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ABSTRACT OF DISSERTATION 

 

THE DEVELOPMENT OF NOVEL PROTEASOME INHIBITORS FOR THE TREATMENT 

OF MULTIPLE MYELOMA AND ALZHEIMER’S DISEASE 

 

Over a decade, proteasome inhibitors (PIs), bortezomib, carfilzomib (Cfz) and 

ixazomib, have contributed to a significant improvement in the overall survival for 

multiple myeloma (MM) patients. However, the response rate of PI was fairly low, 

leaving a huge gap in MM patient care. Given this, mechanistic understanding of PI 

resistance is crucial towards developing new therapeutic strategies for 

refractory/relapsed MM patients.   

In this dissertation work, we found H727 human bronchial carcinoid cells are 

inherently resistant to Cfz, yet susceptible to other PIs and inhibitors targeting 

upstream components of the ubiquitin-proteasome system (UPS). It indicated H727 

cells may serve as a cell line model for de novo Cfz resistance and remains UPS 

dependent for survival. To examine the potential link between proteasome catalytic 

subunit composition and cellular response to Cfz, we altered the composition of 

proteasome catalytic subunits via interferon-γ treatment or siRNA knockdown in 

H727 cells. Our results showed alteration in composition of proteasome catalytic 

subunits results in sensitization of H727 cells to Cfz. It supported that proteasome 

inhibition by alternative PIs may still be a valid therapeutic strategy for patients with 

relapsed MM after having received treatment with Cfz. With this in mind, we designed 

and synthesized a small library of epoxyketone-based PIs by structural modifications 

at the P1′ site. We observed that a Cfz analog, harboring a hydroxyl substituent at its 

P1′ position was cytotoxic against cancer cell lines with de novo or acquired resistance 

to Cfz. These results suggested that peptide epoxyketones incorporating P1′-targeting 

moieties may have the potential to overcome Cfz resistance mechanisms in cells. 



     

 

 

The immunoproteasome (IP), an inducible proteasome variant which is 

harboring distinct catalytic subunits, LMP2, MECL1 and LMP7 of the proteasome 

typically expressed in cells of hematopoietic origin, plays a role in immune response 

and is closely linked to inflammatory diseases. It has been reported that the IP is 

upregulated in reactive glial cells surrounding amyloid β (Aβ) deposits in brains of 

Alzheimer’s disease (AD) patients and AD animal models.  

To investigate whether the IP is involved in the pathogenesis of AD, we 

examined the impact of IP inhibition on cognitive function in AD mouse models.  We 

observed that YU102, an epoxyketone peptide targeting the IP catalytic subunit LMP2, 

improved cognitive dysfunction in AD mice without clearance of Aβ deposition or tau 

aggregation. Our cell line model study also showed a potential mode of action of 

YU102 which is suppressing pro-inflammatory cytokine production in microglial cells. 

It suggested that LMP2 contributes to microglia-mediated inflammatory response. 

These findings supported that LMP2 may offers a valuable therapeutic target for 

treatment of Alzheimer’s disease, expanding the therapeutic potential of the LMP2-

targeting strategy.  

 

KEYWORDS:  Proteasome Inhibitor, Resistant, Cancer, Immunoproteasome, 

Alzheimer’s disease 
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CHAPTER 1. INTRODUCTION 

1.1 The Ubiquitin-Proteasome System (UPS) 

The highly regulated degradation of cellular proteins is significantly crucial for 

cells to proliferate and differentiate. Before the discovery of the ubiquitin-

proteasome system (UPS), cellular protein degradation was thought to highly rely on 

lysosomes which were discovered by Christian de Duve in 1949 [1].  In 1977, Alfred 

Goldberg suggested the presence of another intracellular degradation mechanism in 

cells and Goldknopf and Busch identified an ubiquitin, a small protein with 76 amino 

acids, but the function was not defined [2]. In the same period, the 1970’s and 1980’s, 

Aaron Chiechanover, Avram Hershko, and Irwin Rose also worked on how cells 

degrade or destroy the proteins that are not useful anymore, which finally resulted in 

discovery and characterization of the ATP-dependent, ubiquitin-mediated protein 

degradation system [3-5]. The fundamental importance of the UPS in protein 

degradation mechanisms was highlighted when Rose, Hershko, and Ciechanover 

were awarded the 2004 Nobel Prize in Chemistry for their contributions in that field, 

the discovery of both ubiquitin and the proteasome [6]. 

The UPS, they found, is responsible for the degradation of ~80% of 

intracellular proteins [7]. Protein degradation by the UPS is mediated by the covalent 

conjugation of ubiquitin [8]. Protein substrates, destined to be degraded by the UPS, 

are labeled with multiple copies of ubiquitin, which are recognized by the proteasome 

and initiates their degradation [9] (Figure 1.1). Polyubiquitinated protein is 

processed in a stepwise fashion involving a series of three enzymes: Ubiquitin ligase 

E1, the ubiquitin activation enzyme, uses ATP hydrolysis to catalyze a thioester bond 

between E1 and the glycine residue of ubiquitin. After activation, the ubiquitin is 

transferred to the ubiquitin-conjugating enzyme E2. Next, E3 ubiquitin ligase proteins 

bind to the protein substrate. Finally, the polyubiquitinated protein is then 
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recognized by the proteasome and degraded [10, 11]. The removal of ubiquitin 

monomers or polyubiquitin chains from the substrate protein is catalyzed by 

deubiquitinating enzymes (DUBs); these enzymes counter the function of E3 

ubiquitin ligases [12]. Over 70 DUBs encoded in the human genome play roles in 

recycling of ubiquitin from the substrate proteins, protection from protein 

degradation by removing the ubiquitin tags, and also regulation of non-proteasomal 

functions such as DNA damage repair [13, 14]. 
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Figure 1.1 Ubiquitin Proteasome System 

A polyubiquitin chain is covalently linked to a protein substrate through a series of 

three enzymes: an E1, an E2, and an E3. This polyubiquitin chain is recognized by the 

proteasome, which degrades the protein to short peptides and releases free ubiquitin.  
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1.2 Proteasome Structure and Subtype 

1.2.1 Proteasome Structure 

As the final executioner of the UPS, the proteasome is responsible for the 

controlled degradation of substrate proteins modified with a polyubiquitin chain. The 

proteasome is large protein complex, approximately 2.4 MDa, and consisted of two 

main components, the 20S core proteasome particle and a 19S regulatory complex. 

The 19S regulatory complex harbors 18 subunits containing the components to 

remove the polyubiquitin chain for recycling of ubiquitin, unfold the protein, and 

control the access of substrate proteins to the proteolytic 20S core [15-19].  The 20S 

core itself has a molecular weight of approximately 700 kDa and is formed from four 

heptameric rings: two outer α-rings and two inner β-rings (Figure 1.2).   

The α-rings made from the α1-α7 subunits play an important role in regulating 

substrate entry into the 20S core for proteolysis. The inner two rings are also each 

made up of the β1-β7 subunits.  The 20S proteasome has three types of catalytically 

active subunits, the β1, β2, and β5 subunits located in the two inner beta rings [20]. 

These catalytically-active subunits utilize an N-terminal threonine residue for their 

catalytic activity, placing them in the N-terminal nucleophile hydrolase family. Each 

catalytic subunit is initially made with propeptides that protect the N-terminal 

threonine residue from acetylation and prevent premature proteolysis [21]. Removal 

of these propeptides occurs through an autocatalytic mechanism with the fully 

assembled proteasome, indicating that these subunits cannot degrade proteins prior 

to their proteasome incorporation [22-26]. When a substrate protein enters the core 

20S core particle, the active sites start cleaving the peptide bonds, generating peptide 

fragments ~3-22 amino acids in length [27,28]. Most of the products produced by the 

proteasome are then hydrolyzed by peptidases to single amino acids [29]. The 
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catalytically-active β1, β2, and β5 subunits also possess distinct substrate specificities. 

Structural and mutational studies revealed that the β5-subunit is responsible for 

chymotrypsin-like (CT-L) activity and cleaves peptide bonds preferentially after 

hydrophobic residues. The β1-subunit has caspase-like (C-L) activity cleaving the 

peptide bonds after acidic residues; and β2 cleaves after basic residues, consistent 

with trypsin-like (T-L) activity [30-34].  Together, these subunits cleave proteins into 

small peptides of unique and diverse sequences, which are especially important for 

antigen presentation and immune response [35]. 
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Figure 1.2. Structure of the 26S proteasome and the view of subunits of a β-ring  

26S proteasome consists of a 20S core particle with two 19S regulatory particles at 

either end. The 20S core particle is formed with four heptameric rings, two α-rings 

and two β-rings. Each β-ring contains three catalytically-active β-subunits (β1, β2, 

and β5). 
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1.2.2 The Immunoproteasome and Thymoproteasome 

Apart from the standard or also termed constitutive proteasome, there are 

subtypes of proteasomes having different structures: the immune proteasome and 

the thymoproteasome. A decade after the constitutive proteasome was discovered, 

another major subtype of the proteasome, the immunoproteasome was identified 

[36]. The immunoproteasome is predominant in immune cells such as monocytes and 

lymphocytes and is dramatically induced in non-immune tissues by proinflammatory 

cytokines such as interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) or viral 

infection [37]. Whereas the most common subtype of the proteasome, constitutive 

proteasome, comprises the catalytic subunits β1(Y, PSMB6), β2(Z, PSMB7), and β5(X, 

PSMB5), immunoproteasome differs mainly in incorporation of a distinct set of 

additional catalytic subunits in the 20S proteasome. The three catalytic immune 

subunits, β1i (LMP2, lower molecular weight protein 2, PSMB9), β2i (MECL-1, 

multicatalytic endopeptidase complex-like-1, PSMB10) and β5i (LMP7, PSMB8) 

subunits, are the homologues of the β1, β2, and β5 subunits, respectively, with 59-71% 

amino acid sequence identity to respective constitutive homologues [38]. The β1i, β2i, 

and β5i catalytic subunits are incorporated to 20S proteasomes in place of the β1, β2, 

and β5 subunits resulting in formation of the immunoproteasomes (Figure 1.3). 

The most recently discovered subtype of the proteasome is the 

thymoproteasome. In 2007, Murata et al. identified a previously unrecognized 

catalytic subunit called β5t expressed in cortical thymic epithelial cells [39]. The β5t 

subunit is the homolog of the β5 subunit with 50% amino acid sequence identity [38]. 

In cortical thymic epithelial cells, β5t subunit is incorporated with β1i and β2i subunit 

forming the specific subtype of the proteasome, thymoproteasome. 

Thymoproteasome plays a role in the positive selection of CD8+ T cells, acting as the 

safeguard against mature T cells deriving autoimmune response. Indeed, β5t -

deficient mice with lacking CD8+ thymocytes were not able to survive by influenza 
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virus infection [40, 41]. However, there is little data to show the exact functions of 

thymoproteasome in cancer or in non-cancer disease.   
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 Figure 1.3. Catalytic subunit compositions of the constitutive proteasome and 

the immunoproteasome 

The constitutive proteasome β-ring contains three catalytic β subunits β1, β2, and β5 

as well as four catalytically inactive β-subunits. The synthesis of immunoproteasome 

is induced by cytokine stimulations such as IFN-γ or TNF-α. The induced 

immunoproteasome catalytic subunits β1i, β2i, and β5i are incorporated into the 20S 

proteasome to form the 20S immunoproteasome. Catalytic subunits β1/ β1i, β2/ β2i, 

or β5/ β5i have caspase-like, trypsin-like, or chymotrypsin-like activity, respectively. 
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1.3 Proteasome Function 

The life cycle of all proteins starts from the synthesis at ribosomes to their 

degradation to peptides and further single amino acids. Protein degradation is the 

important step for cellular functions such as protein homeostasis, signal production, 

and cell proliferation. The proteasome located in the cytosol and the nucleus degrades 

more than 90% of cytosolic proteins by protecting cells from accumulation of harmful 

protein aggregates [42]. Proteasomes also play the major role in antigen presentation 

by production of peptides with hydrophobic C-terminal amino acids that bind with 

high affinity to major histocompatibility class I (MHC-I) receptors on the cell surface 

to control immune responses whereas another protease generates the correct N-

terminus [43]. Especially, the immunoproteasome catalytic subunits are known to 

produce the peptides with a hydrophobic or basic C-terminal amino acid but less 

acidic C-termini [44]. 

The immunoproteasome, beyond the antigen presentation, regulates oxidative 

stress, and cytokine production. The role of the immunoproteasome was defined on 

reducing the oxidized proteins under Interferon-induced oxidative stress to maintain 

cellular homeostasis [45]. More interestingly, previous studies showing β1i knock out 

mice displayed the significantly increase levels of oxidized proteins in the brain and 

retinal pigmented epithelial (RPE) cells were more sensitive to oxidative stress in 

double knock-out mice of β2i and β5i suggested that immunoproteasome are 

protective against oxidative stress and damage [46, 47]. 

Additional studies of β1i knockout mice showed that their cognitive function 

was quite similar comparted to control mice, but they had a higher body weight and 

displayed the greater motor function [48-50]. Martin. et al. suggested that the 

increased motor function observed in patients with Parkinson’s and Huntington’s 

disease may relate to changes in the expression levels of proteasome subunit 

expression in the brains of these patients [50]. More recent study showed β5i 

knockout altered the levels of cytokines in whole brain and the profiles of microglial 

cytokine production without impacting levels of Aβ or amyloid precursor protein 
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(APP). Notably, the production of the proinflammation cytokines such as TNF-α, IL-6, 

and IL-1β in isolated microglia was significantly reduced in cells lacking β5i [51]. 

In addition, the immunoproteasome (specifically β5i) has been shown to 

modulate pro-inflammatory cytokine production in human tissues (T-cells, B-cells, 

neutrophils, monocytes, etc) and thus considered as a promising therapeutic target 

for autoimmune diseases [52-57]. β5i/LMP7-selective inhibitors (ONX-0914, KZR-

616) are currently in early phase clinical development for the treatment of rheumatic 

diseases, such as lupus nephritis (LN). For β1i LMP2, there have been a few reports 

suggesting its involvement in processing of NF-κB precursors (p100/p105) and 

degradation of IκBα [58-60].  However, recent studies dispute the involvement of 

LMP2 in inflammatory responses showing using human peripheral blood 

mononuclear cells (PBMCs) reported no effect of LMP2 inhibition on cytokine 

secretion [56]. 
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1.4 Development of Proteasome Inhibitors 

To elucidate the functions of the proteasome in the cells, proteasome inhibitors 

were initially developed but it became evident that proteasome inhibitors may have 

therapeutic potential for diseases including cancer and inflammatory disease. Most 

of the proteasome inhibitors that have been developed are composed of a peptide 

sequence followed by a C-terminal warhead, pharmacophore, which interacts with 

the catalytic threonine residues of the proteasome’s active sites. The most of 

proteasome inhibitors can be classified by the unique warhead pharmacophore into 

five main classes; the peptide aldehydes, peptide boronates, β-lactones, peptide vinyl 

sulfones, and peptide epoxyketones (Figure 1.4). In this section, known proteasome 

inhibitors classified will be discussed. 

 

1.4.1 Peptide Aldehyde Inhibitors 

Peptide aldehydes were the first class of synthetic proteasome inhibitors to be 

developed. Since the catalytic activity of the proteasome were initially thought to be 

similar to that of serine and cysteine protease, the first type of proteasome inhibitors 

were developed by using a C-terminal aldehyde, Z-LLF-CHO, Ac-LLnL-CHO, and Ac-

LLM-CHO [61]. Co-crystallization of a peptide aldehyde inhibitor with the yeast 

proteasome showed aldehyde group of the inhibitor binds the active sites of the 

proteasome reversibly by producing hemiacetal adducts with the threonine residue 

of the catalytic site [30]. While a number of studies have used the peptide aldehyde 

inhibitors, further development of this class of proteasome inhibitors has been 

limited because of their off-target inhibition of cysteine and serine protease. forming 

hemiacetal adducts with their catalytic threonine residues [30, 33]. In this 

dissertation work, MG132 (Z-LLL-CHO, shown in Figure 1.4.) was used as a 

representative of peptide aldehyde inhibitor. 
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1.4.2 Peptide Boronate Inhibitors 

Peptide boronates were also initially developted to inhibit serine protease. 

However, peptide boronates harbor the high affinity for the active site of the 

proteasome by interaction between a boronate hydroxyl group and the N-terminal 

amino group of the threonine residue of the proteasome active site. By that means, 

peptide boronates can achieve better potency and high selectivity to the proteasome 

over the serine protease. In the meantime, Adam et al. reported peptides boronates 

such as MG262 which is the boronate analog of MG132 with better potency and higher 

selectivity compared to the inhibitors with aldehyde pharmacophore in 1998 [62]. 

Further medicinal chemistry efforts with peptide boronates led to the development 

of the FDA-approved proteasome inhibitor drugs, bortezomib and ixazomib (Figure 

1.4). Bortezomib and ixazomib will be discussed in detail below. 

 

1.4.3 β- Lactone Inhibitors 

Lactacystin was the first reported natural product of proteasome inhibitor 

with a non-peptide backbone (Figure 1.4). In 1995, Fenteany et al. found lactacystin 

bound to the threonine residue of the proteasome catalytic β5 subunit. Later, it was 

demonstrated lactacystin, converting to active form, clasto-lactacysistin β-lactone, at 

pH 8 from inactive itself, irreversibly inhibits CT-L activity predominantly and trpsin-

like (T-L) and Caspase-like (C-L) activities at much slower rates [63].  Although 

lactacystin also found to be more specific to proteasome than the peptide aldehyde 

inhibitors, later works suggested β- Lactones also bind to some serine proteases [64, 

65]. Besides this, the unstability of β- Lactones at neutral pH, and highly complex 

synthesis were considered as limitations of β- Lactones.  Marizomib, known as 

salinosporamide A or NPI-0052, is a second natural product β-lactone, is currently in 

clinical development [66]. Notably, Di et al. observed that orally dosed marizomib 

significantly reduced the proteasome activity in pre-fontal cortex of healthy 
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cynomolgus monkeys, postulating the activity of marizomib to cross the blood-brain 

barrier [67]. 

 

1.4.4 Peptide Vinyl Sulfone Inhibitors 

Peptide vinyl sulfones are another early class of proteasome inhibitors. 

Initially, Z-LLL-VS displayed the activity to target all three proteasome catalytic 

activities in purified proteasome and in cells. Bogyo et el. showed the vinyl sulfone 

pharmacophore binds to the hydroxyl group of the threonine residue, giving rise to 

irreversible-binding between proteasome inhibitors to the catalytic residue [68] 

(Figure 1.4). In line with this, this class of proteasome inhibitors labeled with a 

radioisotope, biotin, or fluorescent groups were utilized to understand the 

relationships between the peptide sequence of the inhibitor and its subunit binding 

specificities [69-71]. However, since the peptide vinyl sulfones were also initially 

developed as cysteine protease inhibitors, the use of vinyl sulfones is limited. 

 

1.4.5 Peptide Epoxyketone Inhibitors 

Another important class of natural product proteasome inhibitors, 

eponemycin and epoxyketone, was reported in 1999. Both eponemycin and 

epoxyketone are consisted of a peptide backbone with and N-acyl group and a C-

terminal α’,β’-epoxyketone moiety (Figure 1.4).  Eponemycin isolated from a 

Streptomyces strain was later shown to bind to β1i, β5i and β5 subunits of the 

proteasome whereas epoxyketone isolated from a Actinomycete strain was found to 

bind to β2, β5, β2i, and β5 by a group under Dr. Craig Crews [72, 73]. Their further 

studies showed epoxomicin primarily targets the CT-L acitivity of bovine 

proteasomes in an irreversible fashion. In 2000 Groll et al. reported the formation of 

a 6-membered morpholino ring between the catalytically active threoine residue and 

the inhibitor by X-ray crystallographic study of epoxomicin bound to the proteasome, 

giving rise to high specificity for the proteasome over other proteases such as serine 
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and cysteine proteases [74]. However, in 2016, Schrader et al. revealed a 7-membered 

1,4- oxazepane ring, instead of a 6-membered morpholino ring between the threonine 

residue and the epoxyketone inhibitors using high-resolution X-ray structures of 

human 20S proteasome with three different epoxyketone inhibitors [75]. A notable 

peptide epoxyketone inhibitor, of special interest, Carfilzomib, is the second 

proteasome inhibitor to receive FDA approval for use as an anticancer agent [76].  
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Figure 1.4. Representative members of the five major classes of proteasome 

inhibitors 

A. Peptide aldehydes. A synthetic peptide aldehyde inhibitor MG-132 is shown. B. 

Peptide boronates. FDA-approved bortezomib and ixazomib are shown. C. β-lactone. 

The natural product lactacystin is shown. D. Peptide vinyl sulfone. Early proteasome 

inhibitor Z-LLL-VS is shown. E. Peptide epoxyketones. The natural product 

epoxomicin and FDA-approved carfilzomib are shown.  
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1.4.6 Subunit-Selective Proteasome Inhibitors 

a. β5-selective inhibitors 

PR-825 is the β5-seletive peptide expoxyketone inhibitor (Figure 1.5). This 

compound was used to distinguish the effects of selective β5-inhibition versus β5i 

inhibition on the production of pro-inflammatory cytokines in activated peripheral 

blood mononuclear cells (PBMCs) and an animal model of multiple sclerosis [52, 77]. 

PR-893, also known as CPSI (Constitutive proteasome selective inhibitor), was 

another β5-seletive peptide expoxyketone inhibitor. ProCISE assay showed this 

compound is highly selective for β5 over β5i (~21 fold) or β1i (~13 fold). PR-893 was 

utilized to examine the cellular effect of selective- β5 inhibition in cells, showing that 

inhibition of β5 subunit alone was not sufficient to induce cytotoxicity in hematologic 

cancer cells. Furthermore, selectively inhibiting β5 with PR-893 did not block 

production of IFN-α by bone marrow cells [78, 79]. 

 

b. β5i-selective inhibitors 

The first β5i-selective inhibitor to be reported was ONX 0914, also referred as 

PR-957 (Figure 1.5). The tripeptide epoxyketone ONX 0914 showed a 20- and 40- fold 

selectivity for β5i over β1i or β5, respectively in human leukemia cell line MOLT-4 

cells. Interestingly, ONX 0914 has shown to block the production of pro-inflammatory 

cytokines in PBMCs as well as T-cell activation and differentiation and to attenuate 

progression of experimental arthritis in mouse model, indicating a role of β5i during 

inflammation [52]. This supports the futher investigations to the potential 

therapeutic benefits of β5i inhibitors in treating autoimmune diseases are going [80]. 

The second β5i-selective epoxyketone inhibitor to be reported was IPSI 

(immunoproteasome-selective inhibitor), also known later as PR-924 [79] (Figure 

1.5). ProCISE assay showed IPSI was highly potent for β5i (IC50 of 22 nM against β5i) 

and 132-fold selectivite for β5i over β5. Later, there were a few studies reporting  PR-

924 inhibited cell growth and induce apoptosis in multiple myeloma cells whereas 
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PBMCs were not affected and further it exerted antitumor activity in mouse xenograft 

models [81].  

 

c. β1i-selective inhibitors 

As described above, the peptide epoxyketone natural products eponemycin 

and epoxomicin exerted a preference for β1i over other subunits. This gives rise for 

our lab to examine the the structure-activity relationship (SAR) for β1i inhibition 

using eponemycin analogues. Further medicinal chemistry efforts yielded the first 

immunosubunit-selective inhibitor, β1i-selective peptide epoxyketone inhibitor UK 

101, to be reported by our group [82] (Figure 1.5). Our group reported UK101 was 

more cytotoxic to cancer cells highly expressing β1i than immunosubunit- deficient 

cells, suggesting β1i may play a role in regulating cell-growth in cancer cells 

abundantly expressing β1i. Later, Wehenkel et al. found that UK101 significantly 

reduced tumor growth in a mouse xenograft model of prostate cancer [83]. Later, 

UK101 was also reported to be highly selective for β1i over β1 (144-fold), but less 

selective for β1i over β5 (10-fold) [84].  

Most recently, proteasome activity assay using subunit-selective fluorogenic 

peptide substrates showed the previously reported caspase-like inhibitor YU 102 

(Ac-GPFL-epoxyketone) had high selectivity for β1i over β5 (> 100 fold) (submitted 

data by our group).  
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Figure 1.5. Representative of subunit-selective proteasome inhibitors  

A. β5-selective inhibitor. The peptide epoxyketone inhibitor PR-825 is shown. B. β5i-

selective inhibitors. The peptide epoxyketone ONX0914 (PR-957) and IPSI (PR-924) 

are shown. C. β1i-selective inhibitor. The epoxyketone inhibitor UK101 is shown. 
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1.5 The FDA-Approved Proteasome Inhibitors for MM 

1.5.1 Bortezomib (Velcade®) 

The first proteasome inhibitor to receive FDA approval was Bortezomib (Btz), 

formerly known as PS-341 and now marketed as Velcade® [85]. Structurally, 

bortezomib is a dipeptide boronate, mainly targets the both β5 and β5i subunits 

specifically and reversibly [86-88]. It has also been shown to target β1 and β1i with 

lower affinity [89, 90].  

As previously described in chapter 2.4.1, considerable effort had been put 

forth to develop the peptide boronates with the improved selectivity for proteasome 

activity over serine proteases, leading to yield the derivatives of peptide boronates 

with the dramatically enhanced selectivity for the CT-L activity of the proteasome and 

the improved inhibitory potency. Meaningful results from collaboration work 

between ProScript and scientists at the National Cancer Institute (NCI) were 

published in 1999. The peptide boron ester PS-341 showed the most potent 

proteasome inhibition and significant cytotoxicity in the National Cancer Institute 

(NCI) panel of 60 cancer cell lines for assessing their anti-cancer activities among 13 

derivatives of the peptide boronates.  Following these results, PS-341 was tested 

against mice bearing tumor xenografts. This study showed that a single i.v. injection 

of 0.3 mg/kg PS-341 could significantly inhibit proteasome activity in white blood 

cells and in PC-3 tumor cells. Four direct injections of 1 mg/kg PS-341 into PC-3 

tumors on a daily or weekly schedule significantly reduced tumor volume as 

compared to vehicle [62].   

These significant results from preclinical trials of PS-341 led this compound 

into clinical trials in 2000 for further investigation of PS-341 as a potential anti-cancer 

reagent. Adams et al. reported in phase I trials PS-341 was well tolerated by patients 

in general, but with toxicities such as thrombocytopenia, fatigue, and peripheral 

neuropathy. Anecdotal reports of efficacy of the PS-341in non-small cell lung cancer, 

melanoma, and multiple myeloma were also noted in the study [91].  During its 
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clinical development at Millenium Pharmaceuticals, PS-341 received the 

nonproprietary name bortezomib and was finally marketed under the brand name 

Velcade®. In phase II clinical trials, bortezomib also demonstrated notable anti-

cancer efficacy in newly diagnosed and relapsed/refractory multiple myeloma 

patients when administered in combination with other reagents including 

thalidomide, dexamethasone, and doxorubicin [92-94].  

Based on promising clinical trial results, bortezomib was received the FDA 

approval in 2003 for the treatment of relapsed and refractory multiple myeloma [95]. 

Following the initial approval, the FDA expanded the bortezomib (Velcade) label to 

allow for previously untreated patients with multiple myeloma and mantle cell 

lymphoma [96, 97]. 

 

1.5.2 Carfilzomib (Kyprolis®) 

Carfilzomib, formerly called PR-171 and now marketed as Kyprolis®, is the 

second proteasome inhibitor to be FDA-approved in 2012 for treating relapsed or 

refractory multiple myeloma. In a 2007 publication by Demo et al., carfilzomib 

inhibited the CT-L activity of the proteasome more selectively compared to 

bortezomib also slightly targeting β1 [86, 98]. Another remarkable difference 

between carfilzomib and bortezomib is the proteasome specificity derived from the 

unique interaction of the epoxyketone pharmacophore and the N-terminal Threonine 

residues of the catalytic subunits of the proteasome. The proteasome specificity led 

to lower in vivo toxicity of carfilzomib relative to that of bortezomib and lower 

peripheral neuropathy, which is an off-target side effects of bortezomib, in 

carfilzomib-treated patients than bortezomib-treated patients [86, 99-103]. 

Furthermore, in comparison with bortezomib, the irreversible binding mechanism of 

the carfilzomib also facilitates a more sustained proteasome inhibition following a 

single exposure [86], suggesting carfilzomib exerts enhanced anticancer efficacy over 

bortezomib. 
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As previously described in chapter 2.4.5, the design of carfilzomib was begun 

from the natural product epoxomicin which was found to have proteasome inhibition 

in cells [73]. Traditional medicinal chemistry efforts from the Crews lab to optimize 

epoxomicin for anticancer activity led to development of potent YU101 derivatives. 

Following the successful clinical trials of bortezomib, Proteolix Inc. was established 

to develop YU101 as an anticancer therapeutic based on the great potency of YU101. 

Further medicinal chemistry efforts at Proteolix resulted in optimization of YU101 to 

improve poor water solubility (< 1 µg/mL) of YU101, yielding the lead compound PR-

171, with the modified to the N-cap moiety of YU101 [86]. The potent anti-cancer 

efficacy of PR-171 was further verified in mouse xenograft models. Notably, PR-171 

exerted its activity in multiple myeloma cell lines and tumor cells derived from 

patients who did not respond to bortezomib and cells resistant to conventional 

chemotherapeutics.  

Based on these promising results of PR-171, Proteolix began phase I clinical 

trials of PR-171 with the generic name carfilzomib. Two phases I dose-escalation 

trials of single-agent carfilzomib were conducted in patients with relapsed or 

refractory hematologic malignancies to determine its safety and efficacy in patients 

with hematologic malignancies. Results from these studies established a dosing 

schedule of carfilzomib i.v. infusions, a consecutive-day, twice weekly at dose up to 

27 mg/m3 [101]. During the two trials, carfilzomib was well tolerated by patients and 

the objective response rate (ORR) was 16.7% and the median duration of response 

was 7.2 months for the ORR population [100, 101], giving rise to additional phase 2 

trials to evaluate the activity of single-agent carfilzomib i.v. infusions at 20 or 27 

mg/m3 in patients with relapsed or refractory multiple myeloma patients who did not 

respond to prior therapies such as bortezomib and a single immunomodulatory agent 

(e.g. thalidomide and lenalidomide). In 2010, Siegel at al. reported the ORR was 24% 

and the median duration of response was 7.4 months [104]. In 2009, Onyx 

Pharmaceuticals acquired Proteolix for clinical development of carfilzomib and 

presented additional safety data from a total of 768 patients treated in phase I and II 

studies. Together, carfilzomib was granted accelerated FDA approval on July 20th, 
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2012 [76]. From the phase III trial to further confirm the drug’s efficacy and safety, 

the clinical benefits of carfilzomib were examined in combination with the 

immunomodulatory agent lenalidomide and high-dose dexamethasone in patients 

with relapsed and refractory multiple myeloma. Results showed combination 

treatment of carfilzomib with the lenalidomide and dexamethasone had superior 

activity in comparison to only lenalidomide and dexamethasone, without carfilzomib 

[105]. More recently, ENDEAVOR the phase III trial study to compare combination of 

carfilzomib and dexamethasone versus that of bortezomib and dexamethasone in 

relapsed or refractory multiple myeloma patients, supporting the safety of higher 

doses of carfilzomib and better efficacy in those patients: the median progression free 

survival (PFS) in the carfilzomib group was 18.7 months, the bortezomib groups 

median PFS of 9.4 months [106].  

 

1.5.3 Ixazomib (Ninlaro®) 

Ixazomib, previously known as MLN9708 and now marketed as Ninlaro®, is 

the third proteasome inhibitor to be received the FDA approval in 2015 for the 

treatment of relapse multiple myeloma patients. Ixazomib is the first orally 

administered proteasome inhibitor. Structurally, Ixazomib is a N-capped dipeptide 

boronate and the boronate pharmacophore. Ixazomib can be formed from the 

hydrolized prodrug ixazomib citrate in aqueous solution or plasma, giving rise to the 

improved oral bioavailability compared to bortezomib and carfilzomib [107]. 

Ixazomib has a similar selectivity profile of the proteasome subunit to that of 

bortezomib, preferentially inhibiting β5 reversibly, and to a lesser extent, β1 catalytic 

subunit [107]. Chauhan et al. also reported that ixazomib inhibited the CT-L activity 

more strongly and displayed anticancer activity in multiple myeloma cells, even in 

bortezomib resistant multiple myeloma cells. Moreover, ixazomib exerted greater 

antitumor efficacy in xenograft mouse models of multiple myeloma, lymphoma, and 

solid cancers, supporting ixazomib’s superior anti-cancer activity compared to 

bortezomib [107, 108].  
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In clinical trials, the median time of progression free survival of patients with 

relapsed or refractory myeloma in combination therapy of ixazomib with 

dexamethasone and lenalidomide was significantly prolonged (20.6 months in 

ixazomib-treated group versus 14.7% in the control group) [109, 110]. Notably, 

ixazomib had the improved toxicity profile despite the same pharmacophore as 

bortezomib [111]. Taken together, FDA approval was granted to ixazomib in 2015 for 

use in combination with dexamethasone and lenalidomide in treating multiple 

myeloma in patients who have received at least one prior therapy [112].  

1.6 Resistance to Proteasome Inhibitors 

 As previously discussed, the FDA approvals of proteasome inhibitors, 

bortezomib, carfilzomib, and ixazomib in 2003, 2012, and 2015, respectively, have 

transformed treatment paradigm for patients with newly diagnosed and refractory 

multiple myeloma. However, multiple myeloma remains incurable with an expected 

median survival of 7-8 years [113, 114]. The biggest challenge of the use in treatment 

of multiple myeloma patients is drug resistance. Although the response rates of 

bortezomib and carfilzomib were increased up to ~70-90% when combined with 

other drugs including lenalidomide, all patients eventually develop resistance to 

therapy and have a dismal prognosis once resistance emerges [115]. In order to 

understand the mechanisms of proteasome inhibitor resistance in patients, extensive 

preclinical efforts have been undertaken. Although the exact resistance mechanisms 

of clinical proteasome inhibitors are still unknown, several preclinical studies 

reported the candidate resistant mechanisms to proteasome inhibitors. 

 

1.6.1 Bortezomib resistance 

Over the last decade many potential mechanisms, including proteasome-

dependent and proteasome-independent mechanisms, have been studied for 
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bortezomib resistance. Mainly reported mechanisms for bortezomib resistance were 

mutations in the PSMB5 gene and upregulation of constitutive catalytic subunits. 

Using the established bortezomib resistant lurkat cell line model developed by 

adapting cells to increasing concentration of bortezomib, Lu et el. and Oerlemans et 

al. reported the mechanisms responsible for bortezomib resistance in cancer cells. 

The bortezomib resistant- lurkat cell line or -THP-1 cell line containing 

overexpressed PSMB5 gene encoding the β5 catalytic subunit of the proteasome. 

Moreover, CT-L activity and the expression levels of β5 catalytic subunit were 

increased in these cell lines, supporting the β5 catalytic subunit is the key component 

for bortezomib resistance [116, 117]. Indeed, siRNA-mediated silencing of the PSMB5 

gene resulted in sensitization of bortezomib-resistant THP-1 cells to bortezomib. In 

such models, point mutations (Met45, Ala49Thr, and Cys52) in the PSMB5 gene 

affecting the proteasomal inhibitory activity of bortezomib were also identified. Since 

the location of those point mutations was highly conserved S1 binding pocket of β5, 

it was postulated that mutations in the PSMB5 gene interfered the binding of 

bortezomib to β5, thus affecting the cytotoxic effects of bortezomib in cells. Although 

these preclinical findings suggested the potential bortezomib-resistant mechanism in 

several cell line models, only one case study has identified PSMB5 gene mutations in 

a patient who had treated with bortezomib [118-120].  

Recent study has focused on the potential role of the unfolded protein response 

(URP) in resistance to proteasome inhibitors. The UPR is a stress response pathway 

and causes cell apoptosis when it is activated. One of main transcription factors 

involved in the UPR signaling, X-box binding protein 1 (Xbp-1), is known to be highly 

expressed in myelomas compared other cancer types, suggesting Xbp-1 is 

indispensable for multiple myeloma pathogenesis such as development of plasma 

cells [121, 122]. While it has been reported that proteasome inhibitors can both 

induce the UPR and inhibit Xbp-1, the roles of the UPR and Xbp-1 in proteasome 

inhibitor resistance was not explored in detail until early 2000’s [123]. In 2012 Ling 

et al. reported response of myeloma to bortezomib is correlated to the Xbp-1 and the 

study showed the downregulated Xbp-1 expression in bortezomib resistant multiple 



26 

 

myeloma cells, suggesting low Xbp-1 expression is associated with lower bortezomib 

sensitivity [124]. In 2016, Nikesitch also found the significant role of Xbp-1 in 

determination of the sensitivity to bortezomib in hematological cell lines and primary 

multiple myeloma samples [125]. In contrast to 2012 Ling et al.’s study, Leung-

Hagesteijn et al. found that Xbp-1 silenced mediated bortezomib resistance in 

multiple myeloma cell lines and identified two Xbp-1 mutations Xbp-1 L178I and 

P326R in bortezomib-resistant multiple myeloma.  Multiple myeloma cell lines with 

Xbp-1-silenced or Xbp-1 mutations with lower protein load and the UPR activation 

may exhibit a survival advantage against proteasome inhibition induced cytotoxicity 

[126]. In line with this, high Xbp-1 expression can be a prognostic marker of clinical 

outcome in multiple myeloma patients who treated with bortezomib [127]. While 

Xbp-1 may play a key role in the sensitivity to multiple myeloma to bortezomib, it is 

still unknown whether resistance of other cancer types to PIs are also related to the 

function of Xbp-1. 

 

1.6.2 Carfilzomib resistance 

The studies conducted to date have mainly focused on elucidating bortezomib 

resistant mechanism, and there are only a few have explored resistant mechanisms 

against carfilzomib in cancers. 

P-glycoprotein (P-gp), also termed as MDR1, is a transporter that extrudes a wide 

range of substrates out of the cells in an ATP-dependent manner and it is well 

documented that it can mediate cancer resistance to other anti-myeloma agents such 

as doxorubicin, paclitaxel, and vincristine [128-131]. Verbrugge et al. found the 

several drug efflux transporters have involved in the sensitivities to proteasome 

inhibitors such as bortezomib, carfilzomib, ONX 0912, ONX 0914 in carfilzomib/ONX 

0914 cross-resistant cancer cells [132]. In this study, overexpression of P-gp was 

observed in carfilzomib resistant cells compared to in the its parental cells. Moreover, 

the use of reversin 121, a P-gp inhibitor, restored the sensitivity to proteasome 

inhibitors in both CEM/VLB cells and peripheral blood mononuclear cells, suggesting 
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P-gp plays a significant portion of resistance mechanism in cancers against 

epoxyketone proteasome inhibitors. Consistent with these findings, our group also 

found that the expression levels of P-gp was upregulated in carfilzomib resistant H23 

lung and DLD-1 colon cancer cells and P-gp inhibition by verapamil altered 

carfilzomib sensitivity to near that of the parental cell lines [133]. More interestingly, 

a 2016 publication showed the induced gene expression of P-gp in primary cells 

derived from multiple myeloma patients who did not respond to carfilzomib therapy 

[134]. Using multiple myeloma cells isolated from patients during carilzomib therapy, 

Besse et al. also showed that ABCB1 gene expression was increased and gene deletion 

resulted in sensitization of carfilzomib resistant AMO cells to carfilzomib [135]. Since 

only these two studies showed the clinical evidence of P-gp mediated resistance to 

proteasome inhibitors, further validations of this mechanism are important to 

confirm their relevance in the clinic and to develop the therapeutic strategies 

overcoming proteasome inhibitors resistance in cancers. 

 

1.7 Alzheimer’s Disease  

Alzheimer’s disease (AD) is the most common form of dementia in the elderly, 

accounting for around 60% of all dementia cases [136]. An estimated 5.7 million 

Americans of all ages are living with AD in 2018, and the proportion of elderly people 

in the population has been increasing steadily, thus the burden of the disease is 

expected to become greater over years. AD is a neurodegenerative disorder with a 

mean duration of around 8.5 years between clinical symptoms and death.  

Alzheimer’s disease was first described by Alois Alzheimer. In 1906, a 

psychiatrist and neuropathologist Alois Alzheimer first reported “A severe disease 

process of the cerebral cortex” to the 37th Meeting of South-West German 

Psychiatrists in Tubingen, Germany. At the meeting, Alzheimer described an unusual 

case, a 50-year-old woman Auguste D. with memory impairment, psychosocial 

incompetence and disorientation until her death 5 years later. While the unfamiliar 



28 

 

notion that a “mental” disorder like presenile dementia could be due to “physical” 

aberrations was not easily accepted at the time, nevertheless, the disorder would be 

named in 1910 after Alois Alzheimer by his mentor, Emil Kraepelin. Alois Alzheimer 

also presented the observation of the neuropathological lesions, neurofibrillary 

tangles in the brain of her at autopsy in 1911 [137, 138]. Until the late 1960’s, 

Alzheimer’s disease itself was not considered as a disease separated from dementia. 

Kay et al. identified AD was different from normal aging symptoms in 1964 and it was 

reported there was a relationship between cognitive dysfunction and the hallmarks 

of the disease such as neurofibrillary tangles and neuropathological lesions in a 1968 

publication by Blessed et al. [139, 140]. In 1981, Heston et al. first reported that 

relatives of 125 subjects who had autopsy-confirmed AD exhibited a significant 

excess of dementing illness consistent with genetic transmission [141]. Later study 

also identified mutations involved in hereditary forms of AD in 1996 [142]. These 

findings supported AD may be no longer considered as aging but should be diagnosed 

differently from other forms of dementia.  

According to most sources, AD is defined to consist of irreversible memory 

loss, and deterioration of language, judgement, confusion with time or place, and 

trouble understanding visual images, progressing over 10 to 15 years. Brain regions, 

particularly the neocortex and hippocampus, are associated with higher mental 

functions, are most affected by the characteristic pathology of Alzheimer’s disease. 

Pathologically, AD is characterized by the accumulation of extracellular amyloid 

plaques in senile plaques made by the amyloid-beta protein and intracellular 

formation of neurofibrillary tangles which are aggregates of hyperphosphorylated 

tau protein, and the loss of neuronal synapses and pyramidal neurons. These changes 

develop the typical symptomology of Alzheimer’s disease [143, 144].  

Amyloid precursor protein (APP) is cleaved by three types of proteases, α-, β- 

and γ-secretases. Amyloid-beta (Aβ) is generated when the APP is cleaved by β 

secretase and then by γ secretase complex. β secretase cleaves APP at the bond 

between Met671 and Asp672 (β-site) and γ secretase cleaves at the site between 711-

713 amino acid, resulting in Aβ1-40 or Aβ1-42. Aβ1-42 is mainly found in the amyloid 
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plaques, a hallmark of AD, while Aβ1-40 also found in the plaque is predominantly 

involved in the brain vessels which is known as cerebral amyloid angiopathy. Since α 

secretase cleaves within the Aβ sequence of APP, cleavage of APP by combination of  

α secretase and γ secretase does not generate Aβ [145].  

Neurofibrillary tangles (NFTs), are aggregates of tau. Tau protein found in 

cytosol, axons, and neurons is the member of microtubule-associated proteins family. 

Blennow et al. suggested tau proteins might be synthesized in glial cells, mostly in 

pathological situations [146]. Microtubule-associated proteins regulates the stability 

of axon microtubules by promoting polymerization and binding with tubulin, 

resulting in suppression of their dephosphorylation. Phosphorylation of tau can occur 

at 30 different sites and hyper-phosphorylation of tau causes self-assemble into 

tangles and then accumulation of tau aggregates, thereby, leading the loss of axonal 

or dendritic transport in diseases [147-149]. 

 

1.8 Causal Theories of Alzheimer’s Disease 

Over the past two decades, a considerable research effort has been directed 

towards discovering the cause of Alzheimer's disease. To develop safe and effective 

pharmacological treatments, it is important to acknowledge that multiple causal 

theories for AD have been proposed. A few of these hypotheses are discussed briefly 

in this section. 

 

1.8.1 Cholinergic theory 

Martorana et al. reported a theory pertaining to the cause of AD, cholinergic 

hypothesis based on data showing AD brains expressed lower levels of a 

neurotransmitter acetylcholine in the brain compared to non-demented elderly [150].  
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Extensive efforts in discovering and characterizing the most important 

neurotransmitters and their receptors in the brain underlay specific nervous 

connections with brain functions, giving rise to establish the idea that altered function 

of neurotransmitter systems was associated with neuropathology. In a 1976 

publication, a specific cholinergic deficit was consistently identified from a forebrain 

to hippocampus and the cortex from AD patients [151]. Moreover, the activity of 

choline acetyltransferase, the enzyme for the synthesis of acetylcholine, was reduced 

in pathological samples from the hippocampus and cortex of the patients with AD. 

Based on these significant observations, Bartus et al. first stated the cholinergic 

hypothesis of age-related cognitive dysfunctions and dementia [152]. In addition, the 

1986 Nobel prize was awarded to Rita Levi Montalcini and Stanley Cohen for the 

discovery of nerve growth factor, leading the interest of neuronal survival factors in 

Alzeheimer’s disease. Taken all together, several drugs targeting cholinergic 

transmission were introduced for treatment of AD patients [153]. Four 

cholinesterase inhibitors, tacrine, donepezil, rivastigmine and galantamine, have 

received approval by FDA and have been widely used for years in many countries, in 

particular for patients who were diagnosed with mild and intermediate forms of AD. 

Reduction of cholinesterase resulted in retaining acetylcholine in the brain. Though 

the therapeutic options available on the market target the cholinergic system, the 

strategies have been failed to delay disease progression.  

 

1.8.2 Amyloid theory 

Amyloid hypothesis is the most heavily investigated theory for the cause of AD 

over 25 years [154-156]. The importance of amyloid was not the prevailed idea in a 

field of AD and Alzheimer’s researchers were considering the cholinergic hypothesis 

in the 1980s and assumed that a decline in the neurotransmitter acetylcholine is a 

cause of the disease at that time. Dennis Selkoe who is now a major proponent of 

amyloid hypothesis was not interested in acetylcholine at the time. After he met 

George Glenner who initially identified and biochemically characterized Aβ, Selkoe 
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moved his research to amyloid field from studying tau protein and built multiple 

findings from genetic, molecular, biochemical, and neuropathological studies of 

amyloid. Kang et al. reported the discovery of genetic mutations of APP in AD [157]. 

These mutations in APP/Presenilin are closely linked to the Aβ production process, 

providing a rational for the idea that Aβ production and Aβ amyloid fibril formation 

represent the central pathogenic cause of AD. In 1992, it was hypothesized by Seiko 

et al. that Aβ aggregation was the initiating factor in AD progression since the genetic 

links to AD all led to an increase in Aβ protein rather than tangles [158]. 

While Aβs excised from APP by β- and γ-secretase are released outside the cell and 

then are degraded in normal subject, degradation of Aβ is decreased and Aβ peptides 

are accumulated in the aged subject. In the brain of normal subject, the concentration 

of the Aβ peptide is regulated by following mechanisms: the Aβ peptide generation 

from APP, influx into the brain across the blood-brain barrier (BBB), clearance from 

the brain, and enzymatic degradation within brain [159-161]. Thereby, impairment 

of these regulatory mechanisms could result in the accumulation and deposition of 

excessive amounts of the Aβ peptide in the brain of AD patients. This amyloid 

hypothesis states that an increase in Aβ aggregation either from decreased clearance 

or increased production, leads to microglial and astrocytic activation, altered 

neuronal ionic homeostasis, altered kinase and phosphatase activity which increases 

phosphorylation of tau leading to tangle formation, leading to neuronal cell death and 

neurodegeneration. Thus, drugs that remove the amyloid should slow the 

progression of AD. Yet all drugs targeting amyloid, including solanezumab, 

bapineuzumab, and gantenerumab, have failed to reduce cognitive dysfunctions in 

phase III clinical trials and another antibody, ponezumab also failed after phase II 

[162-165]. These results have led scientists to become increasingly skeptical of the 

amyloid hypothesis and explore other potential pathogeneses of AD. 

 

 



32 

 

1.8.3 Tau theory 

As discussed before, the discovery of neurofibrillary tangles (NFTs) by Alois 

Alzheimer in the brains of patients with the neurodegenerative disorder named after 

him (Alzeimer’s disease) provided the basis for many studies to elucidate the 

molecular, cellular and genetic features of this disease more than a century ago. 

However, the discovery that the protein components of NFTs and the paired helical 

filaments (PHFs) were hyperphosphorylated forms of tau was achieved only during 

the 1980s. In 1986, Kosik et al. discovered that the NFTs in the brains of AD patients 

are composed of phosphorylated tau proteins [166].  Microtubule-Associated Protein 

Tau (MAPT) stabilizes microtubules and can undergo post-translational 

modifications such as phosphorylation. When tau is hyperphosphorylated, it 

dissociates from microtubules and aggregates into paired helical filaments (PHFs) 

and NFTs. The tau hypothesis speculates that tau tangle pathology precedes Aβ 

plaque formation and that tau phosphorylation and aggregation is the primary cause 

of neurodegeneration in AD. Tau phosphorylation reduces its ability to promote 

assembly of microtubule, giving rise to neurodegeneration through synaptic 

disruptions and neuronal loss [167, 168]. Furthermore, the NFT can cause neuronal 

impairment and death.  

While the amyloid hypothesis suggests that tau aggregation occurs 

downstream of Aβ aggregation, tau tangles can be detected in the brains of patients 

with very mild dementia and no Aβ pathology [169]. Tau pathology also correlates 

more closely with AD progression and severity than Aβ plaque load does [167, 170]. 

Tau hypothesis-based strategies have shown some promising results and there are 

currently seven anti-tau therapies in phase II trials [171]. However, anti-tau therapies 

have also failed in phase III clinical trials. Tau phosphorylation was facilitated by a 

protein kinase, glycogen synthase kinase 3 beta (GSK-3β), which is an attractive 

target for anti-tau therapies. GSK-3β inhibitors are arguably in the most advanced 

stages of clinical development for AD. Among the various drugs that are currently 

being investigated, tideglusib, an irreversible inhibitor of GSK3-β, has recently 
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completed phase II trials yet did not show significant clinical improvement in a phase 

II trial [172]. 

 

 

1.8.4 Neuroinflammation theory 

Since the late 1980s, several studies have shown that the chronic inflammation, 

seen in many diseases of the elderly, was found in the brain of AD patients and may 

even to initiate the recognized pathology. In 1990, McGeer et al. reported that 

exposure to anti-inflammatory drugs, known as non-steroidal anti-inflammatory 

drugs (NSAIDs), lowered the risk of AD. In addition, it was reported that NSAID 

delayed the progress of cognitive dysfunctions in 1995, suggesting that inflammation 

plays some roles in the disease and targeting inflammation may be used for treatment 

of degenerative brain disorder [173, 174]. Furthermore, new hypothesis suggesting 

amyloid peptide is involved in immunity also supports the contribution of 

inflammation in AD [175, 176]. Additionally, a common risk factor for the disease is 

brain injury, suggesting that chronic inflammation could initiate or at least partake in 

the course of AD [177].  

It has long been thought that the brain was immunologically privileged with 

no resident or infiltrating immune cells; however, it is now considered that the cells 

of the brain are contributing to neuroinflammatory responses. The glial cells of the 

brain (astrocytes, microglia, oligodendrocytes, and pericytes) are involved an 

inflammatory response, but the main regulator of inflammation in the brain is the 

microglia cell [178]. Microglial cells make up ~12% of brain cells and are generally in 

a resting state (termed inactive or less active state). It is now thought that yolk-sac 

derived fetal macrophages are the precursors for microglia while originally thought 

to be derived from the macrophage cell line. Tumor necrosis factor alpha (TNF-α) or 

interferon gamma (IFN-γ) stimulates macrophages to release several pro-

inflammatory cytokines and to produce reactive oxygen species [179-181].  This 

proinflammatory state, has high microbicidal activity and is an important defense 
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mechanism for the body. However, it also can cause damage to the tissues and it has 

been implicated in the development of autoimmune disorders. 

While inflammation was typically considered a downstream event to the 

amyloid hypothesis, Aβ causes microglia activation, neuroinflammation may worsen 

the course of disease. When fully activated, microglial cells produce pro-

inflammatory cytokines including TNF-α, interleukin-6 (1L-6), and interleukin-1β 

(IL-1β) [182]. These pro-inflammatory cytokines and activated complement factors 

has led to the idea that neuroinflammation is involved in the pathology of Alzheimer’s 

disease. Indeed, the activated microglial cells were increased in AD progression, 

suggesting that Aβ deposition stimulates microglial activation. Several studies have 

shown that microglia can surrounds Aβ plaques and can phagocytose Aβ [183-185]. 

Microglia can be stimulated by a variety of substances to yield an inflammatory 

phenotype in the brain. Induction of a proinflammatory phenotype by LPS or TNF-α 

cause Aβ clearance [186, 187]. On the other hand, anti-inflammatory cytokines 

induction exacerbated Aβ deposition [188]. In a 2015 publication, a long-term 

induction of anti-inflammatory cytokine IL-10 showed a significant increase in Aβ 

deposition and led to cognitive behavior in APP transgenic mice model [189]. Thus, 

we postulate high levels of these markers can represent progression of AD. Several 

clinical anti-inflammatory drugs targeting COX or TNF-α have been investigated for 

their effects on AD via population-based studies or randomized controlled clinical 

trials, yet have yielded no clinical AD therapies so far [190]. On the other hand, several 

compounds that suppress neuroinflammatory responses have been identified from 

screening campaigns but not yet translated into effective AD drugs [191, 192]. 
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1.9 Treatment of Alzheimer’s Disease 

To date, the Food and Drug Administration (FDA) and the European Medicines 

Agency (EMA) have approved only medications for alleviating symptoms for AD 

patients.  

These medications include acetylcholinesterase (AChE) inhibitors such as donepezil, 

galantamine, rivastigmine, and a NMDA receptor antagonist, memantine. AChE 

inhibitors are used to induce the level of acetylcholine at synapses restraining the loss 

of neurotransmission found in AD. On the other hand, a NMDA receptor antagonist 

regulates glutamate-induced toxicity. 

Donepezil hydrochloride (brand name Aricept) approved in 1996 for 

treatment of all stages of AD by preventing the breakdown of acetylcholine in the 

brain is a highly selective and reversible antagonist for AChE. In a 1998 publication, 

Rogers et al. reported the effect of donepezil hydrochloride on 468 participants who 

had mild to moderate AD. In this study, 32% of the 5mg treatment group and 38% of 

the 10 mg treatment group showed clinical improvement on various psychiatric 

scales, indicating donepezil is effective in cognition and global function decline in AD 

[193]. So far, donepezil is the only AchE inhibitor approved for treatment of severe 

AD.  

Rivastigmine tartrate (brand name Exelon) approved in 2000 is less 

frequently used than other AChE inhibitors for treatment of mild to moderate AD 

patients. Lanctot et al reported the effect of rivastigmine at different dosages and 

various treatment intervals. The patients administered at high dose (6-12mg/day) 

showed dramatic improvement in cognitive function at all intervals (12, 18, and 26 

weeks), proving treatment of rivastigmine at 6-12mg daily over a long time periods 

may be an effective strategy [194].  

Galantamine hydrobromide (brand name Razadyne) approved in 2001 for 

treatment of mild to moderate AD by inhibiting the hydrolysis and increasing the 

concentration of acetylcholine. Galantamine is a specific, competitive, and reversible 

AChE inhibitor. As described in a 2006 review article by Loy and Schneider et al., 
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treatment of galantamine (18-32 mg/day) showed significant improvement on 

cognitive symptoms at 3 months and 6 months intervals [195]. 

Memantine (brand name Namenda) was approved by FDA in 2003 for 

treatment of moderate to severe AD [196]. Memantine is a noncompetitive NMDA 

receptor antagonist, blocking glutamatergic receptors and regulates the action of 

glutamate. Under physiological conditions, magnesium ions are capable of blocking 

NMDA receptor which is a glutamate receptor and ion channel protein found in nerve 

cells. Glutamate signaling enhances depolarization of the post-synaptic membrane 

and unblock NMDA allowing calcium ions to flow into the postsynaptic neuron. In AD, 

however, constantly stimulated glutamate and over-activated NMDA receptor could 

be observed, causing cognitive impairment. Thus, memantine is considered as a 

neuroprotective agent by preventing excess glutamate-related excitotoxicity [197]. In 

a 2003 publication, Reisberg et al. showed memantine regulated NMDA receptors, 

leading to alleviation of AD symptoms. Among 345 elderly participants with 

moderate to severe AD, 29% of the memantine treated group showed the 

improvement of cognitive dysfunctions [198]. Although memantine has shown to 

positive results to reduce the rate of cognitive decline, it is not also capable of 

preventing the neuronal damage detected in AD.  

1.10 Efforts to Develop Alzheimer’s Disease Therapeutics 

As we discussed previously, evidence supporting the amyloid theory led to 

development of AD therapeutics either disrupting aggregation, or promoting removal 

of Aβ. Based on the amyloid theory, Inhibitors targeting Aβ aggregation have been 

developed, including glycosaminoglycan 3-amino-1-propaneosulfonic acid (3APS), 

colostrinin, scyllo-inositol and Zinc/Copper chelators. Among these compounds, only 

3APS designed to interfere with endogenous glycosaminoglycans, which were shown 

to promote aggregation of Aβ, has reached to phase III clinical trials, however, results 

of the clinical trials were disappointing [199]. 
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Immunotherapy has been one of the most attractive approaches for AD drug 

development. It has been reported that both vaccination and monoclonal antibodies 

approaches have been developed to be successful. At the first time, using an active 

vaccine (AN1792) with Aβ1-42 showed the promising results only in preclinical studies, 

but not in clinical trials with side effect such as encephalitis [200]. Since encephalitis 

was found in one patient treated with AN1792 in a Phase I clinical trial who died 

approximately one year after her last injection, vaccines have been developed to 

improve the safety issue. However, the various types of antibody responses were 

found in elderly and it led to further investigation of passive immunization using 

monoclonal antibodies.  

Bapineuzumab (Janssen/Pfizer) and Solanezumab (Eli Lilly) are monoclonal 

antibodies designed to increase the clearance of Aβ and have been heavily 

investigated. Bapineuzumab is a humanized, N-terminal specific anti-Aβ monoclonal 

antibody, binding to neurotoxic amyloid proteins in the brain. Several preclinical 

studies have shown that passive immunotherapy with monoclonal antibodies led to 

a significant clearance of Aβ protein levels in the brain and improved the memory loss 

in transgenic mouse models with excessive Aβ proteins [201-205]. Additionally, 

phase II clinical trials have shown that bapineuzumab can reduce deposition of 

amyloid proteins and the concentration of phosphorylated tau proteins in the 

cerebrospinal fluid [206, 207]. Based on ongoing Phase II study, Elan/Wyeth 

announced the start of the Phase III clinical trials for bapineuzumab on May 2007. 

However, bapineuzumab was failed in phase III clinical trials [208]. Solanezumab 

developed by Lilly, on the other hand, is a monoclonal antibody that recognizes an 

epitope in the core of the amyloid peptide, binding to soluble Aβ and with low affinity 

for the fibrillar Aβ form. Solanezumab has also been tested in two phase III clinical 

trials (Expedition 1 and 2) in a population of patients with mild to moderate AD 

similar to that in trials with bapineuzumab. Unfortunately, it was recently found that 

solanezumab also could not meet its clinical endpoints for efficacy in patients with 

mild AD [209]. The human monoclonal antibody Aducanumab (Biogen) is another 

attractive passive immunization strategy for treatment of AD and has been fast-



38 

 

tracked to phase III clinical trials. Aducanumab is currently being evaluated in two 

global Phase 3 studies (ENGAGE and EMERGE) designed to evaluate its safety and 

efficacy in slowing cognitive impairment in people with very early AD or mild AD. This 

study is set to end in April 2022. 

 Considerable efforts to prevent Aβ production have focused on inhibiting β- 

secretase, which are responsible for production of Αβ since the proteolytic processing 

of APP by β-secretase (beta-site APP cleaving enzyme 1, BACE1) is the rate-limiting 

step in the production of Aβ. Thus, BACE1 is thought to be a major therapeutic target 

and BACE1 inhibitors have the potential to be disease-modifying drugs for AD 

treatment. Due to the location of BACE1 in the brain BACE1 inhibitors need to cross 

the BBB to access the target and it is quite challenging [210]. Furthermore, BACE1 

displays the large catalytic pocket, suggesting BACE1 inhibitor needs to be large 

enough to interact with the active site though the inhibitors also should be small 

enough to have drug-like physiochemical properties [211]. Vassar also reported that 

several BACE1 inhibitors during the clinical trials showed off-target toxicity, 

indicating the inhibitors are also required to be selective over other aspartic 

proteases to prevent toxic effects by cross inhibition. With efforts to search for 

effective and selective BACE1 inhibitors, some compounds have shown promising 

results in preclinical studies and six drugs, JNJ-54861911, CNP520, LY3202626, 

elenbecestat, lanabecestat, and verubecestat, are currently being evaluated in clinical 

trials in patients with mild to moderate AD [212, 213]. Especially, verubecestat was 

the first BACE1 inhibitor to reach to phase III clinical trials. However, Merck has 

discontinued its pivotal trial in patients with mild to moderate AD due to low efficacy 

in cognitive decline reduction [214]. Consequently, these disappointing results 

remain questions regarding the potential use of BACE1 inhibitors as AD drugs. 

Nevertheless, recent results from an animal model to mimic BACE1 inhibition in 

patients with AD by deletion of BACE1 support that BACE1 inhibition can completely 

reduce amyloid pathology and inhibiting BACE1 may have a potential for treatment 

of AD [215].  
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The large body of results showing tau protein aggregates accumulated in the 

brain of AD patients highly led to investigation of therapeutic strategy targeting tau 

to treat AD patients. Preclinical studies from the transgenic mouse models using 

various anti-tau antibodies have shown that antibodies against tau prevented 

extracellular trans-synaptic transmission of misfolded tau between cells. Following 

toxicology studies, the compound C2N-8E12, now known as ABBV-8E12 (AbbVie & 

C2N Diagnostics), was reached to initiation of clinical trials in 2015. In a phase I 

clinical study safety, tolerability and pharmacokinetics of ABBV-BE12 were tested on 

32 patients. As a result, ABBV-BE12 was found to be safe and tolerable when single 

injected into the blood [216-218]. Positive results from a phase I trial led to phase II 

clinical trials of ABBV-BE12 and the study is set to end in May 2019. Another anti-tau 

monoclonal antibody BIIB029 (Biogen) was also moved to phase II clinical trials with 

the patients with early AD and the estimated study completion date is July 2021 [219, 

220]. 

Azeliragon (vTv Therapeutics Inc), also known as TTP488, is an orally 

bioavailable small molecule that inhibits the receptor for advanced glycation end 

products (RAGE) that is thought to be involved in the development of Alzheimer’s 

disease. RAGE found in the brain and the periphery is an immunoglobulin family 

member and is expressed in endothelial cells and microglia cells and is upregulated 

in AD [221-224]. In a 2012 publication, Li et al. suggested that RAGE may contribute 

to AD pathology by promoting influx of peripheral Aβ into brain and regulating Aβ 

induced oxidative stress, mediating AGE induced hyperphosphorylation of tau [225]. 

RAGE is also thought to interfere with inflammation and transfer Aβ into the brain. A 

number of preclinical studies and positive results of phase I/II clinical trials led to 

phase III clinical trials of azeliragon to evaluate the efficacy and safety of this 

compound in patients with mild Alzheimer's disease. The company vTv Therapeutics, 

conducting a phase III trials of the drug in mild AD, announced preliminary results in 

early 2018. Unfortunately, the study was terminated due to a lack of efficacy at the 5 

mg azeliragon dose [226].  
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Lumateperone (Intra-Cellular Therapies Inc), known as ITI-007, is a first-in-

class molecule designed to selectively and simultaneously modulate certain neuronal 

pathways. This molecule acts on serotonin, dopamine, and glutamate receptors. It is 

an investigational therapy being developed to treat agitation in dementia, including 

Alzheimer's disease and mental illness as well as schizophrenia. In 2014, Intra-

Cellular announced the phase I/II clinical trials results that lumateperone was safe 

and well-tolerated and showed improved cognitive function and thereby the phase 

III clinical trials were initiated in 2016 to evaluate the efficacy and safety of 

lumateperone in about 360 people diagnosed with probable Alzheimer’s disease 

[227,228]. Lumateperone, however, was not likely to meet its primary endpoint upon 

completion and therefore the study was stopped for futility in Dec 2018 [229]. 

 

1.11 Proteasome in Alzheimer’s Disease 

While years of debate have not provided a conclusive answer to the question of 

events related to the proteasome causing to AD pathology, there is growing evidence 

showing changes in the UPS have been associated with AD [230-232]. In the early 

phase of AD, proteasome activity was decreased, and ubiquitin accumulation found 

in plaques and tangles was also associated in late AD [231, 233-236]. Interestingly, it 

was reported alterations in the UPS affect the degradation of Aβ in neurons and 

astrocytes. In addition, Aβ oligomers downregulated in vitro proteasome activity and 

lower proteasome activity was also observed in the several brain areas of AD patients 

[237-239]. However, these studies were limited to assess the proteasome activity in 

whole brain homogenates or in cell line models, not examining activity and the 

expression levels of immunoproteasome in glial cells. While the role of 

immunoproteasome in neuroinflammation is not clearly understood, researchers 

also observed whether expression and activity of immunoproteasome are involved in 

microglial activation in AD patients and in a mouse model of brain injury [240-243]. 
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In a 2006 publication, Mishto reported that β1i expression was elevated with age, and 

in the brain of AD patients [244]. In line with this, Orre et al. showed that activities of 

immunoproteasome subunits were increased along with promoted plaque in AD mice 

and patients, suggesting the tight correlation between upregulation of 

immunoproteasome and reactive astrocytes and microglial cells derived from 

patients with AD [240]. Importantly, most recent study has shown that LMP7/β5i 

knockout altered microglial cytokine production profiles and improved cognitive 

dysfunctions in a mouse model of Aβ deposition, indicating a potential role of 

immunoproteasome in Aβ-induced neuroinflammation [51]. While it becomes clear 

that immunoproteasome activity is enhanced in microglia of AD, suggesting the 

involvement of immunoproteasome in neuroinflammatory responses and 

therapeutic potential for AD treatment, it is still unknown whether 

immunoproteasome selective inhibitors display pharmacological inhibition on AD 

pathology.  
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CHAPTER 2. HYPOTHESIS AND SPECIFIC AIMS 

 

The overall goal of this research is to develop novel, effective proteasome 

inhibitors for treating multiple myeloma patients who do not respond to PI therapies 

and Alzheimer’s disease patients.  

In order to design new and effective therapeutic strategies to bypass resistance, 

it is important to better understand the mechanisms of proteasome inhibitors 

resistance. Recently, several studies have shown that UPS-targeting inhibitors retain 

anticancer activity in Btz-resistant MM cells, indicating that the UPS remains essential 

in these cells [245, 246]. Furthermore, PIs other than Btz remained cytotoxic to Btz-

resistant MM cells [247], suggesting that alternative PIs can overcome Btz resistance. 

However, information on the ability of UPS-targeting inhibitors to overcome Cfz 

resistance is currently limited. Additionally, it is currently unclear whether the 

proteasome is still a valid target in Cfz-resistant cancer cells. To date, investigations 

of Cfz resistance have largely focused on acquired resistance due to the Cfz-adapted 

cancer cell line models and the availability of clinical samples derived from patients 

who have developed resistance after prolonged Cfz therapy. On the other hand, 

mechanistic investigations of de novo Cfz resistance have been scarce, due to the lack 

of appropriate cell line models and patient samples. We hypothesized that 

proteasome function remains vital to the survival of de novo Cfz-resistant cancer cells, 

and that targeting the proteasome using alternative proteasome inhibitors is a good 

strategy to overcome Cfz resistance.  

As described previously, the immunoproteasome known to be involved in 

regulation of inflammatory immune responses, is currently investigated as a potential 

therapeutic target for autoimmune diseases [51, 248]. Likewise, the 

immunoproteasome is also reported to be upregulated in in reactive astrocytes and 

microglia isolated from AD patients and AD mouse models [240, 241, 244, 249, 250]. 

However, the physiological role of immunoproteasome in these AD brains, is still 
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completely unknown. Recent study showed LMP7 knockout altered microglial 

cytokine production profiles and improved cognitive deficits in a mouse model of Aβ 

deposition, indicating a potential role of immunoproteasome in Aβ-induced 

neuroinflammation [51]. Interestingly, moderate up-regulation of LMP2 expression 

in AD patients was also reported. Despite these data suggesting the involvement of 

immunoproteasome in neuroinflammatory responses and therapeutic potential for 

AD treatment, the pharmacological inhibition of LMP2 has never been tested for the 

impact on AD pathology. With this in mind, we also hypothesize whether LMP2 

inhibitors could offer a novel strategy in AD progression via regulation of 

inflammation.  Our overall study had the following aims: 

Aim 1. Determine whether alterations in proteasome catalytic subunit 

composition are causally linked with changes in the sensitivity of cancer cells 

to Cfz. I initially identified the first de novo Cfz-resistant cancer cell line model. 

Proteasome activity and immunoblotting analyses were used to detect changes in 

proteasome catalytic subunits. I altered proteasome catalytic subunit compositions 

in cancer cell lines using genetic (overexpression & knockdown) and biochemical 

(INF-γ) tools and investigated whether those alterations led to changes in 

proteasome inhibitor sensitivity in Cfz-resistant cancer cells. 

Aim 2.  Optimize small molecules that inhibit the growth of Cfz-resistant 

cancer cells. I performed cell-based screens of in-house proteasome inhibitor 

libraries containing proteasome catalytic subunit-specific inhibitors to identify 

compounds that are effective against Cfz-resistant cancer cells. Using selected lead 

compounds, I tested their efficacy against primary multiple myeloma cells derived 

from patients who are proteasome inhibitor-resistant. To improve the potency of the 

lead compound, we utilized a previously reported docking model of the compound to 

its targets. Traditional medicinal chemistry was performed to design and synthesize 

analogues of the most promising hit compound. Compound analogues were assayed 

for in vitro proteasome inhibitory activity and later for their cytotoxic activity in Cfz-

resistant cancer cells. 
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Aim 3. Investigate whether LMP2 inhibitor has anti-AD activity via 

regulation of inflammation: We assessed animal behavior tests using LPS-induced 

inflammatory and transgenic AD mouse models to examine the effects of proteasome 

inhibitors on cognitive impairments.  ELISA assay, Thioflavin staining of amyloid-beta, 

and HEK293-tau-BiFC cells were utilized to investigate the effect of the proteasome 

inhibitors on amyloid-beta or tau aggregation, respectively. Membrane cytokine 

array and ELISA assay were used to evaluate the effect of the compound on pro-

inflammatory cytokines in microglial cells.  
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CHAPTER 3. H727 CELLS ARE INTRINSICALLY RESISTANT TO THE 

PROTEASOME INHIBITOR CARFILZOMIB, YET REMAIN DEPENDENT ON THE 

PROTEASOME FOR CELL SURVIVAL AND GROWTH  

The work in this chapter was published in Scientific Reports 2019, 9, 4089 [333].  

3.1 Introduction 

The proteasome controls numerous cellular processes via the regulated 

degradation of proteins. Despite its essential functions, it is now understood that 

agents which inhibit the proteasome have therapeutic selectivity for cancer cells as 

compared to normal cells. This selectivity likely occurs because rapidly proliferating 

cells have greater protein degradation requirements and due to the proteasome’s role 

in regulating a variety of critical signaling pathways. In general, 20S proteasomes 

were thought to exist in two main types, the constitutive proteasome (cP) and the 

immunoproteasome (iP). More recently, various subtypes of proteasomes containing 

a non-standard mixture of catalytic subunits have been identified in cancer cell lines. 

These so-called intermediate proteasomes differ from both constitutive and 

immunoproteasomes, which contain mixed assortments of cP and iP catalytic 

subunits, such as β1i-β2-β5i [251-255]. It was further reported that these 

intermediate proteasomes may confer differing sensitivities to proteasome inhibitors 

(PIs) as compared to cPs or iPs [253, 254, 256]. However, whether intermediate 

proteasome subtypes contribute to the resistance of cancer cells to proteasome 

inhibitors is currently unknown and the clinical implications of intermediate 

proteasomes have yet to be defined.  

The clinical and commercial successes of bortezomib (Btz, Velcade®), 

carfilzomib (Cfz, Kyprolis®), and ixazomib (Ixz, Ninlaro®) have validated the 

proteasome as a valuable target in the treatment of cancer. While the first-in-class 
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proteasome inhibitor (PI) drug Btz and the first oral PI Ixz utilize boronic acid 

pharmacophores, the second-generation PI Cfz harbors an epoxyketone that 

irreversibly inactivates the proteasome with high mechanistic selectivity [257, 258]. 

This selectivity affords Cfz a reduction in off-target interactions yielding an improved 

safety profile over Btz, most notably a reduced incidence of severe peripheral 

neuropathy[259]. With positive results from recent phase III clinical trials [260-265], 

Cfz is now firmly placed as a mainstay of refractory MM therapy. Nevertheless, a 

considerable portion of MM patients are refractory to Cfz or develop resistance after 

prolonged Cfz treatment. A meta-analysis of 14 clinical trials found that 44% of 

patients could not achieve a minimal response or better [266]. As a monotherapy in 

patients with relapsed MM, for example, the response rates for Cfz were in the ranges 

of 25-40% [267]. When used in combination with other drugs (often with 

dexamethasone and/or lenalidomide), response rates substantially improved, but a 

significant subset of non-responders persisted [105,106, 265, 268, 269]. Even for 

those who initially respond to Cfz-based therapy, disease eventually relapses with a 

median progression-free-survival (PFS) of ~17-26 months [105, 106]. To date, 

extensive efforts have been yielding the development of new therapeutics for these 

Cfz resistant patients. However, clinical effects of the new therapeutics are 

disappointing likely due to a lack of understanding of the biological mechanisms 

underlying Cfz resistance.  

Mechanistic investigations of Cfz resistance have so far utilized cancer cell lines 

adapted to gradually increasing concentrations of Cfz, revealing that the 

overexpression of P-glycoprotein (P-gp) and mutations or 

amplification/overexpression of proteasome catalytic subunits are largely 

responsible for acquired Cfz resistance observed in established cell lines [132, 133]. 

To date, cell-based models of de novo Cfz resistance are unavailable. Here, we report 

for the first time that H727 cells (derived from a human bronchial carcinoid tumor) 

are inherently resistant to Cfz, yet remain dependent on the proteasome for their 

survival and growth. Our current results suggest that de novo Cfz resistance observed 
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in H727 cells may be mediated at the 20S proteasome level, providing previously 

unknown insights into the mechanisms of de novo PI resistance.      

 

3.2 Material and Methods 

3.2.1  Cell lines and chemicals 

Hep3B, Huh7, LCSC, HepG2, and PLC/PRF/5 hepatic cancer cells were a kind gift of 

Dr. Roberto Gedaly (College of Medicine, University of Kentucky). MDA-MB-231, 

HCC1143, and HCC1937 breast cancer cells were purchased from the Korean Cell Line 

Bank (Seoul, Korea).  All other established cell lines were obtained from the American 

Type Culture Collection (ATCC, Rockville, MD). All cells were cultured according to 

the manufacturer’s protocol in 5% CO2 in medium. Cultured cell lines were tested for 

Mycoplasma contamination routinely every 6 months. Specifically, H23 and H727 

cells were tested three times in the course of performing the experiments described 

within this dissertation work. Inhibitors of UPS pathways used in this study were 

purchased from commercial vendors: carfilzomib (LC Laboratories, Woburn, MA), 

bortezomib (ChemieTek, Indianapolis, IN), MG-132 (EMD Millipore, San Diego, CA), 

PYR-41 (ApexBio, Houston, TX), and P5091 (ApexBio, Houston, TX). The following 

proteasome fluorogenic substrates were used: Suc-LLVY-AMC (Bachem, Torrance, CA; 

I-1395), Ac-WLA-AMC (Boston Biochem, Cambridge, MA; S-330), Ac-nLPnLD-AMC 

(Bachem; I-1850), Ac-RLR-AMC (Boston Biochem; S-290), Ac-ANW-AMC (Boston 

Biochem; S-320), and Ac-PAL-AMC (Boston Biochem; S-310). Human recombinant 

Interferon-γ was purchased from eBioscience (San Diego, CA). 
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3.2.2 Cell viability assay 

Cell viability was determined by CellTiter 96 AQueous One Solution Cell Proliferation 

assay (Promega, Madison, WI) according to the manufacturer’s protocol. Briefly, cells 

were seeded at a density of 5,000-10,000 per well in 96-well plates and allowed 24 

hours to attach. After cells were treated with the indicated concentrations of 

compounds for 72 hours, cell viability was measured using the reagent provided in 

the assay kit. Absorbance at 490 nm was measured using a SpectraMax M5 microplate 

reader (Molecular Devices, Sunnyvale, CA). Results were analyzed using GraphPad 

Prism (La Jolla, CA). 

 

3.2.3 Immunoblotting 

Total cell lysates containing equivalent protein content were separated by 12% SDS-

PAGE and transferred to polyvinylidene difluoride membranes (Millipore, Billerica, 

MA) via a semi-dry apparatus. Membranes were then blocked in 5% non-fat dry milk 

(Bio-Rad, Hercules, CA) in Tris-buffered saline with 0.05% Tween-20 (TBST) for 1 h 

at room temperature, followed by incubation with 3% BSA in TBST containing the 

respective primary antibodies overnight at 4°C: β1 (Enzo Life Sciences; PW8140), β2 

(Enzo Life Sciences; PW8145), β5 (Thermo Scientific; PA1-977), β1i (Abcam; ab3328), 

β5i (Abcam; ab3329), β-actin (Novus Biologicals; NB600-501), and β2i (Santa Cruz; 

sc-133236; 3% milk-TBST used for dilution). Membranes were then washed five 

times with TBST and incubated with HRP (Horse radish peroxidase)-conjugated 

secondary antibodies for 1 hour at room temperature. Immunoreactive bands were 

visualized using SuperSignal West Femto Chemiluminescent Substrate (Thermo 

Scientific, Rockford, IL) and X-ray film (Thermo Scientific or GeneMate). 
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3.2.4 Proteasome Activity Assay 

Subunit-selective fluorogenic peptide substrates were used to measure the catalytic 

activities of individual catalytic subunits by monitoring the rate of substrate 

hydrolysis over time. Briefly, protein lysates were prepared using passive lysis buffer 

(Promega, Madison, WI) and diluted in 20S proteasome assay buffer (20 mM Tris-HCl, 

0.5 mM EDTA, 0.035% SDS, pH 8.0). Enzyme reactions were initiated by the addition 

of proteasome substrates. Substrates and concentrations were used as following: Suc-

LLVY-AMC (β5/5i, 100 µM), Ac-WLA-AMC (β5, 20 µM), Ac-nLPnLD-AMC (β1,100 µM), 

Ac-RLR-AMC (β2/2i, 20 µM), Ac-ANW-AMC (β5i, 100 µM), and Ac-PAL-AMC (β1i 

activity, 100 µM). Fluorescence signals were measured over 1 hour at one reading per 

one minute using a SpectraMax M5 microplate reader at the excitation and emission 

wavelengths of 360 and 460 nm, respectively. 

 

3.2.5 Interferon-γ treatment 

H727 and H23 cells were treated with 150 U⋅ml-1 of IFN-γ or vehicle for 24 h. At the 

end of IFN-γ treatment, the cells were washed with PBS three times and then cultured 

for an additional 24 hours. Afterwards the cells were sub-cultured into a 96-well plate, 

and cell viability assays was performed using CellTiter 96 AQueous One Solution Cell 

Proliferation assay (Promega, Madison, WI) as described above. The remaining cells 

were then used for immunoblotting analysis and proteasome activity assays. 

 

3.2.6 Knockdown of proteasome catalytic subunits 

Cells were transfected with ON-TARGET Plus Smart Pool siRNAs (Dharmacon, 

Lafayette, CO) using Lipofectamine 2000 transfection reagent (Invitrogen, Carlsbad, 

CA), according to the manufacturer’s instructions. H727 cells were plated in a 6-well 
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plate at a density of 5x105 cells per well and allowed at least 24 h to attach. Cells were 

then transfected with 100 nmole of siRNAs and Lipofectamine 2000. At 4 h post-

transfection, serum-free Opti-MEM medium (Invitrogen, Carlsbad, CA) was replaced 

with complete medium and the cells were incubated for 48 h. The following siRNA 

pools were used: PSMB5 (L-004522-00-0020), PSMB7 (L-006021-00-0020), PSMB8 

(L-006022-00-0020), PSMB9 (L-006023-00-0005), and PSMB10 (L-006019-00-

0020). For the negative control, human non-targeting scrambled siRNA (D-001810-

10) was used. 

 

3.2.7 Preparation of primary MM samples 

 Cryopreserved MM primary cells isolated from the bone marrow or peripheral blood 

of patients with no reported history of PI treatment were purchased from Conversant 

Biologics (Huntsville, AL) and AllCells (Alameda, CA). CD138-positive cells were 

isolated from patient samples immediately after thawing using human CD138 

microbeads (Miltenyi Biotec), whole blood column kit (Miltenyi Biotec), MidiMACS 

magnetic separator (Miltenyi Biotec), and 30 µm MACS SmartStrainers (Miltenyi 

Biotec). Purified cells were plated on white 96-well cell culture plates at 40,000 cells 

per well in RPMI 1640 media supplemented with 10% FBS. Cells were treated with 

proteasome inhibitors for 48 hours before viability assessment via CellTiter-Glo 

Luminescent Cell Viability Assay (Bio-Rad).  

 

3.2.8 Statistics analysis 

Results are expressed as means ± S.D. Statistical significance of the observed 

differences was determined using Student’s t-test (with the Holm-Sidak method when 

appropriate).  All statistical analyses were carried out using GraphPad Prism 7.04 

(GraphPad Software). 
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3.3 Results 

3.3.1 H727 cells are intrinsically resistant to Cfz 

To identify Cfz-resistant cell lines, we first measured the cytotoxic effects of 

Cfz in 21 cancer cell lines derived from various types of cancer. These cell lines 

displayed an array of Cfz sensitivities (IC50 values ranged from 9 to 610.2 nM). We 

were especially intrigued by the marked lack of response to Cfz in the H727 human 

non-small cell lung cancer (NSCLC) cell line; the Cfz I IC50 value for this cell line (610.2 

nM) was approximately 33-fold higher than that for the Cfz-sensitive NSCLC cell line 

H23 (18.3 nM) (Figure 3.1A). Even in the presence of 250 nM of Cfz which usually 

induces >95% loss of viability in most of other cancer cell lines including H23 cells, 

H727 cells survived and grew normally (Figure 3.1B). Thus, we selected the H727 cell 

line as our cell line model of intrinsic resistance to Cfz in which to test our hypothesis.  
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Figure 3.1 Sensitivity of H23 and H727 cells to Cfz  

A.  Cell viability (IC50 values) for a panel of established cancer cell lines as measured 

by MTS assay following incubation with carfilzomib (Cfz) for 72 h. H727 cells are most 

resistant to Cfz among 21 tested cell lines. B. Representative images of H23 and H727 

cells growing in the presence of Cfz (100 or 250 nM, respectively) assessed via light 

microscopy for 3 days. 
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3.3.2 Previously reported mechanisms do not explain de novo resistance of H727 cells  

While the mechanisms of intrinsic resistance to Cfz has not been reported to 

date, several studies have shown that P-gp can contribute to acquired resistance to 

Cfz observed in cancer cell line models and clinical samples from patients with prior 

Cfz therapy [132-135]. To test whether P-gp plays a role in the de novo Cfz resistance 

of H727 cells, we performed immunoblotting analysis but found no detectable P-gp 

expression (Figure 3.2A). Furthermore, treatment of H727 cells with reversin 121, a 

dipeptide P-gp inhibitor, did not significantly impact the IC50 value of Cfz (Figure 

3.2B), confirming a P-gp-independent mechanism of resistance. Next, we examined 

the possibility that Cfz may undergo rapid metabolic inactivation in H727 cells. We 

treated H727 and H23 (Cfz-sensitive) cells with 500 nM Cfz and collected culture 

media to measure the levels of remaining Cfz at 6 or 24 h post-treatment. The level of 

remaining drug was overall comparable between H727 and H23 cells although a 

slight difference was noted at 24 h (Figure 3.2C). Direct sequencing analyses also 

indicated that the PSMB5 (encoding β5) and PSMB8 (encoding β5i) genes in H727 

cells harbor no mutations (Figure 3.3A-D). We attempted to compare the intracellular 

drug levels by quantifying the remaining drug levels in lysates of H727 and H23 cells, 

but the levels were below the lower limit of quantitation (< 5 nM) of our current 

analytical assay. Although it was not feasible to assess the intracellular drug levels, 

H727 cells contained Cfz in the culture media at the level comparable to or slightly 

higher than H23 cells. Assuming that Cfz primarily enters cells via passive diffusion 

(no report yet supporting the presence of uptake transporters for Cfz as far as we 

know), it appears unlikely that H727 cells have intracellular Cfz levels much lower 

than H23 cells. Taken together, de novo resistance of H727 cells was not explained by 

previously reported mechanisms such as P-gp upregulation, genetic mutations in 

proteasome catalytic subunits, or enhanced metabolic inactivation of Cfz.   
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Figure 3.2 Independency of H727 cells in previously reported mechanisms  

A.  Immunoblotting results showing no detectable expression of P-glycoprotein (P-gp) 

in H727 cells. DLD-1 cells with acquired Cfz resistance via P-gp upregulation (DLD-

1/CfzR) were used as a positive control. B. The co-treatment of reversin-121 (7.5 µM, 

P-gp inhibitor) did not affect the sensitivity of H727 cells to Cfz. The IC50 values did 

not show statistically significant difference between in the presence and absence of 

reversin-121 (Student’s t-test). C. The levels of remaining Cfz in culture media were 

comparable between H727 and H23 cells (no statistically significant differences, t-

tests the Holm-Sidak method to correct for multiple comparisons with α = 0.05) (This 

experiment was performed by Ji Eun Park from Wooin Lee’s group in the College of 

Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National 

University, Korea)   
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Figure 3.3† Sequencing analysis of the PSMB5 and PSMB8 genes in H727 cells 

A.  Alignment of truncated H727 PSMB5 forward sequencing read to PSMB5 

NM_002797.4. B. Alignment of truncated H727 PSMB5 reverse sequencing read to 

PSMB5 NM_002797.4.  C. Alignment of H727 PSMB8E2 forward sequencing read to 

truncated PSMB8E2 NM_148919.3 ORF. D. Alignment of H727 PSMB8E2 reverse 

sequencing read reverse-compliment to truncated PSMB8E2 NM_148919.3 ORF.  
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Figure 3.3† (continued) 
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Figure 3.3† (continued) 
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Figure 3.3† (continued) 

 

 

 

 

 

† Sequencing analysis data of the PSMB5 and PSMB8 genes in H727 cells were 

acquired by Zachary Miller.  
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3.3.3 The proteasome remains essential for the survival of H727 cells 

It is possible that cancer cells might have adaptations to endure reduced levels 

of 20S proteasome function and the rely on the non-proteasomal protein degradation 

pathways to reduce proteasome load. In order to verify whether the UPS is important 

for the survival and proliferation of Cfz-resistant H727 cells, as it is in Cfz-sensitive 

cell lines such as H23, we first transfected cells with siRNAs targeting the proteasome 

α7 subunit in H727 cells, thereby blocking the assembly of active 20S proteasomes. 

[270, 271]. As seen in Figure 3.4A, effective silencing of α7 resulted in almost complete 

cell death after 3 days post-transfection for both in H727 and H23 cells, indicating 

that active proteasomes remain indispensable for the survival of Cfz-resistant H727 

cells. These results suggested that H727 cells may still respond to proteasome 

inhibitors other than Cfz. In order to examine this, we treated H727 cells with 

alternative PIs, particularly ones with differing pharmacophores or structures, such 

as Btz (a peptide boronic acid) and MG-132 (a peptide aldehyde). These PIs were 

indeed highly effective in killing H727 cells and their IC50 values were comparable 

between H727 and H23 cells (Figure 3.4B). We also used two inhibitors targeting 

various upstream components of the UPS, PYR-41, an inhibitor of ubiquitin E1 ligase 

and several DUBs, and P5091, a specific USP7/USP47 inhibitor [245]. Both PYR-41 

and P5091 were cytotoxic in H727 and H23 cells with comparable potencies (Figure 

3.4B). These results further support that H727 cells remain dependent on the 

ubiquitin-proteasome system, despite their de novo resistance to Cfz. 
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Figure 3.4 Cytotoxic effect of targeting the UPS in H727 cells  

A.  Knockdown of proteasome α7 subunit in H727 cells effectively induced cell death 

to a similar extent as observed in H23 cells (images taken 48 h post-transfection). 

Immunoblotting analysis was performed to verify the efficient knockdown of α7 in 

H727 cells. B. Comparison of the sensitivity (IC50 values) of H727 and H23 cells to 

carfilzomib, bortezomib, MG 132, PYR-41 (an E1 inhibitor) and P5091 (an 

USP7/USP47 inhibitor). Data are shown as mean ± SD derived from a non-linear 

regression based on n=3-4 replicates per compound per concentration. 
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3.3.4  H727 cells have a distinct composition of proteasome catalytic subunits 

To account for the sensitivity of H727 cells to other PIs, we hypothesized 

whether the subunit composition at the 20S proteasome level may contribute to de 

novo resistance of H727 cells to Cfz. To test this hypothesis, we compared the 

proteasome catalytic subunit expression and activity profiles of H727 and H23 cells 

via immunoblotting analysis and kinetics assays using fluorogenic substrates for 

individual subunits (β1, β5, β1i, β5i). In the case of the β2 and β2i subunits, their 

combined trypsin-like activity was assessed due to the lack of a specific fluorogenic 

substrate that can distinguish the two subunits. As shown in Figure 3.5A., the 

expression pattern of proteasome catalytic subunits in H727 cells differed from that 

in Cfz-sensitive H23, panc-1, and RPMI 8226 cells. H727 cells expressed high levels of 

β1, β2, and β5i, while β1i expression was undetectable. The expression profile of 

catalytic subunits in H727 cells was not consistent with those typically expected for 

the two main 20S proteasome subtypes, namely a set of β1-β2-β5 for cP or an 

immuno-subunit set of β1i-β2i-β5i for iP. Substantial differences were also noted 

when the activity profiles of proteasome catalytic subunits were compared between 

these two cell lines using subunit-selective fluorogenic substrates (Figure 3.5B). 

Interestingly, the activity profiles of individual catalytic subunits showed 

discrepancies with the protein levels of the respective catalytic subunits. We suspect 

that the observed differences may reflect the complex relationship between 

proteasome structure and function (e.g. contributions of post-translational 

modifications, regulatory particles, or non-standard composition of proteasome 

catalytic subunits to the hydrolysis rates of fluorogenic substrates).  

We next examined whether individual subunits of proteasomes in H727 cells 

may display different proteasome inhibition profiles than those of H23 cells. We 

treated H727 and H23 cells with 20 nM of Cfz for 4 h and measured the remaining 

activities of individual catalytic subunits relative to vehicle-treated control cells. As 

shown in Figure 3.5C (left panel), more than 80% of β5, β5i and β1i activities were 

blocked by Cfz for both H727 and H23 cells. On the contrary, over 50% of β1 activity 



62 

 

persisted in H727 cells, but not in H23 cells (Figure 3.5C, left panel). It remains 

unclear whether the remaining β1 activity contributes to de novo resistance of H727 

cells to Cfz. On the other hand, Btz treatment resulted in over 80% inhibition across 

all catalytic subunits in both H727 and H23 cell lines, which may explain the high 

sensitivity of both cell lines to Btz (Figure 3.5C, right panel). These results support 

that the 20S proteasomes present in H727 cells may be functionally different from 

those in Cfz-sensitive H23 cells.  
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Figure 3.5 Distinct composition of proteasome catalytic subunits in H727 cells  

A. Immunoblots showing the differential expression of cP and iP catalytic subunits in 

H727 and H23 cells as well as Cfz-sensitive panc-1 and RPMI 8226 cells. B. Differential 
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proteasome activity profiles in H727 and H23 cell lines. Purified human 20S cP and 

iP were used as controls for individual subunits: 20S cP for β5 and β1 and 20S iP for 

β5i and β1i. The numbers represent hydrolysis rates of respective substrates 

(RFU/min, mean values derived from three technical replicates) C. Remaining 

catalytic activities of individual proteasome subunits in H727 and H23 cells 4 h after 

treatment with 20 nM of carfilzomib (left panel) or 20 nM bortezomib (right panel). 

Data are presented as mean ± SD derived from three technical replicates.  
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3.3.5 A distinct composition of proteasome catalytic subunits in H727 cells 

Based on the differential expression pattern of proteasome catalytic subunits 

in H727 as compared to H23, we hypothesized that the composition of proteasome 

catalytic subunits may impact the sensitivity of H727 cells to Cfz. To test this 

hypothesis, we altered catalytic subunit composition in H727 using interferon-γ (IFN-

γ) treatment. IFN-γ’s ability to upregulate immuno-subunits (β1i, β2i, and β5i) and to 

induce IP formation has been well-documented [37, 38]. As shown in Figure 3.6A, 

incubation of H727 cells with IFN-γ (150 U⋅ml-1) 24 h prior to Cfz treatment resulted 

in upregulation of immune-subunit expression and corresponding increases in their 

activity. IFN-γ pre-treatment caused a significant decrease in Cfz IC50 values from 

621.1 to 189.5 nM in H727 cells. When H23 cells were pre-treated with IFN-γ, the Cfz 

IC50 values changed in the opposite direction (IC50 values increased from 18.6 to 44.1 

nM, Figure 3.6B). With IFN-γ pre-treatment, the fold differences in IC50 values 

between the two cell lines were reduced from 33-fold to 4.2-fold. Consistently, IFN-γ 

pre-treatment also had effect on viability of RPMI 8226 cells with acquired Cfz 

resistance. Human RPMI 8226 multiple myeloma cells with acquired resistance to Cfz 

were established by adapting them in the presence of escalating concentrations of Cfz 

up to 80 nM over 6 months. RPMI 8226 Cfz-resistant cells were cultured in 80 nM of 

Cfz and then grown in the absence of Cfz for two weeks prior to the use. We have 

observed the P-glycoprotein was overexpressed in RPMI 8226 Cfz-resistant cells 

(Data shown in chapter 4). Regardless of P-glycoprotein overexpression, IFN-γ (150 

U⋅ml-1) pretreatment could mediate the cellular response to Cfz (from 239.2 nM to 

135.1 nM) in this cell line. 
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Figure 3.6 Effect of IFN-γ pretreatment on H727 and H23 cells  

A. IFN-γ (150 U⋅ml-1) pretreatment for 24 h led to increased expression (top left 

panel) and activity (top right panel) of proteasome immuno-subunits. and sensitized 

H727 cells to Cfz (bottom) B. IFN-γ (150 U⋅ml-1) pretreatment for 24 h desensitized 

H23 cells towards Cfz. The IC50 values displayed a statistically significant difference 

between IFN-γ-pretreated cells and vehicle control in both of H727 and H23 cells. (P 

value < 0.01, n=3, Student’s t-test comparing the log transformed IC50 values obtained 

from three independent runs). 
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3.3.6 Alteration of proteasome catalytic subunit composition affects H727 Cfz 

sensitivity 

In order to further investigate a causal relationship between the composition 

of proteasome catalytic subunits and Cfz sensitivity, we sought to alter the 

composition of proteasome catalytic subunits in H727 cells in a more selective 

manner using an siRNA pool targeting the abundantly expressed β5 subunit. We 

expected that β5i will substitute for β5 during proteasome assembly, forming 20S 

complexes with altered catalytic subunit composition. When β5 was knocked down 

(verified via immunoblotting and activity assays, Figure 3.7A & B), H727 cells grew 

normally with modest upregulation of β5i. Despite their normal growth, H727 cells 

were significantly sensitized to Cfz by β5 knockdown, shifting the IC50 value from 622 

to 99.9 nM (Figure 3.7C). In contrast, the IC50 for Btz was only modestly affected, 

decreasing from 26 to 12 nM (Figure 3.7D). Knockdown of other catalytic subunits 

such as β5i and β2 resulted in minimal changes in the IC50 values for Cfz. A similar 

pattern was observed in H23 cells where knockdown of β5i and β2 had little effect on 

Cfz sensitivity but β5 knockdown triggered a five-fold reduction in Cfz IC50 from 26.7 

to 5.0 nM (Figure 3.7C).  
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Figure 3.7 The effect of catalytic subunit knockdown on H727 cells 

A. Immunoblots of proteasome catalytic subunits in H727 cells transfected with 

siRNA targeting β5, β2 or β5i. B. The catalytic activity of β5 subunit was decreased in 

H727 cells transfected with siRNA targeting β5 compared with H727 cells transfected 

with scrambled siRNA. C. Effects of siRNA knockdown of β5, β5i, or β2 on Cfz 

sensitivity (IC50 values) in H23 and H727 cells. Data are shown as mean ± SD derived 

from a non-linear regression based on n=3 replicates per compound per 

concentration. D. 72 h cell viability for Bortezomib 48 h after siRNA knockdown β5 in 

H727 cells  
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3.3.7 The proteasome activity profiles of primary MM cells is highly variable  

In order to assess whether the observed variability in proteasome activity 

profiles in PI-naıv̈e cell line models reflects the Cfz sensitivity of clinical MM samples, 

we examined the proteasome activity profiles and degree of Cfz sensitivity using 6 

MM samples from patients who have received no prior PI therapy. Similar to the 

results obtained using cell line models, the clinical samples also showed considerable 

variability in catalytic subunit activity profiles and Cfz sensitivity (Figure 3.8 A & B). 

Due to the limited sample quantities, we were not able to perform any further 

investigations on these samples. Based on these initial assessments, we cautiously 

speculate that differential Cfz sensitivity in these patient samples may be influenced 

by variability in proteasome catalytic subunit composition, perhaps partially 

accounting for the varied responses to Cfz observed in clinical trial results [260, 263, 

264].  
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Figure 3.8 Activity profile and viability for Cfz in primary MM samples 

A. Heat map showing proteasome catalytic subunit activity profiles of 6 PI-naïve 

patient MM samples purchased from Conversant Biologics and AllCells. The numbers 

represent hydrolysis rates of respective substrates (RFU/min, mean values derived 

from three technical replicates) and were converted to color format and clustered by 

using the program “R” (http://www.R-project.org) B. Carfilzomib (Cfz) cell viability 

of the same 6 patient MM cells was measured via CellTiter-Glo Luminescent Cell 

Viability Assay. 

 

  

A B 
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3.4 Discussion 

Cfz has contributed to a substantial advancement in multiple myeloma 

treatment by improving patient survival and quality of life. A considerable portion of 

patients however display intrinsic resistance to Cfz. A significant portions of MM 

patients previously treated with Btz-containing regimens do not respond to Cfz and 

even those who initially respond to Cfz almost ultimately develop resistance in the 

course of their treatment [260, 266]. In order to design new and effective therapeutic 

strategies to overcome resistance, it is important to better understand the 

mechanisms of Cfz resistance. To date, investigations of Cfz resistance have largely 

focused on acquired resistance due to the relative ease of generating Cfz-adapted 

cancer cell lines and the availability of clinical samples derived from patients who 

have developed resistance after prolonged Cfz therapy. On the other hand, 

mechanistic investigations of de novo Cfz resistance have been scarce, due to the lack 

of appropriate cell line models and patient samples. 

In the current study, we report that H727 cells are intrinsically resistant to Cfz, 

potentially serving as a useful model for mechanistic investigations of de novo Cfz 

resistance. Given that H727 cells were sensitive to inhibitors of non-proteasomal 

targets in the UPS and PIs other than Cfz, we surmise that H727 cells harbor 

functionally active proteasomes and that complete or near-complete inhibition of 

proteasome catalytic activity is incompatible with survival in these cells. Based on our 

current results, a shift towards non-UPS protein degradation pathways appears 

unlikely since H727 cells remain highly sensitive to the inhibition of UPS components 

including the proteasome itself.     

Despite their similar degrees of dependence on the proteasome or UPS for 

survival and growth, H727 and H23 cells respond differently to Cfz, to a degree of 33-

fold difference in IC50 values. This may be in part due to cell line-dependent cell 

growth rates or genetic/molecular differences. However, the high sensitivity of H727 

cells to other PIs suggests that Cfz resistance in H727 cells may be mediated at the 

20S proteasome level. It has been reported that proteasome inhibitor resistance is 
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often associated with increased levels of proteasome subunit catalytic activity, 

especially in models of acquired bortezomib resistance [117, 272]. However, H727 

cells displayed substantially low activities of individual catalytic subunits as 

compared to H23 cells. At present, it is unclear whether the low proteasome activities 

in H727 cells are involved in conferring Cfz resistance. Previously it was reported that 

20S proteasomes harboring a mixed assortment of cP and iP catalytic subunits exist 

in cancer cells and that their PI sensitivity differs from those of standard cP or iP5. 

Our results also indicated not only differing expression levels of proteasome catalytic 

subunits between H727 and H23 cells, but also differing levels of subunit catalytic 

activity. These findings are consistent with the presence of non-standard 20S 

proteasome subtypes (other than cP and iP). Determination of the 20S proteasome 

subtypes present in H727 cancer cells may shed further light on the underlying 

mechanisms of de novo Cfz resistance in H727 cells. Determination of the subunit 

composition of intact 20S proteasomes in cells is challenging and several groups 

including ours are currently trying to develop bi-functional or fluorescent probes to 

facilitate these efforts [273, 274]. 
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CHAPTER 4. DEVELOPMENT OF NOVEL EPOXYKETONE-BASED PROTEASOME 

INHIBITORS AS A STRATEGY TO OVERCOME CANCER RESISTANCE TO 

CARFILZOMIB AND BORTEZOMIB 

Some of the work in this chapter has been accepted in Journal of Medicinal 
Chemistry 2019 [334].  
 

4.1 Introduction 

In 2003, the FDA approval of first-in-class Proteasome inhibitor (PI) 

bortezomib (Velcade®, Btz) for treating patients with multiple myeloma (MM) 

validated the proteasome as an anticancer target.  A decade later, the FDA approved 

a second-in-class PI—carfilzomib (Kyprolis®, Cfz) and ixazomib (Ninlaro®, Ixz)—for 

treating patients with relapsed MM, firmly establishing the proteasome as an exciting 

target in treating cancer. Although the use of PIs in MM patients has successfully 

improved clinical outcomes, a subset of PI-naïve patients failed to respond to these 

inhibitors, and almost all patients who do respond eventually acquire PI resistance 

[105, 261, 263]. Recently, three non-PI drugs, daratumumab (a monoclonal antibody 

(mAb) targeting CD38), elotuzumab (mAb targeting SLAMF7) and panobinostat 

(HDAC inhibitor) were approved for treatment of relapsed MM. While these non-PI 

drugs provide additional options for MM patients relapsed on current PI-based 

therapies, a portion of patients still do not respond to these therapies. The results 

from recent clinical trials show that the response for these non-PI drugs is rather 

transient with the median duration of ~7-20 months before relapsing [275-277]. 

Therefore, it is now critically important to develop new therapeutic strategies that 

can overcome the limitations of the FDA-approved PIs and deliver the therapeutic 

benefits of PIs to cancer patients who have exhausted current treatment options.  
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The ubiquitin proteasome system (UPS) remains essential for cancer cells 

regardless of resistance to existing PI drugs. The UPS upstream components of the 

proteasome such as ubiquitin E3 ligases and deubiquitinases are being explored as 

potential anti-cancer therapeutic targets [245, 246, 278], but not be successful yet. 

Alternatively, it remains to be seen whether the proteasome itself can be 

subsequently re-targeted to achieve further therapeutic gains for MM patients 

relapsed on existing PI drugs.  

Most of PIs have been developed through medicinal chemistry approach, 

optimizing amino acid side chains (P1, P2, P3) which interact with the substrate 

binding pockets (S1, S2, S3, etc.) of proteasome catalytic subunits. This binding 

configuration is further stabilized by anti-parallel β-sheet conferring hydrogen 

bonding interactions between the inhibitor’s peptide backbone and conserved 

residues such as Thr21, Gly47, and Ala49 of proteasome catalytic subunits [279-281]. 

When combined with a C-terminal warhead which targets the catalytic Thr1 residue, 

this strategy typically yields potent inhibitors including the three FDA-approved PIs: 

Btz, Ixz (peptide boronic acids) and Cfz (a peptide epoxyketone). However, this 

strategy might have unintentionally contributed to an increased cross-resistance 

among them. A potential strategy to overcome PI cross-resistance is to identify and 

exploit a structural niche not utilized by existing PIs. In that regard, previously 

unexplored are P1′ binding sites which lie on the C-terminal side of the proteasome 

catalytic subunit’s cleavage site. 

Here, we have developed peptide epoxyketones having a P1′-targeting moiety. 

The anticancer efficacy of these compounds was superior to their non-P1′-targeting 

parent compounds when evaluated against models of intrinsic and acquired Cfz 

resistance. The identified lead compound, Cfz-OH, an analog of Cfz containing a 

hydroxyl group at the P1′ position, displayed potent proteasome inhibitory activity 

and cytotoxicity in both Cfz-sensitive and Cfz-resistant cancer cell lines. 
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4.2 Material and Methods 

4.2.1 Chemistry 

Peptide epoxyketones having a P1′-targeting moiety were synthesized by Dr. Deepak 

Bhattarai. 

 

4.2.2 Enzyme kinetic assay 

Purified human 20S immunoproteasome (Boston Biochem) or RPMI 8226 cell lysates 

were diluted in 20S proteasome assay buffer (20 mM Tris-HCl, 0.5 mM EDTA, 0.035% 

SDS, pH 8.0) and incubated with various concentrations of each inhibitor for 1 h in a 

96-well plate. The fluorogenic substrates Suc-Leu-Leu-Val-Tyr-AMC (Bachem) or Ac-

Pro-Ala-Leu-AMC (Boston Biochem) were used at the final substrate concentration of 

100 μM to measure the remaining levels of chymotrypsin-like activity or LMP2-

specific catalytic activity, respectively. Fluorescence signals from the release of free 

AMC (7-amino-4-methylcoumarin) were monitored every minute for 1 h via a 

SpectraMax M5 microplate reader (Molecular Devices) using excitation and emission 

wavelengths of 360 and 460 nm, respectively. The initial hydrolysis rates (slopes) for 

individual wells were calculated via linear regression and normalized to the values 

from vehicle-treated control wells. Non-linear regression analysis was performed 

using GraphPad Prism 7 to calculate an IC50 value for each compound in inhibiting 

proteasomal CT-L or LMP2 activity. 

 

4.2.3 Cell culture 

Human cancer cell lines H23, H727, and RPMI8226 were obtained from the ATCC 

(American Type Culture Collection) and maintained in the ATCC recommended media, 

RPMI1640 supplemented with 10% fetal bovine serum (Gibco, and Atlanta 

Biologicals). RPMI8226 cells with acquired resistance to Cfz were established by 

adapting them in the presence of stepwise increasing concentrations of Cfz up to 80 

nM over a period of approximately 6 months. Cfz-resistant cells were maintained in 
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80 nM Cfz and then grown in the absence of Cfz for approximately one week prior to 

the experiments.  

 

4.2.4 Isolation of primary MM samples 

Bone marrow (BM) aspirates were obtained from patients after approval by the UC 

Cancer Institute Institutional Review Board followed by positive selection with 

CD138 microbeads developed for the isolation of plasma cells. Immunophenotyping 

by flow cytometry was performed to confirm the purity and quantity of selected 

CD138+ plasma cells. 

 

4.2.5 Cell Viability 

4.2.5.1 Established cancer cell lines 

H23 cells or H727 cells were plated at 5,000 or 10,000 cells per well, respectively. 

RPMI8226 cells and Cfz-resistant RPMI8226 sublines growing in suspension were 

plated at 10,000 cells per well. Twenty-four hours after plating, media containing the 

test compounds were added to each well to deliver the intended final concentration. 

After 72 h, cell viability was determined using the assay protocol recommended by 

the manufacturer (CellTiter 96 Aqueous One Solution Cell Proliferation assay, 

Promega). The resulting signals were measured using a SpectraMax M5 microplate 

spectrophotometer (Molecular Devices). Non-linear regression analysis was 

performed using GraphPad Prism 7 to calculate an IC50 value for each compound to 

incur cell death. 

4.2.5.2 Primary MM cells 

Purified primary MM cells were plated on 96-well plates at a density of 20,000 cells 

per well in IMDM media (Gibco) supplemented with 10% FBS. After cells were treated 

with test compounds for 48 h, the percentage of viable cells was determined using the 

CellTiter Glo Luminescent Cell Viability Assay (Promega) and a Veritas microplate 

luminometer (Promega). 
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4.2.6 Immunoblotting 

Cell lysates were prepared using ice-cold RIPA lysis buffer (50 mM Tris–Cl, 150 mM 

NaCl, 1% NP-40, 1% Triton X-100) supplemented with 1% protease inhibitor cocktail 

(Sigma–Aldrich). After centrifugation at 14,000g at 4 °C for 20 min, the resulting 

supernatant was collected and subject to the total protein assay using Protein Assay 

Dye Reagent Concentrate (Bio-Rad). Proteins were resolved by 7.5% SDS-PAGE, and 

transferred onto PVDF membranes (Bio-Rad) via semi-dry transfer. After blocking in 

5% nonfat dry milk, membranes were incubated with primary antibodies (anti-P-gp 

(Abcam) or anti-β-actin (Enzo)) at 4 °C overnight. Membranes were washed and 

incubated with appropriate peroxidase-conjugated secondary antibodies for 1 h at 

room temperature. Proteins were visualized on Kodak BioMax XAR Films (Sigma– 

Aldrich) using ECL.  

 

4.2.7 In vitro metabolic stability 

To assess whether Cfz-OH has indeed an improved metabolic stability over Cfz, we 

compared the rate by which Cfz-OH or Cfz disappears in the presence of rat liver 

homogenates, as previously reported [282]. Briefly, the liver was obtained from male 

Sprague-Dawley rats (8 week-old, Nara Biotech Co. Ltd., Seoul, Korea) using the 

protocol approved by the Seoul National University Institutional Animal Care and Use 

Committee (approval No. SNU-160512-5-1). The harvested liver was washed with 

phosphate-buffered saline (PBS, pH 7.4) and homogenized using 5-fold excess volume 

of PBS per g tissue. After pre-incubation at 37 °C, an aliquot of liver homogenates was 

spiked with the stock solution of Cfz or Cfz-OH to achieve the final concentration of 1 

M (total volume of 400  µl, n=3). At the pre-designated time (0, 5, 10, and 20 min), an 

aliquot (40 µl) was collected and mixed with 4-fold excess volume of ice-cold 

acetonitrile containing chlorpropamide (an internal standard, IS, 0.5 µM). After 

vortexing and centrifugation, the drug levels in the resulting supernatant were 

analyzed via HPLC interfaced with mass spectrometry (LC-MS/MS).  
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Cfz-OH was quantified using the slightly modified analytical conditions via LC-MS/MS 

(1260 infinity HPLC system interfaced with 6430 Triple Quad LC-MS system, Agilent 

Technologies, Palo Alto, CA) in a positive ion mode. The chromatic separation was 

performed using a Poroshell 120 EC-C18 column (4.6 x 50 mm, 2.7 µm, Agilent 

Technologies, Palo Alto, CA) and an isocratic mobile phase composed of acetonitrile 

and water (75:25, v/v) at a flow rate of 0.3 mL/min. The retention time of Cfz-OH was 

1.7 min and the gas temperature was set at 300 °C. The source-dependent parameters, 

the fragment voltage, collision energy and cell accelerator voltage were set as follows: 

170 V, 75 V, and 1 V for Cfz-OH and 90 V, 30 V and 7 V for chlorpropamide (IS). 

Quantification was performed in the selected reaction monitoring (SRM) mode using 

the following transitions: m/z 736.2 > 99.9 for Cfz-OH and m/z 276.9 > 110.8 for 

chlorpropamide (IS). The calibration samples were prepared in the range of 1 to 200 

nM and the signals showed linearity with the r2 value greater than 0.98. The data 

were processed using the MassHunter Workstation Software Quantitative Analysis 

(vB.05.00; Agilent Technologies). 

4.3 Results 

4.3.1 Initial screening for proteasome inhibitors that overcome intrinsic Cfz resistance 

As described in chapter 3, H727 human lung adenocarcinoma cell line is 

intrinsically resistant to Cfz (IC50 of 611 nM) compared to a panel of cancer cell lines 

(IC50’s in the low nM range). Thus, we selected the H727 cell line as our cell line model 

of intrinsic resistance to Cfz in which to identify PIs that can overcome de novo 

resistance to Cfz.  As a control, we used another lung cancer cell line model of H23 

cells, which are highly sensitive to Cfz (IC50 of 18 nM). We treated theses Cfz-sensitive 

H23 and Cfz-resistant cancer H727 cell lines with PIs that have distinct chemical 

structures and pharmacophores—The peptide epoxyketone inhibitor carfilzomib, the 

peptide boronate inhibitor bortezomib, the peptide aldehyde inhibitor MG-132, the 

in-house-generated peptide epoxyketone inhibitors UK-101 and UK-102, and the β-
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lactone inhibitor lactacystin (Figure 4.1)—for 72 hours. We then measured the effects 

of each inhibitor on cell viability.  UK101 and UK102 were previously developed in 

our laboratory [283]. Interestingly, compared to Cfz, UK-101 and UK-102, displayed 

relatively smaller differences in their IC50 values between Cfz-sensitive and Cfz-

resistant cancer cells (Table 4.1). In other words, UK101 and UK102 displayed a 

comparable cytotoxicity in H727 and H23 cells. In addition, Cfz-resistant cancers may 

be minimally cross-resistant to UK-101 and UK-102. On the other hand, a β-lactone 

inhibitor lactacystin was not as effective in H727 cells as in H23 cells. These results 

suggest that targeting the proteasome using alternative PIs still can be a viable 

therapeutic option even in the presence of cancer resistance to Cfz and Identifying 

alternative PIs that remain effective in Cfz-resistant cancer cells.  
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Figure 4.1 Structures of structurally distinct-proteasome inhibitors  

Structures of the peptide epoxyketone inhibitor carfilzomib, the peptide boronate 

inhibitor bortezomib, the peptide aldehyde inhibitor MG-132, the β-lactone inhibitor 

lactacystin, and the in-house-generated peptide epoxyketone inhibitors UK-101 and 

UK-102 are shown 
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Table 4.1 Cytotoxicity of proteasome inhibitors in H727 and H23 cells 

 

IC50 (µM) 

H23 H727 
Fold difference 

(H727/H23) 

Carfilzomib 0.018 ± 0.004 0.611 ± 0.047 33.3 

Bortezomib 0.010 ± 0.001 0.025 ± 0.006 2.5 

MG-132 0.48 ± 0.01 0.98 ± 0.03 2 

Lactacystin 5.23 ± 0.22 > 100 > 19 

UK101 3.37 ± 0.19 5.21 ± 0.11 1.5 

UK102 3.40 ± 0.18 4.49 ± 0.26 1.3 
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4.3.2 The PIs with P1’ (UK101 & UK102) exert the anticancer efficacies in acquired Cfz 

resistant cancer cells 

 

Since acquired cfz resistance is a major clinical challenge facing Cfz-based 

therapies, we wondered whether these P1′-targeting epoxyketones, UK101 and 

UK102 are also effective in acquired Cfz resistance cells. To test this, we established 

a Cfz-resistant subline of human MM RPMI8226 and U266 (RPMI 8226/CfzR and 

U266/CfzR) by culturing them in the continuous presence of gradually increasing 

concentrations of Cfz over 6 months. As shown in Figure 4.2 A&B, results from MTS 

cell viability assays revealed that, in comparison with those of their respective 

parental cell lines, the Cfz IC50 values of RPMI 8226/CfzR and U266/CfzR cells were 

36-fold and 9-fold higher, respectively. 

As described previously, several studies have shown that the efflux 

transporter P-gp can contribute to acquired resistance to Cfz observed in cancer cell 

line models and clinical samples from patients with prior Cfz therapy [132-135]. To 

test whether P-gp plays a role in these RPMI 8226/ CfzR and U266/ CfzR cell line 

models, we performed immunoblotting analysis to detect P-gp expression (Figure 

4.3A). While there is no delectable level of P-gp expression in PRMI 8226 or U266 

parental cells, the highly elevated expression of P-gp in both RPMI 8226/CfzR and 

U266/CfzR cells. Furthermore, treatment of RPMI 8226/CfzR cells with 7.5 µM of 

reversin 121, a dipeptide P-gp inhibitor, did not significantly impact the IC50 value of 

Cfz (Figure 4.3B), confirming the predominant contribution of P-gp in the current 

model of acquire Cfz resistance. Using these acquired Cfz resistant cell line modesl, 

we examined the effectiveness of P1′-targeting epoxyketones. As reported before, 

both epoxyketone PIs Cfz and epoxomicin displayed a marked increase in IC50 values, 

indicating there are P-gp substrate. On the other hand, compared to Cfz, UK-101 and 

UK-102, displayed relatively smaller differences in their IC50 values between Cfz- 

resistant cancer cells and their parental controls (Table 4.2). 
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Figure 4.2 Establishment of MM cell lines with acquired resistance to Cfz 

A. 72 h cell viability data for Cfz in RPMI 8226 parental and Cfz-resistant cells are 

shown. B. 72 h cell viability data for Cfz in U266 parental and Cfz-resistant cells are 

shown. 

  

A B 
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Figure 4.3 P-gp overexpression in acquired Cfz resistant MM cells  

A.  Immunoblotting results showing elevated expression of P-glycoprotein (P-gp) in 

RPMI 8227 and U266 cells with acquired Cfz resistance. B. The co-treatment of 

reversin-121 (7.5 µM, P-gp inhibitor) restored the sensitivity of RPMI 8226/CfzR cells 

to Cfz. Data shown are representative of biological triplicate experiments. 

 

  

A 

B 
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Table 4.2 Cytotoxicity of proteasome inhibitors in acquired Cfz resistant cells 

 

IC50 (nM) 

RPMI 

8266 

RPMI 

8266/CfzR 
U266 U266/CfzR 

Carfilzomib 7.4 ± 1.5 269.8 ± 55.6 8.9 ± 1.1 73.7 ± 10.4 

Epoxomicin 11.3 ± 5.9 540.9 ± 58.0 ND ND 

UK101 
2147 ± 

803 
3728 ± 105 1818 ± 891 7096 ± 844 

UK102 
1753 ± 

113 
9651± 902 1809 ± 109 1284 ± 114 

 

Data are reported as the mean ± SD. For epoxomicin and carfilzomib, the SD values 

were obtained from three independent experiments. For UK101 and UK102, the SD 

values were from non-linear regression analysis using three replicates.   
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4.3.3 UK101 and UK102 exert the anticancer efficacy in acquired Btz resistant-

primary MM samples 

 

In order to further validate that UK-101 and UK-102 have anticancer efficacy 

in Cfz-resistance, we examined whether UK101 and UK102 can be also effective in 

primary MM samples derived from patients who do not respond to Btz.  Since we were 

unable to obtain MM samples from patients who are resistant to Cfz, we only obtained 

primary cells from two different patient groups: patients who did not respond to Btz 

therapy (Btz-resistant patients), and patients who were never treated with Btz or Cfz 

(PI-naïve patients), but it was previously reported that patients with MM refractory 

to or relapsed on Btz are often cross-resistant to Cfz [260]. Using the primary MM 

samples from 14 different donors (6 from PI-naïve patients and 8 from patients 

relapsed on Btz therapy), we treated these primary MM cells for 48 hours with Cfz, 

UK-101, or UK-102 at its in vitro IC80 concentration derived from viability assay in cell 

line models via CellTiter-Glo® Luminescent Cell Viability Assays. In this assay, we 

found varying degrees of sensitivity to Btz or Cfz, but the MM samples from the 

patients who relapsed on Btz tended to be less responsive to both Btz and Cfz than 

those from patients from the PI-naïve group (Figure 4.4 A & B). Due to limited 

quantities of primary MM samples from 6 patients (#1-#4, #9, and #10), we only 

utilized 10 primary MM samples (4 Btz-resistant and 6 PI-naïve) to examine the 

efficacy of UK101 or UK102. When 10 primary MM samples treated with UK101 or 

UK102 for 48 h, the results showed UK-101 and UK-102 remained much more active 

in primary MM cells derived from Btz-resistant patients and the PI-naïve patients in 

a dose dependent manner (Figure 4.4 C & D). These results suggest that alternative 

PIs such as UK-101 and UK-102 may have valuable clinical potential and warrant 

further investigation. Furthermore, the lack of apparent cross-resistance between 

Cfz/Btz and UK101/UK102 was encouraging although the current sample size was 

small. 
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Figure 4.4 Cytotoxic effects of bortezomib, carfilzomib, UK101, and UK102 on 

primary MM samples 

A.  Viability for 50 nM of Btz in primary MM cells derived from Btz-resistant patients 

and PI-naïve patients B. Viability for 50 nM of Cfz in primary MM cells derived from 

Btz-resistant patients and PI-naïve patients C. Viability for 10 or 15 µM UK-101 in 

primary MM cells derived from Btz-resistant patients and PI-naïve patients D. 

Viability for 10 or 15 µM UK-102 in primary MM cells derived from Btz-resistant 

patients and PI-naïve patients.  

A B 

C D 
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4.3.4 Introduction of hydrophilic residues at the P1’ position of peptide epoxyketones 

enhances the potency of the proteasome inhibition. 

 

Since we observed that UK101 and UK102 had anti-cancer efficacy in primary 

samples derived from Btz-resistant patients but displayed display much lower 

potencies than Btz and Cfz with IC50 values, we first utilized a previously reported 

docking model of UK101 bound to β1i and β5, known targets of UK101 to improve 

the potency of UK101/UK102 and obtain structure-activity relationship (SAR) 

information [84, 283].  As shown in Figure 4.5, the P1-P3 residues of UK101 were 

predicted to occupy the S1-S3 pockets located deep inside of the active sites of the β1i 

and β5 subunits. However, unlike Cfz bound to β5, docking followed by molecular 

dynamics simulations indicated that UK101 occupies an additional binding pocket 

(S1′) of the β5 as well as β1i subunits via its P1′ group (highlighted in purple circles, 

Figure 4.5) which is not occupied by Cfz or Btz. Although the P1′ group (t-

butyldimethylsilyl, TBDMS) of UK101 is not predicted to participate in any specific 

interactions upon binding to β1i, it fully occupies the S1′ pocket defined by the 

surrounding polar amino acids (Ser21, Ser48, Ser95, His97). In the case of UK101 

bound to β5, a steric clash between the TBDMS group and Tyr169 is noted. The 

resulting change in conformation is predicted to abolish a potential hydrogen bond 

between UK101 and Gly47, a plausible contributing factor towards UK101’s low 

potency against the β5 subunit [284]. We hypothesized that the optimization at the 

P1′ position could provide energetically-favorable interactions with the S1′ pocket of 

β1i and also avoid steric clash with Tyr169 of β5, potentially improving potency 

against both subunits. To test this, we replaced the bulky hydrophobic P1′ substituent 

(TBDMS) of UK101 with a hydroxyl group (scheme in Figure 4.6) and assessed its 

impact. This simple P1′ substitution increased in vitro 20S proteasome inhibitory 

potency by ~4-10 fold (Table 4.3). Moreover, the P1′ hydroxyl group also 

considerably improved the cytotoxic activity of UK101-OH (5) cancer cell lines, 

including our models of both de novo and acquired Cfz resistance. Based on this result, 
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we suspect that the P1’ residue of peptide epoxyketones may play an important role 

in overcoming the resistance of cancer cells to Cfz. 
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Figure 4.5 Predicted docking models of UK101 and Cfz bound to β5 or β1i 

Predicted docking models of UK101 and carfilzomib (Cfz) bound to β5 or β1i. The 

superposition of the β5 and β1i active sites are shown based on molecular dynamics 

simulations. The location of UK101’s TBDMS group positioned within putative P1′ 

pockets is highlighted using a purple-colored circle. X-ray structures of β1 (PDB ID: 

3UNF) and β5/X (PDB ID: 3UNE) from mammalian 20S proteasomes were used as 

templates for modeling LMP2 and X. This experiment was performed by Dr. Chang-

Guo Zhan’s group in the College of Pharmacy, University of Kentucky. 
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Figure 4.6 Synthetic scheme for UK101-OH (5) 

These compounds including UK101-OH(5) were synthesized by Dr. Deepak Bhattarai. 
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 Table 4.3 Cytotoxicity of proteasome inhibitors in H727, H23, RPMI 8226/CfzR 

cells 

Data are reported as the mean ± SD.  

  

Proteasome 

inhibitors 

IC50 (µM) 

CT-L LMP2 H23 H727 
RPMI 

8266/CfzR 

UK101 > 10 
0.140 ± 

0.01 

3.37 ± 

0.19 

5.21 ± 

0.11 

2.14 ±  

0.08 

5  

(UK101-OH) 

1.7 ±  

0.1 

0.036 ± 

0.01 

0.58 ± 

0.02 

0.69 ± 

0.01 

0.31 ±  

0.01 
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4.3.5 Development of Cfz analog with an improved potency in de novo and acquired 

Cfz resistant models 

 

In our efforts to further optimize UK101-OH, we deemed that the P1-P4 groups 

of Cfz have already been thoroughly optimized for the S1-S4 pockets of β5 and β5i (as 

well as β1i, to a lesser extent, based on the largely β1i/β5 superimposed model, 

Figure 4.5). We thus decided to attach several different P1′ moieties to Cfz. Since we 

have observed that Cfz analogs bearing a P1′-targeting group could overcome cross-

resistance to Cfz, we also expected that a Cfz analog containing a polar P1′ moiety 

leading an improved inhibitory potency against both β5 and β1i compared to Cfz, due 

to additional P1′:S1′ interactions. Based on this, we prepared Cfz analogs having a 

series of P1′ moieties varying from bulky hydrophobic to small hydrophilic residues 

(synthetic scheme in Figure 4.7). We subsequently measured their activity against 

cell lysates to measure CT-L (β5/β5i) inhibition and against 20S purified 

immunoproteasomes to measure β1i inhibition. As predicted by molecular dynamics, 

Cfz-OH and Cfz-Sulfone having small polar moieties were most potent in vitro with 

IC50 values similar to that of Cfz. When these two compounds were tested using Cfz-

resistant H727 cells, Cfz-Sulfone (12) was less potent than Cfz against H727. On the 

other hand, Cfz-OH, a Cfz analog (9) with a hydroxyl group at the P1′ position, 

demonstrated an improved potency by ~10-fold relative to Cfz. When tested against 

RPMI8226 with acquired Cfz resistance, Cfz-OH (9) demonstrated an almost 3-fold 

improvement in potency against Cfz-resistant RPMI8226 cells as compared to Cfz 

(Figure 4.8).  
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Figure 4.7 Synthetic scheme for Cfz-OH (9) 

These compounds including Cfz-OH (9) were synthesized by Dr. Deepak Bhattarai. 
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Figure 4.8 Effects of various substitutions at the P1′site of the compound on the 

potency in Cfz resistant cells  

The potency (IC50 values) for compounds with various substitutions at the P1′site 

against proteasome chymotrypsin-like activity (RPMI8226 cell lysate), LMP2 activity 

(purified human 20S immunoproteasome), and cell viability of H23, H727, and Cfz-

resistant RPMI8226 cells. Data reported as the mean ± SD (carfilzomib, n = 3 

independent experiments) or from a single experiment (3 replicates, 7, 9, and 12). 
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4.3.6 Cfz-OH has improved metabolic stability compared to Cfz 

 

Due to the presence of peptidase and microsomal epoxide hydrolase (mEH) enzymes 

throughout many of the body’s tissues, the peptide epoxyketone inhibitor carfilzomib 

is metabolized extremely rapidly, likely contributing to poor activity against solid 

tumors [285-287]. While cytochrome P450 is well known as a major enzyme to 

metabolize most of drugs, metabolites formed via P450 enzymes were only detected 

at very low levels. An in vitro study using rat tissue homogenates has confirmed that 

carfilzomib metabolism is not restricted to the liver and that lung, kidney, and heart 

tissues all possess the ability to rapidly degrade carfilzomib to its inactive metabolites. 

In the case of mEH, the active site harbors two conserved Tyr residues which may 

contribute to substrate specificity and orientation of substrates within the active site 

[288, 289]. The prototypical substrates of mEH include planar hydrophobic 

compounds such as various epoxides of polycyclic aromatic hydrocarbons and 

steroids [290]. It is thus expected that the epoxide ring of Cfz occupies the active site 

of mEH with a position suitable for hydrolysis to yield Cfz-diol (Figure 4.9). We 

hypothesized that the addition of a hydroxyl group adjacent to the epoxide ring of Cfz, 

Cfz-OH, may hinder the hydrolysis of the epoxide ring by inhibiting access to the 

active site of mEH. To assess whether Cfz-OH has indeed an improved metabolic 

stability over Cfz, we compared the rate by which Cfz-OH or Cfz disappears in the 

presence of rat liver homogenates, as previously reported [282]. In the presence of 

rat liver homogenates, Cfz-OH was metabolized much more slowly than Cfz. In this 

case ~40% of Cfz-OH remained unmetabolized at 5 minutes as compared to just 7% 

of carfilzomib (Figure 4.9). Based on these preliminary results we found Cfz-OH was 

indeed more stable than Cfz. 
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Figure 4.9 The metabolic stability of CFZ-OH 

A.  Schematic depicting the rapid metabolism of Cfz by microsomal epoxide hydrolase 

(mEH) to the inactive diol. B. Quantification of the remaining levels of Cfz or 9 

following the incubation with rat liver homogenate containing active mEH and 

peptidase activities for 5, 10, and 20 minutes respectively. Data presented as mean ± 

SD. This experiment was performed by Zi Soo Yoo from Wooin’s group in the College 

of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National 

University, Korea.  

A 

B 
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4.4 Discussion 

It is now well-understood that proteasome inhibitor resistance, either de novo 

or acquired, is a major limitation associated with the clinical use of PI drugs in treating 

cancers. In patients with refractory/relapsed MM, response rates for Btz and Cfz are 

less than 50% and 25%, respectively. Although the response rates can increase to 

~70-90% when combined with other drugs including lenalidomide, all patients 

inevitably develop resistance to therapy and have a dismal prognosis once resistance 

emerges. While several PI resistance mechanisms have been proposed so far, their 

clinical relevance is yet to be validated. Currently, the lack of the mechanistic 

understanding of PI resistance is a major obstacle in improving MM patient care.   

Mounting evidence has demonstrated that the proteasome remains necessary 

for cancer cells survival regardless of their resistance to PI drugs. The proteasome 

plays important roles in various cellular functions and to date there appears no 

pathway which can fully compensate for the loss of proteasome function. Several 

reports supported that proteasome inhibition may offer therapeutic gains even in 

patients with MM relapsed/refractory to currently used PIs in clinic.  

In this study, we used two type of PI resistant cancer cell lines, de novo Cfz 

resistant H727 cells or acquired Cfz resistant RPMI 8226/CfzR, U266/CfzR cells. We 

identified an effective proteasome inhibitor compound against both de novo or 

acquired Cfz resistant cell lines. We found that epoxyketones with P1′ substituents 

can overcome both de novo and to a lesser degree, acquired Cfz resistance in cell line 

models. It is well known peptide epoxyketones harbor greater selectivity in their 

interactions with the proteasome catalytic subunit by forming an 1,4-oxazepane 

adduct with the N-terminal catalytic threonine residue of the proteasome [75], 

leading to the improved safety profiles of Cfz over other classes PIs including the 

peptide boronate Btz. We believe that the compound with improved metabolic 

stability and ability to overcome resistance mechanisms may offer valuable 

knowledge for further drug development. Future studies will address the in vivo 
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efficacy and metabolic stability of epoxyketones with previously underexplored P1′ 

substituents that can overcome both de novo and acquired Cfz resistance. 
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CHAPTER 5. A SELECTIVE INHIBITOR OF THE IMMUNOPROTEASOME SUBUNIT 

LMP2 ATTENUATES DISEASE PROGRESSION IN MOUSE MODELS OF 

ALZHEIMER’S DISEASE  

Some of the work in this chapter has been submitted to Nature Chemical Biology. 

5.1 Introduction 

  Alzheimer’s disease (AD), the most common form of dementia, is a 

degenerative disorder of the brain that leads to memory loss. AD is a progressive, 

neurodegenerative disorder and is the sixth-leading cause of death across all ages. 

Currently there is there is no cure for AD, however, promising research and 

development for early detection and treatment is underway. Over the past decades, 

new therapeutic approaches targeting amyloid-β (Aβ) have been discovered and 

developed with the hope of modifying the natural history of AD. However, none of 

these drugs resulted in the positive cognitive improvement in most recent high-

profile phase III clinical trials [171], raising the doubt about amyloid hypothesis. In 

addition to extracellular Aβ, intraneuronal neurofibrillary tangles (NFT) composed of 

hyperphosphorylated tau protein have been also identified as a major hallmark of AD, 

leading active development of AD therapies targeting tau aggregation. Unfortunately, 

anti-tau therapies are also not available yet [291]. Therefore, it is highly timely and 

important to design disease-modifying drugs that are not reliant on the amyloid or 

tau hypothesis and to validate their therapeutic potential in pre-clinical and clinical 

studies. 

The 26S proteasome, an evolutionarily-conserved multiprotease complex, is 

largely responsible for controlled degradation of intracellular proteins, ranging from 

defective ribosomal products (DRiPs) to signaling proteins regulating numerous 

cellular processes (e.g., cell cycle control, immune response, apoptosis, stress 

response)[292]. Once poly-ubiquitinated, substrate proteins are recognized by the 
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19S regulatory particle and degraded by the 20S core particle of the 26S proteasome. 

In response to cellular stress or pro-inflammatory cytokines such as TNF-α or 

interferon (INF)-γ, cells upregulate variant forms of proteasome catalytic subunits, 

known as immuno-subunits (β1i/LMP2, β2i/MECL-1, β5i/LMP7). The resulting 

immunoproteasome (IP) harbors the immuno-subunits LMP2 and MECL-1 and LMP7 

instead of constitutive counterparts Y, Z and X, respectively. 

A previous study demonstrating the depletion of immunoproteasomes 

showed major changes in antigen presentation, indicating a fundamental role of the 

IP in antigen presentation by major histocompatibility complex (MHC) I class [293]. 

In addition, the IP also manages oxidative stress via degradation of misfolded and 

oxidant-damaged proteins [45]. In addition, LMP7, an immunoproteasome subunit, 

has been considered as an attractive therapeutic target for autoimmune disease due 

to the ability of regulating pro-inflammatory cytokine production in human tissues 

(T-cells, B-cells, neutrophils, monocytes etc)[52-57, 80]. LMP7-selective inhibitors 

(ONX0914, KZR-616) are currently in early phase clinical development for the 

treatment of rheumatic diseases, such as lupus nephritis (LN). For LMP2, there have 

been a few reports suggesting its involvement in processing of NFκB precursors 

(p100/p105) and degradation of IκBα [58-60]. However, recent studies dispute the 

involvement of LMP2 in inflammatory responses [56, 294 295]. 

Increasing evidence support an important role of inflammation in AD, thus 

many efforts to develop anti-inflammatory drugs targeting inflammation yielded 

several COX or TNF-α inhibitor for AD treatment. However, there is no clinically 

available AD therapies relied on inflammation so far [190]. While the role of IP in 

neuroinflammation is not clearly understood, it has been observed the elevated 

expression and activity of IP is correlated with enhanced microglial activation in AD 

patients and in a mouse model of brain injury [240-243]. Most recently, Wagner et al. 

reported LMP7 knockout improved cognitive impairment in a mouse model of Aβ 

deposition through altering microglial cytokine production profiles, suggesting a 

potential role of IP in Aβ-induced neuroinflammation [51]. In addition, moderate up-

regulation of LMP2 expression in AD patients was also reported [244]. Despite these 
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data suggesting the involvement of IP in neuroinflammatory responses and 

therapeutic potential for AD treatment, the pharmacological inhibition of LMP7 or 

LMP2 has never been tested for the impact on AD pathology.  

In this study, we investigated the effect of LMP2 inhibition on the symptom of 

AD, cognitive dysfunctions, in two different AD mouse models, LPS-induced 

inflammation model and APP transgenic mouse model. We found that a peptide 

epoxyketone inhibitor YU102 targeting LMP2 improved cognitive function in both of 

AD mouse models. These results were not affecting Aβ deposition or tau aggregation 

in a mouse model. Our in vitro cell line model data also showed YU102 suppresses 

production of pro-inflammatory cytokines. In summary, YU102 improves cognitive 

dysfunction by inhibiting pro-inflammatory cytokine production in microglial cells 

and these findings suggest that LMP2 may offer a valuable therapeutic target for AD 

treatment. 

 

5.2 Material and Methods 

5.2.1 Cells  

BV-2, EOC BV-2, EOC-20, and WI-38 cells were seeded at 5,000 cells/well and RPMI 

8226 cells. The murine microglial BV-2 cell line was a kind gift of Dr. Jin Tae Hong 

(College of Pharmacy, Chungbuk National University, Korea). The murine microglial 

cell line EOC-20, a human myeloma cell line RPMI 8226, and a human lung fibroblast 

cell line WI-38 cell line were obtained from American Type Culture Collection. BV-2 

cells were cultured in DMEM containing 10 % fetal bovine serum, and 1 mM pyruvate. 

All other cells were cultured according to the manufacturer’s protocol in 5% CO2 in 

medium. Cultured cell lines were tested for Mycoplasma contamination routinely 

every 2 months. BV-2 cells or EOC-20 cells were seeded at 2.5 × 105 cells/mL in 12-
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well plates and were activated by incubation in medium containing 1 µg/mL of E. coli 

055:B5 lipopolysaccharide (Thermo Scientific).  

 

5.2.2 Animals 

For YU102 efficacy studies, 9-month-old Tg2576 and 8-week-old ICR mice were 

purchased from the Division of Laboratory Animal Resources (Korea FDA, Osong, 

South Korea) and Samtako (Osan, South Korea), respectively. All animal studies were 

approved by Animal Care and Use Committee (IACUC) of Chungbuk National 

University (approval number: CBNUA-144-1001-01). Animals were housed three per 

cage, allowed access to water and food ad libitum, and maintained on a 12-h 

light/dark cycle regulated at 23°C. Experiments were performed at least 1 week after 

their arrival in individual home cages.  

 

5.2.3 Animal behavioral analysis 

5.2.3.1 The Morris watermaze test 

The Morris water maze test was performed following a procedure described 

previously [296]. Briefly, a circular plastic pool was filled with water maintained at 

22-25℃. An escape platform was submerged 1-1.5 cm below the surface of the water. 

The learning trials were conducted over 5 days, with three randomized starting 

points. The position of the escape platform was kept constant. Each trial lasted for 60 

sec or ended as soon as the mice reached the submerged platform. Swimming pattern 

of each mouse was monitored and recorded by a camera mounted above the center 

of the pool, and the escape latency, escape distance and swimming speed were 

assessed by the SMART-LD program (Panlab, Spain). A quiet environment and 

constant water temperature were maintained throughout the experimental period. 

To assess memory consolidation, a probe test was performed 24 hr after the water 

maze test (i.e. Day 6). For the probe test, the platform was removed from the pool and 
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mice were allowed to swim freely. The swimming pattern of each mouse was 

monitored and recorded for 60 sec using the SMART-LD program. Consolidated 

spatial memory was estimated by the time spent in the target quadrant area. 

 

5.2.3.2 The passive avoidance test 

The passive avoidance test was performed 48 hours after the probe test. The passive 

avoidance response was determined using a “step-through” apparatus (Med 

Associates Inc., Vermont, USA) that is divided into an illuminated compartment and a 

dark compartment (each 20.3 × 15.9 × 21.3 cm) adjoining each other through a small 

gate with a grid floor, 3.175-mm stainless steel rods set 8 mm apart. On the first day 

(i.e. Day 7), the mice were placed in the illuminated compartment facing away from 

the dark compartment for the learning trial. When the mice moved completely into 

the dark compartment, it received an electric shock (0.45 mA, 3 s duration). Twenty-

four hours after learning trial (i.e. Day 8), each mouse was placed in the illuminated 

compartment and the latency period until the animal entered the dark compartment 

was determined and defined as the step-through latency (i.e. Testing trial). The cut-

off time for the examination was 180 seconds. 

 

5.2.4 Tissue extraction from Tg2576 mouse 

The hippocampus was dissected from parasagittal brain slices; nucleus accumbens 

(NAc) and striatum were dissected from coronal brain slices; the ventral tegmental 

area (VTA) was dissected from horizontal brain slices. Tissues were homogenized in 

RIPA buffer (containing 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 5 mM MgCl2, 1 mM 

EDTA, 1% Triton X-100, 0.25% sodium deoxycholate, 0.1% SDS, 1 mM sodium 

orthovanadate, 5 mM β-glycerophosphate, 5 mM NaF and protease inhibitor cocktail), 

sonicated and incubated on ice for 30 min. The samples were then centrifuged at 

14,000g for 20 min and protein concentrations of the supernatant were determined 

by the Bradford method. 
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5.2.5 Proteasome activity assay 

5.2.5.1 Using the purified human 20S proteasome 

Purified 20S human proteasomes (from Boston Biochem) were used to assess the in 

vitro activity of proteasome inhibitors. In 96-well format, 20S proteasomes (0.5 

μg/mL) were mixed with proteasome inhibitors in assay buffer (20 mM Tris-HCl, 0.5 

mM EDTA, 0.035% SDS) at room temperature for 30 min, prior to the addition of 

fluorogenic substrates to a final assay volume of 100 μL. Fluorogenic substrates used 

in this study are: Suc-LLVY-AMC (CT-L activity, 100 μM), Ac-PAL-AMC (LMP2, 100 

μM), Ac-WLA-AMC (β5, 20 µM), Ac-nLPnLD-AMC (β1,100 µM), and Ac-ANW-AMC (β5i, 

100 µM). The fluorescence of liberated AMC was measured over a period of 90 min at 

360 and 460 nm on a SpectraMax M5 fluorescence plate reader (Molecular Devices). 

 

5.2.5.1 Using the isolated mouse tissue samples  

To measure proteasome activity in brain tissues isolated from Tg2576 mice, tissues 

were homogenized in RIPA buffer (50 mM Tris Cl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 

1% Nonidet P-40, 1% sodium deoxycholate, 0.1% SDS, 1% aprotinin, 50 mM NaF) and 

sonicated. Samples were then centrifuged for 20 min at 14,000g (4 °C). After the 

Bradford protein assay of the supernatant, samples were loaded onto a 96-well plate 

prior to the addition of the substrate (Ac-PAL-AMC) at 37 °C. Fluorescence was 

recorded for 90 min using a Synergy-HT (Bio Tek) plate reader. To exclude non-

proteasomal substrate degradation, control samples were incubated with YU102 (1 

μM) for 60 min at 37 °C before loading on the plate and values were subtracted from 

lysates incubated with DMSO control. 

 

5.2.6 Immunoblotting analysis 

Total cell lysates containing equivalent protein content were separated by 12% SDS-

PAGE and transferred to polyvinylidene difluoride membranes (Millipore) via a semi-
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dry transfer. Membranes were then blocked in 5% non-fat dry milk (Bio-Rad) in Tris-

buffered saline with 0.05% Tween-20 (TBST) for 1 h at room temperature. After 5 

times wash with PBS, membranes were probed with primary antibodies (anti-LMP2, 

anti-LMP7, and anti- β-actin, Abcam) in 3% BSA followed by a rabbit horseradish 

peroxidase-conjugated secondary antibody (GE Healthcare). β-actin was used as a gel 

loading control. SuperSignal West Femto Chemiluminescent Substrate (Thermo 

Scientific) and X-ray film (Thermo Scientific) were used for visualization. 

 

5.2.7 Measurement of Aβ 

Hippocampal Aβ1-42 levels were determined using an ELISA Kit (Cusabio Biotech Co., 

Ltd., Wilmington, DE, USA). Experiments were performed according to the 

manufacturer’s instructions. In brief, samples and standards were added into the pre-

coated plate and incubated for 2 hours at 37℃. Biotinylated antibodies (1x) were 

added to each well and incubated 1 hour at 37℃. After washing, HRP-avidin (1x) was 

added and incubated for 30 minutes at 37℃. After washing, TMB substrate was added 

to each well. After the addition of stop solution, the absorbance was measured at 450 

nm using a microplate reader (Sunrise™, TECAN, Switzerland). 

 

5.2.8 Thioflavin T staining 

Frozen hippocampal tissues were cut into 30 μm sections by using cryostat 

microtome (Leica CM1850; Leica Microsystems). The pieces of tissues were 

thoroughly washed with distilled water for 5 min, and then transferred to gelatin 

coated slides and placed in 1% Thioflavine T for 5 min, followed by dehydration using 

ascending grades of ethanol (50%, 70%, 90%, and 100%) for 2 min in each grade. The 

dehydrated samples were then mounted with mounting medium (FluoromountTM, 

Sigma). Thioflavin T staining was examined by using a fluorescence microscope. 
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5.2.9 Cresyl violet staining  

Frozen hippocampal tissues were cut into 30 μm sections by using cryostat 

microtome (Leica CM1850; Leica Microsystems, Korea). The pieces of tissues were 

thoroughly washed with PBS to remove excess fixative agent, and then transferred to 

gelatin coated slices and stained with 0.1% Cresyl violet (2-5 minutes) to identify 

cortical layers and cytoarchitectural features of isocortical region. Next, the resulting 

sections were washed with distill water and dehydrated by using ascending grades of 

ethanol (50%, 70%, 90%, and 100%) for 2 min in each grade followed by a 1-min 

immersion in a 1:1 mixture of absolute alcohol and xylene. The sections were then 

rinsed with xylene for 5-10 min and mounted with mounting medium (CYTOSEALTM 

XYL; Thermo Scientific, USA). The same areas of tissues were photographed (100x). 

 

5.2.10 Tau aggregation assay 

For microscopic image analysis, cells were plated in a black transparent 96-well plate. 

The next day, tau-BiFC cells were treated with the okadaic acid or forskolin at various 

concentrations. After, 2, 9, 19, and 24 hr of incubation, the entire 96-well plate was 

automatically imaged under same exposure by using Operetta® High Contents 

Screening System (equipped with a 10x and 20X dry lenses). The cellular intensities 

of tau-BiFC fluorescence were analyzed using Harmony 3.1 software. Error bars 

indicate s.d. from two independent experiments. Each experiment was performed as 

triplicate. 

 

5.2.11 Immunohistochemical staining 

Frozen hippocampal tissues were cut into 30 μm thick sections and stored free 

floating in cryoprotectant solution (30% ethylene glycol, 20% glycerol, 50 mM 

sodium phosphate buffer, pH 7.4) at 4 °C until further use. For immunohistochemical 

staining, sections were rinsed in 1× PBS, incubated in blocking buffer (1× PBS 
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containing 0.3% Triton X-100 and 10% normal goat serum) for 1 hr at room 

temperature and further incubated overnight with primary antibodies for GFAP 

(1:1000; Abcam) or Iba-1 (1:500; Abcam) diluted in 1× PBS/ 0.3% triton X-100/ 5% 

normal goat serum at 4 °C. Sections were washed with 1× PBS to remove excessive 

primary antibodies, incubated with species specific peroxidase-coupled secondary 

antibodies (goat anti-mouse or goat anti-rabbit (1:300, Abcam)) diluted in 1× PBS/ 

0.3% Triton X-100/ 5% normal goat serum. The resulting sections were incubated 

for 1 h on a shaker at RT and developed with liquid diaminobezadine (DAB) (Dako, 

K3647). Sections were then counterstained with matured hematoxylin, followed by 

dehydration in an ascending alcohol series before covering using Roti®-Histokitt II 

mounting medium. For Congo red staining, free-floating cerebral sections were 

mounted on glass slides and incubated in stock solution I (0.5 M NaCl in 80% ethanol, 

1% NaOH) for 20 min and subsequently stock solution II (8.6 mM Congo red in stock 

solution I, 1% NaOH) for 45 min. After rinsing twice in absolute ethanol, sections were 

counterstained with mature hematoxylin and dehydrated in ascending alcohol series 

before rinsing twice in 98% xylene for 1 min, and finally mounted with Roti®-

Histokitt II mounting medium. Stereological analysis was performed using a Stereo 

Investigator system (MicroBrightField) and DV-47d camera (MicroBrightField) 

mounted on an Olympus BX53 microscope (Olympus, Germany). Fluorescence 

imaging was performed using an Olympus XM10 monochrome fluorescence CCD 

camera (Olympus, Germany). 

 

5.2.12 Membrane-based cytokine array 

A cytokine antibody array assay was performed with a mouse cytokine array kit (R&D 

Systems) according to the manufacturer’s protocol. Briefly, BV-2 cells, seeded in a 12-

well plate at 2 x 105 cells per well, were incubated with 1 µg/mL of E. coli 055:B5 

lipopolysaccharide (Thermo Scientific) and  3 µM of YU102 or ONX 0914 for 24 hr. 

The supernatants from BV-2 cells were collected and centrifuged to remove cell 

debris. The resulting supernatants were then incubated with assay membranes 
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precoated with capture antibodies overnight at 4°C. After rinsing the membranes 

with wash buffer, a detection antibody was added using streptavidin–horseradish 

peroxidase (HRP) and Chemi Reagent Mix. The immunoblot images were visualized 

using SuperSignal West Femto Chemiluminescent Substrate (Thermo Scientific) and 

X-ray film (Thermo Scientific or GeneMate). 

 

5.2.13  Enzyme-linked immunosorbent assay (ELISA) 

BV-2 microglial cells (2.5 × 105 cells/well) were seeded in 12-well culture plates. After 

overnight incubation, cells were simultaneously treated with 1 µg/mL of E. coli LPS 

and various concentrations of YU102, YU102 epimer, or ONX 0914 for 24 h. 

Supernatants were analyzed for the quantification of released pro-inflammatory 

cytokines, using Mouse IL-1α, IL-6, or CCL12/MCP-5 uncoated sandwich ELISA Kit 

(Thermo Scientific) on high-binding ELISA plates according to the manufacturer’s 

protocol. Briefly, standards and samples were incubated on capture antibody coated 

plate for 2 h at room temperature, followed by incubation with detection antibody for 

1 h and then Avidin-HRP for 30 minutes. For visualization, substrate solution was 

added to each well, and then the reaction was stopped by the addition of stop solution 

(2N H2SO4). Absorbance was measured by ELISA microplate reader at 450 nm 

wavelength. 

 

5.2.14 RPE flat mounts 

Retinal pigment epithelium (RPE) of Tg2576 was isolated and incubated with β-

catenin (1:100 diluted) overnight at 4°C. After incubation with primary antibody, the 

RPE tissues were further incubated with Alexa 555-conjugated secondary antibody 

(Invitrogen; A21422; 1:1000 diluted) at room temperature for 2 hours. Sample was 

observed by using a confocal microscope (Carl Zeiss, LSM 800) 
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5.2.15 Cell-based RPE degeneration assay 

ARPE-19 cells were seeded at 80,000 cells/well in 24-well plate with auto-coverglass. 

Cells were treated with 50 ng/mL of TNF-α and incubated for additional 24 hr before 

treatment with vehicle, 1 μM of YU102 or YU102 epi. After incubation, cells were fixed 

with 4% paraformaldehyde for 1 h at room temperature. Cells were then blocked with 

3% BSA for 1 h after permeabilized with 0.2% Triton X-100 for 15 min. Cells were 

incubated overnight at 4°C with the primary antibodies (1:100; E-cadherin; Abcam; 

ab1416, 1:100; Vimentin; Abcam; ab92547) and treated with the fluorescence-

conjugated secondary antibodies (1:1000; Alexa Fluor 488 and 555) for 2 h at room 

temperature in the dark. The cells were washed 3 times with PBS for 10 min each 

after every step, and the nuclei were stained with DAPI (1:1000; Invitrogen, D1306). 

Cells were mounted on the coverslip with ProLong Gold antifade reagent (Invitrogen 

Life Technologies, P36934) and observed with a confocal microscope (Carl Zeiss, 

LSM800).       

  

5.2.16 Cell viability assay 

BV-2, EOC-20, and WI-38 cells were seeded at 5,000 cells/well and RPMI 8226 cells 

were seeded at 10,000 cells/well in 96-well plates. Following overnight incubation, 

cells were treated with carfilzomib, ONX0914 or YU102 at indicated concentrations 

for 72 h. Cell viability was determined by CellTiter 96 AQueous One Solution Cell 

Proliferation assay (Promega) following manufacturer’s protocol. Absorbance at 490 

nm was measured using a SpectraMax M5 microplate reader (Molecular Devices). 

 

5.2.17 Statistics 

Results are expressed as means  ±  S.D. Statistical significance of the observed group 

differences was determined using Student’s t-test or two-way ANOVA followed by 
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Dunnette’s post hoc test. Significance was set at p < 0.05 for all tests. All statistical 

analyses were carried out using GraphPad Prism 8.0.1 (GraphPad Software).  

 

5.3 Results 

5.3.1 YU102 improves cognitive function in an LPS-induced mouse model of 

neuroinflammation 

Since previous data suggested an increase in iP gene expression during aging 

and in plaque-associated glia cells in APP/PS1 mice we examined the impacts of 

proteasome inhibition on cognitive impairments using several subunit-selective 

proteasome inhibitors [240] (Figure 5.1A). We first ensured that cP or iP selective 

inhibitors displayed the expected inhibitory profile by conducting proteasome 

activity assays with subunit-selective fluorogenic substrates in purified human 20S 

constitutive and immunoproteasomes (Figure 5.1B). We set out to examine whether 

inhibition of IP activity might reduce or eliminate cognitive impairments caused by 

AD. For an initial assessment, we chose to use a lipopolysaccharide (LPS)-induced 

inflammation mouse model, known to display AD-like cognitive impairment [297, 

298]. Specifically, 8-week old ICR mice were treated with daily injections of LPS for 5 

days (250 µg/day), followed by i.p. delivery of iP-selective YU102 (10 mg/kg), PR-

924 (10 mg/kg), CP-selective PR-825 (2 mg/kg) or conventional PIs (carfilzomib 

5mg/kg, bortezomib 1 mg/kg) twice a week for 3 weeks. At the end of treatment 

period, the Morris water maze test was performed to evaluate cognitive functioning 

in mice. All mice were trained three times on the same day prior to daily 

measurements of escape latency and distance traveled over 5 consecutive days. Of 

note, none of the tested mice displayed any irregularity in their motility. 

Unfortunately, almost all the mice treated with general PIs (carfilzomib, bortezomib; 

inhibit both CP and IP) did not survive to complete the test. In contrast, the mice 
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treated with YU102 displayed no signs of overt toxicity and exhibited improved 

distance and escape latency compared to mice treated with LPS alone. Mice treated 

with PR-825 (X-selective) or PR-924 (LMP7-selective) displayed only mild 

improvement in performance relative to LPS-treated control mice (Figure 5.2 A&B). 

Next, we conducted probe trials to measure the ability of memory. As shown in Figure 

5.2C, YU102-treated group displayed the better performance, spending longer time 

in the target quadrant compared to the control groups. One day after the probe tests, 

we performed the passive avoidance assay by measuring an average step-through 

latency of YU102-treated group or control groups (vehicle only or LPS treated group) 

(Figure 5.3). Consistent with previous the Morris water maze assay data, YU102 

treated group showed the improved performance compared to LPS-treated group. 

This result was intriguing in that LMP2 inhibition through pharmacological inhibition 

or genetic knockout of LMP2 previously showed no effect on proinflammatory 

cytokine release from LPS-stimulated human PBMCs or mouse peritoneal 

macrophages [56, 294]. Taken together, we suggested that IP inhibition, especially 

LMP2 inhibition could improve cognitive impairment caused by a LPS-induced 

neuroinflammation. 
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Figure 5.1 Structures and Proteasome inhibitory activity of PIs 

A. structures of immunoproteasome inhibitors (YU102, PR-924), YU102 epimer (an 

inactive stereoisomer of YU102), and constitutive proteasome inhibitor (PR-825) are 

shown. B. Proteasome inhibitory activity profiles of YU102, YU102 epimer, PR-924, 

and PR-825 in human purified 20S proteasome are shown. Data is shown as mean ± 

SD derived from a non-linear regression based on n=3 replicates per compound per 

concentration. aIC50 values were determined from competition assays in Raji cell 

lysates [84]. bIC50 values were approximated from ProCISE assay using A20 murine 

lymphoma cells [52]. cIC50 values were from ProCISE ELISA using MOLT-4 human 

leukemia cells [332].   

A 

B 
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Figure 5.2 The Morris water maze tests in LPS-induced mouse model 

YU102 (10mg/Kg), PR-924 (10mg/kg), PR-825 (2mg/kg), carfilzomib (5mg/kg) and 

bortezomib (1mg/kg) were treated in LPS-induced mouse model. Mice treated 

carfilzomib or bortezomib could not survive. Escape latency time in the target 

quadrant (A) and escape distance (B) of the mice were shown. Statistical analysis was 

performed via two-way ANOVA. *Differences in escape latency on days 4-6 and 

distance on day 6 between LPS-treated and YU102 treated were statistically 

significant (p-value < 0.05, n=5). C. Tg2576 mice were evaluated in the probe trial. 

(This experiment was performed by In Jun Yeo from Dr. Jin Tae Hong’s group in the 

college of Pharmacy, Chungbuk National University, Korea) 

A 

C
 

B 
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Figure 5.3 The passive avoidance test in LPS-induced mouse model 

One day after the probe trials, LPS-induced mice were evaluated in passive avoidance 

test among vehicle only, LPS-injected (250 µg/day, for 5days), or LPS injected and 

then YU102-treated group (10mg/kg, twice a week for 3 weeks). (This experiment 

was performed by In Jun Yeo from Dr. Jin Tae Hong’s group in the college of Pharmacy, 

Chungbuk National University, Korea) 
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5.3.2 YU102 ameliorates AD-related cognitive impairment in the Tg2576 mouse 

model 

Encouraged by our initial assessment showing the promising activity of YU102 

in a mouse model of LPS-induced inflammation (Figures 5.2 and 5.3), we wanted to 

further verify its efficacy using a more relevant animal model of AD. To this end, we 

chose the APP transgenic mouse model (also known as Tg2576), which exhibit age-

associated deficits in learning and memory with Aβ deposits as a result of expression 

of KM670/671NL mutant human APP. To demonstrate target engagement and 

specificity of YU102, an inactive stereoisomer of YU102 (YU102 epi, a negative 

control) were also included. First, 10-month old APPsw mice (Tg2576 mice) were 

treated with YU102 via the intraperitoneal (i.p.) twice a week for 3 weeks and then 

the Morris water maze test was performed, followed by a single probe trial 24 hours 

later o and passive avoidance test to investigate the impacts of YU102 treatment on 

spatial learning and memory in a Tg2576 mouse model. Specifically, all mice were 

trained for three times for 5 days before behavior investigation. Initially, escape 

latency and distance traveled were measured on a daily-basis over a 5-day period. 

Remarkably, as shown in Figure 5.4, consistent with the results obtained from the 

LPS-induced inflammation model, mice treated with YU-102 exhibited significantly 

shorter distance and escape latency than those treated with inactive YU102 epi or 

vehicle (Figure 5.4 A & B). This strongly supports that the efficacy of YU102 is 

mediated through LMP2 inhibition. One day after the Morris water maze test, we next 

measured the ability of mouse to maintain memory on probe trials. In line with the 

results from the water maze tests, YU102-treated mice performed significantly better 

than control groups: the percentage of time spent in the target quadrant was 21.25 ± 

2.71% for YU102-treated group and ~10-14.50 ± 1.03% for control groups (Figure 

5.4C). Sequentially, a step-through latency test was performed a day after the probe 

trial. While Tg2565-vehicle treated group showed an average step-through latency of 

~44 sec, YU102-treated group had ~128 sec, displaying considerably improved fear-
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associated short-term memory, suggesting LMP2 activity improves cognitive function 

in Tg2576 mice (Figure 5.5).  
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Figure 5.4 The Morris water maze tests in Tg2565 mice 

YU102 ameliorates cognitive deficits in Tg2576 mice. Escape latency time in the 

target quadrant (A) and escape distance (B) were shown. Statistical analysis was 

performed via two-way ANOVA. *Difference in escape latency on days 4-5 or distance 

on days 3-5 between control and YU102-treated mice was statistically significant (p-

value < 0.05, n=8). C. Upon the completion of the Morris water maze test, Tg2576 mice 

were evaluated in the probe trial. Statistical analysis for probe trial was performed 

via Student-t test. Differences in time spent in target quadrant between control and 

YU102-treated mice were statistically significant (p-value < 0.05, n=8) (This 

experiment was performed by In Jun Yeo from Dr. Jin Tae Hong’s group in the college 

of Pharmacy, Chungbuk National University, Korea) 

A 
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Figure 5.5 The passive avoidance test in Tg2576 mice 

One day after the probe trials, Tg2565 mice were evaluated in passive avoidance test 

between vehicle only and YU102-treated group (10mg/kg, twice a week for 3 weeks). 

Statistical analysis for passive avoidance was performed via Student-t test. Difference 

in step through latency between control and YU102-treated mice were statistically 

significant (p-value < 0.05, n=8) (This experiment was performed by In Jun Yeo from 

Dr. Jin Tae Hong’s group in the college of Pharmacy, Chungbuk National University, 

Korea) 
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5.3.3 YU102 selectively inhibits LMP2 activity in the Tg2576 mouse model 

After behavioral testing, mice were sacrificed and proteasome activities in 

different organ tissues were measured to examine target engagement and specificity 

of YU102 by measuring the remaining LMP2 activity in mice. As shown in Figure 5.6, 

YU102 inhibited LMP2 but not Y or LMP7/X-associated proteasome activity 

(measured as the CT-L activity). This target engagement investigation was possible 

due to the irreversible covalent binding of YU102 to LMP2. It should be also noted 

that the family of peptide α,β-epoxyketones such as YU102 have been shown to be 

highly selective for the proteasome with no significant off-targets reported so far 44-

48. As such, we expect that YU102 will likely have no major off-target interactions. 

The relatively modest LMP2 inhibition observed in monitored tissues is likely due to 

the synthesis of new proteasome catalytic subunits during the gap between the final 

YU102 treatment and sacrifice. Taken together, the results support that selective 

inhibition of LMP2 activity improves cognitive function in the APP transgenic mouse 

model of AD. 
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Figure 5.6 The proteasome activities in organ tissues collected from Tg2565 

mice 

Upon the completion of the behavior test, proteasome activities in heart and lung 

collected from Tg2576 mice treated with vehicle, YU102 (10 mg/kg), or YU102 

epimer (10 mg/kg) were measured using fluorogenic substrates. Error bars are 

standard deviation derived from three technical replicates. *Differences in LMP2 

inhibitory activity in spleen, liver, heart, and lung tissues between YU102-treated and 

YU102 epi-treated group were statistically significant (p-value < 0.05, n=3). 
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5.3.4 YU102 exerts its efficacy independently of Aβ deposition  

Given the data showing improved learning and memory of LMP2 inhibitor-

treated mouse models of AD, we initially suspected that YU102 exert their activity by 

promoting Aβ clearance in the brain of Tg2576 mice via an undefined mechanism. To 

examine such a possibility, we measured the levels of soluble Aβ in hippocampal 

tissues isolated from the brain of Tg2576 mice using an enzyme-linked 

immunosorbent assay (ELISA) and levels of amyloid fibrils were measured via the 

fluorescent dye Thioflavin T. Interestingly, we observed no difference in Aβ 

deposition between the mice treated with YU102 and vehicle-treated mice (Figure 

5.7 A & B). The results can be cautiously interpreted that YU102 may exert its anti-

AD efficacy in the Tg2576 model independently of Aβ deposition or clearance. This 

result is highly intriguing considering that several drugs with proven Aβ-clearing 

ability have failed to demonstrate clinically meaningful efficacy in recent high-profile 

phase 3 clinical trials [171]. 
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Figure 5.7 Efficacy of YU102 in Tg2576 mice on Aβ deposition 

A. ELISA-based quantification of Aβ1-42 in hippocampal tissues isolated from Tg2576 

mice. The difference in the levels of Aβ1-42 between vehicle control and YU102-treated 

mice was not statistically significant (p-value > 0.1, n=3). Statistical analysis of ELISA 

results was performed via Student t-test. B. Thioflavin T staining of Aβ fibrils in 

hippocampal tissue sections from Tg2576 mice.  (This experiment was performed by 

In Jun Yeo from Dr. Jin Tae Hong’s group in the college of Pharmacy, Chungbuk 

National University, Korea)  

A 

B 
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5.3.5 Efficacy of YU102 is unrelated to tau or neuroprotection 

5.3.5.1 Effect of YU102 on Tau aggregation 

 

Tau polymerization has been considered as one of main culprits behind AD 

etiology and a potential target for therapeutic intervention [299]. In Tg2576 mice, 

hyperphosphorylated tau oligomerizes in an age-dependent manner that coincides 

with the appearance of Aβ oligomers and declining cognitive function [300-304]. 

Given this, we wondered whether YU102 exerts its anti-AD efficacy by inhibiting the 

oligomerization of hyperphosphorylated tau. To quickly test this possibility, we used 

HEK293-tau-BiFC (bimolecular fluorescence complementation) cell-based assay, in 

which tau oligomerization and aggregation induced by an activator of protein kinase 

A (PKA) such as forskolin or thapsigargin can be detected via the reconstitution of the 

fluorescent protein Venus.  As shown in Figure 5.8, YU102 did not inhibit thapsigargin 

or forskolin-induced tau aggregation. Low tau-BiFC intensity observed at high 

concentration of LMP2 inhibitors (30-100µM) were due to cell death. Taken together, 

these results demonstrate that the YU102-induced improvement in cognitive 

behavior in Tg2576 mice is independent of Aβ deposition and tau aggregation. 

 

5.3.5.2 Effect of YU102 on neuroprotection 

Since accumulation of misfolded proteins such as Aβ in cells induces immune 

response and cell death, we next tested whether YU102 has neuroprotective effects 

in Tg2576 mice. To examine this, we performed Cresyl violet staining experiments on 

neuronal tissues isolated from the brains of Tg2576 mice. We found no noticeable 

difference in the total number of neurons between mouse groups treated with YU102, 

YU102 epi, or vehicle (Figure 5.9). Although we found no evidence that YU102 affects 

neuron survival, these results could also be affected by the relatively short drug 

treatment period (~3 weeks). 
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Figure 5.8 Efficacy of YU102 in Tg2576 mice on tau aggregation 

YU102 has no effect on tau aggregation. Thapsigargin (1µM) or forskolin (1µM) 

induces tau aggregation in tau-BiFC cells, activating a tau BiFC fluorescence signal 

that can be detected. (This experiment was performed by Hyun Jung Jeong from Dr. 

Yun Kyung Kim at KIST, Korea.) 
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Figure 5.9 Efficacy of YU102 in Tg2576 mice on neuroprotection 

YU102 displays no neuroprotective effects during the experimental period. 

Hippocampal tissues isolated from the brains of Tg2576 mice were stained with 

Cresyl violet, a marker for Nissl substance in neurons. (This experiment was 

performed by In Jun Yeo from Dr. Jin Tae Hong’s group in the college of Pharmacy, 

Chungbuk National University, Korea.)  
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5.3.6 YU102 reduces the number of reactive astrocytes and microglia in Tg2576 mice 

Neuroinflammation is reported to be closely linked to the development and 

progression of AD and inflammation in the brain is characterized by the activation of 

neuroglia cells (microglia and astrocytes), which was considered as a major culprit 

behind AD pathology and a key drug target in neurodegenerative diseases [249, 305-

307]. Also, Aβ and LPS have been shown to distinctly alter cytokine production 

profiles and induce innate immune signaling and microglial activation [308-311]. 

Therefore, we set out to investigate whether YU102 blocks the activation of glial cells 

in brain tissues of Tg2576 mice. When immunostaining for GFAP and Iba1, known 

markers of reactive astrocytes and microglia, respectively, was performed, we 

observed that the numbers of positively stained cells in hippocampal tissues were 

significantly fewer in mice treated with YU102 than in the control group (Figure 

5.10A). COX-2 also known as a proinflammatory enzyme is overexpressed in human 

AD and mouse AD models [312-314]. As shown in Figure 5.10B, expression of COX-2 

was also significantly lower in hippocampal tissues of mice treated with YU102 

compared to control mice. Taken together, these data suggest that LMP2 is involved 

in the activation of glia cells and that LMP2 inhibition suppresses activation of 

astrocytes and microglia and thus suppresses neuroinflammation. 
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Figure 5.10 YU102 reduces the numbers of activated astrocytes and microglia 

A. Reactive astrocytes (left) and microglial cells (right) were visualized using 

respective markers (GFAP and Iba1) in hippocampal tissues from Tg2576 mice. B. 

Expression levels of COX-2 in hippocampal tissues in Tg2576 mice treated with 

YU102 are lower than in the control Tg2576 mice. (This experiment was performed 

by In Jun Yeo from Dr. Jin Tae Hong’s group in the college of Pharmacy, Chungbuk 

National University, Korea)  

A 

B 
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5.3.7 LMP2 inhibition attenuates pro-inflammatory cytokine production in microglial 

cells 

5.3.7.1 Membrane-based cytokine array 

 

It is well-documented that activated microglia synthesize and release pro-

inflammatory cytokines and play an important role in AD progression. Furthermore, 

secretion of pro-inflammatory cytokines by microglia and associated changes in 

phagocytic and neuroprotective properties are a major contributing factor to the 

recently recognized “cellular” phase of Alzheimer’s disease [315, 316]. Since YU102 

reduced the number of activated microglia cells in Tg2576 mice, we suspected that it 

could exert their anti-AD efficacy by suppressing pro-inflammatory cytokine 

production. Therefore, we examined whether YU102 can suppress the production of 

pro-inflammatory cytokines in microglial cells. To do this, we used an immortalized 

murine microglial cell line BV-2, commonly used as a substitute for primary microglia 

in many experimental settings [317]. BV-2 cells were pre-incubated with YU102 for 

2 hr before LPS treatment to upregulate cytokines. After additional 24 hr incubation, 

cell supernatants were collected and analyzed for the levels of 40 cytokines and 

chemokines using a membrane-based mouse cytokine antibody array (Figure 5.11A). 

BV-2 cells treated with LPS only exhibited elevated levels of multiple pro-

inflammatory cytokines and chemokines compared to unstimulated cells (Figure 5.11 

B & C). As previously reported, ONX 0914, a selective inhibitor of immuno-subunit 

LMP7, suppressed LPS-induced production of pro-inflammatory cytokines, such as 

IL-1β, CCL12/MCP-5, IL-6 and CCL5/RANTES [52]. Similarly, YU102 also significantly 

attenuates production of IL-1α, CCL12/MCP-5, and to a lesser degree, IL-6 which were 

induced by LPS. The result that YU102, a LMP2 inhibitor, strongly suppressed the 

production of several proinflammatory cytokines was highly intriguing. Previously, 

inhibitors of LMP2, such as KZR-504, displayed little to no suppression of cytokine 

production (e.g. IL-1β, IL-6, IL-8, TNF-α) in human peripheral blood mononuclear 

cells (PBMCs) [56]. We suspect these contradictory results are due to cell type 
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(organ)-specific role of LMP2, indicating a distinct role of LMP2 in microglia 

inflammatory response. Altogether, these findings demonstrate that inhibition of 

LMP2 ameliorates disease in mouse models of AD and may offer a promising strategy 

for AD treatment. 

 

5.3.7.2 Enzyme-linked immunosorbent assay (ELISA) 

Since we observed the effect of YU102 on the production of pro-inflammatory 

cytokines and chemokines in LPS-stimulated BV-2 microglial cells using a mouse 

cytokine membrane array, we further verified the effect of YU102 on microglia 

cytokine release in vitro by measuring the levels of individual cytokines in LPS-

stimulated BV-2 cells treated with vehicle or YU102 via enzyme-linked 

immunosorbent assay (ELISA). Consistent with membrane-based cytokine array, as 

shown in Figure 5.12, LPS-activated BV-2 cells secreted significantly increased 

amounts of pro-inflammatory cytokines IL-α and IL-6 and mildly upregulated the 

level of pro-inflammatory chemokine CCL12. Most notably, inhibition of LMP2 by 

YU102 substantially attenuated the levels of IL-α, IL-6, and CCL12 production. Taken 

together, our results suggest a specific role for LMP2 in modulating the glial response 

during LPS-induced neuroinflammation. 
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Figure 5.11 Mouse cytokine array in microglial BV-2 cells  

A 

B 
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Figure 5.11 Mouse cytokine array in microglial BV-2 cells (continued)  

Suppression of cytokine production by YU102 in LPS-stimulated BV-2 cells. A. 

Cytokine and chemokine protein array blots of BV-2 cells treated with vehicle, LPS 

(1µg/mL) alone, and YU102 (3µM) or ONX0914 (3µM) with LPS (1µg/mL). B. The 

amount of each cytokine or chemokine was relative to the mean of the intensity of 

corresponding spots from vehicle control sample. Each cytokine or chemokine has 

duplicate detection spots. Graph depicts the fold change of each cytokine or 

chemokine (mean). Arrow labels indicate cytokines that are most significantly 

impacted by YU102. C. Full suppression profile of cytokine production by YU102 in 

LPS-stimulated BV-2 cells using a mouse cytokine array kit (R&D Systems). The 

amount of each cytokine or chemokine was relative to the mean of the intensity of 

corresponding spots from vehicle control sample. Each cytokine or chemokine has 

duplicate detection spots. The graph depicts the mean spot pixel density from the 

arrays using Quantity One software (Bio-rad) analysis. 
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Figure 5.12 Enzyme-linked immunosorbent assay (ELISA) in BV-2 cells  

Cytokine production in LPS-stimulated BV-2 cells with and without YU102 was 

determined by ELISA. Effect of YU102 on the release of cytokines in LPS-stimulated 

BV-2 cells. BV-2 cells were incubated with LPS (1µg/mL) and YU102 or YU102 epimer 

for 24 h. All values are expressed as mean ± SEM from three independent experiments. 

*Differences in suppression of IL-1α and IL-6 levels between YU102-treated and 

YU102 epi-treated group were statistically significant (p-value < 0.05, n=3).   
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5.3.8 YU102 selectively inhibits LMP2 subunit in microglial cells 

In line with selectivity data of YU102 in different organ tissues isolated from 

Tg2576 mice after behavior test, we confirmed selective LMP2 inhibition by YU102 

using microglial cell line model BV-2 cells. First, we conducted proteasome activity 

assay with subunit-selective fluorogenic substrates in BV-2 cells. YU102 significantly 

inhibits LMP2 subunit at low concentrations (0.1 and 0.3µM), while ONX0914, a 

LMP7-selective inhibitor, achieved > 50% inhibition of both LMP2 and LMP7 activity 

at 0.3µM concentration in BV-2 cells (Figure 5.13A). We next assessed the specificity 

of YU102 toward the LMP2 subunit by mobility shift assays with western blot to 

visualize the YU102-LMP2 covalent adduct (Figure 5.13B). For mobility shift assay, 

where indicated, BV-2 cells were treated with DMSO, 0.1-3µM YU102 or YU102 

epimer for 4 h. For competition assay, BV-2 cells were pre-treated with 1µM YU102 

for 1 h, prior to the addition of the addition of 0.1-3µM YU102 epimer. The covalent 

binding of YU102 to LMP2 is shown by a complete upward shift of the LMP2 band in 

BV-2 cells upon treatment with YU102 compared to YU102 epimer. Conversely, 

covalent modification of proteasome catalytic subunits LMP7 and X by YU102 was not 

observed (data now shown). These results clearly showed that YU102 covalently 

binds LMP2, but not the other catalytic subunits of proteasomes in BV-2 cells, 

indicating its high specificity toward the LMP2 subunit.  
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Figure 5.13 Selectivity of YU102 in BV-2 cells  

A. Remaining catalytic activities of individual subunits in LPS-stimulated BV-2 cells 4 

h after treatment with YU102 (top) or ONX0914 (bottom) at various concentrations. 

Data are presented as mean ± SEM from three independent experiments. B. 

Visualization of target engagement via immublotting YU102: LMP2 covalent adduct 

on the SDS-PAGE. BV-2 cells were treated with YU102 for 1 h at 0.3, 1, or 3µM 

concentrations.   

A 
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5.3.9 Broad impacts of YU102 on neuroinflammatory disorders in Tg2576 mice 

Several recent studies demonstrated that Aβ deposits are consistently found 

in the retina from patients with age-related macular degeneration (AMD) and can be 

positively correlated with the disease progress [318]. In addition, it has been 

reported that inflammation triggered by Aβ is a major contributor to RPE (retinal 

pigment epithelium) abnormalities in APP transgenic animal models including 

Tg2576 [319-321]. Given this, we investigated the effects of YU102 on RPE 

degeneration in Tg2576 mice, a characteristic of age-related macular degeneration 

(AMD) [318]. RPE samples were collected from Tg2576 mice treated with vehicle, 

YU102, or YU102 epi and subjected to immunohistochemical staining with an anti-β-

catenin primary antibody followed by Alexa 555-conjugated secondary antibody. As 

shown in top, Figure 5.14, the orderly mosaic structure of RPE typically observed in 

non-transgenic mice was severely damaged in Tg2576 mice treated with vehicle only, 

as previously reported [322]. However, YU102 provided Tg2576 mice with almost 

complete protection from RPE damage, showing the typical mosaic structure of RPE 

(middle, Figure 5.14). In contrast, YU102 epi (an inactive stereoisomer of YU102) 

provided no protection from RPE mosaic disruption (bottom, Figure 5.14), indicating 

that YU102 protected the structure integrity of retina from degeneration through 

LMP2 inhibition. 

 

 

5.3.10 The effect of YU102 on human RPE cells degeneration 

In order to further verify in vivo observation in Figure 5.13, we conducted in 

vitro studies using the human RPE cell line ARPE-19, known to form a mosaic-like 

monolayer. Inflammatory stimuli, such as TNF-α, induce epithelial-to-mesenchymal 

transition (EMT) with concomitant morphological and molecular changes in ARPE-

19. Normal ARPE-19 cells maintain the epithelial morphology and show high 

expression of E-cadherin in cell-cell junction with little expression of Vimentin in the 
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cytoplasm [323]. However, in response to TNF-α, ARPE-19 cells underwent EMT and 

exhibited downregulation of E-cadherin and overexpression of Vimentin in the 

cytoplasm. Notable, when the RPE cells were treated with LMP2 inhibitor, YU102, 

TNA-α-induced EMT was significantly suppressed through the maintenance of E-

cadherin expression and inhibition of Vimentin expression (Figure 5.15). These 

results suggest suppression of TNF-α-induced inflammatory response. These findings 

are in line with a previous report that in response to TNF-α, RPE cells isolated from 

LMP2 knockout mice exhibit diminished NF-κB activation [324]. In summary, the 

result supports that LMP2 inhibition may control inflammatory response of RPE cells 
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Figure 5.14 Effect of YU102 on in vivo RPE degeneration  

YU102 inhibits in vivo RPE (retinal pigment epithelium) degeneration. RPE from eyes 

of Tg2576 mice treated with vehicle, YU102 or YU102 epi were isolated and 

immunostained to establish boundaries of RPE monolayers. (This experiment was 

performed by Areun Baek from Dr. Dong Eun Kim’s group in the department of 

Bioscience and Biotechnology, Konkuk University, Korea)   
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Figure 5.15 Effect of YU102 on in vitro RPE degeneration 

YU102 inhibits in vitro RPE degeneration. EMT in the human RPE cell line ARPE-19 

was induced by TNF-α. TNFα-induced EMT in ARPE-19 cells was attenuated by 

YU102 but not YU102 epimer. EMT is detected by upregulation of vimentin and 

downregulation of E-cadherin. (This experiment was performed by Areun Baek from 

Dr. Dong Eun Kim’s group in the department of Bioscience and Biotechnology, 

Konkuk University, Korea)   
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5.3.11 YU102 has no cytotoxic effect 

It is critical that LMP2 inhibition leads no major adverse effects in the body for 

the use of chronic AD therapy. Throughout our in vivo efficacy studies of YU102, we 

observed no signs of overt toxicities in mice treated with YU102. To further verify the 

non-toxicity of YU102 in cell culture, we incubated a panel of cell lines (WI-38, a 

human lung fibroblast cell line; RPMI 8266, a human myeloma cell line; BV-2 and EOC-

20, two murine microglial cell lines) with YU102, ONX 0914 (an LMP7 inhibitor), or 

carfilzomib (an FDA-approved inhibitor targeting multiple proteasome subunits 

including β5 and β5i, a positive control known to induce cell death) for 2-3 days. We 

then performed cell viability assays using CellTiter 96 AQueous One Solution. YU102 

showed no negative impact on the viability of all four cell lines at relevant 

concentrations (Table 5.1 and Figure 5.16). In comparison, ONX 0914 was much more 

toxic to these cell lines than YU102 and has a low therapeutic margin. Intriguingly, 

activation via LPS pretreatment further sensitized the two microglial cell lines (BV-2, 

and EOC-20 cell lines) to ONX0914, not to YU102, which is in line with previous 

reports demonstrating near complete cell death in a primary neuron model with 48 

hours of 500 nM ONX0914 (Figure 5.16) [325]. Taken together, these results 

potentially indicate that LMP2 inhibition may offer a safer therapeutic strategy for 

neurodegenerative diseases than LMP7 inhibition. 
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Table 5.1 Cytotoxicity of proteasome inhibitors in BV-2, EOC20, RPMI 8226, 
and WI-38 cells 
 

Inhibitor 
Cell viability (IC50, nM) 

BV-2 EOC-20 RPMI8226 WI-38 

Carfilzomib 1576.2 
± 300.8 

781.1 
± 154.7 

8.7 
± 3.1 

17.9 
± 5.9 

ONX 0914 1,327 
± 374.8 

1030 
± 552.3 

154.1 
± 23.4 

682.7 
± 66.4 

YU102 ˃10,000 ˃10,000 ˃10,000 ˃10,000 

 
Data is shown as mean ± SD derived from a non-linear regression based on n=3 

replicates per compound per concentration 
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Figure 5.16 Cell viability graphs for YU102, and ONX0914 in various cell lines 
EOC-20 and WI-38 cells were seeded at 5,000 cells/well and RPMI 8226 cells were 

seeded at 10,000 cells/well in 96-well plates. Following overnight incubation, cells 

were treated with YU102 or ONX0914 at indicated concentrations for 48 h (EOC-20 

with or without 24h 1µg/mL LPS pretreatment) or 72 h (RPMI 8266 and WI-38). Cell 

viability was determined by CellTiter 96 AQueous One Solution Cell Proliferation 

assay (Promega) following manufacturer’s protocol. Absorbance at 490 nm was 

measured using a SpectraMax M5 microplate reader (Molecular Devices). 
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5.4 Discussion 

Alzheimer’s disease is increasing rapidly in frequency as the world’s population 

ages and more people enter the major risk period for this age-related disorder. 

Current drug treatment for AD patients, essentially symptomatic, is based on three 

cholinesterase inhibitors (rivastigmine, donepezil and galantamine) and memantine, 

affecting the glutamatergic system. These drugs do not represent a cure, as they do 

not arrest the progression of dementia, but rather, they lead to a temporary 

slowdown in the loss of cognitive. In recent years, several drug candidates (either 

monoclonal antibodies or small molecules) have been pursued based on the amyloid 

hypothesis. However, none of these drugs displayed meaningful cognitive 

improvement in phase III clinical trials, threatening the validity of the amyloid 

hypothesis. Therefore, new therapies are urgently needed to treat affected patients 

and to prevent, or improve the symptoms of AD. 

In the current study, we report that YU102, inhibiting LMP2 subunit selectively 

in brain, ameliorates memory dysfunction in Tg2576 independent of Aβ deposition 

and tau aggregation. In addition, we demonstrated that YU102 blocks activation of 

astrocytes and microglia in Tg2576 mice and inhibits LMP2 subunit selectively in BV-

2 microglia cells with high specificity. We also utilized a mouse cytokine array kit and 

ELISA assays, measuring the levels of pro-inflammatory cytokines and chemokines 

response following LPS-induced microglial activation in cells. Our data showed that 

YU102 suppresses the production of IL-1α, IL-1β, IL-6, and CCL12 in microglial cells, 

which are important factors involved in the progression of neuroinflammatory 

disease, indicating LMP2 inhibition can exhibit anti-neuroinflammatory activity in 

vitro by attenuating the production of pro-inflammatory cytokines and chemokines. 

This result was particularly surprising given previous reports demonstrating that 

LMP2-selective inhibitors have no effect on pro-inflammatory cytokine production 

25 or NF-kB activation in human PBMCs or cancers [56, 295]. In microglial BV-2 cells, 

the potent LMP7-selective inhibitor ONX 0914 appears to be nearly as effective in 

suppressing pro-inflammatory cytokine production as YU102. At the same time, ONX 
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0914 was much more cytotoxic than YU102 in all tested cell lines. Overall, it seems 

that LMP2 may offer a better therapeutic target than LMP7 for the development of 

drugs to treat neurodegenerative diseases. 

Several studies have shown that Aβ deposition was detected in the retinas, 

which might be responsible for the pathogenesis of AMD by causing RPE 

degeneration from different AD transgenic mouse models, resulting in both functional 

and structural retinal abnormalities [319, 326-330]. In this study, we also observed 

RPE damage in eyes isolated from Tg2576 mice and found YU102 protected from 

blocking RPE degeneration. This was further verified by the effect of YU102 on RPE 

degeneration in human ARPE-19 cells. We found YU102 suppressed TNF-α-induced 

EMT induction, suggesting YU102 may alter signaling pathways which mediate TNF-

α-induced EMT such as TGF-β signaling pathway [331]. 

In summary, we showed that YU102, a LMP2-selective inhibitor, improves 

cognitive dysfunctions in AD mouse models without affecting Aβ deposition and tau 

polymerization. In addition, we found that YU102 suppresses production of pro-

inflammatory cytokines in microglial cells, revealing a previously unrecognized role 

of LMP2 in microglia-mediated innate immune responses. Finally, the present study 

demonstrated that inhibition of LMP2 possesses anti-neuroinflammatory properties 

that suppress microglial activation and represents a potential therapeutic target for 

neuroinflammatory diseases such as AD and AMD.  
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CHAPTER 6. SUMMARY  

Therapeutic agents targeting specific molecular lesions in cancer cells have 

substantially improved the survival of cancer patients. But, the inevitable emergence 

of drug-resistance presents a formidable challenge for clinicians. Currently, there are 

no available strategies in the clinic to combat PI-resistance due to a lack of knowledge 

regarding the PI response mechanisms. In order to address this problem, extensive 

effort has been put forth over the last decade toward improving our understanding of 

the mechanisms responsible for PI resistance. Although several mechanisms of PI 

resistance have been proposed previously, these mechanisms have not been 

validated clinically and cannot explain all PI resistance observed. Recently, several 

studies have shown that UPS-targeting inhibitors including PIs other than Btz retain 

anticancer activity in Btz-resistant MM cells, indicating that the UPS remains essential 

in these cells and alternative PIs can overcome Btz resistance. However, mechanistic 

understanding of intrinsic Cfz resistance is limited due to a lack of suitable cell-based 

models.  

To elucidate intrinsic Cfz resistance in cancer cells, we identified that H727 

human bronchial carcinoid cells are inherently resistant to Cfz and utilized this cell 

line to test our hypothesis. We found that proteasome function remained vital to the 

survival of Cfz-resistant cancer cells, and that targeting the proteasome using 

alternative PIs is a good strategy to overcome Cfz resistance. Additionally, results 

obtained from alterations in the composition of proteasome catalytic subunits in the 

cell line model showed a potential link may exist between the composition of 

proteasome catalytic subunits and the cellular response to Cfz. These findings 

support that proteasome catalytic subunit composition may play a major role in 

differential responses to PIs among MM patients. Thus, it is crucial to determine 

composition of proteasome subunits in cancer cells with intrinsic/acquired PI 

resistance to design a new effective treatment for MM patients who do not respond 

or have developed resistance to PIs. In addition, this study demonstrates that 

proteasome inhibition by alternative PIs may still be a valid therapeutic strategy for 
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patients with relapsed MM after having received treatment with Cfz. Although we 

believe that cell line model studies provide solid proof of concept evidence for the use 

of PIs in Cfz-resistant cells, it will be important to validate these findings using clinical 

samples.  

Our studies may provide important insights into the design and further 

optimization of PIs with improved potency in Cfz-resistant cells. With this in mind, 

we designed and synthesized novel epoxyketone-based PIs by structural 

modifications at the P1′ site. We observed that a Cfz analog, harboring a hydroxyl 

substituent at its P1′ position, was highly cytotoxic against de novo or acquired Cfz 

resistant cell lines. These findings support that peptide epoxyketones incorporating 

P1′-targeting moieties may have the potential to bypass resistance mechanisms 

associated with Cfz and to provide additional clinical options for patients resistant to 

Cfz. Moving forward, further studies regarding the efficacy of peptide epoxyketones 

incorporating P1′-targeting moieties should be investigated in animal models and 

ultimately in clinically-relevant primary cells derived from patient who do not 

respond to PI therapies. 

 

Despite extensive efforts to develop therapies for neurodegenerative diseases such 

as AD and AMD, effective treatments are not yet available. As such, there is an urgent 

need to reshape the drug target landscape and develop therapies against these 

diseases. In recent years, dysregulated immune response in the CNS has garnered 

increased attention as a target of neurodegenerative diseases. The IP, understood to 

contribute to and regulate immune response, has only recently become targetable by 

selective inhibitors. While inhibitors targeting the IP catalytic subunit LMP7 are 

currently being investigated in preclinical and clinical models of multiple 

inflammatory diseases, their efficacy in neurodegenerative diseases has never been 

evaluated. Although the IP found to be highly expressed in microglial cells from AD 

patients and mouse models, the exact role of IP in AD pathology remains poorly 

understood to date.  
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To address the role of IP in AD, we investigated the impact of IP inhibition on 

cognitive function in AD mouse models and observed that YU102, a selective inhibitor 

of IP catalytic subunit LMP2, is highly effective in improving cognitive behavior of AD 

mice without affecting Aβ deposits or tau polymerization, strongly warranting further 

investigation of LMP2 inhibition in clinical settings as a new strategy for AD therapy.    

Considering the success of YU102 in improving the treatment of AD, we believe that 

any effort to identify AD drug candidates will extend from the exciting preliminary 

results obtained using YU102 to clinical trials. Thus, further medicinal chemistry 

efforts by our group have been yielding a library of structurally unique and diversified 

compounds. Our current compound, YU102, is quite promising in terms of the 

potency in inhibiting LMP2 and acceptable target selectivity. Thus, our optimization 

effort will focus on improving not just the potency and specificity, but also 

pharmaceutical properties. We now aim to develop most promising YU102 analogs 

(acyclic and macrocyclic) based on the potency, target selectivity and chemical 

stability. In addition, further optimization of YU102 will be necessary to BBB 

permeability. As well, in vivo efficacy and PK properties will move into the next 

phases of AD drug development.   
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