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Abstract: Histone post-translational modifications influence many fundamental cellular events by
regulating chromatin structure and gene transcriptional activity. These modifications are highly
dynamic and tightly controlled, with many enzymes devoted to the addition and removal of these
modifications. Interestingly, these modifying enzymes are themselves fine-tuned and precisely
regulated at the level of protein turnover by ubiquitin-proteasomal processing. Here, we focus on
recent progress centered on the mechanisms regulating ubiquitination of histone modifying enzymes,
including ubiquitin proteasomal degradation and the reverse process of deubiquitination. We will
also discuss the potential pathophysiological significance of these processes.

Keywords: ubiquitin; epigenetic; histone modifying enzyme; protein degradation

1. Introduction

Genomic DNA is tightly packaged in chromatin by both histone and non-histone proteins
in the nucleus of eukaryotic cells [1]. The basic chromatin subunits, nucleosomes, are formed
by wrapping 146 base pairs of DNA around an octamer core of four histones: H2A, H2B, H3,
and H4 [2,3]. Whereas the nucleosomal core is compact, eight flexible lysine-rich histone tails
protrude from the nucleosome, which facilitate internucleosomal contacts and provide binding
sites for non-histone proteins [4]. The histones with lysine-rich tails are highly modified by
histone post-translational modifications (PTMs) including acetylation, methylation, phosphorylation,
ubiquitination, sumoylation, adenosine diphosphate (ADP) ribosylation, proline isomerization,
biotinylation, citrullination and their various combinations [5]. These modifications constitute a
unique “code” to regulate histone interactions with other proteins and thereby allow for modifications,
either overcoming or solidifying, the intrinsic histone barrier to transcription. Histone modifications
control dynamic transitions between transcriptionally active or silent chromatin states, and regulate the
transcription of genetic information encoded in DNA (the “genetic code”) [6]. Accordingly, with these
modifications, the various proteins that add, recognize and remove these PTMs, termed writers, readers
and erasers, respectively, have been identified and structurally characterized. While “writer” and
“eraser” enzymes modify histones by catalyzing the addition and removal of histone PTMs, respectively,
“reader” proteins recognize these modified histones and “translate” the PTMs by executing distinct
cellular programs. Interestingly, the stability of these “writer”, “eraser” and “reader” proteins is
dynamically regulated by the ubiquitination proteasome system (UPS). The UPS alters the localization
of these proteins and can promote or interfere with protein interactions, providing an additional layer
to dynamic transcriptional regulation. The turnover of histone modifying enzymes through the UPS is
an intrinsic cellular control mechanism that restricts an association of the enzymes with transcriptional
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factors and rapidly removes the enzymes from chromatin to rigorously regulate chromatin architecture
and transcriptional activity.

The 76-residue protein, ubiquitin, is ubiquitously expressed and highly conserved in all
eukaryotes. Ubiquitin is covalently attached to an internal lysine residue of its substrates by an
enzymatic cascade, that includes an ubiquitin-activating enzyme (E1), a conjugating enzyme (E2) and
a ubiquitin ligase (E3) [7]. First, an E1 recruits and activates ubiquitin by formation a thiol-ester bond
between a cysteine residue of E1 and the carboxyl terminus of ubiquitin [8]. The activated ubiquitin
molecule is subsequently transferred to one of several E2 ubiquitin conjugating enzymes, also through
a thiol-ester linkage with ubiquitin. Subsequently, E2 mediates the transfer while the E3 provides
specificity by binding to the substrate and recruiting ubiquitin to the conjugation machinery through
protein-protein interaction with the E2 enzyme [9]. Most organisms have only one E1, but dozens of
different E2s, and more than one thousand E3s, providing effective substrate specificity. Although
the E3 ubiquitin ligase is substrate-specific, one E3 ligase may control the degradation of a variety of
substrate proteins [10]. In addition, a protein could be ubiquitinated by more than one E3 ubiquitin
ligase [11]. Interestingly, many substrates are modified by phosphorylation, acetylation or methylation,
which act as molecular recognition signals to recruit ubiquitin E3 ligase complexes [9,12].

Ubiquitination is a reversible process and ubiquitin moieties are removed from polypeptides
by deubiquitinases (DUBs), a superfamily of cysteine proteases and metalloproteases that
cleave ubiquitin-protein bonds [13]. DUBs may thus counteract specific processes by removing
mono-ubiquitin or poly-ubiquitin moieties from various substrates like histones, proteasome substrates
and other proteins. The human genome encodes approximately 100 DUBs, which are classified
into six families: (1) ubiquitin C-terminal hydrolase (UCH), (2) ubiquitin-specific processing
proteases (USP), (3) Jab1/Pad1/MPN domain containing metallo-enzymes (JAMM), (4) OTU domain
ubiquitin-aldehyde binding proteins (OTU), (5) Machado-Joseph disease protein domain proteases
(MJDs), and (6) the monocyte chemotactic protein-induced protein (MCPIP) family [14]. In addition to
deubiquitylation activities, DUBs are involved in processing newly synthesized, inactive ubiquitin
precursors. By degrading ubiquitin chains, DUBs generate free ubiquitin, thus, replenishing the
ubiquitin pool and maintaining the ubiquitin homeostasis [15]. Therefore, these enzymes add an extra
layer in the regulation of cellular functions.

The PTMs regulated by histone modifying enzymes play an important role in gene transcriptional
activity. Rapid removal of these histone modifying enzymes from the correct histone is critical to
repress or activate any target genes. The UPS controls the availability of histone modifying enzymes
and indirectly alters the epigenetic code, which enables transcriptional reprogramming to control the
regulation of gene expression in response to different stimuli (Figure 1). Understanding the molecular
mechanism for UPS degradation of histone modifying enzymes in different pathophysiological
conditions will provide new insights into how histone modifying enzymes respond to different
signaling cascades and exert their diverse functions.
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Figure 1. The ubiquitin proteasomal system degrades histone modifying enzymes. Histone modifying 
enzyme is ubiquitinated and degraded by a ubiquitin ligase (E3) while histone modifying enzyme is 
stabilized by deubiquitinases (DUBs) through deubiquitination. UPS = ubiquitination proteasome 
system; Ub = Ubiquitin. 

2. Ubiquitin Proteasomal Degradation of Histone Acetylation Enzymes 

Histone acetylation is a rapid and reversible process controlled by histone acetyltransferases 
(HATs) and histone deacetylases (HDACs). The HATs transfer acetyl groups from acetyl-coenzyme 
A (CoA) to the ε-amino groups of lysine residues of histone tails, which results in gene activation. 
HATs can be categorized into three major families, GNAT (GCN5 and PCAF), MYST (Tip60 and 
MOF), and p300. The HDACs remove acetyl groups from lysine residues, leading to gene silencing. 
Genome-wide mapping of HATs and HDACs that bind to the human genome demonstrate that these 
enzymes regulate the activation and repression of transcription, respectively. A dysfunctional 
balance between acetylation and deacetylation is clearly associated with human disease and 
tumorigenesis.  

2.1. Histone Acetyltransferases 

2.1.1. p300  

The p300 protein is a histone acetyltransferase and is ubiquitously expressed in the nucleus. P300 
catalyzes the acetylation of lysine residues in histone proteins H2AK5, H2B (K5, K12, K15, K20), H3 
(K14, K18, K23), and H4 (K5, K8, K12) [16]. In addition to histones, other nuclear proteins are also 
acetylated by p300, such as components of the RNA pol II complex (TFIIE and TFIIF) and a diverse 
group of transcription factors [17]. P300-mediated histone tail acetylation loosens up the contacts 
between histones and DNA, which relaxes the chromatin structure to facilitate gene transcription. 
P300 is essential for cell growth, proliferation, development, differentiation, cell-cycle regulation, 
DNA damage response, tumorigenesis, and apoptosis in many biologic processes [18,19].  

The p300 protein level is tightly and spatially regulated through UPS degradation. P300 is 
degraded both in the cytoplasm and in the nucleus through distinct mechanisms. P300 turnover by 
UPS degradation was first identified in human cardiac myocytes [20]. Mdm2 (murine double minute 
2), in the presence of active H-Ras or N-Ras, induces p300 degradation in NIH 3T3 cells [21]. 
Degradation of p300 is also initiated by phosphorylation of p300 at serine 1834, which is catalyzed by 
the cooperative action of p38 mitogen-activated protein kinases and Akt kinases [22]. The prompt 
degradation of p300 facilitates the sequential recruitment of downstream repair proteins for 
successful execution of nucleotide excision repair. Moreover, several additional E3 ligases of p300 

Figure 1. The ubiquitin proteasomal system degrades histone modifying enzymes. Histone modifying
enzyme is ubiquitinated and degraded by a ubiquitin ligase (E3) while histone modifying enzyme
is stabilized by deubiquitinases (DUBs) through deubiquitination. UPS = ubiquitination proteasome
system; Ub = Ubiquitin.

2. Ubiquitin Proteasomal Degradation of Histone Acetylation Enzymes

Histone acetylation is a rapid and reversible process controlled by histone acetyltransferases
(HATs) and histone deacetylases (HDACs). The HATs transfer acetyl groups from acetyl-coenzyme
A (CoA) to the ε-amino groups of lysine residues of histone tails, which results in gene activation.
HATs can be categorized into three major families, GNAT (GCN5 and PCAF), MYST (Tip60 and
MOF), and p300. The HDACs remove acetyl groups from lysine residues, leading to gene silencing.
Genome-wide mapping of HATs and HDACs that bind to the human genome demonstrate that these
enzymes regulate the activation and repression of transcription, respectively. A dysfunctional balance
between acetylation and deacetylation is clearly associated with human disease and tumorigenesis.

2.1. Histone Acetyltransferases

2.1.1. p300

The p300 protein is a histone acetyltransferase and is ubiquitously expressed in the nucleus.
P300 catalyzes the acetylation of lysine residues in histone proteins H2AK5, H2B (K5, K12, K15, K20),
H3 (K14, K18, K23), and H4 (K5, K8, K12) [16]. In addition to histones, other nuclear proteins are also
acetylated by p300, such as components of the RNA pol II complex (TFIIE and TFIIF) and a diverse
group of transcription factors [17]. P300-mediated histone tail acetylation loosens up the contacts
between histones and DNA, which relaxes the chromatin structure to facilitate gene transcription.
P300 is essential for cell growth, proliferation, development, differentiation, cell-cycle regulation,
DNA damage response, tumorigenesis, and apoptosis in many biologic processes [18,19].

The p300 protein level is tightly and spatially regulated through UPS degradation. P300 is
degraded both in the cytoplasm and in the nucleus through distinct mechanisms. P300 turnover
by UPS degradation was first identified in human cardiac myocytes [20]. Mdm2 (murine double
minute 2), in the presence of active H-Ras or N-Ras, induces p300 degradation in NIH 3T3 cells [21].
Degradation of p300 is also initiated by phosphorylation of p300 at serine 1834, which is catalyzed
by the cooperative action of p38 mitogen-activated protein kinases and Akt kinases [22]. The prompt
degradation of p300 facilitates the sequential recruitment of downstream repair proteins for successful
execution of nucleotide excision repair. Moreover, several additional E3 ligases of p300 have been
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identified in response to distinct upstream signals. For example, Fbx3 ubiquitin ligase promotes the
degradation of p300 by the UPS in the nucleus [23]. In contrast, PML protects p300 from Fbx3-induced
degradation. In addition, breast cancer metastasis suppresser 1 (BRMS1) acts as bona fide E3 ligase and
as such promotes polyubiquitination and proteasome-mediated degradation of p300 [24]. Similar to the
bacterial E3 IpaH family of E3 ligase, BRMS1 contains an evolutionarily conserved CXD motif that may
be critical for its E3 ligase function. Mutation of this E3 ligase motif abolishes BRMS1-induced p300
polyubiquitination and degradation [24]. In agreement with this finding, inhibitory member of the
apoptosis-stimulating protein of p53 (iASPP) stabilizes p300 by interfering with their BRMS1-mediated
ubiquitination and enhances apoptosis upon DNA damage [25].

2.1.2. PCAF (p300/CBP–Associated Factor)

PCAF interacts with CBP through its amino terminal portion and has sequence similarity with
GCN5 in the carboxy-terminal half [26]. PCAF is a transcriptional co-activator with intrinsic HAT
activity that acetylates free histone H3, nucleosomal H3K14 and H4K8, along with other non-histone
proteins including p53 to regulate transcriptional activity [26,27]. PCAF associates with enhancer
sequences to facilitate long-distance transcriptional enhancement. In addition, PCAF interacts with
RNA polymerase II to maintain efficient transcriptional elongation. PCAF plays a role in multiple
biological and pathogenic process such as proliferation, differentiation, apoptosis, and cell cycle
progression. The E3 ubiquitin ligase Mdm2 ubiquitinates and degrades PCAF in the nucleus; devoid
of Mdm2’s nuclear localization signal sequence, this enzyme is unable to degrade nuclear PCAF [28].
Interestingly, PCAF is not only a HAT, but is also a ubiquitination factor with intrinsic E3 ligase
activity. PCAF could function as a ubiquitin E3 ligase for Hdm2, an oncoprotein that promotes p53
degradation, and thus play a role in regulating cellular p53 levels [29]. The potential E3 ligase activity
of PCAF is within the so-called PCAF homology domain. In addition, PCAF also acts as a novel E3
ubiquitin ligase of Gli1, the final transcriptional effector of Hedgehog (Hh) signaling. PCAF, but not
a mutant with a deletion of its ubiquitination domain, represses Hh signaling in response to DNA
damage by promoting Gli1 ubiquitination and subsequent proteasome-dependent degradation [30].
The dual function of PCAF highlights the functional connections between cellular acetylation and
ubiquitination machineries.

2.1.3. HBO1 (Histone Acetyltransferase Binding to Origin Recognition Complex 1)

HBO1 belongs to the MYST family that modulates cell cycle progression, DNA replication and
proliferation [31]. In general, HBO1 binds upstream of gene transcription start sites and putatively
enhances gene expression. HBO1 acetylates H3K14 and histone H4 to load the origin recognition
complex onto chromatin, which initiates DNA replication licensing and triggers DNA replication
during the late G1 phase [32]. Ubiquitin-dependent control of the HBO1 protein contributes to cell
survival during UV irradiation. HBO1 is degraded after UV-induced DNA damage to suppress cell
proliferation; ATM/ATR-dependent phosphorylated HBO1 at Ser50 and Ser53 preferentially interacts
with DDB2 and is ubiquitylated by CRL4 (DDB2) [33]. Interestingly, HBO1 is an unstable protein
with a half-life around 3 h [32]. FBXW15 directly interacts with HBO1 to mediate its ubiquitination
at K338 in the cytoplasm [32]. Phosphorylation of HBO1 mediated by mitogen-activated protein
kinase 1 (Mek1) is required for FBXW15-mediated HBO1 degradation. Silencing FBXW15 blocks the
Mek1-mediated HBO1 degradation [32]. Similar to PCAF, HBO1 also has intrinsic ubiquitin E3 ligase
activity. HBO1 promotes destabilization of the estrogen receptor α (ERα) in breast cancers through
lysine 48-linked ubiquitination [34,35]. The acetyltransferase activity of HBO1 is linked to its activity
for ERα ubiquitination.

2.1.4. Tip60

Tip60, a member of the MYST family, is expressed ubiquitously and is the acetyltransferase
catalytic subunit of the human NuA4 complex [36]. Tip60 specifically targets H2AK5, H4K16 as well
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as other histone proteins. Tip60 plays an important role in many processes, such as cellular signaling,
DNA damage repair, transcription and cellular cycling. Aberrant expression of Tip60 promotes or
suppresses tumorigenesis in colon, breast and prostate tumors, depending on the tumor type. It is
known that Tip60 is turned over in cells by the UPS. UHRF1 (Ubiquitin-like containing PHD and RING
domain 1) co-localize with Tip60, and down-regulation of UHRF1 enhances Tip60 expression [37].
By contrast, Tip60 is stabilized in normal cells by UHRF2 ubiquitination and acts downstream of
UHRF2 to regulate H3K9ac and H3K14ac expression [38]. Under non-stressed conditions, activating
transcription factor-2 (ATF2), in cooperation with the CUL3 ubiquitin ligase promotes degradation
of Tip60 [39]. Another important E3 ligase, Mdm2, interacts physically with Tip60 and induces
ubiquitination and proteasome-dependent degradation [40]. Recent proteomic analyses further
identified EDD1 (E3 identified by differential display), an E3 ligase generally overexpressed in cancers
as a novel interacting partner of Tip60 [41]. EDD1 negatively regulates Tip60’s stability through
the proteasome pathway. Interestingly, As3+ can bind directly to the zinc-finger motif of Tip60
in vitro and exposure to As3+ results in a dose-dependent decrease in Tip60 protein level via the
UPS [42]. However, the mechanism used by As3+ to regulate Tip60 protein levels remains unknown.
Recent studies revealed that ubiquitin-specific protease 7 (USP7) interacts with and deubiquitinates
Tip60 both in vitro and in vivo. USP7 deubiquitinase activity is required for the stabilization of Tip60
in order to operate an effective p53-dependent apoptotic pathway in response to genotoxic stress and
is central to the development and maintenance of the T regulatory (Treg) cell lineage and adipocyte
differentiation [43–46]. The interaction between activating transcription factor 3 (ATF3) and Tip60
increases the Tip60 stability by promoting USP7-mediated deubiquitination of Tip60 [47]. Knockdown
of ATF3 expression leads to a decreased Tip60 expression and accumulated DNA lesions and increased
cell sensitivity to irradiation.

2.2. Histone Deacetyltransferases

HDAC1/HDAC2

HDAC1, a class I histone deacetyltransferase, is degraded by the UPS. HDAC1 protein levels
are degraded robustly between 3 and 4 h after hormone stimulation as a result of ubiquitination.
Destruction of HDAC1 is a common event in transcriptional regulation of nuclear receptors.
For example, HDAC1 turnover is increased after glucocorticoids stimulation [48]. In addition,
E3 ubiquitin ligase Mdm2 associates with and ubiquitinates HDAC1 at the active promoter in
response to androgen [49]. Interestingly, the deacetylase activity of HDAC1 is also required to
enhance Mdm2-mediated androgen receptor (AR) ubiquitination. Simultaneous degradation of
HDAC1 and AR by Mdm2 confers protein destabilization and provides an additional mechanism for
AR and HDAC1 regulation. Mdm2 also induces ubiquitination of HDAC1 in vascular calcification
(VC). Under calcification-inducing conditions, proteasomal degradation of HDAC1 precedes VC
and it is mediated by the Mdm2 E3 ubiquitin ligase that initiates HDAC1 K74 ubiquitination [50].
In addition, HDAC1 directly interacts with the carboxyl terminal region of Chfr, an E3 ubiquitin
ligase, which contributes to the mitotic checkpoint. Chfr ubiquitinates HDAC1 in vitro and in vivo.
Overexpression of Chfr enhances HDAC1 degradation, leading to an upregulation of p21 and the
metastasis suppressors KAI1 and E-cadherin [51]. Recently, it was reported that the CUL3–REN
E3 ubiquitin ligase complex also triggers HDAC1 recruitment and degradation and, consequently,
Gli1 hyperacetylation, which results in inhibition of Gli1’s transcriptional activity [52]. Valproic acid
(VPA), an inhibitor of Class I and II HDAC enzymes, not only inhibits HDAC catalytic activity
but also triggers proteasome-mediated degradation of HDAC2 [53]. The E2 ubiquitin conjugase
Ubc8 and the E3 ligase RLIM account for the degradation of HDAC2, which contributes to basal
turnover of HDAC2 and is differentially regulated by VPA [53]. Interestingly, both VPA and
Trichostatin A (TSA) treatment induce Ubc8 gene expression, whereas only TSA simultaneously
reduces RLIM protein levels and therefore fails to induce HDAC2 degradation. Mule (Mcl-1 ubiquitin
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ligase E3), a HECT domain ubiquitin ligase, also specifically targets HDAC2 for ubiquitination
and degradation [54]. Accumulation of HDAC2 in Mule-deficient cells leads to compromised p53
acetylation as well as crippled p53 transcriptional activation, accumulation, and apoptotic response
upon DNA damage. Interestingly, cigarette smoke extract exposure leads to phosphorylation of
HDAC2 by a casein kinase II (CKII)-mediated mechanism, decreased HDAC2 activity, and increased
ubiquitin-proteasome-dependent HDAC2 degradation [55]. CKII and proteasome inhibitors stabilize
HDAC2 from its degradation. In contrast, ubiquitin-specific peptidase 4 (USP4) interacts directly
with and deubiquitinates HDAC2, leading to a stabilization of HDAC2 [56]. Another DUB, USP17,
deubiquitinates and stabilizes the protein level of HDAC2. HDAC2 is excessively ubiquitinated and
degraded in the proteasome because of low expression of USP17 in cigarette smoke extract-exposed
airway epithelial cells and macrophages [57]. Furthermore, over-expression of USP17 attenuates the
degradation of HDAC2 induced by cigarette smoke extract.

3. Ubiquitin Regulation of Histone Methylation Enzymes

Methylation of lysine residues on histones was first identified in the 1960s. Histone lysines can
have four states of methylation and occur at different lysine sites. Histones H2B lysine 5 (H2BK5),
H3K4, H3K9, H4K20, H3K27, H3K36, and H3K79 are subject to unmethylated, mono-methylation
(me1), di-methylation (me2), or tri-methylation (me3) on the ε-amino groups of lysine residues.
These lysine methylations change the chromatin structure to regulate gene transcription. Histone lysine
methylation is a reversible modification and is maintained by the balance lysine methyltransferases
(KMTs) and lysine demethylases (KDMs). The KMTs recruit S-adenosyl methionine (SAM) as a
cofactor and catalyze the addition of methyl groups to lysine residues through the SET domain.
The KMTs are grouped into several families: KMT1-3, KMT 5-7, KMT4/DOT1, as well as others.
The KDMs include the flavin adenine dinucleotide- (FAD-) dependent monoamine oxidase family
(KDM1/LSD (Lysine-Specific Demethylase)), the Jumonji C domain-containing demethylase (JMJD)
families (KDM2-6), and others. Methylation of H3K4, H3K36, and H3K79 usually correlate with
gene activation, whereas methylation of H3K9, H3K20, H3K27, and H3K56 are associated with
transcriptional silencing.

3.1. Histone Methylation Enzymes

3.1.1. SETD2/SETD3 (The SET-Domain Methyltransferase 2/3)

SETD2 is generally recognized as the only human gene responsible for trimethylation on lysine 36
of Histone H3 (H3K36), which recruits protein complexes that carry out a variety of processes, including
transcriptional elongation, RNA processing, DNA repair and damage response, and polycomb
silencing, all of which establish the impact of this histone modification [58,59]. Loss of SETD2 causes
regional genomic instability, RNA processing defects, and intragenic transcription initiations. SETD2
functions as a tumor suppressor in cancer progression. In breast cancer, SETD2 expression levels are
negatively associated with increasing tumor stage [58]. In gliomas and clear cell renal cell carcinoma,
SETD2 is highly mutated [58]. SETD2 has a short half-life [60]. The binding between the WW domain
of SETD2 and the C-terminal domain (CTD) of RNA polymerase II (RNAPII) protects SETD2 from
degradation. Interestingly, removal of the SETD2-Rpb1 interacting (SRI) domain stabilizes SETD2 in
addition to uncoupling SETD2 from the CTD. Thus, the SRI domain contains a degradation signal
that becomes exposed when SETD2 is not CTD-bound [60]. A recent study identified SPOP, a key
subunit of the CUL3 ligase complex, as a binding partner for SETD2 that mediates its turnover by the
proteasome [61]. The SPOP/CUL3 complex is responsible for SETD2 polyubiquitination both in vivo
and in vitro. Modulation of SPOP expression confers differential H3K36me3 on SETD2 target genes,
and induces H3K36me3-coupled alternative splicing events.

SETD3 is a novel histone H3K4 and H3K36 methyltransferase with transcriptional activation
activity. SETD3 levels are increased in human liver cancer cells [62]. Overexpression of SETD3 in liver
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cancer cells promotes cell proliferation and tumorigenesis and SETD3 protein levels correlate with
high malignancy and poor prognosis in liver tumors. The SETD3 levels display a dynamic cell cycle
profile. SETD3 levels are regulated in a glycogen synthase kinase-3 β (GSK-3β)- and F-Box and WD
Repeat Domain Containing 7 (FBXW7) β -dependent manner in the cytoplasm. GSK-3β-mediated
phosphorylation and FBXW7β-mediated ubiquitination of SETD3 are required for its proteolysis [62].

3.1.2. PR-Set7/Set8 (The SET-Domain Methyltransferase PR-Set7)

PR-Set7/Set8 (also known as SET8, SETD8 or KMT5A) is a cell-cycle-regulated enzyme that
monomethylates the lysine 20 of histone H4 (H4K20) [63]. PR-Set7 plays an essential role in
mammalian cell cycle progression, transcriptional regulation, DNA repair, genome stability and tumor
metastasis [64]. Set8 and monomethylated H4K20 are virtually undetectable during G1 and S phases of
the cell cycle but increase in late S and in G2 [65,66]. A timely destruction of this enzyme during S phase
is mediated by ubiquitin-mediated proteolysis and requires the interaction of the enzyme with the DNA
replication factor proliferating cell nuclear antigen (PCNA) through a conserved PCNA-interacting
(PIP) motif located upstream of the catalytic SET domain [67]. PCNA serves as a cofactor to promote
PR-Set7 interaction with the CRL4cdt2 E3 ubiquitin ligase, which earmarks PR-Set7 for ubiquitylation
and degradation during S phase or upon DNA damage [68,69]. PCNA-mediated degradation of
mammalian PR-Set7 is essential for proper cell-cycle progression [66,70]. In addition to the CRL4cdt2

pathway, the anaphase-promoting complex (APC)Cdh1 and the F-box proteins Skp2 and β-TRCP
of SCF ubiquitin E3 ligase complexes are reported to regulate PR-Set7 stability in human cells [67].
Phosphorylation of S28 in PR-Set7 by the cyclin-dependent kinase 1 (CDK1)/cyclinB complex stabilizes
PR-Set7 by directly inhibiting its interaction with the APC [70]. In contrast, dephosphorylation of S29
during late mitosis by the Cdc14 phosphatases is required for APCcdh1-mediated ubiquitination of
PR-Set7 and subsequent proteolysis. Set8 interacts with the β-TRCP E3 ligase complex including Skp1
and Rbx1 [71,72]. Depletion of either Cullin1, Cullin4 or endogenous β-TRCP extends the half-life of
endogenous Set8 proteins and increases the level of the Set8 protein. CKI (casein kinase I) functions
as a key upstream kinase to phosphorylate Set8 at Ser253 and subsequently triggers its destruction
by β-TRCP [71]. Therefore, Set8 is governed by Skp2 and β-TRCP in the G1 phase, whereas Set8
destruction is controlled by CRL4cdt2 in the S phase. How these ligases fine-tune the timely destruction
of Set8 to ensure proper cell cycle progression is unknown.

3.1.3. EZH2 (Enhancer of Zeste Homolog 2)

EZH2 is a critical enzymatic subunit of the polycomb repressive complex 2 (PRC2), which silences
gene transcription by trimethylating histone H3 (H3K27) to mediate gene repression [73].
Overexpression of EZH2 promotes cell proliferation, tumorigenesis, metastasis, and stem cell renewal
and maintenance [74]. EZH2 is mutated or highly expressed in many types of cancer, including
lymphoma, melanoma, prostate cancer, and breast cancer [75]. The EZH2 protein is subject to
ubiquitin-dependent degradation by several E3 ligases (Figure 2). First, Smurf2 as the E3 ubiquitin
ligase is responsible for the polyubiquitination and proteasome-mediated degradation of EZH2,
which is required for neuron differentiation [76]. Second, EZH2 is a novel component and substrate of
the SCF E3 ubiquitin ligase β-TRCP (FBXW1) [77]. β-TRCP ubiquitinates EZH2 while Janus kinases 2
(Jak2)-mediated phosphorylation on Y641 directs the β-TRCP-mediated EZH2 degradation. Silencing
of β-TRCP or inhibition of Jak2 results in EZH2 stabilization with an attendant increase in H3K27
trimethylation activity. Consistent with this, endogenous EZH2(Y641) mutants exhibit increased EZH2
stability and H3K27me3 hyperactivity in lymphoma cells. Third, EZH2 is a bona fide substrate of
FBXW7 in pancreatic cancer cells [78]. EZH2 phosphorylation at Thr 261 by CDK5 kinase is required
for FBW7-mediated degradation. FBXW7 suppresses EZH2 activity and inhibits tumor migration and
invasion via degradation of EZH2 in pancreatic cancer cells. Fourth, MYOD-induced E3 ubiquitin
ligase Praja1 (PJA1) is involved in regulating EZH2 levels upon p38α activation in differentiating
muscle cells [79]. The p38α kinase promotes EZH2 degradation through phosphorylation of threonine
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372. Premature degradation of EZH2 in proliferating myoblasts is prevented by low levels of PJA1,
its cytoplasmic localization and the lower activity with unphosphorylated EZH2. More importantly,
FOXP3 accelerates EZH2 protein degradation through the polyubiquitination-proteasome pathway by
enhancing the transcription of PJA1 directly [80]. Finally, EZH2 is a substrate at the COOH terminus
of Hsp70-interacting protein (CHIP) [81]. CHIP triggers EZH2 degradation through ubiquitination.
Recently, it was reported that the stability of EZH2 was also regulated by long noncoding RNA.
Angelman syndrome chromosome region (ANCR) modulates the stability of EZH2, and hence
suppresses the invasion and metastasis of breast cancer cells [82]. ANCR potentiates the CDK1-EZH2
interaction, which then increases the extent of phosphorylation at the Thr-345 and Thr-487 sites of
EZH2, facilitating EZH2 ubiquitination and degradation. For the reverse process, EZH2 is stabilized by
deubiquitination. Ubiquitin-specific protease (USP21) deubiquitinates EZH2 and stabilizes it. USP21 is
upregulated in bladder cancer (BC) and ectopic expression of USP21 is closely associated with tumor
size and metastasis [83]. USP21 facilitates cell proliferation, epithelial-mesenchymal transition and
metastasis in bladder carcinoma cell lines. ZRANB1, an ovarian tumor protease (OTU) family member,
also functions as an EZH2 deubiquitinase [84]. ZRANB1 binds, deubiquitinates, and stabilizes EZH2.
Depletion of ZRANB1 in breast cancer cells results in EZH2 destabilization and growth inhibition
(Figure 2).
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Composition of the E3 complex and DUB targets EZH2. The Skp-1- Cullin-1-F-Box (SCF) E3s are
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3.2. Histone Demethylation Enzymes

3.2.1. JMJD2A (Jumonji Domain 2)

JMJD2A/KDM4A is the first identified histone lysine demethylase that demethylases
trimethylated residues and targets H3K9 and H3K36 [85]. The JMJD2 family consists of the three
∼130-kDa proteins (JMJDA, JMJDB and JMJDC) and JMJD2D/KDM4D, which is half the size and
lacks the double PHD and Tudor domains that are epigenome readers and are present in the other
KDM4 proteins [86]. JMJD2A is implicated in replication timing and genomic stability, DNA damage
response, cellular differentiation, and animal development [85]. Various studies have shown that
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JMJD2A is overexpressed in breast, colorectal, lung, prostate, and other tumors and is required for
efficient cancer cell growth [87]. The degradation of JMJD2A is regulated by different F-box-containing
SCF ubiquitin ligase complexes. First, JMJD2A turnover is coordinated through the Skp1-Cul1-FBXL4
ubiquitin ligase [88]. The protein degradation of JMJD2A is also regulated by FBXW2 ubiquitin
ligase [88]. In addition, FBXO22 ubiquitin ligase complex controls the activity of JMJD2A by targeting
it for proteasomal turnover [89]. FBXO22 functions as a receptor for JMJD2A by recognizing its
catalytic JmjN/JmjC domains via its intracellular signal transduction (FIST) domain. Modulation
of FBXO22 levels by RNA interference or overexpression leads to increased or decreased levels of
JMJD2A, respectively. In response to DNA damage, JMJD2A is degraded by the proteasome in an
RNF8-dependent manner [90]. RNF8-dependent degradation of JMJD2A regulates DNA repair by
controlling the recruitment of 53BP1 at DNA damage sites.

3.2.2. LSD1 (Lysine-Specific Demethylase 1)

LSD1, the first identified histone demethylase, functions as an epigenetic regulator through an
amine oxidase reaction mainly by removing H3K4 mono-/di-methylation, an activation marker of
transcription [91,92]. High levels of the LSD1 have been found in leukemia, non-small cell lung,
pancreatic, prostate, and breast cancers [93–96]. Overexpression of LSD1 is associated with tumor
aggressiveness, metastasis, recurrence, and drug resistance and is regarded as a biomarker of poor
prognosis [97,98]. LSD1 participates in different protein complexes that modulate distinct molecular
targets to induce metastasis and cancer stem cells (CSC)s in a variety of cancers [99–103]. For example,
we demonstrated that LSD1 interacts with Snail1 and promotes breast cancer metastasis through
downregulation of CDH1 [104].

LSD1 is regulated at transcriptional and post-translational levels. We and others showed that
LSD1 is under a tight control by the UPS [94,104–106]. We recently found that USP28 is the LSD1
deubiquitinase that stabilizes the LSD1 protein [106]. In addition, USP22 can also stabilize LSD1
through GSK-3β-mediated phosphorylation [94]. Furthermore, USP7 inhibits LSD1 ubiquitination and
stabilizes LSD1in glioma [107]. USP7-LSD1 affects glioma cell proliferation and invasion. However,
the bona fide E3 ligase responsible for LSD1 degradation remains largely unknown. Although Jade2
has been reported to act as an E3 ligase to destabilize LSD1 during neurogenesis [108], this observation
is controversial and requires further validation, given that Jade2 is a transcription factor and that
Jade2-mediated LSD1 ubiquitination is dependent on the PHD zinc finger of Jade2 rather than a
classical ring finger found in almost all E3 ubiquitin ligases [108,109]. Notably, LSD1 harbors canonical
(I/L)Q motifs typical for the recognition and ubiquitination by F-box protein [110]. Therefore, it is
plausible that the ubiquitination of LSD1 is mediated by an F-box family E3 ligase. Identification
of such an E3 ligase and the corresponding mechanism will provide new windows for therapeutic
targeting of LSD1.

4. Ubiquitin of Histone Arginine Methylation Enzymes

Histone arginine methylation also occurs in many arginine sites: histone H3 arginine 2 (H3R2),
H3R8, H3R17, H3R26, and H4R3 undergo monomethylation (me1), symmetrical dimethylation
(me2s), or asymmetrical dimethylation (me2a) on the guanidinyl groups of arginine residues.
The N-arginine methyltransferases (PRMTs) are a class of enzymes that transfer a methyl group
from SAM to the guanidino nitrogen of arginine. PRMTs generate three arginine methylation forms:
monomethylarginine (MMA), asymmetric dimethylarginine (aDMA), and symmetric dimethylarginine
(sDMA). Human PRMTs are composed of nine members that are categorized into three groups based
on the type of arginine methylation reaction each member catalyzes. Type I is comprised of PRMT1,
PRMT2, PRMT3, PRMT4/ coactivator-associated arginine methyltransferase 1 (CARM1), PRMT6,
and PRMT8; these catalyze both mono-methyl and asymmetric dimethyl arginine reactions. The type
II group is made up of two members, PRMT5 and PRMT9, which catalyze both mono-methyl arginine
and symmetric dimethyl arginine. Finally, PRMT7 is, at this point, considered the only bona fide
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type III methyltransferase and can generate only mono-methyl arginines. Many studies demonstrated
that PRMTs regulate a wide range of genetic programs and cellular processes including cell cycle,
RNA splicing and differentiation. Although the consequence of lysine methylation is relatively well
studied, the role of PRMT action is poorly understood.

4.1. PRMT1

PRMT1 is responsible for a substantial percentage of methylated arginine residues. Specifically,
asymmetric dimethylation on H4R3 by PRMT1 is involved in transcriptional activation, thereby driving
oncogenic pathways. PRMT1 is an important regulator of cell proliferation, progenitor maintenance,
and tumor metastasis. PRMT1 is polyubiquitylated for proteasome degradation with a half-life of
approximately 4 h in lung epithelial cells [111]. FBXL17 mediates PRMT1 polyubiquitination at
K117. FBXL17 specifically binds PRMT1 via a unique motif IkxxxIK. The acetylation/deacetylation
status of the lysine residues within the motif determines FBXL17 binding thereby triggering PRMT1
protein degradation. The tripartite motif 48 (TRIM48) has a RING-finger motif with E3 ubiquitin
ligase activity, and belongs to the TRIM family. TRIM48 promotes K48-linked polyubiquitination
and degradation of PRMT1 [112]. Using phage display and the orthogonal UB transfer (OUT) screen,
PRMT1 was identified as a potential substrate of the U-box E3 ligase E4B and CHIP [113]. However,
the detailed mechanisms of how E4B and CHIP regulate PRMT1 stability need further investigation.
Interestingly, PRMT1 regulates E3 ligase activity through arginine methylation. Smurf2 is a substrate
of PRMT1 [114] and methylation of Smurf2 by PRMT1 regulates Smurf2 stability and controls TGF-β
signaling. Another E3 ubiquitin ligase, TNF receptor-associated factor 6 (TRAF6), is also methylated by
PRMT1, and this arginine methylation inhibits TRAF6’s ubiquitin ligase activity, reducing activation of
toll-like receptor signaling [115].

4.2. PRMT4

PRMT4, more commonly known as CARM1, is involved in the regulation of a number of cellular
processes including transcription, pre-messenger RNA (mRNA) splicing, and cell cycle progression.
CARM1 expression is dysregulated in colorectal, prostate and breast cancer. CARM1 methylates
the chromatin-remodeling SWI/SNF core subunit, BAF155, in the arginine 1064 residue [116].
This methylation of BAF155 is associated with breast cancer recurrence and metastasis, indicating
that CARM1 plays an important role in breast cancer progression through BAF155. Accordingly,
CARM1-induced tumorigenic effects and its expression is increased in invasive breast cancer,
and correlates with a high tumor grade [117]. Notably, CARM1 stability is regulated by the
Skp2-containing SCF (Skp1-cullin1-F-box protein) E3 ubiquitin ligase in the nucleus, but not in the
cytoplasm, under nutrient-rich conditions [118,119]. With nutrient deprivation, AMP-activated protein
kinase (AMPK) induces phosphorylation of FOXO3a in the nucleus, which in turn transcriptionally
represses Skp2. Consequently, this repression of Skp2 leads to increased levels of CARM1 protein
and a subsequent increase in histone H3 Arg17 dimethylation [119]. Interestingly, high-glucose
treatment increases CARM1 ubiquitination [120]. Whether high-glucose treatment increases the Skp2
activity requires further investigation. In addition, peroxide (H2O2) treatment decreases CARM1
protein stability in murine lung epithelial (MLE12) cells, which impedes cell migration through a
downregulation of GSK-3β. Protein kinase GSK-3β protects CARM1 from ubiquitin proteasomal
degradation by catalyzing CARM1 T132 phosphorylation [121].

5. Ubiquitination of Histone Modification Readers

BRD4 (Bromodomain Containing 4)

Histone modifications are recognized by proteins containing distinct recognition domains,
which act as “readers” and bind to different histone modifications [122]. For example, the bromodomain
acts as a lysine acetylation “reader” of modified histones that mediate signaling transduction changes
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in gene regulatory networks [123]. The bromodomain and the extra-terminal domain (BET) family
recognize acetylated lysine residues in histones H3 and H4 [124]. BRD4 is a member of the BET family
that carries two bromodomains. BRD4 functions as a transcriptional coactivator and plays critical roles
in a variety of cellular processes, including the cell cycle, apoptosis, cell proliferation, DNA damage
response, autophagy, memory formation and migration and invasion [125,126]. BET proteins enhance
the oncogenic functions of major cancer drivers by elevating the expression of these drivers, such as
c-Myc in multiple myeloma, androgen receptor (AR) and ETS-related gene (ERG) in prostate cancer,
and TWIST in breast cancer [127]. BRD4 is frequently overexpressed and clinically associated with a
variety of human cancers. BRD4 is also under ubiquitination-mediated degradation. Cullin-3-SPOP
earmarks BET proteins, including BRD2, BRD3 and BRD4, for ubiquitination-mediated degradation.
SPOP is frequently mutated in primary prostate cancer. Prostate cancer-associated SPOP mutants
fail to interact with and promote the degradation of BET proteins, leading to their increased
abundance and causing a resistance to BET inhibitors in SPOP-mutant prostate cancer [125,128,129].
The E3 ligase substrate receptor cereblon (CRBN) promotes proteosomal destruction by engaging
the DDB1-CUL4A-Roc1-RBX1 E3 ubiquitin ligase. Interestingly, dBET1, a chemical compound and
targeting ligand, degrades BRD4 by stimulating CRBN’s E3 ubiquitin-conjugating function [130].
The degradation of BRD4 can be mitigated by the deubiquitinase DUB3 [131]. DUB3 binds to BRD4
and promotes its deubiquitination and stabilization. DUB3-proficient prostate cancer cells are resistant
to the BET inhibitor JQ1 in vitro and in mice.

6. Conclusions and Perspectives

Aberrant profiles of histone modifications result in a variety of pathological diseases. The crosstalk
between the ubiquitin and histone modifying enzymes and the biochemically reversible nature of
histone modifications provides a platform for rapid changes in the activity of downstream targets.
The dynamic changes of histone modifying enzymes by UPS form a sophisticated and regulated
network to coordinate the plasticity and dynamic change required for cell homeostasis (Table 1).

Because of the rapid progress and appreciation for epigenetics, many factors that regulate the
UPS for histone modifying enzymes have been identified. However, more questions have been
raised than have been answered. First, what and how do extrinsic cellular signals trigger the
degradation of histone modifying enzymes? Second, since most lysine residues function as acceptor
sites for ubiquitination, acetylation and methylation, how do these different modifications impact the
availability of histone modifying enzymes? Additionally, how do these histone modifying enzymes
regulate E3 ligase through different histone modifications? Third, some of the histone modifying
enzymes are degraded in the cytoplasm, whereas others are degraded in the nucleus, and the same
enzyme can be degraded by different E3 ligases either in the cytoplasm or nucleus. Therefore,
how do these E3 ligases cooperate to efficiently control concentrations of these enzymes to meet
the requirements for individual cellular homeostasis? Fourth, although specific ubiquitin E3 ligases
mediate the ubiquitination of a specific histone modifying enzyme, several histone modifying enzymes
share the same E3 ligases. Can these modulators of the UPS be used clinically as therapeutic strategies
by altering the abundance of these histone modifying enzymes? Finally, DUBs counteract E3 ligase
activity and prevent ubiquitination-mediated degradation. How do these enzymes keep the balance to
fine-tune the protein level of histone modifying enzymes?

In all, advances in our understanding of the crosstalk between histone modifying enzymes and
the UPS can identify bi-stable switches that allow a dynamic regulation of gene expression states. This
understanding will also provide a better sense of the molecular mechanisms associated with histone
modification and transcriptional activity, and thus accelerate the development of new therapeutic
strategies that target UPS to control PTMs in cellular homeostasis and disease.
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Table 1. The ubiquitin proteasomal regulation of histone modification enzymes.

Class of Histone
Modifying Enzyme

UPS-Regulated
Histone Modifying

Enzyme

Target of the Histone
Modifying Enzyme

Kinases Involved in
UPS-Regulation of

Histone-Modifying Enzyme

E3 ligases
Regulating Histone
Modifying Enzyme

DUBs Regulating
Histone Modifying

Enzyme

Physiological and Pathophysiological Functions of
UPS-Regulation of Histone Modifying Enzyme

Acetylation Enzyme

p300 H2AK5, H2B, H3, H4 Mdm2, FBX3, BRMS1
Cell growth, proliferation, development, differentiation,

cell-cycle regulation, DNA damage response,
tumorigenesis and apoptosis

PCAF Free H3, H3K14,
H4K8 Mdm2 proliferation, differentiation, apoptosis and

cell-cycle progression

HBO1 H3K14, H4
ATM/ATR CRL4 cell-cycle progression, DNA replication and proliferation

Mek1 FBXW15

Tip60 H2AK5, H4K16 UHRF1, EDD1,
Mdm2 USP7 Cellular signaling, DNA damage repair and transcription

Deacetylation
Enzymes

HDAC1 H2A, H2B, H3, H4 Mdm2, Chfr, REN Development, gene repression, cell cycle, DNA repair, etc

HDAC2 H2A, H2B, H3,
H4K16 RLIM, Mule USP4, USP17 Differentiation and Development, gene repression, cell

cycle, DNA repair, etc

SETD2 H3K36 SPOP Transcription elongation, RNA processing, DNA repair
and damage response, polycomb silencing

Lysine Methylation
Enzymes

SETD3 H3K36 GSK3β FBXW7β Cell proliferation and tumorigenesis

Set8 H3K20

Cdt2
Cell cycle progression, transcription regulation, DNA

repair, genome stability and tumor metastasis
CDK1 Cdh1

Skp2
CK1 β-TRCP

EZH2 H3K27

Smurf2, CHIP

USP21, ZRANB1 Cell proliferation, tumorigenesis, metastasis and stem cell
renewal and maintenance

Jak2 β-TRCP
CDK5 FBXW7

p38 Praja1

Lysine Demethylation
Enzymes

JMJD2A H3K9, H3K36 FBXL4, FBXW2,
FBXO22, RNF8

Replication timing and gemomic stability, DNA damage
response, cellular differentiation, and animal development

LSD1 H3K4 Jade2 USP28, USP22, USP7 Differentiation, self-renewal and tumor metastasis

Arginine Methylation
Enzymes

PRMT1 H4R3 FBXL17, TRIM48,
E4B, CHIP

Cell proliferation, progenitor maintenance and
tumor metastasis

PRMT4 H3R17, H3R26 Skp2 Transcription pre- mRNA splicing and cell
cycle progression

Reader BRD4 SPOP, CRBN DUB3
Cell-cycle, apoptosis, cell proliferation, DNA damage

response, autophagy, memory formation and migration
and invision
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