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ABSTRACT OF DISSERTATION

APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS
CONDUCTIVITIES IN THE CALDERÓN PROBLEM

In 2014, Astala, Päivärinta, Reyes, and Siltanen conducted numerical experiments
reconstructing a piecewise continuous conductivity. The algorithm of the shortcut
method is based on the reconstruction algorithm due to Nachman, which assumes
a priori that the conductivity is Hölder continuous. In this dissertation, we prove
that, in the presence of infinite-precision data, this shortcut procedure accurately
recovers the scattering transform of an essentially bounded conductivity, provided it
is constant in a neighborhood of the boundary. In this setting, Nachman’s integral
equations have a meaning and are still uniquely solvable.

To regularize the reconstruction, Astala et al. employ a high frequency cutoff
of the scattering transform. We show that such scattering transforms correspond
to Beltrami coefficients that are not compactly supported, but exhibit certain de-
cay at infinity. For this class of Beltrami coefficients, we establish that the complex
geometric optics solutions to the Beltrami equation exist and exhibit the same subex-
ponential decay as described in the 2006 work of Astala and Päivärinta. This is a
first step toward extending the inverse scattering map of Astala and Päivärinta to
non-compactly supported conductivities.

KEYWORDS: inverse problem, Calderón problem, Beltrami equations, Complex Ge-
ometric Optics solutions, quasiconformal mappings
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Chapter 1 What’s Calderón’s Problem Anyway?

This dissertation is about an inverse problem. What’s that, you may ask? Well, it
turns out that there is no universal definition of an inverse problem. But suffice it to
say that a lot of inverse problems have a similar setup to what follows. Suppose you
have an object with a property on the interior that you would like to know. Since
you can’t crack open the object and look inside, you are restricted to making certain
measurements on the boundary of the object. Usually if we know the property on
the inside we could predict what measurement you would get (this is called the direct
problem). The inverse problem, then, is to recover the unknown property from the
boundary measurement.

1.1 A Layperson’s Introduction to the Calderón Problem

We’ll look at an inverse problem that was first posed by Alberto Calderón [16]. Let’s
think about the electrical conductivity of the human body. Tissues conduct electric-
ity in different ways. Blood, for example, is highly conductive. When your heart
pumps blood into the lungs, the conductivity of your lung tissue is much higher than
the conductivity of the heart muscle. This sharp contrast in the conductivity gives
us an image. In order to recover this image, we attach leads to the patient, run spe-
cific current patterns through them, and measure the corresponding voltages. This is
the boundary measurement for the inverse problem. The specific medical imaging ap-
plication is called electrical impedance tomography.1 Let’s get a little bit more specific.

Let Ω be a bounded domain in R3. Let σ(x) be the conductivity at a point x ∈ Ω.
For now, we’ll assume that σ ∈ L∞(R3). Into this body, we have put an electric

potential u(x). The total electric field density is given by ~J = −σ(x)∇u(x). But in
this case, there is no current flowing out of the boundary. In terms of calculus, this
means ∫

∂Ω

~J(x) · ν(x) ds = 0 (1.1)

where ν(x) is the unit outward normal for x ∈ ∂Ω. Employing the Divergence Theo-
rem, this means that the electric potential u satisfies the following partial differential
equation (PDE).

∇ · (σ∇u) = 0 in Ω (1.2)

u|∂Ω = f (1.3)

If we specify the voltage on the boundary, we can then measure the corresponding
current density, σ ∂u

∂ν

∣∣
∂Ω

. In terms of the PDE, this is the Neumann data correspond-
ing to the Dirichlet problem.

1See [25] for an example of the medical imaging procedure.
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We can think of the measurement process as the action of a boundary operator.
This operator, which is called the Dirichlet-to-Neumann operator, denoted as
Λσ has a heuristic definition as:

Λσ : f 7→ σ
∂u

∂ν

∣∣∣∣
∂Ω

(1.4)

We’ll come back to this a little later with a more rigorous treatment of Λσ. So, the
inverse conductivity problem can be boiled down to this: If we know the operator
Λσ, can we recover the function σ?

Whenever we talk about an inverse boundary problem, there are a couple of things
we could mean when we say, “solve the inverse problem.” We’ll give a brief discussion
of what these are and the mathematicians who are working on these issues.

Identifiablility

This is the question of uniqueness. That is, if two conductivities σ, and σ̃ have
Dirichlet-to-Neumann operators that are the same (i.e. Λσ = Λσ̃), then are the two
conductivities equal (σ = σ̃)? This question was the one originally considered by
Calderón, and it was also studied by others [8, 15, 31, 32, 48].

Reconstruction

Is there an algorithm that allows me to move from the boundary operator Λσ and get
to the conductivity σ? This question is taken up in [37] and we’ll discuss it further
in the next section.

Stability

Do small errors in the Dirichlet-to-Neumann map correspond to small errors in the
conductivity or are they amplified? The study of this type of question is the subject
of [10, 11, 17, 21] and others.

Numerics

Is there a way to use numerical algorithms to approximate σ based off of a represen-
tation of Λσ as experimental data? This question has been studied in numerous ways
starting with [5, 6, 9, 29, 30, 44] to name a few.

Partial Data

If you only know the boundary operator on a subset of the boundary, is it still possible
to answer any of the above questions? What type of subset of the boundary do you
need? This question is beyond the scope of this dissertation, but one can look further
at [26, 27, 28, 49].
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1.2 Nachman’s Reconstruction Procedure

We are considering the Calderón problem in dimension two, which we identify with
the complex plane C. The goal is to reconstruct the conductivity σ of a conducting
body Ω from boundary measurements. The electrical potential u obeys the equation

∇ · (σ∇u) = 0

u|∂Ω = f (1.5)

where f ∈ H1/2(∂Ω) is the potential on the boundary. The Dirichlet-to-Neumann
map Λσ : H1/2(∂Ω)→ H−1/2(∂Ω) is given by

〈g,Λσf〉 =

∫
Ω

σ∇u · ∇u dz (1.6)

where v ∈ H1(Ω) with boundary trace g, and 〈 · , · 〉 denotes the dual pairing of
H1/2(∂Ω) with H−1/2(∂Ω).2 The unique identifiability problem was solved for piece-
wise analytic conductivities by Kohn and Vogelius in [31, 32].3 The breakthrough
came in 1996 when Nachman [37] showed unique identifiability via a reconstruction
algorithm. He introduced a change of variable

q =
∆
(
σ1/2

)
σ1/2

v = σ1/2u (1.7)

which transforms the conductivity equation (1.5) into the Schrödinger equation at
zero energy. Thus Nachman assumes a priori that σ ∈ W 2,p(C) for 1 < p < 2.
By Morrey’s inequality, this implies that σ is Hölder continuous. The main compo-
nent of Nachman’s approach is the family of exponentially growing solutions to the
Schrödinger equation first discovered by Faddeev [20],

(−∆ + q)ψ(z, ξ) = 0,

lim
|z|→∞

ψ(z, ξ)e−iξz − 1 = 0. (1.8)

where ξ ∈ C and ξz denotes C-multiplication. These solutions are called Complex
Geometric Optics (CGO) solutions.4 To analyze these solutions, it is helpful to
introduce the operators ∂ = 1

2
(∂z1 − i∂z2) and ∂ = 1

2
(∂z1 + i∂z2), which are the

derivatives with respect the the complex variables z and z, respectively. In this
notation, −∆ = −4∂∂. If we write m(z, ξ) = e−iξzψ(z, ξ), then m is called the
normalized CGO solution. Substituting the normalized solution into (1.8) gives

∂(∂ + iξ)m(z, ξ) =
1

4
q(z)m(z, ξ),

lim
z→∞

m(z, ξ) = 1 (1.9)

2You can arrive at this definition by taking the heuristic Λσf = σ ∂u∂ν and integrating by parts.
3Interestingly, these authors consider the problem in terms of heat conductivity instead of elec-

trical conductivity.
4The term CGO solution was first coined by Sylvester and Uhlmann [48] in the context of solving

the unique identifiability problem in dimensions three and higher.
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The Green’s function for this equation was further studied in [43], and we will give a
brief overview of its properties in the next chapter.

The CGO solutions can be used to define a nonphysical scattering transform of
the potential q,

t(ξ) =

∫
eξ(z)m(z, ξ)q(z) dz (1.10)

where eξ(z) is the phase
eξ(z) = exp(i(ξz + ξz)). (1.11)

This scattering transform can be thought of as a nonlinear Fourier transform of q. If
you substitute m = (m − 1) + 1 into equation (1.10), you get the Fourier transform
of q (up to a linear transformation) and a nonlinear correction. The nonlinearity is
in fact quite profound since m itself depends on q via (1.9).

The “miracle” of CGO solutions is that they solve an equation in both z and
ξ. This ∂-equation was studied in the context of the two-dimensional Schrödinger
problem at zero energy by Boiti, Lon, Manna, and Pempinelli [14]. For potentials
originating from the inverse conductivity problem, Nachman showed that the nor-
malized CGO solutions solve

∂ξm(z, ξ) =
t(ξ)

4πξ
e−ξ(z)m(z, ξ)

lim
ξ→∞

m(z, ξ) = 1 (1.12)

To see where (1.12) comes from, we can recast (1.9) as an integral equation in-
volving the Faddeev Green’s function gξ(z),

m = 1 + gξ ∗ (qm) = 1 + Tξm. (1.13)

We differentiate this with respect to ξ,

∂ξm = (∂ξTξ)m+ Tξ(∂ξm) (1.14)

where ∂ξTξ is a “derivative” of the operator, which turns out to be convolution with
the ∂ξ derivative of gξ(z).

The key point is that the scattering transform of q can be determined directly from
the Dirichlet-to-Neumann operator. Nachman [37, Section 6] employs a reduction
that allows us to make the a priori assumption that σ(z) = 1 in a neighborhood of
∂Ω, and thus extend σ ≡ 1 outside Ω. Under the change of variable, this implies that
q has compact support contained within Ω. Let Λq denote the Dirichlet-to-Neumann
operator for the Schrödinger problem

(−∆ + q)ψ = 0,

ψ|∂Ω = f. (1.15)

4



Let Λ0 be the Dirichlet-to-Neumann operator for harmonic functions on Ω, corre-
sponding to q(z) ≡ 0 and σ(z) ≡ 1.5 The reduction given by Nachman also implies
that Λq = Λσ. The compact support of q in the reduction proves crucial, as one can
reduce (1.8) and (1.10) to the boundary integral equations

ψ|∂Ω = eiξz
∣∣
∂Ω
− Sξ(Λq − Λ0) (ψ|∂Ω) (1.16)

t(ξ) =

∫
∂Ω

eiξz(Λq − Λ0) (ψ|∂Ω) ds. (1.17)

Here Sξ is convolution with the Faddeev Green’s function on ∂Ω. The properties of
Sξ will be addressed in Section 2.2. The boundary integral equations (1.16) were first
introduced by R. Novikov [39]. Therefore, given t, one can then solve the ∂-problem
(1.12) and recover σ from

σ(z) = lim
ξ→0

m(z, ξ)2.

In what follows, we will use a standard reduction due to Nachman [37, Section 6].
Without loss, we may assume that Ω is the unit disc D and that σ(z) = 1 in a
neighborhood of ∂D. Since Ω is a bounded domain, you can use the constant extension
of σ to compute the Dirichlet-to-Neumann operator for a disc, using the original
Dirichlet-to-Neumann operator for σ. A scaling argument then allows you to consider
D.

1.3 Brown and Uhlmann’s Contribution

After Nachman’s breakthrough, the challenge was to reduce the a priori regularity
assumptions on the conductivity σ. Brown and Uhlmann [15] made the change of
variable

q = −1

2
∂ log σ (1.18)

and define a matrix potential Q as

Q =

[
0 q
q 0

]
. (1.19)

Let D be the operator

D =

[
∂ 0
0 ∂

]
. (1.20)

Then if u solves the conductivity equation (1.5), then the vector[
v
w

]
= σ1/2

[
∂u

∂u

]
solves the system

D

[
v
w

]
−Q

[
v
w

]
= 0 (1.21)

5Later, we will use Λ1 to denote this operator when referring to the conductivity setting.
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The system (1.21) was studied by Beals and Coifman [12, 13] in the context of the
Davey-Stewartson-II equation. The approach of Brown and Uhlmann assumes a priori
that σ ∈ W 1,p(C) with 2 < p <∞.6 We will return to this setup in a later chapter.

1.4 Astala and Päivärinta’s Solution

The Calderón problem was solved in full generality for two dimensions by Astala and
Päivärinta in 2006 [7, 8].

Theorem 1.4.1. [8, Theorem 1] Let Ω ⊂ R2 be a bounded, simply connected domain
and σi ∈ L∞(Ω), i = 1, 2. Suppose that there is a constant c > 0 such that c−1 ≤
σi ≤ c. If

Λσ1 = Λσ2

then σ1 = σ2.

They consider the case σ ∈ L∞(D) where 0 < c ≤ σ(z) for almost every z ∈ D.
They extend σ to be σ(z) = 1 for z ∈ C \ D. If u solves the conductivity equation
(1.5), there is a function v that solves the companion equation

∇ · (σ−1∇v) = 0 (1.22)

called the σ-harmonic conjugate of u such that the function f = u + iv solves the
Beltrami equation

∂f = µ∂f (1.23)

where the Beltrami coefficient µ is

µ(z) =
1− σ(z)

1 + σ(z)
. (1.24)

The assumptions on σ imply that µ is real-valued, ‖µ‖∞ ≤ k < 1, and the support
of µ is in D. Astala and Päivärinta show that the Beltrami equation (1.23) admits
CGO solutions of the form

fµ(z, ξ) = eiξzMµ(z, ξ). (1.25)

These CGO solutions define a scattering transform analogous to Nachman’s t, and
the transform remains well-defined under the weaker assumption that µ ∈ L∞(D).
Their first result concerns the existence and uniqueness of CGO solutions.

Theorem 1.4.2. [8, Theorem 4.2] Let µ ∈ L∞(D) with ‖µ‖∞ ≤ k < 1. For each
ξ ∈ C, and each p ∈ (2, 1 + k−1), there exists a unique solution fµ ∈ W 1,p

loc (C) of
(1.23) of the form (1.25) where Mµ(z, ξ)− 1 ∈ W 1,p(C).

6Morrey’s inequality again shows that such a σ is Hölder continuous.
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We refer to Mµ as the normalized CGO solution of (1.23) and denote by M±µ the
normalized solutions corresponding to µ and −µ. The associated scattering transform
τµ is given by

τµ(ξ) =
1

2π

∫
∂(Mµ(z, ξ)−M−µ(z, ξ)) dz. (1.26)

There is a way to obtain corresponding CGO solutions to the conductivity equation
∇ · (σ∇u) = 0 via the formula

2u = fµ(x, k) + fµ(x, k) + f−µ(x, k)− f−µ(x, k) (1.27)

see [6, Equation (1.7)]. Thus both the solutions for µ and −µ are needed.
If µ is sufficiently regular, the scattering transforms t (1.10) and τµ are related by

t(ξ) = −4πiξτµ(ξ) (1.28)

The CGO solutions to the Beltrami equation also satisfy a ∂-problem in ξ, but the
assumption µ ∈ L∞(D) does not provide τ with enough regularity for the ∂-problem
to be solved. Instead, the authors establish unique identifiability through a careful
topological argument based on the behavior of the CGO solutions as the parameter
ξ →∞. The CGO solutions satisfy what they call subexponential growth. If we write
the solution f to (1.23) as

fµ(z, ξ) = eiξϕ(z,ξ) (1.29)

then the function ϕ solves a nonlinear Beltrami equation.

Theorem 1.4.3. [8, Theorem 7.2] For the CGO solution fµ to (1.23), let ϕ be the
function in the representation (1.29). Then as ξ →∞,

ϕ(z, ξ)→ z (1.30)

uniformly in z ∈ C.

In the uniqueness proof of Astala and Päivärinta, it is shown first that Λσ uniquely
determines τµ. The goal is to show that if τµ = τµ̃, then the CGO solutions must
also be the same (and hence the conductivities are the same). Theorem 1.4.3 and
the conversion formula (1.27) allow one to write down the asymptotics of the CGO
solution u of the conductivity equation as ξ → ∞. The asymptotics of u are then
used to conclude uniqueness via a topological argument. In this way, subexponential
growth is a first step toward solving the uniqueness question.

1.5 A Numerical Investigation for Discontinuous Conductivities

We will now turn our attention to the motivating questions for the following chapters.
In [9], Astala, et al. implement numerical experiments on conductivities with jump
discontinuities. The goal was to compare the algorithms based on the approaches of
Nachman and Astala-Päivärinta. The shortcut method that they study is formally
similar the to the Nachman theory-based regularized algorithm studied in Knudsen
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et al. [30].

A finite-dimensional approximation to the Dirichlet-to-Neumann operator is used
to simulate experimental data. The shortcut method uses Nachman’s integral equa-
tions (1.16) and (1.17) to represent the scattering transform of the conductivity. A
high-frequency cutoff on the scattering transform is implemented to make efficient
and tractable code. For smooth conductivities, the high-frequency cutoff can be un-
derstood as a regularization technique for the inversion process [30]. The frequency
cutoff ensures that the scattering transform lies in the appropriate space for the ∂-
method of Nachman (1.12) to be used for the recovery of σ.

Surprisingly, the shortcut method produced qualitatively accurate results for dis-
continuous conductivities. Astala et al. then computed reconstructions for different
cutoff levels in the nonlinear frequency domain. In practical situations, the cutoff
radius cannot exceed 7, but the authors utilize more powerful computing to calcu-
late reconstructions using a cutoff radius of 60. The results of these reconstructions
give numerical evidence of a nonlinear analogue of Gibbs phenomenon. The Gibbs
phenomenon in Fourier theory describes the oscillations that take place in a finite
Fourier series approximation of a step function. As the number of terms in the series
increases, the oscillations cluster together. For more information, see [50] A similar
nonlinear Gibbs phenomenon for the nonlinear Schrödinger equation was studied in
[18].

The rigorous analysis of the shortcut method is the motivation of this dissertation.
Two questions arise in the presence of infinite-precision data (i.e. the full Dirichlet-
to-Neumann operator).

• Can one accurately obtain the scattering transform of a discontinuous conduc-
tivity using Nachman’s integral equations?

• Do the reconstructions obtained from a frequency cutoff at level R converge to
the conductivity as R→∞?

Thematically, these questions are questions of continuity of the direct map (σ 7→ τ)
and the inverse map (τ 7→ σ).

1.6 Main Results

Motivated by these questions, we present the main results of this dissertation. The
first two theorems answer the first question in the affirmative.

Theorem 1.6.1. Let σ ∈ L∞(D) with σ(z) ≥ c for a fixed c > 0, and suppose that
there is an r1 ∈ (0, 1) such that σ(z) = 1 for |z| ≥ r1. For each ξ ∈ C, there exists a
unique g ∈ H1/2(∂D) so that

g = eiξz
∣∣
∂D − Sξ(Λσ − Λ1)g.

8



Thus Nachman’s integral equation (1.16) can be solved, even when σ is not con-
tinuous. We can use (1.17) to write

t(ξ) =

∫
∂D
eiξz(Λσ − Λ1)g ds (1.31)

and know that the integral converges for each ξ ∈ C. In fact, the next theorem shows
how this function is related to the scattering transform of σ.

Theorem 1.6.2. Suppose that σ is a fixed conductivity with strictly positive essential
infimum, and that {σn} is a sequence of smooth conductivities in D obeying

(i) There is a fixed r1 ∈ (0, 1) so that σn(z) = 1 for |z| ≥ r1 for all n (and for σ),

(ii) There is a fixed c > 0 so that σn(z) ≥ c for a.e. z ∈ D and for all n (and for
σ),

(iii) For a.e. z, σn(z)→ σ(z) as n→∞.

Denote by tn (resp. t) the scattering transform for σn (resp. σ) obtained from (1.16)-
(1.17). Then tn → t pointwise. Moreover, t is related to the Astala-Päivärinta
scattering transform τ for σ by (1.28).

These theorems show that with infinite precision, the shortcut method in [9] accu-
rately recovers the scattering transform of σ from the Dirichlet-to-Neumann operator
Λσ. The proofs of these theorems are found in Chapter 3.

The second motivating question is much harder. The proper setting to study the
convergence of the reconstructed conductivities is not evident. The first step is to
extend the framework of Astala-Päivärinta to include conductivities that produce
truncated scattering transforms. Chapter 4 is devoted to this process, which in-
volves a new notion of principal solutions for Beltrami equations with non-compactly
supported coefficient. The first theorem describes the conductivities that produce a
cutoff scattering transform.

Theorem 1.6.3. Suppose τ ∈ C∞0 (C) satisfies τ(0) = 0 and |τ(ξ)| ≤ 1. Then τ
corresponds to a continuous Beltrami coefficient µ that satisfies

‖µ‖∞ ≤ k < 1 and µ(z) ∼ O
(

1

|z|2

)
as z →∞ (1.32)

Consequently, µ ∈ Lr(C) for all 1 < r ≤ ∞. Moreover, ∂µ ∈ Lr(C) for all 1 < r ≤
∞.

The first piece of the Astala-Päivärinta framework is to show the existence and
uniqueness of CGO solutions to the Beltrami equation with our class of Beltrami
coefficients.
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Theorem 1.6.4. Suppose that µ is a real-valued measurable function with ‖µ‖∞ ≤
k < 1 and that µ ∈ Lr(C) for all r with 1 < r < ∞. Let 2 < p < 1 + k−1. Then for
each ξ ∈ C there exists a unique solution f ∈ W 1,p

loc (C) to the equation

∂f = µ∂f (1.33)

where f can be written as f(z, ξ) = eiξzM(z, ξ) and

M(·, ξ)− 1 ∈ W 1,p(C) (1.34)

In a similar fashion to [8], we consider the phenomenon of subexponential growth.
We write f(z, ξ) = eiξϕ(z,ξ). This implies that ϕ solves

∂ϕ(z, ξ) = − ξ̄
ξ
µ(z)e−ξ(ϕ(z, ξ))∂ϕ(z, ξ). (1.35)

In [8], the authors can appeal to the theory of quasiconformal maps to conclude that
ϕ exists and is a homeomorphism. For our class of Beltrami coefficients, we need
a new notion of principal solution to Beltrami equations. We are grateful to Kari
Astala for his correspondence helping us make a sensible definition. We will discuss
this new definition later in Chapter 4. We proved that equation (1.35) has a principal
solution in this context.

Theorem 1.6.5. Suppose that µ is a real-valued measurable function with ‖µ‖∞ ≤
k < 1, and that µ ∈ Lr(C) for 1 < r <∞. Let 1 + k < q < 2 < p < 1 + k−1. Then,
for each ξ ∈ C there exists a unique solution ϕ to the nonlinear Beltrami equation
(1.35) such that ϕ− z ∈ W 1,p(C).

The continuity of the solution to (1.35) comes from Morrey’s inequality, but we
can actually show more.

Theorem 1.6.6. For each fixed ξ ∈ C, the solution ϕ(·, ξ) from Theorem 1.6.5 is a

global homeomorphism of the Riemann sphere Ĉ.

After these properties of the solution to (1.35) are established, we show that the
CGO solutions for our class of Beltrami coefficients exhibit subexponential growth.

Theorem 1.6.7. Suppose that µ is a real-valued measurable function with ‖µ‖∞ ≤
k < 1, µ ∈ Lr(C) , and ∂µ ∈ Lr(C) for all r with 1 < r < ∞. Suppose 2 < p <
1 + k−1. Let ϕ be the solution to equation (1.35) from Theorem 1.6.5. Then

ϕ(z, ξ)→ z (1.36)

uniformly in z ∈ C as ξ →∞.

The analysis of the Astala-Päivärinta framework for conductivities with truncated
scattering transform is taken up in Chapter 4. Subsequent work to this dissertation
will examine continuity of the inverse map in this new setting. Unique identifiability
for this class of Beltrami coefficients has a ways to go yet. The following steps in
Astala and Päivärinta’s framework would have to be proved.
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• Starting with a Beltrami coefficient that is decaying like O (|z|−2) as z →∞, is
the corresponding τ compactly supported?

• Does the τ generated by our µ satisfy |τ(ξ)| ≤ 1?

• Once uniqueness is shown in this setting, can we show the convergence of re-
constructions as the cutoff radius goes to ∞?

These questions and more will be taken up in future work. The next chapter is a com-
pendium of mathematical tools that will be used in the subsequent analysis. Chapter
3 is devoted to the proofs of Theorem 1.6.1 and Theorem 1.6.2. In Chapter 4, we
take up the analysis of Beltrami coefficients with truncated scattering transforms and
prove Theorem 1.6.3, Theorem 1.6.4, Theorem 1.6.5, Theorem 1.6.6, and Theorem
1.6.7.

Copyright c© George H. Lytle, 2019.
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Chapter 2 Preliminaries

The following is a collection of the common mathematical tools that we’ll use in
proving our results. Here and in what follows, we use the notation f . c g to mean
that f ≤ Cg where the implied constant C depends on the quantities c.

2.1 Hs Spaces, Fourier Basis, Harmonic extensions

An L2 function f ∈ L2(∂D) admits a Fourier series expansion f(θ) ∼
∑

n bnϕn(θ),
where

ϕn(θ) =
1√
2π
einθ.

The equation

(Pjf) (θ) =
∑
|n|≤j

bnϕn(θ) (2.1)

for j ∈ N defines a finite-rank projection. For s ∈ R, we denote by Hs(∂D) the
completion of C∞(∂D) in the norm

‖f‖Hs(∂D) =

(
∞∑

n=−∞

(1 + |n|)2s|bn|2
)1/2

.

It is easy to see that the embedding

Hs(∂D) ↪→ Hs′(∂D) (2.2)

is compact provided s > s′.
The harmonic extension of f ∈ L2(∂D) to D is given by

u(r, θ) =
∞∑

n=−∞

r|n|bnϕn(θ).

It is easy to see that for any r1 ∈ (0, 1), the estimate

‖u‖L2(|z|<r1) .m,r1 ‖f‖H−m (2.3)

holds for the harmonic extension.

2.2 Faddeev’s Green’s Function and the operator Sξ

The Faddeev Green’s function is the convolution kernel Gξ(z − y) where

Gξ(z) =
eiξz

(2π)2

∫
R2

eiz·η

|η|2 + 2ξ(η1 + iη2)
dη (2.4)
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where z ·η = z1η1+z2η2 and ξ ∈ C. This is the natural Green’s function for the elliptic
problem (1.9). Writing Gξ(z) = eiξzgξ(z) we see that gξ(z) differs from the Green’s
function G0(z) = −(2π)−1 log |z| of the Laplacian by a function which is smooth and
harmonic on all of R2 and, in particular, is regular at 0 (see, for example, [43, Section
3.1] for further discussion and estimates).

In the reduction of (1.9) to the boundary integral equation (1.16), the operator
Sξ is the corresponding single layer

(Sξf) (z) =

∫
∂Ω

Gξ(z − y)f(y) dy. (2.5)

For p ∈ (1,∞) and any f ∈ Lp(∂Ω), the function Sξf is smooth and harmonic on
R2 \ ∂Ω. We will assume Ω ⊂ R2 is bounded and simply connected with smooth
boundary (since our application is to Ω = D) even though the assertions below are
known in greater generality. Moreover, since the convolution kernel Gξ is at most
logarithmically singular, Sξf restricts to a well-defined a function on ∂Ω. When
restricted to ∂Ω,

Sξ : Hs(∂Ω)→ Hs+1(∂Ω), s ∈ [−1, 0] (2.6)

(see [37, Lemma 7.1]), even if Ω only has Lipschitz boundary.
It follows from the form of Gξ(z) and classical potential theory that, if ν(z) is the

unit normal to ∂Ω at z ∈ ∂Ω, the identities

lim
y→z

z∈R2\Ω

〈ν(z), (∇Sξf) (y)〉 = −
(

1

2
I − Sξ

)
f(z) (2.7)

lim
y→z
y∈Ω

〈ν(z), (∇Sξf) (y)〉 = −
(

1

2
I + Sξ

)
f(z) (2.8)

hold.

2.3 Alessandrini Identity

We will make extensive use of the following identity [2] which is an easy consequence
of Green’s theorem. Suppose that u solves (1.5) and that v ∈ H1(Ω) with boundary
trace g ∈ H1/2(∂Ω). Then

〈g,Λσf〉 =

∫
Ω

σ(z)(∇u)(z) · (∇v)(z) dz (2.9)

where 〈g, h〉 denotes the dual pairing of g ∈ H1/2(∂Ω) with h ∈ H−1/2(∂Ω).

2.4 A Priori Estimates and Uniqueness Theorems

We’ll need the following results from [4] which we state here for the reader’s con-
venience. First, we need the following a priori estimate on solutions of Beltrami’s
equation. This estimate will allow us to analyze convergence of CGO solutions to the
Beltrami equations assuming that the Beltrami coefficients converge pointwise.

13



Theorem 2.4.1. [4, Theorem 5.4.2] Let f ∈ W 1,q
loc (Ω), for some q ∈ (1 + k, 1 + 1

k
),

satisfy the distortion inequality ∣∣∂f ∣∣ ≤ k |∂f |

for almost every z ∈ Ω. Then f ∈ W 1,p
loc (Ω) for every p ∈ (1 +k, 1 + 1

k
). In particular,

f is continuous, and for every s ∈ (1 + k, 1 + 1
k
), the critical interval, we have the

Caccioppoli estimate
‖η∇f‖s ≤ Cs(k) ‖f∇η‖s (2.10)

whenever η is a compactly supported Lipschitz function in Ω.

We will use a Liouville-type theorem taken from [4].

Theorem 2.4.2 (Theorem 8.5.1 in [4]). Suppose F ∈ W 1,2
loc (C) satisfies the homoge-

neous distortion inequality

|∂F | ≤ k|∂F |+ α(z)|F |

where α ∈ Lp ∩ Lq for some 1 < q < 2 < p < ∞ and 0 ≤ k < 1. Then F is
continuous. Moreover, if

lim
z→∞

F (z) = 0

then F ≡ 0.

The following uniqueness theorem for CGO solutions of the conductivity equation
will help establish the unique solvability of the integral equation (1.16).

Theorem 2.4.3. [4, Corollary 18.1.2] Suppose that σ, 1/σ ∈ L∞(D) and that σ(z) ≡
1 for |z| ≥ 1. Then the equation ∇ · (σ∇u) = 0 admits a unique weak solution
u ∈ W 1,2

loc (C) such that
lim
|z|→∞

(
e−iξzu(z, ξ)− 1

)
= 0. (2.11)

2.5 Useful Operators and Estimates

The Hardy-Littlewood-Sobolev inequality is one of the tools used to study fractional
integrals. We will use it to study the decay of the Cauchy transform of a function.
It also plays a fundamental role in the analysis of ∂-problems. For a proof, see
for example [34, Section 2.2]. A sharp constant for the Hardy-Littlewood-Sobolev
inequality together with an explicit maximizer is given in [33]; see [22] for a simplified
proof of the optimal inequality.

Theorem 2.5.1 (Hardy-Littlewood-Sobolev Inequality). Suppose that 0 < α < n,
1 < p < q <∞, and

1

q
=

1

p
− α

n

If f ∈ Lp(Rn), the integral

(Iαf)(x) =

∫
f(y)

|x− y|n−α
dy

14



converges absolutely for a.e. x, and the estimate

‖Iα(f)‖q .α,p,n ‖f‖p (2.12)

The solid Cauchy transform P is convolution with the fundamental solution for
∂u = f .

(Pf)(z) =
1

π

∫
C

1

z − w
f(w)dw (2.13)

The following estimates are standard (see, e.g. [4], Theorems 4.3.8, 4.3.11, and
4.3.13).

Lemma 2.5.2. For any p > 2 and 1 < q < 2 < p < ∞, the solid Cauchy transform
P obeys the following estimates:

‖Pf‖p .p ‖f‖2p/(p+2) , (2.14)

‖Pf‖∞ .p,q ‖f‖Lp∩Lq , (2.15)

sup
z 6=w

|(Pf)(z)− (Pf)(w)|
|z − w|1−2/p

.p ‖f‖p . (2.16)

Moreover, if f ∈ Lp ∩ Lq for 1 < q < 2 < p <∞, (Pf)(z)→ 0 as |z| → ∞.

The Beurling transform S is a singular integral operator of Calderón-Zygmund
type. It is defined as the principal value-integral on C∞0 (C)

(Sf)(z) = p.v.

∫
f(w)

(z − w)2
dw. (2.17)

The Beurling transform can be extended to a bounded operator from Lp(C) to itself
for all p ∈ (1,∞), and it is an isometry on L2(C). Another important property of S
is

(Sf)(z) = ∂(Pf)(z), (2.18)

so that symbolically, S = ∂∂
−1

. For more information, see Chapter 4 of [4]. We
define

(S̄f)(z) = ∂Pf(z) (2.19)

Lemma 2.5.3. For any p ∈ (1,∞),
∥∥S̄(f)

∥∥
p
.p ‖f‖p. If µ ∈ L∞ with ‖µ‖∞ ≤ k < 1,

then
∥∥µS̄∥∥

Lp→Lp < 1 for all p ∈ (1 + k, 1 + k−1).

2.6 Compactness and Fixed Point Theorems

To study the nonlinear Beltrami equation, we will need the following classical fixed
point theorem.

Theorem 2.6.1 (Schauder Fixed Point Theorem [42]). Let D be a closed convex
subset of a Banach space X and let T : D → D be a continuous map. If the image
T (D) has compact closure, then T has a fixed point.
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We will also need the following facts about linear operators between Lp-spaces.

Definition 2.6.2. A Banach space X has the approximation property if every
compact operator is the norm-limit of a sequence of finite-rank operators.

Proposition 2.6.3 (see [41]). Suppose 1 ≤ p, q < ∞. Then the Banach space
L(Lp(C), Lq(C)) has the approximation property.

The following characterization of pre-compact sets in Lp(C) will come in handy
in Chapter 4.

Theorem 2.6.4 (Kolmogorov-Riesz Theorem). Let K ⊂ Lq(C) be a bounded set.
Then K is relatively compact if and only if

1. Uniform Decay: lim
R→∞

∫
|x|≥R

|f |q dx = 0 uniformly in K.

2. Uniform Lq Continuity: lim
a→0
‖f(· − a)− f(·)‖q = 0 uniformly in K.

Another resource on the Kolmogorov-Riesz theorem can be found in the review
papers by Hanche-Olsen and Holden [23, 24].

We frequently refer to the Fredholm alternative, a method to show existence and
uniqueness for equations involving compact operators.

Theorem 2.6.5. [40, Corollary to Theorem VI.14] Suppose A is a compact operator
on Lp(C) for 1 < p <∞. Then either (I − A)−1 exists or Aψ = ψ has a solution.

Copyright c© George H. Lytle, 2019.
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Chapter 3 Nachman’s Reconstruction Method for Discontinuous
Conductivities

In this chapter, we will study the shortcut method described in [9] to obtain the scat-
tering transform of a piecewise continuous conductivity. We will show that Nachman’s
integral equations are still uniquely solvable for the Dirichlet-to-Neumann operator
of a positive, essentially bounded conductivity with strictly positive essential lower
bound. Moreover, we identify the resulting scattering transform as a natural analogue
of Nachman’s scattering transform which is, in fact, a limit of scattering transforms
obtained through pointwise approximation by smooth functions. A key ingredient in
our analysis is the Beltrami equation of Astala-Päivärinta and the associated scat-
tering transform, which provides a way of identifying the ‘scattering transform’ that
arises from the limit of Nachman’s equations. The results in this chapter can also be
found in [35].

To describe our results, we first recall a standard reduction due to Nachman [37,
Section 6]. Without loss, we may assume that Ω from Chapter 1 is the unit disc D
and that σ(x) ≡ 1 in a neighborhood of D. We make the second assumption more
precise:

There is an r1 ∈ (0, 1) so that σ(z) = 1 for |z| ≥ r1. (3.1)

Nachman’s integral equations for the trace of CGO solutions to the Schrödinger prob-
lem can also be expressed by

ψ|∂D = eiξz
∣∣
∂D − Sξ (Λσ − Λ1) (ψ|∂D) , (3.2)

t(ξ) =

∫
∂D
eiξ̄z (Λσ − Λ1) (ψ|∂D) ds (3.3)

where by abuse of notation we write Λ1, the Dirichlet-to-Neumann operator with
σ(z) = 1. Observe that, under our assumption (3.1), a solution ψ of the Schrödinger
problem(1.15) generates a solution of the conductivity equation (1.5) via u(z) =
σ(z)−1/2ψ(z), and the Dirichlet-to-Neumann operators for (1.15) and (1.5) are in fact
identical. Thus, under the assumption (3.1), we can recast (1.16) and (1.17) in terms
of the Dirichlet-to-Neumann operators for the original conductivity problem, taking
Ω to be the unit disc D. Our first result is that (3.2) is uniquely solvable for σ ∈ L∞
with strictly positive essential infimum and any ξ.

Theorem 3.0.1. Let σ ∈ L∞(D) with σ(z) ≥ c for a fixed c > 0, and suppose that
(3.1) holds. For each ξ ∈ C, there exists a unique g ∈ H1/2(∂D) so that

g = eiξz − Sξ (Λσ − Λ1) g.

As we will see, (3.1) implies that Λσ − Λ1 is smoothing even though σ may be
nonsmooth. One can then mimic Nachman’s original argument from Fredholm the-
ory to prove the unique solvability. We will show that the “scattering transform”
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generated by (3.3) is a natural limit of smooth approximations, and remains related
to the Astala-Päivärinta scattering transform τ by

t(ξ) = −4πiξτµ(ξ), (3.4)

which holds for smooth conductivities [9, Equation (2.10)]. In this context, even
though the Schrödinger problem now involves a distribution potential, we can use
this to represent the scattering transform of σ.

To make this connection, we consider approximation of σ ∈ L∞ by smooth con-
ductivities. In particular, suppose that σ is a fixed conductivity obeying (3.1) with
strictly positive essential infimum, and that {σn} is a sequence of smooth conductiv-
ities in D obeying

(i) There is a fixed r1 ∈ (0, 1) so that σn(z) = 1 for |z| ≥ r1 and for all n,

(ii) There is a fixed c > 0 so that σn(z) ≥ c for a.e. z ∈ D and for all n,

(iii) For a.e. z, σn(z)→ σ(z) as n→∞.

Theorem 3.0.2. Suppose that {σn} obeys (i)–(iii), and denote by tn (resp. t) the
scattering transform for σn (resp. σ) obtained from (3.2)–(3.3). Then tn → t point-
wise. Moreover, t is related to the Astala-Päivärinta scattering transform τ for σ by
(3.4).

We will prove Theorem 3.0.2 by studying convergence of the operators (Λσn−Λ1)
to (Λσ − Λ1) as n → ∞. An important ingredient in the proof will be the fact that
the operators Λσn − Λ1 are uniformly compact in a sense to be made precise, so
that weak convergence (which is relatively easy to prove) can be “upgraded” to norm
convergence.

3.1 Boundary Integral Equation

In this section we prove Theorem 3.0.1. Our strategy is to show that the integral
operator

Tξ := Sξ(Λσ − Λ1)

is compact on H1/2(∂D) and then mimic Nachman’s argument in [37, Section 8] to
show that I + Tξ is injective. The following simple lemma reduces the compactness
statement to interior elliptic estimates plus the property (2.3) of harmonic extensions.

Lemma 3.1.1. For any f and g belonging to H1/2(∂D), the identity

〈g, (Λσ − Λ1)f〉 =

∫
D
(σ − 1)∇v · ∇u dz (3.5)

holds, where u solves (1.5) and v is the harmonic extension of g to D and 〈g, h〉
denotes the dual pairing of g ∈ H1/2(∂D) with h ∈ H−1/2(∂D).
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Proof. Let w be the harmonic extension of f to D. It follows from Alessandrini’s
identity (2.9) that

〈g, (Λσ − Λ1)f〉 =

∫
D
σ∇v · ∇u dz −

∫
D
∇v · ∇w dz

=

∫
D
(σ − 1)∇v · ∇u dz +

∫
D
∇v · ∇(u− w) dz

The second term vanishes since v is harmonic and (u− w)|∂D = 0.

Next, we note the following interior elliptic estimate. This estimate apears in
various forms in the context of stability analysis of the inverse problem. See, e.g.
[19, 21]. Our proof was written independently of that work.

Lemma 3.1.2. Suppose that σ satisfies (3.1), let f ∈ H1/2(∂D), and let u denote the
unique solution of (1.5) for the given f . For any m > 0, the estimate

‖∇u‖L2(|z|<r1) . ‖f‖H−m(∂D) (3.6)

holds, where the implied constant depends only on m, r1, ess inf σ, and ess sup σ.

Proof. As before, let w be the harmonic extension of f into D. Let r1 be the radius
defined in (3.1), and let 0 < r1 < r2 < 1. Choose χ ∈ C∞(D) so that

χ(z) =

{
0, 0 ≤ |z| ≤ r1

1, r2 ≤ |z| ≤ 1
(3.7)

Let h(z) = χ(z)w(z). Note that h has support where σ(z) = 1. We compute

∇ · (σ∇(u− h)) = ∇ · (σ∇u)−∇ · (σ∇(h))

= −(∆χ)w − 2∇χ · ∇w

By construction, we know (u− h)|∂D = 0.
The unique solution v ∈ H1

0 (D) of

∇ · (σ∇v) = g

obeys the bound
‖∇v‖L2(D) . ‖g‖L2(D)

where the implied constants depend only on ess inf σ and ess supσ. Hence

‖∇u‖L2(|z|<r1) = ‖∇(u− w)‖L2(|z|<r1) . ‖−(∆χ)h− 2∇χ · ∇h‖L2(D)

We obtain the desired estimate using (2.3).

Next, we prove an operator bound on (Λσ − Λ1) with a uniformity that will be
useful later.

19



Lemma 3.1.3. Let σ ∈ L∞(D) with σ(z) ≥ c > 0 a.e. for some constant c. Suppose,
moreover, that σ obeys (3.1). Then for any m > 0, the operator (Λσ−Λ1) is bounded
from H−m(∂D) to Hm(∂D) with constants depending only on r1, m, ess inf σ, and
ess supσ.

Proof. We will begin with f, g ∈ H1/2(∂D) and show that the pairing

| 〈g, (Λσ − Λ1)f〉 |

can be bounded in terms of ‖f‖H−m and ‖g‖H−m . Then a density argument will
establish the lemma.

Let v be a harmonic extension of g into D. Then by Lemma 3.1.1 we obtain

|(g, (Λσ − Λ1)f)| =
∣∣∣∣∫

D
(σ − 1)∇v · ∇u dz

∣∣∣∣
.σ ‖∇u‖L2(|z|<r1) ‖∇v‖L2(|z|<r1)

.σ,r1,m ‖f‖H−m ‖g‖H−m

where we used Lemma 3.1.2 to estimate ‖∇u‖L2(|z|<r1) and we used (2.3) again to
estimate ‖∇v‖L2(|z|<r1). The implied constants depend only on ess inf σ and ess supσ.

It now follows from Lemma 3.1.3 and the compact embedding (2.2) that Tξ is
compact as an operator from H1/2(∂D) to H1/2(∂D). Thus, to show that (3.2) is
uniquely solvable, it suffices by Fredholm theory to show that the only vector g ∈
H1/2(∂D) with g = −Tξg is the zero vector. We will show that any such g generates
a global solution to the problem

∇ · (σ∇u) = 0,

lim
|z|→∞

e−iξzu(z, ξ) = 0. (3.8)

We will then appeal to Theorem 2.4.3 to conclude that g = 0.

Proof of Theorem 3.0.1. We follow the proof of Theorem 5 in [37, Section 7]. Fix
ξ ∈ C, suppose that g ∈ H1/2(∂D) satisfies Tξg = −g, let h = (Λσ − Λ1)g and let
v = Sξh on R2 \ ∂D. The function v is harmonic on R2 \ ∂D and continuous across
∂D. Thus, if v+ and v− are the respective boundary values of v from R2 \ ∂D and
from ∂D, v+ = v− = g. It follows from (2.7)–(2.8) and the fact that g = −Tξg that

∂v+

∂ν
− ∂ν−

∂ν
= h = Λσg − Λ1g. (3.9)

Since ∂ν−/∂ν = Λ1g, we conclude that ∂ν+/∂ν = Λσg. Now define

u(z) =

{
v(z), x ∈ R2 \ Ω

ui(z), x ∈ Ω
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where ui is the unique solution to the problem

∇ · (σ∇ui) = 0, ui|∂D = g.

In this case u+ = u− and ∂u+/∂ν = ∂u−/∂ν, so u extends to a solution of (3.8) as
claimed. It now follows from Theorem 2.4.3 that u = 0. Since g is the boundary
trace of u, we conclude that g = 0.

3.2 Convergence of Scattering Transforms

In this section we prove Theorem 3.0.2 in two steps. First, we show that the Dirichlet-
to-Neumann operators Λσn associated to the sequence {σn} converge in norm to
Λσ. We then use this fact to conclude that the corresponding scattering transforms
converge. The second step uses Astala-Päivärinta’s scattering transform to identify
the limit.

We begin with a simple result on weak convergence that exploits Alessandrini’s
identity and convergence of positive quadratic forms.

Lemma 3.2.1. Suppose that {σn} is a sequence of positive L∞(D) obeying condi-
tions (i)–(iii) of Theorem 3.0.2. Then Λσn → Λσ in the weak operator topology on
L(H1/2(∂D), H−1/2(∂D)).

Proof. For any σ, it follows from (2.9) that Λσ defines a positive quadratic form

〈f,Λσf〉 =

∫
D
σ |∇u|2 dz

on H1/2(∂D). Note that (Λσ − Λσn) are self-adjoint operators. If we can show that

lim
n→∞

〈f, (Λσ − Λσn) f〉 = 0 (3.10)

it will then follow by polarization that Λσn → Λσ in the weak operator topology. But

〈f, (Λσ − Λσn) f〉 =

∫
D
(σ − σn) |∇u|2 dz +

∫
D
σn
(
|∇u|2 − |∇un|2

)
dz. (3.11)

The first right-hand term in (3.11) goes to zero by dominated convergence. Since
the {σn} are uniformly bounded, it suffices to show that ∇un → ∇u in L2. A
straightforward computation shows that

0 = ∇ · (σn∇(un − u)) +∇ · ((σn − σ)∇u) .

Multiplying through by vn = un − u and integrating over D, we obtain∫
D
σn |∇vn|2 dz = −

∫
D
(σn − σ)∇vn · ∇u dz. (3.12)
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Since σn is bounded below by a fixed positive constant c independent of n, we can
use the Cauchy-Schwarz inequality to conclude that

c

2

∫
D
|∇vn|2 dz ≤

1

2c

∫
D

(σ − σn) |∇u|2 dz

and conclude that ∇un → ∇u in L2 by dominated convergence.

From Lemma 3.1.3 we obtain the following uniform approximation property for
the operators

An := Λσn − Λ1. (3.13)

Lemma 3.2.2. Suppose that {σn} is a sequence of conductivities obeying hypotheses
(i)–(iii) of Theorem 3.0.2, and let An be defined as in (3.13). Given any ε > 0 there
is a k ∈ N independent of n so that

‖(I − Pk)An‖H1/2→H−1/2 < ε, ‖An(I − Pk)‖H1/2→H−1/2 < ε,

where Pk is the finite rank projection operator from (2.1)

Proof. From Lemma 3.1.3 we have the uniform operator bound ‖An‖H−m→Hm .m 1
since the σn have uniformly bounded essential infima and suprema and all obey (3.1).
If A′n denotes the Banach space adjoint of An, we have the same bound on A′n by
duality. The second inequality in the lemma is equivalent to the bound

‖(I − Pk)A′n‖H1/2→H−1/2 < ε

by duality, so we’ll only prove the first bound. We write

‖(I − Pk)An‖H1/2→H−1/2 ≤ ‖(I − Pk)‖Hm→H−1/2 ‖An‖H−m→Hm

.m k1/2−m

with constants uniform in n.

Now let A = Λσ − Λ1 where σn → σ.

Proposition 3.2.3. Suppose that {σn}satisfies hypotheses (i)–(iii) of Theorem 3.0.2.
Then An → A in the norm topology on the bounded operators from H1/2 to H−1/2.

Proof. Write

An − A = Pk(An − A)Pk + (I − Pk)(An − A) + (An − A)(I − Pk). (3.14)

Since A is a fixed compact operator, we can choose N ∈ N so ‖(I − Pk)A‖H1/2→H−1/2

and ‖A(I − Pk)‖H1/2→H−1/2 are small for any k ≥ N . Combining this observation
with Proposition 3.2.3, we can choose k ∈ N, uniformly in n, so that the first and and
third right-hand terms of (3.14) are small uniformly in n. The middle term vanishes
for any fixed k and n→∞ by Lemma 3.2.1.

As an easy consequence:
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Proposition 3.2.4. Fix ξ ∈ C. Suppose that {σn} is a sequence obeying hypotheses
(i)–(iii) of Theorem 3.0.2, and denote by gn( · , ξ) and g( · , ξ) the respective solutions
of (3.2) corresponding to σn and σ. Then, for each fixed ξ, gn → g in H1/2(∂D).
Moreover, the scattering transforms tn of σn converge pointwise to t given by (3.3).

Proof. By a slight abuse of notation, denote by Tn the operator Sξ (Λσn − Λ1) and by
T the operator Sξ (Λσ − Λ1). It follows from (2.6) and Proposition 3.2.3 that Tn → T
in L(H1/2, H1/2). Since

gn = (I − Tn)−1
(
eiξz
∣∣
∂D

)
, g = (I − T )−1

(
eiξz
∣∣
∂D

)
,

it follows from the second resolvent identity that gn → g in H1/2(∂D). Convergence
of tn to t follows from the norm convergence of gn to g and of Λσn−Λ1 to Λσ−Λ1.

In the remainder of this section, we will identify what t actually is. In order to
do so we need to prove a convergence theorem for the Astala-Päivärinta scattering
transforms τn of the Beltrami coefficients µn = (1− σn)/(1 + σn) to the transform τ
of σ that is of some interest in itself.

Proposition 3.2.5. Suppose that {µn} is a sequence of Beltrami coefficients with
0 ≤ µn(z) ≤ k < 1 for a.e. z. Suppose further that µn(z) → µ(z) pointwise where
µ ∈ L∞(D) has the same properties. Finally, fix ξ ∈ C and let M±µn(z, ξ) be the
normalized CGO solution for the Beltrami equation from Theorem 1.4.2 with Beltrami
coefficients ±µn, and let M±µ be the normalized CGO solution for ±µ. Then, for a
single choice of sign, M±µn−1→M±µ−1 weakly in W 1,p(R2) for any p ∈ (2, 1+k−1).

We will prove Proposition 3.2.5 in several steps. First we show how to conclude
the proof of Theorem 3.0.2 given its result.

Proof of Theorem 3.0.2, given Proposition 3.2.5. Recall that τ can be written as

τ(ξ) =
1

2π

∫
∂(Mµ −M−µ) dz (3.15)

Note that the CGO solutions M±µn satisfy

∂M±µn = ±µn∂(eξM±µn)

and hence ∂M±µn are supported in D. Proposition 3.2.5 and (3.15) show that τµn → τ
pointwise as n → ∞ since the integral in (3.15) may be regarded as integrating
the derivatives of M±µn against a smooth, compactly supported function which is
identically 1 in a neighborhood of D.1 Since τn converges pointwise to τ and tn(ξ) =
−4πiξτµn(ξ), we conclude that t(ξ) = −4πiξτ(ξ).

To establish the weak convergence, we first need a uniform bound on M±µn − 1
in W 1,p(R2).

1That function is a mollified version of χD(z), the characteristic function of D.
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Lemma 3.2.6. Suppose that {µn} is a sequence of Beltrami coefficients obeying the
hypothesis of Proposition 3.2.5, and let Mn = Mµn. Then there exists a constant C
such that

sup
n
‖Mn − 1‖W 1,p(R2) < C. (3.16)

Proof. Let cn = ‖Mn − 1‖W 1,p(R2). If lim supn cn = +∞, set vn = c−1
n (Mn − 1). Since

{vn} is bounded in W 1,p, by passing to a subsequence we can assume that {vn} has
a weak limit, v. Note that ‖vn‖W 1,p(R2) = 1.

We first claim that, if such a limit exists, it is nonzero. Suppose, on the other hand,
that vn → 0 weakly in W 1,p(R2). It follows from the Rellich-Kondrachov Theorem2

[1, Theorem 6.2] that vn → 0 in Lploc(R2). A short computation shows that

∂vn =
µn
cn
∂eξ + µn∂(eξvn) (3.17)

and, since vn ∈ W 1,p(R2) we may invert the ∂ operator using the Cauchy transform
and use equation (2.14) of Lemma 2.5.2 to conclude that

‖vn‖Lp(R2) . p

∥∥∥∥µncn ∂ek
∥∥∥∥
L2p/(2+p)(R2)

+
∥∥∥µn(∂ek)vn

∥∥∥
L2p/(2+p)(R2)

(3.18)

+
∥∥µnek∂vn∥∥L2p/(2+p)(R2)

.

The first right-hand term in (3.18) clearly goes to zero as n → ∞ since cn → ∞.
The function in the second right-hand term is supported in D owing to the factor
µn and therefore also converges to zero since vn → 0 in Lploc(R2) by hypothesis.
The function in the third term is again supported in D and, using a version of
the Caccioppoli inequality adapted to the vn’s (see Lemma 3.2.7 below), we have
‖∂vn‖Lp(D) . ‖vn‖Lp(2D) + O (c−1

n ), which shows that the third right-hand term in

(3.18) also goes to zero as n→∞. Thus, vn → 0 in Lp(R2). Applying Lemma 3.2.7
to the compactly supported function ∂vn shows that, also

∥∥∂vn∥∥Lp → 0 as n → ∞,
contradicting the fact that ‖vn‖W 1,p(R2) = 1 for all n. From this contradiction we
conclude that {vn} has a nonzero limit, again assuming that cn →∞.

Next, we show that the limit function v is a weak solution of the equation ∂v =
µ∂(eξv). For ϕ ∈ C∞0 (R2) we compute from (3.17)

(ϕ, vn) = c−1
n (ϕ, µn∂eξ) + (ϕ, µn∂(eξvn)).

where (f, g) =

∫
fg. It is easy to see that the first right-hand term vanishes as

n→∞. In the second term,

(ϕ, µn∂(eξvn)) = (∂(e−ξ)µϕ, v̄n) + (eξµϕ, ∂vn) + (ϕ(µn − µ), ∂(ekvn))

→ (∂(e−ξ)µϕ, v) + (eξµϕ, ∂v) as n→∞

2The embedding W 1,p(R2) ↪→ C0,1−2/p(Ω) is compact, which one can use to show strong con-
vergence in Lploc(R2).
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since ‖vn‖W 1,p = 1 and vn → v in Lploc. It follows that v is a weak solution of

∂v = µ∂(eξv) with ‖v‖W 1,p ≤ 1. Thus, assuming that ‖Mn − 1‖W 1,p(R2) is not

bounded, we have constructed a nonzero solution v ∈ W 1,p(R2) of the equation
∂v = µ∂(eξv). However, this violates the uniqueness of the normalized CGO so-
lution for Beltrami coefficient µ proved in [8, Theorem 4.2], a contradiction. We
conclude that ‖Mn − 1‖W 1,p(R2) is bounded uniformly in n.

To complete the proof of Lemma 3.2.6, we need to establish the a priori bounds on
the sequence vn constructed in its proof. To do so, we will need the a priori estimate
for solutions of the Beltrami equation from Theorem 2.4.1.

Lemma 3.2.7. Suppose that vn is a sequence of functions as constructed in the proof
of Lemma 3.2.6. Then, the estimate

‖∂vn‖Lp(D) .ξ c
−1
n + ‖v‖Lp(2D)

where the implied constants are independent of n.

Proof. By construction, the function f = eiξz(cnvn+1) satisfies the Beltrami equation

∂f = µn∂f

and hence satisfies the distortion inequality. Thus by Theorem 2.4.1, for a compactly
supported smooth function η we can write

‖η∂f‖p ≤ Cp,k ‖f∇η‖p (3.19)

Note that by the triangle inequality, we have

‖η∂f‖p =
∥∥η∂(eiξz(cnvn + 1))

∥∥
p
≥ cn

∥∥ηeiξz∂vn∥∥p (3.20)

− |ξ|
∥∥ηeiξz(cnvn + 1)

∥∥
p

which enables us to write

cn
∥∥ηeiξz∂vn∥∥p ≤ ∥∥η∂(eiξz(cnvn + 1))

∥∥
p

(3.21)

+ |ξ|
∥∥ηeiξz∥∥

p
+ cn|ξ|

∥∥ηeiξzvn∥∥p
Next, we apply (3.19) to obtain

cn
∥∥ηeiξz∂vn∥∥p . cn

∥∥eiξz(∇η)vn
∥∥
p

+
∥∥eiξz∇η∥∥

p
(3.22)

+ |ξ|
∥∥ηeiξz∥∥

p
+ cn|ξ|

∥∥ηeiξzvn∥∥p .
Thus we conclude ∥∥ηeiξz∂vn∥∥p . ∥∥eiξz(∇η)vn

∥∥
p

+ |ξ|
∥∥ηeiξzvn∥∥p (3.23)

+
1

cn

(∥∥eiξz∇η∥∥
p

+ |ξ|
∥∥ηeiξz∥∥

p

)
To obtain the desired estimate, we choose η supported on the disk of radius 2 so that
η = e−iξz in D.
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We can now give the proof of Proposition 3.2.5 and thereby complete the proof of
Theorem 3.0.2.

Proof of Proposition 3.2.5. By Lemma 3.2.6, the sequences {M±µn − 1} for either
choice of sign are bounded in W 1,p(R2). We will take a single choice of sign, the +
sign, and write Mn for Mµn and M for Mµ from now on. The sequence {Mn−1} has a
weak limit point in W 1,p(R2) which we denote by M ]−1. By the Rellich-Kondrachov
theorem, Mn − 1 converges in Lploc(R2) to M ] − 1. We wish to show that

∂M ] = µ∂ (eξM ]),

M ] − 1 ∈ W 1,p(R2)
(3.24)

since we can then conclude that M ] − 1 is nonzero (as the PDE does not admit
the solution M ] = 1) and that M ] = M since the PDE is uniquely solvable for
M ] − 1 ∈ W 1,p(R2).

From ∂Mn = µn∂ (eξMn) we conclude that for any ϕ ∈ C∞0 (R2),

−
(
∂ϕ,Mn

)
=
(
ϕ, µn∂ (eξMn)

)
=
(
ϕ, µ∂ (eξMn)

)
+
(

(µn − µ), ∂ (eξMn)
)

The second right-hand term vanishes as n → ∞ by dominated convergence since
µn − µ is supported in D while {∂(eξMn)} is uniformly bounded in Lp(R2). Weak
convergence of derivatives allows us to conclude that (3.24) holds.

3.3 Summary

In this chapter, we examined the process of obtaining the scattering transform of a
piecewise-continuous conductivity from its Dirichlet-to-Neumann map. The shortcut
implemented in the numerical experiments in [9] used Nachman’s integral equations to
represent the scattering transform. Prior to our work, this procedure assumed a priori
that the conductivity was Hölder continuous. We have shown that the smoothness
assumption on the conductivity σ is not needed, provided σ is 1 in a neighborhood of
the boundary (a statement made more precisely in (3.1)). In order to establish that
the shortcut works, a type of continuity result in the map σ 7→ t was established in
the Astala-Päivärinta framework. Thus in the presence of infinite-precision data, the
scattering transform of a piecewise-continuous conductivity can be found using the
shortcut method presented in [9].

Copyright c© George H. Lytle, 2019.
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Chapter 4 Conductivities with Truncated Scattering Transform

To address the second motivating question in [9], we need to first understand what
sorts of conductivities correspond to a scattering transform that is compactly sup-
ported. Then we study the problem of CGO solutions for this type of conductivity
and show that they exhibit a similar subexponential growth.

4.1 Decay of the Conductivity

The Fourier transform maps smooth functions to decaying functions and vice-versa.
Earlier, we mentioned that the scattering transform can be thought of as a nonlinear
analogue of the Fourier transform. Thus there is no reason to expect the Beltrami
coefficient corresponding to a τ ∈ C∞0 (C) to be compactly supported. However, as we
will show, the corresponding Beltrami coefficient exhibits large-z decay on the order
of O (|z|−2).

Theorem 4.1.1. Suppose τ ∈ C∞0 (C) satisfies τ(0) = 0 and |τ(ξ)| ≤ 1, then τ
corresponds to a continuous Beltrami coefficient µ that satisfies

‖µ‖∞ ≤ k < 1 and µ(z) ∼ O
(

1

|z|2

)
as z →∞ (4.1)

Consequently, µ ∈ Lr(C) for all 1 < r ≤ ∞. Moreover, ∂µ ∈ Lr(C) for all 1 < r ≤
∞.

Remark 4.1.2. Note that µ = (1− σ)/(1 + σ) where σ is reconstructed from τ . We
will later extend the Astala-Päivärinta scattering transform to include the µ which
construct such τ .

The proof of this theorem is at the end of this section. First, we need to state a
condition on the scattering transform t and thus on τ .

Lemma 4.1.3 (Lemma 5.1 of [36]). For Nachman’s scattering transform t(ξ), t(ξ) =
t(−ξ). By the equivalence between t and τ ,

ξ̄τ(ξ) = −ξτ(−ξ)

Davey-Stewartson System

To obtain information on the conductivity, we will study the connection between the
Schrödinger problem and the linear system associated to the Davey-Stewartson II
equation. We will use the notation of [38]. First we recall the direct problem:

∂m1(z, ξ) = um2(z, ξ),

(∂ + iξ)m2(z, ξ) = ūm1(z, ξ),

m1( · , ξ)− 1,m2( · , ξ) ∈ L4
z(R2).

(4.2)
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The scattering transform is computed from (4.2) via

s(ξ) = − i
π

∫
eξ(z)u(z)m1(z, ξ) dz. (4.3)

The functions m1 and m2 also obey the ‘dual’ problem

∂ξm
1(z, ξ) = e−ξs(ξ)m2(z, ξ),

∂ξm
2(z, ξ) = e−ξs(ξ)m1(z, ξ),

m1(z, · )− 1,m2(z, · ) ∈ L4
ξ(R2).

(4.4)

We can construct the solution to Nachman’s problem using the functions m1 and
m2. Cross-differentiating the equations (4.2) we see that m = m1 +m2 obeys

∂ (∂ + iξ)m =
(
∂u+ |u|2

)
m,

m( · , ξ)− 1 ∈ L4
z(R2)

(4.5)

which is the form for normalized CGO solutions of the zero-energy Schrödinger equa-
tion with potential

q = 4
(
∂u+ |u|2

)
,

provided u obeys the compatibility condition

∂u = ∂u.

The function m also obeys the dual equation{
∂ξm(z, ξ) = e−ξ(z)s(ξ)m(z, ξ),

m(z, · )− 1 ∈ L4
ξ(R2).

(4.6)

Comparing (4.6) and (1.12), we see that by taking s(ξ) = τ(ξ) we recover the solution
to Nachman’s problem.

Expansions

Consider the system 
∂m1 = um2,

(∂ + iξ)m2 = um1,

m1( · , ξ)− 1, m2( · , ξ) ∈ L4(R2)

(4.7)

for u ∈ S (R2). For such u it is not difficult to show that m1( · , ξ) and m2( · , ξ)
belong to L∞(R2) for each ξ with bounds independent of ξ1. We can then use the
identity ∫

1

z − ζ
f(ζ) dζ =

N∑
j=0

1

zj+1

∫
ζjf(ζ) dζ +

1

zN+1

∫
ζN+1

z − ζ
f(ζ) dζ

1Much of the careful analysis of the Davey-Stewartson-II system was done by Sung in [45, 46, 47].

28



to show that

m1(z, ξ) = 1 +
1

πz

∫
u(ζ)m2(ζ, ξ) dζ +

1

πz2

∫
ζu(ζ)m2(ζ, ξ) dζ (4.8)

+
1

πz2

∫
ζ2u(ζ)

z − ζ
m2(ζ, ξ) dζ

m2(z, ξ) =
e−ξ(z)

πz

∫
eξ(ζ)u(ζ)m1(ζ, ξ) dζ +

e−ξ(z)

πz2

∫
eξ(ζ)ζ̄u(ζ)m1(ζ, ξ) dζ (4.9)

+
e−ξ(z)

πz2

∫
eξ(ζ)

ζ̄2u(ζ)

ζ̄ − z
m1(ζ, ξ) dζ

where we’ve only expanded to order |z|−2. To identify the coefficients in these asymp-
totic expansions, we exploit the fact that m1 and m2 also obey the dual equations

∂ξm
1 = e−ξsm2,

∂ξm
2 = e−ξsm1,

m1(z, · )− 1, m2(z, · ) ∈ L2
ξ(R2).

(4.10)

where s, the scattering transform of u, was defined in (4.3) (this immediately identifies
the first nontrivial coefficient in the large-z expansion (4.9) of m2). It is clear from
(4.8)–(4.9) that m1 and m2 admit large-z asymptotic expansions of the form

m1(z, ξ) ∼ 1 +
∑
j≥1

αj(ξ)

zj
,

m2(z, ξ) ∼ e−ξ(z)
∑
j≥1

βj(ξ)

zj
.

Substituting these expansions into (4.10), we can find recurrence relations for αj and
βj:

∂ξαj = sβj

β1 = is

∂ξβj + iβj+1 = sαj

where the first relation comes from the first equation in (4.10), and the remaining re-
lations come from the second equation of (4.10). Hence β1 = −is and α1 = ∂−1

ξ (|s|2).
Using these facts in (4.8) and (4.9), we conclude that

m1(z, ξ) = 1 +
1

iz
∂−1
ξ

(
|s( · )|2

)
(ξ) +

1

πz2

∫
ζu(ζ)m2(ζ, ξ) dζ (4.11)

+
1

πz2

∫
ζu(ζ)

z − ζ
m2(ζ, ξ) dζ

m2(z, ξ) =
ie−ξ(z)

z
s(ξ) +

e−ξ(z)

πz2

∫
eξ(z)ζ̄u(ζ)m1(ζ, ξ) dζ (4.12)

+
e−ξ(z)

πz2

∫
eξ(z)

ζ̄u(ζ)

ζ̄ − z
m1(ζ, ξ) dζ

29



Proof of Theorem 4.1.1. In [15], Brown and Uhlmann make a change of dependent
variable

q = −1

2
∂ log σ (4.13)

that transforms the divergence form equation ∇ · (σ∇u) = 0 into the linear system
(4.2) with scattering map (4.3) and transform s(ξ) (which we have shown is the same
as τ(ξ). Sung showed that this scattering map takes S (R2) to itself [46, Theorem
4.4]. If s ∈ S (R2), we can conclude that q = −1

2
∂ log σ ∈ S (R2). This implies that

−2∂−1q is certainly a bounded function. Therefore,

σ = e−2∂−1q (4.14)

is a smooth non-negative function. Thus if s ∈ S (R2), the quantity µ = (1−σ)/(1+σ)
is a smooth, bounded function with ‖µ‖∞ ≤ k < 1.

Together with the formula m(z, ξ) = m1(z, ξ) + m2(z, ξ) for the solution of (4.6)
and the reconstruction formula

σ(z) = lim
ξ→0

m(z, ξ) (4.15)

we examine the large-z asymptotics of the conductivity σ. Because

m(z, ξ)2 − 1 = (m(z, ξ)− 1)2 + 2(m(z, ξ)− 1) (4.16)

we need to examine the asymptotics of m(z, ξ) as ξ → 0.
Using the fact that τ(ξ) = s(ξ), assume now that s satisfies the conditions

s(0) = 0, s(ξ) = − ξ̄
ξ
s(−ξ). (4.17)

Then |s(ξ)|2 is an even function so that ∂−1
ξ (|s( · )|2) (0) = 0.

We then conclude from (4.11) and (4.12) that

m1(z, 0) = 1 +
1

πz2

∫
ζu(ζ)m2(ζ, 0) dζ +

1

πz2

∫
ζu(ζ)

z − ζ
m2(ζ, 0) dζ (4.18)

m2(z, 0) =
1

πz2

∫
ζ̄u(ζ)m1(ζ, 0) dζ +

1

πz2

∫
ζ̄u(ζ)

ζ̄ − z
m1(ζ, 0) dζ (4.19)

Since m(z, ξ)− 1 = m1(z, ξ)− 1 +m2(z, ξ) we see that

m(z, 0)− 1 ∼ O
(

1

|z|2

)
as z →∞. (4.20)

Thus σ(z)− 1 ∼ O (|z|−2) and µ(z) ∼ O (|z|−2) as z →∞.

For the derivative, note

∂µ =
−2∂σ

(1 + σ)2
.
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We see that an estimate on ∂σ via ∂m1(z, 0) and ∂m2(z, 0) is sufficient to conclude
∂µ ∈ Lr(C) for r ∈ (1,∞). Since m1 and m2 are bounded, it follows from (4.7) that,
also, ∂m1 and (∂z+iξ)m2 are bounded functions of rapid decrease. It follows that the
first derivatives (∂m1) (z, 0),

(
∂m1

)
(z, 0), (∂m2) (z, 0), and

(
∂m2

)
(z, 0) all belong to

Lr(R2) for any r ∈ (1,∞) by the boundedness of the Beurling transform on Lr for
such r.

4.2 Existence of CGO Solutions

In [8], Astala and Päivärinta show the existence and uniqueness of complex geometric
optics (CGO) solutions to the Beltrami equation

∂f = µ∂f

where the Beltrami coefficient µ ∈ L∞(C) with ‖µ‖∞ ≤ k < 1 and supp(µ) ⊂ D. We
extend their theorem to a broader class of µ. Our approach draws heavily upon the
techniques used by Astala and Päivärinta in [8]. At key points where the authors
use the compact support assumption, we find an alternative strategy to replace the
compact support with the decay condition.

Theorem 4.2.1. Suppose that µ is a real-valued measurable function with ‖µ‖∞ ≤
k < 1 and that µ ∈ Lr(C) for all r with 1 < r < ∞. Let 2 < p < 1 + k−1. Then for
each ξ ∈ C there exists a unique solution f ∈ W 1,p

loc (C) to the equation

∂f = µ∂f (4.21)

where f can be written as f(z, ξ) = eiξzM(z, ξ) and

M(·, ξ)− 1 ∈ W 1,p(C) (4.22)

Some Useful Propositions

We will study an integral operator built from the solid Cauchy transform and the
Beurling transform. Let

ν ∈
⋂

1<q<∞

Lq(C) α ∈
⋂

1<q<∞

Lq(C) ∩ L∞(C) (4.23)

where ‖ν‖∞ ≤ k < 1 and suppose p is in the interval 1 + k < 2 < p < 1 + k−1. In
analogy with Proposition 4.1 of [8], we define an operator K

Kg = P (I − νS̄)
−1

(αḡ) (4.24)

We will prove some properties of this operator that will be useful in proving our main
theorem.

Proposition 4.2.2. Suppose ν, and α are as described in equation (4.23) where
‖ν‖∞ ≤ k < 1 and 1 + k < q < 2 < p < 1 + k−1. Then the following hold.
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1. K : Lp(C)→ Lp(C)

2. (I −K) is injective on Lp(C)

The proof of statement (2) is due to Astala-Päivärinta. In order to prove this and
subsequent statements, we will make use of a few useful facts, which are consequences
of Hölder’s inequality.

Lemma 4.2.3. Suppose g ∈ Lp ∩ Lq for 1 < q < 2 < p < ∞ and ‖g‖∞ ≤ k. Then
the following hold.

‖g‖2 ≤ k(2−q)/2 ‖g‖q/2q (4.25)

‖gh‖2p/(p+2) ≤ ‖g‖2 ‖h‖p (4.26)

Proof of Proposition 4.2.2. In the first place, since ‖ν‖∞ ≤ k < 1 and 1 + k < q <
2 < p < 1 + k−1, we know by Lemma 2.5.3 that (I − νS̄) is invertible on Lp(C). Now
we can write

Kg = P (I − νS̄)
−1

(αḡ) (4.27)

= P
[
αḡ − νS̄(I − νS̄)

−1
(αḡ)

]
Employing estimate (2.14), we have

‖Kg‖p .p ‖αḡ‖2p/(p+2) +
∥∥∥νS̄(I − νS̄)

−1
(αḡ)

∥∥∥
2p/(p+2)

Our assumptions on α and ν let us use estimate (4.26) to obtain (in combination
with other estimates on the Beurling operator and the resolvent):

‖Kg‖p .p ‖α‖2 ‖g‖p + ‖ν‖2

∥∥S̄∥∥
Lp→Lp

∥∥∥(I − νS̄)
−1
∥∥∥
Lp→Lp

‖α‖∞ ‖g‖p (4.28)

We now show I − K is injective. Suppose g ∈ Lp such that g = Kg. This implies
that we can write

∂g = (I − νS̄)
−1

(αḡ)

∂g − νS(∂g) = αḡ

∂g − ν∂g = αḡ

Then g satisfies the differential inequality

|∂g| ≤ k|∂g|+ |α||g|

Moreover, we claim that since g = Kg, g must vanish at ∞. Using the same de-
composition as in (4.27) and our estimate (4.26), we can conclude that αḡ and

νS̄(I − νS̄)
−1

(αḡ) are in L2p/(p+2)(C). Since α and ν are both bounded, we can

also conclude αḡ and νS̄(I − νS̄)
−1

(αḡ) are in Lp(C). Since,

2p

p+ 2
< 2 < p,

Lemma 2.5.2 implies g(z) = Kg(z) → 0 as |z| → ∞. Therefore, by Theorem 2.4.2,
we conclude that g ≡ 0 and hence (I −K) is injective.
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In the following section, we will want to solve an integral equation of the form
(I −K)g = h in Lp. We will use the Fredholm alternative to accomplish this, but we
need to establish the compactness of the operator K. The key distinction from the
case of Proposition 4.1 of [8] is that we no longer assume that α and ν have support
in D. Instead, we impose an integrability condition which equates to having decay at
infinity.

Proposition 4.2.4. Suppose ν, and α are as described in equation (4.23) where
‖ν‖∞ ≤ k < 1 and 1 + k < q < 2 < p < 1 + k−1. Then the operator K defined in
(4.24) is compact on Lp(C). Consequently, (I −K) is invertible on Lp(C).

Proof. Let χn(z) be the characteristic function of the ball of radius n centered at the
origin. Take αn = χnα and νn = χnν. We can now construct a sequence of operators
{Kn} on Lp(C) by

Kng = P (I − νnS̄)
−1

(αnḡ). (4.29)

Then by Proposition 4.1 of [8], the Kn are all compact. We will show Kn → K
in operator norm, and since the set of compact operators is norm-closed, we can
conclude that K is compact.
It suffices to show that ‖(Kn −K)g‖p → 0 as n → ∞ uniformly in g ∈ Lp(C) with
‖g‖p = 1. Note that

(K −Kn)g = P
[
(I − νnS̄)

−1
[(αn − α)ḡ] (4.30)

+
[
(I − νnS̄)

−1 − (I − νS̄)
−1
]

(αḡ)
]

and by the second resolvent formula, we can rewrite this as

(K −Kn)g = P
[
(I − νnS̄)

−1
[(αn − α)ḡ]

]
︸ ︷︷ ︸

I

(4.31)

+P
[
(I − νnS̄)

−1
(νn − ν)S̄(I − νS̄)

−1
(αḡ)

]
︸ ︷︷ ︸

II

We employ a decomposition in the spirit of equation (4.27).

‖I‖p =
∥∥∥P [[(αn − α)ḡ]− νnS̄(I − νnS̄)

−1
[(αn − α)ḡ

]∥∥∥
p

.p ‖(αn − α)ḡ‖2p/(p+2) +
∥∥∥νnS̄(I − νnS̄)

−1
[(αn − α)ḡ

∥∥∥
2p/(p+2)

.p ‖αn − α‖2 ‖g‖p + ‖νn‖p
∥∥S̄∥∥

L2→L2

∥∥∥(I − νnS̄)
−1
∥∥∥
L2→L2

‖(αn − α)ḡ‖2

.p ‖αn − α‖2 ‖g‖p +
1

1− k
‖ν‖p ‖αn − α‖2p/(p−2) ‖g‖p

→ 0 as n→∞
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We used the fact that since the resolvent (I − νnS̄)
−1

is constructed with a Neumann
series dependent on ‖νn‖∞, we know that∥∥∥(I − νnS̄)

−1
∥∥∥
Lp→Lp

≤ 1

1− k
∥∥S̄∥∥

Lp→Lp
for all n (4.32)

In particular, the constant is 1
1−k when p = 2 since the Beurling transform is an

isometry on L2(C). Similarly, we can estimate

‖II‖p =
∥∥∥P [(νn − ν)S̄(I − νS̄)

−1
(αḡ)− νnS̄(I − νnS̄)−1(νn − ν)S̄(I − νS̄)

−1
(αḡ)

]∥∥∥
p

.p

∥∥∥(νn − ν)S̄(I − νS̄)
−1

(αḡ)
∥∥∥

2p/(p+2)

+
∥∥∥νnS̄(I − νnS̄)

−1
(νn − ν)S̄(I − νS̄)

−1
(αḡ)

∥∥∥
2p/(p+2)

.p ‖νn − ν‖2

∥∥∥S̄(I − νS̄)
−1

(αḡ)
∥∥∥
p

+ ‖νn‖p
∥∥S̄∥∥

L2→L2

∥∥∥(I − νnS̄)
−1
∥∥∥
L2→L2

∥∥∥(νn − ν)S̄(I − νS̄)
−1

(αḡ)
∥∥∥

2

.p ‖νn − ν‖2

∥∥S̄∥∥
Lp→Lp

∥∥∥(I − νS̄)
−1
∥∥∥
Lp→Lp

‖α‖∞ ‖g‖p

+
1

1− k
‖ν‖p ‖νn − ν‖2p/(p−2)

∥∥S̄∥∥
Lp→Lp

∥∥∥(I − νS̄)
−1
∥∥∥
Lp→Lp

‖α‖∞ ‖g‖p
→ 0 as n→∞

This implies ‖(Kn −K)g‖p → 0 as n → ∞, and thus K is compact on Lp(C). By
Proposition 4.2.2 and the Fredholm alternative, the operator (I −K) is invertible on
Lp(C).

Proof of Theorem 4.2.1

In order to study this, we substitute the ansatz f(z, ξ) = eiξzM(z, ξ) into the equation
(4.21). The function M satisfies{

∂M(z, ξ) = µ(z)∂(eξ(z)M(z, ξ))

M(·, ξ)− 1 ∈ W 1,p(C)
(4.33)

where eξ(z) is the phase function

eξ(z) = ei(ξz+ξ̄z̄) (4.34)

We first show that solving this PDE is equivalent to solving an integral equation.

Theorem 4.2.5. Suppose µ is a real-valued measurable function with ‖µ‖∞ ≤ k < 1
and that µ ∈ Lr(C) for 1 < r < ∞. Let 2 < p < 1 + k−1. The PDE (4.33) has a
unique solution M(·, ξ) − 1 ∈ W 1,p(C) if and only if there exists a unique solution
M(·, ξ)− 1 ∈ W 1,p(C) to the equation

(I −K)(M − 1) = K(1) (4.35)

where the operator K is defined in Proposition 4.2.2.
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Proof. Suppose we have a solution to (4.33). Since M − 1 ∈ W 1,p(C) we can write

∂(M − 1) = µ∂(eξ(M − 1) + eξ) (4.36)

= µ∂e−ξM − 1 + µe−ξ∂(M − 1) + µ∂e−ξ (4.37)

We now use the identity ∂g = ∂P∂g = S̄(∂g) to write

(I − µe−ξS̄)(∂(M − 1)) = µ∂e−ξ(M − 1) + µ∂e−ξ (4.38)

Write

ν = µe−ξ α = µ∂e−ξ (4.39)

and note that the assumptions on µ imply that the operator (I − νS̄) is invertible on
Lp(C) by Lemma 2.5.3. This allows us to write equation (4.38) as

∂(M − 1) = (I − νS̄)
−1

(α(M − 1)) + (I − νS̄)
−1

(α) (4.40)

Applying the solid Cauchy transform to each side yields

(M − 1) = P (I − νS̄)
−1

(α(M − 1)) + P (I − νS̄)
−1

(α1̄) (4.41)

So, the integral equation can be rewritten as

(I −K)(M − 1) = K(1) (4.42)

Note that each of these steps is reversible. To show the integral equation is solvable,
we consider the right-hand side of (4.42). We claim that the inhomogeneous term is
in Lp(C). Indeed, we can use a decomposition similar to equation (4.27).

‖K(1)‖p =
∥∥∥P [α− νS̄(I − νS̄)

−1
(α)
]∥∥∥

p

.p ‖α‖2p/(p+2) +
∥∥∥νS̄(I − νS̄)

−1
(α)
∥∥∥

2p/(p+2)

.p ‖α‖2p/(p+2) + ‖ν‖2

∥∥S̄∥∥
Lp→Lp

∥∥∥(I − νS̄)
−1
∥∥∥
Lp→Lp

‖α‖p
=

∥∥µ∂e−ξ∥∥2p/(p+2)
+ Cp ‖µe−ξ‖2

∥∥S̄∥∥
Lp→Lp

∥∥µ∂e−ξ∥∥p
Thus a solution to the integral equation (4.42) also satisfies the PDE (4.33).

We can now conclude the proof of Theorem 4.2.1 as follows. By Proposition 4.2.4,
the equation (4.42) can be solved in Lp(C), which allows us to write:

M − 1 = (I −K)−1(K(1))

It remains to show that M − 1 ∈ W 1,p(C). As seen in equation (4.41), (M − 1) is the
sum of Cauchy transforms of Lp functions, which combined with the boundedness of
the Beurling transform, implies that ∇(M − 1) ∈ Lp(C). This completes the proof.
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4.3 Principal Solutions for Linear Beltrami Equations

In their paper [8], Astala and Päivärinta showed that CGO solutions to the Beltrami
equation can be written as

f(z, ξ) = eiξϕ(z,ξ)

where ϕ(z, ξ) is a principal solution to the nonlinear Beltrami equation

∂ϕ(z, ξ) = − ξ̄
ξ
µ(z)e−ξ(ϕ(z, ξ))∂ϕ(z, ξ). (4.43)

The theory of quasiconformal maps uses the term principal solution to refer to solu-
tions of the equation that have large z asymptotics:

ϕ(z, ξ) = z +O
(

1

z

)
.

This definition makes sense when µ is compactly supported, but for our class of µ,
we will make the following weaker definition

Definition 4.3.1. Suppose that ‖µ‖∞ ≤ k < 1 and µ ∈ Lr(C) for all 1 < r < ∞.
Let 2 < p < 1 + k−1. We say that ϕ ∈ W 1,p

loc (C) is a principal solution to (4.43)
if w(z) := ϕ(z)− z ∈ W 1,p(C) and w(z)→ 0 as |z| → ∞.

Remark 4.3.2. The condition that w(z) → 0 as |z| → ∞ is redundant. The inte-
grability properties of µ imply that the function w(z) is the Cauchy transform of a
function in Lp ∩ Lq for 1 < q < 2 < p < ∞. Thus by Lemma 2.5.2, w(z) → 0 as
|z| → ∞. We include this statement in the definition to support the connection to
principal solutions of Beltrami equations with compactly supported coefficients.

In this section we will show that this definition makes sense by examining exis-
tence and uniqueness of principal solutions for linear Beltrami equations. The next
section will prove the existence and uniqueness of principal solutions to the nonlinear
Beltrami equation (4.43).

As a “warm-up,” we consider the linear Beltrami equation

∂f = µ∂f. (4.44)

where ‖µ‖∞ ≤ k < 1 and µ ∈ Lr(C) for all 1 < r < ∞, and let 1 + k < q < 2 <
p < 1 + k−1. In analogy to Definition 4.3.1, we say that f ∈ W 1,p

loc (C) is a principal
solution to (4.44) if f(z) = z+w(z) for w ∈ W 1,p(C) and w(z)→ 0 as |z| → ∞. The
following discussion and proof was suggested by Kari Astala [3]. We made a small
change in the uniqueness proof. We will prove:

Theorem 4.3.3. Suppose that µ ∈ Lq(C) for all 1 < q < ∞, and let 1 + k < q <
2 < p < 1 + k−1. There exists a unique principal solution f of (4.44).
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Proof. Writing f = z + w, we deduce from (4.44) that w solves the inhomogeneous
Beltrami equation

∂w = µ+ µ∂w (4.45)

Using the operator (2.19), we rewrite (4.45) as

∂w = µ+ µS̄(∂w)

For any s ∈ [q, p],
∥∥µS̄∥∥

Ls→Ls < 1 by Lemma 2.5.3, so (I−µS)−1 exists as a bounded
operator on Ls(C) with norm bounded by a constant depending only on k. Thus we
can solve for ∂w ∈ Ls(C) given by

∂w = (I − µS̄)−1µ

for any s ∈ (q, p) by the hypothesis on µ. Note that this interval contains p = 2. We
can then recover w using the Cauchy transform:

w(z) = P
[
(I − µS̄)−1µ

]
(z) (4.46)

which defines a bounded continuous function vanishing at infinity by Lemma 2.5.2.
We claim that w is unique. If not, suppose w′ is another solution and let v = w−w′.

Then
∂v = µ∂v, ∂v ∈ Lp(C).

From the boundedness of the Beurling operator it follows that, also ∂v ∈ Lp(C).
Applying [4, Theorem 14.4.8], we see that v is a constant, hence 0 by the vanishing
conditions on w and w′.

4.4 Principal Solutions for the Nonlinear Beltrami Equation

In this section we consider principal solutions in the sense of Definition 4.3.1 to
(4.43). We assume that ‖µ‖∞ ≤ k < 1 and µ ∈ Lr(C) for 1 < r <∞. Let q and p be
1 + k < q < 2 < p < 1 + 1/k. Then µ ∈ Lp ∩ Lq where

‖f‖Lp∩Lq := ‖f‖p + ‖f‖q .

From this definition and Lemma 2.5.3, it follows that the operator S̄ defined by (2.19)
satisfies the estimate ∥∥µS̄f∥∥

Lp∩Lq ≤ c ‖f‖Lp∩Lq (4.47)

for a number 0 < c < 1 depending only on the pair (p, q).
We will prove:

Theorem 4.4.1. Suppose that µ is a real-valued measurable function with ‖µ‖∞ ≤
k < 1, and that µ ∈ Lr(C) for 1 < r <∞. Let 1 + k < q < 2 < p < 1 + k−1. Then,
for each ξ ∈ C there exists a unique principal solution ϕ to the nonlinear Beltrami
equation (4.43).
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The proof is a direct consequence of Propositions 4.4.2 and 4.4.4 of what follows.
To prove existence we write ϕ = z+w so that w obeys the inhomogeneous equation

∂w = −µξe−ξ(z + w)− µξe−ξ(z + w)∂w. (4.48)

Write w = Pf for a potential f ∈ Lp(C) ∩ Lq(C) to be determined. For such a
potential, w is bounded continuous function vanishing at infinity. The potential f
satisfies

f = −µξe−ξ(z + Pf)− µξe−ξ(z + Pf)S̄f. (4.49)

where µξ(z) = ξ̄
ξ
µ(z).

Proposition 4.4.2. Suppose that ‖µξ‖∞ ≤ k < 1 and that 1 + k < q < 2 < p <
1 + k−1. Finally, suppose that µ ∈ Lr(C) for 1 < r < ∞. Then, there exists a
continuous solution w = Pf to (4.48) for some f ∈ Lp(C) ∩ Lq(C).

Remark 4.4.3. As a consequence of the representation w = Pf and Lemma 2.5.2, w
is a continuous function that vanishes at infinity, and clearly ∂w ∈ Lp(C). Moreover,
it follows from (4.49) and Hölder’s inequality that, in fact, f ∈ Ls(C) for any s ∈
(1, 2). Choosing s = (2p)/(2 + p) gives w ∈ Lp(C). Hence, w ∈ W 1,p(C). The proof
of Proposition 4.4.5 will include more details on these estimates.

Proof of Proposition 4.4.2. We’ll use an approach similar to the proof of Theorem
8.2.1 in [4]. To solve (4.49), we first consider the problem

Φ = −µξe−ξ(z + Pf)− µξe−ξ(z + Pf)S̄Φ (4.50)

to be solved for Φ ∈ Lp(C) ∩ Lq(C) for given f ∈ Lp(C) ∩ Lq(C). This problem
makes sense because Pf ∈ L∞, S̄ maps Lp ∩ Lq to itself, and e−ξ( · ) is unimodular.
Moreover, in the obvious iteration scheme to solve it, we easily estimate from (4.50)
that

‖Φn+1 − Φn‖Lp∩Lq ≤ c ‖Φn − Φn−1‖Lp∩Lq
where c ∈ (0, 1) is the constant from the estimate (4.47). This shows that (4.50) has
a unique solution for each f ∈ Lp ∩ Lq. The solution map T : f → Φ is a nonlinear
operator on Lp ∩Lq; a function f solves (4.49) if f = Tf . To show that the operator
T has a fixed point, we will show that T preserves a sufficiently large closed ball B
about the origin of Lp ∩ Lq, that T is continuous, and that the image of B under
T has compact closure. It will then follow from the Schauder fixed point theorem
(Theorem 2.6.1) that T has a fixed point f , and hence that w = Pf solves (4.48).

First, using (4.50), we have the pointwise estimate

|Φ(z)| ≤ |µξ|+ |µξ|
∣∣S̄Φ

∣∣
from which it follows that

‖Φ‖Lp∩Lq ≤
1

1− c
‖µξ‖Lp∩Lq .
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We now choose B to be the ball of radius (2/(1 − c)) ‖µξ‖Lp∩Lq about 0. Clearly T
maps B into itself. To show that T is continuous and T (B) is compact, it suffices
to show that if ϕn → ϕ0 weakly in Lp ∩ Lq, if Tϕn = Φn, and if Tϕ0 = Φ0, then
Φn → Φ0 strongly in Lp ∩ Lq.

By the compactness of the operator P as a map from Lp ∩ Lq to C({|z| ≤ R})
[4, Theorem 4.3.14], we have sup|z|≤R |(Pϕn)(z)− (Pϕ0)(z)| → 0 as n→∞ for each
fixed R > 0. Using (4.50) for the respective pairs (ϕn,Φn) and (ϕ0,Φ0), we see that

Φn(z)− Φ0(z) = µξ [e−ξ(z + Pϕn)− e−ξ(z + Pϕ0)] (4.51)

+ µξe−ξ(z + Pϕn)
[
S̄Φn − S̄Φ0

]
+ µξ [e−ξ(z + Pϕn)− e−ξ(z + Pϕ0)] S̄Φ0

Letting

En = µξ [e−ξ(z + Pϕn)− e−ξ(z + Pϕ0)] (4.52)

+ µξ [e−ξ(z + Pϕn)− e−ξ(z + Pϕ0)] S̄Φ0

we deduce from (4.51) that

(1− c) ‖Φn − Φ0‖Lp∩Lq ≤ ‖En‖Lp∩Lq

so it suffices to show that ‖En‖Lp∩Lq → 0 as n→∞. Let ε > 0 be given. To estimate
the first right-hand term in (4.52), we first choose R so large that

‖χ>Rµξ [e−ξ(z + Pϕn)− e−ξ(z + Pϕ0)]‖Lp∩Lq ≤ 2 ‖χ>Rµξ‖Lp∩Lq < ε/4,

where χ>R is the characteristic function of the set {z : |z| > R} and, in what follows,
χ≤R = 1 − χ>R. We then use the uniform convergence of Pϕn to Pϕ0 on compact
subsets of C to choose n so large that

‖χ≤Rµξ [e−ξ(z + Pϕn)− e−ξ(z + Pϕ0)]‖Lp∩Lq < ε/4.

To bound the second right-hand term in (4.52), we similarly choose R so large that

2
∥∥χ>RµξS̄Φ0

∥∥
Lp∩Lq < ε/4.

Next we estimate∥∥χ≤Rµξ [e−ξ(z + Pϕn)− e−ξ(z + Pϕ0)] S̄Φ0

∥∥
Lp∩Lq

≤ ‖µ‖∞ ‖χ≤R [e−ξ(z + Pϕn)− e−ξ(z + Pϕ0)]‖∞
∥∥S̄Φ0

∥∥
Lp∩Lq

and choose n so large that this term is also < ε/4. This shows that ‖En‖Lp∩Lq < ε
for n sufficiently large, so that Φn → Φ0 in Lp ∩ Lq.

It now follows that there is at least one f ∈ Lp ∩Lq that solves (4.49), and hence
at least one w = Pf that solves (4.48).

Next, we show that the principal solution is unique. Our uniqueness proof borrows
ideas from the proof of [4, Theorems 8.5.1 and 8.5.3]. The hypothesis wi ∈ W 1,p(C)
in the uniqueness theorem is justified by Remark 4.4.3.
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Proposition 4.4.4. Let µ ∈ Lp ∩ Lq where ‖µ‖∞ ≤ k < 1 and 1 + k < q < 2 <
p < 1 + 1/k. Suppose that w1 and w2 are solutions of (4.48) with wi ∈ W 1,p(C), and
wi(z)→ 0 as |z| → ∞. Then w1 = w2.

Proof. Let v = w1 − w2. It follows from (4.48) that

∂v = α(z)∂v + F (z)v (4.53)

where

α(z) = −µξe−ξ(z + w1)
∂v

∂v
,

F (z) = F1 + F2,

where

F1 = −µξe−ξ(z)

[
e−ξ(w1)− e−ξ(w2)

w1 − w2

]
,

F2 = −µξe−ξ(z)∂w2

[
e−ξ(w1)− e−ξ(w2)

w1 − w2

]
.

Note that ‖α‖∞ ≤ k < 1. For real numbers p and q, we note that

∣∣eip − eiq∣∣ =

∣∣∣∣∫ 1

0

ietp+(1−t)q(p− q) dt
∣∣∣∣

≤ |p− q|

For the real numbers p = 2<(ξw1(z)) and q = 2<(ξw2(z)), we can conclude∣∣e2i<(ξw1(z)) − e2i<(ξw2(z))
∣∣ ≤ 2 |<(ξw1(z)− ξw2(z))| ≤ 2|ξ||w1(z)− w2(z)|. (4.54)

Therefore, ∣∣∣∣e−ξ(w1)− e−ξ(w2)

w1 − w2

∣∣∣∣ ≤ 2|ξ| (4.55)

This estimate enables us to show F ∈ Lp ∩ Lq. This is obviously true of F1, and we
may estimate

‖F2‖p ≤ 2|ξ| ‖µξ‖∞ ‖w2‖W 1,p ,

‖F2‖q ≤ 2|ξ| ‖µξ‖qp/(p−q) ‖w2‖W 1,p

We will introduce a change of variable to remove the Fv from equation (4.53). Sup-
pose we could find a bounded function θ so that v = eθg. Then substituting into
(4.53) gives us

∂θeθ + eθ∂g = α∂θeθg + αeθ∂g = Feθg (4.56)

Our goal is to reduce (4.56) to ∂g = α∂g. This implies that θ must satisfy the
following in Lp(C)

∂θ = αθ + F. (4.57)
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Given α and F , define θ = P (I − αS)−1F . The resolvent exists on Ls(C) for
s ∈ (1 + k, 1 + k−1). Since F ∈ Lp ∩ Lq, Lemma 2.5.2 implies that θ is a bounded
function that vanishes at ∞. As constructed, ∂θ ∈ Lp(C) and θ satisfies (4.57) in
Lp(C).

Since v ∈ Lp(C) and θ is a bounded function, g ∈ Lp(C) and g satisfies ∂g = α∂g.
In addition, we can write g = e−θv and conclude

∂g = −∂θe−θv + e−θ∂v (4.58)

The function v ∈ W 1,p(C). By Morrey’s inequality, v is a bounded function, and ∂v ∈
Lp(C). Thus ∂g ∈ Lp(C) and g ∈ W 1,p(C). So, g is a solution to the homogeneous
Beltrami equation {

∂g = α∂g

g ∈ W 1,p(C)
(4.59)

We can now apply a generalized Liouville theorem (e.g., Theorem 2.4.2) to conclude
that g is a constant. Since w1 and w2 vanish at infinity, we conclude that g = 0,
hence v = 0 and hence w1 = w2.

Now that we have established the existence and uniqueness of the principal so-
lution ϕ to (4.43), we will show that the function ϕ(z) − z satisfies some estimates
uniformly in the parameter ξ.

Proposition 4.4.5. Let ϕ(z, ξ) = z + g(z) be the solution to the nonlinear Beltrami
equation (4.43) from Theorem 4.4.1. Let 1 + k < q ≤ 2 < p < 1 + k−1. Then

sup
ξ∈C
‖g‖p <∞ (4.60)

sup
ξ∈C

∥∥∂g∥∥
Lp∩Lq <∞ (4.61)

Proof. We write g(z) = (Pf)(z) where from Proposition 4.4.2, f ∈ Lp ∩ Lq. Recall
the equation that f satisfies, (4.49)

f = −µξe−ξ(z + Pf)− µξe−ξ(z + Pf)S̄f (4.62)

The properties of µ imply that f can be represented as a Neumann series

f = −
∞∑
n=0

(
µξe−ξ(z + Pf)S̄

)n
(µξe−ξ(z + Pf)) (4.63)

Because Pf is a bounded function and e−ξ(·) is unimodular (as is the ξ̄
ξ

term in µξ),
we can estimate

sup
ξ∈C
‖f‖Lp∩Lq ≤ Cp,q,k ‖µ‖Lp∩Lq (4.64)
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using the estimate (4.47) and the geometric series. The representation g = Pf gives
(4.61). To get a uniform bound on ‖g‖p, we need to show that f ∈ Ls(C) for any

s ∈ (1, 2) where the estimate is uniform in ξ. The particular selection s = 2p
2+p

will

give the uniform bound on ‖g‖p. Let s ∈ (1, 2) and suppose 2 < p < 1 + k−1. Then
we can use (4.62) to estimate

‖f‖s ≤ ‖µ‖s +
∥∥µS̄f∥∥

s
≤ ‖µ‖s + ‖µ‖ sp

p−s

∥∥S̄∥∥
Lp→Lp ‖f‖p

4.5 Solution to a Nonlinear Equation for ∂ϕ

In the following section, we will prove some key properties of the principal solution
to the nonlinear Beltrami equation{

∂ϕ = − ξ̄
ξ
µ(z)eξ(ϕ(z))∂ϕ

ϕ(z, ξ)→ z as |z| → ∞
. (4.65)

We collect the coefficients in the Beltrami equation as

µ̃(z) = − ξ̄
ξ
e−ξ(ϕ(z))µ(z) (4.66)

In order to establish the properties of ϕ, we must first examine the following
nonlinear equation

∂ω = (∂µ̃+ ∂ω̄µ̃)eω̄−ω (4.67)

and show that it has a solution ω ∈ Lq(C) for some q > 2. This equation comes from
the substitution ∂ϕ = eω. For more details on its derivation, see Lemma 4.6.1 in the
next section.

A Priori Estimates

We first prove an estimate on one of the terms in equation (4.67).

Lemma 4.5.1. For each 1 + k < p < 1 + k−1 and each fixed ξ ∈ C, the coefficient µ̃
satisfies

‖∂µ̃‖p <∞ (4.68)

Proof. We first calculate

∂µ̃(z) = − ξ̄
ξ
e−i(ξϕ+ξ̄ϕ̄(ξ∂ϕ+ ξ̄∂ϕ̄)(−i)µ− ξ̄

ξ
e−ξ(ϕ(z))∂µ(z)

This implies

‖∂µ̃‖p ≤
∥∥ξ̄(∂ϕ− 1)µ

∥∥
p

+
∥∥ξ̄µ∥∥

p
+
∥∥ξ(∂ϕ)µ

∥∥
p

+ ‖∂µ‖p (4.69)

≤ |ξ|k ‖∂ϕ− 1‖p + |ξ| ‖µ‖p + |ξ|k
∥∥∂ϕ∥∥

p
+ ‖∂µ‖p (4.70)
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The function ∂ϕ can be represented as a Neumann series. In particular,

∂ϕ = (I − µ̃S̄)−1(µ̃) (4.71)

Since |µ̃(z)| ≤ k < 1, the Neumann series converges in Lp(C).2 Thus, we know
∂ϕ ∈ Lp(C) (and consequently (∂ϕ− 1) ∈ Lp(C). Thus the first and third terms are
bounded. Because µ satisfies the conclusion of Theorem 4.1.1, the other terms are
bounded as well. Therefore ‖∂µ̃‖p is bounded for each fixed ξ.

We will also need this useful fact about compact operators between Lp-spaces.

Lemma 4.5.2. Let {Tn} ∈ L(Lp, Lp) be a strongly convergent sequence (with strong
limit T ∈ L(Lp, Lp))and S ∈ L(Lp, Lq) be a compact operator. Then the sequence
{STn} ∈ L(Lp, Lq) converges in norm to ST .

Proof. From Proposition 2.6.3, there exists a sequence of finite-rank operators {Sm}
such that Sm

n−→ S in L(Lp, Lq). For any m, consider the operators Sm(Tn − T ).
These operators are of finite rank, and because the Tn converge strongly to T , we can
conclude

‖Sm(Tn − T )‖L(Lp,Lq) → 0 as n→∞. (4.72)

Note that because Tn
s−→ T , the principle of uniform boundedness implies

sup
n
‖Tn − T‖L(Lp,Lp) ≤ C

Let ε > 0 be given. Choose m so that ‖S − Sm‖L(Lp,Lq)C < ε
2
. For that m, choose

N so that n ≥ N implies ‖Sm(Tn − T )‖L(Lp,Lq) <
ε
2
. Then,

‖S(Tn − T )‖L(Lp,Lq) ≤ ‖S − Sm‖L(Lp,Lq) ‖Tn − T‖L(Lp,Lp) + ‖Sm(Tn − T )‖L(Lp,Lq)

< ‖S − Sm‖L(Lp,Lq) C +
ε

2

<
ε

2
+
ε

2
= ε

Proof of Existence

The goal is to use the Schauder fixed point theorem to show that (4.67) has a solution.
This highly nonlinear equation is saved by the fact that the nonlinearities appear in
unimodular factors.

Let q > 2 be so that 1 + k <
2q

2 + q
< 1 + k−1. Define the operator T by

Tf = P (I − µ̃ef̄−fC)−1(∂µ̃ef̄−f ) (4.73)

2For more details on this convergence (and its uniformity in the parameter ξ, take a look at the
proof of Proposition 4.4.5.
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where C denotes the conjugation operator (Cg)(z) = g(z). Then we first note that
T : Lq(C)→ Lq(C), since

‖Tf‖q ≤ Cq

∥∥∥(I − µ̃ef̄−fC)−1(∂µ̃ef̄−f )
∥∥∥

2q
2+q

≤ Cq

∥∥∥(I − µ̃ef̄−fC)−1
∥∥∥
op

∥∥∥∂µ̃ef̄−f∥∥∥
2q
2+q

where ‖·‖op denotes the operator norm from L
2q
2+q (C) → L

2q
2+q (C). Since C is an

isometry and
∣∣∣µ̃ef̄−f ∣∣∣ ≤ k < 1 for all z ∈ C and uniformly for f ∈ Lq(C), we can

conclude ∥∥∥(I − µ̃ef̄−fC)−1
∥∥∥
op
≤ 1

1− k
Thus we can bound ‖Tf‖q by

‖Tf‖q ≤
Cq

1− k

∥∥∥∂µ̃ef̄−f∥∥∥
2q
2+q

=
Cq

1− k
‖∂µ̃‖ 2q

2+q
(4.74)

which is finite by Lemma 4.5.1.
Next, define

B =

{
f ∈ Lq(C) : ‖f‖q ≤

Cq
1− k

‖∂µ̃‖ 2q
2+q

}
(4.75)

Then our calculation in equation (4.74) indicates T (B) ⊂ B. It now remains to show
that T (B) satisfies the requirements of the Kolmogorov-Riesz Theorem (Theorem
2.6.4). First, we show that Tf(z) exhibits uniform decay in Lq-norm. We write

χ|z|>4R(z)Tf(z) =

∫
χ|z|>4R(z)

z − w
(I − µ̃ef̄−fC)−1(∂µ̃ef̄−f )(w) dw

=

∫
χ|z|>4R(z)

z − w
[
χ|w|<R(w) + χ|w|≥R(w)

]
(I − µ̃ef̄−fC)−1(∂µ̃ef̄−f )(w)︸ ︷︷ ︸

g(w)

dw

We want to estimate
∥∥χ|z|>4RTf

∥∥
q

for large R.∥∥χ|z|>4RTf
∥∥
q
≤
∥∥χ|z|>4RP (χ|w|<Rg)

∥∥
q︸ ︷︷ ︸

I

+
∥∥χ|z|>4RP (χ|w|>Rg)

∥∥
q︸ ︷︷ ︸

II

Choose α ∈ (0, 1) so that 1 + k < 2q
2+(1−α)q

< 1 + 1
k
. Then we can write

∥∥χ|z|>4RP (χ|w|<Rg)
∥∥
q
≤ 1

Rα

∥∥∥∥∫ 1

|z − w|1−α
g(w) dw

∥∥∥∥
q

Next, apply the Hardy-Littlewood-Sobolev inequality (Theorem 2.5.1) to obtain∥∥χ|z|>4RP (χ|w|<Rg)
∥∥
q
≤ 1

Rα
Cq,α ‖g‖ 2q

2+(1−α)q

≤ 1

Rα

Cq,α
1− k

‖∂µ̃‖ 2q
2+(1−α)q
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Then for the second term recall that C denotes the conjugation operator. This means
that we can estimate:∣∣∣∣∣

∞∑
n=0

(µ̃ef̄−fC)n(∂µ̃ef̄−f )

∣∣∣∣∣ ≤
∞∑
n=0

|(µ̃ef̄−fC)n(∂µ̃ef̄−f )|

≤
∞∑
n=0

kn|∂µ̃(w)| = 1

1− k
|∂µ̃(w)|

Thus term II can be bounded by

∥∥χ|z|>4RP (χ|w|≥Rg)
∥∥
q
≤

∥∥∥∥∥
∫

1

|z − w|
χ|w|≥R(w)

∞∑
n=0

(µ̃ef̄−fC)n(∂µ̃ef̄−f )(w) dw

∥∥∥∥∥
q

≤ 1

1− k
∥∥P (χ|w|>R|∂µ̃|)

∥∥
q

≤ Cq
1− k

∥∥χ|w|≥R|∂µ̃|∥∥ 2q
q+2

Thus we have a decay estimate∥∥χ|z|>4R(z)Tf(z)
∥∥
q
≤ 1

Rα

Cq,α
1− k

‖∂µ̃‖ 2q
2+(1−α)q

+
Cq

1− k
∥∥χ|w|≥R∂µ̃∥∥ 2q

q+2

.

We can choose R based on the decay of the L
2q
2+q (C) norm of ∂µ̃ and the constants

in the first term. Thus this decay estimate is uniform for f ∈ B satisfying the first
requirement of Theorem 2.6.4.
Let Mh be the translation operator Mhf(z) = f(z + h). We want to estimate

‖(Mh − I)(Tf)‖q

for small h uniformly for f ∈ B. Let ε > 0 be given. Using the uniform decay
estimate proven above, we choose R large enough so that

2
∥∥χ|z|>RTf∥∥q < ε

2
(4.76)

uniformly for f ∈ B. We write

‖(Mh − I)(Tf)‖q ≤
∥∥χ|z|<R(Mh − I)(Tf)

∥∥
q

+ 2
∥∥χ|z|>RTf∥∥q (4.77)

and we write
Tf = P (I − µ̃ef̄−fC)−1(∂µ̃ef̄−f ) = Pg

Since translation commutes with P , we can write∥∥χ|z|<R(Mh − I)(Tf)
∥∥
q

=
∥∥χ|z|<RP (Mh − I)g

∥∥
q

Choose 1 + k < s < 2 such that q < s∗ = 2s
2−s . By Lemma 4.5.1, g ∈ Ls(C) and the

norm is uniform for f ∈ B. Note that {(Mh − I)} is a strongly convergent sequence
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with limit 0 in L(Ls, Ls). By standard arguments (see, e.g. Theorem 4.3.14 in [4]),
the operator (χ|z|<RP ) : Ls → Lr is compact for all 1 ≤ r < s∗. In particular,

(χ|z|<RP ) : Ls → Lq is compact. (4.78)

By Lemma 4.5.2, we can conclude that {(χ|z|<RP )(Mh − I)} converges in norm to 0
as h→ 0 in L(Ls, Lq). We can apply the convergence to∥∥(χ|z|<RP )(Mh − I)g

∥∥
q
≤
∥∥(χ|z|<RP )(Mh − I)

∥∥
L(Ls,Lq)

‖g‖s (4.79)

≤ 1

1− k
∥∥(χ|z|<RP )(Mh − I)

∥∥
L(Ls,Lq)

‖∂µ̃‖s

Hence there exists a δ > 0 such that for |h| < δ,
∥∥(χ|z|<RP )(Mh − I)g

∥∥
q
< ε

2
uniformly

in g (and hence f).
Thus for |h| < δ, we conclude

‖(Mh − I)(Tf)‖q ≤
∥∥χ|z|<R(Mh − I)(Tf)

∥∥
q

+ 2
∥∥χ|z|>RTf∥∥q

<
ε

2
+
ε

2
= ε

and the estimate is uniform for f ∈ B. Thus we have shown that T (B) ⊂ B is
precompact. The Schauder fixed point theorem (Theorem 2.6.1) shows that there is
a fixed point ω ∈ B so that ω = Tω.

4.6 Properties of Principal Solutions

In the case of compactly supported Beltrami coefficients, the theory of quasiregular
mappings allows one to deduce that a principal solution to a Beltrami equation is in
fact a global homeomorphism. We seek to show that the solution ϕ to (4.43) is also
a global homeomorphism. Its inverse will prove key in establishing the behavior of
the solution as the parameter ξ →∞.

ϕ is a Global Homeomorphism

The process of showing that ϕ is a homeomorphism begins with showing that its
Jacobian determinant does not vanish for any z ∈ C.

Lemma 4.6.1. Let ϕ be the solution to (4.43) for a fixed ξ ∈ C. Then there exists
a constant Gξ > 0 such that for any z ∈ C, the Jacobian of ϕ at z, denoted J(z, ϕ)
satisfies.

J(z, ϕ) ≥ Gξ > 0

Proof. We first calculate
J(z, ϕ) = |∂ϕ|2 − |∂ϕ|2

As ϕ solves a ∂-problem with a pointwise bound on µ̃, we can estimate:

J(z, ϕ) = (1− |µ̃|2)|∂ϕ|2 ≥ (1− k2)|∂ϕ|2 (4.80)
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We want to guarantee that ∂ϕ is never 0. We claim that there is a bounded function
ω such that ∂ϕ = eω. Substituting this form into the Beltrami equation yields
∂ϕ = µ̃eω̄. Then by the compatibility condition for derivatives ∂(∂ϕ) = ∂(∂ϕ) can
be calculated as

∂ω = (∂µ̃+ ∂ω̄µ̃)eω̄−ω (4.81)

The equation (4.81) is the same nonlinear equation studied in the previous section
(4.67). Thus our work in the previous section implies ω ∈ Lq(C) for some q > 2. We
now want to show it is actually bounded. Equation (4.81) allows us to estimate

(1− |µ̃|)|∂ω| ≤ |∂µ̃|

Thus

|∂ω| ≤ 1

1− k
|∂µ̃| (4.82)

Lemma 4.5.1 implies that |∂ω| ∈ Lp ∩ Lq for 1 + k < q < 2 < p < 1 + k−1. Thus by
Lemma 2.5.2, ω is a bounded function.

Remark 4.6.2. The representation ∂ϕ = eω has some important consequences for
the continuity of the derivatives of ϕ. First note that Lemma 2.5.2 implies that ω(z)
is continuous and ω(z)→ 0 as z →∞. This implies that ∂ϕ is continuous and

lim
z→∞

∂ϕ(z) = 1 (4.83)

To borrow the notation of (4.66), ∂ϕ = µ̃∂ϕ. Theorem 4.1.1 claims that µ is contin-
uous. The function ϕ− z ∈ W 1,p(C) for p > 2, which implies by Morrey’s inequality
that ϕ is continuous. Thus µ̃ is continuous and |µ̃(z)| ∼ O (|z|−2) as z →∞. These
facts come together to give

lim
z→∞

∂ϕ(z) = 0 (4.84)

Theorem 4.6.3. For each fixed ξ ∈ C, the solution ϕ(·, ξ) is a global homeomorphism

of Ĉ.

Proof. We begin by defining ϕ(∞, ξ) = ∞ and thus extend ϕ to Ĉ. We first show
that the Jacobian of ϕ is positive in a neighborhood of ∞. This is equivalent to
showing that the map

F (w) =
1

ϕ
(

1
w

)
has a positive Jacobian at w = 0.
By the chain rule, we calculate

∂F (w) =
1

ϕ
(

1
w

)2∂ϕ

(
1

w

)
1

w̄2

∂F (w) =
1

ϕ
(

1
w

)2∂ϕ

(
1

w

)
1

w2
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Now we can calculate the Jacobian of F as

J(w,F ) =
1∣∣ϕ ( 1
w

)∣∣4 1

|w|4

(∣∣∣∣∂ϕ( 1

w

)∣∣∣∣2 − ∣∣∣∣∂ϕ( 1

w

)∣∣∣∣2
)

(4.85)

Note first that ϕ(z) = z + g(z) where g is a bounded function. This implies

lim
w→0

wϕ

(
1

w

)
= lim

w→0
w

(
1

w
+ g

(
1

w

))
= 1

since g is bounded. Remark 4.6.2 on the representation ∂ϕ = eω gives the result

lim
w→0

∂ϕ

(
1

w

)
= 0, lim

w→0
∂ϕ

(
1

w

)
= 1

Thus the Jacobian at w = 0 is

J(0, F ) = lim
w→0

J(w,F ) = 1.

By Lemma 4.6.1 and the inverse function theorem, ϕ is a local homeomorphism
for each point in Ĉ. Because Ĉ is compact, we can cover it by finitely many of these
neighborhoods. Let us now consider the set

Ni = {w ∈ Ĉ : w has i preimages under ϕ}

In the first place, note that each Ni is a union of finite intersections of open neigh-
borhoods from the cover and thus each Ni is open. On the other hand, for any fixed
i,

N c
i =

⋃
j 6=i

Nj,

and hence Ni is closed for each i. So, each of the Ni is either all of Ĉ or empty. The
asymptotic condition at ∞ and the injectivity at ∞ implies that N1 = Ĉ and Ni = ∅
for i ≥ 2. Thus ϕ is in fact a global homeomorphism.

A Beltrami Equation for ϕ−1

In order to study the behavior of the solutions to the nonlinear Beltrami equation
as ξ → ∞, it is more useful to consider the function ψ = ϕ−1. Here we include a
derivation of the Beltrami equation for ψ. Because ϕ and ψ are inverses they satisfy
the composition

(ψ ◦ ϕ)(z) = z

We now take the ∂ derivative of both sides of the equation. Using the chain rule, this
gives us

∂ψ(ϕ(z)) · ∂ϕ(z) + ∂ψ(ϕ(z)) · ∂ϕ(z) = 0

Now we use the fact that ϕ satisfies (4.43).

∂ψ(ϕ(z))

(
− ξ̄
ξ
µ(z)e−ξ(ϕ(z))∂ϕ(z)

)
+ ∂ψ(ϕ(z)) · ∂ϕ(z) = 0
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We can move the first term to the right-hand side and since ∂ϕ(z) 6= 0 for all z (see
Lemma 4.6.1) we can divide ∂ϕ out. This leaves

∂ψ(ϕ(z)) =
ξ̄

ξ
e−ξ(ϕ(z))µ(z)∂ψ(ϕ(z))

We now make the change of variables w = ϕ(z) to arrive at the desired equation

∂ψ(w) =
ξ̄

ξ
e−ξ(w)µ(ψ(w))∂ψ(w) (4.86)

Theorem 4.6.4. For each fixed ξ ∈ C and every 2 < p < 1 + k−1, there exists a
unique solution ψ(z, ξ) to the equation{

∂ψ = ξ̄
ξ
µ(ψ(z))e−ξ∂ψ

ψ(·, ξ)− z ∈ W 1,p(C)

Moreover,
sup
ξ∈C
‖ψ − z‖W 1,p(C) <∞ (4.87)

Proof. The existence and uniqueness of the solution ϕ to (4.43) yields a unique func-
tion ψ = ϕ−1 that satisfies the equation. It remains to show that ψ(w, ξ) − w ∈
W 1,p(C). First, we show that ψ(w, ξ)− w ∈ Lp(C) and that the Lp-norm is uniform
in ξ. Next, we will show that for a fixed ξ, ∂ψ ∈ Lp(C), followed by a refined estimate
that is uniform in ξ.
We first write ϕ(z) = z + g(z) where g ∈ W 1,p(C) for each of the p’s in the range. If
we change variables z = ψ(w) we can write ϕ as

ϕ(ψ(w)) = ψ(w) + g(ψ(w))

Since ϕ and ψ are inverses, we can rearrange this and write

ψ(w) = w − g(ψ(w))

We first show that the function g ◦ ψ ∈ Lp(C) by using a change of variable∫
|g(ψ(w))|p dw =

∫
|g(z)|pJ(z, ϕ) dz (4.88)

≤
∫
|g(z)|p(1− |µ̃|2)|1 + ∂g|2 dz

≤
∫
|g(z)|p + 2|g(z)|p/2|g(z)|p/2|∂g|+ |g(z)|p|∂g|2 dz

≤ ‖g‖pp + 2 ‖g‖p/2∞ ‖g‖
p/2
p ‖∂g‖2 + ‖g‖p∞ ‖∂g‖

2
2

Proposition 4.4.5 implies ‖g‖W 1,p is uniform in ξ. It follows by Morrey’s inequality,
g ∈ C0,α(C) for some α > 0 with ‖g‖∞ uniform in ξ. Proposition 4.4.5 also implies
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that ‖∂g‖2 is uniform in ξ.

We now want to work with ∂ψ(w) = ∂(ψ(w) − w). To that end, recall that the
Jacobian matrix of ϕ, denoted Jac(ϕ) is the matrix

Jac(ϕ)(z) =

[
∂ϕ ∂ϕ

∂ϕ̄ ∂ϕ

]
(4.89)

Since ψ = ϕ−1, we know Jac(ψ)(z) = [Jac(ϕ)]−1(z). Thus,

Jac(ψ)(w) =

[
∂ψ ∂ψ

∂ψ̄ ∂ψ

]
=

1

J(ψ(w), ϕ)

[
∂ϕ(ψ(w)) −∂ϕ(ψ(w))

−∂ϕ(ψ(w)) ∂ϕ(ψ(w))

]
(4.90)

So we can write ∫
|∂ψ(w)|p dw =

∫ ∣∣∣∣ 1

J(ψ(w), ϕ)
(−∂ϕ(ψ(w)))

∣∣∣∣p dw
We now employ a change of variable w = ϕ(z) and recall that J(z, ϕ) is a positive
real number to conclude∫ ∣∣∣∣ 1

J(ψ(w), ϕ)
(−∂ϕ(ψ(w)))

∣∣∣∣p dw =

∫
1

J(z, ϕ)p
|∂ϕ(z)|pJ(z, ϕ) dz

=

∫
1

J(z, ϕ)p−1
|∂ϕ(z)|p dz

For a fixed ξ, let Gξ be the (uniform in z) lower bound on J(z, ϕ) from Lemma 4.6.1.
We use the lower bound to conclude∥∥∂ψ∥∥p

p
≤ 1

Gp−1
ξ

∥∥∂ϕ∥∥p
p

By the Lp-boundedness of the Beurling transform,

‖∂(ψ − w)‖p ≤ Cp
∥∥∂(ψ − w)

∥∥
p

= Cp
∥∥∂ψ∥∥

p
(4.91)

Thus we can conclude that for a fixed ξ, ψ(w) = w + h(w) with h ∈ W 1,p(C) for
2 < p < 1 + k−1.

The the range of p allows equation (4.86) to be rewritten as a Neumann series.
Specifically,

∂ψ =
∞∑
n=0

(
ξ̄

ξ
(µ ◦ ψ)e−ξS

)n(
ξ̄

ξ
(µ ◦ ψ)e−ξ

)
Using the result of Lemma 4.6.6 below, we can estimate the Lp-norm of ∂ψ in terms
of the function (µ ◦ ψ).

∥∥∂ψ∥∥
p

=

∥∥∥∥∥
∞∑
n=0

(
ξ̄

ξ
(µ ◦ ψ)e−ξS

)n(
ξ̄

ξ
(µ ◦ ψ)e−ξ

)∥∥∥∥∥
p

(4.92)

≤ Cp,k ‖µ ◦ ψ‖p
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By Lemma 4.6.6, we know
sup
ξ∈C
‖µ ◦ ψ‖p <∞.

Equations (4.88), (4.91), and (4.92) together imply

sup
ξ∈C
‖ψ − z‖W 1,p(C) <∞

Remark 4.6.5. The Neumann series representation for ∂ψ and the estimate (4.92)
actually hold for 1 + k < p < 1 + k−1. The Neumann series converges in Lp(C), and
its operator norm is independent of ξ.

Lemma 4.6.6. Let ψ(z, ξ) be the solution to equation (4.86) and suppose ϕ(z, ξ) =
z + g(z) be the solution to (4.43). Then for every r ∈ (1,∞),

sup
ξ∈C
‖µ ◦ ψ‖r <∞ (4.93)

Proof. We introduce a change of variable w = ϕ(z).∫
|µ(ψ(w))|r dw =

∫
|µ(z)|rJ(z, ϕ) dz

=

∫
|µ(z)|r(1− |µ̃|2)|∂ϕ|2 dz

≤
∫
|µ(z)|r|1 + ∂g(z)|2 dz

≤
∫
|µ(z)|r + 2|µ(z)|r|∂g|+ |µ(z)|r|∂g|2 dz

≤ ‖µ‖rr + 2 ‖µ‖r2r ‖∂g‖2 + kr ‖∂g‖2
2

Proposition 4.4.5 and the boundedness of the Beurling transform give supξ ‖∂g‖2 <∞
so the estimate is uniform in ξ.

4.7 Subexponential Growth

The next piece of the puzzle that Astala and Päivärinta solved in [8] was the phe-
nomenon of subexponential growth. The solutions to the nonlinear Beltrami equation
(4.43) have a prescribed asymptotic behavior as z → ∞, but in order to study the
inverse problem, we need to study the asymptotic behavior as ξ →∞.

Theorem 4.7.1. Suppose that µ is a real-valued measurable function with ‖µ‖∞ ≤
k < 1, µ ∈ Lr(C) , and ∂µ ∈ Lr(C) for all r with 1 < r < ∞. Suppose 2 < p <
1 + k−1. Let ϕ be the solution to equation (4.43). Then

ϕ(z, ξ)→ z (4.94)

uniformly in z ∈ C as ξ →∞.
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Remark 4.7.2. The function ϕ(z, ξ) comes from the CGO solution f to the Beltrami
equation ∂f = µ∂f , where

f(z, ξ) = eiξϕ(z,ξ).

The asymptotic condition as z →∞ means that f ∼ eiξz, and Theorem 4.7.1 implies
the same asymptotic condition holds as ξ →∞.

We will actually prove the theorem for ψ = ϕ−1 because the nonlinearity moves
from the phase to a composition with µ (see equation (4.86)). There are several key
steps that will lead to a proof of Theorem 4.7.1. Our analysis will be an adaptation
of the work of [8] as presented in [4]. They show the behavior for an associated
linear problem, and, to get the behavior of the nonlinear equation, these authors use
a normal families argument. Replacing the compact support with an integrability
condition means that we can make estimates uniform in ξ (such as (4.87) and Lemma
4.6.6). This allows us to adapt Astala and Päivärinta’s techniques for the linear
Beltrami equation to the nonlinear case.

Preliminaries

Lemma 4.7.3. Let ψ be the solution to equation (4.86) and suppose that µ has a
large-z asymptotic expansion µ ∼ O (|z|−2). Then

|µ(ψ(z))| ∼ O
(

1

|z|2

)
as z →∞

and the expansion is uniform in ξ.

Proof. First, write ψ(z, ξ) = z + h(z, ξ). Then from Theorem 4.6.4 and Sobolev
embedding, |h(z, ξ)| ≤M uniformly in ξ. This implies

(|z| −M) ≤ |z| − |h(z, ξ)| ≤ |z + h(z, ξ)|

Therefore, for large enough z,

|µ(ψ(z))| . 1

|z + h(z)|2
.

1

(|z| −M)2

We will need the following result of Astala-Päivärinta for the next step in the
argument.

Lemma 4.7.4 (Lemma 18.6.2 in [4]). Let ε > 0 is given. Suppose also that ‖µλ‖∞ ≤
k < 1 and µλ has compact support. Let

fn = µλSnµλSn−1µλ · · ·µλS1µλ

where Sj : L2(C) → L2(C) are Fourier multiplier operators, each with a unimodular
symbol. Then there is a number Rn = Rn(k, ε) depending only on k, n, and ε, such
that

|f̂n(η)| < ε for |η| > Rn.
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The lemma as stated in [4] is for functions µλ which are supported in D. The
following scaling lemma allows us to apply the result to µλ which are supported in
the ball B(0, R) = {z : |z| ≤ R}. For z ∈ B(0, R) , let z = Rx for some x ∈ D. For a
function f supported in B(0, R), we denote

fR(x) = f(Rx) (4.95)

and note that fR is supported in D.

Lemma 4.7.5. Let Q : L2(C) → L2(C) be a Fourier multiplier operator with a

unimodular symbol such that Q̂f(p) = m(p)f̂(p). Then

(Qf)(Rx) = (QRfR)(x)

where QR is the Fourier multiplier with symbol m̃(p) = m
(
p
R

)
, which is still unimod-

ular.

Proof. We can write the Fourier multiplier operator using the symbol representation.

(Qf)(Rx) =

∫
eip·Rxm(p)f̂(p) dp

Make the substitution η = Rp. Then

(Qf)(Rx) =

∫
eiη·xm

( η
R

)
f̂
( η
R

) 1

R2
dη

Next we compute

f̂R(p) =

∫
e−ip·xf(Rx) dx

=

∫
e−ip·(

y
R)f(y)

1

R2
dy

= f̂
( p
R

) 1

R2

which allows us to conclude

(Qf)(Rx) =

∫
eiη·xm̃(η)f̂R(η) dη = (QRfR)(x)

With this scaling lemma, Lemma 4.7.4 can be used when the function µλ has
support in B(0, R). Suppose ν has support in B(0, R), and ‖ν‖∞ ≤ k < 1. Let Si
be the Fourier multiplier operators with unimodular symbol from the lemma. For
z ∈ B(0, R), write z = Rx for x ∈ D. Let

fn(z) = (νSnνSn−1ν · · · νS1ν) (z) (4.96)

= (νSnνSn−1ν · · · νS1ν) (Rx)

(4.97)
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Let ε > 0 be given. We want to find a number R̃ so that for |η| ≥ R̃, |f̂(η)| < ε.
Define

gn(x) =
(
νRSnRνRS(n−1)RνR · · · νRS1RνR

)
(x)

Then Lemma 4.7.5 implies (using the notation (4.95))

gn(x) = (fn)R(x) (4.98)

The function νR is supported in D and the SjR are Fourier multiplier operators with
unimodular symbol. Lemma 4.7.4 implies there exists Rn,ε such that

|ĝn(p)| < ε

R2
for |p| > Rn,ε (4.99)

The scaling of the Fourier transform implies

f̂n(η) = R2F((fn)R)(Rη) = R2ĝn(Rη). (4.100)

Suppose |η| > Rn,ε
R

. Then

|f̂n(η)| = R2|ĝn(Rη)| < R2
( ε

R2

)
= ε (4.101)

The next step in our analysis is to show that ∂ψ → 0 weakly in Lp(C) as ξ →∞.
We will eventually write ψ(z) = z + P (∂ψ)(z). The weak convergence is powered by
the uniform estimates on µ ◦ ψ (Lemma 4.6.6) and transforming the phase eξ(·) into
translation in Fourier space.

Lemma 4.7.6. Let ψ(z, ξ) be the solution to (4.86), and let 2 < p < 1 + 1
k
. Then

∂ψ(·, ξ) converges to 0 weakly in Lp(C) as ξ →∞.

Proof. Let f be a smooth test function whose Fourier transform f̂ has compact sup-
port, and let ε > 0 be given. We want to control

|〈f, ∂ψ〉|

as ξ →∞. First we write ∂ψ as a Neumann series

∂ψ =
∞∑
n=0

(
ξ̄

ξ
(µ ◦ ψ)e−ξS

)n(
ξ̄

ξ
(µ ◦ ψ)e−ξ

)
.

Since the convergence of the Neumann series is uniform in ξ (see equation (4.92) and
Lemma 4.6.6), we can choose N independent of ξ so that∥∥∥∥∥

∞∑
n≥N

(
ξ̄

ξ
e−ξ(µ ◦ ψ)S

)n(
ξ̄

ξ
e−ξ(µ ◦ ψ)

)∥∥∥∥∥
p

<
ε

‖f‖p′

Then we can write

|〈f, ∂ψ〉| ≤

∣∣∣∣∣
〈
f,

N∑
n=0

(
ξ̄

ξ
e−ξ(µ ◦ ψ)S

)n(
ξ̄

ξ
e−ξ(µ ◦ ψ)

)〉∣∣∣∣∣+ ε (4.102)
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Consider one of the terms of the finite sum. Note that we can write

S(e−ξϕ) = e−ξSξϕ

where Ŝξϕ(η) = m(η − ξ)ϕ̂ where m(η) = η
η̄
. In other words, commuting the phase

past the Beurling transform shifts the Fourier symbol (which remains unimodular).
Consequently,

((µ ◦ ψ)e−ξS)n ((µ ◦ ψ)e−ξ) = e−(n+1)ξ(µ ◦ ψ)Snξ(µ ◦ ψ)S(n−1)ξ · · · (µ ◦ ψ)Sξ(µ ◦ ψ)

= e−(n+1)ξGn

We reassociate the pairing

|〈f, e−(n+1)ξGn〉| = |〈fe−(n+1)ξ, Gn〉| (4.103)

and examine Gn. Note that Gn is a multilinear function of (µ ◦ ψ). Let χR denote
the characteristic function of the set B(0, R) = {z ∈ C : |z| ≤ R}. Choose R such
that ‖(1− χR)(µ ◦ ψ)‖L2∩L∞ < ε. Note that due to Lemma 4.6.6 and Lemma 4.7.3,
the choice of R is independent of ξ. We write h = (µ ◦ ψ)χR. Define

Hn = hSnξhS(n−1)ξh · · ·hSξh

We can estimate

‖Gn −Hn‖2 ≤
n+1∑
j=1

∥∥hSnξh · · ·Sjξ ((µ ◦ ψ)− h)S(j−1)ξ(µ ◦ ψ) · · · (µ ◦ ψ)Sξ(µ ◦ ψ)
∥∥

2

=
n∑
j=1

kn−1 ‖µ ◦ ψ‖2 ‖(1− χR)(µ ◦ ψ)‖∞ + kn ‖(1− χR)(µ ◦ ψ)‖2

≤ 1

1− k
‖µ ◦ ψ‖2 ‖(1− χR)(µ ◦ ψ)‖L2∩L∞

<
ε

1− k
‖µ ◦ ψ‖2

Therefore we will conclude

|〈fe−(n+1)ξ, Gn〉| ≤ |〈fe−(n+1)ξ, Hn〉|+ ‖Gn −Hn‖2 ‖f‖2 (4.104)

Next, we use Plancherel’s theorem to estimate3

|〈fe−(n+1)ξ, Gn〉| ≤ |〈F(fe−(n+1)ξ), Ĥn〉|+ ε (4.105)

Applying our modified Lemma 4.7.4 to Hn, we find that there is a number R̃ depend-
ing only on k, ε, and R so that

|Ĥn(η)| < ε for |η| ≥ R̃

3The symbol F(·) denotes the Fourier transform.
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Note that the Fourier transform of fe−(n+1)ξ is f̂(η− (n+ 1)ξ). We can select ξ large
enough so that

supp{f̂(η − (n+ 1)ξ)} ∩B(0, R̃) = ∅ (4.106)

Hence, for sufficiently large ξ,∣∣∣〈f̂(η − (n+ 1)ξ), Ĥn〉
∣∣∣ < ε (4.107)

Note that the choices made in the reductions and estimates are made independent of
ξ and are used to bound finitely many terms in the Neumann series. Thus we can
conclude ∂ψ converges to 0 weakly in Lp(C) as ξ →∞.

Proof of Theorem 4.7.1

We are now ready to prove the subexponential growth of CGO solutions for our class
of Beltrami coefficients.

Convergence for Fixed z.

We can now use the weak convergence to show that ψ(z, ξ)− z → 0 as ξ →∞ for a
fixed z. Write

ψ(z, ξ)− z = P (∂ψ) = P (χR∂ψ) + P ((1− χR)∂ψ) (4.108)

First, estimate the second right-hand term of (4.108) uniformly in ξ by writing

P ((1− χR)∂ψ) = P

(
(1− χR)

ξ̄

ξ
(µ ◦ ψ)e−ξ∂ψ

)
= P

(
(1− χR)

ξ̄

ξ
(µ ◦ ψ)e−ξ

)
+ P

(
(1− χR)

ξ̄

ξ
(µ ◦ ψ)e−ξS(∂ψ)

)
(4.109)

Suppose 1 + k < q < 2 < p < 1 + 1
k
. The first term vanishes as R → ∞ uniformly

in ξ due to Lemma 4.7.3 and dominated convergence. In the second term, equation
(2.15) of Lemma 2.5.2 allows us to get a pointwise estimate via∣∣∣∣P ((1− χR)

ξ̄

ξ
(µ ◦ ψ)e−ξS(∂ψ)

)∣∣∣∣ . ∥∥∥∥(1− χR)
ξ̄

ξ
(µ ◦ ψ)e−ξS(∂ψ)

∥∥∥∥
Lp∩Lq

.

We use the facts that ‖(1− χR)(µ ◦ ψ)‖∞ → 0 as R → ∞ while
∥∥S(∂ψ)

∥∥
Lp∩Lq .∥∥∂ψ∥∥

Lp∩Lq is bounded uniformly in ξ ∈ C from Remark 4.6.5.
Secondly, we regard the first right-hand term of (4.108),

P (χR∂ψ)(z) =
1

π

∫
1

z − ζ
χR(ζ)(∂ψ)(ζ) dζ,

as the dual pairing of ∂ψ ∈ Lp(C) with (z − ζ)−1χR(ζ) ∈ Lp′(C) for some p > 2. We
use the weak convergence of ∂ψ(z, ξ) to 0 as ξ → ∞ from Lemma 4.7.6 to conclude
that P (χR∂ψ)(z)→ 0 as ξ →∞.
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Convergence Uniform in z

We want the establish that ψ(z, ξ) → z as ξ → ∞ uniformly in z. The first step is
to show that |ψ(z, ξ)− z| is small for large z uniformly in ξ. This allows us to focus
on establishing a uniform estimate in a large ball.

Lemma 4.7.7. For all ε > 0, there exists R > 0 such that

sup
|z|>R
ξ∈C

|ψ(z, ξ)− z| < ε (4.110)

Proof. Let ε > 0 be given, and let 1 + k < q < 2 < p < 1 + k−1. Suppose |z| > R,
where R will be determined later. As in (4.108), we write

ψ(z, ξ)− z = P (∂ψ) = P (χR∂ψ) + P ((1− χR)∂ψ) (4.111)

We use the same split in (4.109) to write

ψ(z, ξ)− z = P (χR∂ψ)︸ ︷︷ ︸
I

+P

(
(1− χR)

ξ̄

ξ
(µ ◦ ψ)e−ξ

)
︸ ︷︷ ︸

II

(4.112)

+ P
(
(1− χR)(µ ◦ ψ)e−ξS∂ψ

)︸ ︷︷ ︸
III

Let 0 < α < 2
1+k
− 1 < 1. Term I can be estimated by∣∣∣∣∫ χR(w)

z − w
∂ψ(w) dw

∣∣∣∣ ≤ 1

Rα

∫
1

|z − w|1−α
|∂ψ(w)| dw (4.113)

Since 1 + k < 2
1+α

< 2. We can use the Hardy-Littlewood-Sobolev inequality (Theo-
rem 2.5.1) to get ∣∣∣∣∫ χR(w)

z − w
∂ψ(w) dw

∣∣∣∣ ≤ 1

Rα

∥∥∂ψ∥∥ 2
1+α

. (4.114)

Remark 4.6.5 implies that the estimate (4.114) is uniform in ξ. Thus we can choose
R1 > 0 independent of ξ such that for |z| > 2R1,∣∣∣∣∫ χR1(w)

z − w
∂ψ(w) dw

∣∣∣∣ ≤ 1

Rα
1

∥∥∂ψ∥∥ 2
1+α

<
ε

3
. (4.115)

To estimate the term II, we are going to use equation (2.15) of Lemma 2.5.2 to obtain∣∣∣∣P ((1− χR)
ξ̄

ξ
(µ ◦ ψ)e−ξ

)
(z)

∣∣∣∣ .p,q ‖(1− χR)(µ ◦ ψ)‖Lp∩Lq . (4.116)

By the uniform decay of (µ ◦ ψ) in Lemma 4.7.3 and dominated convergence, there
exists an R2 > 0, independent of ξ, such that∣∣∣∣P ((1− χR2)

ξ̄

ξ
(µ ◦ ψ)e−ξ

)
(z)

∣∣∣∣ .p,q ‖(1− χR2)(µ ◦ ψ)‖Lp∩Lq <
ε

3
(4.117)
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For term III, we again use equation (2.15) of Lemma 2.5.2 to estimate∣∣P ((1− χR)(µ ◦ ψ)e−ξS∂ψ
)

(z)
∣∣ .p,q

∥∥(1− χR)(µ ◦ ψ)S∂ψ
∥∥
Lp∩Lq (4.118)

.p,q ‖(1− χR)(µ ◦ ψ)‖∞ ‖S‖op
∥∥∂ψ∥∥

Lp∩Lq

where ‖·‖op denotes the operator norm in L(Lp ∩ Lq, Lp ∩ Lq). Remark 4.6.5 implies

that supξ∈C
∥∥∂ψ∥∥

Lp∩Lq <∞. The decay of (µ ◦ψ) is uniform in ξ (see Lemma 4.7.3).
Thus there exists an R3 > 0 independent of ξ such that∣∣P ((1− χR3)(µ ◦ ψ)e−ξS∂ψ

)
(z)
∣∣ .p,q ‖(1− χR3)(µ ◦ ψ)‖∞ ‖S‖op

∥∥∂ψ∥∥
Lp∩Lq

(4.119)

<
ε

3

Let R = max{R1, R2, R3}, and suppose |z| > R. Then we can revisit equation (4.112)
using the estimates (4.115), (4.117), and (4.119) to obtain

|ψ(z, ξ)− z| ≤
∣∣P (χR∂ψ)

∣∣+

∣∣∣∣P ((1− χR)
ξ̄

ξ
(µ ◦ ψ)e−ξ

)∣∣∣∣ (4.120)

+
∣∣P ((1− χR)(µ ◦ ψ)e−ξS∂ψ

)∣∣
<
ε

3
+
ε

3
+
ε

3
= ε

Now that Lemma 4.7.7 establishes the result on the exterior of a ball, we will
show |ψ(z, ξ)− z| → 0 as ξ →∞ uniformly for z is a ball. We claim that the family
{ψ(·, ξ)} is equicontinuous in z parameterized by ξ. We use the standard estimate
(see, for example, [4, Theorem 4.3.13])

|(Pf)(z)− (Pf)(z′)| .p ‖f‖p |z − z
′|1−2/p (4.121)

where p > 2 and f = ∂ψ. The uniformity in ξ follows from the estimates in Theorem
4.6.4.

Let ε > 0 be given, and let R be the radius from Lemma 4.7.7. The equicontinuity
of {ψ(·, ξ)} implies there is a δ > 0 such that for every z ∈ B(0, R), |z−z′| < δ implies
|ψ(z, ξ) − ψ(z′, ξ)| < ε. The collection {Bδ(z)}z∈BR forms an open cover of B(0, R).
Thus there are {zj}Nj=1 such that for any z ∈ B(0, R), there is some zj such that

|ψ(z, ξ)− z| ≤ |ψ(zj, ξ)− zj|+ |ψ(z, ξ)− ψ(zj, ξ)|+ |zj − z| (4.122)

Therefore, we only need |ψ(zj, ξ)− zj| → 0 as ξ →∞ for each zj, j = 1, . . . , N . This
establishes the uniformity in z.
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4.8 Summary

In this chapter, we began with the truncated scattering transform of a Beltrami
coefficient µ ∈ L∞(D). In Section 1, we showed that in analogy with the Fourier
transform, the truncated scattering transform corresponds to a Beltrami coefficient
that is no longer compactly supported. Rather, it exhibits decay on the order of
O (|z|−2) as z →∞. The goal for the rest of the chapter was to recast the machinery
of Astala-Päivärinta for this larger class of Beltrami coefficients. Along the way, we
showed that the notion of principal solutions to Beltrami equations has an analogue
in this new setting. The complex geometric optics (CGO) solutions to the Beltrami
equation exist and can exhibit subexponential growth as the parameter ξ →∞.

Copyright c© George H. Lytle, 2019.
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Notation Index

The following is a list of symbols used in this dissertation.

Rn n-dimensional real Euclidean space

C field of complex numbers; we take x ∈ R2 as an element of C

Ĉ the Riemann sphere (extended complex plane)

Ω a bounded domain in Rn

∂X the boundary of a set X

D the unit disc in C

dx n-dimensional Lebesgue measure

dz 2-dimensional Lebesgue measure

ds 1-dimensional surface measure

f |∂X the restriction of a function f : X → C to the domain ∂X.

ν(x) the outward unit normal at a point x ∈ ∂X

Lr(Rn) for r ∈ (1,∞), the Banach space of measurable functions f : Rn → C with

‖f‖r :=
(∫
|f(x)|r dx

)1/r
<∞

L∞(Rn) the Banach space of essentially bounded functions

Lp ∩ Lq the intersection of Lp(Rn) ∩ Lq(Rn)

W k,p(C) the Sobolev space of distributions whose derivatives up to kth order are Lp-
integrable.

Hs(∂D) the Sobolev space of functions on ∂D defined for non-integer values of s in
Section 2.1

Ck,α(C) the space of k-times differentiable Hölder continuous functions with exponent
α

S (R2) the Schwartz class of functions of rapid decrease

C∞0 (C) the set of smooth compactly supported functions

L(X, Y ) the Banach space of bounded operators from Banach space X to Banach space
Y

∂f the derivative of f with respect to the complex number z; ∂f = 1
2
(∂x − i∂y)f
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∂f the derivative of f with respect to the complex number z; ∂f = 1
2
(∂x + i∂y)f

J(z, f) Jacobian determinant of f : C→ C at z

Jac(f)(z) Jacobian matrix of f : C→ C at z

σ conductivity function

Λσ Dirichlet-to-Neumann operator for σ, see (1.6)

m(z, ξ) normalized CGO solution for the Schrödinger problem, see (1.9)

t(ξ) Nachman’s scattering transform. See (1.10), (1.17)

eξ(z) phase function, see (1.11)

µ(z) Beltrami coefficient corresponding to σ, see (1.24)

fµ(z, ξ) CGO solution to the Beltrami equation, see Theorem 1.4.2

Mµ(z, ξ) normalized CGO solution to the Beltrami equation, see (1.25)

ϕ(z, ξ) solution to the nonlinear beltrami equation (1.35) related to CGO solutions by
(1.29)

τ(ξ) Astala-Päivärinta scattering transform, see (3.15)

P solid Cauchy transform, see (2.13)

S Beurling transform, see (2.17)
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Birkhäuser/Springer Basel AG, Basel, 2012.

[23] Harald Hanche-Olsen and Helge Holden. The Kolmogorov-Riesz compactness
theorem. Expo. Math., 28(4):385–394, 2010.

[24] Harald Hanche-Olsen and Helge Holden. Addendum to “The Kolmogorov-Riesz
compactness theorem” [Expo. Math. 28 (2010) 385–394] [ MR2734454]. Expo.
Math., 34(2):243–245, 2016.

[25] Claudia N. L. Herrera, Miguel F. M. Vallejo, Jennifer L Mueller, and Raul G.
Lima. Direct 2-d reconstructions of conductivity and permittivity from EIT data
on a human chest. IEEE transactions on medical imaging, 34(1):267–274, 2015.

[26] Carlos Kenig and Mikko Salo. The Calderón problem with partial data on man-
ifolds and applications. Anal. PDE, 6(8):2003–2048, 2013.

63



[27] Carlos Kenig and Mikko Salo. Recent progress in the Calderón problem with
partial data. In Inverse problems and applications, volume 615 of Contemp.
Math., pages 193–222. Amer. Math. Soc., Providence, RI, 2014.
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