
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Electrical and
Computer Engineering Electrical and Computer Engineering

2019

Curricular Optimization: Solving for the Optimal Student Success Curricular Optimization: Solving for the Optimal Student Success

Pathway Pathway

William G. Thompson-Arjona
University of Kentucky, wgthompson@uky.edu
Digital Object Identifier: https://doi.org/10.13023/etd.2019.147

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Thompson-Arjona, William G., "Curricular Optimization: Solving for the Optimal Student Success Pathway"
(2019). Theses and Dissertations--Electrical and Computer Engineering. 139.
https://uknowledge.uky.edu/ece_etds/139

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

William G. Thompson-Arjona, Student

Dr. Gregory Heileman, Major Professor

Dr. Aaron Cramer, Director of Graduate Studies

Curricular Optimization: Solving for the Optimal Student Success Pathway

THESIS

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Electrical
Engineering in the College of

Engineering at the University of
Kentucky

By

William Guillermo Thompson-Arjona
Lexington, Kentucky

Director: Gregory Heileman, Ph.D, Professor of Electrical Engineering
Lexington, Kentucky

2019

Copyright c© William Guillermo Thompson-Arjona 2019

ABSTRACT OF THESIS

Curricular Optimization: Solving for the Optimal Student Success Pathway

Considering the significant investment of higher education made by students and their fami-
lies, graduating in a timely manner is of the utmost importance. Delay attributed to drop out
or the retaking of a course adds cost and negatively affects a student’s academic progres-
sion. Considering this, it becomes paramount for institutions to focus on student success
in relation to term scheduling.

Often overlooked, complexity of a course schedule may be one of the most important
factors in whether or not a student successfully completes his or her degree. More often
than not students entering an institution as a first time full time (FSFT) freshman follow the
advised and published schedule given by administrators. Providing the optimal schedule
that gives the student the highest probability of success is critical.

In efforts to create this optimal schedule, this thesis introduces a novel optimization algo-
rithm with the objective to separate courses which when taken together hurt students’ pass
rates. Inversely, we combine synergistic relationships that improve a students probability
for success when the courses are taken in the same semester. Using actual student data
at the University of Kentucky, we categorically find these positive and negative combina-
tions by analyzing recorded pass rates. Using Julia language on top of the Gurobi R© solver,
we solve for the optimal degree plan of a student in the electrical engineering program
using a linear and non-linear multi-objective optimization. A user interface is created for
administrators to optimize their curricula at main.optimizeplans.com.

KEYWORDS: Optimization, Curricular Analytics, Multi-Objective, Cloud LAMP Stack

Author’s signature:
William Guillermo

Thompson-Arjona

Date: May 2, 2019

Curricular Optimization: Solving for the Optimal Student Success Pathway

By

William Guillermo Thompson-Arjona

Director of Thesis: Gregory Heileman, Ph.D

Director of Graduate Studies: Aaron Cramer, Ph.D

Date: May 2, 2019

Esta tesis está dedicada a mis padres.

ACKNOWLEDGMENTS

Without the support and vision of my advisor and chair, Dr. Gregory Heileman, this thesis
would not have been possible. Under his guidance and leadership I have grown as an
engineer and a professional. Many thanks to Orhan Akbar and Gokhan Bakal, colleagues
and friends with help programming this optimization. Also many thanks to Adam Roth for
his invaluable help and guidance with the LAMP stack.

iii

CONTENTS

Acknowledgments . iii

Contents . iv

List of Figures . v

List of Tables . vi

Chapter 1 Introduction . 1
1.1 Background . 1
1.2 Previous Work . 3

Chapter 2 Tools, Structure, and User Interface 10
2.1 Julia . 10
2.2 JuMP . 11
2.3 Gurobi R© Solver . 11
2.4 Jupyter . 12
2.5 User Interface→ main.optimizeplans.com 12

Chapter 3 Optimization . 17
3.1 Overall Constraints and Considerations . 17
3.2 Bin Filling and Optimal Time to Completion 19
3.3 Multi-objective Optimization with Toxicity Avoidance 23

Chapter 4 Applications in Electrical Engineering 39
4.1 Power Transmission, Optimization of Damping Control 39
4.2 Smart Grid . 41

Chapter 5 Conclusions and Moving Forward . 44

Bibliography . 45

Vita . 47

iv

LIST OF FIGURES

1.1 Tuition costs at public universities and colleges [3] 1

1.2 B.S. Electrical Engineering Program at the University of Kentucky, 2018 2

1.3 Example four course curricula subset demonstrating typical progression to cir-

cuits 1 in the electrical engineering curriculum 4

1.4 Curricular complexity metrics in relation to small adjustment in course placement 7

2.1 User interface created at main.optimizeplans.com 14

2.2 CSV data input front end linking to AWS-PHP LAMP stack to AWS S3 bucket 15

3.1 B.S. Electrical Engineering program at the University of Kentucky, 2018. Op-

timized using “bin filling” approach, function decomposition 22

3.2 B.S. Electrical Engineering program at the University of Kentucky, 2018. Op-

timized using “bin filling” approach, function combination 23

3.3 Example Curricula, Unoptimized . 33

3.4 optimized example curricula, objective of toxicity minimization 34

3.5 B.S. Electrical Engineering program at the University of Kentucky, 2018. Op-

timized using toxicity avoidance objective . 35

3.6 B.S. Electrical Engineering program at the University of Kentucky, 2018. Op-

timized using term imbalance minimization objective 36

3.7 B.S. Electrical Engineering program at the University of Kentucky, 2018. Op-

timized prerequisite string minimization objective 37

3.8 B.S. Electrical Engineering program at the University of Kentucky, 2018. Op-

timized using toxicity avoidance, term balancing, and prerequisite string mini-

mization objectives . 38

4.1 192Bus WECC Windfarm . 40

4.2 Variability in power output of wind farm by day, for one month [18] 42

v

LIST OF TABLES

2.1 EC2 instance t2.medium specifications . 13

2.2 LAMP stack description . 15

3.1 Course toxicity example relationship . 25

3.2 Course toxicity relationship between two courses in the electrical engineering

curricula . 27

3.3 User defined limits for optimization . 29

3.4 Toxicity score (Ts) matrix . 30

3.5 Binary course placement matrix X . 31

3.6 Possible course combinations in the first term of the example curriculum with

representative toxicity scores . 33

3.7 First iteration of binary matrix x of example curriculum 34

4.1 Objective and constraints associated with inter oscillatory minimization 40

4.2 Objective and constraints associated with smart grid topology 42

vi

Chapter 1 Introduction

1.1 Background

Completing a degree in higher education is a necessity in the 21st century global economy.

According to the bureau of labor statistics, the average wage in 2017 for an individual

with a bachelors degree with respect to an individual with a high school diploma was 39%

more, a testament to higher education as “the gateway to the middle class” [1]. Attaining

this level of education however is not trivial as many prospective students are faced with

significant headwind. The decision to attend and invest the time and financial resources

necessary makes the decision quite significant for most individuals. This also comes at a

time of rising tuition costs greatly outpacing inflation. During the past decade, there have

been exceptional and perhaps unprecedented increases in tuition at public colleges and

universities. Poor economic conditions and subsequent state budget cuts have created a

fertile landscape for large tuition increases. Although many of these year-to-year increases

are in the neighborhood of 4% or 5%, a considerable number are above 10%, 15%, and

even 20% [2].

Figure 1.1: Tuition costs at public universities and colleges [3]

In light of these challenges placed on students and often time their families, it becomes

evident that administrators in higher education have an obligation to dedicate significant

thought and resources to assuring the success of their students. Frequently this comes

1

in the form of financial aid and work study programs. Large emphasis is also placed in

other areas such as mental health counseling, student engagement and recreation initiatives,

and corporate outreach. However, many times an underlining cause of student attrition

is overlooked, that being the fundamental ways a student chooses to schedule his or her

classes, the degree plan.

Degree plans are usually laid out by administrators to facilitate student course selection.

They explain, usually in a graphical format, the expected course progression. Unfortu-

nately, unbeknownst to the administrators, some of the semesters they have curated will

adversely affect their students. Some courses when taken in the same term are much more

difficult to pass. Specifically in electrical engineering this is the case for many course

combinations.

Figure 1.2: B.S. Electrical Engineering Program at the University of Kentucky, 2018

The negative effect one course may have on the other may be attributed to a multitude of

factors, one of which is the sheer instructional difficulty and material needed to be digested

by the student in a semesters’ time. It would be more advantageous to spread the complex-

ity of a curricula throughout the time the student is enrolled while trying to not overload

any particular semester.

We previously demonstrated a direct relationship between the complexity of a curriculum

and a student’s ability to complete that curriculum [4]. In order achieve the same learning

2

outcomes needed to graduate from any particular field, students at universities across the

country face drastically different complexity. More often than not, it is the student facing

the lower complexity that successfully graduates and more specifically, graduates on-time.

In fact, it has been proven that institutions categorically ranked higher in the U.S. News and

World Report consistently offer less complex curricula than those ranked lower [6]. It is

therefore of particular interest to administrators to quantitatively analyze their degree plans

with efforts to lower their complexity, ultimately improving student success outcomes.

FTFT Freshman −−−−−−−→
Select Major

Follow Advised Plan −−−−−−−→
Complication

Graduation Delay

To improve these outcomes, degree plans must be given much more attention and analysis

before being introduced to the student population. Everything from basic complexity met-

rics to advanced optimization techniques should be run in efforts to provide the optimal

road map to success. This all begins with defining areas of concern within current path-

ways. If troubled course combinations can be found, articulated, and avoided in a degree

plan, student success outcomes may be greatly improved.

1.2 Previous Work

Curricular Analytics

A great amount of work has been done in both the fields of curricular analytics and opti-

mization techniques, but both concepts have rarely been used symbiotically. Much treat-

ment has been devoted to quantitatively analyzing a course relative to its difficulty and

attribution to student success outcomes. Analyzing this metric of a course, or complexity

with respect to its placement and its relationship to the other courses, is crucial in under-

standing the reasoning and methodology behind the curricular optimization techniques.

We first must analyze the relationship of course within a degree plan, its placement cru-

cial to the progression of a student. This placement relative to requisites is known as its

structural complexity.

In a degree plan, it is observed that the graph structure of the mandated university curricula

3

(a)

(b)

Figure 1.3: Example four course curricula subset demonstrating typical progression to
circuits 1 in the electrical engineering curriculum

and its corresponding structural complexity is a major factor that impacts a student’s ability

to complete the curricula. Specifically, we define this cruciality of a course within a degree

plan as being associated with two main features, its delay factor and its blocking factor.

To understand what is meant by this we observe how slight variations in scheduling can

effect the complexity of a degree plan. We analyze a typical progression to circuits one in

the electrical engineering curriculum, a known path of high complexity.

To fully recognize the differences in structural complexity posed by the different degree

plans in Figure 3.1, we must first define the relative complexity of a course in terms of the

classes downstream that depend on it as prerequisite.

4

Delay Factor

Some courses have a critical impact on the academic progress of a student in the sense

that any failure in these courses (or delays in taking them at the appropriate time) subjects

the student to the risk of not finishing on time. Such is the case many times in science,

technology engineering, and math (STEM) fields, which contain a set of courses that must

be completed in sequential order. It is not uncommon to find prerequisite pathways con-

sisting of up to eight courses, in effect spanning nearly every term in any possible degree

plan. The ability to successfully navigate these long pathways without delay is critical for

student success and on-time graduation [4]. Not only are these long pathways attributing

to delay among their corresponding prerequisite strings, but they are often attributing to

student delay across other facets of the curriculum.

We can more specifically define this delay factor associated with a given course vk in

a curriculum c, denoted dc(vk), as the number of vertices in the longest path in Gc that

passes through vk [5].

Gc is known as the curriculum graph, where each vertex v1, ..., vn ∈ V represents a re-

quirement (i.e., course) in a curriculum c. There is a directed edge (vi, vj) ∈ E from

requirement vi to vj if vi that must be satisfied prior to the satisfaction of vj [5].

dc(vk) = max
i,j,k,l
{#(vi vk vj)} (1.1)

The delay factor associated with an entire curriculum c is:

d(Gc) =
∑
vk∈V

dc(vk) (1.2)

Blocking Factor

Another structural factor arises when one course serves as the gateway to many other

courses in the curriculum. In this case, if a student is unable to pass the gateway course,

they are blocked from attempting many of the other courses in the curriculum [4]. This

cruciality metric is a necessity when analyzing the effect of later semesters relative to the

5

completion of key classes near the beginning of a curriculum. If there is high enough

blocking across many classes in a curricula, the result will be high stop out and attrition

due to the inability to attempt many other courses.

In our example, Calculus 1 is a foundational first-term course that must be completed

before taking the other major-specific classes in subsequent terms leading to our end goal

of completing Circuits 1. A course which is a prerequisite for a large number of other

courses in a curriculum is a highly important course in that curriculum with regards to

on-time degree completion.

Specifically we will define this blocking metric in relation to when course vj is reachable

from course vi, via any prerequisite pathway, using vi vj , and vi 9 vj will be used if

course vj is not reachable from course vi. The blocking factor associated with course vi in

curriculum Gc = (V,E), denoted bc(vi), is then given by [5]:

bc(vi) =
∑
vj∈V

I(vi, vj) (1.3)

where I is the indicator function (i.e. the indication of whether or not the course down-

stream requires the course of interest as a prerequisite) :

= I

1 ifvi vj

0 ifvi 9 vj

(1.4)

We define the blocking factor associated with an entire curriculum c as:

b(Gc) =
∑
vi∈V

bc(vi) (1.5)

Complexity Score

After computing blocking and delay factor, a unit-less measure for structural complexity

can be applied to every course in any curriculum. We keep in mind that the experimental

6

(a)

(b)

Figure 1.4: Curricular complexity metrics in relation to small adjustment in course place-
ment

design explicitly relates this measure to the likelihood that a student can complete a cur-

riculum. In order to achieve this overall Complexity metric, we simply add the blocking

and delay factors of the entire curricula:

Complexity = b(Gc) + d(Gc) (1.6)

It is beneficial to now analyze the difference between the two curricula in Figure 3.1 in

relation to the formal structural metrics that have been defined. With the adjustment of

Physics I from the second term to the first term (sub-figure a to sub-figure b in Figure 3.1

respectively) we see the complexity not only change for the course itself, but for courses

in the same prerequisite chain. Observed is a chain reaction that leads to the the complex-

ity change of relational classes such as Calculus 1, which has its complexity score drop

from 6 to 5. This is due to a reduction in blocking factor, in that PHYS 1112 is no longer

inaccessible if a student does not progress past MATH 1011. Small adjustments such as

7

these demonstrate the causal sequence of events that transpire when a degree plan is mod-

ified. Hence, it is instrumental that administrators quantitatively analyze and study any

adjustments that are proposed, as they may have a significant impact on student success

outcomes. Any change has a significant chance to detrimentally or advantageously affect

the progression of a student. It is therefore through the power of iterative optimization

techniques founded in real student data that an optimal plan may be produced.

Optimization

Optimization techniques are essential in many modern day applications. They drive profit

for shareholders of many corporations by maximizing resources and minimizing sources of

cost. Not only used by corporations, these techniques can be found in all areas of applied

science, engineering, economics, and statistics. In fact, optimization techniques are used in

most decision making algorithms where a “best” choice should be made. The most obvious

example of optimization is the way in which the text of this thesis is laid out using LATEX

typesetting. The aim of the system is to produce a visually appealing arrangement of text

subject to the constraints of margins, and spaces between letters, words, and paragraphs.

The parameters can be slightly adjusted in order to achieve the best objective, a process

that includes many elements of a general optimization problem.

All optimization problems follow the same general format in that they minimize or maxi-

mize a defined objective subject to constraints. The model can take on a general form such

that[7],

minimize
x ∈ Rn

F (x)

subject to ci(x) = 0, i = 1, 2, . . . ,m′,

ci(x) ≥ 0, m′ + 1, . . . ,m

(1.7)

where F (x) represents the general objective function that can be either minimized or max-

imized subject to the real valued scalar functions ci.

These optimization techniques in relation to curricular analytics have received limited treat-

8

ment. In their work presented in the European Journal of Operational Research, Ünal and

Uysal present a balancing academic curriculum problem (BACP). The BACP schedules

courses to different semesters, while balancing the total workload per period. In the study

they create a Revalency Score. This score represents the level of interdependency between

two courses [8]. The optimization works to minimize the difference between two courses

that are highly relevant to each other. There methodology is surrounded by the use of what

thy refer to as the Relevance Based Curriculum Balancing (RBCB) that is formulated as

bi-objective Mixed Integer Linear Programming (MILP) problem. The RBCB has to en-

sure the workloads are being distributed to the semesters in a balanced fashion. To achieve

this goal, the degree of “balance violation” (i.e. deviation from the average workload) is

calculated for each semester and penalized in the objective function [8]. The optimization

posed is represented such that,

minimize R(x) +B(L(y)) (1.8)

where R(x) aims at minimizing the total layout cost (i.e. distance with respect to relevance

score), and B(L(y)) represents the minimization of imbalance of workloads per semester.

Although thorough in its treatment of degree plan optimization as a MILP problem, the

paper leaves questions with regards to the aspect of which an optimized plan can be rooted

in actual student pass rates. Also, user interactability is limited (e.g. administrator ability

to input constraints such as desired term count and credit hours per term). In the following

chapter we will discuss how the user is put in a position of control over their optimization

by product of a novel user interface.

9

Chapter 2 Tools, Structure, and User Interface

Language

2.1 Julia

The optimization was implemented in the open-source Julia programming language. Julia

is described as a high level, high performance dynamic programming language for techni-

cal computing that “has the performance of a statically compiled language while providing

interactive dynamic behavior and productivity like Python, LISP or Ruby” [9]. It is built

upon an LLVM- based just-in-time (JIT) compiler which allows it to reach performance

close to that of C and, in many cases, speeds faster than that of R or MATLAB [9]. Julia’s

defining feature is multiple dispatch, but some other notable features are module support,

a type system, parallelism, and a built-in package manager. It also has a thriving com-

munity of developers contributing high-quality open source libraries spanning a range of

applications such as machine-learning, statistical analysis, graph analysis, plotting, and

data-handling [10].

Each of these features contributed to choosing Julia as the language of implementation.

Julia’s type system, ease of use, and dynamic nature made it simple to implement the opti-

mization’s components, methods logic, and support for file formats such as CSV and JSON

that make data IO simple. In addition, it has a built-in package manager with many pack-

ages that enable uses such as powerful machine learning, statistical models, and visualiza-

tion capabilities [10]. In this case specifically, we use packages such as Multi-objective,

JuMP, and LinearAlgebra, which we will describe in greater detail.

Most importantly however, Julia was chosen for its integration and support on top of the

Gurobi R© solver. The clearly defined language interface that seamlessly integrated the pow-

erful solver allowed for easy implementation and definition of constraints and objectives.

Choosing Julia also allowed for integration of the optimization into the Curricular Analytics

toolbox, allowing for further advanced analysis [11]. The toolbox allows for the resultant

10

degree plan produced from the optimization to be visualized and analyzed for validity,

among many other features.

2.2 JuMP

JuMP is an open-source modeling language that allows users to express a wide range of

optimization problems (linear, mixed-integer, quadratic, conic-quadratic, semidefinite, and

nonlinear) in a high-level, algebraic syntax [12]. It essence, it is a domain-specific mod-

eling language for mathematical optimization embedded in Julia. It easily and seamlessly

acts as the bridge between the solver and the higher level programming language. Through

its intuitive syntax with respect to defining variables, constraints, and objectives in an op-

timization, more time could be spent in design of the methodology than time spent finding

a way to program. Speed is also quick in that JuMP communicates with most solvers in

memory, avoiding the need to write intermediary files. There is computational evidence

that JuMP is able to produce quadratic and conic-quadratic optimization models, in a for-

mat suitable for consumption by a solver, as fast as state-of-the-art commercial modeling

languages such as MATLAB and Python [12].

Julia
JuMP←−−−−−−−−→ Gurobi R©

2.3 Gurobi R© Solver

Due to the high computation requirement drawn by our optimization, a powerful solver

was needed. Thousands of iterations of the degree plan need to be run quickly in order to

find the optimal result. Along with this, the solver needed to integrate seamlessly with the

Julia language. Gurobi met or exceeded all of our requirements. Gurobi is a commercial

solver for both linear programming and mixed integer linear programming. According to

the MIPLIB 2017 Benchmark, Gurobi is the fastest to optimality, feasibility, and infeasibil-

ity [13]. The proven solver is used in applications ranging from optimization methods for

genome scaffolding to optimal inmate assignment programs, which saved the Pennsylvania

prison system $3 million USD in just the first year of use [14].

11

2.4 Jupyter

Jupyter, an application originating from within anaconda, is an interactive coding platform

that integrates Julia seamlessly. The step wise nature of a jupyter notebook made trou-

bleshooting and collaborative coding possible during the development of the optimization.

The graphical file structure make the linking of dependent files within the notebook simple.

Jupyter notebooks may be run locally through the installation of the IJulia package within

the Julia REPL. Specifically, live code, equations, narrative text, and the result degree plan

visualizations were all produced within this interactive environment.

In order to create an interactive environment where code could be easily distributed and

modified by various parties in the research group, the notebook was mounted on an Ama-

zon Web Services (AWS) Elastic Cloud Compute (EC2) Ubuntu instance. Here all neces-

sary dependencies are installed within Julia. Once the environment is prepared, the note-

book is then initialized through the provided tornado server, inherent to anaconda, and

optimized for asynchronous input/output. This “hosted” notebook benefited research in

that versioning control of the underlying curricular analytics toolbox examples and depen-

dencies [11]. The notebook in which the curricular optomizations reside can be found at

https : //optimizeplans.com : 8080

2.5 User Interface→ main.optimizeplans.com

The ease of which the optimizations can be used is paramount to making meaningful

progress in improving student success. In an industry that is already reluctant to change,

providing an easy to use dashboard to select and run the optimization with the users’ spe-

cific curricula is critical. An intuitive dashboard was built on AWS with ends to create a

centralized compute hub where administrators can quickly and easily get results by opti-

mizing to one of the supported objectives. In order to instantiate this service, we would

need to first select and register a domain name.

Optimizeplans.com was chosen and registered on AWS Route 53 service. In order to con-

nect to the infrastructure, a variety of record sets would need to be created. First would be

the aliased record (A record) set pointing to our particular IPv4 address. This would link

12

the domain to our service. In particular, a canonical name (CNAME) was produced as to

properly denote the host name.

In order to host the compute capability of the infrastructure, AWS Elastic Cloud Compute

(EC2) was used. Considering the memory and compute requirements a t2.medium linux

instance was chosen for the jupyter compute section of the framework.

Table 2.1: EC2 instance t2.medium specifications

vCPU 2@ 3.3GHz
CPU Credits/Hour 24
Memory(GiB) 4

Once the instance was initialized the security groups were established as to allow for front

facing public access. Due to the specification of the apache tornado server inherent to

anaconda and hence the notebook, the design decision was made to create a separate EC2

instance for the customer facing user interface.

The second EC2 instance uses Ubuntu 18.04 as the OS due to its popularity in server ar-

chitectures along with an Apache web server. PHP was chosen due to its large community,

prevalence as a server side language, and ease to develop web applications. Composer was

used as the PHP dependency manager, which was used to download the AWS PHP software

development kit (SDK). This SDK allows for PHP integration into a variety of necessary

services such as AWS S3. Once the general graphical user interface was laid out through

basic HTML, links to each particular jupyter notebook were set to correspond to each one

of the optimization objectives under the Optimization Objectives tab. In production, users

will be able to input their data directly into the examples folder located within the notebook

framework and run the optimization from the convenience of their machine, without direct

administrator contact. However, due to Gurobi being a commercial solver, a cloud license

will need to be purchased in order to host the capability through the supported optimization

notebooks.

Per Gurobi, pricing is variable based off use, with an unlimited perpetual use license costing

$30000 USD per year. In this application the optimizations only need be run once per

13

(a) Home screen

(b) Optimization objectives with linked jupyter notebook

Figure 2.1: User interface created at main.optimizeplans.com

curricula, not exerting extreme compute resources. This being the case, a silver package

could be purchased for $10000 USD per year with an additional cost of $8 USD per hour of

use. This option is ideal for active development and deployment situations where the hourly

charge is more of a factor. This package could be hosted directly by our EC2 instance as it

includes a compute server license.

Until the Gurobi cloud license is purchased and Gurobi is installed as a dependency on

the notebook EC2 instance, users will have to input the necessary CSV data and the ad-

ministrator will have to run the optomizations. In order to achieve this data handshake,

a bridge to an AWS S3 bucket was created. The created bucket was given corresponding

IAM access role with programmatic access. This would be needed in order to create the

access keys necessary to link the input data into the bucket. The user uploads the CSV file

14

Figure 2.2: CSV data input front end linking to AWS-PHP LAMP stack to AWS S3 bucket

in an HTML form, in which a web request is sent to the Apache web server. Web server

(in PHP) handles the request by processing and verifying the file, and then uploads the file

to the S3 bucket sub directory, which are partitioned based off the file type uploaded.

Table 2.2: LAMP stack description

LAMP Stack Component Description
(L)inux Open-source Operating system
(A)pache Open-source cross-platform web server software
(M)ySQL Open-source relational database management system
(P)HP Server side general purpose programming language

Through AWS, a MySQL db.t2.medium instance was set up by the maintained RDS ser-

vice. MySQL was chosen due to it’s large community, wide popularity, open-source nature,

and database structure that integrates well with CSV files. The instance includes adequate

amount of RAM for the application (4 GiB) and CPU sufficient fot the amount of uploads

and retrievals the application will see (24 Credits/hour at 3.3 GHz). RDS was configured

15

with a database name and key, so it can only be accessible through authenticated creden-

tials. Security groups were set to restrict incoming access to the database based upon IP,

so that only port 3306 is accessible from optimizeplans.com’s server’s private IP address.

This database was linked to our system through an RDS endpoint that allowed the server

to connect via PHP. Optimization data will be stored in a table with the columnar structure

representing data from the CSV optimization (curricula and toxicity). Columns in this table

store each field as the proper data type (e.g. credit hours as an integer). This way all data

types are properly converted to and from the back end system.

main.optomizeplans.com is now active and ready to accept administrator’s curricula and

toxicity CSV file types, ultimately providing an easy access point for them to directly

improve student success outcomes through optimized degree plans.

16

Chapter 3 Optimization

3.1 Overall Constraints and Considerations

It is crucial for a student in higher education to complete their degree requirements in

a timely manner. In large part this is due to financial strain caused by the addition of

further semesters as well as the probability to complete a degree successfully when time to

completion is minimized [4].

In undergraduate curricula of higher education institutions, there are generally 8 semesters

and around 40 courses. A course establishing the fundamentals of a more advanced course

is treated as the prerequisite and scheduled earlier in the curriculum [8]. The path to com-

pletion from the initial term to the final term is fraught with peril, such that the course

placement on a term over term basis is critical. The degree plan in this case should be

treated as a “live document” in which each subsequent term changes relative to the courses

completed successfully in the current term. While this optimization sets to find the optimal

degree plan in its totality, future applications of the tool could be used in advising situations

where students enter with varying backgrounds and transfer credits.

All things considered and irrespective of varying student backgrounds, a set of fundamental

truths apply for all students at the start of their undergraduate journey. The first of which is

the objective to graduate in a timely manner. In its most basic sense, the introduced algo-

rithms follow a linear integer programming model that outputs optimal course progression

in the minimum amount of time, considering a student’s desired course load.

Goal: Minimize time to degree completion.

min = Minimize number of terms

While the goal, or objective, may be straightforward in degree plan optimization, there

are a variety of considerations that must be addressed in order to keep the degree plan

17

valid. The first of which is that the course load should be balanced throughout a student

progression term over term. This will avoid any unnecessary loading on one term over the

other, insuring no one term is drastically more credit hour intensive that the others in the

plan. If l is the term course load in credit hours, this can be represented by,

Objective: Keep course load even throughout a student’s progression

min
m∑
i=1

|li−1 − li|

Where m is the number of courses

To insure the student completes his or her degree in the desired time frame, the credit hour

per term must be kept at a maximum as desired by the student such that,

Objective: Keep course load as maximum per semester to maximum desired by student

min
m∑
i=1

|li − β|

Where Beta is the number of credit hours

Finally, in order to insure validity of the plan, all prerequisites, corequisites, and strict

corequisites must be honored during the optimization. This insures that students have the

required learning outcomes required before attempting a more advanced course.

Constraint: Prerequisite classes will be honored during the optimization

n∑
i=1

i ∗ xai <
n∑

j=1

j ∗ xbj

In the simplest sense, the algorithm will output a binary result with respect to whether or

not the particular term is optimal such that,

x = 0 when semester count not optimal

18

x = 1 when semester count optimal

Once the optimal term is found, the optimization iteratively moves on to the next term.

This generalized process is repeated through many, sometimes thousands, of iterations in

order to find the optimal result. In the following sections the optimization techniques are

more closely described with the end goal of delivering the best degree plan for the student.

3.2 Bin Filling and Optimal Time to Completion

From a student’s perspective, there is perhaps no more important objective than to com-

plete his or her degree in the quickest amount of time. For the discerning student who

is driven by financial circumstances, a desire to begin graduate school early, or a want to

become financially independent in the optimal time, the quickest route to completion is de-

sired. This is where the “bin filling” approach may be deployed. Although not taking into

consideration some of the advanced constraints we have developed in our multi-objective

optimization approach, the filling algorithm, in a literal sense, fills a degree plan term by

term, up to a credit hour limit desired by the user. The approach be loosely defined such

that given n number of courses in n number of terms, where c is the capacity of each term

in maximum credit hours, and hj the credit hours of the course, such that

minimize
n∑

i=1

yi

subject to
n∑

j=1

hjxij ≤ cyi i ∈ N = {1, . . . , n},

n∑
i=1

xij = 1 j ∈ N,

yi = 0, 1 i ∈ N,

xij = 0, 1 i ∈ N, j ∈ N

(3.1)

The objective would be to fill each term with the maximum of credit hours h. By this

we accomplish a degree plan with the minimum possible amount of terms used. A find

minimum terms function was created to find the minimum number terms possible while

19

respecting all requisite conditions. The algorithm was designed such that it would return a

tuple with three elements.

• Boolean value which shows the term list created for the total term count.

• A term list which contains all courses that were placed in a designated term, grouped

by a term ID

• The term count is a integer value to show minimum number of terms possible to

satisfy the placement of all courses in a curricula to designated terms.

It must be noted that the find minimum terms function introduces no balancing function,

hence the possibility arises to produce uneven terms (e.g. terms with unequal distribution

of credit hours). This is due to the objective of the bin filling approach to be to place all

corresponding courses that “fit” within a term as early as possible, while honoring requi-

sites.

To balance the terms with respect to credit hour load, a second function would be intro-

duced, aptly named balance terms. The objective of this function would be to equally

distribute the course load amongst filled terms, such to minimize the course load difference

between the terms subject to the maximum allowable term load (in credit hours) as defined

by the user. As in the find minimum terms function, a 3 element tuple is returned upon the

introduction of a curricula.

• Boolean value which shows the term list created for the total term count.

• A term list which contains all courses that were placed in a designated term, grouped

by a term ID

• max credits is a integer value to represent the maximum number of credit hours

assigned to any of the terms.

Subsequently, the balance terms function and the find minimum terms function can be com-

bined to create a powerful degree plan creation tool that simultaneously provides the fastest

20

time to completion while maintaining credit hour load homogeneity across the degree plan,

all while honoring the requisite relationships. The following are the resultant plans output

from the above functions, visualized using the curricular analytics toolbox [11].

21

Results

(a) find minimum terms function

(b) balance terms function

Figure 3.1: B.S. Electrical Engineering program at the University of Kentucky, 2018. Op-
timized using “bin filling” approach, function decomposition

22

Figure 3.2: B.S. Electrical Engineering program at the University of Kentucky, 2018. Op-
timized using “bin filling” approach, function combination

While the bin filling approach does have its limitations (e.g. no fixed course array to place

senior design in last terms), the objective of minimizing the amount of terms subject to

the desired credit hour load is accomplished. If targeted specifically to ambitious students,

these degree plans may be useful as a road map to graduate early. As demonstrated with

a credit hour maximum set at 19, electrical engineering students at the University of Ken-

tucky can graduate 1 semester early.

3.3 Multi-objective Optimization with Toxicity Avoidance

Before introduction of the multi-objective optimization methodology, the concept of toxic

and synergistic course combinations are introduced.

Definition of Toxic Course Combination

Consider a population of students P and a set of courses C. For all courses ci ∈ C, let

Xci ∈ P denote the set of all students who attempted course ci for the first time. We

23

can partition this set based upon the outcomes of the students’ course completion attempts.

Namely, letXp
ci

denote the subset of students who completed course ci with a passing grade

on the first attempt, and let X p̄
ci

denote the set who did not.1 Toxic course combinations are

ones that have a negative impact on student progression when paired together in a given

term. More formally,

Definition 1 (Toxic Course Combination). Consider the two courses ci, cj ∈ C. These

courses are considered a toxic combination if

Pr{Xp
ci
} − Pr{Xp

ci
|Xp

cj
} > θt.

�

In other words, courses ci and cj are toxic in combination if a student’s probability of

passing ci is significantly reduced in the event they attempt to successfully complete cj at

the same time (i.e., in the same term).

Definition of Synergistic Course Combination

We may also similarly define synergistic course combinations as those course pairs that

tend to facilitate student progression. That is,

Definition 2 (Synergistic Course Combination). Consider the two courses ci, cj ∈ C.

These courses are considered a synergistic combination if

Pr{Xp
ci
} − Pr{Xp

ci
|Xp

cj
} < θs.

�

In this case, taking course cj in combination with course ci improves a students chances of

passing ci.
1We assume Xp

ci ∪X p̄
ci = Xci , i.e., all students attempting the course most be placed into one of these

two categories.

24

Identification of Toxic/Synergistic Combinations

One can begin to formulate a design of experiments to identify these combinations relative

to student data. This is done by observing the pass rates of the course as a singular and

uncorrelated event. It is then compared to the pass rate of the course when taking a second

course of interest. The following demonstrates this principle:

Example 1. Consider two courses c1 and c2 with the following characteristics:

Table 3.1: Course toxicity example relationship

enrollment # passed
c1 20 12
c2 30 21

c1 ∩ c2 10 5

Letting frequencies approximate probabilities, we can estimate the toxicity/synergism of c1

and c2. Specifically, Pr{Xp
c1
} ≈ 12/20 = 0.6, Pr{Xp

c2
} ≈ 21/30 = 0.7, and Pr{Xp

c1
, Xp

c2
} ≈

5/50 = 0.1. Thus,

Pr{Xp
c1
|Xp

c2
} =

Pr{Xp
c1
, Xp

c2
}

Pr{Xp
c2}

=
0.1

0.7
= 0.14.

and

Pr{Xp
c2
|Xp

c1
} =

Pr{Xp
c1
, Xp

c2
}

Pr{Xp
c1}

=
0.1

0.6
= 0.16.

The toxicity value (relative to c1) associated with attempting c1 and c2 at the same time is:

Pr{Xp
c1
} − Pr{Xp

c1
|Xp

c2
} ≈ 0.6− 0.14 = 0.46,

and the toxicity value (relative to c2) associated with attempting c1 and c2 at the same time

is:

Pr{Xp
c2
} − Pr{Xp

c2
|Xp

c1
} ≈ 0.7− 0.16 = 0.54.

If the toxicity threshold is θt = 0.4, then the course combination is toxic, with c1 having a

slightly more toxic impact on c2 than c2 has on c1.

25

Design of Optimization

Data Collection and Toxicity Score Calculation

The most powerful aspect of any optimization is the degree in which it is rooted in real data.

For our optimization, we directly analyze all 15723 course combinations pulled directly

from the University of Kentucky’s main sequel database, SAP HANA R©. For each one of

the respective course combinations, c1 and c2, the pass rate was noted over the entire history

of the course (data available since 2009).

Using the unique student identifier assigned by the university, we recorded the number of

students that were enrolled in c1 and c2 in the same semester, subsequently finding the

pass rate of those specific students. From this the toxicity score was calculated using the

equation above:

Pr{Xp
c2
} − Pr{Xp

c2
|Xp

c1
} = Toxicity Score.

If the toxicity score is greater than zero the combination is deemed to be toxic. As the score

approaches 2, the more toxic the combination. Inversely, those scores approaching 0 are

deemed to be the most synergistic:

-1 = Most Synergistic 1 = Most Toxic

0

An example data type and corresponding toxicity score are demonstrated when comparing

EE 480, Advanced Computer Architecture, with EE 380, Introduction to Embedded Systems

at the University of Kentucky.

Using this data we can calculate the toxicity score to be = 0.81− 0.61 = 0.2. Considering

this value is greater than zero we can deem the combination of EE 480 and EE 383 as being

toxic if taken in the same semester.

In our optimization, this calculation is done across all course combinations with efforts to

minimize the toxicity score per semester. Priority of avoidance is given to those courses

26

Table 3.2: Course toxicity relationship between two courses in the electrical engineering
curricula

enrollment # passed probability to pass
EE 480 145 117 0.81

EE 480 ∩ EE 383 51 31 0.61

with highest toxicity scores.

Objectives

Methodology for the optimization was centered around the objective to minimize the total

toxicity score, or TS, of each term. Considering that course combinations become more

toxic as their toxicity scores increase, it is appropriate to minimize the score in each term

in efforts to separate detrimental course combinations while combining those that are syn-

ergistic. Once each term is minimized the total minimized score of the degree plan is found

by summing the score across all the terms. In each term, if n is the number of total courses

in a curricula, and t the terms,

• Objective 1 : Toxicity Minimization

Term Toxicity = min
t∑

k=1

{
nk∑

i=1,j=1,i 6=j

TS(ci, cj)

}

This however cannot be the only objective of the optimization, as degree plan infeasibility

could arise as course combinations are grouped together to form skewed terms with too

many credit hours and inversely small terms with too few credit hours. In order to provide

validity to the plan balancing credit hours across the terms must also be considered, where

l is the term course load in credit hours and t is the number of terms in a curricula,

• Objective 2 : Term Imbalance Minimization

Credit Hour Imbalance = min

t∑
i=1

|li−1 − li|

27

While considering the minimization will drastically change the positioning of courses in

the spacial array of the set maximum term length, it is necessary to make sure prerequisite

linkage to their corresponding course is corresponding to a normal course progression. For

example, the optimization would not be considered to produce acceptable degree plans

of calculus II was separated by over 2 terms from calculus I. By this principle, our third

objective minimizes the distance between the two requisites where e are the course edges,

more specifically the requisite links between all the courses. We minimize the distance the

course edges are placed such that the term where c2 is placed is minimized relative to the

term that c1 is placed.

• Objective 3 : Perquisite String Minimization

Perquisite String = min
e∑

i=1

(tc2 − tc1)

Constraints

There are many underlying principles of a degree plan that must be met even as we mini-

mize the objective functions. Degree plans must be tightly regulated with respect to their

course progression, course load, and requisite relationships. Considering these regulations

we impose a variety of constraints to reinforce the efficacy and validity of the plan.

User Defined Limits

It is necessary for the user to define the general outline of what the degree plan will be.

While optimal course placement is taken care of by the solver, it is necessary for the user

to define the number of terms the sequence must fall under. Maximum and minimum

number of credit hours per term must also be defined. These user defined limitation set a

template for which the optimization may calculate.

Dynamic Constraints

During the optimization, course placement is cycled through every course, subject to var-

ious constraints. One important constraint to consider in a curricula is that of requisites.

28

Table 3.3: User defined limits for optimization

Limit Description
Terms Maximum allowable terms in degree plan
Maximum credits Maximum allowable credit hours in a term
Minimum credits Minimum allowable credit hours in a term

Throughout the optimization all perquisite courses should be placed in terms preceding

their target course such that,

• Constraint 1 : If course c2 has course c1 as prerequisite:

n∑
j=1

j ∗ xc1j <
n∑

k=1

k ∗ xc2j

In the case that the course is listed as a co-requisite, the requisite course must either be

placed in the same term or precede the target course such that,

• Constraint 2 : If course c2 has course c1 as co-requisite:

n∑
j=1

j ∗ xc1j ≤
n∑

k=1

k ∗ xc2j

In the case that the course is listed as a strict co-requisite, the requisite course must be

placed in the same term such that,

• Constraint 3 : If course c2 has course c1 as strict co-requisite:

n∑
j=1

j ∗ xc1j =
n∑

k=1

k ∗ xc2j

There are some courses that should not be moved in the optimization, for example, Senior

Design should always fall in the last term before completion. This course along with many

others, mainly in the first or last terms, are known as fixed courses. The creation of an array

29

designating fixed courses within a desired amount of terms assures they are held in desired

term t,

• Constraint 4 : Fixed courses should remain in their designated term:

Fixed Course Array =

fc1,1 · · · fc1,t

fc1,2 · · · fc2,t

...

fcn,1 · · · fcn,t

More specifically, we have defined the constraint of Consecutive Courses, that is two

courses that should be taken in two consecutive terms, such as the case for Engineering

Capstone Design I and Engineering Capstone Design II which should be taken consecu-

tively in terms 7 and 8 respectively.

Methods

Before optimization were to commence course pairs across the entire university would need

to be calculated and compared for their relative toxicity. The best way to go about this cal-

culation would be the construction of a two dimensional array. This Toxicity Score matrix,

or TSmatrix, can be constructed with TS indicting toxicity score of the course combination

C1 to Cn such that

Table 3.4: Toxicity score (Ts) matrix comparing relationships between all possible course
combinations

C1 C2 C3 Cn

C1 TSC1,C1 TSC1,C2 TSC1,C3 TSC1,Cn

C2 TSC2,C1 TSC2,C2 TSC2,C3 TSC2,Cn

C3 TSC3,C1 TSC3,C2 TSC3,C3 TSC3,Cn

Cn TSCn,C1 TSCn,C2 TSCn,C3 TSCn,Cn

30

The diagonal of the matrix can be discarding considering a toxicity score of the identical

course is extraneous.

Once all toxicity score combinations of the courses pairings are found, optimal placement

of the courses relative to the other courses in a designated term are sought.

The solver must rotate through all possible combinations in efforts to find the optimal

course placement relative to the other courses in the term. To accomplish this a binary ma-

trix is created in order to assign combinations to a term. The size of the x axis is defined

by the user defined limit tm where m is the maximum number of terms. The y axis is the

total number of courses in the curricula from C1 to Cn where n denotes the total number of

courses. The first iteration of the solver in the example curricula arbitrarily assigns courses

as being placed in the in first term, denoted in binary classification as being 1. If courses

were to be assigned to a subsequent term, their value in t1 would be zero. This course

positioning matrix is denoted by x such that

Table 3.5: Binary course placement matrix X

t1 t2 · · · tm
C1 {0, 1} {0, 1} · · · {0, 1}
C2 {0, 1} {0, 1} · · · {0, 1}
...

...
...

...
...

Cn {0, 1} {0, 1} · · · {0, 1}

Once we have created both the binary course positioning matrix x and the toxicity score

matrix TSmatrix, the term vector in x is multiplied by each column in TSmatrix as to find

the dot product, for the first term

Optimality Matrix =

T1C1 ∈ {0, 1}

T1C2 ∈ {0, 1}
...

T1Cn ∈ {0, 1}

 · (TSmatrix)

31

This dot product will give us the toxic relationship for every permutation in every term

unrelating to the courses chosen ad hoc by the solver. In order to specifically find the

relationships for the courses selected by the solver as being related to any particular term,

we then transpose the binary course positioning matrix x for the particular term of interest

and multiply by the rows of the found Optimality matrix, finding the dot product such that:

Final Matrix =
[
T1C1 ∈ {0, 1}, T1C2 ∈ {0, 1}, · · · T1Cn ∈ {0, 1}

]
· (Optimality Matrix)

The sum of the toxicity values in the Final matrix make up the value we are attempting to

minimize relative to the toxicity minimization objective. With respect to the load balancing

objective, cross term comparisons of credit hour totals will be compared and discrepancies

minimized. Optimal course placement will also be cross checked according to the edge

minimization objective. These numerical analyses across all objectives are driven from the

course placement found through the Final matrix calculation.

Gurobi R© will run through however many iterations necessary in order to find the optimal

solution relative to the objectives described.

With regards to objective two, Term Imbalance Minimization, finding the absolute value is

necessary in order to adequately find the credit hour difference between each term irrespec-

tive of which term is of greater value. In order to accomplish this a series of manipulations

must be considered. Let us consider the values for li−1 and li in credit hours which we will

designate a and b respectively. We iteratively find these differences across all the subse-

quent terms up to the limit defined by the user. This credit hour difference array will be

noted by y[i] such that,

y[i] ≥

a− b, if a ≥ b

b− a, if b ≥ a

32

Example Methodology

We consider finding the optimal course placement for a degree plan with a total of 6 courses

of 3 credits each in a curricula, with a user defined limit of 9 credit hours in each term.

Figure 3.3: Example Curricula, Unoptimized

In order to find the optimal solution relative to the objectives given, the solver will iter-

atively progress through all possible combinations of courses such that the minimum is

found. There are six possible course combinations that must be considered for the first

term. Representative toxicity scores are given to these combinations. In production, these

scores are extracted from the overall toxicity file which contains the pass rates from every

combination at the institution.

Table 3.6: Possible course combinations in the first term of the example curriculum with
representative toxicity scores

Combination 1 C1 C3 .24
Combination 2 C1 C6 .15
Combination 3 C3 C1 −.20
Combination 4 C3 C6 0
Combination 5 C6 C1 .1
Combination 6 C6 C3 −.16

The first iteration of the solver in the example curricula arbitrarily assigns courses C1, C3,

andC6 as being placed in the in first term, denoted in binary classification as being 1. These

selected courses are noted in the course positioning matrix x as being associated with the

first term.

33

Table 3.7: First iteration of binary matrix x of example curriculum

t1 t2
C1 1 0
C2 0 1
C3 1 0
C4 0 1
C5 0 1
C6 1 0

Although defined by our algorithm with respect to the JuMP/Gurobi framework, the binary

course positioning matrix x and the optimality matrix will not be output. These are itera-

tive steps that transpire without user manipulation or need for data ingestion. Gurobi will

proceed to run through however many iterations necessary to find the optimal result (There

are cases in which no optimal result may be found).

Once the result has been found by Gurobi, the optimal course progression on a term by

term basis may be output and visualized using the curricular analytics toolbox [11]. The

resultant degree plan found from our example curricula is as follows:

Figure 3.4: optimized example curricula, objective of toxicity minimization

We will now consider the undergraduate electrical engineering curricula at the University

of Kentucky, resolving separate degree plans relative to the objective sought.

34

Results

Figure 3.5: B.S. Electrical Engineering program at the University of Kentucky, 2018. Op-
timized using toxicity avoidance objective

Figure 3.5 displays the resultant degree plan after optimizing for toxic course combina-

tion avoidance. During the iterative solving for the plan, toxic course combinations were

separating from residing in the same semester while synergistic courses were combined.

All this was done subject to the constraints detailed (including honoring requisite relation-

ships). However, it must be observed that the semesters are not balanced with respect to

credit hours. For this we introduce the load balancing objective.

35

Figure 3.6: B.S. Electrical Engineering program at the University of Kentucky, 2018. Op-
timized using term imbalance minimization objective

Figure 3.6 displays the resultant degree plan after optimizing for term inbalance minimiza-

tion. All semesters are now balanced term over term. However it must be pointed out that

prerequisite strings can be sometimes extremely long. Such is the case between WRD110

and WRD111 which are separated by 4 semesters. In efforts to place requisite learning

outcomes as close to the course which employs its use, we introduce the requisite string

minimization objective.

36

Figure 3.7: B.S. Electrical Engineering program at the University of Kentucky, 2018. Op-
timized prerequisite string minimization objective

Figure 3.7 displays the resultant degree plan after optimizing for prerequisite string min-

imization. All requisites are placed at most with one semester of separation. Now all

objectives are combined to give the ultimate plan:

37

Figure 3.8: B.S. Electrical Engineering program at the University of Kentucky, 2018. Op-
timized using toxicity avoidance, term balancing, and prerequisite string minimization ob-
jectives

Figure 3.8 displays the resultant degree plan after optimizing for all three objectives, in-

cluding term credit hour balancing, prerequisite string minimization, and toxicity avoid-

ance. While the toxicity avoidance is vital in optimizing for student success, the degree

plan introduces validity in the objectives of balancing course load and keeping requisite

courses close to one another. The fixed course array constraint makes sure term specific

courses are not moved during the optimization (e.g. Capstone Design in terms 7 and 8)

while the other constraints, automatically checked for during the algorithm, insure all req-

uisites are honored, all while falling in the user defined limitations.

This ultimate plan combines real world, institution specific pass rates to create the optimal

schedule, thus providing a truly powerful tool for administrators across the world.

38

Chapter 4 Applications in Electrical Engineering

Electrical engineering is truly a beautiful field of study considering the expansiveness of

its applications. Even though there are quite a bit of differences between nanoscale semi-

conductor devices and large megawatt power systems, fundamental electrical engineering

principles hold true. In the same sense, applications of linear and non-linear optimization

extend far beyond that of degree plan optimization. The same treatment, principles, and

methodologies described can easily be translated to problems posed in the field of electrical

engineering.

4.1 Power Transmission, Optimization of Damping Control

In power transmission engineering many design factors need to be accounted for including

signal fidelity across long distances and power outage mitigation. Once such mechanism

implemented to maintain signal fidelity are Wide Area Damping Controllers, or WADCs.

Optimization techniques could be used with regards to the placement and signal allocation

priority of these controllers in large multi-nodal power systems.

Stability in power systems is of key concern for many system designers. The ever-increasing

amount of noise introducing or transient nodes in a system introduces many failure modes

not previously warranting mitigation techniques. These failure/fault modes may be at-

tributed to the large-scale implementation of renewable power generation technology by

many power companies. In the presence of these large scale renewable systems across

long distances arise the nuisance of small signal instability, specifically inter area oscilla-

tions. When this is the case strategically placed damping actuators throughout a system

can be coordinated in such a way to dampen these oscillations. This is where optimiza-

tion techniques could first be introduced, with regards to the placement of the controllers

between the two optimal nodes to most quickly resolve the oscillations.

While novel modal-based control allocation techniques have been introduced and proven

across a complex wind farm scenarios with healthy and affected actuators randomly dis-

39

Figure 4.1: 192Bus WECC Windfarm

Table 4.1: Objective and constraints associated with inter oscillatory minimization

Objectives: Minimize Disturbance Example Constraints
1. Optimal placement of WADC within power system 1. Geographic limitation
2. Priority of oscillatory damping signal 2. Limit on amount of WADCs

3. WADC damping characteristics

persed throughout, optimization could be used to further the efficacy of the system [15].

Redundancy and protection in the face of these oscillation scenarios is crucial in main-

taining a resilient power transmission system considering the increased use of renewable

technology seen today.

Electro-mechanical oscillations between interconnected synchronous generators are phe-

nomena inherent to power systems. The stability of these oscillations is of vital concern

and is a prerequisite for secure system operation. For many years, the oscillations observed

to be troublesome in power systems, were associated with a single generator, or a very

closely connected group of units at a generating plant. Some low frequency unstable oscil-

lations were also observed when large systems were connected by relatively weak tie lines,

40

and special control methods were used to stabilize the interconnected system. These low

frequency modes were found to involve groups of generators, or generating plants, on one

side of the tie oscillating against groups of generators on the other side of the tie [16]. In

recent times, many instances of unstable oscillations, involving inter-area modes in large

power systems have been observed, both in studies and in practice, such as in the western

region of the United States. Low frequency synchronizing oscillations (particularly around

0.1 hertz) between the Pacific Northwest and Pacific Southwest have long been a char-

acteristic of the western power system. These oscillations were primarily caused by the

negative damping effect of hydro governors on the swing mode between the two regions,

which were connected by a weak system of 230 kV inter-ties [17]. Such oscillations are

increasingly becoming a cause of concern. This has led to a renewed interest in the na-

ture of these modes, methods for systematically studying them, and control optimization

methods by which they can be stabilized. In the face of ever increasing deployment of

renewables into the modern power system, the need for damping of low frequency oscil-

lations will only increase. Optimization techniques will prove invaluable as this problem

becomes more and more prevalent, mitigating the threat of power system disruption across

the world.

4.2 Smart Grid

Another application where optimization methods could easily be applied is that of the smart

grid. We are living in the midst of a significant technological transition, away from the

passive electric power transmission and distribution system to a connected and resilient

platform leveraging many emerging and proven technologies. New telemetry and long dis-

tance real time data acquisition techniques allow for the implementation of more concise

load generation, leading to less waste and a more ecologically conscience utility company.

Granular load monitoring at the local customer level allows for specific generation bench-

marks in relation to a variety of different economic and meteorological conditions. Moni-

toring devices are able to be tied together using common communication protocols creating

an ‘internet of things’ environment. The adjoining of these ‘connected’ components to a

centralized data acquisition hub where data driven decisions can be made has given rise to

41

the term ‘Smart Grid’. Now that a prevalent amount of data exists, optimization techniques

can be employed across a variety of use cases.

Table 4.2: Objective and constraints associated with smart grid topology

Objectives: Maximize Power throughput Example Constraints
1. Load matching 1. Capital expenditure
2. Transient disturbance mitigation 2. Transient characteristics
3. Outage minimization 3. Power output and storage

Optimization techniques can be deployed using the data collected from the smart grid to

minimize over production of power. During load transients, the optimal amount of power

can be produced for the varying power requirements. This in essence would provide “load

matching”, so that the power generated can more closely follow the load required by the

system. Also, regulators can be constructed for line performance characteristics at op-

timized placements though out the grid, much in the same way that was discussed with

respect to WADCs .

Another area that the optimization techniques can be deployed is with respect to outage

mitigation, or “self healing” systems. In order to insure the most customers have their

power outage resolved (e.g. after a catastrophic storm), an optimization can be run with

respect to the locations in which crews should address first. This will insure that the most

customers benefit from the limited resources available by the utility company.

Figure 4.2: Variability in power output of wind farm by day, for one month [18]

When thinking about renewable energy as an integrated power generation member of the

smart grid system, power output variability must be taken into consideration in relation to

42

non-predictable energy output (wind meteorological duty cycle variance). This variance

gives rise to key smart grid concepts such as load forecasting and load scheduling. Wind

farms are known for the ability to reliability to produce adequate power for 40% of the

hours in a year, yet it is very difficult to predict when those hours will occur [18].

With “connected (IoT)” solid-state relay devices to a centralized data center that can mon-

itor real time meteorological conditions, optimization algorithm development can be de-

signed to open or close specific sectors of a wind farm in order to maximize renewable

energy production or minimize low wind speed ‘cut-in’ energy waste.

43

Chapter 5 Conclusions and Moving Forward

The ramifications that curated degree plans have on incoming students are often not fully

grasped. The plan in essence will dictate the students attempt to follow his or her dream to

graduate from their chosen institution. The degree plan represents trails and tribulations,

long nights in the library, and often unimaginable stress levels. The degree plan epitomizes

students’ futures, their successes, and their failures. All told, the degree plan may be the

single most powerful advising tool in higher education.

In that, administrators must deeply analyze and quantitatively asses their plan before they

release to students. This thesis attempts to solve for the ultimate student success pathway

leveraging the most advanced commercially available solver with optimization algorithms

tailored to creating valid, meaningful degree plans. An easy to use user interface has been

created in order to facilitate the use of these powerful algorithms (main.optimizeplans.com).

Moving forward, much work remains to be done. Ongoing efforts include the creation

of degree plans tailored to the particular student. This will include using their ACT score,

high school GPA, and demographics to create a degree plan custom to them. It will leverage

trained machine learning models to find areas of concern, basing problematic ”stop out”

areas relative to historical student data of students with similar backgrounds.

As administrators, the obligation exists to provide the best probability of success to all

students, irrespective of their background. It is essential for the future and vitality of the

American economy and way of life. Until this probability of success remains equally high

for all students who, through hard work, dedicate their lives to the completion of their

degree, work remains to be done.

Onward.

Copyright c© William Guillermo Thompson-Arjona, 2019.

44

Bibliography

[1] Elka Torpey Measuring the value of education,” Career Outlook, U.S. Bureau of Labor
Statistics April 2018.

[2] Hemelt, S. W., and Marcotte, D. E. The Impact of Tuition Increases on Enrollment at
Public Colleges and Universities. Educational Evaluation and Policy Analysis, 33(4),
435–457. https : //doi.org/10.3102/0162373711415261 2011

[3] Bureau of Labor Statistics College tuition and fees in U.S. city
average, all urban consumers, not seasonally adjusted. https :
//data.bls.gov/timeseries/CUUR0000SEEB01?outputview = data.

[4] Gregory L. Heileman, Chaouki T. Abdallah, Ahmad Slim, and Michael Hickman. Cur-
ricular Analytics: A Framework for Quantifying the Impact of Curricular Reforms and
Pedagogical Innovations. Albuquerque, NM., 2018.

[5] Slim, A. Curricular Analytics in Higher Education. PhD thesis, University of New
Mexico, Albuquerque, NM. 2017

[6] Heileman, G. L., Thompson-Arjona, W. G., Free, H. W., and Abar, O. Does Curricular
Complexity Imply Program Quality? Lexington, Kentucky, 2018.

[7] Gill, P. E., Murray, W., Wright, M. Practical Optimization San Diego, California.,
1981

[8] Ünal, and Uysal. A New Mixed Integer Programming Model for Curriculum Balancing:
Application to a Turkish University. European Journal of Operational Research (2014

[9] J. Bezanzon, S. Karpinski, V. Shah, and A. Edelman. Julia: A fast dynamic language
for technical computing. In Lang.NEXT, Apr. 2012.

[10] Hickman, Michael. Masters Thesis Albuquerque, NM., 2017.

[11] Heileman, G. L., Free, H. W., Abar, O. and Thompson-Arjona, W. G. CurricularAn-
alytics.jl Toolbox. https : //github.com/heileman/CurricularAnalytics.jl

[12] Dunning, I., Huchette, J., Lubin, M. JuMP: A Modeling Language for Mathematical
Optimization SIAM Review 2017

[13] Jablonský, J. Benchmarks for Current Linear and Mixed Integer Optimization Solvers
http : //dx.doi.org/10.11118/actaun201563061923, 07 Number 6, 2015

[14] Gurobi Software Drives Award-winning Inmate Assignment Project. MS Today 44.6,
2017

45

[15] M. E. Raoufat, K. Tomsovic and S. M. Djouadi Dynamic Control Allocation for
Damping of Inter-Area Oscillations IEEE Transactions on Power Systems, vol. 32,
no. 6, pp. 4894-4903 Nov. 2017

[16] Klein, M., Rogers, G.J., and Kundur, P. A fundamental study of inter-area oscillations
in power systems IEEE Transactions on Power Systems, vol. 6, no. 3, pp. 914-921 Aug
1991

[17] Cresap, R. L., and Hauer, J. F. Emergence of a New Swing Mode in the Western Power
System IEEE Transactions on Power Apparatus and Systems, vol. PAS-100, no. 4, pp.
2037-2045 April 1981

[18] Shaffer, Walter. The Role of Smart Grids in Integrating Renewable Energy ISGAN
Synthesis Report www.nrel.gov/docs/fy15osti/63919.pdf.

46

Vita

William G. Thompson-Arjona

Education

• B.S. Bioelectrical Engineering, Marquette University, Milwaukee, WI, 2015

Appointments

• Graduate Research Assistant, Department of Electrical and Computer Engineering,
University of Kentucky, Lexington, KY, 2017 – Present.

• Associate Development Engineer, Power Control Business, Rockwell Automation,
Milwaukee, WI, 2015-2018

• Undergraduate Teaching Assistant, Circuits I/II Laboratory, Marquette University,
Milwaukee, WI, 2014-2015

• Undergraduate Intern, Enthermics Medical Systems, Milwaukee, WI, 2014

• Undergraduate Intern, Cardiovascular Innovation Institute, Department of Regener-
ative Medicine, Louisville, KY, 2013

Product Development

• KYdegreeplans.com
Centralized degree plan creation, visualization, and analytics tool used by the Center
for Postsecondary Education across the state of Kentucky

• CanBad Autonomous Weighing Systems, Provisional Patent 119769-1
Designed autonomous weighing systems complete with patent pending hardware.
This included custom PCB with PIC32MZ as MCU interfacing via UART to load
cell, SPI to FDTI processor (display), and Bimba/PIAB pneumatics.

• PowerFlex 755T, Allen Bradley, Rockwell Automation. 2015-2018
Key contributor for successful product launch of state-of-the-art variable frequency
drive for heavy industry motor control. PCB design and implementation of three
phase fault and inbalance protection.

47

• Virtual Interactive Patient, Medtronic, 2015
Senior design project. Programed FPGA to test pacemakers/left ventricular assist
devices for robustness against ECG/EKG abnormalities

48

	Curricular Optimization: Solving for the Optimal Student Success Pathway
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Previous Work

	2 Tools, Structure, and User Interface
	2.1 Julia
	2.2 JuMP
	2.3 Gurobi® Solver
	2.4 Jupyter
	2.5 User Interface main.optimizeplans.com

	3 Optimization
	3.1 Overall Constraints and Considerations
	3.2 Bin Filling and Optimal Time to Completion
	3.3 Multi-objective Optimization with Toxicity Avoidance

	4 Applications in Electrical Engineering
	4.1 Power Transmission, Optimization of Damping Control
	4.2 Smart Grid

	5 Conclusions and Moving Forward
	Bibliography
	Vita

