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ABSTRACT OF DISSERTATION

ENHANCE NMF-BASED RECOMMENDATION SYSTEMS WITH

AUXILIARY INFORMATION IMPUTATION

This dissertation studies the factors that negatively impact the accuracy of
the collaborative filtering recommendation systems based on nonnegative matrix
factorization (NMF). The keystone in the recommendation system is the rating
that expresses the user’s opinion about an item. One of the most significant issues
in the recommendation systems is the lack of ratings. This issue is called ”cold-
start” issue, which appears clearly with New-Users who did not rate any item and
New-Items, which did not receive any rating.

The traditional recommendation systems assume that users are independent
and identically distributed and ignore the connections among users whereas the
recommendation actually is a social activity. This dissertation aims to enhance
NMF-based recommendation systems by utilizing the imputation method and lim-
iting the errors that are introduced in the system. External information such as
trust network and item categories are incorporated into NMF-based recommen-
dation systems through the imputation.

The proposed approaches impute various subsets of the missing ratings. The
subsets are defined based on the total number of the ratings of the user or item
before the imputation, such as impute the missing ratings of New-Users, New-
Items, or cold-start users or items that suffer from the lack of the ratings. In
addition, several factors are analyzed that affect the prediction accuracy when the
imputation method is utilized with NMF-based recommendation systems. These
factors include the total number of the ratings of the user or item before the im-
putation, the total number of imputed ratings for each user and item, the average
of imputed rating values, and the value of imputed rating values. In addition,
several strategies are applied to select the subset of missing ratings for the impu-
tation that lead to increasing the prediction accuracy and limiting the imputation
error. Moreover, a comparison is conducted with some popular methods that are
in common with the proposed method in utilizing the imputation to handle the
lack of ratings, but they differ in the source of the imputed ratings.

Experiments on different large-size datasets are conducted to examine the pro-
posed approaches and analyze the effects of the imputation on accuracy. Users
and items are divided into three groups based on the total number of the ratings
before the imputation is applied and their recommendation accuracy is calculated.



The results show that the imputation enhances the recommendation system by
capacitating the system to recommend items to New-Users, introduce New-Items
to users, and increase the accuracy of the cold-start users and items. However, the
analyzed factors play important roles in the recommendation accuracy and limit
the error that is introduced from the imputation.

KEYWORDS: recommendation system, collaborative filtering, NMF, trust ma-
trix, imputation.
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1 Introduction

With the emergence of E-commerce, recommendation system [53] becomes an

important tool that can help both sellers and buyers. The way it helps sellers is by

increasing their profits and increasing advertising items to customers. In addition,

recommendation systems help buyers to find items they are looking for easily.

Recommendation systems (RS) are classified into three categories: content-

based (CB), collaborative filtering (CF), and hybrid. The content-based (CB)

system recommends items similar to the ones that users preferred in the past

by utilizing external information, such as item descriptions and user profiles, to

calculate the similarity between items or users. A CB method needs manual

intervention to collect the item descriptions and user profiles, which are susceptible

to errors and do not scale to the large item basis. In contrast, collaborative filtering

(CF) assumes that users who agree on the items in the past agree in the future as

well. CF calculates the similarity measurement between users with their previous

ratings of common items. If two users have a high similarity between them, we can

predict that these two users may like the same items in the future. In addition,

there is no need for any external information like the CB method. However, there

are some approaches that combine content-based (CB) and collaborative filtering

(CF) to merge the advantages of both systems into one system and avoid each of

the system’s limitations [8, 12, 43, 46, 47, 63, 70].

Collaborative filtering is the most popular approach because it has higher ac-

curacy in its results and needs fewer resources. Basically, collaborative filtering

algorithms are divided into two main categories: memory-based methods and

model-based methods.

Memory-based methods, also known as neighborhood-based methods, rely on

the similarity measure. The similarity measurement is calculated based on com-

mon ratings, which could be common ratings between users for the same item

(user-oriented CF) or common ratings between items from the same user (item-

oriented CF). The user-oriented CF computes the similarity between users based

on their past ratings on common items between them; such users are known as

user neighbors. For each missing rating, memory-based methods predict the rating

1



by using a past neighbor’s ratings for that item. If there are no common rating

items between users, similarity cannot be calculated, especially with cold-start

users. Cold-start users are the users in the system who did not rate many items,

e.g., fewer than five items. It is hard to find neighbors for cold-start users, thus

the system cannot recommend items. A good recommendation system must have

some strategies to allow cold-start users to use the system. In addition, one of the

most significant issues is the rating matrix sparseness due to the fact that most

users rate a small number of items, which causes the rating matrix to suffer from

sparsity.

On the other hand, model-based methods have been proposed to reduce the

issues with the memory-based methods. In model-based algorithms, users are

modeled based on their past ratings by employing statistical and machine learn-

ing techniques to learn models then using these learned models to predict the

missing ratings. There is no need to calculate the similarity and find the users’

neighbors. There are several different models, such as SVD (Singular Value De-

composition) based latent factor CF [58], aspect model [21, 60], clustering methods

[26], Bayesian model [82], and low-dimensional linear factor models, such as matrix

factorization (MF) [51, 56, 64, 80] which is the most efficient model for very mas-

sive datasets. There are different types of matrix factorization, such as weighted

nonnegative matrix factorization (WNMF) [80], maximum margin matrix factor-

ization (MMMF) [51], and probabilistic matrix factorization (PMF) [56].

However, the model-based algorithms still suffer from the data sparsity prob-

lem and fail to address the cold-start users issue. It is irrational to rely only

on the rating matrix and ignore other sources of information in the dataset that

we may use to increase the accuracy of the recommendation, such as user infor-

mation (gender, occupation, location, interests, etc.), item categories, and social

information (relationship between users or trust and distrust list).

Traditional recommendation systems assume that users are i.i.d. (independent

and identically distributed) and that they ignore the connections among users,

which is insufficient because it does not reflect the real world recommendations

[35, 36].

2



Basically, recommendation is a social activity. For example, we usually ask a

friend to recommend movies to see or books to read [13]. In addition, friends in

real life are more qualified to suggest good and useful recommendations than the

traditional recommendation system [2]. Sinha and Swearingen showed [62] that a

user prefers recommendations from friends over recommendation systems in terms

of quality and usefulness even if the recommendation systems have a high novelty

factor.

There are many studies that show the relationship between the users’ taste and

their friends’ taste. Ziegler and Lausen demonstrated [83] through an empirical

study of a real online community that there is similarity in the ratings between

users and their friends. In addition, users who are in the same social network often

have similar behaviors and tastes [42]. Singla and Richardson [61] analyzed over

10 million users on the social network MSN Instant Messenger with their related

search records. They concluded that users who chat with each other are more

probable to have similar interests, such as their web search and the topics they

are searching for. The analysis of this large dataset revealed that friends have a

tendency to give similar ratings to items [18].

There are websites designed to rate and review items by the users. Some of

these websites allow for the creation of a trust network between the users. Users

trust each other at the beginning because they agree with each other’s ratings and

reviews. We call the user that creates the trust relationship a trustor and the user

that has been trusted a trustee. However, after a while, the trustee influences the

trustor even on some topics that they did not agree on in the past [4]. In addition,

most users participate in social networks more than rating items [9].

On the other hand, most data analysis algorithms require complete data. Im-

putation is one of the approaches that has been used to complete missing data

through the process of replacing missing data with substituted values [33, 59]. In

addition, techniques and assumptions are used to estimate missing data for the

imputation process [68]. Imputation has been used in several fields, such as social

surveys, industrial experiments, and medical databases [59].

There are two basic methods of imputation: single imputation and multiple

imputation (MI) [7]. With single imputation, each missing value is substituted
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by one single value. There are several single imputation methods, such as mean

imputation, hot-deck imputation, and k-Nearest Neighbor (kNN) imputation. On

the other hand, multiple imputation methods generate more than one imputed

data and analyze each imputed data independently, such as Bayesian multiple

imputation [55].

Imputation has been used in the recommendation system to reduce rating ma-

trix sparsity, which is one of the biggest issues in the recommendation system.

Even though most recommendation methods do not require complete data, the

imputation has been used because the predicted ratings are more accurate when

there are more ratings available in the rating matrix. However, the imputation

process has been used as a pre-processing step in which missing data are imputed

before the rating prediction process, then the ratings are predicted based on the

original and imputed ratings. Prediction results often improve by using the im-

puted data with an extremely sparse rating matrix [65].

Even though the imputation alleviates the sparsity issue, we have to consider

the error, which may be introduced from the imputed ratings. To get the benefit of

the imputation and reduce the imputation error, we need to answer two important

questions: which missing data should be imputed, and how to impute ratings [49].

For that, the most efficient imputation-based collaborative filtering methods do

not impute all missing data, so they use strategies to select which missing data

should be imputed. There are several methods to impute missing data, such as

the ratings mean of either all known ratings or ratings of a particular item or

user, predictive mean matching (PMM) [32], and linear regression. In addition,

machine learning classification methods have been used for imputation, such as

naive Bayes, neural networks, decision tree, decision table, lazy Bayesian rules,

logistic regression, and others [76].

There are several imputation approaches that have been proposed with both

collaborative filtering methods: memory-based and model-based collaborative fil-

tering, which are sometimes called imputation-based collaborative filtering meth-

ods.

Because rating matrix sparsity affects the results of the recommendation sys-

tem, we propose new approaches to reduce the sparsity using the trust user network
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and item auxiliary information. In our experimental datasets, users trust other

users based on their ratings since they don’t know any other information about

each other except the ratings. We can expect that if a user did not provide a rating

for an item, then his/her rating for that item will be similar to his/her trustees’

rating.

1.1 Related Works

Nonnegative Matrix Factorization (NMF) [29] is a dimension reduction method

which is vastly used in many applications, such as clustering [5, 25], text mining

[45, 78], and image processing and analysis [57, 80]. NMF has been applied for

collaborative filtering. Zhang et al. [80] used NMF to learn the missing values

in the rating matrix, which is based on the collaborative filtering method. A

nonnegativity constraint is enforced in the linear model to guarantee that all

users’ ratings can be represented as an additive linear combination of canonical

coordinates. They introduced two methods on NMF to learn a constrained linear

model from an incomplete rating matrix. The first one is based on the Expectation-

Maximization (EM) procedure and the other is Weighted Nonnegative Matrix

Factorization (WNMF), which has been applied in [38]. Ding et al. proposed [5]

an unconstrained 3-factor NMF method that has an additional factor matrix to

absorb the different scales in the two matrix factors in basic NMF.

Relying only on rating information is not sufficient because most datasets suffer

from sparsity. In addition, cold-start users who did not rate many items have

the most negative impact. To alleviate this issue, other sources of information

have been used, such as user information (gender, occupation, location, interests,

etc.)[13, 75], item categories [13, 75], rating reviews (helpfulness) [73], and social

information (relationship between users or trust and distrust list) [13, 17, 18, 22,

23, 24, 35, 36, 37, 39, 40, 41].

Aux-NMF [75] is one of the studies that incorporate the user and item in-

formation into the NMF-based method. Their proposed method surpasses the

SVD-based data update approach [74].

On the other hand, the social network has been utilized to alleviate the most

serious problems of the recommendation system: rating matrix sparsity and cold-
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start users. The social network can be gathered from internal or external resources.

Social media, such as Facebook, Twitter, and Instagram, are counted as external

resources that can be used to recommend items to users [17]. Some review websites

even allow users to create a list of users whose reviews they believe are trustworthy;

that list of users is called a trust list. Social relationship information has been

incorporated into both memory-based [18, 39, 40, 41] and model-based [13, 22, 23,

35, 36, 37] collaborative filtering methods.

In the memory-based approach, the neighborhood of users is defined based on

the social network rather than the similarity measures. By analyzing the statistical

information of the epinions.com dataset, Massa and Bhattacharjee [41] presented

evidence that the total number of users who have a trust relationship between

them is more than the total number of users who have a similarity between them

because most users do not have a commonly rated item between them. The trust

value can be calculated between more users than similarity by utilizing trust prop-

agation. Massa and Bhattacharjee proposed [41], a new method that incorporates

social network into memory-based collaborative filtering, [39, 40] which replaces

the similarity measure with the trust metric to predict the missing ratings. In-

stead of computing the similarity between two users based on their commonly

rated items, they computed trust weights between users based on the trust web

network. The key differences in this method are in the neighbors’ identification

and weights. The results show that the new method using only trust metrics is

more effective in terms of accuracy and coverage than either the purely collabo-

rative filtering or the system that combines trust and similarity, especially with

cold-start users.

Massa and Avesani [39, 40] used the MoleTrust algorithm, a local trust metric

that is a depth-first graph walking algorithm with a tunable trust propagation

horizon that sets the distance to which trust is propagated. However, other ap-

proaches have been proposed with similar ideas as [39, 40] but with a different

walk algorithm that is used to propagate trust through the social network. Some

examples of walk algorithms are random walk [27] and breadth-first walk: Tidal-

Trust [10]. MoleTrust is similar to TidalTrust, but MoleTrust sets a maximum

depth of the users regardless of any specific users or items.
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On the other hand, the social network has been incorporated into the model-

based collaborative filtering method. Hao Ma et. al [36, 37] integrated the social

network structure and the user-item rating matrix based on probabilistic matrix

factorization. In addition, they not only learned the user latent feature space

and item latent feature space from a user-item matrix, but they also utilized user

social network simultaneously and seamlessly. They connected two different data

resources - the rating matrix and trust matrix - through the shared user latent

feature space. They assumed that the user latent feature space in the rating

matrix is the same as the user latent feature space in the trust matrix. This

method has more accuracy than Maximum Margin Matrix Factorization (MMMF)

[51], Probabilistic Matrix Factorization (PMF) [56], and Constrained Probabilistic

Matrix Factorization (CPMF) [56] algorithms.

Ma et al. [35] introduced a method to fuse the users’ tastes and their trusted

friends’ tastes together using the probabilistic matrix factorization framework. In

addition, they balanced users’ tastes with their trusted friends’ tastes using a

control parameter. Their proposed method - RSTE - achieved better accuracy

than the SoRec [36].

He and Chu [18] proposed a model to make recommendations by taking into

account the user’s own preference, the item’s general acceptance, and the influ-

ence of friends using probability distribution and expectation of the distribution

(SNRN). The results show that SNRN surpasses traditional collaborative filtering

method, especially with data sparsity and cold-start users.

Gu et al.[13] proposed a unified model for collaborative filtering using graph

regularized and weighted nonnegative matrix factorization. They built user graph

regularizations and item graph regularizations by utilizing internal and external

information, such as the similarity between the users and items, users’ demograph-

ics, social trust networks, and the items’ genre. After that, they added the user

and item graphs to weighted nonnegative matrix factorization to learn from the

training dataset.

In ”Trust prediction via aggregating heterogeneous social networks” [22] and

”Social trust prediction using heterogeneous networks,” [23] Huang et al. de-

veloped the joint manifold factorization (JMF) method to predict the trust and
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distrust values in the social network using the trust network and rating matrix,

which is considered as auxiliary information. The two matrices, rating and trust,

are different in the domain and scale - heterogeneous. The authors assumed that

users tend to trust other users who have similar rating patterns, so the rating

matrix and trust matrix may have similar row structures because the rows are

represented users in both matrices. The results show that JMF surpasses classical

trust prediction methods.

Moreover, the imputation process has been incorporated into collaborative fil-

tering methods to alleviate rating matrix sparsity. Su et al. [67] proposed a new

method - IBCF - in which a subset of missing data is imputed after dividing the

rating matrix into subset matrices based on the number of ratings each item re-

ceived. Two imputation techniques have been used: predictive mean matching

(PMM) [32] and machine learning classifier algorithms [76], which include the de-

cision tree (C4.5), decision table (dTable), Lazy Bayesian Rules (LBR), logistic

regression (LR), naive Bayes (NB), neural networks (NN), one rule (OneR), de-

cision list (PART), and support vector machine (SVM). To select which missing

data should be imputed, an ensemble classifier has been used so that the miss-

ing data was imputed if and only if there were at least six votes from classifiers.

Otherwise, the missing data is left as missing. In the end, the traditional Pear-

son correlation-based CF algorithm is used with each subset matrix to predict the

ratings. The results show that using imputation in IBCF outperforms the content-

boosted CF and traditional Pearson correlation-based CF, especially IBCF with

naive Bayes. In addition, the IBCF approach has been improved to IBCF-NBM

by using a different imputation approach based on the sparsity of the subset ma-

trix [66], whereas naive Bayes is used for a relatively dense matrix and the mean

imputation method for an extremely sparse matrix.

Also, imputed neighborhood-based collaborative filtering (INCF) has been pro-

posed for the nearest and densest neighborhood approaches called INN-CF and

IDN-CF, respectively [65]. The imputation techniques that are used with these

methods include the baseline mean imputation (MEI) and an extension of the

Bayesian multiple imputation (eBMI) [55, 65]. After that, the most similar users

(nearest or densest) are found in the original rating matrix for each active user,
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then the traditional Pearson CF algorithm is applied to the imputed ratings of

the most similar (or the densest) users in order to predict the ratings. The results

of both IDN-CF and INN-CF with eBMI imputation method significantly out-

perform the commonly-used neighborhood-based CF. However, the baseline mean

imputation method (MEI) did not improve the prediction performance when it

was applied to IDN-CF and INN-CF, which demonstrated that the selection of

the imputation method is important.

In addition, Ren et al.[49] proposed the Auto-Adaptive Imputation (AutAI)

method for neighborhood-based collaborative filtering. The AutAI method can

identify which missing data should be imputed automatically, which is called

the key set of missing data. There are two methods of AutAI: user-based Au-

tAI and item-based AutAI. AutAI achieves significant improvement with both

similarity metrics, PCC and COS, compared to user-based PCC and user-based

COS algorithms. Ren et al.[50] also proposed an improvement of AutAI method

called Adaptive-Maximum imputation method (AdaM), which identifies an area

to impute that will can maximize the imputation advantage and minimize the

imputation error.

Furthermore, the imputation has been used with model-based collaborative

filtering. Ranjbar et. al. [48] proposed a novel algorithm called IMULT that is

based on the classic Multiplicative Update Rules (MULT). IMULT utilizes im-

putation to fill out the subset of unknown ratings. Several imputation methods

are used, such as item-wise, user-wise, mean-wise and hybrid-wise. The IMULT

method outperforms several MF approaches, specifically for rating matrices that

are highly sparse. More details about AdaM and IMULT methods are introduced

in Chapter 6.

The Hwang et. al. method [24] is the only method that we found using the trust

network to impute missing ratings. Their method is based on the probabilistic

matrix factorization (PMF) model. In it, two sets need to be defined for the

imputation. The first one is the reliable neighbors set of an active user, which

contains his/her trustees and trustors in the trust network. The second one is the

candidate item set, which is the items that have been rated by a sufficient number

of reliable neighbors. The sufficient number is set manually by a parameter. The
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imputation process is applied to candidate items only so that the imputation value

is the aggregating of the corresponding ratings given by his/her reliable neighbors.

Their method provided better recommendation accuracy than the original PMF

model, especially for the cold-start users who rated fewer than five items.

1.2 Dissertation Organization

• Chapter 2 proposes a method to handle New-Items issues by incorporating

the item auxiliary information into the NMF-based method through the

imputation method without hurting the prediction accuracy of other items.

• Chapter 3 proposes an approach that handles the rating matrix sparsity

specifically for the New-Users problem by utilizing the trust network infor-

mation.

• Chapter 4 proposes a method to increase the accuracy results of Cold-Start-

Users through imputation by utilizing the trust network information. In

addition, the negative impact of the imputation is limited within the pro-

posed method.

• Chapter 5 designs a selective imputation method that fuses the factored orig-

inal rating matrix and the factored imputed rating matrix into one system.

• Chapter 6 compares imputation-based methods in terms of accuracy, and it

analyzes the strength and weakness points for each method.

• Chapter 7 discusses the conclusions and suggestions for future research.

1.2.1 Technical Contributions

This dissertation aims to enhance the recommendation accuracy by incorporat-

ing auxiliary information, i.e., item auxiliary information and trust information,

into the NMF-based methods through the imputation method. The prediction

accuracy is analyzed for each user and item group to study the behavior with

the proposed methods. The main focus of the proposed methods is New-Users,

New-Items, and Cold-Start-Users.
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In summary, we identify some factors that negatively impact the accuracy of

NMF-based recommendation systems, thus, we propose imputation-NMF-based

methods that are capable of tackling these negative factors.

1.2.2 Notational Conventions

In collaborative filtering, there are m users where U = {u1, ..., um} and n

items where E = {e1, ..., en}. Each user ui can rate a set of items. Users represent

the rating through an explicit numeric rating, such as a scale from one to five.

In addition, the rating information is summarized in an m × n matrix, which is

called a rating matrix R ∈ Rm×n, 1 6 i 6 m, 1 6 j 6 n. The rows in the rating

matrix represent the users, and the columns represent items. If a particular user,

ui, rates a particular item, ej, then the value of the intersection of the user’s row

and item’s column in the rating matrix Rij holds the rating value. If the rating is

missing, that means the user did not rate that item.

The social information is summarized in an m ×m matrix, which is called a

trust matrix T ∈ Rm×m, 1 6 p 6 m, 1 6 q 6 m. The rows correspond to the users

who create a trust relationship (trustor), and the columns correspond to the users

who have been trusted by others (trustee). If user up trusts user uq, the value of

Tpq is equal to 1. On the other hand, a zero in the trust matrix means there is no

trust relationship between the users.

The users information and items information are summarized in users feature

matrix FU ∈ Rn×KU and items feature matrix FI ∈ Rn×KI , respectively. Each user

and item belongs to one or more features, kU and kI respectively.

1.2.3 Data Description

In this dissertation, specific data are required to evaluate the proposed ap-

proaches. The first is the rating matrix that represents users’ ratings for items.

The rating values in the experimental datasets are discrete values. The second

needed data is the trust matrix, which describes the trust relationship between

users. Several websites allow users to create a trust relationship between them,

such as Epinions, FilmTrust, Ciao, and Douban. The last data is items’ informa-

tion, which will be utilized in Chapter 2.
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Table 1.1: Statistics of the datasets.

Dataset # Users # Items # Ratings # Trust Relationships
Ciao 7,375 21,978 184,024 111,781
CiaoDVD 17,615 16,121 72,345 22,484
Epinions 22,166 15,000 180,889 355,727
FilmTrust 1,642 2,071 35,494 1,853

In the dissertation experiments, we adopt four datasets, Ciao[71], CiaoDVD[14],

Epinions [71, 72], and FilmTrust[15], as experimental datasets. Table 1.1 shows

the statistics information of the datasets.

Ciao and CiaoDVD

Ciao is a European website that displays items from different online shopping

websites, such as Amazon, and compares the prices for the same item at different

shopping websites. Users are allowed to rate the items using 5-scale integer ratings

(from 1 to 5). To rate an item, a user must write a textual review with at least

120 words and provide the advantages and disadvantages of the item. In addition,

users can trust each other so that when a user (trustor) agrees with another user’s

reviews (trustee), the trustor can add the trustee to his/her own trust list.

There are several datasets that have been extracted from the Ciao website. The

first dataset from the Ciao website is the Ciao dataset. Tang et al. [71] crawled

from Ciao.co.uk in May 2011. There are 7,375 users and 106,797 items. Each

item belongs to one or more of the 28 different catalogs (DVDs, Books, Beauty,

Music, Travel, Food & Drink, Sports & Outdoors, Entertainment, Health, Ciao

Café, Shopping, Internet, Software, House & Garden, Education & Careers, Cars,

Household Appliances, Telecommunications, Electronics, Musical Instruments &

Equipment, Computers, Cameras, Family, Games, Fashion, Adult Products, Office

Equipment, and Finance). Due to the MATLAB memory limitation, we only

chose users who rated at least one item and items that received at least three

ratings ending up with 7,375 users, 21,978 items, 184,024 ratings, and 111,781

trust relationships.

The second dataset is CiaoDVD. Guo et al. [14] crawled the CiaoDVD’s dataset

from ciao.co.uk, the DVD category in December 2013. The CiaoDVD dataset
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has 17,615 users, 16,121 items, 72,345 ratings, and 22,484 trust relationships as

we see in Table 1.1. Each DVD item belongs to one of 17 genres (Action &

Adventure, Comedy, Family, Drama, Horror, Science Fiction & Fantasy, Thriller

& Mystery, Martial Arts, Musicals & Music Films, War, Westerns, Documentaries

& Biographies, Special Interest, Sports, World Cinema, TV Series, and Anime).

Epinions

Epinions.com is a popular general consumer review website established in 1999.

Users can rate an item using 5-scale integer ratings (from 1 to 5). However, users

must write a review of at least 20 words for each rating [41]. Epinions is one

of the most popular websites that allows users to build their web of trust. The

web of trust is a list of trusted users and distrusted users. A user can be a

trustor or trustee. The user can set the trust list to be public or private, but the

distrust list is always private. This trust information is used to rank the reviews

of products [9]. Due to the website’s popularity in the research area, there are

several datasets that have been extracted from Epinions.com. However, we select

the Epinions dataset that was collected by Tang et al. in May 2011 [71, 72].

There are 22,166 users and 296,277 items. Each item belongs to one or more of 27

categories. The categories are: Online Stores & Services, Games, Movies, Books,

Music, Personal Finance, Electronics, Home and Garden, Computer Hardware,

Hotels & Travel, Restaurants & Gourmet, Magazines & Newspapers, Software,

Media, Cars & Motorsports, Education, Sports & Outdoors, Wellness & Beauty,

Kids & Family, Musical Instruments, Business & Technology, Pets, Computers

& Internet, Web Sites & Internet Services, Gifts, Preview Categories, Photo &

Optics. Due to the MATLAB memory limitation, we chose 15,000 out of 296,277

items, which are the first 5,000 items, the middle 5,000 items, and the last 5,000

items. We totaled 22,166 users, 15,000 items, 180,889 ratings and 355,727 trust

relationships, as shown in Table 1.1.

FilmTrust

It was crawled from the entire FilmTrust website in June 2011 [15]. FilmTrust

is a website that provides predictive recommendations about movies. However,

FilmTrust does not recommend a list of movies to the users. Instead, FilmTrust
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suggests how much the user may like a chosen movie [11]. The FilmTrust dataset

has 1,642 users, 2,071 items, 35,494 ratings, and 1,853 trust relationships as we

see in Table 1.1. The rating is on a scale of a half star from half star to four stars.

In addition, there is no information about items in this dataset.

1.2.4 Evaluation Strategy

In this dissertation, we evaluate the proposed approaches by measuring the

accuracy of the predicted ratings, which is a common measure used to evaluate

the performance of recommendation system methods [54]. The ratings in the

rating matrix R are divided into a training set and test set. The training set is

fed to recommendation system methods in order to predict the ratings of the test

set. To measure the accuracy, the real ratings in the test set are compared with

the predicted ratings. It is important to mention that in this dissertation, R refers

to the rating matrix that holds only the ratings of the training set. On the other

hand, the ratings of the test set are held in the Rtest matrix.

The Mean Absolute Error (MAE) is used to evaluate the proposed approach;

the MAE is the most often used measure for rating-based systems [1]. The MAE

is defined as:

MAE =
1

|TestSet|
∑

rij∈TestSet

|rij − pij| (1.1)

where rij is the actual value while pij is the predicted value.

The ratings are divided into two sets in which 80% of the ratings are used as a

training set and 20% as a test set. The imputation process is applied after the data

is split into training and test sets, and imputed ratings are calculated based only

on the training ratings. We performed our experiments in a 5-fold cross-validation

approach.

For evaluation purposes, the users are divided into three groups; the items are

divided into three groups based on the total number of the ratings in training set.

From the user perspective, the first group is New-Users who did not rate any items

at all. The second group is Cold-Start-Users who rated at least one item and at

most, four items. The last group is Heavy-Rater-Users who rated more than four

items. On the other hand, from the item perspective, the first group is New-Items

that did not receive any ratings at all. The second group is Cold-Start-Items that
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received at least one rating and at most four ratings. The last group is Heavy-

Rated-Items that received more than four ratings. Only the original ratings by

the users are considered. In the accuracy evaluation, the ratings in the test set

are grouped based on the user or item group that the rating belongs to, then

the MAE of each rating group is calculated. The names of the rating groups are

corresponded to the user or item groups that the ratings belong to.

The machine we used is equipped with a 2.53Ghz quad-core +HT processor,

8GB RAM and is installed with UNIX operating system. The code was written

and run in MATLAB. However, another machine has been used in Chapter 6.

Copyright c© Fatemah Alghamedy 2019
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2 Imputation with Item Auxiliary Information

The cold-start items, especially the New-Items, have negative impacts on NMF-

based approaches, particularly the ones that utilize other information besides the

rating matrix. We propose a different strategy that handles one of the most

significant issues in the recommendation systems, the New-Items, by incorporat-

ing the item auxiliary information into Aux-NMF [75] by utilizing an imputation

method without hurting other the prediction accuracy of other items. The pro-

posed method imputes a limited number of ratings for each item in the New-Items

group before NMF is applied to control the errors that may be introduced from

the imputation. We study two factors that may affect the imputation: (1) the

total number of the imputed ratings for each New-Item, and (2) the value and

the average of the imputed ratings. Experiments on three different datasets were

conducted to examine the proposed approach. The results show that our approach

can handle the New-Items’ negative impact and reduce the recommendation errors

for the whole dataset.

2.1 Problem Description

Aux-NMF [75] is one of the studies that incorporates the users and items

information into the NMF-based method. In Aux-NMF, the rating matrix Rm×n

is factored into three matrices, Um×k, Vn×l, and Sk×l. The U matrix contains the

latent factors for users, and the V contains the latent factors for items. In addition,

the S matrix absorbs the different scales between U and V . More details about

the matrix factorization will be introduced in Chapter 3. The objective function

of Aux-NMF is defined as follows,

minU≥0,S≥0,V≥0f(R,W,U, S, V, CU , CI) =

α · ‖W ◦ (R− USV T )‖2
F + β · ‖U − CU‖2

F + γ · ‖V − CI‖2
F

(2.1)

where α, β and γ are coefficients that control the weight of each part. CU and

CI are the user cluster matrix and the item cluster matrix, which are obtained

by running the K-Means clustering algorithm on the users feature matrix FU and

items feature matrix FI .
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Aux-NMF [75] can alleviate New-Users and New-Items impacts by adding

the users and items cluster constraints so that in each iteration of updating the

matrices U , S, and V , the β value is added to the U matrix and γ to the V matrix.

When β is set to zero, the recommendation system cannot recommend items to

New-Users. Similarly, when γ is set to zero, New-Items cannot be recommended to

users. This is because the values in the row that represents this item in matrix V

are zeros. Because our datasets have only item information, we study the impact of

the items auxiliary information constraint, γ, in Aux-NMF on the rating prediction

results.

In Table 2.1, we can see the α and γ values that result in the lowest MAE for

each dataset. We set β = 0 because there is no users auxiliary information in our

datasets. We observe that the CiaoDVD dataset mostly relies on items auxiliary

information constraint, more than the rating matrix. Contrastingly, Ciao and

Epinions datasets mostly rely on the rating matrix. Even though adding the items

auxiliary information constraint can alleviate the New-Items issue, other items’

MAE may become higher. Table 2.1 shows the lowest MAE for the whole dataset

and for each item group: New-Items, Cold-Start-Items, and Heavy-Rated-Items.

We observe that each group of items has different α and γ values that result

in the lowest MAE. With New-Items group, all the datasets prefer to set γ to the

maximum value, 0.9, and α to the minimum, 0.1. This is because adding γ to the

rows of New-Items in the V matrix allows the system to recommend New-Items

to users. The best MAE of Cold-Start-Items is when α = 1 and γ = 0 with all

dataset. However, the best Heavy-Rated-Items MAE results with different α and

γ settings for each dataset.

Table 2.2: New-Items ratings % in the test set.

Dataset New-Items ratings%
Ciao 0.57%
CiaoDVD 13.22%
Epinions 5.34%

In addition, we observe that the percentage of the New-Items ratings in the

test set affects the best settings of α and γ for the whole dataset. For example,

CiaoDVD suffers from the highest New-Items ratings percentage in the test set
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Table 2.1: MAE results of the whole dataset and each item group with all selected
combinations of α and γ without imputing New-Item.

α γ All-Items New-Items
Cold-Start-

Items
Heavy-Rated-

Items
Ciao

0.1 0.9 0.8158 3.0171 0.9207 0.7486

0.2 0.8 0.8083 3.1542 0.8942 0.7489

0.3 0.7 0.8029 3.1828 0.8752 0.7495

0.4 0.6 0.7986 3.1849 0.8603 0.7501

0.5 0.5 0.7952 3.1849 0.8478 0.7508

0.6 0.4 0.7924 3.1849 0.8370 0.7518

0.7 0.3 0.7901 3.1849 0.8273 0.7529

0.8 0.2 0.7882 3.1849 0.8183 0.7544

0.9 0.1 0.7867 3.1849 0.8095 0.7562

1 0 0.7911 4.1654 0.8007 0.7586
CiaoDVD

0.1 0.9 2.0532 2.6477 1.8222 2.0106

0.2 0.8 2.0698 2.8351 1.7997 2.0056

0.3 0.7 2.0750 2.9164 1.7832 2.0026

0.4 0.6 2.0762 2.9588 1.7695 2.0006

0.5 0.5 2.0760 2.9834 1.7576 1.9993

0.6 0.4 2.0750 2.9985 1.7467 1.9985

0.7 0.3 2.0738 3.0073 1.7364 1.9982

0.8 0.2 2.0726 3.0123 1.7271 1.9986

0.9 0.1 2.0720 3.0148 1.7189 2.0000

1 0 2.1810 3.8322 1.7142 2.0030
Epinions

0.1 0.9 1.3005 2.6663 1.8002 1.1912

0.2 0.8 1.2991 2.8476 1.6772 1.1857

0.3 0.7 1.2957 2.9053 1.5988 1.1829

0.4 0.6 1.2927 2.9291 1.5426 1.1812

0.5 0.5 1.2900 2.9379 1.4986 1.1801

0.6 0.4 1.2876 2.9400 1.4628 1.1793

0.7 0.3 1.2857 2.9404 1.4323 1.1789

0.8 0.2 1.2841 2.9405 1.4056 1.1786

0.9 0.1 1.2831 2.9405 1.3831 1.1788

1 0 1.3349 3.9059 1.3679 1.1799

as shown in Table 2.2, and the lowest MAE for the whole dataset when the γ

is set to the maximum value, as we see in Table 2.1. However, Cold-Start-Items

and Heavy-Rated-Items get the lowest MAE with different α and γ values. If we

set α = 0.1 and γ = 0.9 for the whole CiaoDVD dataset, the Cold-Start-Items

and Heavy-Rated-Items MAE are getting worse even if the whole dataset MAE
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is improved. On the other hand, the best Ciao and Epinions MAE are obtained

when α = 0.9 and γ = 0.1, which is almost similar to the best Cold-Start-Items

and Heavy-Rated-Items parameters setting. However, the New-Items MAE, in

this case, is much worse than the MAE of the best parameters setting of the

New-Items group.

In this chapter, we propose a method to impute a subset of New-Items’ ratings

in the training set using the items auxiliary information to alleviate the impact of

New-Items on items auxiliary information constraint and handle New-Items issue.

2.2 Proposed Method

We propose a different strategy that handles the New-Items issue by incorpo-

rating the item auxiliary information with Aux-NMF without hurting other items’

prediction performance. In addition, the proposed method alleviates the impact of

the New-Items on the best setting of the items auxiliary information constraint -

γ -. Because imputed ratings introduce error to the system, our proposed method

imputes limited ratings for each New-Items in which each dataset has a parameter

of the maximum number of imputed ratings for each New-Item.

To perform the proposed imputation, we need to determine the subset of the

real ratings that are used to calculate the imputed ratings, which are called source

ratings, and the users who hold the imputed ratings. For each user, we count the

total number of the ratings that the user did to all items that belong to the same

New-Item cluster based on the item cluster matrix FI . After ordering the users

based on the total number of the ratings in descending order, the top-N users are

selected to hold the imputed ratings. For each top-N user, only the user’s real

ratings are utilized to calculate the imputed ratings. Thereby, we ensure that

the user rating pattern is maintained without involving other users’ ratings that

may have different rating patterns. On the other hand, the source ratings of the

imputed rating for each top-N user are the ratings that the user did to all items

that belong to the same New-Item cluster based on the item cluster matrix FI .

Figure 2.1 is a simple example that illustrates the basic idea of the imputation.

Figure 2.1 (a) is the rating matrix that presents the users, items, and the users’

ratings to the items. As we see, item e3 is a New-Item because there is no rating
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(a) Rating matrix (b) Item cluster matrix CI (c) Candidate users

(d) Total ratings (e) Imputed rating matrix

Figure 2.1: A simple example of the imputation process.

for it. To impute e3, we need to find all items that belong to the same cluster as

e3. Figure 2.1 (b) displays the item cluster matrix CI . Item e3 belongs to clusters

G2 and items e1 and e2 belong to the same cluster as e3. The candidate users that

may hold the imputed rating are u1 and u2 because they did rate at least one of

e1 and e2 items (Figure 2.1 (c)). User u1 rated two items while user u2 did one

rating only that belongs to cluster G2. If we decide to impute one rating for each

New-Item, then u2 will hold the imputed rating for e3 because u2 did the highest

number of ratings, as we see in Figure 2.1 (d). The source ratings are the ratings

that are used to calculate the imputed rating. In our example, the ratings 5 and 1

of u2 are the source ratings. The average of the imputed source ratings is 3. The

imputed rating of user u2 to New-Item e3 is equal to 3 as we see in Figure 2.1 (e).

In reality, introducing New-Items to the system is actually advertising items

to the customers. For that, the prediction error of the users that have a high

probability to like the New-Item should be less compared to the users that don’t.

There are two methods to calculate the imputed ratings. The first one is the

average of the subset of the real ratings that are used to impute source ratings,

and the second method is the most frequent rating appears in that subset.
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2.2.1 Objective Function

To handle the New-Item issue, we replace the rating matrix R in Equation

(2.1) with imputed rating matrix R′ so that

r′ij =


rij if rij 6= 0

Imputed Rating if total ratings of item j = 0 and source ratings 6= ∅
0 otherwise

(2.2)

where r′ij ∈ R′, rij ∈ R, and Imputed Rating could be either the average of the

source ratings or the most frequent rating value in a source ratings set. In addition,

W in Equation (2.1) is redefined as a W ′ so that:

w′ij =

{
1 if r′ij 6= 0

0 if r′ij = 0
(w′ij ∈ W ′, r′ij ∈ R′) (2.3)

We update Aux-NMF Equation (2.1) with Equations (2.2) and (2.3), and set β to

zero due to the absent of users auxiliary information in our datasets, the objective

function is:

minU≥0,S≥0,V≥0f(R′,W ′, U, S, V, CI) = α · ‖W ′◦(R′ − USV T )‖2
F + γ · ‖V − CI‖2

F

(2.4)

We name this matrix factorization Aux-New-Items-NMF.

2.2.2 Update Formula

Let L = f(R′,W ′, U, S, V, CI), which is the objective function of Aux-New-

Items-NMF. The update formulae of L are as follows [75]

Uij = Uij ·
[α(W ′ ◦R′)V ST ]ij

{α[W ′ ◦ (USV T )]V ST}ij
(2.5)

Vij = Vij ·
[α(W ′ ◦R′)TUS + γCI ]ij

{α[W ′ ◦ (USV T )]TUS + γV }ij
(2.6)

Sij = Sij ·
[UT (W ′ ◦R′)V ]ij

{UT [W ′ ◦ (USV T )]V }ij
(2.7)

The derivation of the update formulas (2.5), (2.6), and (2.7) are similar to the

update formulas derivation in [75].
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2.2.3 Convergence Analysis

This section proves that the objective function (2.4) is nonincreasing under the

update formulae (2.5), (2.6), and (2.7) by following [29].

Definition 2.2.1. H(u, u′) is an auxiliary function for F (u) if the conditions

H(u, u′) ≥ F (u), H(u, u) = F (u) (2.8)

are satisfied.

Lemma 2.2.1. If H is an auxiliary function for F, then F is nonincreasing under

the update

ut+1 = arg min
u

H(u, ut) (2.9)

Lemma 2.2.1 can be easily proven since we have F (ut+1) = H(ut+1, ut+1) ≤

H(ut+1, ut) ≤ H(ut, ut) = F (ut).

The convergences of the update formulae (2.5), (2.6), and (2.7) will be proved

by their equivalence to Equation (2.9), with proper auxiliary functions defined.

Let’s rewrite the objective function L,

L = tr[α(W ′ ◦R′)T · (W ′ ◦R′)] + tr{−2α(W ′ ◦R′)T · [W ′ ◦ (USV T )]}

+ tr{α[W ′ ◦ (USV T )]T · [W ′ ◦ (USV T )]}+ tr(UTU) + tr(γV TV )

+ tr(−2γV TCI) + tr(γCT
I CI)

(2.10)

where tr(∗) is the trace of a matrix.

After eliminating the irrelevant terms, we can define the following functions

that are related only to U, V , and S, respectively.

L(U) =tr{−2α(W ′ ◦R′)T · [W ′ ◦ (USV T )] + α[W ′ ◦ (USV T )]T · [W ′ ◦ (USV T )]

+ UTU}

= tr{[−2α(W ′ ◦R′)V ST ]UT + UT [αW ′ ◦ (USV T )V ST ] + UTU}
(2.11)

L(V ) =tr{−2α(W ′ ◦R′)T · [W ′ ◦ (USV T )] + α[W ′ ◦ (USV T )]T · [W ′ ◦ (USV T )]

+ γV TV − 2γV TCI}

= tr{[−2α(W ′ ◦R′)TUS + γCI ]V
T + V T [α(W ′ ◦ (USV T ))TUS] + V T (γV )}

(2.12)
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L(S) =tr{−2α(W ′ ◦R′)T · [W ′ ◦ (USV T )] + α[W ′ ◦ (USV T )]T · [W ′ ◦ (USV T )]}

= tr{[−2αUT (W ′ ◦R′)V ]ST + [αUT (W ′ ◦ (USV T ))V ]ST}
(2.13)

Lemma 2.2.2. For any matrices X ∈ Rn×n
+ , Y ∈ Rk×k

+ , F ∈ Rn×k
+ , F ′ ∈ Rn×k

+ , and

X, Y are symmetric, the following inequality holds

n∑
i=1

k∑
j=1

(XF ′Y )ijF
2
ij

F ′ij
≥ tr(F TXFY ) (2.14)

The Lemma 2.2.2 is proved in [5] and is used to build an auxiliary function for

L(U). The convergences of L(V ) and L(S) are similar to L(U).

Lemma 2.2.3.

H(U,U ′) =− 2
∑
ij

{[α(W ′ ◦R′)V ST ]UT}ij

+
∑
ij

(αW ′ ◦ (U ′SV T )V ST + U ′)ijU
2
ij

U ′ij

(2.15)

is an auxiliary function of L(U) and the global minimum of H(U,U ′) can be

achieved by

Uij = U ′ij ·
[α(W ′ ◦R′)V ST ]ij

{α[W ′ ◦ (U ′SV T )]V ST + U ′}ij
(2.16)

The Lemma 2.2.3 is proved in [75]. The Lemma 2.2.3 can be used for (2.6)

and (2.7), too.

2.2.4 Detailed Algorithm

In this section, the Aux-New-Items-NMF algorithm is presented. Algorithm

2.1 depicts the steps of performing Aux-New-Items-NMF on the imputed rating

matrix R′. We perform this algorithm in two cases. The first case is when the

imputed ratings are equal to the average of the source ratings, which is called the

Average-Imputation case. The second case is when the imputed ratings are equal

to the most frequent rating value in the source ratings, which is called Most-

Imputation case. Figure 2.2 shows the flowchart of the New-Items imputation

steps. However, the Aux-New-Items-NMF algorithm may take hundreds or thou-

sands of iterations to converge to a local minimum. Thus, in the algorithm, we

set an additional stop criterion - the maximum iteration count. In collaborative

filtering, this value varies from 10 ∼ 100 and can produce good results [75].
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Algorithm 2.1 Aux-New-Items-NMF

Require:
User-Item rating matrix: R ∈ Rm×n;
Item feature matrix: FI ∈ Rn×kI ;
Column dimension of U : k;
Column dimension of V : l;
Coefficients in objective function: α and γ;
Number of maximum iterations: MaxIter;
Number of maximum imputed ratings for each New-Item: MaxImputedRatings;

Ensure:
Item cluster membership indicator matrix: CI ∈ Rn×l;
Imputed rating matrix: R′ ∈ Rm×n;
Factor matrices: U ∈ Rm×k, V ∈ Rn×l, and S ∈ Rk×l;

1: function New-Items Imputation(R, CIRow
, j , Imputation Case )

2: for each group gI in CIRow
do

3: if gI == 1 then
4: gIItems = gIItems + all items belong to gI
5: end if
6: end for
7: for each user ui do
8: candidateImputedUsers = count the total ratings of ui for all items in
gIItems

9: end for
10: OrderedUsers = sort candidateImputedUsers based on the total ratings

in descending order
11: for uimputed = 1 : MaxImputedRatings in OrderUsers do
12: if Imputation Case = Average then
13: r′uimputedj

= the average ratings of uimputed for all items in giItems
14: else if Imputation Case = Most then
15: r′uimputedj

= the most frequent ratings value of uimputed for all items
in giItems

16: end if
17: end for
18: return r′:j
19: end function

1: Cluster items into l groups based on FI by K-Means algorithm → CI ;
2: Initialize U, S, and V with random values;
3: for each item ej do
4: if ej total ratings == 0 then
5: r′:j = New-Items Imputation(R, CIej : , j , Imputation Case)
6: else
7: r′:j = r:j

8: end if
9: end for
10: Build weight matrix W ′ by Eq. (2.3);
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11: Set iteration = 1 and stop = false;
12: while (iteration < MaxIter) and (stop == false) do

13: Uij ← Uij · [α(W ′◦R′)V ST ]ij
{α[W ′◦(USV T )]V ST +U}ij

14: Vij ← Vij · [α(W ′◦R′)TUS+γCI ]ij
{α[W ′◦(USV T )]TUS+γV }ij

15: Sij ← Sij · [UT (W ′◦R′)V ]ij
{UT [W ′◦(USV T )]V }ij

16: L← α · ‖W ′ ◦ (R′ − USV T )‖2
F + γ · ‖V − CI‖2

F

17: if L increases in this iteration then
18: stop = true;
19: Restore U, V, and S to their values in last iteration.
20: end if
21: end while
22: Return R′, U, V, S,, and CI .

2.2.5 Complexity

The computational complexity of Aux-New-Items-NMF can be broken down

into two phases: imputation and NMF phase (updating U, V, and S).

There are four basic steps to perform the imputation in Aux-New-Items-NMF

which need to be considered in the computational complexity. Firstly, the time

complexity of searching for New-Items is O(mn). However, the time complexity

for finding the items of the source ratings for each New-Item is O(l+n). The time

complexity to find the candidate users is O(mn), and finally the time complexity

of ordering the candidate users for each New-Item is O(m2). By combining the

time complexity of all imputation steps, the total of time complexities is as follows,

TimeComplexity = O(mn) + n(l + n) +O(mn) +O(nm2) (2.17)

where m is the total number of the users in the rating matrix R, n is the total

number of the items in the rating matrix R, and l is the total number of the item

clusters. In addition, the time complexity of the imputation phase is considered

in the worst case.

In general, the time complexity of the imputation in the Aux-New-Items-NMF

method is quadratic. However, in reality, the time complexity is much less than

the worst case. For instance, in the second term of Equation 2.17, we assume the

total number of New-Items NewItemsNum � n. In addition, the items of the

source rating items sourceRatingItemsNum � n in the third term of Equation
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2.17. Finally, we assume that the candidate users who rated at least one item of

source ratings candidateUsersNum� m in which the users who did not rate at

least one item of source ratings could be eliminated before the sorting algorithm

is applied. In addition, the sorting algorithm is applied for each New-Items such

that NewItemsNum� n. For large scale datasets, the imputation process could

be ran in parallel to reduce the computation time.

On the other hand, we suppose k, l � min(m,n), the time complexities of

updating U, V, and S in each iteration are all O(mn(k + l)) [75].
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Figure 2.2: New-Items imputation flowchart.
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2.3 Experimental Study

In the experiment of this chapter, the FilmTrust dataset is excluded because

of the absence of items’ information. For the three other datasets, the parameters

of the Aux-New-Items-NMF algorithm need to be determined in advance. They

have been set based on the experiments. Table 2.3 gives the parameter setup in

Aux-New-Items-NMF (see Algorithm 2.1).

Table 2.3: Parameter setup in Aux-New-Items-NMF.

Dataset k l MaxIter MaxImputedRatings
Ciao 10 20 10 15
CiaoDVD 2 15 10 3
Epinions 10 20 10 5

When the results before the imputation in Table 2.1 are compared to the re-

sults after the imputation in Table 2.4, it is notable that the imputation process

improves the prediction results. Furthermore, the best α and γ settings are dif-

ferent in all the datasets. After the imputation, Ciao and Epinions datasets rely

totally on the rating matrix with α = 1 and γ = 0. In addition, CiaoDVD dataset

relies almost on the rating matrix with α = 0.9 and γ = 0.1.

Before the New-Items imputation, the best setting of the New-Items group is

when α equals the minimum value, 0.1, and γ equals the maximum value, 0.9, with

all datasets, as we see in Table 2.1. After imputing New-Items with the average of

the source ratings, the New-Items prediction improves remarkably for all selected

α and γ combinations in all datasets, as we see in Table 2.4. In addition, the best

setting of CiaoDVD and Epinions New-Items group is α = 1 and γ = 0. However,

the Ciao dataset has the same α and γ best setting of New-Items group before

and after the imputation. The best setting of α and γ for other items groups,

Cold-Start-Items and Heavy-Rated-Items, remains the same for all datasets and

the MAE is almost the same.

We observe that the best α and γ setting of New-Items group is the same as the

item group that MaxImputedRatings value is within its limits. For example, each

New-Item in CiaoDVD and Epinions datasets is imputed with 3 and 5 imputed

ratings, respectively, and the best α and γ setting of New-Items of both datasets
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Table 2.4: MAE results of the whole dataset and each item group with all selected
combinations of α and γ of Aux-New-Items-NMF.

α γ All-Items New-Items
Cold-Start-

Items
Heavy-Rated-

Items
Ciao

0.1 0.9 0.8036 0.8332 0.9212 0.7487

0.2 0.8 0.7954 0.8339 0.8945 0.7489

0.3 0.7 0.7897 0.8340 0.8754 0.7495

0.4 0.6 0.7855 0.8343 0.8604 0.7501

0.5 0.5 0.7820 0.8346 0.8479 0.7509

0.6 0.4 0.7792 0.8351 0.8370 0.7518

0.7 0.3 0.7769 0.8357 0.8273 0.7529

0.8 0.2 0.7750 0.8367 0.8182 0.7544

0.9 0.1 0.7735 0.8381 0.8095 0.7562

1 0 0.7723 0.8401 0.8006 0.7586
CiaoDVD

0.1 0.9 1.9011 1.5036 1.8153 2.0118

0.2 0.8 1.8918 1.4921 1.7951 2.0066

0.3 0.7 1.8853 1.4839 1.7799 2.0034

0.4 0.6 1.8801 1.4771 1.7671 2.0012

0.5 0.5 1.8758 1.4708 1.7558 1.9998

0.6 0.4 1.8721 1.4647 1.7454 1.9988

0.7 0.3 1.8689 1.4588 1.7357 1.9983

0.8 0.2 1.8664 1.4532 1.7267 1.9986

0.9 0.1 1.8649 1.4486 1.7187 2.0001

1 0 1.8660 1.4474 1.7140 2.0036
Epinions

0.1 0.9 1.2205 1.1633 1.7721 1.1930

0.2 0.8 1.2077 1.1302 1.6589 1.1871

0.3 0.7 1.1997 1.1018 1.5858 1.1839

0.4 0.6 1.1938 1.0762 1.5326 1.1819

0.5 0.5 1.1892 1.0539 1.4909 1.1805

0.6 0.4 1.1857 1.0350 1.4565 1.1795

0.7 0.3 1.1827 1.0174 1.4275 1.1788

0.8 0.2 1.1802 0.9986 1.4030 1.1786

0.9 0.1 1.1781 0.9752 1.3822 1.1788

1 0 1.1780 0.9653 1.3674 1.1801
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are equal to the Cold-Start-Items group’s best setting. However, the best α and

γ setting of New-Items in the Ciao dataset is the same as Heavy-Rated-Items

because each New-Item is imputed with 15 imputing ratings, which make them

Heavy-Rated-Items. This explains why the best α and γ setting of Ciao New-Items

dataset did not change after the imputation.

The difference between MAE of the item groups with the best α and γ setting of

the whole dataset and of each item group is moot compared to the no imputation

case. Before the New-Items imputation, the difference in the Epinions dataset

between the lowest MAE of New-Items and MAE of the same group with the best

α and γ setting of the whole dataset is the highest, which is 0.2742. However,

after the imputation, the Ciao dataset has the most difference, which is between

the lowest MAE of the Heavy-Rated-Items group and the MAE of them with the

best α and γ setting of the whole dataset, which is 0.0099.

In conclusion, using item auxiliary information for imputation, not the NMF

process, is a better strategy.

2.3.1 The Influence of Imputed Rating Value

In this section, we demonstrate how the value of the imputed ratings and the

average of all the imputed ratings affect the results. There are two cases used

to calculate the imputed rating value: Average-Imputation and Most-Imputation.

The predicted rating is zero when the system cannot predict the rating, which is

called unpredictable rating. This happens because of the impact of New-Users.

After applying Aux-New-Items-NMF, some of the New-Item rows in matrix V are

zeros even though all New-Items are imputed. For each rating value of New-Items

in the test set, we consider its MAE as high when it is larger than the whole

dataset MAE. On the other hand, we consider the MAE as a low when it is equal

to or lower than the whole dataset MAE.

By applying the Average-Imputation case to the Ciao dataset, 96.12% of the

rating value 4 of New-Items in the test set get low MAE (which is the highest

percentage among all other rating values), as we see in Table 2.5. This is because

of the average of the imputed ratings which is 4.10 as shown in Table 2.6. With

the second imputation case, the average of the imputed ratings increases to 4.46,
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Table 2.5: The percentage of the New-Items rating values in the test set and the
percentage of their MAEs cases (high/low) after the New-Item imputation with
both cases: Average and Most.

Rating
Rating %

Unpredictable High MAE Low MAE
Value Rating Average Most Average Most

Ciao
1 3.59% 2.22% 97.78% 97.78% 0.00% 0.00%
2 4.95% 3.75% 96.25% 96.25% 0.00% 0.00%
3 12.14% 1.41% 76.57% 89.71% 22.02% 8.88%
4 31.84% 1.90% 1.97% 17.33% 96.12% 80.77%
5 48.74% 1.77% 42.83% 12.83% 55.41% 85.40%

CiaoDVD
1 4.85% 11.22% 71.42% 84.45% 17.36% 4.34%
2 8.88% 8.33% 21.25% 44.83% 70.43% 46.84%
3 18.80% 9.69% 0.80% 6.84% 89.52% 83.48%
4 33.15% 18.40% 0.06% 0.09% 81.53% 81.50%
5 34.33% 26.76% 2.22% 1.46% 71.03% 71.78%

Epinions
1 4.68% 5.43% 91.82% 92.98% 2.75% 1.59%
2 7.20% 2.60% 90.70% 92.87% 6.70% 4.53%
3 17.64% 2.45% 17.66% 38.74% 79.89% 58.81%
4 33.82% 2.98% 1.61% 1.15% 95.41% 95.87%
5 36.66% 4.31% 25.55% 13.27% 70.14% 82.43%

as we see in Table 2.6. The low MAE percentage of rating value 5 for New-Items

in the test set increases from 55.41% to 85.40%, which is the highest percentage

among all other rating values, as we see in Table 2.5. On the other hand, the low

MAE percentage of the rating value 4 declines to 80.77%. Because the imputed

rating average of both imputation cases is above 4, none of the rating values 1 and

2 MAE of New-Items in the test set are low even though there are fewer 1 and 2

imputed ratings in the second imputation case, as we see in Table 2.7.

The CiaoDVD dataset has the lowest average of the imputed ratings in the

first and second imputation cases among other datasets, as shown in Table 2.6.

For the first imputation strategy, the average of the imputed ratings is 3.63. The

rating value 3 of New-Items has the highest percentage of the low MAE, then

rating values 4 and 5, respectively (Table 2.5). In addition, some 1 and 2 rating

values of New-Items in the test set have low MAE. With the second imputation

strategy, the imputed rating average increases to 4.04, as we see in Table 2.6.
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Table 2.6: The average of the imputed ratings with both New-Items imputation
cases: Average and Most.

Dataset Average Most
Ciao 4.10 4.46
CiaoDVD 3.63 4.04
Epinions 3.89 4.30

Table 2.7: The percentage and average for each imputed rating value range with
both imputation cases: Average and Most.

rating value range Ciao CiaoDVD Epinions
> <= % average % average % average

New-Item Average-Imputation Case
0 1 0.00% N/A 0.00% N/A 0.00% N/A
1 2 0.04% 1.52 0.00% N/A 0.02% 2.00
2 3 1.82% 2.67 20.06% 2.74 2.71% 2.89
3 4 39.32% 3.72 52.55% 3.55 48.74% 3.56
4 5 58.82% 4.40 27.39% 4.42 48.52% 4.29

New-Item Most-Imputation Case
0 1 0.18% 1 0.53% 1 0.19% 1
1 2 0.32% 2 0.34% 2 1.36% 2
2 3 4.29% 3 24.50% 3 10.69% 3
3 4 44.17% 4 44.13% 4 44.14% 4
4 5 51.04% 5 30.51% 5 43.63% 5

This leads to a decrease in the low MAE percentage of rating values 1, 2, and 3

(Table 2.5). However, there is almost no improvement in the rating prediction (low

MAE percentage) of 4 and 5 values of the New-Items. This is probably because of

several reasons. First, the total number of the ratings in the test set in CiaoDVD

is much less than other datasets, as we see in Table 1.1. The second reason is

that the unpredictable ratings are much more than other datasets, especially for

the high rating values 4 and 5, as we see in Table 2.5. The third one is that the

sum of the New-Items high rating values (4 and 5) percentage in the test set is

the lowest compared to other datasets, as we see in Table 2.5. Due to these facts,

the increase in the low MAE percentage of the high rating values (4 and 5) is not

notable in this case, even though there is an increase in the average of imputed

ratings. Although the percentages of imputed ratings with low values (1, 2, and

3) in the second imputation case are more than in the first imputation case, as we
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see in Table 2.7, the percentages of the high MAE of the low rating values (1, 2,

and 3) increase because the average of the imputed ratings increased too.

The imputed ratings average of Epinions dataset is in between CiaoDVD and

Ciao datasets, as shown in Table 2.6. With the first imputation case, the highest

percentage of the low MAE is for rating value 4, then 3 and 5, respectively, as we

see in Table 2.5 where the average of the imputed ratings is 3.89. However, the

average of the imputed ratings in the second imputation case is 4.30, which raises

the percentage of the low MAE of rating value 5 up to 82.43% and declines the

percentage of the low MAE of rating value 3 to 58.81% as we see in Table 2.5. As

we observe in other datasets, there are more imputed ratings of low value (1, 2,

and 3) in the second imputation case than the first one, as we see in Table 2.7.

However, the low MAE percentage of the low rating values (1, 2, and 3) decreases.

Table 2.8: The MAE of both New-Items imputation cases: Average and Most
when α = 1.

Imputation

Case

All-Items

MAE

New-Items

MAE

Cold-Start

Items MAE

Heavy-Rated

Items MAE

Ciao
Average 0.7723 0.8400 0.8006 0.7586

Most 0.7720 0.7910 0.8006 0.7585
CiaoDVD

Average 1.8660 1.4474 1.7140 2.0036
Most 1.8700 1.4752 1.7152 2.0038

Epinions
Average 1.1780 0.9653 1.3674 1.1800

Most 1.1796 0.9806 1.3711 1.1807

Table 2.8 shows the MAE results of both New-Items imputation cases: Average

and Most when α = 1 and γ = 0. We set MaxImputedRatings of both New-Items

imputation cases as is shown in Table 2.3. The results show MAE for the whole

dataset and for each item group. Only MAE of Ciao dataset is slightly lower with

the New-Items Most-Imputation case than the Average-Imputation case for the

whole dataset and New-Items group. This is because Ciao dataset has the highest

percentage of the rating value 5 in the test set among other datasets (Table 2.5).

In addition, the most improvement in the prediction in the second imputation case

is with rating value 5, as we see in Table 2.5. On the other hand, the best MAE
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for other datasets is New-Items Average-Imputation case for the whole dataset

and New-Items group.

In conclusion, the prediction accuracy of the rating values that are close to

the average of New-Items imputed ratings is better than other rating values. In

addition, the influence of the imputed rating average is more effective than the

value of the imputed ratings. Hence, the average of the imputed ratings determines

which rating values will have high or low MAE compared to the whole dataset

MAE. Because recommending New-Items to users considers an advertisement, we

think that the users who have a high probability of liking the New-Item need

to have more accurate prediction than the users who don’t. Raising the average

of the imputed ratings allows the system to predict the high rating values more

accurately than the low rating values.

2.3.2 Parameter Study

In Aux-New-Items-NMF, the parameter MaxImputedRatings needs to be set.

We run the experiment with different total numbers of the imputed ratings for

each New-Item. In this experiment, we set α = 1 and γ = 0 with New-Item

Average-Imputation case. In general, the MAEs of all three datasets are lower

after New-Items imputation regardless of the total number of imputed ratings,

MaxImputedRatings, as shown in Figure 2.3(a).

Adding more imputed ratings (MaxImputedRatings) improves the results of

the New-Items group prediction results slightly. Nevertheless, adding only one

imputed rating to each New-Item allows the system to recommend New-Items to

users and reduces the New-Items MAE remarkably compared to none imputation

case, i.e. Aux-NMF, as we see in Figure 2.3(b). When all available imputed ratings

are imputed for each New-Item, CiaoDVD and Ciao MAE are worse. However,

the result of Epinions dataset slightly improves but requires a long time to impute

the rating matrix. This demonstrates that adding imputed ratings is not always

advantageous because they introduce errors to the system at the same time, even

for New-Items.

As we see in Figure 2.3(d), the results of Heavy-Rated-Items show that more

imputed ratings lead to increasing the MAE of them. However, there is a dif-
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(a) (b)

(c) (d)

Figure 2.3: The MAE of New-Item Average-Imputation case with different values
of MaxImputedRatings.

ference in the increment ratio of MAE between the datasets. Ciao dataset has

the lowest New-Items percentage in the training set among other datasets, as we

see in Table 2.9. For that, the Heavy-Rated-Items MAE did not increase with

the MaxImputedRatings increment but did increase when all possible imputed

ratings of New-Items were imputed. On the other hand, the highest percentage

of New-Items in the training set is in CiaoDVD and Epinions datasets; and, their

Heavy-Rated-Items MAEs increase with almost every time theMaxImputedRatings

is increased, as shown in Figure 2.3(d). Overall, the best of Heavy-Rated-Items

MAE is without imputation process.

In general, to set the MaxImputedRatings parameter, we need to balance

between the imputation advantage and the imputation error. Table 2.3 shows the

best setting of MaxImputedRatings that improves the accuracy of ratings predic-
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Table 2.9: The % of New-Items in the training set.

Dataset Ciao CiaoDVD Epinions
% 0.27% 11.08% 12.45%

tion. There are two factors that may impact the MaxImputedRatings parameter

setting. The first is the percentage of New-Items in the training set, and the sec-

ond is the percentage of New-Items ratings in the test set. As we see in Tables 2.3

and 2.9, there is an inverse relationship between the best MaxImputedRatings

parameter setting and the percentage of New-Items in the training set. In ad-

dition, there is an inverse relationship between the best MaxImputedRatings

parameter setting and the percentage of New-Items ratings in the test set, as

shown in Tables 2.2 and 2.3. Ciao has the lowest percentage of New-Items in

the training set, the lowest percentage of New-Items ratings in the test set, and

the highest MaxImputedRatings. On the other hand, the CiaoDVD dataset has

the most percentage of New-Items ratings in the test set, the next highest per-

centage of New-Items in the training set, and the lowest MaxImputedRatings.

Epinions dataset has the highest percentage of New-Items in the training set,

the next highest percentage of New-Items ratings in the test set. However, the

MaxImputedRatings is in middle between other datasets but it much closer to

CiaoDVD.

In conclusion, the total number of the imputed ratings in the training set

should be limited. The percentage of New-Items in the training set plays a critical

factor in setting the value of MaxImputedRatings. If there is a high existence of

New-Items in the training set, then the value of MaxImputedRatings should be

small, especially if the system predicts plenty of ratings that belong to New-Items

group and vice versa when the New-Items percentage in the training set is low.

2.4 Summary

In this chapter, we proposed a method to incorporate item auxiliary informa-

tion into the Aux-NMF [75] using the imputation process. Our results show that

the proposed method alleviates the impact of the New-Items on the items auxiliary

information constraint - γ - in Aux-NMF [75]. In addition, Aux-New-Items-NMF
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allows the system to recommend New-Items to the users. Furthermore, using

item auxiliary information for imputation, not for the NMF process, is a better

strategy. Additionally, increasing the average of imputed ratings improves the

prediction accuracy of users that have a high probability to like the New-Item.

The total number of New-Items in the training set determines the total imputed

ratings for each item in the New-Items group.

Copyright c© Fatemah Alghamedy 2019
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3 Imputation with Trust Network Information for New Users

We propose an NMF-based approach to handle the New-Users issue by utilizing

the trust network information. A subset of missing ratings in the rating matrix

is imputed before NMF is applied to alleviate the sparsity issue and enhance the

prediction accuracy. To survey each user group behavior with the imputation, we

perform two cases of imputation: (1) when all users are imputed, and (2) when only

New-Users are imputed. Experiments on four different datasets were conducted to

examine the proposed approach. The results show that our approach can handle

the New-Users issue and reduce the recommendation errors for the whole dataset,

especially in the second imputation case.

3.1 Problem Description

The basic NMF is defined as follows [29]:

Rm×n ≈ Um×k · V T
n×k (3.1)

The goal is to find a pair of orthogonal nonnegative matrices U and V (such

that, UTU = I and V TV = I) that minimizes the Frobenius norm (Euclidean

norm) ‖R− UV T‖F . The objective function is:

f(R,U, V ) = minU≥0,V≥0‖R− UV T‖2
F (3.2)

In Ding et. al. [6], they proved that NMF is equivalent to K-Means clustering.

Thus, by applying NMF on R, the users and the items are clustered into k groups.

The two matrices U and V produced by NMF on R describe the clustering infor-

mation of the objects such that each column vector of U , ui, can be considered

as a basis, and each data point ri is approximated by a linear combination of

these k bases, weighted by the components of V [77], where k is the rank of factor

matrices.

In the collaborative filtering field, rating matrix R represents the relationships

between users and items. We can obtain users and items clusters by performing

NMF on rating matrix R. However, it is difficult to find two matrices U and V
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that represent user clusters and item clusters respectively and that also have the

same rank of the factor k, which is considered to be the substantial property of

NMF. To solve this issue, NMTF (Nonnegative Matrix Tri-Factorization) [5] adds

an extra factor matrix S to absorb the different scales of U and V . NMTF allows

U and V to have a different number of the clusters, which are k and l, respectively.

NMTF is defined as follows,

Rm×n ≈ Um×k · Sk×l · V T
n×l (3.3)

In NMTF, the rating matrix R is factored into three matrices, U , V , and S,

where U is a matrix that contains the latent factors for users and V contains

the latent factors for items. In this case, there is no requirement that U and V

matrices have the same rank of factor k because S matrix absorbs the different

scales between U and V .

The goal is to find a pair of orthogonal nonnegative matrices U and V that

minimize the Frobenius norm (Euclidean norm) ‖R − USV T‖F . The objective

function is:

f(R,U, S, V ) = minU≥0,S≥0,V≥0‖R− USV T‖2
F (3.4)

However, one of the most significant issues with NMF (3.1) and NMTF (3.3)

is that they require that the rating matrix not have missing ratings. As we men-

tioned before, the rating matrix in recommendation systems suffers from sparsity.

Therefore, the rating matrix cannot be directly fed to NMF and NMTF. To handle

that, all missing ratings should be imputed as a pre-processing step before NMF

or NMTF is applied, which requires extra time to compute the missing ratings.

On the other hand, Weighted NMF (WNMF) [80] is one of the matrix factor-

ization algorithms that can factorize a sparse rating matrix without the need to

impute all missing ratings during the pre-processing step. The objective function

of Weighted Nonnegative Matrix Factorization (WNMF) is as follows,

f(R,W,U, V ) = minU≥0,V≥0‖W ◦ (R− UV T )‖2
F (3.5)
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where ◦ is the element-wise multiplication. The weight matrix W ∈ Rm×n
+ indi-

cates the value existence in the rating matrix R, such that

wij =

{
1 if rij 6= 0

0 if rij = 0
(wij ∈ W, rij ∈ R) (3.6)

To get the advantages of both NMTF and WNMF, Equations (3.4) and (3.5)

are combined to form Weighted Nonnegative Matrix Tri-Factorization (WNMTF).

The objective function of WNMTF is as follows,

f(R,W,U, S, V ) = minU≥0,S≥0,V≥0‖W ◦ (R− USV T )‖2
F (3.7)

Actually, WNMTF is equivalent to Aux-NMF [75] when α is set to 1 in Equation

(2.1).

Generally, WNMTF cannot predict items to New-Users because the values in

the row that represents this user in matrix U are zeros. Unpredictable ratings

lead to high MAE, particularly in the case that the average value of the ratings

in the test set is closer to the maximum rating value than the minimum. Aux-

NMF [75] can alleviate this issue by adding the users’ cluster constraint so that

in each iteration of updating the matrices U , S, and V , the β value is added to

the U matrix, as we see in Equation (2.1). However, there are some issues with

Aux-NMF. First, we cannot guarantee that each dataset has users information

to build the users and items features, which are used to cluster users. Users’

information is really difficult to collect and is often untrustworthy. Most users do

not provide their personal information for many reasons, e.g., they do not trust

the reliability of the system to keep the privacy of their personal information. In

addition, providing personal information is time-consuming. If the system forces

users to provide their personal information at registration, the system may lose

users.

In addition, it is difficult for the system to trust users’ information for many

reasons. First, most users’ information changes over time, such as occupation,

address, marital status, education, and life experiences. In addition, users’ hobbies

vary depending on age, occupation, marital status, living place, etc. Even if the

system allows users to update their information, it is difficult to ensure that users

do so regularly. In addition, some information is hard to be collected in a multi-
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choice style, such as the address, because there are many counties and cities.

However, if the system allows users to provide their address as a text, it is difficult

to extract the address automatically for many reasons. For example, users may

misspell the address or write an unreal address, such as sky, heaven, and so on.

Furthermore, the system may get confused if the user enters the name of a city

that is also the name of a country, and vice versa.

3.2 Proposed Method

We propose a new strategy that handles New-Users issues and reduces the

rating matrix sparsity by incorporating the trust network into WNMTF Equation

(3.7). To perform that strategy, we impute a subset of missing ratings using the

trustees’ ratings. In reality, users may trust each other based on their ratings. We

assume if the user did not rate an item, then the rating of that item will be similar

to his/her trustees’ rating for that item. We impute each missing rating with the

average rating of trustees in his/her trust list. If none of the trustees rated that

item, we would keep the rating as a missing rating. By this method, we introduce

ratings to New-Users so the system can recommend items to them and add more

ratings to other users to reduce the sparsity; most trustee users are Heavy-Rater-

Users. In addition, the imputation process adds more ratings to Cold-Start-Users

who did not rate many items, which may help the recommendation system to

recommend items more accurately. Our proposed method is different from [24]

in the selection method of the missing ratings that are imputed, and the source

ratings that are used to calculate the imputed ratings of the missing ratings. We

name the proposed method Trust-WNMTF.

3.2.1 Objective Function

To recommend items to New-Users and alleviate the rating matrix R sparsity,

we replace rating matrix R with imputed rating matrix R′ such that,

r′ij =


rij if rij 6= 0∑

fr rij

|fr| if rij = 0,
∑

fr rij > 0, and|fr| > 0

0 otherwise

(3.8)
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where r′ij ∈ R′, rij ∈ R, fr is the set of trustees who rated item j, and |fr| is the

total number of trustees who rated item j.

In addition, W is redefined with W ′ based on Equation (3.8), which is similar

to Equation (2.3) in Chapter 2. By updating WNMTF(3.7) using Equations (3.8)

and (2.3), the objective function of Trust-WNMTF is:

f(R′,W ′, U, S, V ) = minU≥0,S≥0,V≥0‖W ′ ◦ (R′ − USV T )‖2
F (3.9)

3.2.2 Update Formula

The update formulae for Trust-WNMTF are as follows [75],

Uij ← Uij ·
[(W ′ ◦R′)V ST ]ij

{[W ′ ◦ (USV T )]V ST}ij
(3.10)

Vtij ← Vtij ·
[(W ′ ◦R′)TUS]ij

{[W ′ ◦ (USV T )]TUS}ij
(3.11)

Sij ← Sij ·
[UT (W ′ ◦R′)V ]ij

{UT [W ′ ◦ (USV T )]V }ij
(3.12)

3.2.3 Convergence Analysis

The proof of convergence of the update formulae (3.10), (3.11), and (3.12) is

similar to Section 2.2.3 when the items cluster constraint is omitted, i.e., γ is set

to zero.

3.2.4 Detailed Algorithm

In this section, the Trust-WNMTF algorithm is presented in Algorithm 3.1,

which describes the steps of performing Trust-WNMTF on the imputed rating ma-

trix R′. We perform this algorithm with two cases. In the first case, the All-Users

imputation case, all users are imputed. In the other case, only New-Users are

imputed, therefore, this case is called the New-Users imputation case. However,

it may take hundreds or thousands of iterations to converge to a local minimum.

Thus, in the algorithm, we set an additional stop criterion - the maximum itera-

tion count. In collaborative filtering, this value varies from 10 ∼ 100, which can

produce good results [75].
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Algorithm 3.1 Trust-WNMTF

Require:
User-Item rating matrix: R ∈ Rm×n;
Trust matrix: T ∈ Rm×m;
Column dimension of U : k;
Column dimension of V : l;
Number of maximum iterations: MaxIter;
Imputation Case: Case;

Ensure:
Imputed rating matrix: R′ ∈ Rm×n;
Factor matrices: U ∈ Rm×k, V ∈ Rn×l, and S ∈ Rk×l;

1: function Imputation(R, T , i, j)
2: find the user’s i trustees from the trust matrix T → Lt
3: for each trustee lt in Lt do
4: if rltj > 0 then
5: rijtemp = rijtemp + rltj
6: LtCounter = LtCounter + 1
7: end if
8: end for
9: if LtCounter > 0 then
10: r′ij =

rijtemp

LtCounter

11: else
12: r′ij = 0
13: end if
14: return r′ij
15: end function

1: Initialize U, V, and S with random values;
2: if Case == All-Users Imputation then
3: for each user ui do
4: for each item ej do
5: if rij == 0 then
6: r′ij = Imputation(R, T , i, j)
7: else
8: r′ij = rij
9: end if
10: end for
11: end for
12: else if Case = New-Users Imputation then
13: for each user ui do
14: if total ratings for ui == 0 then
15: for each item ej do
16: r′ij = Imputation(R, T , i, j)
17: end for
18: else
19: r′i: = ri:
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20: end if
21: end for
22: end if
23: Build weight matrix W ′ by Eq. (2.3);
24: Set iteration = 1 and stop = false;
25: while (iteration < MaxIter) and (stop == false) do

26: Uij ← Uij · [(W ′◦R′)V ST ]ij
{[W ′◦(USV T )]V ST }ij

27: Vij ← Vij · [(W ′◦R′)TUS]ij
{[W ′◦(USV T )]TUS}ij

28: Sij ← Sij · [UT (W ′◦R′)V ]ij
{UT [W ′◦(USV T )]V }ij

29: L← ‖W ′ ◦ (R′ − USV T )‖2
F

30: if L increases in this iteration then
31: stop = true;
32: Restore U, S, and V to their values in last iteration.
33: end if
34: end while
35: Return R′, U, S, and V .

3.2.5 Complexity

The computational complexity of Trust-WNMTF can be broken down into two

phases: imputation and WNMTF phase (updating U, V, and S).

There are three basic steps to preform the imputation in Trust-WNMTF which

need to be considered in the computational complexity. First, the time complexity

of searching for missing ratings is O(mn). On the other hand, the time complexity

of finding the trustees of all users is O(m2). Finally, the time complexity to obtain

the trustees ratings of the missing ratings is O(m(mn)). By combining the time

complexity of all imputation steps, the total of the time complexities is as follows,

TimeComplexity = O(mn) +O(m2) +O(m(mn)) (3.13)

where m is the total number of the users in the rating matrix R and n is the total

number of the items in the rating matrix R. In addition, the time complexity of

the imputation phase is considered in the worst case.

The time complexity of the imputation in Trust-WNMTF is quadratic. As

mentioned before, there are two imputation cases: All-Users and New-Users. The

time complexity of the All-Users imputation case is closer to the worst case of the

time complexity than the New-Users imputation case. With All-Users imputation
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case, we need to run the second term in Equation (3.13) with all users m; however,

with New-Users imputation case, the second step of the imputation should be

ran for New-Users only. We assume that NewUserNum � m. For the last

step of the imputation of the Trust-WNMTF method, the total number of the

trustees for each user TrusteeNum � m. However, as we mention with the

second imputation step, finding the trustees’ ratings is only for New-Users with

the New-Users imputation case. For large scale datasets, the imputation process

could be ran in parallel to reduce the computation time.

On the other hand, we suppose k, l � min(m,n), the time complexities of

updating U, V, and S in each iteration are all O(mn(k + l)) [75].

3.3 Experimental Study

We run three experiments for all users together and each user group. The first

is the the baseline method, i.e., the WNMTF Equation (3.7), which is considered

a Non-Imputation case. The second experiment is called the All-Users imputation

case where all users are imputed in the training set of Trust-WNMTF Equation

(3.9). The last experiment is called the New-Users imputation case; here, only

New-Users are imputed in the training set of Trust-WNMTF Equation (3.9). The

setup of k, l, and MaxIter parameters for the Trust-WNMTF algorithm is shown

in Table 2.3. The setup of FilmTrust dataset parameters is k = 3, l = 20, and

MaxIter = 10, in which they are set based on experiments.

With the All-Users Imputation case, the MAE of all users is almost equal

to/higher than MAE of the Non-Imputation case except for the Epinions dataset,

as we see in Table 3.1. To understand the reasons for these results, we need to

analyze the results of each user group.

The New-Users group MAE improves in All-Users Imputation case with all

datasets. The improvement ratio differs from one dataset to another. The Epin-

ions and Ciao datasets get the most improvement. There are two factors that

impact the results. The first is the difference in the percentage of the New-Users

ratings between the All-Users imputation and Non-Imputation cases. The largest

difference we observed is in the Epinions dataset at 7.5%, as we see in Figure 3.1.

The other datasets have a difference in the percentage that is lower than 1.25%, as
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Table 3.1: MAE results of all users and each user group (New-Users, Cold-Start-
Users, and Heavy-Rater-Users) for each imputation case (Non-Imputation, All-
Users Imputation, and New-User Imputation).

User Group/
Imputation Case

Non-Imp. All-Users Imp. New-Users Imp.

Ciao
All-Users 0.7911 0.7907 0.7530
New-Users 4.2796 1.2860 1.2649
Cold-Start-Users 0.7976 0.7893 0.7986
Heavy-Rater-Users 0.7431 0.7839 0.7453

CiaoDVD
All-Users 2.1810 2.1829 2.1566
New-Users 4.3050 4.1941 4.1934
Cold-Start-Users 1.0425 1.0861 1.0533
Heavy-Rater-Users 1.2042 1.2592 1.2206

Epinions
All-Users 1.3349 1.1549 1.1382
New-Users 3.9187 1.9562 1.9506
Cold-Start-Users 0.9472 0.9742 0.9716
Heavy-Rater-Users 1.0155 1.0603 1.0411

FilmTrust
All-Users 0.7289 0.7337 0.7173
New-Users 3.2304 2.5334 2.5274
Cold-Start-Users 0.7535 0.7477 0.7595
Heavy-Rater-Users 0.6845 0.7018 0.6849

shown in Figure 3.1. The second factor is the percentage of the New-Users ratings

after the imputation process since we cannot guarantee that all New-Users get im-

puted ratings in this step. The lowest percentage is observed in the Ciao dataset,

which is 0.18%, while the other datasets have a New-Users ratings percentage of

more than 1%, as shown in Figure 3.1. Even though the CiaoDVD dataset does

not have the smallest difference in the percentage of the New-Users between the

Non-Imputation and All-Users imputation cases, the CiaoDVD dataset has the

lowest improvement in MAE results of the New-Users group, as shown in Ta-

ble 3.1, because it has the highest percentage of the New-Users ratings after the

imputation process, which is 30.5%, as we see in Figure 3.1. The Cold-Start-Users

group results improve with the Ciao and FilmTrust datasets only. However, all

datasets get worse predictions with the Heavy-Rater-Users group after the All-

Users imputations process.
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Figure 3.1: New-Users ratings % in the test set before and after the imputation.

After we analyze the results for each group, we find that the MAE after the

All-Users Imputation process gets better for the New-Users group, worse for the

Heavy-Rater-Users group, and is in between for the Cold-Start-Users group. A

large difference in the percentages of the New-Users ratings between the Non-

Imputation and All-Users imputation cases leads to an improvement in the MAE

for the whole test set. This is observed in the Epinions dataset where 7.5% of

the New-Users’ ratings in the test set do not belong to the New-Users group after

the imputation process, as we see in Figure 3.1. However, the other datasets have

only a difference in the percentage of 1.5% or less, which results in a worse MAE

in the All-User imputation than in the Non-Imputation case.

In the second method, the New-Users Imputation case, we impute only New-

Users. All datasets get better results, as we see in Table 3.1. The results of the

New-Users group improve with all datasets and are slightly better than the All-

Users imputation case results. The improvement ratios of the New-Users group are

almost the same as the All-Users imputation case, and the reasons for improvement

are the same as well. However, the Cold-Start-Users group results are worse than

the Non-Imputation method in all datasets. With the Heavy-Rater-Users group,

the MAE increases even if only New-Users are imputed. Nevertheless, the increase

in MAE is much lower than the All-Users imputation case.
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In the New-Users Imputation case, the Epinions dataset gets the most im-

provement because 7.5% of the ratings of the New-Users group in test set do not

belong to the New-Users group after the imputation process, as we see in Figure

3.1, which is the largest percentage among other datasets. On the other hand, the

lowest ratio improvement is with the FilmTrust dataset because it has the lowest

difference in the New-Users group ratings percentages between Non-Imputation

and New-Users imputation cases, as we can see in Figure 3.1. The improvement

ratio with CiaoDVD is in between the FilmTrust and Ciao datasets. The difference

in the New-Users group ratings percentage is more in CiaoDVD than FilmTrust

and slightly more than Ciao datasets. However, CiaoDVD still suffers from the

highest percentage of the New-Users group ratings after the imputation process.

The Ciao dataset has a better result than the FilmTrust dataset because the

Ciao New-Users group gets more improvement than the FilmTrust New-Users

group. This happens because the Ciao dataset has a lower New-Users ratings

percentage after the imputation process than the FilmTrust dataset, as we see in

Figure 3.1.

In summary, the results of the Heavy-Rater-Users group is worse with both

imputation cases in all datasets, especially with the All-Users imputation case.

However, the results for the New-Users group improve with both imputation

cases, especially with the New-Users imputation. In fact, by using the impu-

tation process, the system can recommend items to New-Users. In all datasets,

the Cold-Start-Users groups get a worse MAE in the New-Users imputation case

than the Non-Imputation case. However, with the All-Users imputation case,

the Cold-Start-Users group in the Ciao and FilmTrust datasets get better results

while CiaoDVD and Epinions get worse results, which shows that imputing Cold-

Start-Users is sometimes beneficial. In Chapter 4, we will explore the factors that

impact Cold-Start-Users results.

3.3.1 Imputation Vs. WNMTF

In this section, we study the impact of the WNMTF on the imputed ratings.

In particular, we analyze whether or not the WNMTF reduces the MAE of the

imputed ratings. To test this, we calculate the MAE of a subset of test set ratings
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Table 3.2: The % of imputed ratings in test set.

Dataset % of ratings
Ciao 0.07 %
CiaoDVD 0.17 %
Epinions 0.80 %
FilmTrust 0.26 %

Figure 3.2: MAE results before and after WNMTF of the test set ratings that can
be imputed.

that can be imputed using the training set in two cases. The first case is before

WNMTF is applied. The MAE is calculated using the original ratings in the test

set and the imputed ratings in the training set for the same ratings. In the second

case, the MAE is calculated after applying WNMTF. We chose the New-Users

imputation case because it has the lowest MAE.

As we can see from Table 3.2, the percentages of the ratings that are in the

test set and are imputed are very low when compared with the total test set

ratings. The MAE results after applying the WNMTF are improved with all

datasets, except for Ciao as we can see in Figure 3.2, which has the lowest ratings

percentages that are imputed, and in the test set results shown in Table 3.2. The

Epinions dataset has the best improvement ratio among other datasets, as we see

in Figure 3.2, and the largest ratings percentages that are imputed and in the test

set results as shown in Table 3.2.
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Based upon the conclusions of our results, we can say that the MAE result

improves if the percentage of ratings that are imputed and in the test set exceeds

a certain threshold, such as 10% in our experiment. In addition, more percentages

of ratings are imputed and are in the test set results in a better improvement ratio

after applying WNMTF.

3.4 Summary

In this chapter, we proposed the Trust-WNMTF method to incorporate trust

network information into the WNMTF by utilizing the imputation. Our results

show that the Trust-WNMTF New-Users Imputation case is better than Non-

Imputation (WNMTF), especially when the dataset suffers from New-Users, but

worse at some others. On the other hand, the results of the Trust-WNMTF All-

User Imputation case indicate an impact of the error of the imputed ratings that

may be introduced to the system. In addition, the WNMTF reduces the MAE

of the subset from the test set that can be imputed when the percentage of that

ratings is large.

Copyright c© Fatemah Alghamedy 2019
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4 Influential Factors of Imputation with Trust Network Information
for Cold-Start Users

We propose an NMF-based approach to improve the Cold-Start-Users predic-

tions since Cold-Start-Users suffer from a high error in the results. The proposed

method utilizes the trust network information to impute a subset of the missing

ratings before NMF is applied. We propose three strategies for selecting the subset

of missing ratings that hold the imputed ratings in order to examine the influence

of the imputation with both item groups: Cold-Start-Items and Heavy-Rated-

Items; and we survey to find if the trustees’ ratings could improve the results

more than the other users. We analyze two factors that may affect the results

of the imputation: (1) the total number of imputed ratings, and (2) the average

of rating values in the training set before and after the imputation. Experiments

on four different datasets are conducted to examine the proposed approach. The

results show that our approach improves the predicted ratings of the Cold-Start-

Users and alleviates the impact of the imputed ratings.

4.1 Problem Description

Generally, the Cold-Start-Users suffer from a high error in the prediction results

compared to Heavy-Rater-Users, as we see in Table 3.1, either with WNMTF or

Trust-WNMTF. In Chapter 3, all users are imputed with all available imputed

ratings in the proposed method, Trust-WNMTF All-Users, in order to improve

the accuracy of the rating prediction. Nevertheless, some datasets’ prediction of

Cold-Start-Users did not improve with the imputation even though some others

improved. In this chapter, we intend to study the behavior of the Cold-Start-Users

and Heavy-Rater-Users groups with the imputation process and we analyze the

factors that affect the prediction accuracy when the imputation process is applied.
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Table 4.1: The average of the rating values in the training set of the original rating
matrix R for whole dataset and each user group.

Dataset
Whole
Dataset

Cold-Start-
Users

Heavy-
Rater-Users

Rating
Median Value

Ciao 4.1483 4.2164 4.1442 3

CiaoDVD 4.0711 4.2860 3.9369 3

Epinions 3.8742 3.9126 3.8640 3

FilmTrust 3.0028 3.1219 2.9954 2.75

As shown in Table 4.1, the average of the Cold-Start-Users rating values in the

training set is higher than the whole dataset rating value average and the Heavy-

Rater-Users rating value average in all datasets. In addition, the average of the

training set ratings of all users is higher than the median value of the ratings.

This indicates that users tend to rate items that they like more than items that

they do not like. This could be for several reasons. First, in the e-commerce era, it

is easy for users to know all the information they need about the item before they

make a decision whether to buy it. In addition, users tend to trust their choices.

Further, users tend to buy what they know, such as a certain brand, instead of

taking a risk and buying what they don’t know. In reality, users did not try a lot

of options to give a fair rating to items.

In general, Cold-Start-Users have higher MAE because of several reasons. The

first reason is the lack of ratings in the training set. Even though the average of

rating values of the Cold-Start-Users is the highest compared to other user groups,

it does not have a significant influence on the whole dataset rating value average

because of the lack of Cold-Start-Users ratings in the training set. In our proposed

method, we have two goals: (1) improve the Cold-Start-Users predictions, and (2)

limit the impact of the imputed ratings. This could be done by increasing the

total number of the Cold-Start-Users ratings and simultaneously increasing the

average of the training set rating values through the imputed ratings.

4.2 Proposed Method

We propose a new strategy to improve the Cold-Start-Users predictions by

incorporating the trust information into MNMTF(3.7). Even though the pro-

posed method is similar to Trust-WNMTF in Chapter 3, the proposed method
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in this chapter concentrates on restricting the negative impact of imputed ratings

that appear clearly in Trust-WNMTF, especially with Heavy-Rater-Users. In ad-

dition, the proposed method aims to increase the accuracy of Cold-Start-Users

predictions.

To perform the proposed method, we need to determine the source ratings of

the imputed rating, which are defined as a subset of the real ratings that are used

to calculate the value of the imputed ratings. Each user group is imputed with a

limited number of imputed ratings. The items that have been rated by the user’s

trustees are considered as candidate items that may be imputed for that user

(trustor). In addition, the subset of items from candidate items that are selected

to hold the imputed ratings should be chosen carefully. To do that, we count the

total number of the ratings for each candidate item from all users and the total

number of the ratings for the item from the user’s trustees only.

We propose three methods to select the imputed items from the candidate

items set. The first method is called the Trustee case in which the candidate

items are ordered based on the total number of the ratings for the items from the

user’s trustees descendingly, then by the total number of the ratings for the item

from all users ascendingly in case of tie values. The second method is the CSI case

in which the candidate items are ordered based on the total number of the ratings

for the item from all users ascendingly, then the tie values are ordered based on

the total number of the ratings for the items from the user’s trustees descendingly.

The last method is called HI because the candidate items are ordered based on

the total number of the ratings for the item from all users descendingly, then by

the total number of the ratings of the items from the user’s trustee descendingly

as well. Table 4.2 shows the summary of the three cases. The purpose of these

methods is to examine the influence of the imputation with both item groups:

Cold-Start-Items and Heavy-Rated-Items. In addition, we want to find if the

trustees’ ratings could improve the results more than the other users’ ratings.

The source ratings for each imputed rating are all trustees’ ratings for the

selected item that will be imputed. However, the value of the imputed ratings

equals the average of the rating values of the imputed user’s trustees for that item

(source ratings). In addition, we set a total number of the imputed ratings for
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Table 4.2: The summary of the three proposed cases.

Rating Source
All Users User’s trustee only

Order priority Order type Order priority Order type
Trustee 2 acs. 1 desc.

CSI 1 acs. 2 desc.
HI 1 desc. 2 desc.

each user group to limit the error that is introduced by the imputed rating. To

do that, three parameters that define the total number of the imputed ratings for

each user group need to be set in advance.

4.2.1 Objective Function

In the proposed method, we replace the rating matrix R in Equation (3.7) with

the imputed rating matrix R′, such that,

r′ij =


rij if rij 6= 0∑

fr rij

|fr| if rij = 0,
∑

fr rij > 0, |fr| > 0, and meet the conditions

0 otherwise

(4.1)

where r′ij ∈ R′, rij ∈ R, and fr is the set of trustees of users who rated at least

one item, and |fr| is the total number of trustees who rated at least once. In the

proposed method, the first condition is that each user’s group has a limited number

of imputed ratings. This condition must be satisfied so that the total number of

the imputed ratings for each user does not exceed the parameter settings. The

second condition is that the imputed item should belong to the corresponding case

(Trustee, CSI, or HI) that is applied.

In addition, W ′ in Equation (2.3) is defined based on Equation (4.1). When we

update Equation (3.7) by using Equations (4.1) and (2.3), the objective function

is similar to Equation (3.9), Chapter 3, such that,

f(R′,W ′, U, S, V ) = minU≥0,S≥0,V≥0‖W ′ ◦ (R′ − USV T )‖2
F (4.2)

We name the proposed method, Trust-WNMTF++.

54



4.2.2 Update Formula

The update formulae are the same as Trust-WNMTF, Section 3.2.2 in Chapter

3.

4.2.3 Convergence Analysis

The convergence proof of the update formulae is the same as Section 3.2.3 in

Chapter 3, as well.

4.2.4 Detailed Algorithm

Algorithm 4.1 depicts the steps of performing Trust-WNMTF++ on the im-

puted rating matrix R′. As mentioned previously, the algorithm is performed with

three cases: Trustee, CSI, and HI. However, it may take hundreds or thousands

of iterations to converge to a local minimum. Thus, in the algorithm, we set an

additional stop criterion - the maximum iteration count. In collaborative filtering,

this value varies from 10 ∼ 100, which can produce good results [75].

Algorithm 4.1 Trust-WNMTF++

Require:
User-Item rating matrix: R ∈ Rm×n;
Trust matrix: T ∈ Rm×m;
Column dimension of U : k;
Column dimension of V : l;
Total number of the imputed ratings for New-User group: NUIR ;
Total number of the imputed ratings for Cold-Start-User group: CSUIR;
Total number of the imputed ratings for Heavy-Rater-User group: HUIR;
Number of maximum iterations: MaxIter;
Imputation Case: ImpCase;

Ensure:
Imputed rating matrix: R′ ∈ Rm×n;
Factor matrices: U ∈ Rm×k, V ∈ Rn×l and S ∈ Rk×l;

1: Initialize U, V, and S with random values
2: Set R′ = R
3: for each user ui do
4: find the user’s i trustees from the trust matrix T → Lt
5: if count(Lt) > 0 then
6: find all items that have been rated by Lt → candidateItems
7: if count(candidateItems) > 0 then
8: for each candidateItems cj do
9: calculate the average of the rating values of Lt users for item
cj→ ImputedRatingV alue
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10: count the total number of ratings for cj from all users
→ totalRatingsAllUsers

11: count the total number of ratings for cj from Lt
→ totalRatingsTrusteesUsers

12: end for
13: if ImpCase == Trustee then
14: Order candidateItems based on totalRatingsTrusteesUsers de-

scendingly, then for the tie values
15: Order candidateItems based on totalRatingsAllUsers ascend-

ingly
16: else if ImpCase == CSI then
17: Order candidateItems based on totalRatingsAllUsers ascend-

ingly, then for the tie values
18: Order candidateItems based on totalRatingsTrusteesUsers de-

scendingly
19: else if ImpCase == HI then
20: Order candidateItems based on totalRatingsAllUsers descend-

ingly, then for the tie values
21: Order candidateItems based on totalRatingsTrusteesUsers de-

scendingly
22: end if
23: if total ratings number of ui == 0 then
24: topImpRatings = NUIR
25: else if total ratings number of ui > 0 and total ratings number of

ui < 5 then
26: topImpRatings = CSUIR
27: else if total ratings number of ui > 4 then
28: topImpRatings = HUIR
29: end if
30: Set ImputedRatingCounter = 0
31: Set candidateItemsIndex = 1
32: while ImputedRatingCounter < topImpRatings do
33: j = item index of candidateItems(candidateItemsIndex)
34: if ri,j == 0 then
35: r′i,j = ImputedRatingV alue(candidateItemsIndex)
36: ImputedRatingCounter = ImputedRatingCounter + 1
37: end if
38: candidateItemsIndex = candidateItemsIndex+ 1
39: end while
40: end if
41: end if
42: end for
43: Build weight matrix W ′ by Eq. (2.3);
44: Set iteration = 1 and stop = false;
45: while (iteration < MaxIter) and (stop == false) do

46: Uij ← Uij · [(W ′◦R′)V ST ]ij
{[W ′◦(USV T )]V ST +U}ij

47: Vij ← Vij · [(W ′◦R′)TUS
{[W ′◦(USV T )]TUS+V }ij
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48: Sij ← Sij · [UT (W ′◦R′)V ]ij
{UT [W ′◦(USV T )]V }ij

49: L← ‖W ′ ◦ (R′ − USV T )‖2
F

50: if L increases in this iteration then
51: stop = true;
52: Restore U, V, and S to their values in last iteration
53: end if
54: end while
55: Return R′, U, V , and S

4.2.5 Complexity

The computational complexity of Trust-WNMTF++ is similar to the compu-

tational complexity of Trust-WNMTF in Section 3.2.5. However, an extra step

needs to be added to the time complexity which is the selection of the holder items.

Two totals must be counted. The first one is the total number of the ratings from

all users, O(mn). This step could be done in searching of the missing ratings step.

The second one is the total of number of the ratings from the user’s trustees only,

O(m(mn)). This step can be done in the process of obtaining the trustees ratings

of the missing ratings step. The time complexity of sorting the items is O(mn2).

By combining the time complexity of all imputation steps of Trust-WNMTF++,

the time complexity is as follows,

TimeComplexity = O(mn) +O(m2) +O(m(mn)) +O(mn2) (4.3)

where m is the total number of the users in the rating matrix R and n is the total

number of the items in the rating matrix R. In addition, the time complexity of

the imputation phase is considered in the worst case.

4.3 Experimental Study

Table 4.3: The best parameters setting of the proposed method with the best case
of each dataset.

Dataset NUIR CSUIR HUIR
Ciao 12 5 1
CiaoDVD 8 2 3
Epinions 3 4 2
FilmTrust 10 2 2
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In this section, we present and discuss our experimental results. Our proposed

method is compared with WNMTF 3.7 and with both proposed cases of the Trust-

WNMTF approach in Chapter 3, All-Users and New-Users imputation, too. The

parameters are set the same as in Chapter 3. In addition, Table 4.3 shows the

additional parameters that must be set for the proposed method. Because the

purpose of this chapter is to focus on Cold-Start-Users more than New-Users as in

Chapter 3, the datasets are re-split to ensure sufficient availability of Cold-Start-

Users.

Table 4.4: The MAE of WNMTF, Trust-WNMTF cases: All-Users and New-
Users, and the proposed method Trust-WNMTF++ with the three cases (Trustee,
CSI, and HI).

Method/Dataset Ciao CiaoDVD Epinions FilmTrust
Previous Methods

WNMTF 0.8237 1.6503 1.0816 0.7288
Trust-WNMTF All-Users 0.8305 1.6721 1.0751 0.7439
Trust-WNMTF New-Users 0.8224 1.6462 1.0760 0.7269

Proposed Methods
Trust-WNMTF++ Trustee 0.8025 1.6348 1.0382 0.7206
Trust-WNMTF++ CSI 0.8029 1.6368 1.0372 0.7200
Trust-WNMTF++ HI 0.8127 1.6411 1.0448 0.7226

Table 4.5: The percentage of each item group that is imputed in the training set
with the three proposed cases: Trustee, CSI, and HI (CSI = Cold-Start-Items
group; HI = Heavy-Rated-Items group).

Proposed Case Trustee Case CSI Case HI Case
Item Group CSI HI CSI HI CSI HI
Ciao 49.96% 50.04% 84.63% 15.37% 4.16% 95.84%
CiaoDVD 42.26% 57.74% 95.75% 4.25% 4.18% 95.82%
Epinions 16.47% 83.53% 57.88% 42.12% 0.86% 97.38%
FilmTrust 32.90% 67.10% 51.16% 48.84% 2.15% 97.85%

In general, the results of the three cases of our proposed method are better

than WNMTF and Trust-WNMTF: All-Users and New-Users with all datasets are

shown in Table 4.4. However, the results of the HI case are the worst compared to

Trustee and CSI cases with all datasets. Furthermore, Ciao and CiaoDVD have

better results with the Trustee case; and, Epinions and FilmTrust results are better

with the CSI case. We noticed that the percentage of the Heavy-Rated-Items
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imputed in Epinions and FilmTrust with the Trustee case is very high compared

to the other datasets, as we see in Table 4.5. This indicates that imputing Heavy-

Rated-Items limits the advantages of the imputations and introduces large error.

In addition, we noted that the lowest improvement of the proposed method is with

CiaoDVD because of the existence of the New-Items where CiaoDVD has the most

percentage of New-Items in the test set, especially with Cold-Start-Users group,

as we see in Figure 4.1.

Figure 4.1: The percentage of New-Items ratings with each users group in the test
set.

In Table 4.6, the results of each user group are shown with the previous methods

and the best case of the proposed method, Trust-WNMTF++, for each dataset

to examine each users group behavior with the imputation.

The New-Users group gets slightly better results than the Trust-WNMTF New-

Users method, but it is worse in the Ciao dataset. This could be because the

percentage of the imputed New-Users ratings in the test set in the Ciao dataset is

the lowest among other datasets, as we see in Table 4.7.

The results of the Heavy-Rater-Users with the proposed method are the best

compared to other methods even though the Non-Imputation method, i.e., WN-

MTF, of all datasets but not with FilmTrust, as shown in Table 4.6. This is be-

cause the averages of the rating values in the training set for the whole FilmTrust

dataset and Heavy-Rater-Users are the lowest compared to other datasets. With

FilmTrust, the best results of Heavy-Rater-Users is with WNMTF, and increasing

the average of the training rating values after the imputation leads to more errors

in the low ratings values. This issue will be explained in more detail in Chapter

5, Section 5.3.1. On the other hand, the worst result of Heavy-Rater-Users is

obviously in the Trust-WNMTF All-Users method (as shown in Table 4.6) and

markedly improved with the proposed method, Trust-WNMTF++, compared to

59



Table 4.6: The MAE for whole dataset and each user group of WNMTF, Trust-
WNMTF: All-Users and New-Users, and the best case for each dataset of the
proposed method Trust-WNMTF++.

Methods All-Users New-Users
Cold-
Start-
Users

Heavy-
Rater-
Users

Ciao
WNMTF 0.8237 4.4118 0.8345 0.7452

Trust-WNMTF All-User 0.8305 1.4235 0.8399 0.7715

Trust-WNMTF New-User 0.8224 1.3615 0.8345 0.7453

Trust-WNMTF++ Trustee 0.8025 1.3999 0.8118 0.7438
CiaoDVD

WNMTF 1.6503 4.3433 1.2397 1.0612

Trust-WNMTF All-User 1.6721 4.2832 1.2722 1.1122

Trust-WNMTF New-User 1.6462 4.2830 1.2442 1.0689

Trust-WNMTF++ Trustee 1.6348 4.2824 1.2302 1.0606
Epinions

WNMTF 1.0816 3.9203 1.0770 0.9316

Trust-WNMTF All-User 1.0751 1.9541 1.0888 0.9769

Trust-WNMTF New-User 1.0760 1.9495 1.0964 0.9543

Trust-WNMTF++ CSI 1.0372 1.9297 1.0529 0.9311
FilmTrust

WNMTF 0.7288 3.3677 0.7326 0.6455

Trust-WNMTF All-User 0.7439 2.7780 0.7487 0.6679

Trust-WNMTF New-User 0.7269 2.7735 0.7324 0.6463

Trust-WNMTF++ CSI 0.7200 2.7639 0.7242 0.6478

Trust-WNMTF All-Users. Even though the Trust-WNMTF New-Users method

imputes only New-Users, Heavy-Rater-Users results are worse than the results of

the Non-Imputation case, WNMTF. On the contrary, Heavy-Rater-Users results

improve slightly with the proposed method, Trust-WNMTF++, compared to the

Trust-WNMTF New-Users method, but the improvement of the accuracy is no-

table for the Epinions dataset. This is because the worst descent in the accuracy

of the results is within Epinions among other datasets. We can conclude that

the proposed method can handle the negative impact of the imputation on the

Heavy-Rater-Users.

The Cold-Start-Users accuracy results improve compared to the WNMTF and

Trust-WNMTF: All-Users and New-Users. When the proposed method, Trust-

WNMTF++, is compared with the Non-Imputation method, WNMTF, we notice
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Table 4.7: The percentage of the ratings for each users group in the test set before
and after the imputation.

User Group New-Users Cold-Start-Users Heavy-Rater-Users
Imputation Case Before After Before After Before After

Ciao 0.05% 0.01% 86.43% 2.54% 13.52% 97.45%
CiaoDVD 13.92% 13.63% 73.95% 50.40% 12.12% 35.98%
Epinions 1.29% 0.43% 76.93% 23.77% 21.78% 75.80%
FilmTrust 0.30% 0.23% 86.19% 49.01% 13.50% 50.76%

Figure 4.2: New-User and Cold-Start-User groups information in the training set
with the best case of Trust-WNMTF++ for each dataset.

that there is a proportional relationship between the percentage of the total num-

ber of imputed Cold-Start-Users in the training set and the percentage of the

accuracy increase of Trust-WNMTF++, as we see in Figure 4.2 and Table 4.6.

For example, the Ciao dataset has the highest percentage of accuracy improvement

and the highest percentage of the imputed Cold-Start-Users in the training set,

as well. On the other hand, CiaoDVD has the lowest percentage of the improve-

ment in the results and the lowest percentage of the imputed Cold-Start-Users in

the training set, too. However, when the proposed method is compared to Trust-

WNMTF New-Users, the datasets that have worse results with Trust-WNMTF

New-Users and a high percentage of the imputed Cold-Start-Users in the training

set with Trust-WNMTF++ get a better result than other datasets. For exam-
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ple, even though Ciao has the highest percentage of the imputed Cold-Start-Users

in the training set, Epinions gets a better percentage of accuracy improvement

than Ciao because Epinions gets worse MAE with the Trust-WNMTF New-Users

method than Ciao. This is the same with CiaoDVD and FilmTrust datasets.

4.3.1 Influence of the Rating Value Average

Table 4.8: The average of the rating values in the training set for the whole dataset
with WNMTF, Trust-WNMTF: All Users and New-Users, and the best case of
the proposed method Trust-WNMTF++.

Dataset WNMTF
Trust-WNMTF

All-Users
Trust-WNMTF

New-Users
Trust-WNMTF++

Ciao 4.1483 4.1870 4.1496 4.1569

CiaoDVD 4.0711 3.7887 4.0050 4.0720

Epinions 3.8742 3.8314 3.8382 3.9129

FilmTrust 3.0028 2.9376 2.9957 3.0032

In this section, we analyze the influence the rating value average of the training

set has on the accuracy of the results, particularly with Cold-Start-Users since

this chapter aims to improve the Cold-Start-Users results. The training set could

refer either to only the original ratings as in the WNMTF method or to original

and imputed ratings together as in the Trust-WNMTF and Trust-WNMTF++

methods.

As we see in Table 4.1, the average of the Cold-Start-Users original rating

values in the training set is higher than the original rating value average of the

whole dataset and Heavy-Rater-Users with all datasets. In addition, the rating

value average of the training set with the Trust-WNMTF All-Users imputation

case is the lowest among other methods in all datasets except Ciao, as shown in

Table 4.8. Furthermore, we notice that Cold-Start-Users in the Ciao dataset has

the lowest increase in MAE after the Trust-WNMTF All-Users imputation among

other datasets, as we see in Table 4.6, which could be because the rating value

average did not decrease as in other datasets compared to WNMTF.

With the Trust-WNMTF New-Users imputation case, all datasets have a higher

rating value average of the training set than the Trust-WNMTF All-Users impu-

tation case except Ciao, but it is higher than WNMTF (Table 4.8). However, the
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Epinions dataset gets the lowest increase in the rating value average among other

datasets, as we see in Table 4.8. In addition, the Cold-Start-Users result is worse

with the Trust-WNMTF New-Users imputation than with the Trust-WNMTF

All-Users imputation case only in Epinions dataset compared to other datasets

(Table 4.6). This could be because of the impact of the average of the training set

after the imputations.

The highest average of rating values is with the proposed method, Trust-

WNMTF++, in all datasets except Ciao, which is the next highest, as we see in Ta-

ble 4.8. In addition, the best prediction ratings results is with Trust-WNMTF++,

as we see in Table 4.6. This indicates that the average of the rating values in the

training set has an important influence on the accuracy of the rating prediction.

Even though the highest rating value average of Ciao datasets is with Trust-

WNMTF All-Users, the accuracy result is not the best. This could be due to the

huge gap between the average of original rating values, i.e., WNMTF method,

and the highest average of rating values that may result in introducing error. This

denotes the need to control the increase in the average rating values of the training

set by utilizing imputed ratings.

We can conclude that increasing the average of the rating values in the training

set through the imputed ratings has a strong influence on increasing the accuracy

results of Cold-Start-Users. This is because the Cold-Start-Users has a higher

average of the rating values in the training set than in the other users group.

However, the increase ratio in the average of the rating values should be limited

compared to the original ratings in the training set.

4.3.2 Parameter Settings

As mentioned earlier, each user is imputed with a limited number of imputed

ratings based on the group that the user belongs to. In our experiment, we set

the maximum imputed ratings for New-Users to 20, Cold-Start-Users to 5, and

Heavy-Rater-Users to 3 imputed ratings. Table 4.3 shows the total number of the

imputed ratings for each users group that results in the lowest MAE for the whole

dataset.
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For the New-Users group, there is an inverse relationship between the per-

centage of New-Users in the training set (Figure 4.2) and the best total of im-

puted ratings of New-Users NUIR (Table 4.3). The Ciao dataset has the lowest

New-Users percentage and the highest NUIR, and vice versa with the Epinions

dataset. Despite the fact that the New-Users percentages in CiaoDVD and Epin-

ions datasets are close, the values of NUIR are not close to each other. This

could be because the percentage of New-Users that cannot be imputed is huge in

CiaoDVD compared to other datasets, as shown in Figure 4.2.

In addition, there is an inverse relationship between the percentage of ratings

in the test set that belong to New-Users that have been imputed and the best

total of imputed ratings of New-Users NUIR, as we see in Tables 4.3 and 4.7.

Ciao dataset has the lowest percentage of the New-Users ratings in the test set

that belong to imputed New-Users, 0.04%, and the highest NUIR among other

datasets, then FilmTrust comes after Ciao. On the other hand, Epinions has

the highest percentage of the New-Users ratings in the test set that belongs to

New-Users that have been imputed, 0.89%, and the lowest NUIR among other

datasets, then CiaoDVD as we see in Tables 4.3 and 4.7.

With the Cold-Start-Users group, there is a proportional relationship between

the percentage of imputed Cold-Start-Users in the training set and the total im-

puted ratings for each Cold-Start-Users, CSUIR, as we see in Figure 4.2 and

Table 4.3. For example, the highest imputed Cold-Start-Users in the training set

is in the Ciao and Epinions datasets; and they have the highest CSUIR values

among other datasets. On the other hand, CiaoDVD and FilmTrust have the

lowest percentage of imputed Cold-Start-Users in the training set, and they have

the lowest CSUIR value among other datasets. This could be because the rating

prediction of the non-imputed Cold-Start-Users may hurt via imputed ratings of

other imputed Cold-Start-Users. For that, we need to reduce CSUIR if there is

a high percentage of Cold-Start-Users that cannot be imputed.
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Table 4.9: The average of rating values in the training set with/without imputing
Heavy-Rater-Users.

Parameter Setting Average of
NUIR CSUIR HUIR rating value

Ciao
12 5 1 4.1569

12 5 0 4.1548
CiaoDVD

8 2 3 4.0720

8 2 0 4.0717
Epinions

3 4 2 3.9129

3 4 0 3.9035
FilmTrust

10 2 2 3.0032

10 2 0 3.0042

Even though the Cold-Start-Users group results improve with the proposed

method and the Heavy-Rater-Users results do not improve, both Cold-Start-Users

and Heavy-Rater-Users groups are imputed. This could be for several reasons.

First, as mentioned before, imputing Cold-Start-Items improves the results more

than imputing Heavy-Rated-Items. Because the candidate items are ordered based

on the total ratings from all users ascendingly, imputing Heavy-Rater-Users allows

us to impute more Cold-Start-Items. In addition, as we see in Table 4.9, the

average of the rating values in the training set increases when Heavy-Rater-Users

are imputed, which is one of the factors that results in a lower MAE. However,

it decreases in the FilmTrust dataset when Heavy-Rater-Users are imputed even

though it results in a lower MAE. This is because the average of the rating values

for the whole dataset and Cold-Start-Users in the training set are the closest to

the median value of the rating values among other datasets, as we see in Table

4.1.

There is an inverse relationship between the percentage of imputed Cold-Start-

Users in the training set (Figure 4.2) and the best setting of the imputed ratings of

Heavy-Rater-User, HUIR, as shown in Table 4.3. In addition, there is an inverse

relationship between the best setting of the imputed ratings of Cold-Start-User,

CSUIR, and HUIR. The Ciao dataset has the highest percentage of imputed
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Cold-Start-Users in the training set, the highest CSUIR value, and the lowest

HUIR value. On the other hand, the CiaoDVD dataset has the lowest percentage

of imputed Cold-Start-Users in the training set, the lowest CSUIR value, and the

highest HUIR value. The FilmTrust and Epinions datasets are in between. In

general, the total of the best setting of the imputed ratings of Cold-Start-User and

Heavy-Rater-Users together in our experiment with all datasets are in the same

range, which are between four and six imputed ratings in total.

Generally, we conclude that the total number of the imputed ratings overall

for all user groups should be limited. For New-Users group, if there is a large

percentage of New-Users in the training set, then NUIR should be a small value

and vice versa. For Cold-Start-Users, less percentage of imputed Cold-Start-Users

in the training set requires fewer of the total imputed ratings for each Cold-Start-

Users, CSUIR, in order to control the imputation error that may be introduced

via imputed ratings to the non-imputed Cold-Start-Users. Because increasing the

average of the rating values in the training set plays an important role in im-

proving accuracy, imputing Heavy-Rater-Users is one way to increase the average.

However, if the Cold-Start-Users are imputed with a large total number of the

imputed ratings, CSUIR, then the Heavy-Rater-Users should be imputed with a

small total number of imputed ratings, HUIR, and vice versa.

4.3.3 Summary of Results

In conclusion, handling the lack of the Cold-Start-Users and Cold-Start-Items

ratings by imputation could improve the rating prediction for each. One must

consider that each imputed rating affects the average of the training rating values,

which subsequently affects the prediction performance. In our experiment, the

Cold-Start-Users ratings percentage in the test set is really high, which we be-

lieve represents the reality. On the other hand, the Cold-Start-Users rating value

average in the training set does not have much effect on the whole training set

rating average due to the lack of the ratings. Increasing the average of the rat-

ing values provides an opportunity to increase the accuracy of Cold-Start-Users.

We suggest using the proposed method with the systems that predict ratings of

Cold-Start-Users more than Heavy-Rater-Users.
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4.4 Summary

In this chapter, we proposed a method to incorporate the trust network in-

formation into the WNMTF using the imputation process to improve the Cold-

Start-Users and Heavy-Rater-Users prediction results compared to WNMTF and

Trust-WNMTF. We proposed three strategies to select the subset of missing rat-

ings to impute in order to examine the influence of the imputation with both item

groups: Cold-Start-Items and Heavy-Rated-Items; and find if the trustees’ ratings

could improve the results more than the other users.

Our results show that imputing Cold-Start-Items improves the results of Cold-

Start-Users with the Trust-WNMTF++ method, especially when the dataset suf-

fers from Cold-Start-Users. However, the New-Users results are slightly better

with most datasets. The error that was introduced from previously proposed

methods is controlled in the proposed method. However, two factors must be

taken into account: the total number of the imputed ratings, and the average of

the ratings in the training set after the imputation.

Copyright c© Fatemah Alghamedy 2019

67



5 Selective Imputation Strategies Based on Fused Factored Matrices

In this chapter, we propose a selective imputation NMF-based method that

fuses the factored original rating matrix and the factored imputed rating matrix

into one system. The outputs of the factored matrices provide four different ways

to calculate the predicted ratings, which are called sub-predicted ratings. Our

proposed method is capable of predicting the rating by utilizing either the im-

puted users, or imputed items, or both in order to limit the errors that may be

introduced from the imputed ratings. We proposed five strategies to calculate the

final predicted ratings from the sub-predicted ratings. The prediction results of

the rating values that are not close to the average of the rating values could be en-

hanced by utilizing the proposed method. Experiments on four different datasets

were conducted to examine the proposed approach. The results show that our

approach improves the predicted rating, especially with Max Value strategy.

5.1 Problem Description

Even though the previously proposed methods in Chapters 3 and 4 showed

that the imputation improves the predicted rating accuracy in general, there are

some predicted ratings that have better results without the imputation method.

This is because the imputation introduces errors to the system that negatively

impact some predicted ratings results. In fact, the imputation process involves

imputing the two parts of the recommendation system: users and items. Even

though the users are imputed basically in the proposed methods in Chapters 3

and 4, the items are imputed as a consequence of the user imputation, and this is

the same with Chapter 2 in which the users are imputed as a consequence of the

New-Items imputation.

In addition, despite that the imputed ratings are limited in Trust-WNMTF++

in Chapter 4 to control the error, the parameter settings may be considered an

issue because there is no specific strategy to set the parameters for each dataset

without running experiments that may cost time and resources.

68



Imputing either the user or item could limit the error that is introduced from

the imputed ratings. To predict a rating with an imputed user or imputed item

only, we need to utilize the feature matrices of the imputed users or imputed items

generated after the WNMTF is applied to the imputed rating matrix R′.

Furthermore, some experiments, for example in Chapter 2, show that the best

prediction results are for rating values that are around the average of the imputed

rating values. Therefore, the prediction results of rating values that are not close

to the average of the imputed rating values are worse than others regardless of the

percentage of the rating value in the test set; the percentage of the rating value in

this test set does not have as significant of an effect as the average of the imputed

rating values. In this chapter, we extend the experiment to study the effect of

the the average of the rating values on the accuracy since the imputed ratings are

considered as a subset of the all ratings in the training set.

We propose a method to conduct selective imputation that fuse the factored

original rating matrix and the factored imputed rating matrix into one recom-

mendation system. Our proposed method is capable of predicting the ratings by

utilizing the feature matrix of the original users ratings and the original items

ratings or substituting them with either the feature matrix of the imputed user

or feature matrix of imputed items, or both in order to limit the error that may

be introduced from the imputed ratings. The selected feature matrices in the

proposed method could be identical for all predicted ratings or not: for each pre-

dicted rating, the U and V rows could be selected either from feature matrices of

imputed rating matrix R or feature matrices of imputed rating matrix R′. The

prediction results of rating values that are not close to the average of the rating

values could be enhanced by utilizing the proposed method.

5.2 Proposed Method

In the proposed method, we aim to utilize the imputed ratings in a different

way than the previously proposed methods in Chapters 2, 3, and 4. We propose a

new method that calculates the predicted ratings in four different ways that utilize

the feature matrices of the users and items either before or after the imputation

to generate predicted ratings. Basically, the matrix factorization, i.e., WNMTF

69



method, is performed twice to generate the feature matrices of the users and items.

The first performance is with the original rating matrix R, and the second is with

the imputed rating matrix R′ in which all available imputed ratings for all users

are imputed. The imputed ratings are obtained using the trust network as we

proposed in Chapter 3 with the All-Users Imputation case. Equation (5.1) shows

the outputs of the matrix factorization with the rating matrix R, and Equation

(5.2) shows the outputs of the matrix factorization with the imputed rating matrix

R′.

Rm×n ≈ Urm×k
· Srk×l

· V T
rn×l

(5.1)

R′m×n ≈ Utm×k
· Stk×l

· V T
tn×l

(5.2)

The outputs of the matrix factorization are six matrices; four of them are

feature matrices, two of them describe the users: Ur and Ut such that Ur holds the

features of the users based on the users’ original ratings and Ut holds the features

of the users based on the original and all available imputed ratings of all users.

In addition, there are two features matrices that describe the items: Vr and Vt in

which Vr holds the features of the items using the items original ratings, and Ut

holds the features of the items using the original and all available imputed ratings

of the items. It is important to point out that even though the users are imputed

basically in the proposed method, the items are imputed as a consequence of the

user imputation.

By utilizing Ur, Ut, Vr, and Vt feature matrices from Equations (5.1) and (5.2),

we can calculate the predicted ratings in four different ways. The first way is

when no imputation method is involved either with users or items feature matrices

generation (Equation (5.3)); or both users and items feature matrices result from

the imputed rating matrix, R′, as we see in Equation (5.6). The third and fourth

ways are when one feature matrix (either of the users or the items) results from

the imputed rating matrix R′ and another feature matrix is not, as we see in

Equations (5.4) and (5.5).

X1 = Ur · Sr · V T
r (5.3)

X2 = Ur · (Sr + St)/2 · V T
t (5.4)

X3 = Ut · (Sr + St)/2 · V T
r (5.5)
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X4 = Ut · St · V T
t (5.6)

where each X holds the predicted ratings for the whole dataset. For each training

rating and test rating, there are four predicted ratings, which are called sub-

predicted ratings.

Figure 5.1: The classes of the sub-predicted ratings with the source category.

We classify the sub-predicted ratings into two different categories. The first

category is based on the source of the sub-predicted ratings. There are four classes

in this category. The first class is X1 when the sub-predicted ratings result from

Ur and Vr. The second is when the sub-predicted ratings result from Ur and

Vt, which is called X2 class. The third class is X3 in which the sub-predicted

ratings result from Ut and Vr, and the last class is X4 when Ut and Vt are used to

calculate the sub-predicted ratings. We call this category the source category of

the sub-predicted ratings and Equations (5.3), (5.4), (5.5) and (5.6) represent this

category. In addition, Figure 5.1 illustrates the four classes of the source category,

as well.

The second category is based on the value of the sub-predicted ratings, X1,

X2, X3,, and X4, compared to each other for each training and test rating. This

category is named the value category. There are three classes under this category:

the maximum value of sub-predicted ratings, the minimum value of non-zero sub-

predicted ratings, and the ”in-between” maximum and minimum value. Each sub-

predicted rating of each training or test rating is assigned to one of these three

classes. However, there are some cases that the values of all sub-predicted ratings

are the same, e.g. when the rating is unpredictable, X1 = X2 = X3 = X4 = 0,
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which may belong to New-Users or New-Items. In this case, all the sub-predicted

ratings for a specific training or test rating are classified as ”same” class.

5.2.1 Objective Function

In our proposed method, we factor two rating matrices. The first matrix is the

rating matrix R in which R represents the original ratings that are done by the

users. The objective function of Weighted Nonnegative Matrix Tri-Factorization

(WNMTF) with the original rating matrix R (Equation (5.1)) is as follows,

f(R,W,Ur, Sr, Vr) = minUr≥0,Sr≥0,Vr≥0‖W ◦ (R− UrSrV T
r )‖2

F (5.7)

where ◦ is the element-wise multiplication. The weight matrix W ∈ Rm×n is

defined in Equation (3.6) based on the R.

The second matrix factored by WNMTF is the imputed rating matrix R′.

As mentioned in Chapter 3, the rating matrix R is imputed with all available

imputed ratings to form the imputed rating matrix R′, which is defined in Chapter

3, Equation (3.8). The objective function of Weighted Nonnegative Matrix Tri-

Factorization (WNMTF) with the imputed rating matrix R′, Equation (5.2), is as

follows,

f(R′,W ′, Ut, St, Vt) = minUt≥0,St≥0,Vt≥0‖W ′ ◦ (R′ − UtStV T
t )‖2

F (5.8)

where W ′ is defined in Chapter 3, Equation (2.3), based on R′. We name the

proposed method Trust-Dual-WNMTF.

5.2.2 Update Formula

The update formulae for the objective function 5.7 are as follows [75],

Urij ← Urij ·
[(W ◦R)VrS

T
r ]ij

{[W ◦ (UrSrV T
r )]VrSTr }ij

(5.9)

Vrij ← Vrij ·
[(W ◦R)TUrSr]ij

{[W ◦ (UrSrV T
r )]TUrSr}ij

(5.10)

Srij ← Srij ·
[UT

r (W ◦R)Vr]ij
{UT

r [W ◦ (UrSrV T
r )]Vr}ij

(5.11)
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On the other hand, the update formulae for the objective function 5.8 are as

follows [75],

Utij ← Utij ·
[(W ′ ◦R′)VtSTt ]ij

{[W ′ ◦ (UtStV T
t )]VtSTt }ij

(5.12)

Vtij ← Vtij ·
[(W ′ ◦R′)TUtSt]ij

{[W ′ ◦ (UtStV T
t )]TUtSt}ij

(5.13)

Stij ← Stij ·
[UT

t (W ′ ◦R′)Vt]ij
{UT

t [W ′ ◦ (UtStV T
t )]Vt}ij

(5.14)

The time complexity of Trust-Dual-WNMTF is identical to the time complex-

ity of Aux-New-Items-NMF in Chapter 2.

5.2.3 Convergence Analysis

The convergence proof of the derived update formulas is the same as Section

3.2.3 in Chapter 3.

5.2.4 Detailed Algorithm

In this section, we present the Trust-Dual-WNMTF algorithm. There are two

phases in the proposed method. The first phase is the training phase in which the

sub-predicted ratings are generated. Algorithm 5.1 depicts the steps of performing

the training phase of the Trust-Dual-WNMTF method. We perform the matrix

factorization twice, each in a separate performance. The first performance is with

the original rating matrix R and the second is with the imputed rating matrix

R′. The imputed rating matrix R′ are generated using Algorithm 3.1 when the

imputation case Case is All-Users Imputation. However, it may take hundreds or

thousands of iterations to converge to a local minimum. Thus, in addition to the

objective function criterion, an additional stop criterion (the maximum iteration

count) is set in the algorithm. In collaborative filtering, this value varies from

10 ∼ 100, which can produce good results.

Algorithm 5.1 Trust-Dual-WNMTF - Training Phase

Require:
User-Item rating matrix: R ∈ Rm×n;
Imputed User-Item rating matrix: R′ ∈ Rm×n;
Column dimension of U : k;
Column dimension of V : l;
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Number of maximum iterations: MaxIter;
Ensure:
X1, X2, X3, and X4;

1: Initialize U, V, and S with random values
2: Set Ur = U, Vr = V, and Sr = S
3: Build weight matrix, W by Eq. (3.6)
4: Set iteration = 1 and stop = false;
5: while (iteration < MaxIter) and (stop == false) do

6: Urij ← Urij ·
[(W◦R)VrST

r ]ij
{[W◦(UrSrV T

r )]VrST
r }ij

7: Vrij ← Vrij ·
[(W◦R)TUrSr]ij

{[W◦(UrSrV T
r )]TUrSr}ij

8: Srij ← Srij ·
[UT

r (W◦R)Vr]ij
{UT

r [W◦(UrSrV T
r )]Vr}ij

9: Lr ← ‖W ◦ (R− UrSrVr)T )‖2
F

10: if Lr increases in this iteration then
11: stop = true;
12: Restore Ur, Vr, and Sr to their values in last iteration.
13: end if
14: end while
15: Set Ut = U, Vt = V, and St = S
16: Build weight matrix, W ′ by Eq. (2.3)
17: Set iteration = 1 and stop = false;
18: while (iteration < MaxIter) and (stop == false) do

19: Utij ← Utij ·
[(W ′◦R′)VtST

t ]ij
{[W ′◦(UtStV T

t )]VtST
t }ij

20: Vtij ← Vtij ·
[(W ′◦R′)TUtSt]ij

{[W ′◦(UtStV T
t )]TUtSt}ij

21: Stij ← Stij ·
[UT

t (W ′◦R′)Vt]ij
{UT

t [W ′◦(UtStV T
t )]Vt}ij

22: Lt ← ‖W ′ ◦ (R′ − UtStVt)T )‖2
F

23: if Lt increases in this iteration then
24: stop = true
25: Restore Ut, Vt, and St to their values in the last iteration
26: end if
27: end while
28: X1 = Ur · Sr · V T

r

29: X2 = Ur · (Sr+St)
2
· V T

t

30: X3 = Ut · (Sr+St)
2
· V T

r

31: X4 = Ut · St · V T
t

32: Return X1, X2, X3, and X4.

The second phase of the Trust-Dual-WNMTF algorithm is the test phase in

which the final predicted ratings are calculated. We proposed several methods

to calculate the final predicted ratings, R′′, using the sub-predicted ratings. The

first method is by simply calculating the final predicted ratings as the average

of non-zero sub-predicted ratings, which is called Average Source, as we see in
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Algorithm 5.2, such that,

r′′ij =

∑4
c=1 xcij∑
c:xc 6=0 1

(5.15)

where r′′ij ∈ R′′.

Algorithm 5.2 Trust-Dual-WNMTF - Test Phase - Average Source Method

Require:
X1, X2, X3, and X4;
User-Item test rating matrix: Rtest ∈ Rm×n;

Ensure:
Final predicted ratings matrix: R′′;

1: for each User i do
2: for each Item j do
3: if rtestij in Rtest 6= 0 then

4: nonZeroV alueCount =
∑4

c=1 (xcij 6= 0)

5: r′′ij =
∑4

c=1 Xcij

nonZeroV alueCount

6: end if
7: end for
8: end for
9: Return R′′.

Algorithm 5.3 presents the second method, which is based on the source cat-

egory. After the matrix factorization is performed on R and R′, we calculate the

ratio of each class, δc, of the source category that holds the best predicted rating

among sub-predicted ratings, which results in the lowest error of the original rat-

ings in the training set. Then, these ratios are used to calculate the final predicted

rating of each test rating,

r′′ij =

∑4
c=1 δc · xcij∑
c:xc 6=0 1

(5.16)

where r′′ij ∈ R′′.

However, when a New-User is imputed, the sub-predicted ratings X1 and X2

are zeros, which means unpredictable ratings, but not X3 and X4. To avoid the

impact of the unpredictable ratings, we calculate the average of the non-zero sub-

predicted ratings X3 and X4.
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Algorithm 5.3 Trust-Dual-WNMTF - Test Phase - Ratio Source Method

Require:
X1, X2, X3, and X4;
User-Item rating matrix: R ∈ Rm×n;
User-Item test rating matrix: Rtest ∈ Rm×n;

Ensure:
Final predicted ratings matrix: R′′;

1: for each User i do
2: for each Item j do
3: if rij in R 6= 0 then
4: for each sub-predicted rating c do
5: MAE xc = abs(xcij − rij)
6: end for
7: minMAE =

min(MAE x1,MAE x2,MAE x3,MAE x4)
8: if minMAE == MAE x1 then
9: counter x1 = counter x1 + 1
10: else if minMAE == MAE x2 then
11: counter x2 = counter x2 + 1
12: else if minMAE == MAE x3 then
13: counter x3 = counter x3 + 1
14: else if minMAE == MAE x4 then
15: counter x4 = counter x4 + 1
16: end if
17: end if
18: end for
19: end for
20: for c = 1 to 4 do
21: Ratio xc = counter xc/| training set rating |
22: end for
23: for each User i do
24: for each Item j do
25: if rtestij in Rtest 6= 0 then

26: nonZeroV alueCount =
∑4

c=1 (xcij 6= 0)
27: if nonZeroV alueCount == 4 then
28: r′′ij =

∑4
c=1Ratio xc ∗ xcij

29: else
30: r′′ij =

(x3i,j
+x4i,j

)

2

31: end if
32: end if
33: end for
34: end for
35: Return R′′.
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The third method is similar to the second, but we use the value category

instead of the source category, as we see in Algorithm 5.4.

Algorithm 5.4 Trust-Dual-WNMTF - Test Phase - Ratio Value Method

Require:
X1, X2, X3, and X4;
User-Item rating matrix: R ∈ Rm×n;
User-Item test rating matrix: Rtest ∈ Rm×n;

Ensure:
Final predicted ratings matrix: R′′;

1: for each User i do
2: for each Item j do
3: if rij in R 6= 0 then
4: for each sub-predicted rating c do
5: MAE xc = abs(xcij − rij)
6: end for
7: [minMAE,minMAEIndex] = min

1≤c≤4
{MAE xc}

8: [MaxV alue,MaxIndex] = max
1≤c≤4

{xci,j}
9: [MinV alue,MinIndex] = min

1≤c≤4,xc>0
{xci,j}

10: if minMAEIndex == MaxIndex then
11: MaxV alueCounter = MaxV alueCounter + 1
12: else if minMAEIndex == MinIndex then
13: MinV alueCounter = MinV alueCounter + 1
14: else
15: InBtnV alueCounter = InBtnV alueCounter + 1
16: end if
17: end if
18: end for
19: end for
20: MaxV alueRatio = MaxV alueCounter/| training set rating |
21: MinV alueRatio = MinV alueCounter/| training set rating |
22: InBtnV alueRatio = InBtnV alueCounter/| training set rating |
23: for each User i do
24: for each Item j do
25: if rtestij in Rtest 6= 0 then

26: nonZeroV alueCount =
∑4

c=1 (Xcij 6= 0)
27: MaxV alue = max(x1ij , x2ij , x3ij , x4ij)
28: if nonZeroValueCount==4 then
29: MinV alue = min(x1i,j , x2i,j , x3i,j , x4i,j)
30: else if nonZeroValueCount==2 then
31: MinV alue = min(x3i,j , x4i,j)
32: end if
33: if nonZeroV alueCount == 4 then
34: InBtnV alue = (X1i,j +X2i,j +X3i,j +X4i,j−

MaxV alue−MinV alue)/2
35: else if nonZeroV alueCount == 2 then
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36: InBtnV alue = (MaxV alue+MinV alue)/2
37: else if nonZeroV alueCount == 0 then
38: InBtnV alue = 0
39: end if
40: if nonZeroV alueCount > 0 then
41: r′′ij = MaxV alueRatio ∗MaxV alue+

MinV alueRatio ∗MinV alue+
InBtnV alueRatio ∗ InBtnV alue

42: else
43: r′′ij = 0
44: end if
45: end if
46: end for
47: end for
48: Return R′′.

In the last two methods, we set the final predicted ratings to only one value of

sub-predicted ratings. We test this method with the value category to select either

the maximum or minimum value of the sub-predicted ratings as final predicted

ratings, as we see in Algorithm 5.5 and Algorithm 5.6, respectively, such that,

r′′ij = max
1≤c≤4

{xcij} (5.17)

r′′ij = min
1≤c≤4,xc>0

{xcij} (5.18)

where r′′ij ∈ R′′.

Algorithm 5.5 Trust-Dual-WNMTF - Test Phase - Max Value Method

Require:
X1, X2, X3, and X4;
User-Item test rating matrix: Rtest ∈ Rm×n;

Ensure:
Final predicted ratings matrix: R′′;

1: for each User i do
2: for each Item j do
3: if rtestij in Rtest 6= 0 then
4: r′′ij = max(x1i,j , x2i,j , x3i,j , x4i,j)
5: end if
6: end for
7: end for
8: Return R′′.
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Algorithm 5.6 Trust-Dual-WNMTF - Test Phase - Min Value Method

Require:
X1, X2, X3, and X4;
User-Item test rating matrix: Rtest ∈ Rm×n;

Ensure:
Final predicted ratings matrix: R′′;

1: for each User i do
2: for each Item j do
3: if rtestij in Rtest 6= 0 then

4: nonZeroV alueCount =
∑4

c=1 (xcij 6= 0)
5: if nonZeroV alueCount == 4 then
6: r′′ij = min(x1ij , x2ij , x3ij , x4ij)
7: else if nonZeroV alueCount == 2 then
8: r′′ij = min(x3ij , x4ij)
9: else
10: r′′ij = 0
11: end if
12: end if
13: end for
14: end for
15: Return R′′.

5.2.5 Complexity

The computational complexity of Trust-Dual-WNMTF (Training Phase) is

similar to the computational complexity of Trust-WNMTF in Section 3.2.5.
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5.3 Experimental Study

Table 5.1: The MAE for the whole dataset and each user group with WN-
MTF, Trust-WNMTF, Trust-WNMTF++, and the five strategies of the proposed
method.

Methods
All-

Users
New-
Users

Cold-Start

Users

Heavy-Rated

Users

Ciao

P
re
v
io
u
s WNMTF 0.8237 4.4118 0.8345 0.7452

Trust-WNMTF All-User 0.8305 1.4235 0.8399 0.7715
Trust-WNMTF New-User 0.8224 1.3615 0.8345 0.7453
Trust-WNMTF++ Trustee 0.8025 1.3999 0.8118 0.7438

P
ro
p
os
ed

Average Source 0.8118 1.3839 0.8210 0.7510
Ratio Source 0.8122 1.3839 0.8218 0.7494
Ratio Value 0.8023 1.3739 0.8115 0.7418
Max Value 0.7738 1.3451 0.7832 0.7118
Min Value 0.8980 1.4240 0.9101 0.8190

CiaoDVD

P
re
v
io
u
s WNMTF 1.6503 4.3433 1.2397 1.0612

Trust-WNMTF All-User 1.6721 4.2832 1.2722 1.1122
Trust-WNMTF New-User 1.6462 4.2830 1.2442 1.0689
Trust-WNMTF++ Trustee 1.6348 4.2824 1.2302 1.0606

P
ro
p
os
ed

Average Source 1.6509 4.2841 1.2469 1.0925
Ratio Source 1.6413 4.2841 1.2364 1.0775
Ratio Value 1.6427 4.2839 1.2373 1.0834
Max Value 1.6237 4.2827 1.2159 1.0585
Min Value 1.7506 4.2859 1.3612 1.2152

Epinions

P
re
v
io
u
s WNMTF 1.0816 3.9203 1.0770 0.9316

Trust-WNMTF All-User 1.0751 1.9541 1.0888 0.9769
Trust-WNMTF New-User 1.0760 1.9495 1.0964 0.9543
Trust-WNMTF++ CSI 1.0372 1.9297 1.0529 0.9311

P
ro
p
os
ed

Average Source 1.0498 1.9462 1.0647 0.9443
Ratio Source 1.0479 1.9462 1.0639 0.9380
Ratio Value 1.0424 1.9436 1.0570 0.9373
Max Value 1.0161 1.9262 1.0318 0.9068
Min Value 1.1411 1.9731 1.1596 1.0262

FilmTrust

P
re
v
io
u
s WNMTF 0.7288 3.3677 0.7326 0.6455

Trust-WNMTF All-User 0.7439 2.7780 0.7487 0.6679
Trust-WNMTF New-User 0.7269 2.7735 0.7324 0.6463
Trust-WNMTF++ CSI 0.7200 2.7639 0.7242 0.6478

P
ro
p
os
ed

Average Source 0.7232 2.7687 0.7270 0.6524
Ratio Source 0.7214 2.7687 0.7254 0.6498
Ratio Value 0.7211 2.7677 0.7249 0.6505
Max Value 0.7204 2.7662 0.7255 0.6418
Min Value 0.7608 2.7726 0.7665 0.6793
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In the experimental study of this chapter, the proposed method is compared

with WNMTF 3.7, both proposed cases of the Trust-WNMTF approach in Chap-

ter 3: All-Users and New-Users, and with the best case for each dataset that

results in the lowest MAE of the Trust-WNMTF++ method from Chapter 4. The

parameters are set the same as the parameter setting in Chapter 3.

Table 5.1 presents the results of the proposed method with five different strate-

gies that calculate the final predicted ratings by using the four sub-predicted rat-

ings. Firstly, the Min Value strategy is excluded from the comparison because the

Min Value strategy results in the worst accuracy among all previous and proposed

methods with all datasets.

On the other hand, the results with the other four proposed strategies are

better than the WNMTF method. This indicates that the proposed method is

able to utilize the imputation to enhance accuracy. Furthermore, the proposed

method is better to utilize the imputed ratings than the previous method, Trust-

WNMTF All-Users, to improve Cold-Start-Users and Heavy-Rater-Users groups

accuracy results.

In addition, results in the four proposed strategies are better than the Trust-

WNMTF New-User method except for one case, which is the Average Source with

the CiaoDVD dataset. Among the five proposed strategies, the Min Value results

in the worst rating prediction; then, the Average Source strategy seems to be the

next worst results, except for the Ciao dataset.

However, only the Max Value strategy surpasses the Trust-WNMTF++ method

with all datasets except FilmTrust. Figure 5.2 illustrates the percentage of each

class of the value category that results in the best predicted ratings for all test

ratings. With all datasets, more than half of the best sub-predicted ratings are

the maximum/same value. However, the FilmTrust dataset has the highest per-

centage of the best sub-predicted ratings that are the minimum value, which leads

to slightly worse results compared to the Trust-WNMTF++ results. In addition,

the proposed method improves the results of the Heavy-Rater-Users in addition

to New-Users and Cold-Start-Users, as we see in Table 5.1.
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Figure 5.2: The percentage of each value category class that results in the best
predicted ratings for all test ratings.

5.3.1 Rating Value Vs. Rating Value Average

Because we perform our experiment in a 5-fold cross-validation approach, the

percentage of the rating values in the training set and test set are identical where

the training and test set together form the rating matrix R. From Tables 4.1, 5.2,

and 5.3, we observe the relationship between the average of the rating values in the

training set and the rating value that has the best accuracy results in the Non-

Imputation method, i.e., WNMTF. Unexpectedly, the percentage of the rating

values in the training set does not have a significant effect on the rating value that

has the best accuracy results. For example, despite 50% of the rating value is 5 in

Ciao, the rating value 4 has the lowest MAE among other rating values, which is

the closest rating value to the rating value average (Table 4.1). Consequently, the

rating value that is the largest percentage in the test set does not have the lowest

MAE, which leads to high MAE of the whole dataset.

Our proposed approach - Max Value - handles this issue where the rating value

that is the largest percentage in the test set has the most improvement percentage

in MAE with all datasets. We suppose that the prediction accuracy of rating value

5 is more significant than other rating values due to the fact that the fundamental

objective of the recommendation system is to recommend the items most relevant

to the users’ taste.
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Table 5.2: The percentage of each rating value in the training/test set and their
MAEs with several methods (1).

Rating Value 1 2 3 4 5
Ciao

% in R 4.48% 5.12% 11.1% 29.66% 49.63%
WNMTF 2.1353 1.6052 0.9744 0.6314 0.7058

Max Value 2.4366 1.9230 1.2151 0.6632 0.4723
Min Value 1.9126 1.3925 0.8326 0.5981 0.9491

CiaoDVD
% in R 3.66% 6.43% 13.79% 31.04% 45.08%
WNMTF 1.8140 1.5839 1.3995 1.4773 1.8432

Max Value 2.0943 1.8279 1.5979 1.5209 1.6350
Min Value 1.5657 1.3608 1.2635 1.5123 2.1342

Epinions
% in R 7.91% 9.09% 12.62% 28.44% 41.94%
WNMTF 1.9271 1.3449 0.9518 0.8747 1.0443

Max Value 2.2401 1.6288 1.0988 0.8250 0.7573
Min Value 1.6740 1.1166 0.8222 0.8953 1.3085

Table 5.3: The percentage of each rating value in the training/test set and their
MAEs with several methods (2).

Rating Value 0.5 1 1.5 2 2.5 3 3.5 4
FilmTrust

% in R 2.99% 3.21% 4.52% 8.76% 12.38% 22.18% 20.11% 25.84%
WNMTF 1.6942 1.5312 1.1334 0.7983 0.5793 0.4988 0.5835 0.8053

Max Value 1.8791 1.7363 1.3135 0.9515 0.6573 0.4930 0.4966 0.6777
Min Value 1.5857 1.4230 1.0348 0.7133 0.5098 0.4803 0.6803 0.9752

On the other hand, with Min Value method, the results of the rating values

that are lower than the average of the rating values have the most improved

percentage in the accuracy. Our proposed method enhances the results of the

rating values that are not close to the average of the rating values either higher

or lower. Because our datasets have more rating values that are higher than

the average of the rating values, the Max Value method outperforms the other

methods. However, we expect that the Min Value method benefits the systems

that focus on predicting the ratings of the low rating values or, in other words,

the items that the users do not like.
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Figure 5.3: The percentage of predicted ratings that belong to one of the four
combinations of rating value average categories (High, Low, or Same) for the
user/item with Max Value strategy.

5.3.2 Influence of Increase/Decrease the Users/Items Rat-
ing Average

The value rating averages of the users and items may increase or decrease after

the imputation. We conclude in Section 5.3.1 that the average of the rating values

in the training set has a strong influence on the accuracy. In our experimental

study, the rating value average for the user and item could be classified into High,

Low, or Same based on the comparison of the rating value average before and

after the imputation. In some cases, e.g., there is no imputation at all, the rating

value average remains the same.

For each predicted rating of the test set pij, the average of rating values in the

training set for user ui and item ej that hold pij is surveyed. The predicted rating

pij equals the maximum value among the four sub-predicted ratings, i.e., Max

Value strategy of the proposed method. As shown in Figure 5.3, there are four

different combinations of the rating value average classes. The first combination

is High/High category in which both rating value averages of the user and the

item are the highest either before or after the imputation. On the contrary, in

the Low/Low category, the rating value averages of the user and item are the

lowest either before or after the imputation. There are other cases in between the

High/High and Low/Low categories. If the rating value average of either the user
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or the item is the highest, but the other either the lowest or same rating value

average, then the predicted test rating belongs to the ”High/Low, Same” category.

The last category is Low/Same where the rating value average of either user or

item is the lowest and the same for the other.

As we see in Figure 5.3, we observe that approximately half of the predicted

ratings in Ciao and Epinions belong to the users and items that have the highest

rating value averages, High/High category. In addition, these two datasets record

the highest percentage of the improvement compared to the previous methods,

as shown in Table 5.1. However, with other datasets, CiaoDVD and FilmTrust,

around half of the predicted ratings belong to the High/Low, Same category. Fur-

thermore, the percentages of accuracy improvement for CiaoDVD and FilmTrust

are not as good as the others.

5.3.3 Summary of Results

To conclude, the Max Value strategy results in the lowest MAE when compared

to other proposed strategies, which corroborates the concept that increasing the

average of the rating values in the training set either for the users or the items

leads to improving the prediction accuracy. In addition, the improvement in the

prediction is obvious when the maximum value of the sub-predicted ratings belongs

to the highest rating value averages for the users and items either before or after

the imputation.

5.4 Summary

In this chapter, we proposed a method to conduct the selective imputation

method that fuses the factored original rating matrix and the factored imputed

rating matrix into one system. Our proposed method is capable of predicting

the rating by utilizing either the imputed users or imputed items, or both in

order to limit the error that may be introduced from the imputed ratings. The

results show that our proposed method surpasses Trust-WNMTF++ in Chapter

4. Furthermore, the Max Value strategy surpasses other proposed strategies. The

prediction results of rating values that are not close to the average of the rating
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values could be enhanced by utilizing the proposed method either through the

Max Value or the Min Value strategy.

Copyright c© Fatemah Alghamedy 2019
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6 Comparison Between Selected Methods of Imputation-Based Rec-
ommendation Systems

Even though the proposed method in Chapter 5 improves the accuracy results

of the New-Users and Cold-Start-Users, the New-Items cannot be introduced to

the users yet. In this chapter, the New-Item imputation method in Chapter 2

is integrated with the proposed methods in Chapter 5. In addition, we compare

the proposed method with two popular imputation-based CF methods, AdaM [50]

and IMULT [48].

6.1 Proposed Method

We propose an approach that integrates the New-Item imputation method

proposed in Chapter 2 into the Trust-Dual-WNMTF method in Chapter 5. The

imputed ratings for New-items are inserted in the imputed rating matrix R′, which

is utilized with Trust-Dual-WNMTF in Chapter 5. The source of the New-Items

imputed ratings is the same as in Chapter 2. However, in this chapter, all available

imputed ratings for New-items are utilized instead of a limited number of them,

which we performed in Chapter 2. In addition, the Average case is used to calculate

the imputed ratings from the source ratings. After that, the Max Value method,

as shown in Algorithm 5.5, is applied to calculate the final predicted ratings. This

method is named Trust-New-Items-Dual-WNMTF.

6.2 Background

Two popular imputation-based collaborative filtering methods are compared to

our proposed method, Trust-New-Items-Dual-WNMTF, in terms of the accuracy:

AdaM and IMULT. Our proposed method, Adam, and IMULT are similar in

utilizing the imputation to handle the rating matrix sparsity and improve the

recommendation accuracy. On the contrary, AdaM and IMULT rely only on the

rating information to perform the imputation whereas the trust information does

not.
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6.2.1 AdaM

The Adaptive-Maximum imputation method (AdaM) [50] is a neighborhood-

based and imputation-based collaborative filtering method. Its basic idea is to

identify an area to impute that can maximize the imputation advantage and mini-

mize the imputation error. The imputation area is determined from both the user

and the item perspectives in order to accomplish the maximum imputation. On

the other hand, there is at least one real rating preserved for each item in the

identified imputation area in order to reduce the imputation error.

From the user perspective, to predict the rating ras, in which the active user

is ua and the active item is ts, the imputation area is determined by two sides:

the maximum set of possible neighbors related to ua, which is called Ua, and the

maximum set of possible items related to the active item ts, which is called Ts. Ua

and Ts are defined as follows

Ua = {ua′ |ra′s 6= ∅} ∪ {ua} (6.1)

Ts = {tj|tj ⊂ [Sa ∪ Sa′1 ∪ ... ∪ Sa′j ∪ ... ∪ Sa′l ]} (6.2)

where Sa′j is all the items that have been rated by the user ua′j ∈ Ua, and l = |Ua|.

Based on the subset of users in Ua and the subset of the items in Ts, the max

neighbourhood for the active user ua to predict the rating of item ts is defined as:

Nas = {ra′j|ua′ ∈ Ua, tj ∈ Ts} (6.3)

The max neighbourhood Nas considers a subset matrix from the rating matrix

R. The rating value, i.e., ra′j, in Nas can be either a missing rating or not. All

the missing ratings in the matrix Nas are defined as the key set for the prediction

puas. Each missing rating ra′j ∈ Nas, i.e., the key set ratings, is imputed with r′a′j,

such that:

r′a′j = ūa′ +

∑
ux∈Nk(ua′ )

sim(ua′ , ux)× (rxj − ūx)∑
ux∈Nk(ua′ )

sim(ua′ , ux)
(6.4)
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where sim(ua′ , ux) is the PCC similarity [52] between ua′ and ux, ūa′ is the average

of the rating values of user ua′ , and k is the total number of the neighbors.

After all missing ratings in max neighbourhood Nas are imputed, AdaM pre-

dicts the rating puas of ras from the user perspective by utilizing both the imputed

ratings and the observing ratings in Nas so that

puas = ūa +

∑
ux∈Nk(ua) sim

′(ua, ux)× (rxs − ūx)∑
ux∈Nk(ua) sim

′(ua, ux)
(6.5)

where sim′ is defined as follows,

sim′(ua, ux) =

∑
tj∈Ts(raj − ūa)(rxj − ūx)√∑

tj∈Ts(raj − ūa)2
∑

tj∈Ts(rxj − ūx)2
(6.6)

All steps should be performed from the item perspective to calculate the pre-

dicted rating peas of ras. More details can be found in [50]. The final predicted

rating of ras can be obtained as follows,

pas = λpuas + (1− λ)peas (6.7)

where λ is a predefined parameter that determines the involved ratio of predictions

from the user perspective and the item perspective.

Based on AdaM experiment results, AdaM significantly outperforms in terms of

accuracy other related imputation-based methods, which include the default vot-

ing (Default Voting) method [3], the EMDP method [34], the SCBPCC method

[79], AutAI-Fusion method [49], and two traditional collaborative filtering al-

gorithms, the user-based CF (UPCC) and the item-based CF (IPCC), and one

model-based algorithm, the Slope One algorithm [30].

6.2.2 Imputed MULT (IMULT)

Imputed MULT [48] is a model-based and imputation-based method that is

based on the Multiplicative update rules (MULT) method. MULT [29] is one

of the techniques that is used to solve the NMF problem, Equation (3.1), which

considers a gradient descent-based approach with a special choice of learning step-

sizes. On the other hand, the IMULT method in [48] utilizes the imputation as
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a pre-processing step before MULT is applied in order to alleviate the lack of

ratings. The objective function of IMULT is as follows,

f(U, V ) = min
1

2
||PΩ(R− UV T )||2F +

δ

2
||PΨ(R′ − UV T )||2F (6.8)

where R′ ∈ Rm×n is the imputed rating matrix that holds only the imputed ratings,

δ is the learning rating of the imputed ratings where 0 < δ ≤ 1, Ω is the set of

ratings in R such that rij > 0, and PΩ(.) : Rm×n → Rm×n is defined as:

PΩ(xij) =

{
xij (ij) ∈ Ω

0 otherwise
, (6.9)

and Ψ is the set of the missing ratings in R, and PΨ(.) : Rm×n → Rm×n is defined

as:

PΨ(xij) =

{
xij (ij) ∈ Ψ

0 otherwise
(6.10)

In addition, Equation (6.8) can be re-written as follows,

f(U, V ) = min
∑

(ij)∈Ω∪Ψ

ϕij
2

(r∗ij −
k∑
l=1

uilv
T
jl)

2 (6.11)

where ϕij =

{
δ (ij) ∈ Ψ

1 (ij) ∈ Ω
and r∗ij =

{
r′ij (ij) ∈ Ψ

rij (ij) ∈ Ω
.

We can calculate the imputed ratings for the missing ratings in four different

ways. The first is the mean-wise in which all the missing ratings in R are imputed

with the average of all ratings in R, such that, r′ =
∑

(ij)∈Ω rij

|Ω| . The second method

is when the missing ratings for each item j are imputed with the average of the

rating values of the item j (item-wise) where r′j =
∑

(:j)∈Ω rij

|(:j)∈Ω| , in which |(: j) ∈ Ω|

is the total number of the ratings for the item j. The next way is user-wise in

which the missing ratings for each user i are imputed with the average of the

rating values of the user i, such that r′i =
∑

(i:)∈Ω rij

|(i:)∈Ω| , in which |(i :) ∈ Ω| is the

total number of the ratings for the user i. The last way is hyper-wise in which

the missing ratings are imputed with the linear combination of the user-wise and

item-wise such that, r′ij = αr′i + (1− α)r′j where 0 ≤ α ≤ 1.

The IMULT method outperforms Multiplicative update rules (MULT) [29],

Alternating Least Squares (ALS) [44], Stochastic Gradient Descent (SGD) [31],
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Regularization Stochastic Gradient Descent (RSGD) [69], and SVD++ [28] in

terms of accuracy.

6.3 Experimental Study

In this section, we calculate MAE for the whole dataset, for each user group,

and for each item group. FilmTrust is excluded from this experiment because the

New-Items imputation method is not applicable due to absent item information.

The machine we use for the AdaM and IMULT methods is 95 Teraflops Dell

C6220 Server, which consists of 16 cores in which 4 nodes per 2U chassis Dual

Intel E5-2670 8 Core (Sandy Bridge) @ 2.6 GHz 2 sockets/node x 8 cores/socket;

and 64 GB/node of 1600 MHz RAM 500 GB local (internal) SATA disk Linux OS

(RHEL).

6.3.1 Parameter settings

Table 6.1: Parameter setup in AdaM and IMULT.

Dataset λ IMULT k
Ciao 1 3
CiaoDVD 0.8 2
Epinions 1 3

The parameters setting for our proposed method, Trust-New-Items-Dual-WNMTF,

is shown in Table 2.3. However, MaxImputedRatings is excluded in this chapter

because all available imputed ratings for New-Items are utilized.

With the AdaM method, two parameters need to be set in advance. The first

parameter is the total number of neighbors, k, which is set to 30 based on the

AdaM experiment [50]. On the other hand, we run AdaM with several values of

λ. Table 6.1 shows the best value of λ for each dataset that results in the best

accuracy.

In the experiments for the IMULT method, the learning rate of imputed rat-

ings, δ, is set at 0.1 based on the experiment in [48]. In addition, the initialized

U and V are fixed for the proposed methods and IMULT as well. The maximum

of iterations is set to 10, which is the same as our proposed methods. The rank k

for U and V in IMULT is shown in Table 6.1 for each dataset. Furthermore, we
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run IMULT with all four imputation methods: mean-wise, user-wise, item-wise,

and hyper-wise where α is set to 0.5 with hyper-wise IMULT method.

6.3.2 Results and Discussion

Table 6.2: The % of New-Users and New-Items ratings in the test set.

Dataset New-Users New-Items
Ciao 0.05% 1.58%
CiaoDVD 13.92% 13.87%
Epinions 1.29% 5.28%

The WNMTF method considers a baseline in which the MAE of New-Users

and New-Items are in the worst case because their ratings cannot be predicted at

all. On the other hand, integrating New-Items imputation into the Trust-Dual-

WNMTF method (Chapter 5) does not increase the errors with all users group,

as we see in Tables 5.1 and 6.3.

AdaM

The AdaM accuracy results, in general, are the worst compared to IMULT and

Trust-New-Items-Dual-WNMTF with all datasets, as we see in Table 6.3. Fur-

thermore, the AdaM MAE results are worse than the baseline method, WNMTF,

which supports the assumption that model-based methods surpass neighborhood-

based methods in terms of accuracy. It is important to mention that the impu-

tation process in the AdaM method does not predict the ratings of New-Users

and New-Items. However, based on the AdaM method, the New-Items ratings

are predicted as the average of the user ratings with the user perspective case of

AdaM. On the other hand, AdaM predicts the New-Users ratings based on the

average of the item ratings with the item perspective case of AdaM. Consequently,

the percentages of New-Users and New-Items ratings in the test set have a strong

influence on the λ value that results in the lowest MAE for the whole dataset.

Table 6.1 shows the best λ value that results in the lowest MAE.

For the Ciao and Epinions datasets, the percentage of New-Items ratings in

the test set is higher than the percentage of New-Users, as shown in Table 6.2.

In addition, the lowest MAE with AdaM is when the value of λ is set to 1. In
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Table 6.3: The MAE results of the whole dataset and for each user and item group
with the best setting of Trust-New-Items-Dual-WNMTF, AdaM, and IMULT
methods.

Method Pers. All New-
Cold-
Start-

Heavy-
Rate(r/d)

Ciao

WNMTF
Users

0.8237
4.4118 0.8345 0.7452

Items 4.1248 0.7865 0.7607

Trust-New-Items-Dual-WNMTF
Users

0.7220
1.2636 0.7269 0.6890

Items 0.8916 0.7326 0.7127

AdaM
Users

1.5065
4.4118 1.4108 2.1009

Items 0.8444 1.4666 1.5492

IMULT (Hyper-wise)
Users

0.7930
2.3414 0.7979 0.7556

Items 2.1147 0.7511 0.7810

CiaoDVD

WNMTF
Users

1.6503
4.3433 1.2397 1.0612

Items 3.8668 1.2602 1.3075

Trust-New-Items-Dual-WNMTF
Users

1.2541
4.2659 0.7773 0.7051

Items 1.1840 1.2365 1.2759

AdaM
Users

1.6505
3.5792 1.2828 1.6695

Items 1.3760 1.4803 1.7684

IMULT (Mean-wise)
Users

0.8388
0.8098 0.8493 0.8144

Items 0.8832 0.8550 0.8217

Epinions

WNMTF
Users

1.0816
3.9203 1.0770 0.9316

Items 3.9385 1.0287 0.9188

Trust-New-Items-Dual-WNMTF
Users

0.8578
1.9073 0.8509 0.8202

Items 0.8905 0.8904 0.8540

AdaM
Users

1.2944
3.9203 1.2409 1.3274

Items 0.9039 1.6637 1.2984

IMULT (Hyper-wise)
Users

0.9832
2.0771 0.9797 0.9316

Items 2.0527 0.8836 0.9287

this case, all predicted ratings of New-Items are not zero, i.e., predictable, which

reduces the MAE, but all New-Users ratings are unpredictable. In addition, the

MAE of all user groups and all item groups with the AdaM method are the worst

among all three methods except New-Items, where the best results of New-Items

in Ciao is with AdaM, and the next best of New-Items in Epinions is with AdaM,

as we see in Table 6.3. However, our proposed method cannot guarantee that all

New-Items are imputed, which leads to unpredictable ratings of New-Items. In

contrast, all New-Items ratings are predictable in AdaM when λ > 0.
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On the other hand, the percentage of New-Users ratings in the CiaoDVD test

set is slightly larger than the percentage of New-Items, as we see in Table 6.2,

thus the best MAE result is when the λ is 0.8. When 0 < λ < 1, both New-Users

and New-Items ratings are predictable. Due to the fact that most New-Users

cannot be imputed by our proposed method, Trust-New-Items-Dual-WNMTF,

with the CiaoDVD dataset as we see in Table 4.7, the AdaM results of the New-

Users is better, but our proposed method results in better results with New-Items.

Otherwise, the results of other user and item groups are the worst with AdaM out

of the three methods.

Figure 6.1: The MAE results for the whole dataset, New-Users, and New-Items
with different values of λ of AdaM method.

Figure 6.1 shows the relationship between the MAE of New-Users, New-Items,

the whole dataset in general, and λ value. By increasing λ value, the New-Users

results get better, but results are worse for New-Items. This indicates that AdaM

cannot simultaneously predict New-Users and New-Items ratings with the best

accuracy.

In our opinion, one of the biggest downsides of AdaM is that the imputation

is applied for each predicted rating in which each predicted rating has its own

imputed ratings. In addition, the similarity between the users and items needs to

be calculated twice. The first calculation is with the original ratings for the user

and item to calculate the imputed ratings. The second is with the original and
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imputed ratings for the user and item to predict the rating. In general, the AdaM

method is not suitable for large-scale datasets due to the intensive calculations for

each predicted rating.

IMULT

As we see in the IMULT Algorithm in [48], for each rating rij ∈ R and r′ij ∈ R′,

only the U row that corresponds to the user i - i.e. ui - and the V row that

corresponds to the item j - i.e. vj - are updated. This is unlike the updating rules

method where all rows of U and V matrices are updated simultaneously, which is

what we used in our proposed methods.

In case of relying only on the rating matrix R, i.e., MULT, the total number of

the user rating i and item j determine the total number of the updating times of

rows ui and vj, respectively. For that, if the user or item suffers from the lack of

ratings, cold-start issue, the MULT update rules do not converge to the optimum

value for that user or item. Furthermore, the U and V rows that correspond to

New-Users and New-Items, respectively, will not be updated. Accordingly, the

predicted ratings of either New-Users or New-Items are based on the initial value

of the corresponding U and V rows, respectively. In our experiment, we set the

predicted ratings pij to zero in case the rows ui or vj have not been updated at

all.

Table 6.3 shows the best IMULT case that results in the lowest MAE of the

whole dataset. IMULT results are better than the baseline method, WNMTF,

which indicates that the imputation is beneficial. However, our proposed method

surpasses IMULT with Ciao and Epinions but not with CiaoDVD. This is because

most New-Users cannot be imputed in CiaoDVD by our proposed method, which

results in a high percentage of unpredictable ratings for New-Users, as shown

in Table 4.7. In addition, some of the New-Items ratings in the test belong to

New-Users, as well, as we see in Figure 4.1.

It is notable that neither user-wise IMULT nor item-wise IMULT results in

the best overall MAE for all datasets. This is due to the fact that with user-

wise IMULT, New-Users ratings are unpredictable since the New-Users cannot

be imputed; contrastingly, all New-Items ratings are predictable based on the
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Table 6.4: The MAE results of the whole dataset and for each user and item group
with user-wise IMULT and item-wise IMULT.

Method Pers. All New-
Cold-
Start-

Heavy-Rate(r/d)

Ciao

IMULT (User-wise)
Users

0.8695
4.4118 0.8757 0.8152

Items 0.8510 0.8416 0.8839

IMULT (Item-wise)
Users

0.8239
0.8165 0.8324 0.7726

Items 4.1248 0.7868 0.7606

CiaoDVD

IMULT (User-wise)
Users

1.3384
4.3433 0.8642 0.7856

Items 1.1453 1.2728 1.4014

IMULT (Item-wise)
Users

1.1730
1.0218 1.2170 1.0777

Items 3.8668 0.8094 0.7176

Epinions

IMULT (User-wise)
Users

1.0867
3.9203 1.0609 1.0096

Items 0.9095 1.0800 1.0991

IMULT (Item-wise)
Users

1.0236
0.9547 1.0453 0.9531

Items 3.9385 0.8611 0.8633

average of the user ratings. This is the same with the item-wise IMULT method

in which the New-Items ratings cannot be predicted and all New-Users ratings

are predictable based on the average of the item ratings, as well. As we see in

Table 6.4, the best result of New-Users is with the item-wise IMULT method and

with user-wise IMULT for New-Items ratings compared to IMULT best case that

results in the lowest overall MAE in Table 6.3.

Even though the hyper-wise IMULT method is capable of predicting New-

Users and New-Items ratings, their MAEs are high compared to New-Items MAE

with user-wise IMULT and New-Users MAE with item-wise IMULT. As shown

in Tables 6.3 and 6.4, the MAE results of New-Users and New-Items with hyper-

wise IMULT in Ciao and Epinions datasets are in between the user-wise IMULT

and item-wise IMULT methods. This is because the U rows that correspond to

New-Users are updated depending on half of the average value of the item ratings

based on λ value, which results in poor predicted ratings of New-Users. This is

the same with the rows of New-Items in V matrix. Due to the high percentage of

New-Users and New-Items ratings in the CiaoDVD test set shown in Table 6.2,

the mean-wise IMULT method results in the best accuracy instead of hyper-wise.
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In general, the imputation in IMULT improves the accuracy results in compar-

ison to WNMTF. Based on our experiment, the IMULT method is not suitable

for large scale datasets that hold enormous ratings, especially given that IMULT

cannot be run in parallel. However, different parameters setting may result in

better results than our experiment.

6.3.3 Comparison Summary

We conclude that if trust information is available, as we see in Ciao and Epin-

ions datasets, then our proposed method, Trust-New-Items-Dual-WNMTF, is ca-

pable of predicting the ratings of New-Users and New-Items simultaneously with

high accuracy compared to other imputation-based methods. In addition, the im-

putation error is limited; thus, the imputation enhances the accuracy of other user

groups. On the contrary, with the AdaM and IMULT methods, the accuracy of

New-Users and New-Items predicted ratings could be good for either New-Users

or New-Items depending upon the utilized imputation method, but not both si-

multaneously.

6.3.4 Trust Imputation Influence

In this section, we study the influence of the imputation process based on the

trust information against the imputation based on the rating information only.

To perform this, we select the ratings in the test set that belong to imputed New-

Users; then, their MAEs are calculated based on the best settings of the three

methods: AdaM, IMULT, and Trust-New-Items-Dual-WNMTF. The percentage

of the ratings in the test set that belong to imputed New-Users based on our

proposed method is shown in Table 4.7.

As we see in Table 6.5, when the imputation is based on the trust information,

i.e., Trust-New-Items-Dual-WNMTF, the results are better in terms of accuracy

than when the imputation is based on the ratings, i.e., AdaM and IMULT, with all

datasets. However, the lack of social information in the recommendation systems

may still be considered an issue.

97



Table 6.5: The MAE of the ratings in the test set that belong to imputed New-
Users based on our proposed method with AdaM, IMULT, and Trust-New-Items-
Dual-WNMTF.

Dataset AdaM IMULT
Trust-New-
Items-Dual-

WNMTF
Ciao 4.3589 2.2901 0.7022

CiaoDVD 3.7675 0.7735 0.7200

Epinions 3.9451 2.0840 0.9292

6.4 Summary

In this chapter, we integrated the New-Items imputation method into Trust-

Dual-WNMTF method to build a recommendation system that is capable of pre-

dicting the New-Users and New-Items ratings with the ability not only to limit the

imputation error on other users and item groups but also to enhance overall accu-

racy. We compared our proposed method, Trust-New-Items-Dual-WNMTF, with

two popular imputation-based methods: AdaM and IMULT. The results show

that an imputation-based method that utilizes trust information is more accurate

than others that don’t utilize trust information.

Copyright c© Fatemah Alghamedy 2019
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7 Conclusions and Future Work

This dissertation presents research for incorporating trust information into

NMF-based collaborative filtering recommender systems through the imputation

methods to enhance the accuracy of the recommendation. This work involves the

study of the factors that impact utilizing imputation with the NMF-based method

either positively or negatively with different users and item groups. This chapter

summarizes the dissertation work and proposes some future research topics.

7.1 Research Accomplishments

In the last ten years, we believe that the most significant Internet applications

have been shopping, entertainment, and socializing. It cannot be denied that

the data on shopping and entertainment websites is too large. Customers cannot

possibly surf the entire websites’ products, which manifests the urgent necessity

for a recommendation system that can facilitate filtering the products based on

specific information. On the other hand, economists and marketers realize the

great potential of the recommendation systems, which includes, but is not limited

to, promoting the products and increasing profits. Essentially, the accuracy of

the recommendation systems relies mostly on the available customer information,

which indeed mostly is absent, especially for new customers. However, users tend

to express themselves through social websites that may appear through the social

interactions between users. The information on social websites seems to be a great

and accurate source of customers’ preferences to accomplish the recommendation

system’s goals.

This dissertation discusses several topics in NMF-based collaborative filtering

based recommender systems. Essentially, this dissertation can be divided into

three parts: (1) Imputation-based methods that enhance the accuracy; (2) In-

corporating social information into NMF-based methods; (3) Investigation and

comparison of popular imputation-based methods.
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7.1.1 Imputation with Item Auxiliary Information

The New-Items negatively impact the accuracy of the recommendation system

due to the fact that New-Items cannot be introduced to the users. Chapter 2

proposes the Aux-New-Items-NMF method that incorporates the item auxiliary

information into Aux-NMF through utilizing the imputation process. Our results

show that using the item auxiliary information for imputation, not the NMF

process, is a better strategy to introduce New-Items to the users without hurting

the prediction accuracy of other item groups. In order to control the errors that

may be introduced from the imputation, a limited number of ratings are imputed

for each item in the New-Items group before NMF is applied. However, the total

number of New-Items in the training set determines the total imputed ratings for

each New-Item. We demonstrated the influence of the value and average of the

imputed ratings in which the prediction accuracy of the rating values that are

close to the average of imputed ratings is better than other rating values. Users

that have a high probability to like the New-Item need to have more accurate

prediction than the users that don’t like the item because recommending New-

Items to the users is considered an advertisement. By increasing the average of

the imputed ratings, the prediction of the high rating values is more accurate than

the prediction of the low rating values.

7.1.2 Imputation with Trust Network Information for New
Users

The New-Users ratings cannot be predicted with the WNMTF method, which

leads to an increase in the recommendation error. Chapter 3 proposes the Trust-

WNMTF method that incorporates trust network information into WNMTF through

the imputation approach to handle the New-Users issue and to alleviate the rat-

ing matrix sparsity. Two cases of imputation are proposed in Chapter 3. The

first case is when the available imputed ratings of all users are imputed, i.e., All-

Users Imputation case; another case is when only New-Users are imputed, i.e.,

New-Users Imputation case. Our results show that the accuracy of the New-Users

group improves with both imputation cases, especially with the New-Users impu-

tation. In fact, by using the imputation process, the system can recommend items
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to New-Users. Moreover, the Cold-Start-Users group gets a worse MAE in the

New-Users imputation case than the Non-Imputation case; but, some datasets get

better accuracy with the All-Users imputation case, which shows that imputing

Cold-Start-Users sometimes is beneficial. However, the accuracy of the Heavy-

Rater-Users group is worse with both imputation cases in all datasets, especially

with the All-Users imputation case. There are two factors that impact the accu-

racy results. The first factor is the difference in the percentage of the New-Users

ratings between the proposed method and Non-Imputation cases. The second fac-

tor is the percentage of the New-Users ratings in the test set after the imputation

process since we cannot guarantee that all New-Users can be imputed in this step.

In addition, the WNMTF reduces the MAE of the subset from the test set that

can be imputed when the percentage of ratings in that subset is large.

7.1.3 Influential Factors on Imputation with Trust Net-
work Information for Cold-Start Users

As shown in Chapter 3, the Cold-Start-Users suffer from high error in the

prediction results compared to Heavy-Rater-Users. Even though the prediction

accuracy of Cold-Start-Users with some datasets was improved with the Trust-

WNMTF All-Users method, some others did not improve because of the errors

that are introduced from the imputed ratings. Chapter 4 proposes a method that

utilizes the trust network information to impute a subset of the missing ratings

before WNMTF is applied to improve Cold-Start-Users accuracy. Three strategies

are proposed to select the subset of missing ratings that hold the imputed ratings:

Trustee, CSI, and HI. Performance analysis shows that imputing the items that

have been rated by the user’s trustees, Trustee case, improves the accuracy and

limits the imputation error. But, it is important to take into consideration that

imputing Heavy-Rated-Items introduces more errors from the imputed ratings

than imputing Cold-Start-Items even if the Heavy-Rated-Items have been rated

by the user’s trustees. By selecting the imputed items carefully, the accuracy of

Cold-Start-Users improves, especially when the total number of imputed Cold-

Start-Users in the training set is large. In addition, the New-Users group gets

slightly better results, and the negative impact of the imputation on the Heavy-
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Rater-Users is limited. The average of the rating values in the training set is a

critical factor for the accuracy of the predicted ratings in which increasing the

average of the rating values in the training set by the imputed ratings leads to

increasing the accuracy results of Cold-Start-Users. Nonetheless, the increase ratio

in the average of the rating values should be limited when compared to the average

of the original ratings in the training set.

7.1.4 Selective Imputation Strategies Based on Fused Fac-
tored Matrices

Performance analysis shows that although the imputation improves the accu-

racy of the predicted ratings in general, there are some predicted ratings that have

better results without the imputation method. Chapter 5 proposes a selective im-

putation NMF-based method that fuses the factored original rating matrix and the

factored imputed rating matrix to build one system: Trust-Dual-WNMTF. The

proposed method is capable of predicting the ratings by utilizing either the im-

puted users, or imputed items, or both to limit the errors that may be introduced

from the imputation. Five strategies are proposed with Trust-Dual-WNMTF to

calculate the final predicted ratings. The results show that Trust-Dual-WNMTF

is able to utilize the imputation to improve the accuracy of Heavy-Rater-Users in

addition to New-Users and Cold-Start-Users, especially with Max Value strategy.

The improvement in the prediction is obvious when the maximum value of the

sub-predicted ratings belongs to the highest rating value averages of the users

and items either before or after the imputation. The strength of the Trust-Dual-

WNMTF method is that the prediction results of rating values that are not close

to the average of the rating values could be enhanced by utilizing the proposed

method with either Max Value or Min Value strategy.

7.1.5 Comparison Between Selected Methods of Imputation-
Based Recommendation Systems

Chapter 6 integrates the New-Items imputation method into the Trust-Dual-

WNMTF method to build a recommendation system that is capable of predicting

the New-User and New-Items ratings. In addition, Chapter 6 conducts a compar-

ison between our proposed method and two popular imputation-based methods,
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AdaM and IMULT. The accuracy of an imputation-based method that utilizes

trust information is higher than other imputation-based methods that rely on the

user ratings only.

7.2 Extension Techniques of the Dissertation

In this dissertation, we utilized one type of social information for the imputa-

tion method, which is the trust relationship. The trust relationship is considered

as a special case of a one direction relationship, i.e., follow-ship relationship. In

our datasets, the trust information is within the recommendation system, i.e. in-

ternal source. We assume that this work can be extended to more different types

of social information in different aspects. The source of social information could be

external. In addition, the relationship could be either more general of follow-ship

or friendship.

On the other hand, the abundance of auxiliary information is definitely a cru-

cial factor to enhance the recommendation accuracy of the proposed methods

in this dissertation. Finally, we assume the proposed methods fit properly the

systems that strive to enhance the prediction accuracy of the items that have a

high probability to be liked by users, which we believe is one of the fundamental

objectives of the recommendation system.

7.3 Suggestions for Future Work

In the future, it would be interesting to integrate external social information

into state-of-the-art NMF-based collaborative filtering methods. In addition, deep

learning has gained a great interest in many research fields, including recommenda-

tion systems. In general, the top topics that should be studied are: (1) Developing

Trust-Dual-WNMTF; (2) Influence of social information types on the imputation;

(3) Deep learning recommendation systems.

Developing Trust-Dual-WNMTF

In Chapter 5, our proposed strategies are able to choose either the maximum

or the minimum value among the four sub-predicted rating values. However,

we want to design a model that is capable of choosing the best out of these
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sub-predicted values, maximum value, minimum value, or ”in-between” value, by

utilizing machine learning classification methods, such as K-nearest neighbors.

The critical point is the feature selection process of the sub-predicted ratings.

Influence of Social Information Types on The Imputation

(a) Follow-ship (b) Friendship

Figure 7.1: The interaction types in the online relationship.

In our proposed methods, we utilize internal social information, specifically

trust relationship. However, there are different types of relationships that can

be classified based on several aspects. For example, the relationship source can

be either external or internal from the recommendation system perspective. Some

questions are raised, such as, does the internal relationship between the users have

a stronger influence on the recommendation than an external relationship? On

the other hand, there are two types of interactions between the users. The first

is when one user follows another, i.e., followship, when the relationship is from

one direction, as we see in Figure 7.1a. In our dissertation, the trust relationship

is considered a special type of followship relationship because the relationship

is based on product reviewing. The second type is the friendship in which the

relationship is from both directions between the users, as shown in Figure 7.1b.

The last classification of the relationship is the realism. Currently, in addition

to the real-life relationship, there is a virtual relationship. The common features

between the users in a virtual relationship may totally differ from the real-life

relationship. It would be interesting to study the influence of these types of

relationships on the imputation to enhance the recommendation systems.

Deep Learning Recommendation Systems

One of the new hot research topics in recommendation systems is deep learn-

ing. It brings further opportunities to improve the recommendation system per-
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formance because of its ability to solve many complex tasks. In addition, deep

learning has the capacity to utilize various sources and heterogeneous content in-

formation, such as texts, images, audios, and even videos. Deep learning is a

machine learning method that is based on neural networks. In addition, matrix

factorization can be considered as neural networks [19, 20]. From the recommen-

dation system perspective, matrix factorization is able to recognize the low-order

interactions between the users and items, and it models the interaction by lin-

early combining users and items latent factors [20]. On the contrary, deep neural

is capable of observing high-order feature interactions and then modeling the in-

teractions between the users and items nonlinearity with nonlinear activations

including, but are not limited to, relu, sigmoid, tanh, and others. The nonlin-

earity modeling allows the system to catch the complex and intricate patterns of

the interactions between users and items [81]. Guo et al. [16] demonstrate that

combining the power of deep learning and matrix factorization into one system

results in better performance.

In the future, we may study the behavior of each user and item group with the

deep learning recommendation system. The lack of ratings is considered an issue

with the deep learning recommender system. Thus, the imputation process could

be utilized to alleviate this issue. However, it would be interesting to analyze the

accuracy of the results when the imputation is utilized and to study the influential

factors of the imputation. A comparison between the imputation with the NMF-

based method and deep learning method can be conducted.

Copyright c© Fatemah Alghamedy 2019
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