen-
value, where at each iteration the linear system ANu = v is first solved using a
standard backward stable algorithm (e.g. Cholesky factorization on AN), and then
again using GMRES (implemented with 50 restarts) on an accurately preconditioned
system eq. (3.20). Similar results are obtained using Lanczos/Arnoldi, but we present
only those from inverse iteration. All computations 1 were performed on a PC us-
ing MATLAB, version R2017a, and for each domain computed eigenvalues from the
literature are used as a reference point to compute relative errors.

4.1 Unit Interval: Ω = [0, 1]

Discretizing Ω = [0, 1] on the uniform mesh 0 = x0 < x1 < · · · < xN < xN+1 = 1,
where xi = ih and h = 1

N+1
, then using the center difference ([15], [28]) yields the

matrix equation form of (2.1):

ANv = h4λv + e (4.2)

where vT = (v(x1), v(x2), . . . v(xN)), eT = (O(h−1) O(h2) . . .O(h2) O(h−1)) and
AN is the 5-diagonal N ×N matrix

AN =



7 −4 1
−4 6 −4 1
1 −4 6 −4 1

.

1 −4 6 −4
1 −4 7


.

AN has a condition number of order h−4, is not diagonally dominant, and does not
appear to have a factorization as a product of diagonally dominant matrices, hence a
direct computation of λ1 will have little accuracy for large N . See Table 4.1. Instead,
we write AN as the sum

AN = T 2
N + EN

where TN is given by eq. (4.1) and EN is the diagonal matrix EN = diag(2, 0, . . . , 0, 2).
Since T 2

N is the product of two diagonally dominant matrices and EN is small, we can

1Except for λchol1 of Table 4.2 for N = 212; this was computed using a Hi-Mem node (512 GB)
on the University of Kentucky’s Lipscomb High Performance Computing Cluster, built by Dell Inc.

16

Table 4.1: The smallest eigenvalue of the 1-dimensional biharmonic eigenvalue prob-
lem on Ω = [0, 1] is computed using inverse iteration together with the Cholesky
factorization on AN (λchol1) and the accurate LDU factorization of TN in an accurate
preconditioning scheme (λaldu1). For comparison, we include the results of using the
built-in MATLAB function eigs on AN (λeigs1).

N h λeigs1

|λ1 − λeigs1 |
λ1

λchol1

|λ1 − λchol1 |
λ1

λaldu1

|λ1 − λaldu1 |
λ1

24 6.3e-02 4.866235035910463e+02 2.7e-02 4.866235035910569e+02 2.7e-02 4.866235035910537e+02 2.8e-02
25 3.1e-02 4.967978712848667e+02 7.5e-03 4.967978712851951e+02 7.5e -03 4.967978712850298e+02 7.5e-03
26 1.6e-02 4.995884940389652e+02 1.9e-03 4.995884940399146e+02 1.9e-03 4.995884940386783e+02 1.9e-03
27 7.8e-03 5.003159428431272e+02 4.9e-04 5.003159428352059e+02 4.9e-04 5.003159428323790e+02 4.9e-04
28 3.9e-03 5.005014087109788e+02 1.2e-04 5.005014085433866e+02 1.2e-04 5.005014086419910e+02 1.3e-04
29 2.0e-03 5.005482155644552e+02 3.1e-05 5.005482167485592e+02 3.1e-05 5.005482162287630e+02 3.1e-05
210 9.8e-04 5.005599901607670e+02 7.8e-06 5.005599685751752e+02 7.8e-06 5.005599726273552e+02 7.9e-06
211 4.9e-04 5.005629837852146e+02 1.8e-06 5.005630775610463e+02 1.6e-06 5.005629184981394e+02 1.9e-06
212 2.4e-04 5.005628603461304e+02 2.1e-06 5.005661883657695e+02 4.5e-06 5.005636558107462e+02 4.9e-07
213 1.2e-04 5.005752767371457e+02 2.3e-05 5.005582938119225e+02 1.1e-05 5.005638402501275e02 1.2e-07
214 6.1e-05 5.004440381056732e+02 2.4e-04 5.007178259919213e+02 3.0e-04 5.005638863671624e+02 3.1e-08
215 3.1 e-05 5.005701431041793e+02 1.2e-05 5.025944960403944e+02 4.0e-03 5.005638978912588 e+02 7.7e-09
216 1.5e-05 3.745357909797928e+02 2.5e-01 5.158748033027155e+02 3.0e-02 5.005639008277676 e+02 1.8e-09
217 7.6e -06 -1.076609301288449e+03 3.1e+00 2.655558644301438e+02 4.7e-01 5.005639014178888e+02 6.4e-10

accurately solve the matrix eigenvalue problem (T 2
N + EN)v = h4λv by forming the

preconditioned system (
I + T−2N EN

)
u = T−2N v, (4.3)

to be solved at each step of inverse iteration. To compare various results, ANu = v
is solved for in two different ways:

1. Using the Cholesky factorization of AN , and

2. Using GMRES on the preconditioned system in eq. (4.3) where T−2N is computed
using the accurate LDU factorization of TN .

The eigenvalues of the clamped plate problem are not known exactly, but in [28], λ1
is computed in high precision as the root of an algebraic equation, transcendental in
the eigenvalue parameter. To fifty digits we have

λ1 = 500.56390174043259597023906145469523385520808092739. (4.4)

Table 4.1 shows the resulting relative errors for increasingly large values of N .
As h decreases the the discretization matrix becomes increasingly ill-conditioned.
The errors associated with MATLAB’s built-in solver eigs (λeigs1) and with inverse
iteration paired with the standard Cholesky (λchol1) steadily worsen. In fact, when
the mesh-size h ≈ 1.2e-04, the error actually begins to increase until we lose all
accuracy, and at N = 217, eigs cannot even produce the correct sign. The ALDU
accurate-preconditioning scheme (λaldu1) on the other hand continues to produce accu-
rate computations as the error decreases quadratically to reach full machine accuracy.

4.2 Unit Square: Ω = [0, 1]2

We now consider eq. (2.1) in two dimensions with Ω = [0, 1]2 and Dirichlet boundary
conditions v(x, y) = ∂nv(x, y) = 0 when x, y ∈ {0, 1}. As discussed in [1], when

17

the standard thirteen point difference approximation is employed (with x and y dis-
cretized on the same mesh as in Section 4.1), the matrix equation

AN×Nv = h4λv + e (4.5)

results, where e is an N2-length error vector analogous to that in Section 4.1, v =
[vj]

N
j=1 ∈ RN2

with vj = [v(xi, yj)]
N
i=1 ∈ RN and AN×N = [Vi, Wi, Xi, Yi, Zi] is

an N2 ×N2 block five-diagonal matrix:

AN×N =



X1 Y1 Z1

W2 X2 Y2 Z2

V3 W3 X3 Y3 Z3

.
.

VN−1 WN−1 XN−1 YN−1
VN WN XN


(4.6)

with

X1 = XN = X + I,

Xi = X for i = 2, · · · , N − 1,

Wi = Yi−1 = W for i = 2, · · · , N, (4.7)

and

Vi = Zi−2 = I for i = 3, · · · , N.

Here, I is the N×N identity matrix, and W and X are N×N three and five-diagonal
matrices, respectively, defined by

W := [2, −8, 2],

X := [1, −8, c̃k, −8, 1], c̃k =

{
21 if k = 1, N

20 if k = 2, · · · , N − 1.
(4.8)

To employ the desired preconditioning methods we rewrite eq. (4.6) as the sum

AN×N = T 2
N×N + EN×N

where TN×N = I ⊗ TN + TN ⊗ I is the diagonally dominant block tri-diagonal matrix

TN×N =


TN + 2I −I
−I TN + 2I −I

. . . −I
−I TN + 2I

 ,

18

and EN×N the block diagonal matrix

EN×N =


EN + 2I

EN
. . .

EN + 2I

 .
Similar to the one dimensional case, we drop the error term e, and solve eq. (4.5)

using two approaches to inverse iteration.

1. Using the Cholesky factorization to solve for A−1N×N , and

2. Using GMRES on the preconditioned system(
I + T−2N×NEN×N

)
u = T−2N×Nv, (4.9)

at each iteration of the inverse power method. The preconditioner T−2N×N is
solved for using the eigenvalue decomposition of TN×N together with the Fast-
Fourier Transform.

We note that TN×N is diagonally dominant and thus has an accurate LDU de-
composition which can be used for accurate preconditioning in eq. (4.9); however,
the O((N2)3) cost of ALDU on this N2 × N2 matrix increases unreasonably quick
with N . To test for large N , we consider instead an accurate RRD of TN×N based
on the known eigenvalue decomposition TN = ZΛZT [12]. Since ‖Z‖ = 1 and
Λ(j, j) = 2(1 − cos πj

N+1
) > 0 is diagonal and nonsingular, this is an accurate RRD.

Moreover, the 2-dimensional eigenvalue decomposition

TN×N = (I ⊗ TN) + (TN ⊗ I) = (Z ⊗ Z) · (I ⊗ Λ + Λ⊗ I) · (Z ⊗ Z)T (4.10)

is an exact rank-revealing decomposition with Z ⊗ Z being orthogonal, and hence it
is an accurate RRD.

Using the eigenvalue decomposition to solve for T−1N×N is particularly desirable
for the large systems arising in the 2-dimensional case because it allows us to use a
Fast-Fourier Transform (FFT) operation to cheaply solve for T−1N×N . First, note that
the (j, k) entry of the N ×N matrix Z is

zjk =

√
2

N + 1
sin

(
πjk

N + 1

)
, (4.11)

and the (j, k) entry of the (2N + 2) × (2N + 2) Discrete-Fourier Transform (DFT)
matrix is

exp

(
−2πijk

2N + 2

)
= exp

(
−πijk
N + 1

)
= cos

πjk

N + 1
− i · sin πjk

N + 1
. (4.12)

Thus, the N ×N eigenvector matrix Z consists of −
√

2
N+1

times the imaginary part

of the second through (N + 1)st rows and columns of the DFT matrix [12].

19

Now, we can rewrite TN×Nu = v such that the computed û requires only left
and right multiplications by Z. The system TN×Nu = v is equivalent to the matrix
equation

TNU + UTN = V, (4.13)

where u, U,v, and V are such that

vec(U) = u and vec(V) = v.

Substituting the eigenvalue decomposition TN = ZΛZ into (4.13) and multiplying on
the left and right by Z = ZT , we obtain the following algorithm [12] for computing
the solution U :

Algorithm 4.1. Input Z and V .

1. Ṽ = ZV Z

2. For all j and k, ũjk =
ṽjk

λj + λk

3. U = ZŨZ.

That is, obtaining solution U requires only the ability to multiply on the left
(and right) by Z. And as can be seen from eq. (4.11), such a multiplication is an
FFT-like operation on the columns(rows) of V and Ũ . We note that Algorithm 4.1
in an inverse-equivalent algorithm since it is mathematically equivalent to inverse-
equivalent algorithm

vec(U) = T−1N×N · vec(V)

obtained using the accurate RRD of eq. (4.10) as discussed above, thus allowing us
to cheaply obtain an inverse-equivalent solution û.

The eigenvalues of the biharmonic problem on the unit square with Dirichlet
boundary conditions are not known exactly, but the smallest eigenvalue is computed
in quadruple precision in [2] as

λ1 = 1294.9339795917128081703026479744. (4.14)

A word about this chosen reference eigenvalue λ1: We have no guarantee of accu-
racy of this computation; nor, in general, do we know the degree to which quadruple
precision calculations can be trusted in the presence of ill-conditioning. Ideally, in
the absence of knowing the exact eigenvalue, we would like for the desired reference
eigenvalue to be computed symbolically from an algebraic equation as eq. (4.4) was
calculated for [28] by M. Embree. We leave this to future work, and settle for the
time being with eq. (4.14) as a reference point. Now, this is not to say that, in
the event that eq. (4.14) is accurate to all its presented digits, the current methods
applied here are irrelevant or unnecessary. The computation of eq. (4.14) in [2] re-
quired the combination of a matrix obtained from up to 5000 basis functions and
the use of quadruple precision. We’ve presented here an alternative, perhaps slightly
more accessible, method for achieving highly accurate results in double precision (for

20

Table 4.2: Computations of the smallest eigenvalue of the 2-dimensional biharmonic
eigenvalue problem on Ω = [0, 1]2 using MATLAB’s built in eigs on AN×N , and then
inverse iteration together with the Cholesky factorization of AN×N (λchol1) and the
eigenvalue decomposition of TN×N in an accurate preconditioning scheme (λFFT1).

N h λeigs1

|λ1 − λeigs1 |
λ1

λchol1

|λ1 − λchol1 |
λ1

λFFT1

|λ1 − λFFT1 |
λ1

24 6.3e-02 1.253504496973189e+03 3.2e-02 1.253504496973134e+03 3.2e-02 1.253504496973189e+03 3.2e-02
25 3.1e-2 1.283580514513306e+03 8.7e-03 1.283580514514243e+03 8.7e-03 1.283580514515036e+03 8.7e-03
26 1.6e-2 1.291980776720620e+03 2.3e-03 1.291980776738552e+03 2.3e-03 1.291980776741693e+03 2.3e-03
27 7.8e-3 1.294182378905437e+03 5.8e-04 1.294182379179328e+03 5.8e-04 1.294182379123644e+03 5.8e-04
28 3.9e-3 1.294744492745101e+03 1.4e-04 1.294744497477243e+03 1.4e-04 1.294744497650665e+03 1.4e-04
29 2.0e-3 1.294886343614766e+03 3.7e-05 1.294886416807854e+03 3.7e-05 1.294886407148133e+03 3.7e-05
210 9.8e-4 1.294920852462902e+03 1.0e-05 1.294921637849319e+03 9.6e-06 1.294922050338627e+03 9.2e-06
211 4.9e-4 1.294911817799253e+03 1.7e-05 1.294923489483935e+03 8.1e-06 1.294931003151992e+03 2.3e-06
212 2.4e-4 1.294625457735924e+03 2.4e-04 1.294933138689635e+03 9.5e-05 1.294933430638977e+03 4.2e-07

which direct hardware support is far more common). Regardless, what we do have
is the clear convergence of the accurate preconditioning scheme to a value near that
of eq. (4.14), and a lack of convergence for the backward stable Cholesky approach.
For comparison, we’ve included the results of MATLAB’S eigs, where we also see
the computed values beginning to diverge for large N .

In particular, Table 4.2 displays the results of our 2-dimensional experiment using
inverse iteration. λFFT1 denotes the eigenvalue computed using Algorithm 4.1 and the
FFT to solve for T−1N×N in the accurate preconditioning scheme at each iteration, while
λchol1 refers the use of the Cholesky factorization to solve for A−1N×N at each iteration,

and λeigs1 denotes the eigenvalue computed using MATLAB’s built in eigs function
directly on AN×N .

Moreover, if we take eq. (4.14) to be true, then the relative errors of Table 4.2
indicate that the FFT inverse-equivalent scheme performs as expected, as it contin-
ually produces accurate solutions as N increases. However, The relative error of the
Cholesky preconditioning method on the other hand begins to stagnate, then begins
to increase. Indeed, N = 24 through N = 29 all three methods preform comparably,
after which the Cholesky and eigs based methods start to fall behind. In particular,
for N = 211 and N = 212 we see that the error for Cholesky preconditioning is slightly
larger than that for λFFT1 , and then for N = 212 the error actually increases. We see
similar results for λeigs1 , but in this case, the error begins to stagnate earlier, around
N = 210, and it does not reach the same accuracy that λchol1 does.

We further note that our computations live within the upper-bound 1294.933988
calculated in [25], and look to be monotonically increasing to λ1. We also note that
similarly accurate solutions are obtained when the preconditioner T−1N×N is solved
for using the ALDU factorization of TN×N for N up to 29, but we report only the
computationally efficient FFT results.

21

4.3 Unit Circle: Ω = B(0, 1)

While the problems examined thus far have exploited the structure of the very spe-
cific matrix TN , the success of our method hinges only on the ability to write the
discretization as the sum of a matrix possessing an accurate RRD and a matrix
small in norm; thus, the method can be extended to many domains. As an example,
we present accurate solutions to the biharmonic eigenvalue problem with Dirichlet
boundary conditions on the unit circle.

For Ω = B(0, 1) = {x, y : x2 + y2 ≤ 1} eq. (2.1) is converted to polar coordinates
[10] by writing v as a function of the radius r ∈ [0, 1] and angle θ ∈ (0, 2π]. In polar
coordinated ∆ is given as ∆ = ∂2

∂r2
+ 1

r
∂
∂r

+ 1
r2

∂2

∂θ2
. This two dimensional problem can

be further simplified by assuming the function v is radial (i.e. v(r, θ) = v(r)), and
thus reducing it to a one dimensional problem in r:

(
∂2r +

1

r
∂r

)2

v(r) = λv(r) for r ∈ (0, 1)

v(1) = v′(1) = 0.

(4.15)

Everitt, et. al discuss in [16] the Dirichlet boundary value problem of the bi-
harmonic partial differential equation on a disc of finite radius in the plane. In this
paper, a quasi-separation of variables method is presented which leads to solutions of
the partial differential equation which are products of solutions of two ordinary linear
differential equation: a fourth order radial equation, and a second order angular dif-
ferential equation. In particular, [16, Theorem 9.1] addresses the eigenvalues of the
biharmonic eigenvalue problem with Dirichlet boundary conditions in relation to the
radial and angular factors of the solution v(r, θ). This, together with [16, Lemma 4.1]
suggests the validity of using eq. (4.15) to compute λ1 of eq. (2.1) with Ω = B(0, 1).

Note that this equation has no left-end boundary condition, so to derive a suitable
discretization matrix equation, we first decouple the product in eq. (4.15). Let

w(r) = −
(
∂2r +

1

r
∂r

)
v(r), (4.16)

and

u(r) = −
(
∂2r +

1

r
∂r

)
w(r) = λv(r). (4.17)

Then, for 0 = r0 < r1 < · · · < rN < rN+1 = 1, where ri =
(
i− 1

2

)
h and h = 2

2N+1
for

i = 1, . . . , N, applying the center difference yields

ui =
1

h2

(
2− 2i

2i− 1
wi−1 + 2wi +

−2i

2i− 1
wi+1

)
+O(h2),

where we employ the notation ui = u(ri). This half mesh shift takes care of a left
boundary condition since when i = 1 the w0 coefficient is zero, and hence eq. (4.17)

22

in matrix form is

1

h2


2 q2
l1 2 q3

. . .
. . . qN
lN−1 2 qN+1




w1

w2
...
wN
wN+1

+O(h2) =


u1
u2
...
uN


where li = 2−2(i−1)

2(i+1)−1 and qi = −2(i−1)
2(i−1)−1 . For notational purposes we write this as

1

h2
[B | y]ŵ + f = u (4.18)

where

B =


2 q2
l1 2 q3

. . .
. . . qN
lN−1 2

 and y =


0
...
0

qN+1

 .

Similarly, for eq. (4.16) we have

wi =
1

h2

(
2− 2i

2i− 1
vi−1 + 2vi +

−2i

2i− 1
vi+1

)
+O(h2),

where the v0 coefficient vanishes when i = 1, and when i = N we have the originally
imposed boundary condition vN+1 = v(1) = 0. Finally, we must derive an equation
for wN+1.

Since v′(rN+1) = 0, by eq. (4.16) we have

wN+1 = −v′′(rN+1) = −v′′(1) =
−vN + 2vN+1 − vN+2

h2
+O(h2).

Then, writing vN+2 = v(1 + h) = 1
2
h2v′′(1) + O(h2) gives wN+1 = − 1

h2
2vN + O(h2),

and therefore the matrix form of eq. (4.16) is

1

h2

[
B
zT

]
v +O(h2) = ŵ where zT = (0 · · · 0 − 2). (4.19)

Plugging this into eq. (4.18) and dropping the (order h2) error term gives the desired
discretization of the biharmonic eigenvalue problem on the unit circle:

(
B2 + EN

)
v = h4λv (4.20)

where

EN = yzT = diag

(
0, . . . , 0,

4N

2N − 1

)
;

23

furthermore, the diagonally dominant part of B, given by the N -vector

(0, . . . , 0, 2− |lN−1|) =

(
0, . . . , 0,

2N

2N − 1

)
,

is nonnegative. Thus, B is diagonally dominant and we can use the accurate LDU
algorithm to compute B−1, then use GMRES to solve the preconditioned system(

I +B−2EN
)

u = B−2v

at each step of inverse iteration to accurately compute the desired eigenvalue.
In [18], Luo develops a numerical method and error bounds for biharmonic eigen-

value equations in the spherical domain based on the spectral theory of compact
operators. By adopting orthogonal spherical basis functions to establish a discrete
model with sparse matrices, they compute the smallest eigenvalue of eq. (2.1) to ten-
digit accuracy as λ = 104.3631056. This reference provides additional confirmation
that our method (specifically the results in Table 4.3) are converging to the correct
value. However, we will compute our reference eigenvalue λ1 using the methods de-
scribed in [9, Ch.5 §6]. We summarize some of these details here, but refer the reader
to [7], [9], [16] and the references therein for more details.

Using polar coordinates and writing λ = k4, we rewrite ∆2v = λv as

(∆∆− k4)v = 0⇐⇒ (∆− k2)(∆ + k2)v = 0.

If we assume that v can be expanded in a Fourier series as

v =
∞∑

n=−∞

yn(r)einθ,

then each term yn(r) must satisfy the following differential equation:(
d2

dr2
+

1

r

d

dr
− n2

r
− k2

)(
d2

dr2
+

1

r

d

dr
− n2

r
+ k2

)
yn(r) = 0.

The Bessel functions Jn(kr) and Jn(ikr) are two linearly independent solutions of
this equation which are regular for r = 0. Thus, solutions v take the form

v(r, θ) = Jn(kr)(a1 cos(nθ) + b1 sin(nθ)) + Jn(ikr)(a2 cos(nθ) + b2 sin(nθ)).

Now, imposing the boundary conditions v(1, θ) = 0 = vr(1, θ) we obtain the four
equations

Jn(k)a1 + Jn(ik)a2 = 0 Jn(k)b1 + Jn(ik)b2 = 0

J ′n(k)a1 + iJ ′n(ik)a2 = 0 J ′n(k)b1 + iJ ′nb2 = 0,

which immediately imply that k must satisfy

J ′n(k)

Jn(k)
=
iJ ′n(k)

Jn(ik)
. (4.21)

24

Table 4.3: Computations of the smallest eigenvalue of the biharmonic eigenvalue
problem on Ω = B(0, 1) using inverse iteration together with the LU factorization of
AN (λlu1) and the ALDU factorization of B in an accurate preconditioning scheme
(λaldu1). For comparison, we include the built-in MATLAB eigenvalue function eigs
on AN (λeigs1).

N h λeigs1
|λ1−λeigs1 |

λ1
λlu1

|λ1 − λlu1 |
λ1

λaldu1

|λ1 − λaldu1 |
λ1

24 6.1e-02 1.034452748267384e+02 8.8e-03 1.034452748267304e+02 8.7e-03 1.034452748267304e+02 8.8e-03
25 3.1e-02 1.041254297202660e+02 2.3e-03 1.041254297203683e+02 2.3e-03 1.041254297202937e+02 2.3e-03
26 1.6e-02 1.043026887084155e+02 5.8e-04 1.043026887094575e+02 5.8e-04 1.043026887078057e+02 5.8e-04
27 7.8e-03 1.043478788628527e+02 1.5e-04 1.043478789031381e+02 1.5e-04 1.043478788785113e+02 1.5e-04
28 3.9e-03 1.043592837598627e+02 3.7e-05 1.043592840329114e+02 3.7e-05 1.043592837359561e+02 3.7e-05
29 2.0e-03 1.043621478534335e+02 9.2e-06 1.043621514032815e+02 9.1e-06 1.043621482183564e+02 9.2e-06
210 9.7e-04 1.043628345412665e+02 2.6e-06 1.043628944316454e+02 2.0e-06 1.043628659883233e+02 2.3e-06
211 4.8e-4 1.043626247152904e+02 4.6e-06 1.043633926591254e+02 2.7e-06 1.043630456363610e+02 5.7e-07
212 2.5e-04 1.043477740649407e+02 1.5e-04 1.043624032249038e+02 6.7e-06 1.043630905734745e+02 1.4e-07
213 1.2e-04 1.041958255025062e+02 1.6e-03 1.043665105526316e+02 3.2e-05 1.043631018007365e+02 3.6e-08
214 6.1e-05 1.018930268791083e+02 2.4e-02 1.043378363402431e+02 2.4e-04 1.043631046095882e+02 9.5e-09
215 3.1e-05 6.417530335512389e+01 3.8e-01 1.090929215448091e+02 4.5e-02 1.043631053197114e+02 2.7e-09
216 1.5e-05 -5.195041504138685e+02 6.0e+00 1.659797814880537e+02 5.9e-01 1.043631055128566e+02 8.3e-10
217 7.6e-06 4.274851634003073e+03 4.0e+01 1.834063679583271e+03 1.6e+01 1.043631055054487e+02 9.0e-10

Using properties of Bessel functions

d

dx
Jn(x) =

1

2
(Jn−1(x)− Jn+1(x)) and Jn(ix) = inIn(x),

where In(x) is the modified Bessel function, we see that eq. (4.21) becomes (the real
equation)

Jn−1(k)− Jn+1(k)

Jn(k)
=
In−1(k) + In+1(k)

In(k)
.

Since we are interested in the smallest eigenvalue, we take n = 0 and solve

−J1(k)

J0(k)
=
I1(k)

I0(k)

for the smallest positive root k using Maple’s fsolve to 100 digits. Then λ1 = k4 is

λ1 = 104.3631055588443069217226196733478504926323754398933759856840..

..104698636921970114261209766249526384382
(4.22)

Table 4.3 uses eq. (4.22) as the reference eigenvalue for computing the relative
errors in computing the smallest eigenvalue of eq. (4.15) to demonstrate that by
decreasing h, our method continues to produce accurate computations. We present
results from using MATLABs built in eigs (λeigs1) on the discretization matrix AN =
B2 +EN , inverse iteration using the LU factorization of AN (λlu1), and finally, inverse
iteration together with preconditioning using the ALDU factorization of B (λaldu1).
We can see that both eigs(AN), and the standard LU factorization begin to lose
accuracy around N = 211, while the implementation of the ALDU scheme produces
increasingly accurate solutions.

25

4.4 Conclusion

Implementing methods from [26] and [28] we have shown that we can compute the
smallest eigenvalue of of the clamped plate problem in double precision to the order
of machine precision across many domains using standard finite difference discretiza-
tions. The method exploits diagonal dominance in discretization matrices, but re-
quires only that the discretization matrix be written as the sum of a matrix with
an accurate rank-revealing decomposition and a matrix small in norm. Comparing
results with the best known computations from the literature, the method is shown to
be very effective. Future work includes verifying these computations, or determining
exact eigenvalues on the unit square and unit circle symbolically. This would fur-
ther confirm the suggestions of the numerical evidence presented here: that inverse
equivalent algorithms can compute solutions to linear algebra problems to machine
precision in the presence of ill-conditioning, while backward stable algorithms lose
accuracy.

In Part II of this thesis we study a multigrid approach to solving differential equa-
tions, and compare the accuracy of multigrid-computed results with those computed
by the methods here in Part I.

Copyright© Kasey Bray, 2019.

26

Part II

Multigrid Algorithms

27

Chapter 5 Motivation and Model Problem

5.1 Introduction

Historically developed for solving boundary value problems

Lv = f on Ω with v = g on ∂Ω, (5.1)

multilevel methods have evolved rapidly over the past thirty years to produce powerful
new techniques for solving partial differential equations with a remarkable range of
applicability. It has been verbally suggested that such methods are not subject to
the accuracy issues caused by ill-conditioning; however, the author has not found
references to substantiate such claims. Part II of this thesis is an investigation to
determine if multigrid algorithms could indeed compute solutions comparably to the
inverse-equivalent schemes described in Chapter 3 and implemented in Chapter 4.

Consider discretizing eq. (5.1) as

Ahvh = fh, where A ∈ RN×N with N = 2L and h =
1

N
. (5.2)

We will conduct an error analysis of multigrid algorithms as applied to eq. (5.2).
The broad goal of this work is to understand the role of the condition number of
Ah on the relative error of a solution computed via a convergent l-grid V-cycle, for
some l = 1, . . . , L, or, to explicitly determine if a multigrid algorithm is an inverse-
equivalent algorithm. A lofty goal, the work in this part (particularly Chapter 7
and Chapter 8) provides a starting point and opens the door for further discussion
and analysis of multigrid algorithms in the presence of ill-conditioning and in the
framework of inverse-equivalency.

In the remaining sections of this chapter we discuss existing error analysis the
author could find in the literature, then introduce our Model Problem. This Model
Problem will serve as our motivation for a floating point error analysis, as well as
an example of how our generalized results can be used to derive concrete bounds.
In Chapter 6 we introduce the basic multigrid principle, state specific multigrid al-
gorithms, and develop Fourier analysis – a standard tool used to analyze multigrid
algorithms; in this chapter we also state our Model Algorithm. Chapter 7 uses these
tools to derive floating point error bounds on a 2-grid operator, a 3-grid operator,
and then generalizes the results to an l-grid operator. Finally, in Chapter 8 we use
the theory from Chapter 7 to explicitly derive error bounds on solutions to the Model
Problem as computed by the Model Algorithm.

5.2 Motivation

Rigorous and local Fourier analysis are well known techniques for determining both
convergence factors and bounds on norms of multigrid operators, and have been
applied to many specific multigrid algorithms in the literature ([21], [22]). Moreover,

28

it is well know that, for many problems, full multigrid (FMG) can yield a solution
whose error is comparable to the discretization error. In fact, it is often suggested
that it is not worthwhile to solve the discrete problem more accurately by investing
more computational work, but one should instead redirect that work to reducing the
discretization error itself, for example, by appealing to yet a finer target grid. In [19],
Rodrigo et al. develop a tool which yields insight into various components of the
FMG algorithm and their effects on the final relative accuracy. They note a general
lack of attention given to FMG in terms of error analysis and develop the so-called
FMG accuracy measure as a suitable indicator for the performance of FMG.

However, this discretization-level-accuracy error analysis yields little insight into
our question. While attention is paid in comparing a discrete solution to the con-
tinuous solution, to the author’s knowledge, the literature does not address the com-
parison of a computed discrete solution to the exact discrete solution. That is, the
general effects of roundoff errors in multilevel algorithms has not been address, nor
has the specific ability of multigrid algorithms to compute solutions to full machine
precision in the presence of ill-conditioning.

What’s more, much of the analysis done in the field on multigrid algorithms is of
the flavor “if the algorithm works, it works this well.” That is, the analysis exists
within the environment of a particular algorithm for a specific problem. In fact,
the role of local Fourier analysis is often to aid in the design of a good algorithm
for a concrete problem. Even more generally, much of the work of iterative methods
involves exploiting the underlying mathematical or physical problem in order to design
better iterative methods. We thus focus our analysis around the following Model
Problem.

5.3 Model Problem

A classical model for a discrete elliptic boundary value problem, we introduce the fi-
nite difference approximation to Poisson’s equation on the unit interval as our Model
Problem. Arising in many applications, much attention has been paid to Poisson’s
equation, and many numerical solvers have been applied to this problem for compar-
ison ([12], [19], [22], [26], [28], and the references therein.). Moreover, the coefficient
matrix TN of the discretization of Poisson’s equation is large, sparse and has condition
number of order O(h−2). This makes it the ideal Model Problem for understanding
the roll of ill-conditioning in multigrid algorithms.

Model Problem. Let L be the one-dimensional Poisson operator, such that eq. (5.1)
becomes the following one-dimensional Poisson’s equation with Dirichlet boundary
conditions: {

−∆v = f in Ω

v = ∂nv = 0 on ∂Ω,
(5.3)

with Ω = [0, 1]. We discretize Ω into grid Gh = {xi = ih : i = 0, · · · , N} using an
equidistant mesh h = 1

N
, where N = 2L for some L ∈ N. Then using the standard

29

center difference approximation yields the linear system

1

h2
TNvh = fh on grid Gh, (5.4)

or
Ahvh = fh on grid Gh,

where Ah = 1
h2
TN , TN is as in eq. (4.1), vh(i) = v(xi), and fh(i) = f(xi).

Our general goal is to accurately and efficiently solve eq. (5.4) using multigrid
techniques. As further motivation for studying roundoff errors, we present some
numerical results of various solvers on the Model Problem. We note that the Model
Algorithm introduced in the next chapter details how these results are obtained.
Moreover, while Chapter 7 outlines specific assumptions which allow for some general
results and applicability, this Model Algorithm serves as a means for computing
explicit error bounds in an effort to understand the results of Example 5.1.

Example 5.1. Consider eq. (5.3) with f(x) = 3 sin(2πx), discretized as fh(i) = f(xi).
This problem has the exact solution v(x) = 3

4π2 sin(2πx), and hence vh(i) = v(xi). We
solve this linear system using a well-behaved full multigrid algorithm that converges
efficiently (Chapter 6 Model Algorithm, [6], [22]).

Table 5.1 shows numerical results for increasingly ill-conditioned discretization
matrices Ah = 1

h2
TN ∈ R2L×2L , the table shows the relative error ρx = ‖vh −

v̂x‖2/‖vh‖2, where the computed solution v̂x is obtained using three different al-
gorithms:

1. v̂x = v̂FMG: the full multigrid algorithm, iterated until the ratio of the errors
in consecutive iterations is 1, with tolerance .001;

2. v̂x = v̂back: MATLAB’s built-in backslash for solving linear systems;

3. v̂x = v̂ALDU : the inverse-equivalent ALDU factorization, from Section 3.2,
applied directly to the diagonally dominant TN .

These numerical results indicate that on fine grids, multigrid out preforms tradi-
tional backward stable algorithms, but under performs in comparison with inverse-
equvalent algorithms. We can see that all three are comparable up until L = 18,
or κ(Ah) ≈ 1010. At this point, ρback begins to increase, and continues to increase
for the remainder of the table; meanwhile, ρFMG and ρALDU continue to decrease
quadratically. However, around L = 20 we begin to see significant differences in
these remaining competing errors. For L > 20, ρFMG remains one to two orders of
magnitude worse than those of an inverse-equivalent algorithm. More explicitly, at
L = 21 the FMG error actually begins to increase, while ρALDU remains consistent
in its performance. From this table, it is not clear whether or not the ρFMG explic-
itly depends on κ(Ah); although it seems to suggests that κ(Ah) might play some
small roll in the FMG error. The rest of this thesis is dedicated analysing roundoff
errors in the building blocks of FMG, and setting a foundation for understanding the
increasing errors of ρFMG for very large N .

30

Table 5.1: Example 5.1: The discrete boundary value problem eq. (5.4) with fh(i) =
3 sin(2πx(i)) and exact solution vh(i) = 3

4π2 sin(2πx(i)) is solved using full multigrid,
MATLAB’s built-in backslash, and the inverse-equivalent ALDU algorithm. The
table shows relative errors for increasingly ill-conditioned systems.

Relative error ρx =
‖vh − v̂x‖2
‖vh‖2

L κ(Ah) ρFMG ρback ρALDU
2 8 2.3 e -01 2.3 e-01 2.3e-01
3 3.2e1 5.3e-02 5.3e-02 5.3e-02
4 1.3e2 1.3e-02 1.3e-02 1.3e-02
5 5.1e2 3.2e-03 3.2e-03 3.2e-03
6 2e3 8.0e-04 8.0e-04 8.0e-04
7 8e3 2.0e-04 2.0e-04 2.0e-04
8 3e4 5.0e-05 5.0e-05 5.0e-05
9 1.3e5 1.2e-05 1.2e-05 1.2e-05
10 5.2e5 3.0e-06 3.0e-06 3 .0e-06
11 2e6 7.8e-07 7.8e-07 7.8e-07
12 8e6 1.9e-07 1.9e-07 1.9e-07
13 3e7 4.9e-08 4.9e-08 4.9e-08
14 1e8 1.2e-08 1.2e-08 1.2e-08
15 5e8 3.1e-09 3.0e-09 3.0e-09
16 2e9 7.6e-10 7.6e-10 7.6e-10
17 8e9 1.2e-10 1.2e-10 2.0e-10
18 3e10 5.0e-11 1.5e-08 4.8e-11
19 1e11 1.3e-11 1.3e-07 1.2e-11
20 5e11 6.5e-12 4.6e-07 3.0e-12
21 1.8e12 2.6e-11 8.2e-07 7.9e-13
22 7e12 8.1e-11 8.0e-07 1.3 e-13
23 3e13 5.4e-11 1e-06 2.1e-13
24 1e14 3.0e-10 1e-05 4.5e-13

31

Copyright© Kasey Bray, 2019.

32

Chapter 6 Multigrid Algorithms

The general multigrid principle is fairly simple. In fact, each of its elements, consid-
ered separately, were already known and had been used for a long time before they
were combined into what we know as modern multigrid methods. The 1960s saw the
first studies introducing and investigating multigrid methods by R.P. Fedorenko and
N.S. Bakhvalov. Later, Achi Brandt was the first to address the actual efficiency of
multigrid solvers, and is often considered a general pioneer of the subject. We do
not attempt to list or summarize the vast and important work of Brandt and the
many other historically relevant contributors (namely, Hackbusch) to the subject,
but instead refer the reader to [21] (and the references therein) for a nice historical
overview, as well as a systematic introduction to multigrid methods for the solution
of elliptic differential equation. A bit dated, the field has certainly expanded and
generalized in many interesting ways since 1989 (e.g. multigrid preconditioning, al-
gebraic multigrid, etc). However, for our purposes, we need only a somewhat basic
framework of common multigrid methods. This chapter is an amalgamation of [6],
[12, Chapter 6.7], and [22], to present the necessary background and understandings
of a multigrid procedure. When necessary, we cite (possibly other) explicit references
to appropriately steer the interested reader.

6.1 Basic Multigrid

We again start by considering solving eq. (5.1) discretized as the N×N linear equation

Ahvh = fh on grid Gh, (6.1)

using a general iterative scheme based on the approximate solution of the residual
equation.

Let v
(m)
h be an approximation to to eq. (6.1) and denote the error as

e
(m)
h := vh − v

(m)
h and the residual by r

(m)
h := fh − Ahv(m)

h .

We look to solve the residual equation Ahe
(m)
h = r

(m)
h (which is equivalent to eq. (6.1))

by using some “simpler” operator Âh such that Âh ≈ Ah and Â−1h exists, then com-
puting an updated approximation

v
(m+1)
h := v

(m)
h + ê

(m)
h ,

where ê
(m)
h satisfies Âhê

(m)
h = r

(m)
h . Figure 6.1 illustrates this type of iterative scheme.

Starting with some initial vector v
(0)
h , this iterative process can be written in terms

of an iteration operator, Mh:

v
(m+1)
h = Mhv

(m)
h + Â−1h fh (6.2)

Mh = Ih − Â−1h Ah. (6.3)

33

Figure 6.1: General iterative scheme for solving Ahvh = fh

v
(m)
h r

(m)
h = fh − Ahv(m)

h Âhê
(m)
h = r

(m)
h v

(m+1)
h = v

(m)
h + ê

(m)
h

Multigrid algorithms are iterative algorithms of this general form but infused with
two basic ingredients: coarse-grid correction and smoothing techniques. Coarse-grid
correction defines the operator Âh, while the smoothing eliminates oscillatory com-
ponents of the error and ensures that the iterative process is well behaved. Together,
these two components define the multigrid iteration operator. To understand multi-
grid algorithms, we first describe in detail how these two components come together
to define the structure of the 2-grid operator.

6.2 Coarse Grid Correction and Structure of the 2-Grid Operator

The 2-grid operator, or the 2-grid cycle, is an essential building block of any multigrid
algorithm. It combines a 2-level coarse grid correction with smoothing.

In coarse grid correction, the idea is to solve the residual equation using Âh = AH
– an approximation of Ah on some coarser grid GH . There are of course several
choices of H one could make; however, throughout this thesis we define successively
coarser grids by doubling the mesh-size of the previous grid. And explicitly in the
case of the 2-grid cycle, we consider only the next coarsest grid, taking H = 2h. That
is, we approximate Ah by A2h.

Taken on its own in the context of a general iterative scheme, however, coarse
grid correction produces an algorithm which does not converge. In order to define
a convergent 2-grid operator, we must combine this process with a few iterations
of a smoothing algorithm. The basic idea of smoothing is as follows. In general,
a smooth error term is well approximated on a coarse grid; thus, the role of the
smoothing steps is to damp (or smooth) the high frequency components of the error

e
(m)
h of approximations v

(m)
h , thereby making coarse grid correction (i.e. transferring

functions between grids) a more accurate process.
Thus, each iteration of a 2-grid cycle consists of pre-smoothing, coarse grid cor-

rection, and post-smoothing. Before we can state the 2-grid cycle (hence the 2-grid
operator) then, we must define some operators.

Definition 6.1. We denote the following operators.

J2h
h : Gh → G2h is a restriction operator which takes a vector vh on grid Gh

and maps it the vector v2h, which is an approximation on coarser grid G2h.

Jh
2h : G2h → Gh is a prolongation operator which takes a vector v2h on grid
G2h and converts it to the vector vh, the approximation on the finer grid Gh.

Sh : Gh → Gh is an (iterative) smoothing operator, which takes and approx-
imate solution vh and computes an improved (smooth) solution v̄h by damping
high frequency components.

34

In Section 6.4 we present more details on these operators and comment on how
to choose them.

Using this notation, we can now write down the 2-grid iteration cycle, which takes
in approximate solution v

(m)
h and returns the updated approximation v

(m+1)
h using

only the original grid Gh and the next coarsest grid G2h. The structure of a single
2-grid cycle described by Algorithm 6.1 is depicted in Figure 6.2.

Algorithm 6.1. 2-Grid Cycle v
(m)
h → v

(m+1)
h

1. Pre-smoothing. Apply ν1 steps of some smoothing operator Sh:

v̄
(m)
h = Sν1h v

(m)
h

2. Coarse-grid Correction.

a) Compute residual: r̄
(m)
h = f

(m)
h − Ahv̄(m)

h .

b) Restrict residual: r̄
(m)
2h = J2h

h r̄
(m)
h .

c) Solve residual equation on G2h: A2hê
(m)
2h = r̄

(m)
2h .

d) Prolongate solution: ê
(m)
h = Jh2hê

(m)
2h .

e) Update: v̄
(m+1)
h = v̄

(m)
h + ê

(m)
h

3. Post-smoothing. Apply ν2 post-smoothing steps:

v
(m+1)
h = Sν2h v̄

(m+1)
h

In matrix form, the 2-cycle iteration operator is thus given by

M2h
h = Sν2h

(
Ih − Jh2hA−12h J

2h
h Ah

)
Sν1h . (6.4)

Figure 6.2: Structure of a single iteration of the 2-grid cycle given by Algorithm 6.1.
The two levels are representative of the two grids: Gh on top and G2h on bottom.
Vertical arrows denote transferring between grids while horizontal arrows represent
computations on the current grid.

v
(m)
h v̄

(m)
h r̄

(m)
h = f

(m)
h − Ahv̄(m)

h

r̄
(m)
2h A2hê

(m)
2h = r̄

(m)
2h

ê
(m)
h v̄

(m)
h + ê

(m)
h v

(m+1)
h

35

6.3 Multigrid V-cycle and Full Multigrid

The multigrid V-cycle embeds the 2-grid cycle within itself: instead of solving the
residual equation A2hê

(m)
2h = r̄

(m)
2h on grid G2h, we approximate it by performing

coarse-grid correction on the next coarsest grid G4h, etc. Repeating this process on
successively coarser grids until an exact solution of the residual equation is possible
defines an L-grid V-cylce, and is stated in its recursive form in Algorithm 6.2. First,
we make the following remark on notation.

Remark. Beginning with a meshsize h =
1

N
=

1

2L
determines the number, L, of

grids used. As depicted in Figure 6.3 (left), grid Gh is level 1, grid G2h is level 2, etc.
The lth level represents a grid of mesh-size hl = 2l−1h, down to the coarsest level L
which has grid of meshsize hL = 2L−1h = 1

2
. That is, on the coarsest grid, solving

the residual equation is simple division. In the rest of this section, we will denote by
Gl the grid of meshsize hl, and, consequently, vectors and operators defined on grid
Gl shall be denoted similarly. That is, on the finest grid, G1 := Gh, v1 := vh, etc. In
general we will employ this notation when dealing with general lgrid scenarios but in
the case of 2- and 3-grid cycles, we use explicit h notation.

Algorithm 6.2. L-Grid V-Cycle v
(m)
1 → V L(v

(m)
1 , f1) = v

(m+1)
1

1. Pre-smoothing. Apply ν1 smoothing steps: v̄
(m+1)
1 = Sν11 v

(m)
1

2. Coarse-grid Correction. If G1 = GL is coarsest grid, go to step 3. Else,

a) Restrict computed residual: r̄
(m)
2 = J2

1

(
f
(m)
1 − A1v̄

(m)
1

)
.

b) Solve residual equation by (L − 1)-grid V-cycle using zero vector as first
approximation:

ê
(m)
2 = V L−1(0, r̄

(m)
2)

c) Prolongate and update: v̄
(m+1)
1 = v̄

(m)
1 + J1

2 ê
(m)
2 .

3. Post-smoothing. Apply ν2 smoothing steps: v
(m+1)
1 = Sν21 v̄

(m+1)
1

The V-cycle is a building block of the full multigrid (FMG) algorithm – FMG
combines the V-cycle with nested iteration; it uses a single iteration of a l-grid V-
cycle (for l = 1, . . . , L) to provide a good initial approximation for an (l + 1)-grid
V-cycle. The full multigrid scheme is represented pictorially in Figure 6.3 (right),
and the recursive FMG algorithm is given in Algorithm 6.3.

Algorithm 6.3. Full Multigrid v
(m)
1 → FMGL (f1) = v

(m+1)
1

1. If G1 = GL is the coarsest grid, go to step 3. Else,

a) Restrict right-hand side: f2 = J2
1 f1.

b) Solve: v2 = FMGL+1 (f2).

36

2. Update. v1 = J1
2v2.

3. v1 = V L (v1, f1).

Finally, we can use eq. (6.2) and eq. (6.4) to write down the iteration matrix
for solving eq. (6.1) using the V-cycle described in Algorithm 6.2. Specifically, ML

l

denotes the iteration matrix starting on grid level l and corresponding to the multigrid
cycle that employs L grid levels. It is given recursively by ([22], [24]):

ML
l = Sν2l

(
Il − J ll+1(Il+1 −ML

l+1)A
−1
l+1J

l+1
l Al

)
Sν1l for l = 1, . . . , L− 1, (6.5)

M0
0 = 0.

We note that there are other options for multigrid algorithms, as various struc-
tures can be created by combining different numbers of grids and cycling these grids
different numbers of times (resulting in W-cycles, F-cycles, etc. See [6], [22] for de-
tails). We do not consider these other structures here. FMG is typically the most
efficient multigrid method, thus this paper focuses on its V-cycle building blocks.

In the following section we provide discussion and more details on the various
operators which compose a multigrid algorithm.

6.4 Multigrid Components and Convergence

As we have seen, there are many choices to be made when constructing a multigrid
algorithm. And these choices, which are often highly problem dependent, can have
a strong influence on the efficiency of the algorithm. In this section, we present
various examples of how some of the multigrid components can be specified, discuss
the implication of such choices, and the relationships between them. Finally, we state
the Model Algorithm.

We have already fixed some choices. We consider only standard center difference
discretizations, standard coarsening of doubling meshsize H = 2h (other options
include: semicoarsening, red-black coarsening, 4h coarsening), the natural coarse

Figure 6.3: Structure of a multigrid V-cycle (left) and the full multigrid scheme (right).

2l−1h, l

2L−1h, l = L

2h, l = 2

h, l = 1

37

grid operator Âh = A2h (other options include: the Galerkin coarse grid operator),
and L-grid V-cycles (other options include F and W cycles). We are left to determine
smoothing, restriction, and interpolation operators, and the number of pre- and post-
smoothing steps.

Fortunately, for most multigrid purposes, the simplest transfer operators are quite
effective. Moreover, many classical iterative methods, when applied to discrete elliptic
problems, have a strong smoothing effect on the error of an approximation: they tend
to damp oscillatory terms, making high frequency components become small while
low frequency components are hardly changed. The following example outlines a few
standard, and well studied, restriction, prolongation, and smoothing operators.

Example 6.1. We give several examples of choices of operators J2h
h , Jh2h and Sh

composing a 2-grid cycle. We give details only on those operators which will be used
later to compose the Model Algorithm.

(a) Restriction Operator J2h
h .

(a.1) The simplest way to obtain v2h is to sample vh at the common grid points
(injection), but averaging values of vh at neighboring points is a better
approach: full weight and half weight averaging are common choices.

(a.2) The 1D full weight restriction operator is given by

J2h
h vh(x) =

1

4
(vh(x− h) + 2vh(x) + vh(x+ h)) = v2h(x) for x ∈ G2h

with the analogous matrix representation

J2h
h =

1

4


1 2 1

1 2 1
. . .

1 2 1

 ∈ RN/2−1,N−1.

(b) Prolongation Operator Jh2h.

(b.1) Linear (or bilinear) interpolation are the most common prolongation op-
erators. In 1d, linear interpolation is given by the following.
For x ∈ Gh,

vh(x) = Jh2hv2h(x) =

{
v2h(x) if x ∈ G2h

1
2

(v2h(x− h) + v2h(x+ h)) otherwise.

38

Which has the matrix representation

Jh2h =
1

2



1
2
1 1

2

1
. . .

1
2
1


∈ RN−1,N/2−1.

We note that weighted restriction and linear interpolation have the desir-

able property that Jh2h = c
(
J2h
h

)T
. In the case of full weight restriction we

have c = 2.

(c) Smoothing Operator Sh.

(c.1) Gauss-Seidel-type iterations: lexicographic ordering, red-black ordering,
zebra line, with a relaxation parameter (successive overrelaxation), etc.

(c.2) Jacobi-type iterations: A single iteration of weighted Jacobi, with weight
ω, is written in component form as:

v
(m+1)
h (x) =

1

2

(
v
(m)
h (x− h) + v

(m)
h (x+ h) + h2fh(x)

)
for x ∈ Gh.

We can obtain an iteration matrix Sh as defined by weighted Jacobi by
splitting Ah in the form Ah = Dh − Lh − Uh, where Dh is the diagonal of
Ah, and −Lh and −Uh are the strictly upper and lower triangular parts of
Ah, respectively. This yields [12]:

v
(m+1)
h = Shv

(m)
h + ωD−1h fh

where Sh = [(1− ω)Ih + ωRJ],

and RJ = D−1h (L+ U) .

It is worth noting that interpolation is most effective when the error is smooth
while relaxation is most effective when the error is oscillatory. Indeed, suppose the
exact error on Gh is smooth and approximated on G2h, then the interpolant of this
coarse grid error back to the fine grid is also smooth. On the contrary, if the exact
error is oscillatory, then even a very good coarse grid approximation my produce an
interpolant that is not very accurate [6].

Relaxation schemes, on the other hand, tend to eliminate oscillatory modes and
leave smooth modes. Think of the error as a sum of sine curves of different frequencies:
then the work performed on a particular grid (i.e. averaging the solution at each point
with its neighbors) makes the solution smoother, which is equivalent to getting rid of
the high frequency error.

39

The complementarity at work here is truly wonderful: Relaxation on the fine grid
eliminates oscillatory components and leaves us with a relatively smooth error, and
because this error is smooth interpolation works well in accurately transferring this
error back to the fine grid (after solving on G2h of course) leaving us with an effective
correction of the fine grid solution.

Now, the specific smoothing properties attained by a chosen smoothing operator
Sh depends on the right choice of relaxation parameters, and also on the ordering
of the grid points. As it turns out, appropriate Gauss-Seidel iterations are generally
better smoothers than Jacobi iterations; however, we leave our attention on weighted
Jacobi. In particular, for our Model Problem, weighted Jacobi with ω = 2

3
is good

at decreasing the high-frequency error: the upper half of the error components are
multiplied by 1

3
or less at each iteration (independently of N) while the low-frequency

error components are not decreased as much [12].
The number of pre- and post-smoothing (ν1 and ν2 respectively) are, again, prob-

lem dependent, but are usually small integers. A general observation is that it does
not pay to use large values for ν1 and ν2, and one should instead put the work
towards carrying out a few more multigrid cycles. The numbers are often chosen
experimentally (or through a Fourier analysis), and it is common practice to choose
ν = ν1 + ν2 ≤ 3 ([22], [21]).

These considerations all play in to what it means to design a “good” algorithm.
It is necessary to look into both the speed of convergence of an algorithm and its
cost: A typical multigrid analysis aims to show h-independent fast convergence, and
a computational work cost proportional to the number of unknowns N . There are
a variety of tools and approaches for analysing multigrid methods theoretically, each
offering their own sets of pros and cons, but our main approach will be rigorous
Fourier analysis. Our focus, however, is not on designing an appropriate algorithm,
but rather, given a convergent algorithm, determining how accurate the computed
solution is. Therefore, we establish a Model Algorithm (for solving the Model Prob-
lem) which will provide a foundation for our theoretical approach, and frame our
primary analysis.

Model Algorithm. We solve eq. (5.4) using the full multigrid algorithm (but note
that much of the analysis will focus on the building block of a single V-cycle) using
the following components:

• J2h
h is full weight restriction.

• Jh2h is linear interpolation.

• Sh is weighted Jacobi with ω = 2
3
. For TN , this iteration matrix is Sh = Ih−ω

2
TN .

• ν1 = 2 and ν2 = 1.

In [12] a convergence proof of this algorithm is sketched. In particular, the overall
error in a V-cycle is decreased by a constant less than 1, independent of the grid size,
and the total work is proportional to the cost of a single V-cycle.

40

In the remaining sections of this chapter, we introduce the tools of rigorous Fourier
analysis and basic results which will be used in the following chapter to analyze
roundoff errors. We focus primarily on a rigorous Fourier analysis, but, in light of
limitations, make note of the widely used local Fourier analysis.

6.5 Rigorous Fourier Analysis

The tools and results presented in this section are standard in the multigrid litera-
ture. The original provision of this flavor of analysis is due to Achi Brandt, [5] (much
of which originally appeared in [4]). Used explicitly to analyze the efficiency of a
multigrid algorithm, or to design an efficient algorithm for a problem at hand, these
tools have been widely applied to and studied on many specific scenarios and model
problems. Here, we have primarily relied upon [19], [21], [22], and [24]. Further-
more, in [23], Wienands and Joppich comprehensively describe what is needed for
multigrid algorithms in a realistic simulation environment, and they focus on practi-
cally and computationally answering questions such as How good is the convergence?
within a very particular application. In this paper, because we care about solving a
predetermined linear system, we present Fourier analysis with a more linear algebra
flavor.

At its core, Fourier analysis of multigrid algorithms seeks to exploit properties of
the various operators in order to “nearly” diagonalize the multigrid iteration matrix
ML

l by the eigenvectors of the coefficient matrix Ah. Since the operators composing
ML

l are inherently defined on different spaces, this process requires us to identify high
and low frequency components of the eigenvectors of Ah.

This notion of high and low frequency components was present in the Section 6.4
discussion of smoothing operators. Recall that a property of good smoothing oper-
ators is that after a few iterations, the high frequency (oscillatory) components of
the error are damped, while the lower frequency components hardly change. Further
recall that a smooth error term is well approximated on a coarse grid. In this chap-
ter we will see that the low frequency components of an error on Gh also represent
meaningful grid functions on G2h, whereas the high frequency components do not.
Specifically, the high frequencies are not visible on the coarser grid G2h.

Consider an arbitrary discrete operator Lh corresponding to a difference stencil

[sκ]h = [sκ1,κ2]h =


...

...
...

· · · s−1,1 s0,1 s1,1 · · ·
· · · s−1,0 s0,0 s1,0 · · ·
· · · s−1,−1 s0,−1 s1,−1 · · ·

...
...

...


h

such that Lhvh(x) =
∑

κ∈V sκvh(x + κh), where V is a finite index set. If we as-
sume that Gh is an infinite grid, (hence the influence of boundaries and of boundary
conditions is not taken into account), then the grid functions of Lh

φkh(x) = eikπx where x ∈ Gh and k = 1, . . . , N − 1

41

are formal eigenfunctions of Lh. In particular, these grid functions satisfy

Lhφ
k
h(x) =

(∑
κ∈V

sκe
(ikπ)·κ

)
φkh(x) = L̃h(k)φkh(x).

Moreover, we note that for any two grid functions φkh(x) and φk
′

h (x) we have

φkh(x) = φk
′

h (x) if and only if k′ ≡ k mod 2N.

This allows us to distinguish between high and low frequency grid functions–that is,
grid functions which are representable on G2h (so-called low frequency), and those
which are not visible on G2h. That is, a grid function φkh either coincides with a low-
frequency grid-function on G2h, or it vanishes on G2h, and we call it a high-frequency
grid function. These Lh grid functions are the basis of local Fourier analysis (LFA).
In the literature, the goal of LFA is to determine smoothing factors for Sh, two-
grid convergence factors, and error reduction factors for 2-grid iteration operator
M2h

h (eq. (6.4)). In the absence of boundary conditions, the objective of LFA is to
determine quantitative results which a multigrid algorithm can attain if a proper
boundary treatment is included.

We note that standard LFA denotes the grid functions as φh(θ, x), introducing
the continuous parameter θ ∈ [−π, π), then distinguishes high and low frequency
components on Gh with respect to G2h by establishing that

φ(θ, x) = φ(θ′, x) for x ∈ G2h if and only if θ = θ′ mod π.

Then φ(θ, x) is a low-frequency component if θ ∈
[
−π

2
, π
2

)
, and a high-frequency

component if θ ∈
[
−π,−π

2

)
∪
[
π
2
, π
)
.

Since our goals live in the fame work of solving a linear system of the form eq. (6.1),
which includes boundary information, we will only consider grid functions φkh(x) of a
diagonalizable discrete operator Ah, where the φkh(x) that are formal eigenfunctions
of Ah. This is referred to as rigorous Fourier analysis. We note that the Lh-grid func-
tions and Ah-grid functions agree on interior points and have the same eigenvalues,
and, in fact, rigorous Fourier analysis results can be derived within the framework of
LFA.

Although, we do advise one to proceed with caution, as the applicability of rig-
orous Fourier analysis is restricted. For example, it requires particular subspaces
of span{φkh} be invariant under the operators composing ML

l and therefore cannot
analyze Gauss-Seidel with lexicographic ordering as a smoother; it cannot handle non-
symmetric operators nor nonrectangular domains, and requires constant coefficients
in the original differential equation. On the other hand, rigorous Fourier analysis has
been applied in detail to a multitude of situations. See [22] and the references therein
for a comprehensive list, and [21] for many complete examples.

Now, in the final section of this chapter, we will describe rigorous Fourier analysis,
as used in the 2- and 3-grid cycles, in detail.

42

6.6 Eigenmatrix Representations of Multigrid Operators using Rigorous
Fourier Analysis

Let (φkh(x), λkh) be an eigenpair of Ah, where x ∈ Gh and k = 1, . . . , N . Note that
under the assumption that Ah is invertible, the φkh form a basis of RN .

For the 2-grid case, recall that we have the iteration operator

M2h
h = Sν2h

(
Ih − Jh2hA−12h J

2h
h Ah

)
Sν1h .

Let k(1) be an integer in some subset N of [N] such that the φk
(1)

h represent the low

frequency components of
{
φkh
}N
k=1

, and for each k(1) there is an associated k(2) such

that φk
(2)

h is a high frequency grid function. The high and low frequency grid functions
are defined such that they satisfy:

φk
(1)

h (x) and φk
(2)

h (x) agree up to sign for x ∈ G2h. (6.6)

Often, k(2) ∈ [N]\N is a function of k(1) such that
⋃
N
{
k(1), k(2)

}
= [N].

High and low frequencies are used to define the h−2h space of harmonics. We note
that the definition of both high/low frequency grid functions and harmonic spaces
occur in [22] and [21] as applied to a 2d model problem as well in the context of local
Fourier analysis; here, we derived the 1d analogue and made some generalizations.

Definition 6.2. Let φkh(x) denote the discrete (orthogonal) eigenfunctions of an in-

vertible matrix Ah ∈ RN×N , and let Eh = span
{
φkh
}N
k=1

. Let k(1) and k(2) be as in
eq. (6.6).

Then we define E2hh , the 2−dimensional spaces of h− 2h harmonics as

E2hh = span{φk(1)h (x),±φk(2)h (x)}

for x ∈ Gh and k(1), k(2) ∈ [N] such that
⋃
k(1),k(2) E2hh = Eh.

Note that the E2hh is defined by decomposing Eh into subspaces defined by the high

and low frequency components. The precise functions φk
(1)

h and φk
(2)

h are determined
by the operator Ah; the operator L and the boundary conditions will both effect how
high and low frequency functions are defined. In the following, to simplify notation,
we denote ±φk(2)h as simply φk

(2)

h , with the understanding that for particular problems,
some of the basis functions are used with a negative sign. This is made clear in the
details of Chapter 8.

The space of harmonics are of interest because, under certain assumptions, they
are invariant under both smoothing operators and corrections schemes; hence, they
are invariant under the multigrid operator M2h

h . We use this fact to obtain an eigen-
matrix representation of M2h

h . The eigenmatrix representation of a 2d model problem
is derived in both [21] and [22] – mostly in the context of local Fourier analysis, al-
though, [22] also explicitly derives it using rigorous Fourier analysis; and, [8] presents
a 1d local Fourier analysis eigenmatrix representation. Here, we state a general rig-
orous Fourier analysis version of this eigenmatrix representation of M2h

h .

43

Lemma 6.1. For M2h
h = Sν2h

(
Ih − Jh2hA−12h J

2h
h Ah

)
Sν1h , suppose we have that

Ah : E2hh → E2hh such that Ahφ
k(i)

h = λk
(i)

h φk
(i)

h

Sh : E2hh → E2hh Shφ
k(i)

h = S̃h(k
(i))φk

(i)

h

A2h : span{φk(1)2h } → span{φk(1)2h } A2hφ
k(1)

2h = λk
(1)

2h φ
k(1)

2h

J2h
h : E2hh → span{φk(1)2h } J2h

h φ
k(i)

h = J̃2h
h (k(i))φk

(1)

2h

for i = 1, 2; and further suppose that Jh2h : span{φk(1)2h } → E2hh with

Jh2hφ
k(1)

2h =
[
J̃h2h(k

(1)) J̃h2h(k
(2))
] [φk(1)h (x)

φk
(2)

h (x)

]
.

Let ψkh(x) =

[
φk

(1)

h (x)

φk
(2)

h (x)

]
. Then M2h

h : E2hh → E2hh and

M2h
h ψ

k
h = M2h

h (k)ψkh

where M2h
h (k) is the 2× 2 matrix

M2h
h (k) =

[
S̃h(k

(1))

S̃h(k
(2))

]ν2 {
I2 − 1

λk
(1)

2h

[
J̃h2h(k

(1))

J̃h2h(k
(2))

] [
J̃2h
h (k(1)) J̃2h

h (k(2))
] [λkh(1)

λk
(2)

h

]}[
S̃h(k

(1))

S̃h(k
(2))

]ν1
.

(6.7)

Proof. Let the operators composing M2h
h = Sν2h

(
Ih − Jh2hA−12h J

2h
h Ah

)
Sν1h satisfy the

assumptions in Lemma 6.1. Then the 2× 2 matrix M2h
h (k) can be obtained directly

by calculating M2h
h φ

k(i)

h for i = 1, 2 and using the assumptions on how each operator

behaves on φk
(i)

h . Indeed

S
νj
h φ

k(i)

h = S̃
νj
h (k(i))φk

(i)

h for i, j = 1, 2

together with(
Ih − Jh2hA−12h J

2h
h Ah

)
φk

(i)

h = φk
(i)

h − λk
(i)

h

λk
(1)

2h

J2h
h (k(i))

{
J̃2h
h (k(1))φk

(1)

h + J̃2h
h (k(2))φk

(2)

h

}
for i = 1, 2 yields the desired form eq. (6.7).

The numbers λk
(i)

h , S̃h(k
(i)), ˜J2h

h (k(i)) and J̃h2h(k
(i)), which act like eigenvalues of

their respective operators, are typically referred to in the literature as Fourier symbols.
The entries ofM2h

h (k), which can be found by simple matrix multiplication of eq. (6.7),
can be written in terms of these Fourier symbols, and are given as:

(
M2h

h (k)
)
ij

=


S̃νh(k(i))

(
1− λk

(i)

h

λk
1

2h

J̃h2h(k
(i))J̃2h

h (k(i))

)
for i = j

−S̃ν1h (k(j))S̃ν2h (k(i))
λk

(j)

h

λk
1

2h

J̃h2h(k
(i))J̃2h

h (k(j)) for i 6= j.

(6.8)

44

Furthermore, we note that if we let Qh be the matrix of eigenvectors φkh, ordered

by the pairs φk
(1)

h , φk
(2)

h , then Q−1h M2h
h Qh is a block diagonal matrix, where the kth

block is the 2 × 2 matrix M2h
h (k). This is the sense in which we say that M2h

h is
“nearly” diagonalizable.

We can similarly analyze a 3-grid cycle. Using, eq. (6.5) the 3-grid V-cycle itera-
tion operator is ([8], [24]):

M4h
h = Sν2h

{
Ih − Jh2h

(
I2h −M4h

2h

)
A−12h J

2h
h Ah

}
Sν1h (6.9)

M4h
2h = Sν22h

(
I2h − J2h

4hA
−1
4h J

4h
2hA2h

)
Sν12h.

Where, instead of inverting A2h in the 2-grid operator, the 2h equation is solved
approximately by performing the 2-grid iteration M4h

2h with zero initial approximation.
The Fourier analysis in this case, then, uses the space of h− 4h harmonics, which

is composed of two subspaces of 2h−harmonics. Indeed, we simply incorporate the
fact of eq. (6.6) in going from Gh to G2h, then again going from G2h to G4h.

As before, let k(1) be an integer in some subset N of [N] such that φk
(1)

h represent
the low frequency grid functions. Then, for each k(1) we have an associated k(2), k(3),
and k(4) where

⋃
N
{
k(1), k(2), k(3), k(4)

}
= [N], and φk

(2)

h , φk
(3)

h , and φk
(4)

h are the high
frequency grid functions such that all four functions agree up to sign on G4h. These
are used to define the h − 4h space of harmonics. [24] defines the space of h − 4h
harmonics as well as an eigenmatrix representation for a 2d problem in terms of
local Fourier analysis, while [8] states both for a 1d problem (still in terms of LFA).
As before, we give a 1d, rigorous Fourier analysis presentation of the definition and
eigenmatrix result.

Definition 6.3. Let φkh(x) denote the discrete eigenfunctions of Ah ∈ RN×N and let

Eh = span
{
φkh(x)

}N
k=1

. Let k(1) ∈ N ⊂ [N] define a low frequency grid function φk
(1)

h

as well as the associated high frequency grid functions φk
(i)

h for i = 2, 3, 4. Then we
define the h− 4h space of harmonics

E4hh = span
{
φk

(1)

h , φk
(2)

h , φk
(3)

h , φk
(4)

h

}
= E2hh ∪ E4h2h

for x ∈ G4h, and
⋃
k(i) E4hh = Eh.

As before, under certain assumptions, E4hh is invariant under M4h
h , and we can use

this to obtain an eigenmatrix representation.

Lemma 6.2. For M4h
h as in (6.9), suppose we have that Ah, Sh : E4hh → E4hh ,

J2h
h : E4hh → E4h2h ,
Jh2h : E4h2h → E4hh ,

and M4h
2h : E4h2h → E4h2h ,

where E4h2h = span
{
φk

(1)

h , φk
(3)

h

}
. In particular, suppose we have Ahφ

k(i)

h = λkh
(i)φk

(i)

h

and Shφ
k(i)

h = S̃h(k
(i))φk

(i)

h for all i = 1, . . . , 4. For the transfer operators, suppose

45

that J2h
h φ

k(i)

h = J̃2h
h (k(i))φk

(1)

2h for i = 1, 2 and J2h
h φ

k(i)

h = J̃2h
h (k(i))φk

(3)

2h for i = 3, 4 and
suppose

Jh2hφ
k(1)

2h =
[
J̃h2h(k

(1)) J̃h2h(k
(2))
] [φk(1)h

φk
(2)

h

]
,

Jh2hφ
k(3)

2h =
[
J̃h2h(k

(3)) J̃h2h(k
(4))
] [φk(3)h

φk
(4)

h

]
.

Let ψkh(x) =


φk

(1)

h (x)

φk
(2)

h (x)

φk
(3)

h (x)

φk
(4)

h (x)

, then M4h
h : E4h2h → E4h2h with

M4h
h ψ

k
h = M4h

h (k)ψkh

where

M4h
h (k) =


S̃h(k)

S̃h(k
(2))

S̃h(k
(3))

S̃h(k
(4))


D(ν2)

Ih −

J̃h2h(k) 0

J̃h2h(k
(2)) 0

0 J̃h2h(k
(3))

0 J̃h2h(k
(4))

 [I2h −M4h
2h (k)

] [1
λk2h
1

λk
(3)

2h

]D 
J̃2h
h (k) 0

J̃2h
h (k(2)) 0

0 J̃2h
h (k(3))

0 J̃2h
h (k(4))


T 

λkh
λk

(2)

h

λk
(3)

h

λk
(4)

h


D


S̃h(k)

S̃h(k
(2))

S̃h(k
(3))

S̃h(k
(4))


D(ν1)

.

Here,
[
·
]D

denotes transforming the vector into a diagonal matrix, and M4h
2h (k) is

analogous to that of Lemma 6.1.

Proof. As in Lemma 6.1, this lemma can be seen by using the assumptions and
calculating M4h

h φ
k(i)

h for all i = 1, . . . , 4.

We note that the entries of M4h
h (k) are given by

(M4h
h)ij =

{
S̃νh(k(i))P (i, i) i = j

S̃ν1h (k(i))S̃ν2h (k(j))P (i, j) i 6= j
(6.10)

with

P (i, j) =



1− λk
(i)

h

λk
(m)

2h

J̃h2h(k
(i))J̃2h

h (k(i))[1− (M4h
2h)nn] i = j

− λ
k(j)

h

λk
(m)

2h

J̃h2h(k
(i))J̃2h

h (k(j))[1− (M4h
2h)nn] i+ j = 7, 3

λk
(j)

h

λk
(m)

2h

J̃h2h(k
(i))J̃2h

h (k(j))[(M4h
2h)mnT] otherwise.

(6.11)

where

m =

{
1 i = 1, 2

3 i = 3, 4
n =

{
1 i = 1, 2

2 i = 3, 4
nT =

{
1 i = 3, 4

2 i = 1, 2.
(6.12)

46

We can see that the 3-grid operator is defined recursively in terms of 2-grid re-
striction and smoothing operators and M4h

2h ; it was this representation, together with
what we know about 2-grid operators, which allowed us to determine the 3-grid eigen-
matrix representation. And in fact, we can represent any l-grid operator recursively
in this way. We note that the representation eq. (6.13) of Lemma 6.3 is given in [22],
but their concluding final bound on ‖Ml‖ is slightly different. The author is unaware
of the bound eq. (6.14) stated elsewhere in the literature, and it was developed here
explicitly for future use in Chapter 8 and the analysis of the Model Problem.

Lemma 6.3. The l-grid V-cycle operator can be written recursively in terms of 2-grid
operators in the following way:

Ml = M l
1 = M l

l−1 +Bl−1
l Ml−1B

l
l−1

where Bl−1
l = Sν2l J

l−1
l

Bl
l−1 = A−1l−1J

l
l−1AlS

ν1
l . (6.13)

Suppose that ‖M l
l−1‖ ≤ C1 and ‖Bl−1

l ‖ · ‖Bl
l−1‖ ≤ C2 then we have

‖Ml‖ ≤
C1

(
1− C l−1

2

)
1− C2

. (6.14)

Proof. The equalities of eq. (6.13) follow directly from eq. (6.5). For eq. (6.14), we
assume, as in the statement of the lemma, that ‖M l

l−1‖ ≤ C1 and ‖Bl−1
l ‖·‖Bl

l−1‖ ≤ C2,
then

‖Ml‖ ≤ ‖M l
l−1‖+ ‖Bl

l−1‖‖Bl−1
l ‖‖Ml−1‖ ≤ C1 + C2 (C1 + C2‖Ml−2‖)

≤ C1

(
1 + C2 + C2

2(C1 + C2‖Ml−3‖)
)
≤ . . . ≤ C1

(
l−2∑
j=0

Cj
2

)

= C1
1− C l−1

2

1− C2

.

The results of these sections allow us to determine floating point error bounds on
multigrid operators. In this same manner, Chapter 7 analyses the error accumulation
of two-grid, three-grid, and finally l-grid operators in matrix-vector multiplication
with the respective multigrid iteration operators.

Copyright© Kasey Bray, 2019.

47

Chapter 7 Error Analysis of Computed Multigrid Solutions

As discussed in Section 5.2, the attention paid to error analysis in the literature
seems to be wholly focused on discretization error. [19] formalizes what it means for
an FMG algorithm to achieve discretization-level accuracy. They measure the error of
exact multigrid solutions against the inherent discretization error, and use numerical
experiments to validate this so-called worst-case relative accuracy measure. Further,
[17] explores the use of multigrid methods in computing truncation error, which can
then be used in extrapolation to higher order accuracy. But again, the spotlight
remains on truncation error. In fact, most standard introductory texts (and historic
contributions) contain sections addressing the accuracy of multigrid algorithms only
in the context of convergence factors and the discretization-level accuracy. We want
to understand the role of roundoff errors in multigrid algorithms, and the relative
errors of computed discrete solutions as compared with exact discrete solutions.

Thus, with an ultimate goal of understanding how roundoff error accumulates in
an l-grid V-cycle, we take the standard approach of begining with the l = 2 case and
look at fl

(
M2h

h ψh
)
. We then look at fl

(
M4h

h ψh
)

for the l = 3 case in the hope of
extracting a pattern which indicates how error accumulates in moving from l grids to
(l + 1) grids. This, together with Lemma 6.3 will allow us to determine a bound on
the relative error of fl (Mlψh), for a general l-grid V-cycle.

While some assumptions are necessary, we dedicate this chapter to stating results
with the most possible generality. We will return to both the Model Problem and the
Model Algorithm in Chapter 8.

7.1 2-Grid Analysis

As indicated by Lemma 6.3 (and Chapter 6 in general), two-grid operators are the
building blocks of any multigrid algorithm, and, in particular of a V-cycle. Thus, we
begin our analysis by supposing a linear system has been solved by a 2-grid V-cycle,
and bounding the relative error on the computed solution. Recall that the 2-grid
iteration operator is written as

M2h
h = Sν2h

(
Ih − Jh2hA−12h J

2h
h Ah

)
Sν1h .

Theorem 7.1. Suppose that the 2-grid iteration operator M2 = M2h
h has an eigen-

matrix representation as in Lemma 6.1, and assume that A−12h exists explicitly, or can
be solved for exactly. Let k(1) ∈ N ⊂ [N] and k(2) define high and low frequency grid

functions on Gh. Let ψ̃k = ak1φ
k(1)

h + ak2φ
k(2)

h for some coefficients ak1 and bk2 in R
and let M2(k) = M2h

h (k) for k ∈ N . Then

‖fl
(
M2(k)ψ̃k

)
−M2(k)ψ̃k‖ ≤ ‖M2(k)ψ̃k‖ · |δ2k| (7.1)

where |δ2k| ≤ (3ηmax
h (k) + 6 + ν) ε and

ηmax
h (k) = max

{∣∣∣ηk(1)h

∣∣∣ , ∣∣∣ηk(2)h

∣∣∣}
48

with

ηk
(i)

h =
λk

(i)

h /λk
(1)

2h J̃h2h(k
(i))J̃2h

h (k(i))

1− λk(i)h /λk
(1)

2h J̃h2h(k
(i))J̃2h

h (k(i))
. (7.2)

Furthermore, the bound on M2ψh is given by

‖fl (M2ψh)−M2ψh‖
‖M2ψh‖

≤
(
|N |+ 4 + ν + 3 ·max

k
{ηmax

h (k)}
)
ε. (7.3)

Proof. Let M2 and M2(k) satisfy the desired assumptions and be as in Lemma 6.1;
let k(1) and k(2) be as in the problem statement and recall that

⋃
N
{
k(1), k(2)

}
= [N].

Now, since Ah is diagonalizable, for any ψh ∈ RN we can write ψh =
∑
N

ak1φ
k(1)

h +

ak2φ
k(2)

h for some constants ak1 , ak2 ∈ R, and thus we have

M2ψh =
∑
N

(
ak1M2φ

k(1)

h + ak2M2φ
k(2)

h

)
=
∑
N

M2(k)ψ̃k. (7.4)

We first look at the computed M2(k)ψ̃k. From eq. (6.8) we see that

M2(k)ψ̃k = {ak1(M2(k))11 + ak2(M2(k))12}φk
(1)

h + {ak1(M2(k))21 + ak2(M2(k))22}φk
(2)

h

:= A1φ
k(1)

h + A2φ
k(2)

h

For the ith entry (M2(k)ψ̃k)i we have

⇒ fl
(

(M2(k)ψ̃k)i

)
= fl

(
Â1(φ

k(1)

h)i + Â2(φ
k(2)

h)i

)
=
[
A1(φ

k(1)

h)i(1 + βA1)(1 + β1) + A2(φ
k(2)

h)i(1 + βA2)(1 + β2)
]

(1 + β3)

(7.5)

where |βi| ≤ ε for i = 1, 2, 3 (for multiplication and addition) and we must de-
termine bounds on |βA1 | and |βA2|, the errors accumulated in computing A1 and
A2 respectively. Since (M2(k))11, (M2(k))22 and (M2(k))12, (M2(k))21 have analogous
structures, we provide details only for bounding |βA1|, and conclude an analogous
bound for |βA2 |.

Â1 = fl(A1)

= ((ak1(M2(k))11) (1 + α1)− (ak2(M2(k))12) (1 + α2)) (1 + α3). (7.6)

For α1 we have:

fl(ak1(M2(k))11) = fl

(
ak1S̃

ν
h(k(1))

(
1− λk

(1)

h

λk
(1)

2h

J̃h2h(k
(1))J̃2h

h (k(1))

))

= ak1S̃
ν
h(k(1))

(
1− λk

(1)

h

λk
(1)

2h

J̃h2h(k
(1))J̃2h

h (k(1))(1 + δ1)

)
(1 + δ2)

where |δ1| ≤ 3ε and |δ2| ≤ (2 + ν)ε,

49

=

(
ak1 (M2(k))11 − ak1S̃

ν
h(k(1))

λk
(1)

h

λk
(1)

2h

J̃h2h(k
(1))J̃2h

h (k(1))δ1

)
(1 + δ2)

= ak1 (M2(k))11

1 +

−λk(1)h

λk
(1)

2h

J̃h2h(k
(1))J̃2h

h (k(1))

1− λk
(1)

h

λk
1

2h

J̃h2h(k
(1))J̃2h

h (k(1))
δ1

 (1 + δ2)

= ak1 (M2(k))11 (1 + α1)

where |α1| ≤

3

∣∣∣∣∣∣∣∣
−λk(1)h

λk
(1)

2h

J̃h2h(k
(1))J̃2h

h (k(1))

1− λk
(1)

h

λk
(1)

2h

J̃h2h(k
(1))J̃2h

h (k(1))

∣∣∣∣∣∣∣∣+ 2 + ν

 ε :=
(

3
∣∣∣ηk(1)h

∣∣∣+ 2 + ν
)
ε.

For α2 we have:

fl(ak2(M2(k))12) = fl

(
ak2S̃

ν1
h (k(2))S̃ν2h (k(1))

λk
(2)

h

λk
(1)

2h

J̃h2h(k
(1))J̃2h

h (k(2))

)

=

(
ak2S̃

ν1
h (k(2))S̃ν2h (k(1))

λk
(2)

h

λk
(1)

2h

J̃h2h(k
(1))J̃2h

h (k(2))

)
(1 + δ1)

= ak2 (M2(k))12 (1 + δ1)

where |δ1| ≤ (4 + ν)ε.

Therefore, going back to eq. (7.6) we have

Â1 = fl(A1) = A1(1 + α12)(1 + α3)

where |α12| ≤ max{|α1|, |α2|}, and |α3| ≤ ε implies

Â1 = A1(1 + βA1) where |βA1| ≤
(

3
∣∣∣ηk(1)h

∣∣∣+ 3 + ν
)
ε.

Similarly, we have that

Â2 = A2(1 + βA2) where |βA2| ≤
(

3
∣∣∣ηk(2)h

∣∣∣+ 3 + ν
)
ε.

We can now use eq. (7.5) to conclude that

fl
(

(M2(k)ψ̃k)i

)
= (M2(k)ψ̃k)i(1 + δ2k)

⇒ ‖fl
(
M2(k)ψ̃k

)
−M2(k)ψ̃k‖ ≤ ‖M2(k)ψ̃k‖|δ2k|

where |δ2k| ≤
(

3 max
{∣∣∣ηk(1)h

∣∣∣ , ∣∣∣ηk(2)h

∣∣∣}+ 6 + ν
)
ε.

50

Finally, the bound on M2ψh is determined from eq. (7.4) and summing over all
k ∈ N . We have,

fl ((M2ψh)i) =
∑
N

fl
(

(M2(k)ψ̃k)i

)
(1 + δ̃) =

∑
N

(M2(k)ψ̃k)i(1 + δ2k)(1 + δ̃)

= (M2ψh)i +
∑
N

(M2(k)ψ̃k)iδ̃2k

where |δ̃| ≤ (|N | − 1) ε and δ̃2k = δ2k + δ̃. This implies

‖fl (M2ψh)−M2ψh‖ ≤

∥∥∥∥∥max
k∈N

δ̃2k ·
∑
N

M2(k)ψ̃k

∥∥∥∥∥ ≤ max
k∈N
|δ̃2k|‖M2ψh‖

⇒ ‖fl (M2ψh)−M2ψh‖
‖M2ψh‖

≤ max
k∈N

∣∣∣δ̃2k∣∣∣
where

|δ̃2k| ≤
(
|N | − 2 + 6 + ν + 3 max

{∣∣∣ηk(1)h

∣∣∣ , ∣∣∣ηk(2)h

∣∣∣}) ε
=
(
|N |+ 4 + ν + 3 max

{∣∣∣ηk(1)h

∣∣∣ , ∣∣∣ηk(2)h

∣∣∣}) ε.
This yields the desired eq. (7.3).

We note that the bound of eq. (7.3) is quite general, and may not be particularly
useful in practice. Indeed, if ηmax

h (k) is unbounded as h → 0, then eq. (7.3) is of no
use; in this case, one may be required to determine a tighter bound based on the
entries of M2(k), as in Chapter 8. In the following section, we derive an analogous
result on the 3-grid operator.

7.2 3-Grid Analysis

Analysing the error of the 3-grid iteration operator will yield insight into the general
relationship between any l-grid operator with the 2-grid operator. Recall that the
3-grid operator is given by

M4h
h = Sν2h

{
Ih − Jh2h

(
I2h −M4h

2h

)
A−12h J

2h
h Ah

}
Sν1h

M4h
2h = Sν22h

(
I2h − J2h

4hA
−1
4h J

4h
2hA2h

)
Sν12h,

and, as before, we use the eigenmatrix representation M4h
h (k) of M4h

h to derive a
bound on the computed M4h

h ψh for any ψh ∈ RN .

Theorem 7.2. Suppose that the 3-grid iteration operator M3 = M4h
h can be repre-

sented as in Lemma 6.2, and assume that A−14h exists explicitly, or can be solved for
exactly. Let k(1) ∈ N and k(n) for n = 2, 3, 4, define low and (associated) high fre-

quency grid functions, respectively, on Gh. Let ψ̃k =
∑4

n=1 aknφ
k(n)

h for akn ∈ R and
let M3(k) = M4h

h (k) for k ∈ N . Then,

‖fl
(
Mkψ̃k

)
−Mkψ̃k‖ ≤ ‖Mkψ̃k‖ · |δ3k|

51

where δ3k = maxn δn + δ5, |δ5| ≤ 7ε and |δn| ≤ (3 + max {β1
n, β

2
n, β

3
n}) ε where

|β3
n| ≤ 10 + 2ν,

|β2
n| ≤ 8 + ν +

∣∣∣∣ (M4h
2h)mm

1− (M4h
2h)mm

∣∣∣∣ (3|ηk(m)

2h |+ 2 + ν
)
,

|β1
n| ≤ 2 + ν +

∣∣∣∣∣ λk
(n)

h /λk
(m)

2h J̃h2h(k
(n))J̃2h

h (k(n)) · (1− 2(M4h
2h)mm)

1− λk(n)

h /λk
(m)

2h J̃h2h(k
(n))J̃2h

h (k(n)) · (1− (M4h
2h)mm)

∣∣∣∣∣ (3|ηk(m)

2h |+ 2 + ν
)
,

(7.7)

where ηk2h is as in eq. (7.2), n = 1, . . . , 4, and m =

{
1 n = 1, 2

3 n = 3, 4
.

Let us further assume that

|β2
n| ≤ 8 + ν + c2n

(
3|ηk(m)

2h |+ 2 + ν
)

and |β3
n| ≤ 2 + ν + c3n

(
3|ηk(m)

2h |+ 2 + ν
)

(7.8)

where c2n and c3n are some constants such that

|δ3k| ≤ [18 + ν + c (3ηmax
2h (k) + 2 + ν)] ε

where c = maxn {c2n, c3n} and ηmax
2h (k) = max

{
|ηk(1)2h |, |ηk

(3)

2h |
}

. Then the bound on

M3ψh is given by

‖fl (M3ψh)−M3ψh‖
‖M3ψh‖

≤
(
|N |+ 16 + ν + c(2 + ν) + 3 ·max

k
(ηmax

2h (k))
)
ε. (7.9)

Proof. LetM3 andM3(k) satisfy the desired assumptions and be as in Lemma 6.2; and
let k(n) for n = 1 . . . 4 be as in the problem statement and recall that

⋃
N
{
k(1), k(2), k(3), k(4)

}
=

[N]. Now, since Ah is diagonalizable, for any ψh ∈ RN we can write

ψh =
∑
N

(
ak1φ

k(1)

h + ak2φ
k(2)

h + ak3φ
k(3)

h + ak4φ
k(4)

h

)
for some constants akn ∈ R, n = 1, . . . , 4. Then

M3ψh =
∑
N

(
ak1M3φ

k(1)

h + ak2M3φ
k(2)

h + ak3M3φ
k(3)

h + ak4M3φ
k(4)

h

)
=
∑
N M3(k)ψ̃k.

(7.10)

We look first entry-wise, for i = 1, . . . , N , at fl
(

(M3(k)ψ̃k)i

)
. From eq. (6.10) and

(6.11) we can see that

M3(k)ψ̃k = A1φ
k
h
(1) + A2φ

k
h
(2) + A3φ

k
h
(3) + A4φ

k
h
(4)

where

An = (ak1 (M3(k))1n + ak2 (M3(k))2n + ak3 (M3(k))3n + ak4 (M3(k))4n)φk
(n)

h .

52

Hence

fl
(

(M3(k)ψ̃k)i

)
= fl

(
Â1(φ

k(1)

h)i + Â2(φ
k(2)

h)i + Â3(φ
k(3)

h)i + Â4(φ
k(4)

h)i

)
=

[
4∑

n=1

An(φk
(n)

h)i(1 + δn)

]
(1 + δ5) (7.11)

where |δ5| ≤ 7ε, and we must determine bounds on |δn|–the round off error in com-
puting An. We provide details for |δ1| and use this to draw conclusions about the
others.

The computed coefficient A1 satisfies

Â1 =

(
4∑
j=1

akj (M3(k))j1 (1 + βj1)

)
(1 + β5) (7.12)

where |β5| ≤ 3ε and we must determine bounds on the remaining βj1.
For β1

1 we have:

fl (ak1(M3(k))11) =

fl

(
ak1S̃

ν
h(k(1))

(
1− λk

(1)

h

λk
(1)

2h

J̃h2h(k
(1))J̃2h

h (k(1))
[
1− fl

(
(M4h

2h (k))11
)]))

= ak1S̃
ν
h(k(1))

(
1− λk

(1)

h

λk
(1)

2h

J̃h2h(k
(1))J̃2h

h (k(1))
[
1−

(
M4h

2h (k)
)
11

(1 + α1)
]

(1 + α2)

)
(1 + α3)

where |α1| ≤ (3ηk
(1)

2h + 3 + ν)ε, |α2| ≤ 5 and |α3| ≤ (2 + ν)ε

= ak1S̃
ν
h(k

(1))

(
1−

λk
(1)

h

λk
(1)

2h

J̃h2h(k
(1))J̃2h

h (k(1))
[
1−

(
M4h

2h (k)
)
11

+
(
1− 2

(
M4h

2h (k)
)
11

)
α1

])
(1 + α3)

= ak1 (M3(k))11

(
1 +

λk
(1)

h /λk
(1)

2h J̃
h
2h(k

(1))J̃2h
h (k(1))

(
2
(
M4h

2h (k)
)
11
− 1
)

1− λk(1)h /λk
(1)

2h J̃
h
2h(k

(1))J̃2h
h (k(1))

(
1−

(
M4h

2h (k)
)
11

)α1

)
(1 + α3)

= ak1 (M3(k))11
(
1 + β1

1

)
,

where

|β1
1 | ≤

(
2 + ν +

∣∣∣∣∣ λk
(1)

h /λk
(1)

2h J̃
h
2h(k

(1))J̃2h
h (k(1)) · (1− 2(M4h

2h)11)

1− λk(1)h /λk
(1)

2h J̃
h
2h(k

(1))J̃2h
h (k(1)) · (1− (M4h

2h)11)

∣∣∣∣∣ (3|ηk(1)2h |+ 2 + ν
))

ε.

53

For β2
1 we have:

fl (ak2 (M3(k))21) =

= fl

(
ak2S̃

ν1
h (k(2))S̃ν2h (k(1))

−λk(1)h

λk
(1)

2h

J̃h2h(k
(2))J̃2h

h (k(1))
[
1− fl

(
M4h

2h (k)
)
11

])

=

(
ak2S̃

ν1
h (k(2))S̃ν2h (k(1))

−λk(1)h

λk
(1)

2h

J̃h2h(k
(2))J̃2h

h (k(1))
[
1−

(
M4h

2h (k)
)
11

(1 + α1)
])

(1 + α2)

where |α1| ≤ (3ηk
(1)

2h + 3 + ν)ε and |α2| ≤ (8 + ν)ε

= ak2 (M3(k))21

(
1 +

(
M4h

2h (k)
)

1−
(
M4h

2h (k)
)α1

)
(1 + α2)

= ak2 (M3(k))21 (1 + β2
1)

where ∣∣β2
1

∣∣ ≤ (8 + ν +

∣∣∣∣ (M4h
2h)11

1− (M4h
2h)11

∣∣∣∣ (3|ηk(1)2h |+ 2 + ν
))

ε.

And β3
1 we have:

fl (ak3 (M3(k))31) =

fl
(
ak3S̃

ν1
h (k(3))S̃ν2h (k(1))fl

(
M4h

2h (k)
)
21

)
=
(
ak3S̃

ν1
h (k(3))S̃ν2h (k(1))

(
M4h

2h (k)
)
21

(1 + α1)
)

(1 + α2)

where |α1| ≤ (4 + ν)ε and |α2| ≤ (6 + ν)ε

= ak3 (M3(k))31
(
1 + β3

1

)
where ∣∣β3

1

∣∣ ≤ (10 + ν)ε.

Finally, since (M3(k))41 has the same structure at (M3(k))31, β
4
1 also satisfies∣∣β4

1

∣∣ ≤ (10 + ν)ε.

Now, returning to eq. (7.12) we can see that

Â1 = A1(1 + δ1)

where |δ1| ≤ 3ε+ max {β1
1 , β

2
1 , β

3
1}.

Through similar calculations we can determine analogous bounds on β1
n, β

2
n, β

3
n,

and hence on δn for n = 2, . . . , 4. Using eq. (7.11) we can conclude the desired:

fl
(

(M3(k)ψ̃k)i

)
= (M3(k)ψ̃k)i(1 + δ3k)

⇒ ‖fl
(
M3(k)ψ̃k

)
−M3(k)ψ̃k‖ ≤ ‖M3(k)ψ̃k‖ · |δ3k|

where |δ3k| ≤ 7ε+ max
n

δn.

54

Finally, suppose that the βjn are bounded as in eq. (7.8) such that

|δ3k| ≤ [18 + ν + c (3ηmax
2h (k) + 2 + ν)] ε

where c, and ηmax
2h (k) are as in the theorem statement. Then the bound on M3ψh is

determined from eq. (7.10) and summing over all k ∈ N . As before, entry-wise, for
i = 1, . . . , N , we have

fl ((M3ψh)i) =
∑
N

fl
(

(M3(k)ψ̃k)i

)
(1 + δ̃) =

∑
N

(M3(k)ψ̃k)i(1 + δ3k)(1 + δ̃)

= (M3ψh)i +
∑
N

(M3(k)ψ̃k)iδ̃3k

where |δ̃| ≤ (|N | − 1) ε and δ̃3k = δ3k + δ̃. This implies

‖fl (M3ψh)−M3ψh‖ ≤

∥∥∥∥∥max
k∈N

δ̃3k ·
∑
N

M3(k)ψ̃k

∥∥∥∥∥ ≤ max
k∈N

∣∣∣δ̃3k∣∣∣ ‖M3ψh‖

⇒ ‖fl (M3ψh)−M3ψh‖
‖M3ψh‖

≤ max
k∈N

∣∣∣δ̃3k∣∣∣
where

|δ̃3k| ≤ (|N |+ 16 + ν + c (3ηmax
2h (k) + 2 + ν)) ε.

This yields the desired eq. (7.9).

We note here, as before, that the bound of Theorem 7.2 depends on both the
βjn and ηmax

h (k) being bounded for h → 0. But together with Theorem 7.1 these
general statements are useful in the following sense. We can see from eq. (7.7) that
in going from employing a 2-grid operator to a 3-grid operator, the floating point
error bound picks up error terms recursively. In particular, the bound of the β1

n term

looks almost like a 3-grid version of ηk
(n)

h from Theorem 7.1. And while we pick up
some new modest constants in the 3-grid case of Theorem 7.2, it seems that the bulk
of the accumulation comes from an ηk

(n)

h term. What’s more, should everything be
bounded nicely as in Theorem 7.2, this suggests that all we really need to know is
how a general 2-grid operator M l+1

l accumulates error. We explore this idea further
in the Section 7.3 and make generalizations of these results.

7.3 l-Grid Analysis

To understand the roundoff errors from an l-grid operator Ml, recall from Lemma 6.3
that Ml can be written recursively in terms of 2-grid operators. We use this to bound
the relative error of the computed Mlψh for any ψh ∈ RN .

Theorem 7.3. Let ψh ∈ RN with ‖ψh‖ ≤ C and let Ml be the the l-grid multigrid
operator as defined in Equation (6.5). Suppose that Ml = M l

1 = M l
l−1+Bl−1

l Ml−1B
l
l−1

55

is such that ‖M l
l−1‖ ≤ C1 and ‖Bl−1

l ‖ · ‖Bl
l−1‖ ≤ C2. Let δ2 be the error bound of the

2-grid operator as in Theorem 7.1. Namely, suppose that ‖fl
(
M l

l−1ψh
)
−M l

l−1ψh‖ ≤
‖M l

l−1ψh‖ · |δ2| where

|δ2| ≤
(

4 + ν + |N |+ 3 max
k∈N

ηmax
h (k)

)
ε. (7.13)

Then

‖fl (Mlψh)−Mlψh‖
‖Mlψh‖

≤ |δl|

where

|δl| ≤ (l − 1)|δ2|+ (l − 2)ε− CC1

(1− C2)2
(
(1− C2)

l − C2
2 + 2C2 − 1

)
ε.

Proof. Let δ2 be such that entry-wise, for i = 1 . . . , N , we have fl
(
(M l

l−1ψh)i
)

=

(M l
l−1ψh)i(1+δ2) and |δ2| satisfies eq. (7.13). Then forMl = M l

1 = M l
l−1+B

l−1
l Ml−1B

l
l−1

we have

fl ((Mlψh)i) =
(
fl
(
(M l

l−1ψh)i
)

+ fl
(
(Bl−1

l Ml−1B
l
l−1ψh)i

))
(1 + α1)

=
(
(M l

l−1ψh)i(1 + δ2) + (Bl−1
l Ml−1B

l
l−1ψh)i(1 + αl2)

)
(1 + α1)

= (Mlψh)i(1 + δl)

where δl = δ2 + αl2 + α1 with

|α1| ≤ ε and

|αl2| ≤ ‖Bl−1
l ‖‖Ml−1‖‖Bl

l−1‖‖ψh‖ε+ δl−1 ≤ CC2 ·
C1(1− C l−2

2)

(1− C2)
ε+ δl−1.

Analogous to δl, δl−1 satisfies fl ((Ml−1ψh)i) = (Ml−1ψh)i (1 + δl−1) where δl−1 =
δ2 + αl−12 + α1, etc. Continuing this recursion we have

|δl| ≤ |δ2|+ ε+ CC2 ·
C1(1− C l−2

2)

(1− C2)
ε+ δl−1

≤ |δ2|+ ε+ CC2 ·
C1(1− C l−2

2)

(1− C2)
ε+ |δ2|+ ε+ CC2 ·

C1(1− C l−3
2)

(1− C2)
ε+ δl−3

≤ . . . ≤ (l − 2)(|δ2|+ ε) +
CC2C1

1− C2

l−1∑
j=2

(1− C2)
l−j + |δ2|

= (l − 1)|δ2|+ (l − 2)ε+ CC2C1(1− C2)
l−1

l−1∑
j=2

(1− C2)
−jε

= (l − 1)|δ2|+ (l − 2)ε+ CC2C1(1− C2)
l−1 ·
−
(
(1− C2)

l − C2
2 + 2C2 − 1

)
C2(1− C2)l+1

ε

= (l − 1)|δ2|+ (l − 2)ε− CC1

(1− C2)2
(
(1− C2)

l − C2
2 + 2C2 − 1

)
ε.

56

In Chapter 8 we apply the ideas from this chapter to the Model Problem. We
demonstrate first how to employ Theorem 7.1 and Theorem 7.2 to derive a meaningful
error bound on the computed M2ψh and M3ψh in Section 8.1 and Section 8.2 respec-
tively. Finally, in Section 8.3 we discuss the general case of using an l-grid operator,
and how these results might be able to be interpreted in terms of the motivating
Example 5.1. Finally, we discuss future directions for this work.

Copyright© Kasey Bray, 2019.

57

Chapter 8 Application to Model Problem

For clarity, we apply Theorem 7.1 and Theorem 7.2 to the Model Problem using the
Model Algorithm and explicitly calculate error bounds. For convenience, we restate
both.

We consider Poisson’s equation with Dirichlet boundary conditions

{
−∆v = f in Ω

v = 0 on ∂Ω,
(8.1)

with Ω = [0, 1]. Is discretized using the center difference to obtain the matrix equation

Ahvh = fh

where Ah = 1
h2
TN with h = 1

N
and TN is the tridagonal matrix with 2’s on the

diagonal and−1 on the super and sub diagonal. Ah has eigenvalues and (orthonormal)
eigenvectors, respectively:

λkh =
4

h2
sin2

(
kπh

2

)
for k = 1 . . . N,

φkh(x) =
√

2h sin(kπx) for k = 1, . . . , N and x ∈ Gh.

Moreover, recall our Model Algorithm specifies J2h
h as full-weight restriction, Jh2h

as linear interpolation, Sh = Ih − ωh2

2
Ah with ω = 2/3, and ν1 = 2 and ν2 = 1. See

Example (6.1) for details. In the following sections, we will show explicitly that these
operators define multigrid iteration operators M2h

h and M4h
h that are invariant under

the spaces E2hh and E4hh , respectively.
In Section 8.1 we look at a single iteration of a 2-grid V-cycle and provide a

floating point error bound on matrix-vector multiplication M2h
h ψ for any ψ ∈ RN .

Likewise, in Section 8.2, we look at a single iteration of a 3-grid V-cycle and provide
a floating point error bound on the matrix-vector multiplication M4h

h ψ. Finally, in
Section 8.3 we look at the general l-grid operator.

8.1 Model Problem 2-Grid Analysis

Consider solving the Model Problem using a single iteration of a 2-grid V-cycle using
the Model Algorithm, and assume that we can solve the residual equation exactly
on G2h. Under the assumption that the multigrid algorithm converges (which the
Model Algorithm does) we need that the computed multigrid solution converges to
the multigrid solution in exact arithmetic. That is, we look at

∥∥fl (M2h
h ψh

)
−M2h

h ψh
∥∥

for any ψh ∈ RN .
We first need to define E2hh , the space of h− 2h harmonics for the model problem.

We then walk through the assumptions of Lemma 6.1 and calculate the entries of
M2h

h (k).

58

Space of Harmonics

For the Model Problem, the low-frequency grid functions are those for which k <
N
2

, and the high-frequency components are those for which k ≥ N
2

. Therefore, in
Definition 6.2 we take N = {1, . . . , N

2
− 1}, and for any k = k(1) ∈ N , k(2) = N − k.

Then,

E2hh = span
{
φkh,−φN−kh

}
for k = 1, . . . ,

N

2
− 1.

Indeed, we can see here that for x ∈ G2h we have x = xj = jh for j = 1, . . . , N and
j even, and therefore,

− φN−kh = − sin ((N − k)πx)

= − (sin(Nπx) cos(kπx)− cos(Nπx) sin(kπx))

= − (sin(jπ) cos(kπx)− cos(jπ) sin(kπx))

= sin(kπx)

= φkh(x).

Transfer Operators

The transfer operators from the Model Algorithm satisfy

J2h
h : E2hh → span

{
φk2h
}

Jh2h : span
{
φk2h
}
→ E2hh ,

which we can see by using the details from Example 6.1 and explicitly calculating J̃2h
h

and J̃h2h:

J2h
h φ

k
h(x) =

1

4

√
2h
(
φkh(x− h) + 2φkh(x) + φkh(x+ h)

)
=

√
2h

4
[sin(kπx) cos(kπh)− cos(kπx) sin(kπh) + 2 sin(kπx)

+ sin(kπx) cos(kπh) + cos(kπx) sin(kπh)]

=
1

2

√
2h(cos(kπh) + 1) sin(kπx) =

√
2

2

√
4h

1

2
(cos(kπh) + 1) sin(kπx)

=

√
2

2
cos2

(
kπh

2

)
φk2h(x)

⇒ J̃2h
h (k) =

√
2

2
cos2

(
kπh

2

)
, and

J̃2h
h (N − k) =

√
2

2
cos2

(
(N − k)πh

2

)
=

√
2

2
sin2

(
kπh

2

)
.

Similarly,

59

Jh2hφ
k
2h(x) =

{
φk2h(x) if x ∈ G2h

1
2

(
φk2h(x− h) + φk2h(x+ h)

)
if x ∈ Gh \G2h

= aφkh(x) + b(−φN−kh (x)).

If x ∈ G2h, then φk2h(x) = aφkh(x) + b(−φN−kh (x)) yields
√

2 = a+ b since φkh = −φN−kh

on G2h. If x ∈ Gh \G2h then we have:

1

2
φk2h(x− h) +

1

2
φk2h(x+ h) = aφkh(x) + b(−φN−kh (x))⇒

√
4h cos(kπh) sin(kπx) = (

√
2− b)

√
2h sin(kπx)− b

√
2h sin((N − k)πx)

= (
√

2− b)
√

2h sin(kπx)− b
√

2h [sin(jπ) cos(kπx)− cos(jπ) sin(kπx)]

for j odd

= (
√

2− 2b)
√

2h sin(kπx)

⇒ b =
√

2 · 1

2
(1− cos(kπh)) =

√
2 sin2

(
kπh

2

)
and therefore

a =
√

2 cos2
(
kπh

2

)
⇒ J̃h2h(k) =

√
2 cos2

(
kπh

2

)
.

Smoothing Operator

It follows directly from Sh = Ih −
ω

2
TN that Sh : E2hh → E2hh with

S̃h(k) = 1− 4

3
sin2

(
kπh

2

)
.

Now, in light of Theorem 7.1, we have the following

Theorem 8.1. For any ψh ∈ RN and k = 1, . . . , N
2
− 1, let ψ̃k =

[
ak bk

]
ψkh where

ak, bk ∈ R and ψkh(x) =
[
φkh(x) −φN−kh (x)

]T
; further, let M2 = M2h

h and M2(k) =
M2h

h (k). Then we have

‖fl
(
M2(k)ψ̃k

)
−M2(k)ψ̃k‖ ≤ ‖M2(k)ψ̃k‖

(
6 + ν + 3ηkh

)
ε (8.2)

where ηkh = cot2
(
kπh
2

)
.

Moreover, ψh satisfies

‖fl (M2ψh)−M2ψh‖ ≤ C‖M2‖p2(N)ε,

where p2(N) is a degree 2 polynomial in N
2

, ‖M2‖ ≤ 0.360559, and C is a constant
depending on coefficients ak and bk.

60

Proof. In light of Theorem 7.1 and eq. (7.2), we first calculate ηkh and ηN−kh to prove
eq. (8.2). For ηkh, note that

λk
(1)

h /λk
(1)

2h J̃h2h(k
(1))J̃2h

h (k(1)) =
4 sin2(kπh/2)

sin2(kπh)
cos4(kπh/2)

=
4 sin2(kπh/2) cos4(kπh/2)

(2 sin(kπh/2) cos(kπh/2))2

= cos2(kπh/2)

⇒ ηkh =
cos2(kπh/2)

1− cos2(kπh/2)
= cot2

(
kπh

2

)
.

Similarly, for ηN−kh we have

λk
(2)

h /λk
(1)

2h J̃h2h(k
(2))J̃2h

h (k(2)) =
4 cos2(kπh/2)

sin2(kπh)
sin4(kπh/2)

=
4 cos2(kπh/2) sin4(kπh/2)

(2 sin(kπh/2) cos(kπh/2))2

= sin2(kπh/2)

⇒ ηN−kh =
sin2(kπh/2)

1− sin2(kπh/2)
= tan2

(
kπh

2

)
.

Thus, by Theorem 7.1, and since cot2(kπh/2) ≥ tan2(kπh/2) for k = 1, . . . , N
2
−1,

we have

|δ2k| ≤ (3ηmax
h (k) + 6 + ν) ε =

(
3ηkh + 6 + ν

)
ε =

(
3 cot2

(
kπh
2

)
+ 6 + ν

)
ε

for k = 1, . . . ,
N

2
− 1.

Furthermore, since cot(kπh/2) is unbounded as h → 0, it is of no practical use
for us to consider maxk cot2(kπh/2) as in Theorem 7.1. We take a slightly different
apporach in the following.

‖fl (M2ψh)−M2ψh‖ ≤

∥∥∥∥∥∥
N/2−1∑
k=1

M2ψ̃kδ̃2k

∥∥∥∥∥∥ where
∣∣∣δ̃2k∣∣∣ ≤ (N/2− 1)ε+

∣∣δ2k∣∣
≤

N/2−1∑
k=1

‖M2‖‖
[
ak bk

]
‖‖ψkh‖

∣∣∣δ̃2k∣∣∣ ≤ ‖M2‖C
N/2−1∑
k=1

∣∣∣δ̃2k∣∣∣ ,
where C = maxk {ak, bk}, and we are left to determine a bound on ‖M2‖ and

∑∣∣∣δ̃2k∣∣∣.
We address the latter first.

61

N/2−1∑
k=1

∣∣∣δ̃2k∣∣∣ ≤ N/2−1∑
k=1

(
N

2
+ 5 + ν + 3 cot2

(
kπh

2

))
ε

=

(
N

2
+ 5 + ν

)(
N

2
− 1

)
ε+ 3

N/2−1∑
k=1

cot2
(
kπh

2

)
ε

=

(N
2

)2

+ (4 + ν)
N

2
− (5 + ν) + 3

N/2−1∑
k=1

(csc(kπh) + cot(kπh))2

 ε

≤

(N
2

)2

+ (4 + ν)
N

2
− (5 + ν) + 3

N/2−1∑
k=1

3 csc2(kπh) + cot2(kπh)

 ε

=

(N
2

)2

+ (4 + ν)
N

2
− (5 + ν) + 9

bN−1
2 c∑

k=1

csc2
(
kπ

N

)
+ 3

bN−1
2 c∑

k=1

cot2
(
kπ

N

) ε

=

((
N

2

)2

+ (4 + ν)
N

2
− (5 + ν) + 9 · 1

12
(2N2 − 3(−1)N − 5) + 3 · 1

6
(N − 1)(N − 2)

)
ε

=

(
9

(
N

2

)2

+ (1 + ν)
N

2
+ (−10 + ν)

)
ε

= p2(N)ε.

Now, recall from Chapter 7 that if Q is a matrix of eigenvectors φkh, ordered by the
pairs φkh and φN−kh , then QM2Q

−1 = diag (M2(k)) is a block diagonal matrix where
the kth block is given by

M2(k) =

[
1− 4

3
sin2

(
kπh
2

)
1− 4

3
cos2

(
kπh
2

)] [sin2
(
kπh
2

)
− cos2

(
kπh
2

)
− sin2

(
kπh
2

)
cos2

(
kπh
2

)] [1− 4
3

sin2
(
kπh
2

)
1− 4

3
cos2

(
kπh
2

)]2.
(8.3)

Therefore, ‖M2‖22 = max
k=1,...N/2−1

{
µmax

(
M2(k)TM2(k)

)}
, is the maximum over all k

of the largest eigenvalue of M2(k)TM2(k). M2(k)TM2(k) is a 4 × 4 matrix whose
entries can be computed by eq. (8.3). Specifically, M2(k)TM2(k) has characteristic
polynomial

µ
[
µ−

(
S̃2ν1
h (k) sin4(kπh/2)− S̃ν1h (N − k) cos4(kπh/2)

)(
S̃2ν2
h (k) + S̃2ν2

h (N − k)
)]

= 0

which implies ‖M2‖22 =

maxk{
(
(1− 4

3
sin2(kπh/2))2ν1 sin4(kπh/2)− (1− 4

3
cos2(kπh/2))ν1 cos4(kπh/2)

)
·

·
(
(1− 4

3
sin2(kπh/2))2ν2 + (1− 4

3
cos2(kπh/2))2ν2

)
}

= max
k

{
−37

324
cos(kπh)− 64

324
cos(3kπh)− 7

108
cos(5kπh)

}
≤ 0.130003.

62

The final inequality is determined by maximizing the continuous function
−37
324

cos(θ)− 64
324

cos(3θ)− 7
108

cos(5θ) on
(
0, π

2

)
. And we thus conclude

‖M2‖ ≤
√

0.130003 ≈ 0.360559.

8.2 Model Problem 3-Grid Analysis

Consider solving the Model Problem using a single iteration a 3-grid V-cycle using
the Model Algorithm, and assume that we can solve the residual equation exactly on
grid G4h. As before, we first define the low- and high-frequency grid functions (and
hence E4hh), then use this to show that M4h

h : E4hh → E4hh , and calculate the entries of
M4h

h (k).

Space of Harmonics

For the 3-grid iteration matrix on the Model Problem we have N = {1, . . . , N
4
− 1}

and we take k = k(1) ∈ N . Specifically, the low-frequency grid functions φkh are those

for which k <
N

4
, and the high-frequency grid functions φk

(2)

h , φk
(3)

h , and φk
(4)

h are

defined by

k(2) = N − k, k(3) =
N

2
− k, and k(4) =

N

2
+ k for k = 1, . . . ,

N

4
− 1.

We thus can define

E4hh = span
{
φkh,−φN−kh ,−φN/2−kh , φ

N/2+k
h

}
for k = 1 . . . ,

N

4
− 1.

Where, indeed, for x ∈ G4h we have

φkh(x) = −φN−kh (x) = −φN/2−kh (x) = φ
N/2+k
h (x)

.
We note that M4h

h is composed of operators that are defined on (or translate
between) pairs of successive grids: Gh and G2h or G2h and G4h. That is, the operators
behave analogously to those in Section 8.1.

Transfer Operators

We note that on G2h, φ
k
h = −φN−kh and φ

N/2+k
h = −φN/2+kh . Therefore, the h − 2h

transfer operators take vectors to and from E4hh and E4h2h = span
{
φk2h,−φ

N/2−k
2h

}
.

Specifically we have, as before,

J2h
h : E4hh → E4hh with J̃2h

h (k) =

√
2

2
cos2(kπh/2).

Jh2h : E4hh → E4hh with J̃h2h(k) =
√

2 cos2(kπh/2).

63

Smoothing Operator

The weighted Jacobi operator on the Model Problem is defined as Sh = Ih − ω
2
TN

hence

Sh : E4hh → E4hh with S̃h(k) = 1− 4

3
sin2

(
kπh

2

)
.

M4h
2h Operators

Similarly, for the 2h− 4h operators we have:

A2h : E4h2h → E4h2h with λk2h =
1

h2
sin2(kπh)

S2h : E4h2h → E4h2h with S̃2h(k) = 1− ω

2h2
sin2(kπh)

J4h
2h : E4h2h → span

{
φk4h
}

with J̃4h
2h (k) =

√
2

2
cos2(kπh)

J2h
4h : span

{
φk4h
}
→ E4h2h with J̃2h

4h (k) =
√

2 cos2(kπh).

Now, in light of Theorem 7.2 we have the following.

Theorem 8.2. For any ψh ∈ RN , let ψ̃k =
[
ak bk ck dk

]
ψkh where ak, bk, ck, dk ∈ R

and ψkh =
[
φkh −φN−kh −φN/2−kh φ

N/2+k
h

]T
; further suppose that M3 = M4h

h and

M3(k) = M4h
h (k) are as in Lemma 6.2. Then we have

‖fl(M3(k)ψ̃k)−M3(k)ψ̃k‖ ≤ ‖M3(k)ψ̃k‖ · |δ3k| (8.4)

where |δ3k| ≤
(
12 + ν + ηkh ·

[
3ηk2h + 5

])
ε with ηkh = cot2

(
kπh
2

)
.

Moreover, ψh satisfies

‖fl(M3ψh)−M3ψh‖

≤ C‖M3‖
((

N
4

)2
+ (10 + ν) N

4
− (11 + ν) +

∑N−1
k=1

1
4

cot4
(
kπh
2

)
+
(
3
2

+ ν
)

cot2
(
kπh
2

))
ε

≤ C‖M3‖p3(N)ε

where p3(N) is a degree 4 polynomial in N
4

and C is a constant depending on the
coefficients ak, bk, ck, and dk.

Proof. Let ψh ∈ RN and ψ̃k, M3 and M3(k) be as in the statement. Then we prove
eq. (8.4) by explicitly calculating δn for n = 1, . . . , 4 as defined in Theorem 7.2. Recall
that each δn requires us to determine and bound β1

n, β
2
n, β

3
n. For all n, β3

n = 10 + 2ν,
we are thus left to calculate β2

n and β3
n. Recall that k = 1, . . . , N

4
− 1.

64

For δ1:∣∣∣∣ (M4h
2h)11

1− (M4h
2h)11

∣∣∣∣ =
| sin2(kπh)(1− (4/3) sin2(kπh))3|
|1− sin2(kπh)(1− (4/3) sin2(kπh))3|

≤ 81

943

⇒ |β2
1 | ≤ 8 + ν + (.08589)

[
3|ηk2h|+ 2 + ν

]
∣∣∣∣∣ λkh/λ

k
2hJ̃

h
2h(k)J̃2h

h (k) · (1− 2(M4h
2h)11)

1− λkh/λk2hJ̃h2h(k)J̃2h
h (k) · (1− (M4h

2h)11)

∣∣∣∣∣ =
cos2(kπh/2)(1− 2(M4h

2h)11)

1− cos2(kπh/2)(1− (M4h
2h)11)

≤ cos2(kπh/2)

1− cos2(kπh/2)
= ηkh

⇒ |β1
1 | ≤ 2 + ν + ηkh

[
3|ηk2h|+ 2 + ν

]
⇒ |δ1| ≤ (3 + 2 + ν + ηkh

[
2ηk2h + 2 + ν

]
)ε

For δ2:

|β2
2 | = |β2

1 | ≤ 8 + ν + (.08589)
[
3|ηk2h|+ 2 + ν

]
∣∣∣∣∣ λN−kh /λk2hJ̃

h
2h(N − k)J̃2h

h (N − k) · (1− 2(M4h
2h)11)

1− λN−kh /λk2hJ̃
h
2h(N − k)J̃2h

h (N − k) · (1− (M4h
2h)11)

∣∣∣∣∣
=

sin2(kπh/2)(1− 2(M4h
2h)11)

1− sin2(kπh/2)(1− (M4h
2h)11)

≤ sin2(kπh/2)

1− sin2(kπh/2)
= ηN−kh ≤ 2−

√
2

2 +
√

2

⇒ |β1
2 | ≤ 2 + ν + (0.17157)

[
2ηk2h + 2 + ν

]
)ε

⇒ |δ2| ≤ (3 + 2 + ν + (.017157)
[
2ηk2h + 2 + ν

]
)ε

For δ3:∣∣∣∣ (M4h
2h)22

1− (M4h
2h)22

∣∣∣∣ =
| cos2(kπh)(1− (4/3) cos2(kπh))3|
|1− cos2(kπh)(1− (4/3) cos2(kπh))3|

≤ 2

53

⇒ |β2
3 | ≤ 8 + ν + (.037735)

[
3|ηN/2−k2h |+ 2 + ν

]
∣∣∣∣∣ λ

N/2−k
h /λ

N/2−k
2h J̃h2h(N/2− k)J̃2h

h (N/2− k) · (1− 2(M4h
2h)22)

1− λN/2−kh /λ
N/2−k
2h J̃h2h(N/2− k)J̃2h

h (N/2− k) · (1− (M4h
2h)22)

∣∣∣∣∣
=

(1/16)(1 + sin(kπh))(1− 2(M4h
2h)22)

1− (1/16)(1 + sin(kπh))(1− (M4h
2h)22)

≤ (1/32)(2 +
√

2)(29/27)

1− (28/27)(1/32)(2 +
√

2)

≤ 0.128906

65

⇒ |β1
3 | ≤ (2 + ν + (0.128906)

[
2ηk2h + 2 + ν

]
)ε

⇒ |δ3| ≤ (2 + ν + (.1289)
[
3|ηN/2−k2h |+ 2 + ν

]
)ε

For δ4:

|β2
4 | = |β2

3 | ≤ 8 + ν + (.037735)
[
3|ηN/2−k2h |+ 2 + ν

]
∣∣∣∣∣ λ

N/2+k
h /λ

N/2−k
2h J̃h2h(N/2 + k)J̃2h

h (N/2 + k) · (1− 2(M4h
2h)22)

1− λN/2+kh /λ
N/2−k
2h J̃h2h(N/2 + k)J̃2h

h (N/2 + k) · (1− (M4h
2h)22)

∣∣∣∣∣
=

(1/16)(1− sin(kπh))(1− 2(M4h
2h)22)

1− (1/16)(1− sin(kπh))(1− (M4h
2h)22)

≤ (1/16)(29/27)

1− (28/27)(1/16)
≤ .0717

⇒ |β1
4 | ≤ (2 + ν + (0.0717)

[
2ηk2h + 2 + ν

]
)ε

⇒ |δ4| ≤ (2 + ν + (.0717)
[
3|ηN/2−k2h |+ 2 + ν

]
)ε

Since ηkh is unbounded as h→ 0, we have maxn δn = δ1 and therefore, entry-wise,
for i = 1, . . . , N , we have (again, by Theorem 7.2),

fl
(

(M3(k)ψ̃k)i

)
= (M3(k)ψ̃k)i(1 + δ3k)

where |δ3k| ≤ |δ1|+|δ5| ≤ (3+2+ν+ηkh
[
3ηk2h + 2 + ν

]
)ε+7ε = (12+ν+ηkh

[
3ηk2h + 2 + ν

]
)ε.

Now, for

ψh =

N/4−1∑
k=1

[
ak bk ck dk

]
ψkh =

N/4−1∑
k=1

ψ̃k.

we have

‖fl (M3ψh)−M3ψh‖ ≤

∥∥∥∥∥∥
N/4−1∑
k=1

M2ψ̃kδ̃
3
k

∥∥∥∥∥∥ where
∣∣∣δ̃3k∣∣∣ ≤ (N/4− 1)ε+ |δ3k|

≤ C‖M3‖
N/4−1∑
k=1

∣∣∣δ̃3k∣∣∣ .
Similar to Theorem 8.1 we can bound this sum as follows.

N/4−1∑
k=1

∣∣∣δ̃3k∣∣∣ = (N/4− 1 + 12 + ν) (N/4− 1) ε+

N/4−1∑
k=1

3ηkhη
k
2h + (2 + ν)ηk2h

= (N/4)2 + (10 + ν)(N/4)− (11 + ν) +
∑N/4−1

k=1 3 cot2
(
kπh
2

)
cot2 (kπh) + (2 + ν) cot2

(
kπh
2

)
= (N/4)2 + (10 + ν)(N/4)− (11 + ν) +

∑N/4−1
k=1

1
4

cot4
(
kπh
2

)
+
(
3
2

+ ν
)

cot2
(
kπh
2

)
+ 1

4
.

66

At worst, we can bound this sum above by running k from 1 to N , in which
case summing cot4(kπh/2) and cot2(kπh/2) yield polynomials in N of degree 4 and
2 respectively. In fact, we can explicitly bound these terms as

N/4−1∑
k=1

1

4
cot4

(
kπh

2

)
+

(
3

2
+ ν

)
cot2

(
kπh

2

)
+

1

4

≤ 64

45

(
N

4

)4

+

(
92

9
+ 8ν

)(
N

4

)2

+
5

4

(
N

4

)
−
(

11

8
+ 2ν

)
.

which implies that∑N/4−1
k=1

∣∣∣δ̃3k∣∣∣ ≤ p3(N) = 64
45

(
N
4

)4
+
(
101
9

+ 8ν
) (

N
4

)2
+
(
37
4

+ ν
) (

N
4

)
−
(
83
8

+ 3ν
)
.

Numerically calculating the actual sum
∑N/4−1

k=1
1
4

cot4
(
kπh
2

)
+
(
3
2

+ ν
)

cot2
(
kπh
2

)
for N = 2L and L = 2, . . . , 20 reveals that these sums are indeed of the order N4. In
particular, they are of the order cot4

(
πh
2

)
.

Theorem 8.2 is enlightening in the sense that it highlights the recursive pattern of
error accumulation in going from an l-grid to an (l+1)-grid operator. The unfortunate
part is the large bound. An order N4 bound is clearly less than ideal, and in light
of Example 5.1 does not reflect realities. Instead, we bound the roundoff errors of a
3-grid operator using the results of Lemma 6.3. We first calculate the bounds C1 and
C2 of Lemma 6.3 for the Model Problem and the Model Algorithm.

Corollary 8.1. Recall from Lemma 6.3 that the l-grid V-cycle operator can be written
as

Ml = M l
1 = M l

l−1 +Bl−1
l Ml−1B

l
l−1. (8.5)

For the Model Algorithm applied to the Model Problem, we have

‖M l
l−1‖ ≤ C1 = 0.360559 and ‖Bl

l−1‖ · ‖Bl−1
l ‖ ≤ C2 =

√
82

9
,

hence
‖Ml‖ ≤ (−58.5889)

(
1− (1.00615)l−1

)
.

Proof. The 2-grid operator bound ‖M l
l−1‖ ≤ C1 = 0.360559 is proved in Theorem 8.1.

For ‖Bl−1
l ‖‖Bl

l−1‖ ≤
√
82
9

we take a similar approach. Indeed, let us consider

B1
2 = Sν2h J

h
2h and B2

1 = A−12h J
2h
h AhS

ν1
h .

Then ‖B1
2‖22 = maxk

{
µmax

(
B1

2(k)T
)

(B1
2(k))

}
where, for k = 1, . . . N

2
− 1,

B1
2(k) = Sν2h (k)Jh2h(k) =

[
1− 4

3
sin2

(
kπh
2

)
1− 4

3
cos2

(
kπh
2

)]ν2 [√2 cos2(kπh/2)√
2 sin2(kπh/2)

]
.

67

This yields,

‖B1
2‖ = max

k

{
cos4(kπh/2)(1− 4

3
sin2(kπh/2)2ν2 + 2 sin2(kπh/2)(1− 4

3
cos2(kπh/2))2ν2

}
= max

k

{
1

9
sin4(kπh)− 7

3
sin2(kπh) + 2

}
≤ 2

⇒ ‖B1
2‖ ≤

√
2.

Similarly, ‖B2
1‖22 = maxk

{
µmax(B

2
1(k))T (B2

1)
}

, where, for k = 1, . . . , N
2
− 1

B2
1(k) = A−12h (k)J2h

h (k)Ah(k)Sν1h (k)

= 4
sin2(kπh)

[√
2
2

cos2
(
kπh
2

)
√
2
2

sin2
(
kπh
2

)]T [sin2
(
kπh
2

)
cos2

(
kπh
2

)] [1− 4
3

sin2
(
kπh
2

)
1− 4

3
cos2

(
kπh
2

)]ν1 .
This yields

‖B2
1‖ = max

k

1

2

{(
1− 4

3
sin2

(
kπh

2

))4

+

(
1− 4

3
cos2

(
kπh

2

))4
}

= max
k

1

162
{4 cos(4kπh) + 40 cos(2kπh) + 38} ≤ 41

81

⇒ ‖B2
1‖ ≤

√
41

9

⇒ ‖Bl−1
l ‖‖B

l
l−1‖ ≤ C2 =

√
2 ·
√

41

9
=

√
82

9
.

This allows us to derive a more practical bound on the relative error of the com-
puted M3ψh.

Theorem 8.3. Let ψh ∈ RN and M3 = M4h
h be as in Lemma 6.2. Then we have

‖fl (M3ψh)−M3ψh‖
‖M3ψh‖

≤ C‖M2‖

{
p2(N) +

√
82

9

}
ε

where C, ‖M2‖, and p2(N) are as in Theorem 8.1.

Proof. Let ψh ∈ RN . If

M4h
h = M2h

h +
(
Sν2h J

h
2h

)
M4h

2h

(
A−12h J

2h
h AhS

ν1
h

)
= M2h

h +Bh
2hM

4h
2hB

2h
h

then for i = 1, . . . , N we have

fl
(
(M4h

h ψh)i
)

=
(
fl
(
(M2h

h ψh)i
)

(1 + α1) + fl
(
(Bh

2hM
4h
2hB

2h
h ψh)i

)
(1 + α2)

)
(1 + α3)

where |α1| ≤ C|‖M2h
h ‖|p2(N)ε,

|α2| ≤
(
‖Bh

2h‖‖M4h
2h‖‖Bh

2h‖‖ψh‖+ C‖M4h
2h‖p2(N)

)
ε,

and |α3| ≤ ε.

68

From the proof of Theorem 8.1, p2(N) = 9
(
N
2

)2
+ (1 + ν)N

2
+ (−10 + ν), C =

maxk {ak, bk} comes from the coefficients in ψ̃k, and both ‖M2h
h ‖, ‖M4h

2h‖ ≤ 0.360559.
This implies that

fl
(
M4h

h ψh
)

= M4h
h ψh(1 + δ)

where |δ| ≤
(
‖Bh

2h‖‖M4h
2h‖‖Bh

2h‖‖ψ‖+ C‖M4h
2h‖p2(N)

)
⇒
‖fl
(
M4h

h ψh
)
−M4h

h ψh‖
‖M4h

h ψh‖
≤ C(0.360559)

(
p2(N) +

√
82

9

)
ε.

Theorem 8.2 thus tell us that the relative error of the 3-grid V-cycle is of the order
N2. In the next section, we extend this result to a general l-grid V-cycle, which will
allow for conclusions about an L-grid V-cycle to solve a linear system of size 2L× 2L,
as well as future work in drawing conclusions about FMG algorithms.

8.3 Model Problem Generalizations

The previous section demonstrated the recursive-like dependencies that calculations
concerning l-grid operators have on (l + 1)-grid operators. In this section, we will
make some generalizations.

First, we can directly apply the results of Theorem 8.1 on |δ2| together with those
of Theorem 7.3 and Corollary 8.1 to bound fl (Mlψh).

Corollary 8.2. Let ψh ∈ RN with ‖ψh‖ ≤ C and let Ml be the the l-grid multigrid
operator as defined by Equation (6.5) and the Model Algorithm. Then

Ml = M l
1 = M l

l−1 +Bl−1
l Ml−1B

l
l−1

is such that ‖M l
l−1‖ ≤ C1 = 0.360559 and ‖Bl−1

l ‖ · ‖Bl
l−1‖ ≤ C2 =

√
82
9

. Let δ2 be
the error bound of the 2-grid operators as in Theorem 8.1. Namely, suppose that
‖fl
(
M l

l−1ψh
)
−M l

l−1ψh‖ = |δ2| where

|δ2| ≤ C(0.360559)p2(N)ε (8.6)

where p2(N) is a degree 2 polynomial in N
2

. Then

‖fl (Mlψh)−Mlψh‖
‖Mlψh‖

≤ |δl|

where

|δl| ≤ C(l − 1)(0.360559)p2(N)ε+ (l − 2)ε− C 0.360559

(.0061539)2
(
(−.0061539)l + 1.012269

)
ε.

(8.7)

Proof. The bound eq. (8.7) follows directly from Theorem 7.3.

69

Thus, Corollary 8.2 shows that the relative error in floating point arithmetic of an
l-grid V-cycle defined by both the Model Problem and the Model algorithm, while it
does not depend explicitly on κ(Ah), is at least of order N2. Because the V-cycle is
the building block of FMG, this result is a starting point in understanding the effects
of roundoff errors in a full multigrid algorithm. Independently, this result suggests
that a standard multigrid algorithm should behave at least as good as a backward
stable algorithm, and our analysis does not reflect the lore that multigrid algorithms
are unaffected by the extreme ill-conditioning.

8.4 Conclusions and Future Work

Recall that our motivating Example 5.1 suggested that a full multigrid algorithm
can compute solutions with relative accuracy slightly better than that of a backward
stable algorithm, but slightly worse than that of an inverse-equivalent algorithm. Our
conjecture was that the condition number might play a small roll in this relative error,
but it doesn’t seem that it depends on it in the same sense that backward stability
does. The theory of Chapter 7 does not explicitly convey any dependence on κ(Ah),
but the computations and application of these bounds to the Model Problem in this
chapter provides a bound that is the same order of the condition number. Indeed,
the conclusions in Section 8.3 indicate that the relative errors are of the order N2,
including some constants obtained from two-grid operators.

Immediate future work includes an additional numerical example where solutions
are computed by iterating an L-grid V-cycle. These errors can then be compared with
the bound δL determined in eq. (8.7), as well as with εκ(Ah). Moreover, since the
l-grid V-cycles are the building blocks of the FMG, a natural next step is extending
Theorem 7.3 and Corollary 8.2 to a result on a full multigrid algorithm. These results
could then be compared directly with our original motivating example.

The author is also interested in applying/extending these results to the fourth
order biharmonic operator to compare these methods directly with the work of Part
I. In particular, it is of interest, whether or not these order N2 errors bounds will
hold on a operator with condition number on the order of N4. Such an example
would provide compelling evidence, together with an initial theoretical framework,
for the accuracy of multigrid methods. And finally, we would be remiss to not address
the extension of this theoretical framework outside of the Model Algorithm and the
various assumptions of Chapter 7.

Copyright© Kasey Bray, 2019.

70

Bibliography

[1] Louis Bauer and Edward L. Reiss. Block five diagonal matrices and the fast
numerical solution of the biharmonic equation. Math. Comp., 26:311–326, 1972.

[2] P. E. Bjorstad and B. P. Tjostheim. High precision solutions of two fourth order
eigenvalue problems. Computing, 63(2):97–107, 1999.

[3] P.E. Bjorstad and B.P. Tjostheim. Efficient algorithms for solving a fourth-
order equation with the spectral-galerkin method. Siam Journal On Scientific
Computing, 18(2):621–632, March 1997.

[4] Achi Brandt. Rigorous local mode analysis of multigrid. Preliminary Proceeding
of the Fourth Copper Mountain Conference on Multigrid Methods, April 1989.

[5] Achi Brandt. Rigorous quantitative analysis of multigrid. I. Constant coefficients
two-level cycle with L2-norm. SIAM J. Numer. Anal., 31(6):1695–1730, 1994.

[6] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A multigrid
tutorial. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, second edition, 2000.

[7] Goong Chen, Matthew P. Coleman, and Jianxin Zhou. Analysis of vibration
eigenfrequencies of a thin plate by the Keller-Rubinow wave method. I. Clamped
boundary conditions with rectangular or circular geometry. SIAM J. Appl.
Math., 51(4):967–983, 1991.

[8] Siegfried Cools and Wim Vanroose. Local Fourier analysis of the complex shifted
Laplacian preconditioner for Helmholtz problems. Numer. Linear Algebra Appl.,
20(4):575–597, 2013.

[9] R. Courant and D. Hilbert. Methods of mathematical physics. Vol. II. Wiley
Classics Library. John Wiley & Sons, Inc., New York, 1989. Partial differential
equations, Reprint of the 1962 original, A Wiley-Interscience Publication.

[10] Carl W. David. The laplacian in sphereical polar coordinates. Department of
Chemistry at DigitalCommons@UConn, 2007. Chemistry Education Materials,
Paper 34.

[11] James Demmel, Ming Gu, Stanley Eisenstat, Ivan Slapnivcar, Krevsimir Veselić,
and Zlatko Drmavc. Computing the singular value decomposition with high
relative accuracy. Linear Algebra Appl., 299(1-3):21–80, 1999.

[12] James W. Demmel. Applied numerical linear algebra. Society for Industrial and
Applied Mathematics, Philadelphia, 1997.

71

[13] Froilán M. Dopico and Plamen Koev. Perturbation theory for the LDU factor-
ization and accurate computations for diagonally dominant matrices. Numer.
Math., 119(2):337–371, 2011.

[14] Froilán M. Dopico and Juan M. Molera. Accurate solution of structured linear
systems via rank-revealing decompositions. IMA J. Numer. Anal., 32(3):1096–
1116, 2012.

[15] Louis Ehrlich. Solving the biharmonic equation as coupled finite difference equa-
tions. SIAM Journal on Numerical Analysis.

[16] W. N. Everitt, B. T. Johansson, L. L. Littlejohn, and C. Markett. Quasi-
separation of the biharmonic partial differential equation. IMA J. Appl. Math.,
74(5):685–709, 2009.

[17] Scott R. Fulton. On the accuracy of multigrid truncation error estimates. Elec-
tron. Trans. Numer. Anal., 15:29–37, 2003. Tenth Copper Mountain Conference
on Multigrid Methods (Copper Mountain, CO, 2001).

[18] Zhendong Luo. A high accuracy numerical method based on spectral theory of
compact operator for biharmonic eigenvalue equations. J. Inequal. Appl., pages
2016:77, 11, 2016.

[19] Carmen Rodrigo, Francisco J. Gaspar, Cornelis W. Oosterlee, and Irad Yavneh.
Accuracy measures and Fourier analysis for the full multigrid algorithm. SIAM
J. Sci. Comput., 32(5):3108–3129, 2010.

[20] Jie Shen. Efficient spectral-galerkin method i. direct solvers of second- and
fourth-order equations using legendre polynomials. SIAM Journal on Scientific
Computing, 15(6), November 1994.

[21] Klaus Stüben and Ulrich Trottenberg. Multigrid methods: fundamental algo-
rithms, model problem analysis and applications. In Multigrid methods (Cologne,
1981), volume 960 of Lecture Notes in Math., pages 1–176. Springer, Berlin-New
York, 1982.

[22] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press,
Inc., San Diego, CA, 2001. With contributions by A. Brandt, P. Oswald and K.
Stüben.

[23] Roman Wienands and Wolfgang Joppich. Practical Fourier analysis for multigrid
methods, volume 4 of Numerical Insights. Chapman & Hall/CRC, Boca Raton,
FL, 2005. With 1 CD-ROM (Windows and UNIX).

[24] Roman Wienands and Cornelis W. Oosterlee. On three-grid Fourier analysis
for multigrid. SIAM J. Sci. Comput., 23(2):651–671, 2001. Copper Mountain
Conference (2000).

72

[25] C. Wieners. Bounds for the n lowest eigenvalues of fourth-order boundary value
problems. Computing, 59(1):29–41, March 1997.

[26] Qiang Ye. Preconditioning for accurate solutions of linear systems and eigenvalue
problems. arXiv ID:1705.04340[math.NA].

[27] Qiang Ye. Computing singular values of diagonally dominant matrices to high
relative accuracy. Math. Comp., 77(264):2195–2230, 2008.

[28] Qiang Ye. Accurate inverses for computing eigenvalues of extremely ill-
conditioned matrices and differential operators. Math. Comp., 87(309):237–259,
2018.

73

Vita

Education

• Texas Tech University, Lubbock, Texas
MS in Mathematics, May 2013
BS in Mathematics, May 2011
with honors, cum laude

Professional Positions

• Teaching Assistant, University of Kentucky, Lexington, Kentucky
August 2014-May 2019

• NSF Mathematical Sciences Graduate Internship, Nevada National Security
Site, Las Vegas, Nevada
Summer 2017

• Lecturer, Texas Tech University, Lubbock, Texas
August 2013 - May 2014

• Research Assistant, Texas Tech University, Lubbock, Texas

Awards and Honors

• Mathematics Department Fellowship, University of Kentucky, Lexington, Ken-
tucky
2018-2019 Academic Year

• Royster Outstanding Teaching Award, University of Kentucky, Lexington, Ken-
tucky
2016-2017 Academic year

• Max Steckler Fellowship, University of Kentucky, Lexington, Kentucky
2016-2017 Academic Year

74

	On the Role of Ill-conditioning: Biharmonic Eigenvalue Problem and Multigrid Algorithms
	Recommended Citation

	On the Role of Ill-conditioning: Biharmonic Eigenvalue Problem and Multigrid Algorithms
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Preliminaries and Notation

	I The Biharmonic Eigenvalue Problem
	2 Ill-conditioning and the Biharmonic Eigenvalue Problem
	2.1 Issues in Computing Smaller Eigenvalues of Ill-conditioned Matrices

	3 Accurate Preconditioning
	3.1 Inverse-equivalent Accuracy and Rank-revealing Decompositions
	3.2 Accurate LDU Factorization
	3.3 Accurate Preconditioning Method

	4 Accurate Computations of a Biharmonic Eigenvalue
	4.1 Unit Interval: =[0,1]
	4.2 Unit Square: = [0,1]2
	4.3 Unit Circle: = B(0,1)
	4.4 Conclusion

	II Multigrid Algorithms
	5 Motivation and Model Problem
	5.1 Introduction
	5.2 Motivation
	5.3 Model Problem

	6 Multigrid Algorithms
	6.1 Basic Multigrid
	6.2 Coarse Grid Correction and Structure of the 2-Grid Operator
	6.3 Multigrid V-cycle and Full Multigrid
	6.4 Multigrid Components and Convergence
	6.5 Rigorous Fourier Analysis
	6.6 Eigenmatrix Representations of Multigrid Operators using Rigorous Fourier Analysis

	7 Error Analysis of Computed Multigrid Solutions
	7.1 2-Grid Analysis
	7.2 3-Grid Analysis
	7.3 l-Grid Analysis

	8 Application to Model Problem
	8.1 Model Problem 2-Grid Analysis
	8.2 Model Problem 3-Grid Analysis
	8.3 Model Problem Generalizations
	8.4 Conclusions and Future Work

	Bibliography
	Vita

