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ABSTRACT OF THESIS 

 

EVALUATE PROBE SPEED DATA QUALITY TO  

IMPROVE TRANSPORTATION MODELING 

 

Probe speed data are widely used to calculate performance measures for 
quantifying state-wide traffic conditions. Estimation of the accurate performance 
measures requires adequate speed data observations. However, probe vehicles 
reporting the speed data may not be available all the time on each road segment. 
Agencies need to develop a good understanding of the adequacy of these reported 
data before using them in different transportation applications. This study attempts 
to systematically assess the quality of the probe data by proposing a method, which 
determines the minimum sample rate for checking data adequacy. The minimum 
sample rate is defined as the minimum required speed data for a segment ensuring 
the speed estimates within a defined error range. The proposed method adopts a 
bootstrapping approach to determine the minimum sample rate within a pre-defined 
acceptance level. After applying the method to the speed data, the results from the 
analysis show a minimum sample rate of 10% for Kentucky’s roads. This cut-off value 
for Kentucky’s roads helps to identify the segments where the availability is greater 
than the minimum sample rate. This study also shows two applications of the 
minimum sample rates resulted from the bootstrapping. Firstly, the results are 
utilized to identify the geometric and operational factors that contribute to the 
minimum sample rate of a facility. Using random forests regression model as a tool, 
functional class, section length, and speed limit are found to be the significant 
variables for uninterrupted facility. Contrarily, for interrupted facility, signal density, 
section length, speed limit, and intersection density are the significant variables. 
Lastly, the speed data associated with the segments are applied to improve Free Flow 
Speed estimation by the traditional model. 

 
KEYWORDS: Minimum Sample Rate, Bootstrapping, Probe Data Quality, Random 
Forests, Free Flow Speed. 
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Chapter 1  Introduction 

 

1.1 Background 

Travel speed is a critical piece of information for many applications such as 

congestion management, air quality conformity analysis, and travel demand model 

calibration and validation. Speed data are used to estimate current traffic conditions. 

After knowing the conditions, travelers and agencies can make better decisions about 

how to use and manage the transportation network. Moreover, the Moving Ahead for 

Progress in the 21st Century (MAP-21) Act states that travel speed is an essential 

input while calculating measures to assess the nation’s highway performance. 

Traditional speed data collection methods such as loop detectors, radar guns, 

and floating cars require significant efforts and resources to achieve the desired 

accuracy. These are also limited to a corridor or a location device. Currently, 

transportation agencies capture traffic data primarily from fixed sensors that are 

relatively expensive to install and maintain. However, with the recent growth of 

communications technologies, Global Positioning System (GPS), and the mobile 

internet, an increasing amount of real-time location information is collected. This 

information is distributed by private companies and marketed for retail to public 

agencies such as state Departments of Transportation (DOTs). As a result, with the 

advances in GPS and communication technologies, speed data have become 

increasingly available through private data vendors. 

Interestingly, traffic conditions are being monitored by using probe vehicles 

which utilize GPS technologies. Data generated by probe vehicles enable direct 

measurement of link travel times and travel speeds. These measurements can be 

subsequently used to estimate travel times across a road segment. The travel time 

information is essential for advanced traveler information system (ATIS) applications 

and real-time route guidance. 

Probe data are obtained by aggregating compound technologies consisting of 

GPS, map matching and digital road maps. Using these technologies, the position of 

one’s own vehicle and the corresponding time of that position are obtained 
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calculating the latitude, longitude, elevation, and the time by receiving signal data 

from four GPS satellites. For different precision levels (e.g. one second, five seconds 

or five minutes), this GPS based probe vehicle reports the coordinate, travel speed, 

travel time, etc. The higher the frequency of reporting the position by the probe 

vehicle, the more accuracy can be expected.  

 There are advantages of using probe data. Probe vehicles cover a greater area 

at a lower cost and do not require expensive and maintenance-intensive equipment. 

Previously, there were issues with using probe data in terms of accuracy (e.g. 

reporting travel time or travel speed) compared to embedded sensors. To check 

probe data fidelity, a number of researches performed validation tests on these data 

supporting their applicability for operational purposes (1, 2). Consequently, probe-

based speed data are being widely accepted for transportation applications, such as 

determining travel time reliability (TTR) metrics, congestion measures, improving 

transportation models, etc. (3, 4).  

While using probe data for transportation modeling purposes, researchers face 

issues. One of the issues is the availability of probe data. For example, in a high-

volume road, there is good temporal coverage of probe vehicles over the day. The 

frequency of reporting data is also high in this case. From the data, one can aggregate 

the speed or travel time data for 15 minutes or an hour. These aggregated data 

capture the temporal speed variations over a day. Conversely, a small number of 

probe vehicles traverse in a low volume road reporting data at a low frequency. 

Besides, some roads may not have night time data or some may not have off-peak 

period data during the day time. Thus, 15 minutes or hourly aggregation of these data 

may not capture the temporal speed variations properly due to missing data. If 

anyone evaluates the operational performance of a road network, which includes 

both high and low volume segments, it may not give reliable performance measures 

for all the segments. Hence, an adequate number of speed observations are required 

to be ensured for operational and modeling purposes.  

The question is: how many data corresponding to a certain interval from a year 

would be deemed as adequate. It can be referred as sample size estimating the 

adequate respondents from the total number of the target population to be used. 
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Since inadequate sample size may lead to poor results, sample size determination is 

an important step before using data for transportation applications. Moreover, 

performance measures can be accurately determined with adequate speed data. 

Therefore, the challenge is determining the minimum probe speed data required for 

a segment to ensure that the speed estimates are within a permissible error range. 

This is defined as the minimum sample rate, which reports the minimum number of 

5-minute epochs with probe speed data as a percentage (%) of all 5-minute epochs in 

a year.  

Evaluation of probe data quality determines if the data from a road segment are 

adequate or not. The quality is checked by comparing the minimum sample rate with 

the data availability of a segment. If the data availability fulfills the minimum sample 

rate requirement, it indicates that the data are adequate. These data can be directly 

used to measure Free Flow Speed (FFS), hence, congestion measures. Moreover, the 

quality check also helps to decide whether an alternative procedure or model is 

required or not to obtain congestion measures for the segments with inadequate data. 

The data, where the availability is less than the required minimum sample rate, are 

defined as inadequate. 

To the author’s best knowledge, the question about the required minimum 

sample rate of probe speed data has not yet been properly addressed by research. 

This study proposes a method to estimate the minimum sample rate for different 

facility types, which is required to evaluate probe data quality for transportation 

modeling and operational studies.  

 

1.2 Research Statement and Objectives 

Due to limited coverage of probe speed data on some road segments, it is 

important to know how much data would be considered enough for transportation 

applications. The evaluation of the data quality can be done by estimating the 

minimum sample rate and comparing it with the probe data temporal coverage. If the 

temporal coverage of a segment satisfies the minimum sample rate requirement, the 

data can be trusted, and the segment will be referred as a segment with adequate 
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data. This study addresses this probe data quality issue by setting the objectives 

stated below. The objectives are:  

1. To develop a method for determining the minimum sample rate of speed data 

in order to evaluate probe data quality.  

2. To identify and rank the significant factors that affect the minimum sample 

rate of interrupted and uninterrupted facilities by developing regression 

models. 

3. To recommend facility specific regression models that correlate the significant 

factors with minimum sample rate. These factors will help the practitioners to 

have an idea on the data collection efforts.  

4. To improve FFS estimation by calibrating the traditional model utilizing the 

adequate speed data.  

The overall framework of this research, including its applications, can be 

pictured as in Figure 1. The first step is to propose a methodological framework of 

determining minimum sample rate for all facilities in Kentucky. The method follows 

a bootstrapping sampling procedure on probe speed data provided by the Kentucky 

Transportation Cabinet (KYTC) at the link level. The sampling procedure results in 

the minimum sample rate for each road segment. After that, the segments with 

adequate data will be identified by comparing data availability with the minimum 

sample rate. The next step will be applying the minimum sample rate of these 

segments to determine the factors that affect the minimum sample rate of a defined 

road facility. These factors are basically Highway Performance Monitoring System 

(HPMS) attributes which are listed as: 

 Physical Attributes: Number of lanes, lane width, type of median, 

shoulder width, section length, etc. 

 Accessibility Attributes: Density of signalized intersections, and 

density of access points. 

 Mobility Attributes: Speed, and Annual Average Daily Traffic (AADT). 
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Figure 1 Research Framework  

 

After identifying the factors, this study recommends a facility (for 

uninterrupted and interrupted) specific regression model to determine the minimum 

sample rate for a completely new road segment. This study also shows another 

application of the adequate speed data, which involves improving a FFS model. For 

this purpose, the FFS model is calibrated utilizing the speed data of these segments. 

Using the calibrated parameters in the model, the FFS of a road segment can be 

calculated with further accuracy.  

 

1.3 Thesis Organization 

This document consists of five chapters. Below are the contents of the chapters 

in brief. 

 Chapter One: An overview of the research problem and research goals. 

 Chapter Two: Literature reviews/ prior studies on the relevant field. 

 Chapter Three: Data sources and processing, the methodological framework 

for minimum sample rate, and analysis results. 

Segment 
Speed Data Bootstrapping 

Adequate Data: 
Min Sample Rate < Data 

Availability 
 
 

Min Sample Rate (%) 
Regression Model: 

Min Sample Rate = f(HIS 
Attributes) 

 

FFS Calibration 
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 Chapter Four: Application of minimum sample rate and probe speed data to 

find out the significant factors using regression models, results from 

regression models and comparison among the models, and FFS model 

improvement. 

 Chapter Five: Discussions on the findings, a summary of the research, 

limitations, and future work. 

This introductory chapter gives an overview of the research goals and the 

outline for the structure of this document. The next chapter presents the literature 

that provides an understanding of why there is a necessity for this study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

7 
 

Chapter 2  Literature Review 

 

To begin, the author conducted a review on the current state-of-practice for 

checking the probe data fidelity before generating performance measures. Reliable 

performance measures require the adoption of different methods to evaluate probe 

data quality, which includes estimating probe vehicle sample size or minimum 

sample size of speed data. Therefore, this review helps to understand the rationale 

behind the adoption of different proxies for the estimation of the sample size. 

Furthermore, it provides a direction for this study focusing on the minimum sample 

rate as a measure of probe data quality evaluation. Although the existing researches 

on estimating minimum sample size for probe speed data are not significant, a review 

on the current practices brings forth the value of this study in providing a basis for 

future industry and research implementation. 

In the following sections, a detailed background on probe data quality 

assessment to test its fidelity is presented. After that, studies that worked on 

estimating probe vehicle sample size and probe data sample size are documented. All 

these probe data quality assessments and sample size-based studies imply that 

performance measures require a valuation of data quality and adequacy. Thus, 

researches are going on to determine either minimum probe vehicle or minimum 

probe data requirements for assessing data quality. Despite focusing on the 

determination of minimum sample rate for speed data, this study also reviewed 

existing works regarding some statistical techniques on probe vehicle sample size. 

 

2.1 Assessment of Probe Data Fidelity 

Prevailing efforts on assessing probe speed data have been focused on 

validating the travel time measures based on this data by comparing with those 

derived from other data sources. A number of studies checked the fidelity of these 

data for freeways (5), whereas some other researches worked on the accuracy of the 

data for arterials (1, 2, 6). For freeways, Haghani et al. (5) compared INRIX data with 

Bluetooth traffic monitoring (BTM) data. During the validation process, they 

determined that road segments greater than one mile provided the most accurate 
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speed measurements. Their analysis based on the speed distribution over the day 

concluded that speed data provided by INRIX is of good quality.  

Eshragh et al. (1) indirectly checked the fidelity of probe data for the arterials 

based on roadway attributes. They developed a linear regression model which 

showed a strong correlation between the road attributes and probe data accuracy like 

average absolute speed error (AASE). They found that AADT, average signal density, 

and average access point density are correlated to probe data accuracy. They 

validated the regression model and concluded that the model can be used to predict 

the accuracy of the probe data indirectly for the arterial corridors. 

 Juster et al. (2) tested the probe data quality for arterials from case studies. 

They compared probe acquired data with BTM, where BTM was a ground truth data. 

Using hourly scatterplots for both sources, they tried to observe how well or poorly 

probe data capture the hourly travel time distribution. In addition, they calculated 

performance measures (e.g. travel time index, planning time index, etc.) using probe 

data and BTM data and compared the performance of probe data with respect to BTM. 

Finally, they suggested that probe data are suitable for arterials corridors that have 

an AADT greater than 40,000 vehicles per day, at least two lanes in each direction, 

and a signal density of one or less per mile.  

The same authors from the studies (1) and (2) further researched on 

outsourced vehicle probe data of arterials. They adopted the same method from these 

two studies. Using the AASE regression model and BTM vs probe data hourly 

distribution plots, they recommended using probe data on arterials with signal 

densities (measured in signals per mile) up to one. However, they mentioned that 

probe data should be further investigated for signal densities between one and two.  

Patire et al. (7) assessed probe data quality after fusing it with loop detector 

data. They used two data quality measures: sampling rate and penetration. According 

to the authors, “Sampling rate is the average rate at which any device reports its 

position and velocity. Any data set will have a distribution of devices with a range of 

sampling rates (typically between 0.5 and 60 reports per minute) whereas 

penetration rate is the flow fraction of vehicles (unique devices) reporting to the 

probe data set as compared to the total flow of vehicles along a road”. After 
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investigating these two measures, they preferred a high penetration rate of probes 

over a high average sample rate. It indicates that quality probe data can be achieved 

by having less frequent data from a larger number of unique probe vehicles, than 

having more frequent data from a smaller number of unique probes.  

Probe data are also used as a substitution of the modeled travel time or speed 

data. Florida Department of Transportation (FDOT) supported HERE data, which is a 

source of probe data, as a replacement for modeled travel time/speed data (8). Before 

making a conclusion on HERE data, FDOT checked the quality of the data. The quality 

check included Turkey method that ranked all travel times for a road section and 

treated any value greater than the 75th percentile plus 1.5 times the interquartile 

distance, or less than the 25th percentile minus 1.5 times the inter-quartile distance 

as an outlier. Secondly, they checked if two consecutive travel times change more than 

40% or not. Thirdly, they removed a travel time data if it is more than one standard 

deviation above or below the moving average of the 10 previous entries.  

Washington State DOT (9) compared INRIX, Sensys, Traffic Cast, Blip System, 

and BlueTOAD data to investigate their quality. They evaluated their accuracy based 

on travel time distribution plots, Mean Absolute Deviation, Mean Percent Error, Mean 

Absolute Percent Error, and Root Mean Squared Error. They found that if accuracy 

drops below a critical limit (Mean Absolute Percent Error =25%), it is wise to avoid 

that data source. Moreover, if the sample count and penetration are much lower, the 

travel time for that data cannot be representative. After observing these error 

measures, sample counts and penetrations rates for all the data sources, they 

suggested that INRIX data from probe vehicle have wide availability and more 

accuracy (9).  

Furthermore, KYTC (10) looked at the temporal coverage of the probe data to 

evaluate its quality. As the percentage of 15-minute epochs with probe data 

decreases, confidence in the data diminishes. A minimum threshold of 1% temporal 

coverage (measured by the percentage of 15-minute epochs with probe data) was 

considered acceptable. If the probe data satisfy this threshold, they are suitable for 

measuring and tracking the performance of roadways across several years (10). Such 

data can help DOTs and Metropolitan Planning Organization (MPOs) identify 
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bottlenecks in the network, prioritize improvement strategies, and assess the 

effectiveness of projects. Therefore, with the assessment of probe data and 

acceptance given by the DOTs, the fidelity of this data source has been verified.  

To set reference speed for freeways and arterials, Jha et al. (11) used the travel 

speed data from INRIX database. INRIX provided annual average travel times for each 

15-minute interval of each day of a week. While setting the reference speed, they 

essentially had to know the data adequacy of probe speed data for a certain interval, 

so that they could have a reliable reference speed. Furthermore, the Texas 

Transportation Institute (12) recommended using probe data in measuring delay, 

determining the level of service, and evaluating signal operations. They evaluated the 

quality of INRIX data before doing the analysis. For this, they compared INRIX data 

with Bluetooth data. They determined that the INRIX speed data sufficiently reflected 

the ground-truth Bluetooth speed data and were suitable for the applications. Zhang 

et al. (13) also assessed INRIX probe data quality with respect to Bluetooth data. To 

measure the accuracy of INRIX data, they used correlation matrix and correlation plot 

for each performance metrics like travel time index, planning time index, etc., and 

compared them for INRIX and Bluetooth data. The comparison concluded that INRIX 

data are suitable for calculating reliability measures of the segments with 

homogeneous lanes as well as for performance reporting. 

The discussion above shows that the DOTs and other organizations are using 

probe-based data to reliably measure performance metrics for different facilities. 

While a few of the studies are assessing the probe data quality before using the data, 

the majority are not likely to explain how they test the data quality for their 

applications. It should be of great concern since inadequate data may not give 

strength to performance measures. Several studies are trying to deal with this issue 

and propose data quality test giving some guidelines based on either probe vehicle 

sampling or probe data sampling. The next section gives a brief on different 

methodologies regarding probe vehicle sampling. 
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2.2  Existing Literature on Probe Vehicle Sample Size 

The accuracy of travel information depends on the number of instrumented 

probe vehicles. Several probe vehicles traversing in the traffic stream can potentially 

provide valuable information about current travel times or travel speed. However, 

too few probe vehicles can provide erroneous or misleading data, weakening  

the credibility of the transportation agency and eroding public confidence in the 

traffic management system. Due to this issue, studies are determining the sample size 

of the probe vehicles in a traffic stream. This is defined as the probe vehicle sample 

size providing the minimum number of probe vehicles required on a certain road for 

travel information accuracy. The researches on the probe vehicle sample size follow 

different statistical approaches. These can be explored to gather knowledge of the 

general procedure for sampling analysis. Most of these studies are undertaken with a 

major focus on average travel time/speed estimation within a specified acceptance 

level. For example: 

 Generally, statistical sampling theory is used for the required probe vehicle 

sample size to reliably estimate link travel time/speed. It assumes that travel 

times/speeds on links follow a normal distribution or t distribution. However, 

formulations based on the z-statistic can be performed only if the sample size 

is greater than 30 (14). On the other hand, formulations based on the t-statistic 

has no closed form solution, and an iterative procedure must be applied to 

search the possible sample size (14). 

 One caution in using the sample size determination formulations is that the 

assumptions do not always hold under interrupted traffic flow. This may be 

the case that link travel times appear to have multistate features (15-18). 

 Zhou et al. (19) used a simulation-based approach to determine the sample 

size of probe vehicles with consideration of road network coverage and link 

average speed estimation. The estimation accuracy increased little and the 

efficiency decreased significantly with the increase of probe sample size when 

it reached a certain level, as proved by microscopic VISSIM simulation. 

However, these Simulation-based sampling studies lack enough calibration 

and validation from real-world data, which limit their applications. 
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 The findings from Chen et al. (20), Cetin et al. (21), and Miwa et al. (22), in 

general, concluded that road geometrics, traffic volumes, estimation accuracy, 

and the characteristics of the activity along the road would influence the 

required minimum number of floating cars. 

Regardless of the above-mentioned studies, the mean and standard deviation 

are the main measures used for estimating the required probe vehicle sample size 

with reasonable precision in most of the existing studies. However, these measures 

contain only a portion of information conveyed by the probability distributions, 

which have intimate relationships with underlying traffic conditions (23, 24). Overall, 

this section gives an idea on several sampling techniques to estimate the minimum 

sample size for probe vehicles or floating cars. At the same time, it helps to know 

about the shortcomings of these techniques separately, if one wants to adopt the 

methods for any sampling research.  

 

2.3 State-of-Practice in Minimum Sampling Rate of Speed/Travel Time Data  

Earlier studies on the data quality check were mostly focused on finding the 

minimum sample size of the probe vehicles or floating cars. Few of the studies worked 

on the sample size determination of speed data. This section documents the existing 

few efforts to find the minimum sample size for travel time data or speed data 

generated from different sources (probe vehicle or other agencies). After analyzing 

those studies and their limitations, the motivation of this research can be justified. 

For travel time studies, it is important to check the data quality before 

producing reliability measures. Several studies adopted different approaches for 

checking data quality collected from different sources. For example, some were 

looking at travel time distributions, or some are building parametric and non-

parametric models. An overview concerning those is discussed below.  

 Previous research randomly selected the time periods for their travel time 

data without additional justification. Due to the limited availability of traffic 

sensor data in the 1970s, Polus (25) manually collected 211 samples of travel 

time data, used Gamma distributions to fit the data and then estimated the 

reliability measure accordingly.  
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 As traffic sensors were installed on more roads, researchers gained access to 

more data, allowing Van Lint and Van Zuylen (26) to use data for the entire 

year of 2002 to build travel time distributions. Although Emam and Al-deek 

(27) used four weeks of data to fit their selected statistical distributions, 

Higatani et al. (28) utilized a full year of expressway data in their study. All 

these studies did not show the premise behind using four weeks or one-year 

worth of data. 

 Kwon et al. (29) used a non-parametric model to fit 256 non-vacation days of 

data in their case study, stating that “the sample size is large enough”, while 

Yazici et al. (30) utilized nearly 11 months of data (from Jan.15, 2010 to Nov. 

28, 2010) to build their travel time distributions. 

 Yang et al. (31) determined the minimum sample size required to build stable 

travel time distributions for freeway TTR by proposing both parametric and 

non-parametric method. However, their analysis was based on the presumed 

distribution of travel time data.  

 Yang and Cooke (32) applied a bootstrapping approach to identify the optimal 

size of travel time data for measuring freeway TTR.  

Sample sizes for speed studies can vary from a fraction of an hour to 24 hours a 

day to 365 days a year, depending on the purpose of the study. Generally, for the 

speed study, peak hours are included in all samples (33). Holiday or on the day before 

or after a holiday is excluded for taking traffic counts. Normally, Monday mornings 

and Friday evenings show high volumes.  

Oppenlander (34) developed a procedure for sample size determination based 

on the average range of the observed travel speeds. The estimate of the standard 

deviation of travel speeds can also be used for the similar purpose. Quiroga and 

Bullock (35) developed a hybrid method for the determination of sample size. The 

sample size estimation is shown in Equation (1). 

𝑛𝑛 =  �𝑡𝑡𝛼𝛼 ×𝑅𝑅�

𝑑𝑑𝑑𝑑
�       (1)  

Where; 𝑛𝑛 = minimum sample size 

𝑡𝑡𝛼𝛼 = normal, two tailed statistics for a confidence interval of 1-α 
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𝑅𝑅�= average range 

𝑑𝑑 =
𝑅𝑅�
𝜎𝜎

 

𝑑𝑑= factor for estimating 𝜎𝜎 from 𝑅𝑅� 

𝜀𝜀 = user-selected allowable error 

Li et al. (36) suggested a modified method to determine the sample size. Use of 

𝑍𝑍𝛼𝛼/2 values in place of 𝑡𝑡𝛼𝛼/2 values induced some error in sample size. As a result, they 

proposed a correction factor for the calculation of sample size. Revised equation is 

given below, 

𝑛𝑛 = �𝑍𝑍𝛼𝛼/2×𝜎𝜎
𝑑𝑑

�
2

+ 𝜀𝜀𝑛𝑛      (2) 

Where; 𝑛𝑛 = minimum sample size 

𝜎𝜎= population standard deviation 

𝜀𝜀 = user-selected error 

𝜀𝜀𝑛𝑛= sample size adjustment 

Barnett et al. (37) studied regression to mean (RTM) phenomenon and 

concluded that it is a ubiquitous phenomenon in repeated data. It should always be 

considered as a possible cause of an observed change. Use of better study design and 

suitable statistical methods can be used to alleviate these effects. Park and Lord (38) 

adopted graphical methods to illustrate the RTM phenomenon. They used aggregated 

speed data to show how to reduce RTM bias in before-and-after speed data analysis. 

From the numerical examples, the estimated magnitude of the mean speed change 

can be misleading due to the introduction of an engineering treatment and the 

amount of uncertainty which can be measured by the estimated standard error and 

confidence interval. This problem can be addressed by accounting RTM.  

Varsha et al. (33) determined sample size for speed obtained using a video-

graphic survey on Urban Arterials. Their assumption was made based on speed 

variability and traffic conditions. They showed that there was not much variation in 

speeds for a given vehicle type and location. The mean and variance in speeds, 

obtained from first ten-speed measurements for a vehicle type, were not statistically 

different from those obtained after one hour of data collection. However, for some 
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locations, where the proportion of heavy vehicles and flow were low, statistically 

stable mean speeds of heavy vehicles could not be obtained even after hours of data 

collection. 

From the above discussions on sampling size methods, the existing literature 

shows a gap to give a proper guideline for minimum sample rate while using probe 

data. Most of them assume a fixed distribution of the speed data or travel time data. 

Moreover, the minimum sample rate may vary based on facility type. Existing 

methods either work on freeways or arterials. No research is found that integrates 

both uninterrupted and interrupted facility to give a direction on the minimum 

sample rate required. There is still a need for research confirming the minimum 

sample rate for both facility types using a method that does not require an 

assumption on the data distribution.  

An increasing number of agencies are embracing probe speed-based measures 

to quantify congestion and TTR. However, no specific study worked on determining 

the minimum sample rate for further utilization in improving transportation models. 

Thus, it is important to know what percentage of the whole year speed data will be 

enough for operational and transportation modeling purpose. In search of the answer 

to this research question, the next chapter shows the subsequent methodology with 

a brief on the data sources.  
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Chapter 3  Determining Minimum Sample Rate 

 

This chapter gives an overview of the data sources and the method involved in 

achieving the objectives of the research presented in section 1.2. 

 

3.1 Data Sources and Processing 

This study uses historical speed data acquired from a third-party data provider, 

HERE Technologies (10). They provided probe speed data from 2017 on all Kentucky 

roadways including all facility types. These speed data were attached to the links of 

the HERE Street Network. This network is called HERE 2017Q3 Street Network. HERE 

provided probe speed data for all vehicles, cars only, and trucks only. The total 

number of links on the most recently updated HERE street network is 1,033,842 for 

Kentucky State. Probe vehicles traversing through these links report 5-minute epochs 

speed data daily. These 5-minute intervals of data were obtained for this study’s 

purpose.  

HERE datasets come into two forms: GPS probe-based, and GPS path-based. In 

this study, GPS path-based is used. This path-based approach involves tracking probe 

trajectories, computing space mean speed and integrating it with the GPS point-based 

speed in a link to produce a path-processed dataset. These path-based speeds were 

then assigned to all links that were part of the path. As a result, links that probe 

vehicles traversed but that were not polled for instantaneous speeds would be 

included. A trial analysis of the Lexington area indicated that path-processed datasets 

contain about 50% more records than the probe-based data (10). 

The HERE database contains directional speeds, probe vehicle sample counts, 

i.e. the number of intervals, mean, minimum, maximum, and standard deviation of the 

probe speeds in 5-minute intervals over a year. For this study’s purpose, afternoon 

peaks (time span: 3 pm- 6 pm) from non-holiday weekdays were included. During the 

afternoon peak, the traffic demand is high, and so the probe vehicle coverage is high. 

The probe data used in this study provided 18.73% data for afternoon peaks, 13.3% 

data for morning peaks, and 14% data for midday peaks with respect to the total 5-

minute epochs for the whole year. It indicates that the number of 5-minute epochs 
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that have probe data during the afternoon peak period is maximum compared to 

other peak periods of the day. To determine the minimum sample rate of a road 

segment, a time period which provides high probe data coverage and gives confidence 

in the estimated sample rate is desirable. In this case, the afternoon peak period 

provided high data coverage. Moreover, the randomness in speed data was greater 

during this period. Figure 2 shows the spatial coverage of data over the state of 

Kentucky during afternoon. 

 

 
Figure 2 HERE Link-Referenced Network of 2017 

 

This study also used roadway geometry, condition, and usage data from KYTC’s 

Highway Information System (HIS). Table 1 shows the KYTC provided list of the data 

items in the HIS database. 
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Table 1 List of Data Items 

Items 

Pavement Type Functional System 
Facility Type Peak Lanes 

Area Type Lane Width 
At Grade Signal Right Shoulder Width 
At Grade Stop Left Shoulder Width 

At Grade Other Peak Truck Percentage 
Section Length Daily Truck Percentage 
Through Lanes Interchanges 
Median Type Speed Limit 

Median Width Percent of Passing Sight Distance 
Access Control Truck Climbing Lane 
Terrain Type Turning Lanes 

AADT Peak Parking 
K Factor Green Ratio 
D Factor Curve 

 Grade 
 

HIS network provided the data at a segment level over the state. The HIS 

segments were mapped with HERE links using conflation methodology. The method 

used HERE speed data to create performance measures for the HIS network in 

Kentucky. The approach followed transforming one network (e.g. HERE street 

network) to a point shapefile and then projected it to the other network (e.g. HIS 

network). Details on this method can be found in the research by Green et al. (39), 

where an automated conflation process to integrate two networks was developed. 

Following this method, the HERE 2017Q3 network was conflated with KYTC’s HIS 

network. However, mismatches due to network complexities were an issue. To 

address the issue, a set of screening rules was developed to facilitate the quality 

assurance process based on functional class mapping and network connectivity (40).  

Originally, this study performed the analysis on the HERE links. A particular HIS 

road segment consists of a number of HERE links. The minimum sample rates were 

estimated for each link and were aggregated for the whole HIS segment. The network 

mapping of HIS and HERE street allowed the determination of minimum sample rate 
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at HIS segment level. The aggregation from the link level to segment level will be 

described in the later section 3.4. 

 

3.2 Statistical Measures to Estimate Minimum Sample Size  

This section discusses some statistical measures used by several studies 

estimating sample sizes along with their limitations.  

Currently, statistical measures, such as standard error, confidence intervals, 

and statistical distributions are widely used to estimate the minimum sample size 

from a given dataset. However, those measures face issues while following strict 

assumptions.  

Yang and Cooke (32) used standard error to assess the accuracy of statistical 

estimators like sample mean and confidence interval. To estimate freeway corridor 

travel time within a short time period, n observed travel times were recorded in their 

study. The estimated standard error of a mean, �̅�𝑠, based on the n independent 

observed travel speeds (s1, s2, . . ., sn) were calculated using Equation (3). 

Standard error = �∑(𝑠𝑠𝑛𝑛−𝑠𝑠 �)2

(𝑛𝑛−1)∗𝑛𝑛
     (3) 

The measure of accuracy was derived based on this standard error. For this, the 

authors estimated the margin of error (ME) associated with a particular confidence 

interval. This ME was then used to determine sample size in their study. However, 

there are issues with estimating the sample size requirement in this way, especially 

for travel time measurement (41, 42). One of the major disadvantages is that the 

equation assumes a normal distribution. Moreover, no explicit equation is found for 

measuring standard error of the most statistical estimator (median, nth percentile, 

standard deviation, etc.).  

Conventional methods of measuring accuracy are unsuitable for travel time and 

congestion study using speed data. Studies (24, 43, 44) show that freeway travel time 

does not follow a strict distribution. The freeway travel time distribution is 

sometimes left skewed or sometimes right skewed without having a unique common 

distribution to represent the travel time. Additionally, congestion studies do not 

concern only calculating the mean of available speed data, but also checking speed 
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data adequacy over the year before using the data. Hence the question arises, are the 

available speed data enough to obtain reliable congestion or reliability measures? 

What should be the required minimum speed data to get credible measures? 

Therefore, a methodological framework is required to have confidence in data and to 

evaluate the accuracy of the estimator. 

Following along with the line of existing literature, there is a need to investigate 

minimum sample rate without accounting for a fixed assumption on the distribution 

of speed data. The investigation also involves choosing an accuracy measure to 

examine the acceptance of the estimated sample rate corresponding to an acceptable 

error value.  

 

3.3 Study Method to Estimate Minimum Sample Rate  

After counting the issues in the existing practices, this section describes the 

method to determine the minimum sample rate without assuming a distribution of 

the speed data. The method included an algorithm that allowed to repeatedly sample 

a percentage of data using a bootstrapping resampling approach and ensured that the 

sample means were within a small margin (e.g., 5%) of the population mean.  

Bootstrap resampling method is a simple procedure that involves repeatedly 

resampling from the available data to develop a number of plausible data sets that 

might have been observed under different circumstances. Each successive individual 

bootstrap replication has a data size that is equal to a predefined sample size. For 

example, assume that t = (t1, t2… t15); one individual replication with replacement for 

80% size of this dataset could be t∗ = (t1, t2, t1, t1, t3, t5, t7, t7, t8, t9, t11, t14). Such 

resampling procedure is performed m times to create m replications. This sampling 

method was used to create replications of the original speed dataset in this research. 

The sampling process is graphically presented in Figure 3. 
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Figure 3 Bootstrap Sampling Procedure 

 

The classical procedure of bootstrapping involves sampling through 

replacement to have multiple duplicate observations in the bootstrapped 

replications. The replacement helps to account for the samples that are close to the 

observations in a dataset. Moreover, the bootstrapping method allows for estimating 

the distribution of various parameters such as the sample mean (45). It treats a 

sample of data (from observations/from simulation) as a new population. 

Furthermore, it allows for determining multiple estimates of the parameter of 

interest. The most important advantage of this method is that no assumption is 

required about the underlying distribution of the population. In addition, uniform 

resampling is done from the original observations. This study implemented the 

method because of these advantages.  

Finally, the algorithm to determine the minimum sample rate of probe speed 

data for a link consists of the following steps: 

 Feed original speed dataset and treat this dataset as population. 

 Define population size, N, of the original speed dataset. 
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 Estimate population mean using Equation (4). 

𝜇𝜇 = 1
𝑁𝑁
∑ 𝑦𝑦𝑘𝑘      𝑁𝑁
𝑘𝑘=1 (4) 

                    Where; 𝑦𝑦𝑘𝑘= kth speed data 

        N = size of the population  

 Directly apply the bootstrapping to those original speed datasets with 

varying sample rates (x %). For example: if the original dataset contains 

100 data points, a sample rate of 20% should mean that 20 data points will 

be uniformly generated with a random selection from the dataset, by 

performing bootstrapping resampling to this original (population) dataset.  

 Get bootstrap samples of the speed dataset using random sampling with 

replacement, which means m times replications of x% sample from a 

population size of N are produced. To select the replication number that 

should fulfill the purpose of this study, other existing efforts can be 

referred here. For example, Efron and Tibshirani (46) recommended that 

1,000 bootstrapped replications are sufficient to estimate standard errors. 

Besides, 2,000 replications are sufficient to estimate confidence intervals 

(46). Since the percentile confidence interval is used as an accuracy 

estimate of bootstrapped samples in this study, 2,000 replications are 

enough to do the process. 

 Calculate the parameter of interest, i.e. sample mean, of each bootstrapped 

sample using Equation (5). 

𝑦𝑦� =
1
𝑛𝑛
�𝑦𝑦𝑘𝑘

𝑛𝑛

𝑘𝑘=1

     (5) 

Where; 𝑦𝑦𝑘𝑘 = kth speed data in the bootstrapped samples 

               n = size of the bootstrapped samples i.e. 𝑥𝑥% 𝑜𝑜𝑜𝑜 𝑁𝑁 

 Form a new data set based on the m number of sample means, 𝑦𝑦� , that are 

already calculated from the m replications of the speed data. 

 Approximate the distribution of this set of sample means. In this study, a 

sampling distribution of the means is created. This distribution depends 

upon the distribution of original data.  
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 Use the approximate distribution to obtain percentile confidence interval 

(CI) of the sample means. The bootstrap method suggests that 

approximately 95% of the time, the population mean, 𝜇𝜇, falls between the 

2.5th percentile and the 97.5th percentile of the bootstrap sample means. 

This is also known as the 95% CI.  

 Calculate ME using 95% CI as presented in Equation (6). 

𝑀𝑀𝑀𝑀 = (𝑦𝑦�0.975− 𝑦𝑦�0.025)
2

     (6) 

 Where; 𝑦𝑦�0.975,𝑦𝑦�0.025 = 97.5th and 2.5th percentile of the bootstrapped 

sample means respectively 

 Set an acceptable error rate in percentage, 𝜀𝜀 , which is introduced to define 

how much the error can differ compared to the population mean, 𝜇𝜇. If the 

ratio of ME to the population mean, 𝜇𝜇,  exceeds the defined error rate, 𝜀𝜀, as 

shown in the Equation (7), the algorithm will increase the value of sample 

rate, x%. Hence, the process continues until an error converges to the 

defined 𝜀𝜀.  
𝑀𝑀𝑀𝑀
𝜇𝜇

 × 100 >  𝜀𝜀     (7) 

 Report the corresponding sample rate, x%, as the minimum sample rate, 

once the ratio of ME to 𝜇𝜇 converges to 𝜀𝜀. 

The Framework for the minimum sample rate algorithm is shown in Figure 4. 
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Figure 4 Methodological Framework for Minimum Sample Rate 

 

An example to demonstrate a realistic reflection of the method is shown in 

Figure 5. It shows the Cumulative Distribution Function (CDF) curves for 2,000 

bootstrap replicated datasets, where Figure 5(a) is for 20% sample rate and Figure 

5(b) is for 1% sample rate. To compare these 20% and 1% replications with the 

original data, CDF for the original dataset is also added in the figures using a red curve. 

From Figure 5, the distribution of the data converges on some value with increasing 

sample rate. Moreover, the distribution of probable results in the tails is wider than 

the median. Consequently, more data are required to confirm that any parameter 

estimated from the tails of the distribution has converged to within the same 

tolerance that might be used for the mean. 
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20% Sample Rate 

 
1 % sample rate 

Figure 5 Cumulative Distribution Plots for (a) 20% Sample Rate, (b) 1% 

Sample Rate for Speed Data 
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For the 1% sample rate shown in Figure 5(b), a broader range lies for a 95% CI. 

On the contrary, for the 20% sample rate presented in Figure 5(a), a narrower range 

lies within the 95% CI. As decided before, this range is allowed for 5% times (error 

rate) of the true population mean for calculating minimum sample rate.  

 

3.4 Minimum Sample Rate Analysis and Results 

The bootstrap minimum sample rate method was applied to HERE link speed 

data from non-holiday weekday afternoon peaks in 2017. The high data coverage 

during the afternoon peak periods well represents the population characteristics, 

hence, the estimate of the population mean. Moreover, it was assumed that the probe 

speed data represents ground truth. After applying the method to the data, the results 

were analyzed separately based on facility types to define a threshold of minimum 

sample rate for the road segments in Kentucky. This section gives an overview of the 

analysis and the results from the method. 

Bootstrapping was applied to the HERE extracted speed dataset. The sampling 

process started with a bootstrap sample set containing only a single speed data (e.g. 

1-speed data from a population set of 100 data means 1/100 = 0.01% sample rate). 

The whole process continued until it yields an error rate, 𝜀𝜀, of ±5% pertaining to 95% 

CI. The sample rate corresponding to the error rate was reported as the minimum 

rate for the HERE link. After obtaining minimum sample rates for all the HERE links, 

these were aggregated to the HIS segment levels. Using Equation (8), the length 

weighted average of the link estimated sample rates was calculated for the 

aggregation on the segment level.  

𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆  𝑅𝑅𝑆𝑆𝑡𝑡𝑆𝑆(𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑛𝑛𝑡𝑡 𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆),  𝑀𝑀𝑆𝑆𝑆𝑆𝐿𝐿𝑗𝑗 =
∑ 𝑀𝑀𝑆𝑆𝑖𝑖𝑗𝑗𝑖𝑖
1 × 𝐿𝐿𝑖𝑖
∑ 𝐿𝐿𝑖𝑖𝑖𝑖
1

      (8) 

Where; 

𝑀𝑀𝑆𝑆𝑖𝑖𝑗𝑗 = minimum sample rate for the corresponding ith HERE link of the jth 

segment from HIS extracts 

             𝐿𝐿𝑖𝑖  =length of the ith HERE link 
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Equation (8) gives the minimum sample rate for each of the segments in the HIS 

network. Finally, results were analyzed separately for all the transportation facilities 

in Kentucky to decide a threshold for the minimum sample rate. These facilities are: 

 Uninterrupted Facility which includes:  

• Freeways 

• Multilane highways 

• Rural one/two/three lanes 

• Urban one/two/three lanes 

 Interrupted Facility which includes: 

• Signal controlled facilities 

• Stop sign controlled facilities 

Uninterrupted facility type of Kentucky provided high data coverage on 

freeways and urban road segments. In the beginning, the method was applied to the 

freeways with a speed data coverage of more than 75%. The required minimum 

sample rate for these segments was determined to be approximately 8%. Next, the 

same analysis was conducted for the remaining freeway segments with less than 75% 

coverage. Likewise, most of the segments showed a value of 8%. Certainly, 8% of the 

speed data were considered enough to be trusted for the freeways. Therefore, the 

recommended minimum sample rate for freeways is 8%.  

Following the similar procedure as mentioned above, multilane highways, rural 

highways (one/two/three lanes) and urban roads (one/two/three lanes) were 

analyzed. Finally, the minimum sample rates for those facility types were determined 

as below. 

 Multilane highways: 5% 

 Rural one/two/three lanes: 9% 

 Urban one/two/three lane: 10% 

Results showed that most of the uninterrupted segments converge to a 10% 

minimum sample rate. Thus, this study recommends a threshold for minimum sample 

rate of 10% for this facility. A 10% sample is roughly equivalent to speed sample of 3 

data within the 3-hour period each day. Note that if the speed data availability is 
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greater than the minimum sample rate, the speed data are considered adequate. 

Based on this statement, the segments with adequate data can be identified from all 

the road segments of Kentucky. The observation of uninterrupted segments with 

adequate data over the state of Kentucky gives an idea of which road segments can be 

trusted in terms of measured speed data. 

The total number of uninterrupted segments, including cardinal and non-

cardinal direction, is 11,082. It was noticed that 99.5% of the freeway segments 

satisfied the data availability greater than the required 10% sample rate in terms of 

mileage. However, 55.3% of the rural highways satisfied the requirement. More than 

half of the total rural roads fulfilled the requirement due to the presence of low 

volume roads. Additionally, 91.1% of the total urban roads met the requirement. As a 

whole, the uninterrupted segments providing data availability greater than 10% are 

presented graphically in Figure 6. All the uninterrupted segments with adequate data 

are marked in green. The segments in red are not trustworthy in terms of measured 

speed since these have data availability of less than 10%.  

 

 
Figure 6 Highlighted Green Routes Satisfying Minimum Sampling Rate 

Requirement for Uninterrupted Facilities 
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The analysis also investigated the minimum sample rate for interrupted facility 

type using the bootstrapping approach. Since the interrupted facilities include signals 

and stop signs, results were analyzed for both. Finally, the minimum sample rates for 

these segments were determined as below. 

 Signalized controlled: 10% 

 Stop sign controlled: 10% 

From the results, a threshold of 10% for minimum sample rate was 

recommended for the interrupted facility in Kentucky. Using this threshold value, the 

interrupted segments with adequate data over Kentucky were observed. The total 

number of interrupted segments is 11,146 including cardinal and non-cardinal 

direction. It was noticed that 92.6% of the total signalized segments satisfied the 

minimum requirement in terms of mileage. Contrarily, 44% of the total stop sign 

controlled segments had adequate data. A small portion of the stop sign segments 

fulfilled the requirement. It was due to very light traffic volume on this facility, which 

tended to have insufficient speed data. Compared to the uninterrupted facilities, the 

interrupted facilities resulted in a slightly large sample rate (10%). Reasonably,  

speed may be impeded by traffic control devices even when the intersections were 

operating at light traffic conditions. These control devices caused random variations 

in the speed data requiring more speed data as a minimum sample rate.  

In summary, the interrupted road segments having adequate data are presented 

graphically in Figure 7. All the interrupted segments with adequate data are marked 

in cyan. Brown indicates the segments that are not trustworthy in terms of measured 

speed since they have data availability of less than 10%. 
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Figure 7 Highlighted Cyan Routes Satisfying Minimum Sampling Rate 

Requirement for Interrupted Facilities. 

 

Although approximately 10% minimum sample rate is recommended both for 

the uninterrupted and interrupted facility after doing the analysis, Table 2 gives an 

overview of the minimum sample rate for individual facilities obtained from the 

bootstrap minimum sample rate method of this study.  

 

Table 2 Minimum Sample Rate Required 

Highway Type Minimum Sample Rate Required 

Freeways 8% 

Multilane Highways 5% 

Rural One/Two/Three Lane 9% 

Urban One/Two/Three Lane 10% 

Stop Sign Controlled 10% 

Signalized Arterials 10% 
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This chapter shows a method to evaluate probe data quality using the 

bootstrapping approach. The estimated minimum sample rate is exploited to identify 

the segments with adequate data. The next step is to apply this and the measured 

speed data of each segment in investigating the factors affecting minimum sample 

rate as well as improving a traditional FFS model. In the next chapter, these two 

applications are discussed.  
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Chapter 4  Applications 

 

Previously, a method was developed to evaluate probe data quality. The method 

uses the bootstrapping approach to determine minimum sample rate of probe speed 

data for Kentucky. Later, this minimum sample rate is used to identify the segments 

with adequate data. This chapter shows the applications of these minimum sample 

rates and the speed data associated with those identified segments. Firstly, the factors 

that affect the minimum sample rate of uninterrupted and interrupted facility types 

will be identified using a regression model as a tool. The goal is to utilize the factors 

to have an idea about the minimum sample rate of one’s own speed data before 

purchasing it from the data vendor. Lastly, the data, where deemed adequate, are 

applied to the calibration of the HERS-ST speed model.  

 

4.1 Factors Affecting Minimum Sample Rate  

This section attempts to identify and rank the significant factors for the minimum 

sample rate. This analysis intends to provide some general estimates on the data 

adequacy for given applications, which would be useful to agencies during the data 

acquisition process. A random forests regression model was developed to identify 

those factors along with their rankings. After that, the model, consisting of all the 

significant variables, was compared with two other models based on the goodness of 

fit.  

All the steps involved with the random forests model development, identifying 

important variables, and comparison of the random forests model with other models 

are presented in the following sub-sections.  

 

4.1.1 Model Description 

Data mining procedure assists in learning and extracting information from data 

(47). One of the popular techniques in data mining is decision trees, which are also 

known as a classification and regression tree (CART). It does not require a functional 

form like statistical regression models. For better prediction accuracy, assemble of 

CART models is used. One of these assemble approaches is random forests (RF). This 
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study uses this RF model as a tool to identify the factors influencing minimum sample 

rate.  

RF is a non-parametric model used for exploring the non-linear relationship 

among the input variables. This model is made up of a number of decision trees which 

are built from several training samples randomly drawn from the original data with 

replacement. Observations selected out of the training samples are called testing data. 

Each tree provides a prediction result using the testing data. Finally, the prediction 

results from the trees are averaged. To avoid the correlation between individual 

trees, the RF model uses a subset of explanatory variables for splitting each node in 

each decision tree. The best split point is determined for each node in the tree by 

applying the splitting algorithm on the subset of the selected explanatory variables. 

The splitting algorithm produces maximum homogeneity to the successive node at a 

particular value of a selected variable. 

An important feature of the RF model is Variable Importance (VI) to rank the 

explanatory variables. VI indicates the contribution of a variable to the output 

prediction when all other variables are present in the model. This study used Mean 

Decrease in Accuracy (MDA) method to measure the VI. MDA measures how much 

the model accuracy decreases when the testing data of each variable are permuted. If 

the variable is important, the model accuracy will be highly affected and decreases 

significantly after permutation. Then, the variables can be ranked according to the 

mean accuracy decrease. As the accuracy measure, mean squared error (MSE) is 

calculated for testing data using the following Equation (9). 

𝑀𝑀𝑆𝑆𝑀𝑀 =
1
𝑛𝑛

� (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖

𝑛𝑛

𝑖𝑖 𝜖𝜖 𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡 
𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑

)2     (9) 

Where;  𝑀𝑀𝑆𝑆𝑀𝑀 = mean squared error using the testing data 

               𝑦𝑦𝑖𝑖 = the observed value of the ith observation in the testing data  

𝑦𝑦�𝑖𝑖 = the predicted value of the ith observation in the testing data 

𝑛𝑛 = the number of observations in the testing data 

For each explanatory variable,𝑀𝑀𝑆𝑆𝑀𝑀 is calculated before and after permutation. 

The differences between before and after permutation 𝑀𝑀𝑆𝑆𝑀𝑀 are averaged over all the 
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trees. Equation (10) shows the VI calculation of a variable based on the 𝑀𝑀𝑆𝑆𝑀𝑀 for 

testing data (48).  

𝑉𝑉𝑉𝑉𝑗𝑗 =
1

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
� (𝑀𝑀𝐸𝐸𝑡𝑡𝑗𝑗

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡𝑗𝑗=1

− 𝑀𝑀𝑡𝑡𝑗𝑗)     (10) 

Where; 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡= the number of trees in the forest 

              𝑀𝑀𝑡𝑡𝑗𝑗= the 𝑀𝑀𝑆𝑆𝑀𝑀 on tree t before permuting the values of variable Xj 

             𝑀𝑀𝐸𝐸𝑡𝑡𝑗𝑗= the 𝑀𝑀𝑆𝑆𝑀𝑀 on tree t after permuting the values of variable Xj 

𝑉𝑉𝑉𝑉𝑗𝑗= VI for the variable Xj 

Equation (10) implies that the larger the difference between the 𝑀𝑀𝑆𝑆𝑀𝑀 values, the 

more importance is given to that particular variable. 

This study uses the RF model to identify the factors that have a significant 

influence on the minimum sample rate of a facility type. The reason for choosing RF 

model is that RF requires no explicit functional form, is well suited to the highly 

collinear data sets with a large number of explanatory variables, and does not assume 

a linear relationship between explanatory variables (49-52) and correlated 

explanatory variables (52, 53). Moreover, it can rank the explanatory variables unlike 

other “black box” models such as Neural Network. 

 

4.1.2 Variable Importance 

4.1.2.1 Data and Preliminary Analysis 

To identify the factors of the minimum sample rate, segments with adequate data 

were utilized. RF model was developed using the attributes of these segments as input 

variables. The attributes related to these segments were collected from KYTC’s HIS 

database, including road geometry, accessibility, and mobility conditions, which are 

shown in Table 1 of section 3.1. During the analysis, it was also assumed that 

geometric condition remained constant over the year. Based on a preliminary 

analysis, the variables that would be considered in the RF model were selected. Table 

3 shows the descriptive statistics of those selected variables. 

Table 3 contains numerical variables where mean, standard deviation (SD), and 

minimum and maximum values for the numerical variables are presented. For 
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categorical variables, only maximum and minimum categories are presented. It is 

noted here that the response variable is the minimum sample rate, and explanatory 

variables are the attributes related to the geometric conditions, accessibility, and 

mobility. 

During the preliminary analysis, correlation plots were generated for the 

explanatory variables and the response variable. It was found that the relation 

between the explanatory variables and response variables was different for the 

uninterrupted facility and interrupted facility types. For example, minimum sample 

rate of the interrupted facility showed correlation with signal density, whereas 

uninterrupted facility did not. Hence, two separate RF models were developed for 

these facilities. Table 3 shows the variables that were considered for the two facility 

types separately. These variables were collected for a total of 7,117 uninterrupted 

segments and 7,594 interrupted segments with adequate data. 
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Table 3 Descriptive Statistics 

 
Variables 

 
 
 
 

Unit 

Uninterrupted Facility Interrupted Facility 

Total = 7,117 Total =7,594 

Measures Measures 

Mean SD Min Max Mean SD Min Max 

Response Variable Minimum Sample Rate % 0.73 0.65 0.05 9.41 1.84 1.13 0.12 10 

Input 
Variables for 

Regression Models  

Section Length miles 3.63 3.15 0.01 21.84 1.02 0.95 0.01 15.85 

Pavement Type*  
  

1 8 
  

1 7 

Signal Density 
no per 
miles     2.35 3.43 0.00 40.82 

Access Point Density 
no per 
miles 3.16 5.14 0.00 153.85     

Intersection Density 
no per 
miles     9.45 8.36 0.15 166.67 

Sign Density 
no per 
miles 

 
   1.62 4.66 0.00 125 

Through Lanes* 
no of 
lanes 

  
1 12 

  
1 8 

Access Control Type*  
  

1 3 
  

1 3 

Terrain Type*  
  

1 3 
  

1 3 

AADT 
vehicles 
per day 8,097 18,917 22 1,97,407 8,015 8,201 20 73,955 
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Peak Lanes* 
no of 
lanes 

  
1 6 

  
1 5 

Lane Width ft 10.57 1.55 6.00 32.00 11.09 1.81 6.00 32.00 

Right Shoulder Width ft 5.14 3.41 0.00 18.00 3.34 3.31 0.00 14.00 

Speed Limit mph 55 10 15 70 40 10 10 65 

Volume to Service Flow 
Ratio (VSF) 

 
0.18 0.16 0.00 1.34 0.34 0.24 0.00 2.46 

Functional Class (FC)*  
  

1 19 
  

2 19 

*The sign represents the categorical variable used in the regression models.
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For the uninterrupted facility, Speed Limit, Functional Class (FC), AADT, Section 

Length, Access Point Density, Lane Width, etc. were considered in the analysis. Note 

that Access Point Density is defined as the number of access points per length of a 

segment. These access points can be controlled or uncontrolled.  

For the interrupted facility, Intersection Density, Signal Density, Sign Density, 

AADT, FC, Section Length, etc. were considered. Note that Intersection Density is 

defined as the number of junctions per length, where the junctions can be signal/stop 

controlled or uncontrolled.  

The next section will rank and prioritized the variables mentioned above using 

the RF model.  

 

4.1.2.2 Model Calibration and Variable Importance 

Before identifying the factors, the RF model required tuning of hyper-parameters 

for obtaining good prediction accuracy. From the literature (49, 50, 54), these hyper-

parameters are: 

• Number of trees in the forest (𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

• Number of variables selected at each node for splitting (𝑀𝑀𝑡𝑡𝑡𝑡𝑦𝑦) 

Studies (49, 55) indicated that a large number of trees (𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) in a RF model would 

achieve more stable prediction performance. Saha et al. (56) tried 500, 1000, 5000, 

and 10,000 as the values for 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. This study adopted these values in order to tune 

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. For 𝑀𝑀𝑡𝑡𝑡𝑡𝑦𝑦, Breiman (49) suggested three trials in RF regression model. 

According to his suggestion, the recommended trials are made as p/3, half of p/3 and 

twice of p/3 for 𝑀𝑀𝑡𝑡𝑡𝑡𝑦𝑦, where p is the total number of explanatory variables from the 

dataset. In this study, p = 13 for the uninterrupted facility, and 15 for the interrupted 

facility were considered. 

The best combination of the two hyper-parameters was obtained by using Python 

package ‘RandomizedSearchCV’, which automates the whole process of searching the 

best combination incorporating cross-validation (CV). ‘RandomizedSearchCV’ built a 

total of 12 models from all the pairs of 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑀𝑀𝑡𝑡𝑡𝑡𝑦𝑦 for each facility type. All of the 

12 models were evaluated by CV. This study used a 10-fold CV to evaluate each model 



 
 

39 
 

and control overfitting in the models. The 10-fold cross validation split the data into 

10 stratified parts as shown in Figure 8. Each part successively was used as a testing 

data for estimating prediction performance. The remaining data was used as a 

training set. 𝑀𝑀𝑆𝑆𝑀𝑀 was calculated for each of the 10 folds and was averaged over the 

10 folds (Figure 8). This 10-fold CV was performed for each of the 12 models and 

average 𝑀𝑀𝑆𝑆𝑀𝑀 was obtained for each model. Finally, the best combination of 

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and 𝑀𝑀𝑡𝑡𝑡𝑡𝑦𝑦 was reported from the model that estimated lowest 𝑀𝑀𝑆𝑆𝑀𝑀.  

 
Figure 8 10-fold Cross-Validation 

 

The best combination of hyper-parameters for both facilities was estimated as 

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡=10,000, and 𝑀𝑀𝑡𝑡𝑡𝑡𝑦𝑦=1
2

 × 𝑝𝑝
3
. The 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 value was found consistent with Saha et al. 

(56), where the authors mentioned that an assemble of 10, 000 trees is considered 

suitable for stable prediction from the RF model. The next step is to measure VI from 

the RF that was built using this combination of hyper-parameters. 

To obtain VI, the average increase in 𝑀𝑀𝑆𝑆𝑀𝑀 (IncMSE) was calculated while 

permuting a variable. During the analysis, the variables with a VI greater than zero 

were kept in the RF model and others were eliminated (55). For example, Figure 9 

shows the VI after running the RF model for interrupted facility. It presents that 

Through Lanes and Access Control Type have VI below zero. These variables were 

excluded from the model. RF model was run again keeping the variables with VI 
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greater than zero, and this elimination process repeated until all the remaining 

variables in the model had a VI greater than zero. 

 

 
Figure 9 Elimination Stage for the Variables of Interrupted Facility Type 

 

Two separate RF models were built for the uninterrupted and interrupted facility 

types. These models contained the significant variables based on VI. The results from 

VI are presented below for both facility types. 

For uninterrupted facility type, the important variables are shown in Table 4. FC 

is the top-ranked variable. From Figure 10(a), it seems that higher FC such as FC1, 

FC2, FC11, and FC12 require a smaller sample rate. Conversely, lower FC roads 

require a larger sample rate. The second variable is Section Length. It appears in 
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Figure 10(b) that the longer section requires smaller sample rates compared to the 

shorter section. Speed Limit is the third variable according to VI. From Figure 10(c), 

segments with higher Speed Limit require a smaller sample rate and vice versa. Since 

Speed Limit varies for different FC road segments, it contributes to the minimum 

sample rate of a segment. AADT contributes as the fourth important variable. It seems 

from Figure 10(d) that segments with higher AADT, for example; interstates, require 

smaller sample rates. Alternatively, low AADT roads appear to need larger sample 

rates. Access Point Density contributes as the fifth important variable. Access points, 

with or without traffic control devices, add random fluctuation in the speed pattern. 

Hence, segments may require a larger sample size with increasing Access Point 

Density. Other variables like VSF, Lane Width, Peak Lanes, etc. were also found 

important for uninterrupted facility type.  

 

Table 4 Variable Ranking for Uninterrupted Facility Type 

Variables  IncMSE VI (%)  Rank 

FC 0.360 22.42 1 

Section Length 0.272 16.93 2 

Speed Limit 0.178 11.11 3 

AADT 0.151 9.39 4 

Access Point Density 0.148 9.19 5 

Right Shoulder Width  0.138 8.62 6 

VSF 0.113 7.06 7 

Lane Width 0.087 5.44 8 

Terrain Type 0.051 3.15 9 

Access Control Type 0.050 2.95 10 

Peak Lanes 0.044 2.75 11 

Pavement Type 0.010 0.68 12 

Through Lanes 0.005 0.32 13 
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(a) FC (22.42%) (b) Section Length (16.93%) 

 
 

(c) Speed Limit (11.11%) (d) AADT (9.39%) 
Figure 10 Individual Variable’s Effect on Minimum Sample Rate of 

Uninterrupted Facility from RF model 

 

For interrupted facility type, the important variables from the RF model are 

presented in Table 5. The top-ranked variable is Signal Density for this facility. It 

tends to influence the minimum sample rate positively from Figure 11(a). The 

requirement of minimum sample rate increases with the increase in Signal Density 

with some deviations. This finding also agrees with the analysis results from Eshragh 
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et al. (1), where Signal Density was one of the contributing factors affecting the 

accuracy of probe data. The second most important variable is Section Length. 

Although most of the interrupted facilities are not very long, it seems that the 

minimum sample rate is decreasing with an increase in Section Length according to 

Figure 11(b). The third variable is Speed Limit, which tends to affect the minimum 

sample rate negatively from Figure 11(c). Segments with higher Speed Limit seem to 

require fewer samples compared to the lower Speed Limit roads. The fourth variable 

is Intersection Density. Seemingly, an increase in Intersection Density involves higher 

sample rates and vice versa. Other variables such as FC, Sign Density, AADT, VSF, etc. 

were also found significant for interrupted facility type. 

 

Table 5 Variable Ranking for Interrupted Facility Type 

Variables  InMSE VI (%)  Rank 

Signal Density 0.561 38.17 1 

Section Length 0.274 18.62 2 

Speed Limit 0.110 7.45 3 

Intersection Density 0.091 6.20 4 

FC 0.085 5.78 5 

Pavement Type 0.077 5.23 6 

Sign Density 0.070 4.71 7 

AADT 0.057 3.87 8 

Lane Width 0.034 2.31 9 

Right Shoulder Width 0.032 2.20 10 

VSF 0.028 1.89 11 

Peak Lanes 0.027 1.85 12 

Terrain Type 0.025 1.72 13 
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(a) Signal Density (38.17%) (b) Section Length (18.62%) 

  
(c) Speed Limit (7.45%) (d)  Intersection Density (6.20%) 

Figure 11 Individual Variable’s Effect on Minimum Sample Rate of Interrupted 

Facility from RF model 

 

The RF model gave the list of significant variables for both facility types. However, 

this list is long since it enlisted 13 variables for both facilities. The longer the variable 

list, the costlier the data collection. To ease the data collection, this study decided to 

prioritize the variables for both facilities. The prioritization will make the variable list 
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shorter, minimizing data collection effort and cost while confirming the accuracy of 

the RF model. 

To prioritize variables both for the uninterrupted and interrupted facilities, two 

measures were used in this study for predicting error on testing data. These measures 

are Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). 

RMSE is a measure of the differences between predicted values (𝑌𝑌�𝑖𝑖) of a model and 

the observed values (𝑌𝑌𝑖𝑖 ). 

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 =  �
1
𝑁𝑁
�(𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖

𝑁𝑁

𝑖𝑖=1

)2     (11) 

MAPE is a measure of prediction accuracy which estimates the mean or average of 

the absolute percentage errors of prediction. Here, the error is defined as the 

difference between actual value (𝑌𝑌𝑖𝑖 ) and predicted value (𝑌𝑌�𝑖𝑖). 

𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀 =  
1
𝑁𝑁
�

�𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�
𝑌𝑌𝑖𝑖 

𝑁𝑁

𝑖𝑖=1

      (12) 

These two measures helped in restricting the variable list to overcome data 

collection complexity. A final RF model was built using those restricted variables for 

both facility types. To track the decrease in these two measures for each variable, a 

nested collection of RF models was constructed. The nested models started from the 

one with top-ranked variable and ended with the one involving all important 

variables that were kept in the previously built RF models for each facility type. For 

example, 13 variables were found for the uninterrupted facility, where FC was the 

number one variable, Section Length was the number two variable, etc. The first 

nested model would contain only FC, the second nested model would contain FC and 

Section Length and so on. Finally, the last nested model would contain all the 13 

variables. For each nested model, RMSE and MAPE were reported for testing data. 

The set of the variables that led to a significant decrease in RMSE and MAPE of the 

model was finalized.  

RMSE and MAPE based nested models are shown in Figure 12. For the 

uninterrupted facility, there is a significant decrease in RMSE and MAPE after adding 
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the top 3 variables as shown in Figure 12(a). The remaining variables with low ranks 

do not contribute significantly to the minimization of RMSE and MAPE. It is wise to 

exclude them from the final model. Consequently, the final model for uninterrupted 

facility contains 3 variables. This model is named as RF_Uninterrupted. For the 

interrupted facility, a combination of top 4 variables shows a significant drop in RMSE 

and MAPE in Figure 12 (b). Thus, these four variables are finalized, and the final 

model is named as RF_Interrupted for the interrupted facility. 

 

RMSE based Nested Models MAPE based Nested Models 

  
(a) Uninterrupted Facility 

  

(b) Interrupted Facility 

Figure 12 Nested RF Models for Uninterrupted and Interrupted Facilities 
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To summarize the results from the above variable prioritization process, the final 

RF models containing the significant variables for each facility type are presented in 

Table 6.  

 

Table 6 Significant Variables for Uninterrupted and Interrupted Facilities 

Facility Type Name of the RF Model 

(in this study) 

Total 

Variables 

Significant 

Variables 

Uninterrupted 

Facility 

RF_Uninterrupted 3 FC, Section Length, 

and  Speed Limit 

Interrupted 

Facility 

RF_Interrupted 4 Signal Density, 

Section Length, Speed 

Limit, and 

Intersection Density 

 

To observe the RF models’ performance results using the listed variables in Table 

6, the next sub-section discusses the comparison among the RF model, linear 

regression model, and neural network model. 

 

4.1.3 Results 

RF models for both facility types were compared with the neural network (NN) 

model and liner regression model in this study. To compare the models, MAPE and 

RMSE were used as the Measures of Effectiveness (MOEs). Smaller values of RMSE 

and MAPE indicate the better performance of a model.  

The linear regression model was used to estimate the impacts of explanatory 

variables on the minimum sample rate. NN model was also used for the same purpose. 

For NN, Python package named Multi-Layer Perceptron Regressor (MLP) was used, 

which optimizes the squared-loss using LBFGS or stochastic gradient descent. 

Parameter tuning for NN was done based on ‘GridSearchCV’ and using 10-fold CV 

which follows the same mechanism as discussed for RF model earlier. 
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From Table 7, for both facility types, linear regression models lead to the largest 

error showing lower prediction performance. NN model also performs badly, which 

shows error measures closer to the linear regression model for both facilities. Clearly, 

the RF model outperformed both NN and liner regression model in terms of RMSE 

and MAPE.  

 

Table 7 Predictive Performance Evaluation Table  

(a) Models for Uninterrupted Facility 

Models for Uninterrupted RMSE MAPE (%) 

RF_Uninterrupted 0.31 26.88 

NN Model 0.50 53.26 

Linear Regression Model 0.57 64.09 

 

(b) Models for Interrupted Facility 

Models for Interrupted RMSE MAPE (%) 

RF_Interrupted 0.59 22.97 

NN Model 0.85 43.29 

Linear Regression Model 0.98 48.55 

 

Figure 13 and Figure 14 show the comparison between the predicted and 

observed minimum sample rate from the NN models and the RF models for both 

facility types. In Figure 13 and Figure 14, the more data in the diagonal line, the better 

the prediction performance of the models. Undoubtedly, RF models perform better 

for both facilities. Therefore, based on the MOEs and prediction performance, RF 

model is recommended for predicting minimum sample rate of a road segment.  
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NN RF_Uninterrupted 

Figure 13 Comparison between Model Predictions and Actual Minimum 

Sample Rates for Uninterrupted Facility  

  
NN RF _Interrupted 

Figure 14 Comparison between Model Predictions and Actual Minimum 

Sample Rates for Interrupted Facility  

 

This section presents a practical application of the bootstrap sampling results to 

identify the variables affecting the minimum sample rate both for uninterrupted and 
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interrupted facility types. The RF regression model with variable ranking was used to 

identify the variables. After knowing the important variables, those can be used in the 

RF regression model for estimating the minimum sample rate of a new segment, 

where the facility type is given. Moreover, variable ranking gives the list of variables 

regarding the data acquisition for sampling analysis. Consequently, the RF model can 

be a substitute for the bootstrapping approach of determining the minimum sample 

rate. In the future, the minimum sample rate can be determined for a new segment, 

once the required dataset containing the important variables is collected.  

 

4.2 Improving the Estimation of Free Flow Speed  

This section demonstrates an application of the speed data acquired from the 

segments with adequate data, specifically on improving the method of estimating FFS.  

Traditional models built on Highway Capacity Manual (HCM) method are usually 

used for average speed estimation. One of these models is the Highway Economic 

Requirements System-State Version (HERS-ST) model. This study mainly focuses on 

the FFS estimation step using HERS-ST approach. FFS is defined as the speed when 

traffic is light and vehicular speed is restricted by geometric condition and traffic 

control devices, but not by the presence of other vehicles. The general framework to 

calculate FFS in HERS-ST model (57) is shown in Figure 15. 
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Figure 15 Framework for HERS FFS Estimation 

 

From HIS data listed in Table 1 from section 3.1, measured pavement roughness 

(IRI or PSR), grade, and curve lengths are required to calculate FFS using HERS-ST. 

The FFS is determined using the following three inputs: 

 The maximum allowable speed on a curve (VCURVE) 

 The maximum allowable ride-severity speed (VROUGH) 

 The maximum speed resulting from speed limit (VSPLIM) 

Equation (13) demonstrates the FFS calculation for Error! Bookmark not 

defined.HERS-ST. 

𝐹𝐹𝐹𝐹𝑆𝑆 =
𝑆𝑆𝜎𝜎2 2⁄

(𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅𝑉𝑉𝑀𝑀−1/𝛽𝛽 + 𝑉𝑉𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉−1/𝛽𝛽 + 𝑉𝑉𝑆𝑆𝐸𝐸𝐿𝐿𝑉𝑉𝑀𝑀−1/𝛽𝛽)𝛽𝛽      (13) 

The recommended values of the model parameters are 𝜎𝜎 = 0.1 and 𝛽𝛽 = 0.1 for all 

types of facility without accounting for the challenges that may arise based on facility 

type.  

In Error! Bookmark not defined.Error! Bookmark not defined.Error! 

Bookmark not defined.Equation (13 ), VCURVE represents the effect of curves on 

vehicle speed. It is related to the maximum perceived friction ratio, super-elevation, 

and degrees of curvature. Friction ratio values are set in accordance with vehicle 

types. If a section has no curves, the VCURVE does not influence the FFS. The overall 

START 

VCURVE VROUGH VSPLIM 

FFS 

FFS_UP  If  Uphill Presents 
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effect of curves in a section is the weighted average effect on different vehicle classes. 

The equation is listed below in miles per hour. 

𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅𝑉𝑉𝑀𝑀 = 292.5 ×  �(𝐹𝐹𝑅𝑅𝑀𝑀𝐹𝐹𝑉𝑉𝑉𝑉 + 𝑆𝑆𝐸𝐸)/𝐷𝐷𝑉𝑉       (14) 

Where; FRATIO = maximum perceived friction ratio 

                      0.103 for combination trucks; 

                       0.155 for automobiles; and 

                        0.155 for single-unit trucks 

            DC = degrees of curvature 

            SP = super elevation 

                                   0 if DC<=1; 

0.1 if DC>=10; and     

0.0318 + 0.0972 × ln(𝐷𝐷𝑉𝑉) − 0.0317 × 𝐷𝐷𝑉𝑉 + 0.007 × 𝐷𝐷𝑉𝑉 ×

ln (𝐷𝐷𝑉𝑉); otherwise                    

VROUGH represents the effect of pavement roughness on speed. HERS speed 

model uses pavement serviceability rating (PSR) to measure pavement roughness. 

VROUGH’s value is determined by the following formulas: 

                                      5 15= + ×VROUGH PSR                        if PSR<=1.0 

                                     20 32 5 1 0= + × −VROUGH PSR. ( . )         if PSR>1.0     (15) 

The effect of speed limits on vehicle speeds is represented by VSPLIM. The 

operational speed is assumed to be 9.323 mph greater than the posted speed limit for 

urban freeways and rural multilane highways with partial or full access control and a 

median which is either a positive barrier or has a width of at least 4 feet. For all other 

roads, it is assumed to be 6.215 mph greater than the posted speed limit.  

For those segments with a positive grade, the FFS should be adjusted to account 

for the impact of the grade. The delay due to grade, DGRADE, is determined based on 

vehicle characteristics and the average grade of a section. The HERS-ST speed model 

first estimates the crawl speed for a section and then calculates the delay due to grade 

for each vehicle type. Overall, delay due to grade is weighted by each vehicle type. 

HERS-ST speed model uses the following equation to calculate FFSUP which 

represents the free-flow speed on an uphill section. 
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𝐹𝐹𝐹𝐹𝑆𝑆𝑉𝑉𝐸𝐸 =  
1

1
𝐹𝐹𝐹𝐹𝑆𝑆 + 𝐷𝐷𝑉𝑉𝑅𝑅𝑀𝑀𝐷𝐷𝑀𝑀

𝑆𝑆𝐿𝐿𝑀𝑀𝑁𝑁
     (16) 

Where; DGRADE = delay in hours 

         SLEN = length of the section 

 

4.2.1 Limitations in Existing HERS-FFS Estimation  

To investigate the performance of existing HERS-FFS model, FFS generated by 

the model was compared with the reference speeds calculated based on the speed 

data from the segments providing adequate data. Note that reference speed is a 

threshold speed value, below which travel is considered as delayed. In this study, 

facility-specific reference speeds were used which were determined during the 

analysis. The reference speeds are listed here. 

 For freeways and multilane highways: The 85th percentile speed of all 

speed data in a year represents reference speed. 

 For other facilities: The 85th percentile speed from weekday daytime (6 

am – 8 pm) speed data is used as reference speed. 

A comparison of predicted FFS from existing HERS-ST and measured reference 

speeds is demonstrated in Figure 16. The figures show estimated HERS-FFS with the 

default value of the parameters σ and β. It is obvious that modeled FFS and measured 

reference speed do not fit well. It indicates that existing parameters not necessarily 

always produce good results both for uninterrupted and interrupted facility type. 

However, no step has yet been taken to adjust these parameters for different facilities. 

Moreover, the parameters were not estimated using enough speed data in the past 

(57). Therefore, calibration of the parameters σ and β is required. The calibration 

process is shown in the next sub-section. 
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Figure 16 Comparison of Existing HERS FFS with Measured Reference Speed  

 

4.2.2 Model Calibration 

HERS-ST FFS model calibration was separately done for the interrupted and 

uninterrupted facilities using the measured speed data. To calibrate HERS-FFS model, 

reference speeds for each segment were compared with the modeled FFS.  

The goal of the calibration was to find the values of 𝜎𝜎 and 𝛽𝛽 that produce the best 

fit between the modeled FFS and measured reference speed. Hence, Equation 13 for 

FFS was calibrated by adopting a non-linear least squares fit method. This study used 

the Levenberg-Marquandt (LM) algorithm for non-linear least-squares optimization. 

The algorithm works by minimizing the squared residuals (𝑆𝑆) defined for each data 

point as,  

𝑆𝑆2 = (𝑦𝑦 − 𝑜𝑜(𝑥𝑥))2     (17)  

where; 𝑦𝑦 is the measured reference speed and 𝑜𝑜(𝑥𝑥) is the calculated FFS using HERS-

FFS equation. The LM algorithm performs iteration and optimizes the solution that 

results in minimum residuals.  

During the sensitivity analysis, it was observed that the HERS-ST model does not 

account for the impact of narrow lanes while estimating FFS for rural two-lane roads. 

HERS-FFS was significantly overestimating for those roads. Thus, it was required to 

adjust FFS using lane width adjustment factor based on HCM. Moreover, the model 
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does not address the effect of traffic control devices for the interrupted facility 

including signal and stop sign controlled facilitates. This effect is calculated as “zero 

volume delay”. For the signal-controlled facility, 

𝑍𝑍𝑉𝑉𝐷𝐷𝑆𝑆𝑉𝑉𝑉𝑉 = 0.0687�1 − 𝑆𝑆−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 24.4⁄ �     (18) 

where; ZVDSIG is zero volume delay in hours per vehicle-mile traveled, while NSIG is 

the number of signals per mile.  

For stop sign controlled facility, 

𝑍𝑍𝑉𝑉𝐷𝐷𝑆𝑆𝐹𝐹𝐸𝐸 = 𝑁𝑁𝑆𝑆𝐹𝐹𝐸𝐸(1.9 + 0.067𝐹𝐹𝐹𝐹𝑆𝑆)     (19) 

in which ZVDSTP is zero volume delay due to stop sign in hours per 1000 vehicle 

miles, and NSTP is the number of stop signs per mile. This is adapted from the HERS-

ST speed model for stop sign controlled delay by setting the volume to zero. The 

adjusted FFS for the signal-controlled facility can be estimated as 1/( 1
𝐹𝐹𝐹𝐹𝑁𝑁

+ 𝑍𝑍𝑉𝑉𝐷𝐷𝑆𝑆𝑉𝑉𝑉𝑉) 

and that for the stop-controlled facility would be 1/(1/𝐹𝐹𝐹𝐹𝑆𝑆 + 𝑍𝑍𝑉𝑉𝐷𝐷𝑆𝑆𝐹𝐹𝐸𝐸/1000). No 

adjustment is needed for other facility types.  

At first, the calibration was done separately for freeways, multilane highways, 

rural one/two/three, urban one/two/three, signals and stops. Although the 

calibration was done separately for each type of the uninterrupted facility, ultimately 

the calibration reflected the almost same values for the parameters after all the 

adjustments. Thus, the uninterrupted facilities were combined, and the suggested 

parameters for this category is presented in Table 8.  

Afterward, the calibration was performed on the signalized arterials and stop 

sign controlled facilities separately. The FFS, after the calibration process, showed a 

good fit with the measured reference speed. Then, the signals and stops were 

combined into interrupted facility type due to having similar parameter values. 

Finally, the parameters were optimized as mentioned in Table 8. 

 

 

 

 

 



 
 

56 
 

Table 8 FFS Calibration Results 

Facility Types 𝜎𝜎 𝛽𝛽 

Uninterrupted Facility 0.1427 0.2092 

Interrupted Facility 0.3907 0.18378 

 

 Previously, HERS-ST technical report (58) derived a range for σ value between 0 

and 0.19, and β value between 0.1 and 0.31 for all facility types. Although the 

calibrated parameter values for uninterrupted facility fall within these ranges, σ value 

for interrupted facility seems to cross the range. The overall calibration process 

utilized speed data from 80% of the total segments. To validate the calibrated 

parameters, the remaining 20% of the segments were used. The calibrated 

parameters performed well for those 20% segments indicating the credibility of those 

parameters for estimating FFS. Figure 17 combines these calibration and validation 

results and shows a better fit between measured reference speed and modeled FFS 

for both facility types.  

 

 

 

 
(a) Uninterrupted Facility (b) Interrupted Facility 

Figure 17 Estimated FFS vs Reference Speed 
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Although σ value for interrupted facility violates the recommended range, the 

calibrated values for σ and β can be accepted considering the validation results. 

Overall, the calibrated values are recommended for estimating FFS using HERS-ST.  

This study applied the speed data of Kentucky road segments, where deemed 

adequate, to improve the performance of traditional FFS model. This application 

brought confidence over the traditional models. The models can be used for the 

segments with no speed data. Transportation agenesis can use the same approach of 

utilizing the speed data to have enhanced performance from the traditional models.  
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Chapter 5  Conclusions 

 

5.1 Summary  

Probe speed data are widely used for estimating state-wide performance 

measures. The accuracy of these measures depends on adequate speed data. This 

study proposed a method to evaluate the quality of probe speed data. The method 

estimated minimum sample rate of speed data for a segment by adopting a 

bootstrapping approach without requiring an assumption about the underlying 

distribution of the population. It produced a predefined number of replications using 

the speed data, which were treated as a population. A tolerance limit of 5% was set 

as a convergence error for the sample mean of these replicated samples. The whole 

method was iterated over different sample rates until the error converged to the 

tolerance limit. The minimum sample rate used for the convergence into the tolerance 

limit was reported for each road segment. Using this method on the Kentucky based 

speed data from 2017, the minimum sample rates were obtained for all the segments. 

The results recommended a minimum sample rate of 10% for both uninterrupted and 

interrupted facility types in Kentucky.  

The minimum sample rates resulted from the bootstrapping approach were 

compared with data availability to identify the segments with adequate data. A total 

number of 7,117 segments from uninterrupted and 7,594 segments from interrupted 

facilities in Kentucky were observed to satisfy the minimum sample rate requirement. 

In the case of uninterrupted facility, more than 90% of freeways, multilane highways, 

and urban roads have adequate speed data compared to the minimum sample rate. 

However, only half of the total rural roads have adequate speed data due to low traffic 

volume. Further, 92% of the signalized road segments have adequate speed data, 

whereas only 47% of the total stop sign controlled roads fulfill the requirement. 

 

5.2 Applications 

Using the minimum sample rates from the bootstrapping, factors affecting this 

were identified. The factors can provide a general estimate on the data adequacy for 

a particular application as well as help the agencies during data acquisition process. 
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RF regression model was used as a tool to identify the factors. After analyzing VI from 

the model, FC, Section Length, and Speed Limit were found to be the important 

variables for uninterrupted facility type. Conversely, for interrupted facility, Signal 

Density, Section Length, Speed Limit, and Intersection Density were observed to be 

the significant variables. In addition, the RF model outperformed NN and liner 

regression models for both cases. Therefore, it was recommended to determine the 

minimum sample rate of a new segment. If one wants to have an idea on the data 

collection before purchasing from data vendors, they might adopt this model to know 

the required minimum speed data for their applications.  

Speed data of the identified segments were used to improve the performance of 

the traditional FFS model. Previous research demonstrated the performance of the 

model using inadequate data (57). The existing parameters of the model were also 

validated using an inadequate dataset. The model may not always produce a good 

estimate of the FFS using the default parameters. That is why this study decided to 

calibrate the parameters of the FFS model using actual data with adequacy. During 

the calibration process, it was also observed that the traditional model is quite 

sensitive to the lane width and traffic control devices. The adequate speed data used 

in this study addressed these limitations and helped to calibrate the parameters to 

improve model performance. It brought more confidence in using traditional models 

by transportation agencies.  

The findings of this study helped to identify the road sections having good 

coverage of speed data using the required minimum sample rate. Moreover, to obtain 

reliable congestion measures for the road segments and to improve transportation 

models, the minimum sample rate is a decision parameter which examines the data 

quality. After knowing that the availability is greater than the minimum required 

sample rate, FFS for a specific facility can be determined directly using the measured 

speed data collected over the year. Furthermore, the minimum sample rate gives an 

idea of the variation of travel time on a specific corridor. For example, a larger sample 

rate indicates unstable travel time pattern and vice versa. 
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5.3 Limitations and Future Work 

In this study, the bootstrapping approach produced replications from the 

available measured speed data, considering the dataset as a population. Most of the 

freeway segments had speed data availability of more than 90%. These speed data, 

used in bootstrapping replications, are considered as a close approximation of the 

true population. However, 71% of the rural two-lane and stop sign controlled 

segments had speed data availability below 30%. This study excluded those segments 

while performing bootstrapping on the dataset. The reason is that the data associated 

with those segments only correspond to a subset of the true population and may not 

represent the true population as well as may produce biased results during the 

minimum sample rate estimation process. The author will attempt to collect probe 

speed data for the next 2 or 3 years for these 71% segments. In future, it is expected 

to acquire more data with a better coverage of probe vehicles traversing on those 

roads. If speed data with greater than 30% availability can be collected, these will be 

utilized to apply bootstrapping for the 71% segments and estimate the minimum 

sample rates. 

This study used only one-years’ worth of data while applying the bootstrapping 

on different facilities. However, the probe data collection range for all the facilities 

can be extended over 3 or 4 years instead of one to observe whether the estimated 

sample rates are consistent with this study’s results or not. Apart from that, the 

bootstrapping method in this study uses 2,000 replicated samples due the limitation 

in computational time. Nevertheless, a set of 5,000 or 10,000 replications can be 

explored to see if the bootstrapped minimum sample rate is sensitive towards the 

replication numbers or not.  
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