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ABSTRACT OF DISSERTATION 
 
 
 

TRANSFORMING A CIRCULAR ECONOMY INTO A HELICAL ECONOMY FOR 
ADVANCING SUSTAINABLE MANUFACTURING 

 
The U.N. projects the world population to reach nearly 10 billion people by 2050, which 
will cause demand for manufactured goods to reach unforeseen levels. In order for us to 
produce the goods to support an equitable future, the methods in which we manufacture 
those goods must radically change. The emerging Circular Economy (CE) concept for 
production systems has promised to drastically increase economic/business value by 
significantly reducing the world’s resource consumption and negative environmental 
impacts. However, CE is inherently limited because of its emphasis on recycling and reuse 
of materials. CE does not address the holistic changes needed across all of the fundamental 
elements of manufacturing: products, processes, and systems. Therefore, a paradigm shift 
is required for moving from sustainment to sustainability to “produce more with less” 
through smart, innovative and transformative convergent manufacturing approaches rooted 
in redesigning next generation manufacturing infrastructure. This PhD research proposes 
the Helical Economy (HE) concept as a novel extension to CE. The proposed HE concepts 
shift the CE’s status quo paradigm away from post-use recovery for recycling and reuse 
and towards redesigning manufacturing infrastructure at product, process, and system 
levels, while leveraging IoT-enabled data infrastructures and an upskilled workforce.  
 
This research starts with the conceptual overview and a framework for implementing HE 
in the discrete product manufacturing domain by establishing the future state vision of the 
Helical Economy Manufacturing Method (HEMM). The work then analyzes two 
components of the framework in detail: designing next-generation products and next-
generation IoT-enabled data infrastructures. The major research problems that need to be 
solved in these subcomponents are identified in order to make near-term progress towards 
the HEMM. The work then proceeds with the development and discussion of initial 
methods for addressing these challenges. Each method is demonstrated using an illustrative 
industry example. Collectively, this initial work establishes the foundational body of 
knowledge for the HE and the HEMM, provides implementation methods at the product 
and IoT-enabled data infrastructure levels, and it shows a great potential for HE’s ability 
to create and maximize sustainable value, optimize resource consumption, and ensure 



     
 

continued technological progress with significant economic growth and innovation.  This 
research work then presents an outlook on the future work needed, as well as calls for 
industry to support the continued refinement and development of the HEMM through 
relevant prototype development and subsequent applications.     
 
KEYWORDS: Sustainable Manufacturing, Helical Economy, Product Design, Modeling 

and Optimization, Smart Manufacturing   
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CHAPTER 1 INTRODUCTION AND MOTIVATION 

1.1 Motivation 

1.1.1 Manufacturing’s Vital Role 

The U.N. projects the world population to reach ~10 billion people by 2050 [1]. In addition, 

in 2011, 71% of the global population was living on less than 10 dollars per day [2]. This 

71% wants a path towards the middle class, so this sought-after upward mobility in the 

developing world combined with a surging population will cause the demand for 

manufactured goods to reach unforeseen levels. This demand will translate into an 

unprecedented consumption of materials.  Based on the Organization for Economic Co-

operation and Development’s (OECD) Global Material Resources Outlook to 2060 [3] 

study, if materials use were to keep up with the economic growth, the total global materials 

use would increase by 458%. Not only is the direct materials use alarming, but this increase 

in manufactured goods will also result in unparalleled energy consumption and associated 

greenhouse gas emissions. The manufacturing sector already contributes significantly to 

both of these, directly consuming more than 35% of the global energy supply [4] and 

directly contributing more than 25% of global greenhouse gas emissions [5]. These 

numbers increase further when accounting for the indirect contributions through the 

transportation, agriculture, and other economic sectors. Therefore, the broader, outsized 

impact that the global manufacturing sector has on the overall sustainability of the 

environment, economy, and society cannot be ignored.  For the global manufacturing sector 

to support an equitable and sustainable future, the methods in which we manufacture goods 

must radically change with significant novelty and innovation.  
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1.1.2 Lean to Green to Sustainable Manufacturing  

Lean manufacturing focused efforts on Reducing waste throughout production systems. 

Great industrial leaders such as Henry Ford and Taiichi Ohno greatly transformed the face 

of manufacturing and ushered in monumental waste elimination across various industries 

[6,7].  However, up until the late 1900s, all focus was on the economic value of waste. It 

was not until the “Green” movement when consumers, industrial leaders, and politicians 

became interested in the environmental and societal impacts that were directly associated 

with manufacturing. It was at this time when the concept of Reusing and Recycling started 

to take hold across many manufacturing operations [8]. However, the flaw in this concept 

was that it was inherently limited by recycling and reuse applications, and it was dismissive 

in the economics around settling for sacrificing cost for an environmental and societal 

benefit. 

The 21st century economy demanded further innovation and it showed that achieving 

sustainable value in manufacturing required yet another transformation from a 3R [9] to a 

6R foundation; a transformation where the emphasis is not singularly on economics or on 

environmental and societal aspects, but where it is on the “Triple-Bottom-Line”, or the 

combination of the economy, environment, and society in one. By extending the original 

3Rs of Reduce, Reuse, and Recycle to a 6R concept [10], with the addition of widespread 

Recovery of material resources, Redesigning legacy technology and next-generation 

products and processes, and the subsequent Remanufacturing of products, there arises a 

defined rapidly emerging methodology known as Sustainable Manufacturing. The 

progression from Lean to Green to Sustainable Manufacturing can be seen in Figure 1.1 

[11]. This 6R-based closed-loop approach, which was originally introduces in 2006 by 
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Jawahir et al. [10], not only targets the growing problem with depleting resources, but also 

reimagines what was once considered waste into a recoverable, reusable, and 

remanufacturable economic asset for the future.  

1.1.3 Linear to Circular to Helical Economy  

The consumerism-driven linear economy, the underlying basis that has driven the global 

economy since the Industrial Revolution, is inherently flawed and poses significant 

economic, environmental, and societal risk to current and future generations. Looking back 

to early civilizations, the foundation for modern-day consumerism originated as a solution 

for eliminating scarcity and inequality in hierarchical societies [12,13]. This rise of 

consumerist thought was embedded in the idea that consuming more would blur the lines 

in an archetypal classed-based civilization.   It would soon be latched on to as the sole 

solution for driving political, economic, and technological progress.  Consequently, 

humanity would be plagued with the lingering perception of “Consumption = Progress”. 

Figure 1.1: Progression from Lean to Green to Sustainable Manufacturing [11] 
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Industrial leaders would exploit this speculation even further and with the aid of the 

Industrial Revolution and globalization, a global economic system would be formed based 

on a linear model of rapidly taking resources, creating goods, selling those goods to 

consumers, and the consumers disposing of those goods. All manufacturing infrastructure 

over the next century would be created for this linear economy, from product design tools 

and techniques, to manufacturing processes and tooling, to factories and complex supply 

chains.  

As awareness of sustainability and the role of manufacturing began to grow, the Circular 

Economy (CE) concept surfaced. The Circular Economy has roots across many other 

topics, but the general premise is keeping resources in use for as long as possible, and then 

capturing them and reutilizing them in new products in order to reduce overall resource 

and energy consumption.  The 6Rs serve as the technological elements of the Circular 

Economy (CE) concept [14], and this 6R concept can be coupled with the new waved with 

the “Circular Economy” concept is making in the sociopolitical space to offer a technical 

foundation for manufacturing implementation [14]. This coupling is illustrated in Figure 

1.2 [14].  
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The Circular Economy promises to simultaneously reduce anthropogenic emissions while 

generating business value [15]. However, CE mainly lives in ambiguity in the 

manufacturing domain because CE does not explicitly address the changes needed at the 

product, process, and system levels. Also, due to the market differentiation CE establishes, 

industry has seen many misrepresentations of the implementation strategies of CE. 

Numerous manufacturers are relabeling business practices as being a new implementation 

of CE, when in reality; the practice was already in existence. Even for the new CE 

applications, the CE approach taken is more aligned with a waste management strategy 

than with a manufacturing framework [16–19]. CE is inherently limited because of its 

strong emphasis on recycling and reuse and the sustainment of earthly resources.  CE does 

not address the changes needed across all of the fundamental elements of manufacturing: 

Figure 1.2: Circular Economy and the 6R foundational elements [14] 



6 
 

products, processes, and systems. Therefore, a paradigm shift is required for moving from 

sustainment to sustainability to “produce more with less” through innovative and 

transformative convergent manufacturing approaches rooted in redesigning next 

generation products and processes. This dissertation proposes the Helical Economy 

concept. Helical Economy shifts the paradigm away from waste management and to 

redesigning manufacturing infrastructure at the product, process, and system levels. Shown 

in Figure 1.3, to achieve this, the Helical Economy takes advantage of multiple concepts 

across multiple manufacturing technological elements: internet of things and Industry 4.0, 

Figure 1.3: Transforming Circular Economy to Helical Economy 

and the Driving Elements shown in green. 
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redesigning manufacturing infrastructure, leveraging reconfigurable manufacturing 

systems, and upskilling a next-generation workforce through education and training. The 

scope of work is shown to be interdisciplinary and systems-focused.    

1.2 Research Objectives 

The major research objectives of this dissertation are to:  

1. Propose the Helical Economy as a novel extension to the Circular Economy, and 

develop the framework for the Helical Economy Manufacturing Method (HEMM)  

With the alarmingly rising global population, atmospheric carbon dioxide levels and other 

toxic gases from manufacturing activities, and an unprecedented consumption of natural 

resources, the impetus for defining an alternative manufacturing paradigm is easily 

understood. This dissertation abstracts the current state of the linear economy and circular 

economy and tries to establish a future state that can improve sustainable value, reduce 

resource consumption, and maintain technological progress.   

Once established at an abstract level, the Helical Economy concept must be tied into the 

manufacturing domain. Therefore, the dissertation aims to develop a framework for the 

Helical Economy Manufacturing Method (HEMM) that is deeply rooted in the redesigning 

of manufacturing infrastructure at product, process, and system levels.  This framework 

includes the definition of key performance indicators for driving increased sustainable 

value, a reduction in resource consumption, and maintaining technological progress.  

The second and third objectives focus on two components of the HEMM: designing next-

generation products and IoT-enabled data infrastructures: 
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2. Identify the major research problems that need to be solved in designing next-

generation products and develop initial methods in order to make near-term progress 

towards the HEMM. 

3. Identify the major research problems that need to be solved in designing next-

generation IoT-enabled data infrastructures and develop initial methods in order to 

make near-term progress towards the HEMM. 

This dissertation does not aim to solve every aspect of defining the HEMM. It is well 

understood that successful implementation of the HEMM will take many years of research 

and innovation. However, the dissertation does aim to identify the major research problems 

that can be solved for designing next-generation products and IoT-enabled data 

infrastructures in order to make near-term progress towards the HEMM.  

This dissertation could also not conceivably define the entire set of tools and methodologies 

needed to realize the HEMM vision. Tool and methodologies for the existing 

manufacturing paradigms have been being developed over decades and nearly centuries. 

However, this dissertation does establish a few initial methods for designing next-

generation products and IoT-enabled data infrastructures that can be used for near-term 

industry implementation.  

1.3 Dissertation Outline 

This dissertation is outlined as follows:  

Chapter 2 reviews the relevant literature in order to provide a foundation for the 

dissertation. Topics reviewed are sustainable manufacturing, circular economy, 
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manufacturing methods, and the internet of things (IoT) and manufacturing.  The chapter 

then highlights the research gap that this dissertation aims to address and outlines the 

approach taken.  

Chapter 3 proposes the methodology for the Helical Economy concept through an 

abstraction that compares its benefits in relation to the Circular and Linear Economy 

alternatives. Three key performance indicators (KPIs) are then proposed: sustainable value 

creation, resource consumption, and technological progress. The framework for the Helical 

Economy Manufacturing Method is then presented which focuses on redesigning 

manufacturing infrastructure at product, process, and system levels with a strong emphasis 

on utilizing an IoT data infrastructure and upskilled workforce.  

Chapter 4 examines designing next-generation products, as a core component of the 

HEMM. A motivation is presented and the relevant literature around product design is 

reviewed. The major research problems and challenges for designing products are then 

identified. Initial methods for industry implementation are then presented for two classes 

of product design: 1) new product design, and 2) adaptive product design and redesign. For 

new product design, a new set of Design for Helical Economy (DfHE) guidelines is 

presented. For adaptive product design and redesign, an initial framework for a toolkit is 

developed, the Helical Optimization and Prediction Engine (HOPE). HOPE is comprised 

of three product-level modules: 1) predicting product life cycle performance during design 

(HOPE-Design), and 2) predictively and proactively maintaining a modular product 

(HOPE-Maintain), and 3) selecting optimal product configuration and reconfiguration 

(HOPE-Configure) which is planned as future work. 
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In Chapter 5, the topic of designing an IoT data infrastructure is examined. A motivation 

is presented, and the relevant literature surrounding smart manufacturing is reviewed. The 

major design challenges related to establishing an IoT-enabled data infrastructure for the 

HEMM are identified. An integration plan for two initial methods of industry 

implementation are then presented: 1) A scalable method for reducing the overall sensor 

infrastructure needed through the use of machine-learning (ML) and concurrent 

engineering, and 2) A method for reducing the training set needed in deploying machine-

learning based sensor systems in a smart-manufacturing infrastructure.   

In Chapter 6, the contributions of the dissertation are summarized. Future work for 

examining the process and systems level manufacturing infrastructure as it pertains to the 

HEMM is previewed along with a look at the next-generation workforce. The dissertation 

closes with initial plans for industry application and prototype developments. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 The 6Rs of Sustainable Manufacturing  

The traditional 3R [9] of Reduce, Reuse, Recycle follows a cradle-to-grave approach, but 

it fails to recognize the post-use stage and the existence of multiple generations of use. The 

sustainable manufacturing approach focuses on a broader, innovation-based 6R 

methodology for products over multiple life-cycles [10]. In the 6R methodology, Reduce 

mainly focuses on the first three stages of the product life-cycle, and focuses on reducing 

overall resource and energy consumption. Reuse refers to the reuse of the product, its 

assemblies, or its individual components after its first life-cycle, for subsequent life-cycles, 

in an effort to reduce total resource and energy consumption. Recycle involves the process 

of taking the materials of a used product and converting them through mechanical or 

chemical processes into raw materials that can be used by the same or different products. 

The process of collecting products at the end of the use stage, disassembling, sorting and 

cleaning for utilization in subsequent life-cycles of the product is referred to as Recover. 

The Redesign activity involves the act of redesigning of next generation products, 

processes and systems to better utilize components, materials and resources recovered from 

the previous generation. Remanufacture involves the re-processing of already used 

products for restoration to their original state or a like-new form through the reuse of as 

many parts as possible without degradation of quality. This 6R approach offers a 

manufacturer-centric, closed-loop, multi-generational life-cycle system as the basis for 

sustainable manufacturing (Fig. 2.1) [20]. 
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Since the formation of the 6R concept, there has been considerable research on its 

application to product design and manufacturing. Liew et al. [21] used aluminum beverage 

cans as a case study to apply the 6R concepts for enhanced sustainability. The work showed 

great promise in improving the recycling process. Ungureanu et al. [22] took the 6R 

elements and applied them to automotive components. Aluminum and steel bodies were 

reviewed and compared against each other. The result showed that aluminum should be 

further reviewed as a potential replacement for steel in the future. De Silva et al. [23] 

utilized the 6R elements in the development of several key metrics that evaluated the 

sustainability of a product at the design and development stage. The work showed great 

application in a case study involving consumer electronic products. Gupta et al. [24] also 

Figure 2.1:Overall framework of the 6R elements of sustainable 

manufacturing [20] 
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showed the development of a set of metrics that evaluated a product based on total life 

cycle considerations. The paper identified the 4 stages of a manufactured product: Pre-

Manufacturing, Manufacturing, Use, and Post-Use. The work showed that the 

consideration of the total life cycle holds an advantage over the 3R approach. Zhang et al. 

[25] expanded on the work by De Silva et al. [23] to establish a product sustainability index. 

This mathematical and quantitative method showed the ability to apply the 6R concept to 

the assessment of an array of manufactured products. Overall, the 6R concept has passed 

the viability stage, but there is a need for it to be built into a practical manufacturing 

framework to bring the closed-loop concept into reality. 

2.2 The Circular Economy Concept and its Limitations 

2.2.1 Circular Economy Origins 

It is hard to track the origin of the concept of circular economy, because the general premise 

has roots across many concepts, and it holds many definitions which can be generalized to 

the Figure 2.2 [26]. Economists such as Skene and Murray [27] have mapped the 

progression of the circular economy to previous concepts such as biomimicry [28], 

industrial symbiosis [29], industrial ecology [30], cradle-to-cradle [31], etc. 
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Biomimicry is the idea that nature can be used as a source for technological innovation 

[32]. For example, the honeycomb geometry of a bee has been utilized in many engineering 

applications as the means for minimizing resources, costs, and overall weight while still 

achieving high performance mechanical properties.  

Industrial Symbiosis refers to the collaboration of distinct industries in the exchange of 

materials, energy, water, and/or byproducts in order to minimize overall resource 

consumption [29]. An example of this in action is microbreweries that create spent grain 

and then supply this grain to local farms.  

Industrial Ecology builds an analogy between the biological ecosystem and the industrial 

ecosystem where the products, processes and systems function to minimize resource and 

energy consumption [33]. Jelinski et al. [34] defined three system types in the industrial 

ecology domain: Type 1 (linear), Type 2 (semi-cyclical), and Type 3 (completely cyclical) 

systems. The work goes on to say that the biological system as evolved over million years 

to produce all of the entities needed for a Type 3 system, but in order for the industrial 

Figure 2.2: Generalization of CE [26] 
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ecosystem to move to Type 3 entities, it will require the creation of the missing entities, 

which can also be interpreted as the necessary infrastructure. 

Cradle-to-Cradle is the concept of going beyond the cradle to grave manufacturing model, 

and designing products that can be used as biological or technical nutrients once after their 

useful life [31]. McDonough and Braungart both recognized that infrastructure needed to 

change in order to realize their vision.  

The Circular Economy concept also has roots in China. The concept was first introduced 

in China by Zhu [35] in 1998 in a proposal that would be later adopted by the Chinese 

government in 2002 as a viable plan to alleviate growing resource depletion and pollution 

concerns [36]. Yuan et al. [36] also noted that the conventional linear approach to economic 

development was unsustainable in China. The work reviewed the idea of CE and its 

implementation at three levels: the individual firm level, the regional level, and the 

province level. At the individual firm level, the firms are usually required to perform 

auditing to their manufacturing practices. As a part of this, local environmental agencies 

label the firms according to their environmental performance. At the regional level, 

developing an eco-friendly network of production systems is the primary objective. In fact, 

China has created eco-industrial parks where infrastructure and equipment is shared in 

order to implement CE at this level (See the example in Figure 2.3 [37]).  At the third level, 

the focus shifts from a pure production standpoint and is refocused on both production and 

consumption.  
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Although CE tends to be used in explaining materials and energy flows, CE is gaining 

interest as an economic paradigm. Under that umbrella, the CE concept has close ties to 

the degrowth and steady state economic theories of Georgescu-Roegen and Daly [38,39]. 

In steady-state economics, the economy must shrink or go through a period of degrowth to 

arrive at a state that is within ecological limits. CE’s ideal case aligns with this strategy by 

keeping materials in a perpetual loop of utilization and eliminating the need for virgin 

resources. However, the steady-state theory is not without its flaws. It assumes that the 

population is economically equal when entering into the steady state and that no material 

fluctuations will occur in population or economic growth.  

Figure 2.3: Example of an Eco-Industrial Park in Guigang City [37] License Number: 
4576281379218 
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2.2.2 The Modern Resurgence  

The Circular Economy (CE) concept has been most recently championed by the Ellen 

MacArthur Foundation (EMF) [40–42], and is defined as being “restorative and 

regenerative by design, and aims to keep products, components, and materials at their 

highest utility and value at all times.”  Figure 2.4 shows the system diagram championed 

by the EMF.  

Although not novel, this conceptualization of CE seems to have gained the most traction 

and stakeholder support amongst all of its predecessors due to its appeal to both 

environmentally conscious and economically conscious agendas. That being said, a 

polarization of the concept has been observed across the research and industrial practice 

Figure 2.4: CE System Diagram Championed by the EMF [40], used with educational 

permission from the Ellen MacArthur Foundation 
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communities [43].  There is the school of thought that CE is a waste reduction strategy 

aimed at closing material loops via recycling and other end-of-life mechanisms [16–19]. 

There is also the school of thought, that is widely promoted through the EMF, that aims at 

a redesign across all life cycle stages of pre-manufacturing, manufacturing, use, and post-

use [14,44,45]. In the former, CE is thought of as either a “band-aid” solution to the linear 

economic model or as a means to mine short-term economic value, both of which ignore 

finding the root cause. In the latter, the root cause is addressed with an understanding that 

there may or may not be a short-term economic gain. This chasm is due to the abstractness 

of the concept, and it has been why the CE has been slow in implementation. Due to the 

public relations advantage around corporate sustainability and the differentiation it 

establishes in business-to-business (B2B) markets, industry has seen a lot of “noise” in 

regard to true implementation of CE. Numerous manufacturers are relabeling certain 

business practices as being implementations of CE, when in reality; the practice was 

already in existence.   

2.2.3 6Rs and the Circular Economy  

The CE concept has also been linked to the 6R elements of sustainable manufacturing [14]. 

Looking across the “R” elements, Kirchherr et al. [46] analyzed 114 definitions of CE. A 

vast majority of the definitions had an overarching focus on the 3Rs (Reduce, Reuse, 

Recycle) with a 4th “R” (Recover) only mentioned on occasion. From this, the conclusion 

drawn is that most manufacturers are primarily leveraging CE as a waste management 

strategy rather than a manufacturing framework. CE implementations of this nature are 

attempting to mine short-term economic value rather than address the long-term problems 

through a system-level redesign. In fact, across the 114 CE definitions analyzed by 
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Kirchherr et al., a system shift is often not highlighted as part of the description. The waste 

management focused strategy also causes degradation in sustainable value because there 

are still constraints to operate in a linear infrastructure. To go beyond a waste management 

strategy, the “R” elements of Redesign and Remanufacturing must be considered in 

combination with the prevention of degradation. These together result in upgradability 

[47], which is a key element of overall sustainability.  

2.2.4 Key Limitations 

Circular economy has emphasized the need for closed-loop material flow and technology 

advancement, but the technological aspects of achieving the conceptual state have been 

largely unaddressed [26], leaving the implementation up to the synthesis of limited industry 

case studies. There has been a lack of analysis of the various technological elements and 

infrastructure changes that need to be developed and integrated into economic models to 

create sustainable value. Overall, the three gaps that exist in the current landscape of the 

CE concept are:  

1. Manufacturers need a more practical conceptualization in the context of products, 

processes, and systems; 

2. Degrowth and Steady State economics are not viable options for the significant 

portion of the world that lives in poverty. Economic growth needs to be decoupled 

from resource consumption through technological innovation; 

3. A waste management focused strategy of recycling and reuse is not sufficient. The 

lack of consideration for the redesign of manufacturing infrastructure can result in 

adverse impacts on innovation and economic growth. 
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2.3 Internet of Things (IoT) and Manufacturing 

2.3.1 Industry 4.0 & Cyber-Physical Systems 

The manufacturing arena has seen the concepts of Industry 4.0 and the Cyber-Physical 

systems (CPS) gain interest in the last decade, and they both have a close connection to 

IoT (See Figure 2.5 [48]).  

 

CPS are defined to be a harmonization of physical processes and the computational world 

through mechanisms such as embedded sensors and feedback control systems [49]. 

Industry 4.0 takes CPS and envisions a next-generation manufacturing industry where CPS 

are highly utilized on the factory floor [50].  In addition, the approach claims that high 

Figure 2.5: Showing Industry 4.0 evolution and integration with Cyber Physical Systems 

[48] 
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value data and analytics, collected from the CPS, are leveraged to make manufacturing 

more efficient, more customizable, and more resilient [51,52]. There has also been work 

that looks at extending CPS to Socio-Cyber-Physical Systems within production networks. 

In this work, the human element of creativity and problem solving are combined with the 

technological innovation of CPS [53]. 

In the Industry 4.0 context, the scope considered is usually within the walls of the 

manufacturer being considered, therefore missing the integration with the pre-

manufacturing, use, and post-use phases. Although CPS has dominated areas such as 

industrial automation, home automation, green transportation, and smart cities [54], the 

application to sustainability and circular economy is newly forming, and presents a novel 

opportunity for establishing initial methodologies. 

2.3.2 Previous Case Studies 

There have been several case studies involving the use of IoT and BD in order to drive 

sustainable value creation. In Pan et al. [55], a framework is built surrounding the HVAC 

and building industry and the use of IoT systems to improve energy usage. The approach 

envisions creating significant economic benefits, as well as social and environmental 

benefits. Tao et al. [56] presents integration between an IoT system and a traditional PLM 

system. This work provides an idea for collecting environmental and life-cycle data 

throughout the entire life cycle. The work also proposes the idea of a big Bill of Material 

(BOM) that uses the integration interface with the IoT systems in order to exchange and 

transform information. The next case considers the idea of using cloud-based technologies 

in order to support product services [57]. In other words, a decision support system is built 
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on top of the BD foundation. In other cases, these services are built to be proactive by 

building in predictive models and analytics into the decision support system [58].  

Another case is seen in the food production sector where the application of BD to the supply 

chain can have implications for many industries. The work claims that analytics can 

translate customer requirements into an increase in sales, by being able to mine the 

rationale from metadata. In addition to the positives, the utilization of BD results in 

negatives as well. For example, tailored consumer level detail can result in the loss of 

purchasing options among other things [59].  

Despite the abundant research, IoT is plagued with its own infancy. Many of the companies 

that have been banking on big data still do not have much to show for their efforts [60]. In 

fact, those same companies have not even cashed in on the information systems that that 

they put into place 10-15 years ago [60]. The current approach of creating these extensive 

IoT frameworks involves outfitting legacy products, processes, and systems with numerous 

sensor nodes and IT systems in order to collect a significantly large dataset, only to have a 

fraction of it filtered into a usable state. Although excellent in theory, this approach can 

lead to an astronomical initial investment that could hinder any practical implementation 

into a production environment. On the other hand, if this approach is implemented blindly, 

there is a great risk associated with managing the new overhead. This trap is caused by the 

idea that information is free. While information is free, the ability to access it and use it in 

a way that can be beneficial is far from free. Everything from collecting the data points, to 

processing, and then storing them has an associated cost.  For example, if only one million 

data points out of the original one billion is actually usable in a way that they can see a 

return on investment, then there was a waste of 99.9% of the data collected. There is a 
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critical need to connect the research behind IoT to a tractable common goal, that goal being 

an IoT-based sustainable manufacturing paradigm that is focused on reducing resource 

consumption and maximizing sustainable value. 

2.4 Manufacturing Paradigms and Product, Process, and System Level 
Infrastructure 

A manufacturing paradigm is as set of principles and philosophies that define the field of 

manufacturing. Since the Industrial Revolution, the manufacturing industry has evolved 

through multiple manufacturing paradigms (See Figure 2.6). This section reviews the most 

relevant and widely known paradigms.  

 

Figure 2.6: Evolution of Manufacturing Paradigms 
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2.4.1 Craft Production, Mass Production, and Lean Manufacturing 

Craft Production refers to the paradigm that existed before the Industrial Revolution, where 

products where handcrafted, manufacturing tools were either hand tools or pre-automated, 

and no manufacturing systems existed. These products came at a high cost and the 

providers of these products were constrained geographically [61].   

Mass Production is the resulting paradigm of the Industrial revolution that began with 

Henry Ford and brought along the interchangeability of parts in products, as well as the 

assembly line. Mass production did allow for the scalability of production at a low cost, 

but it has limitations.    

Lean Manufacturing is the paradigm that began with the Toyota Production System when 

Toyota vehicles started to produce higher quality vehicles than American manufacturers. 

This paradigm is grounded in the primary goal to minimize “muda”, or waste, without 

sacrificing production. The eight wastes are: 1) Defects, or mistakes in the manufactured 

product, 2) Overproduction, 

or producing without a customer, 3) Waiting, or downtime in the process, 4) Not-Utilizing 

Talent, or underutilizing the workforce, 5) Transportation, 6) Inventory Excess, 7) Motion, 

and 8) Extra Processing.   

2.4.2 Flexible Manufacturing and Reconfigurable Manufacturing 

Flexible Manufacturing is a paradigm that targets defining a manufacturing system that can 

simultaneously process medium-sized volumes of a variety of part types [62].  Flexible 

Manufacturing Systems (FMS) are designed to produce a narrow set of products and can 
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respond to market demand relatively quickly. However, these systems are relatively capital 

intensive and result in a high product cost [63].    

Reconfigurable Manufacturing is a paradigm that is targeted at defining a manufacturing 

system that can adapt to unpredictable, high-frequency market changes [64] in a more cost-

effective manner than FMS.  Mehrabi, Ulsoy, and Koren [65] define a Reconfigurable 

Manufacturing System (RMS)  as:  A reconfigurable manufacturing system is designed for 

rapid adjustment of production capacity and functionality, in response to new 

circumstances, by rearrangement or change of its components. Components may be 

machines and conveyors for entire production systems, mechanisms for individual 

machines, new sensors, and new controller algorithms. New circumstances may be 

changing product demand, producing a new product on an existing system, or integrating 

new process technology into existing manufacturing systems. An example of a conceptual 

RMS-based assembly system is shown in Figure 2.7 [66].  

Figure 2.7: Example conceptual reconfigurable assembly system [66] 
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2.4.3 Smart Manufacturing and Cloud Manufacturing 

NIST defined a Smart Manufacturing Systems as one that attempts to maximize a 

manufacturer’s sustainable competitiveness with respect to cost, delivery, quality through 

the use of emerging information technologies and is enabled by combining features of 

earlier manufacturing paradigms [67].  

Cloud Manufacturing (CMfg) falls under the Smart manufacturing umbrella, and is specific 

to using cloud computing resources in order to decentralize manufacturing services to be 

service oriented [68].  The premise behind CMfg is that any consumer would be able to 

access manufacturing resources via the cloud as easily as water, electricity, etc.  

2.4.4 Infrastructure Challenges Across Manufacturing Paradigms 

Manufacturing infrastructure is defined here as the tools, equipment, and physical 

structures that are needed in order to carry out manufacturing operations (see Figure 2.8). 

Figure 2.8: Manufacturing Infrastructure at Product, 

Process, and System Levels 



27 
 

All of the above manufacturing paradigms have influenced the product, process, and 

system level infrastructure elements. For example, the assembly line was the main 

contribution of the mass production paradigm. This infrastructure is also path dependent, 

and the infrastructure developed at all of these levels for each of the above manufacturing 

paradigms has been for the linear economy model. Like mentioned above, in order to 

maximize sustainable value, infrastructure has to be in place at all life cycle stages. As an 

example, for a modular product to be utilized, the system level infrastructure must be in 

place to take advantage of a reverse flow of products.  

2.5 Summary of Research Gap and Dissertation Approach 

2.5.1 Summary of Research Gap  

The research gap can be summarized as follows:  

1. The CE concept is inherently limited because it is leveraged almost exclusively as 

a waste management framework. A new extension to CE is needed that focuses on 

redesigning manufacturing infrastructure at product, process, and system levels. 

2. CE is not equitable for the significant portion of the world that lives in poverty. 

Economic growth needs to be decoupled from resource consumption through 

technological innovation; 

3. The traditional approach of IoT involving deploying extensive sensor networks is 

limited in practical implementation. The use of IoT in the manufacturing domain 

needs a new approach in order for manufacturers to realize sustainable value 

creation.    
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4. Manufacturing infrastructure at product, process, and system levels has all been 

developed for a linear economy. A new manufacturing paradigm is needed that 

joins elements of sustainable manufacturing and smart manufacturing together 

under one mission: maximizing sustainable value, reducing resource consumption, 

and maintaining technological progress. 

 

2.5.2 Dissertation Approach 

The dissertation addresses the gaps by introducing the Helical Economy (HE) concept as a 

novel extension to the CE concept. An overview of the approach is shown in Figure 2.9. In 

Chapter 3, An overview and conceptual representation of the concept is formed, and then 

key performance indicators (KPIs) are developed based on that representation. The 

approach is then to define the future state vision of a Helical Economy Manufacturing 

Method (HEMM) by reimagining infrastructure elements at the product, process, and 

system levels. This satisfies research objective one: 

4. Propose the Helical Economy as a novel extension to the Circular Economy, and 

develop the framework for the Helical Economy Manufacturing Method (HEMM)  

The goal is then to work backwards from that future state vision in order to define methods 

for industry implementation that will allow near-term progress towards the HEMM vision. 

The approach here is to dive deep into two components of the HEMM: next-generation 

products and IoT-enabled data infrastructures. 
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Chapters 4 and 5 satisfy research objectives two and three:  

2. Identify the major research problems that need to be solved in designing next-

generation products and develop initial methods in order to make near-term progress 

towards the HEMM. 

3. Identify the major research problems that need to be solved in designing next-

generation IoT-enabled data infrastructures and develop initial methods in order to 

make near-term progress towards the HEMM. 

The dissertation closes with defining the future work that needs to be done across next-

generation process equipment and planning, next-generation factory and supply chain 

design, and next-generation workforce training.  

Figure 2.9: Overall Approach of Dissertation 
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CHAPTER 3 HELICAL ECONOMY MANUFACTURING FRAMEWORK 

3.1 Introduction to Helical Economy  

In the 1970s, the 𝐼𝐼 = 𝑃𝑃𝑃𝑃𝑃𝑃 equation [69,70] was proposed as a macro-level estimate for 

overall environmental impact as a function of global population (P, number of people), 

affluence (A, units of technology per person), and Technology (T, impact per unit of 

technology). Considering the fact that the U.N. projects the world population to reach ~10 

billion people by 2050 [1], and the fact that 71% of the global population in 2011 was 

living on less than 10 dollars per day [2], the only equitable way to address environmental 

impact is through technology. The manufacturing sector plays a key role in enabling 

technology, and in order for the manufacturing sector to support lower impact technology, 

the sector needs a framework that aims to decouple technological progress and economic 

growth from resource consumption. The Circular Economy (CE) has claimed to be a 

framework for achieving this, but CE is inherently limited because of its emphasis on waste 

management and the recycling and reuse of materials. Therefore, the Helical Economy 

(HE) concept is proposed as a novel advancement of CE—shifting the CE’s status quo 

paradigm away from post-use recovery for recycling and reuse and towards redesigning 

manufacturing infrastructure at product, process, and system levels, along with leveraging 

IoT-enabled data infrastructures and an upskilled workforce.  

In this chapter, the HE concept is first presented through an abstraction that allows the 

reader to compare and contrast the differences between Helical Economy, Circular 

Economy, and Linear Economy. Through this abstraction, three key performance 

indicators (KPIs) are identified and established as the measurement foundation for HE: 

sustainable value creation, resource consumption, and technological progress. The Helical 
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Economy concept is then extended into the manufacturing domain in order to form the 

framework and establish the future state vision of the Helical Economy Manufacturing 

Method (HEMM). The HEMM is intended to shift the paradigm of sustainable 

manufacturing away from the waste reduction and diversion concentration of CE and to 

redesigning the fundamental infrastructure elements at product, process, and system levels. 

This framework provides the foundational body of knowledge for developing HEMM 

implementation tools for manufacturing stakeholders. Following this chapter, the reader 

will have a clear understanding of HE, how to measure it, and how it can be applied to the 

manufacturing domain.  

In order to understand the value proposition behind Helical Economy (HE) and how it 

relates to Circular Economy (CE) and the Linear Economy (LE), an abstraction is presented 

in Figure 3.1 [71] that visualizes each in a three-dimensional cylindrical space where,  𝑟𝑟 =

𝑆𝑆𝑆𝑆𝑆𝑆(𝑅𝑅1−6) is the sustainable value creation achieved as a function of the 6Rs of 

Sustainable Manufacturing (Reduce, Reuse, Recycle, Recover, Redesign, and 

Remanufacture),  𝜃𝜃 =  𝑓𝑓(𝑡𝑡) is time, and  𝑧𝑧 is the technological progress achieved: 

𝑟𝑟 = 𝑆𝑆𝑆𝑆𝑆𝑆(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. ) ∶ [0,Ψ ] (3.1) 

𝜃𝜃 = 𝑓𝑓(𝑡𝑡) ∶ [𝜙𝜙𝑘𝑘 ,𝜙𝜙𝑘𝑘+1]                                                           (3.2)   

𝑧𝑧 = 𝑃𝑃𝑅𝑅𝑅𝑅ℎ𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑟𝑟𝑅𝑅𝑅𝑅𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅: [𝜇𝜇,Μ]                                              (3.3) 

 𝑟𝑟 is bounded by 0, representing no value creation, and Ψ, the theoretical maximum 

sustainable value. 𝜃𝜃 is finite and bounded by the 𝑘𝑘-th generation time interval, 𝜙𝜙𝑘𝑘, and the 

𝑘𝑘+1 generation time interval  𝜙𝜙𝑘𝑘+1. 𝑧𝑧 has a lower bound, 𝜇𝜇, and an upper bound, Μ. The 
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gray plane, 𝜇𝜇, is the ecological limit of technological progress under circular economy 

conditions and Μ is the theoretical maximum limit while maintaining Ψ sustainable value.  

From Figure 3.1, LE can be seen to deliver technological progress, but at the expense of 

sustainable value. While society can function under these conditions for a short period, this 

will result in long-term harm to the economy, society, and the environment. That being 

said, the untapped sustainable value present in a linear economy should be viewed as an 

opportunity to manufacturing stakeholders.  

CE aims to extract some of this untapped sustainable value with an improvement to the 

LE. However, this is at the expense of technological progress, as it is shown to not move 

past the two-dimensional plane at 𝜇𝜇, which is the CE’s theoretical maximum. This 

maximum is a function of the use of the 4R elements of Reduce, Reuse, and Recycle, and 

Recover, and it reflects that the omission of Redesign and Remanufacture. This reflects the 

Figure 3.1: Abstract Representation of the Helical Economy in reference to the 

Linear and Circular Economies [71] 
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current “waste management focused” implementations of CE. This causes degradation in 

sustainable value and promotes technological stasis because there are still constraints to 

operate in a linear manufacturing infrastructure. To go beyond a waste management 

strategy, the “R” elements of Redesign and Remanufacturing must be considered in 

combination with the prevention of degradation.  

HE is shown to advance the improvements made by CE by shifting the paradigm of 

sustainable manufacturing away from a waste management strategy and to a holistic 

redesign of manufacturing infrastructure at product, process, and system levels. By 

utilizing all 6R elements, HE eliminates the linear infrastructure constraint and enables 

stakeholders to extract more of the untapped sustainable value while maintaining high 

levels of technological progress.   

3.2 Key Performance Indicators for Helical Economy  

With the HE concepts formed, key performance indicators (KPIs) must be developed that 

allow manufacturers to measure the performance and success of their HE activities. These 

KPIs must be easily calculated with available information, they must be easily understood 

by both business leaders and shop floor practitioners, and they must easily allow for 

tracking improvements over time. The three proposed KPIs that meet these criteria are: 

sustainable value creation, resource consumption, and technological progress. The 

following sub-sections will establish the frameworks for each of these KPIs. 

3.2.1 Sustainable Value Creation 

Bilge et al. [72] states that value creation in the manufacturing context is achieved through 

changing the ratio between input and output in terms of raw materials and resources for 
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manufacturing acvitities. In that context, tbe assumption is that manufacturers exist to 

create maximum value in order to be compensated by customers. However, indirect 

impacts that don’t directly affect the manufacturer or the customer are not factored into 

that transactional view of manufacturing, and therefore these externalities are not 

considered in deciding what activities to undertake in order to create the value. Therefore, 

the concept of sustainable value arises, or the total life cycle economic, societal, and 

environmental impacts [73] of manufacturing activities requires an alternative framework 

and value creation mechanisms. There has been a lot of previous work in this space. 

Chandler [74] looks at sustainable value creation from the perspective of how can a 

manufacturer create the most value for each stakeholder involved. In other words, different 

stakeholders demand different definitions of value from a firm.  The goal then becomes 

synthesizing all of these definitions of value into a common value creation assessment in 

order to drive the entire firm in the direction of maximizing sustainable value. Ueda et al. 

[73] reflects some of this thought through the emergent synthesis decision-making 

approach that takes multiple agents with their own purpose, and thhis collective interaction 

results in an effective solution for the whole system. Nils et al, Jovane et al, Seliger et al., 

and Stock and Seliger [75–78] have advocated for value creation networks that co-create 

value for all stakeholders. The premise is that manufacturers own their core competency 

and cooperate together on tackling the sustainability challenges. This is becoming more 

prevalent today as global partnerships form around complex, cross-cutting sustainability 

topics such as Circular Economy, Plastics. That being said, these global corporate 

partnerships are starting to face scrutiny because they lack transparency, leaving the 

perception as being too qualitative.  
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Other approaches around sustainable value creation have leaned quantitative, especially in 

the field of economics. Figge and Hahn [79] establish a measure for sustainable value 

added that adjusts economic growth based on environmental and societal impacts. This is 

done by pricing externalities, and this can be applied from the perspective of bottom line 

cost or top line revenue, depending on the end goal. However, the inherent assumption in 

this approach for sustainable value added is that a firm will forego short term profits if they 

will be compenesated for that avoided harm in the long-term. Although are limitations with 

this thinking, it is best aligned with the price-based transactions already being used by 

firms, and because of this, it could be adopted easier than an attempt to change the entire 

definition of value.   

Therefore, we propose a similar approach as Figge and Hahn, but explicity from the 

perspective of the total life cycle cost (TLCC) to all stakeholders (See Figure 3.2). From 

this Figure, the TLCC takes into consideration the societal and environmental externalities. 

In addition, it is shown that TLCC + Value Creation is equal to the hypothetical total life 

cycle market value. Therefore, by minimizing TLCC, total life cycle value creation can be 

maximized. This allows manufacturing stakeholders to uncover untapped potential in their 

value chains. The cost model should capture life cycle activities from material extraction, 

manufacturing, transportation, use, reverse logistics, post-use activities (recycling, 

remanufacturing, reuse), as well as account for the externalities associated with each of 

these activities. These externalities can be pollution, climate change, etc. In practice, a life 

cycle cost model will be highly dependent upon the particular application being evaluated 
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and the data available to a particular stakeholder, but to offer a starting point, this section 

presents the generic total life cycle cost model (TLCCM) for HE.  

The TLCCM for HE can be formulated into a hierarchy of mathematical relationships. The 

goal of this model is aimed at maximizing sustainable value creation for all stakeholders; 

therefore, the total life cycle must be considered. The first tier of the hierarchy can be seen 

in Equation (3.4). 

𝑃𝑃𝑇𝑇𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶                                             (3.4)    

This top-level hierarchy distinguishes between cost to manufacturer (𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀) and the cost to 

the customer (𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶), in the sense that although these two different costs are very different 

in nature, they both make-up the total cost of a particular manufacturing activity. This 

important distinction provides a significant advantage because it illustrates the reality of 

Figure 3.2: TLCC’s connection to value creation 
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the manufacturer and customer relationship. As seen in Rivera et al. [80] although they are 

independent actors, their decisions significantly affect one another. By considering the cost 

to the customer, a manufacturer can control the costs to the customer and even choose to 

make an investment on behalf of the customer in order to lower their overall cost. Each of 

these two costs are expanded to much more detail in the second tier of the hierarchical cost 

model that can be seen in Equations (3.5-3.8).  

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑆𝑆𝑀𝑀,𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑆𝑆𝑉𝑉,𝑀𝑀𝑀𝑀𝑀𝑀                                              (3.5)    

𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑆𝑆𝑀𝑀,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑆𝑆𝑉𝑉,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶                                             (3.6)    

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑆𝑆𝑀𝑀,𝑀𝑀𝑀𝑀𝑀𝑀 + �
1

(1 + 𝑅𝑅)𝑡𝑡
�𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀,𝑉𝑉𝑉𝑉𝑉𝑉,𝑡𝑡 + 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀,𝑉𝑉𝐶𝐶,𝑡𝑡 + 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀,𝑉𝑉𝑀𝑀,𝑡𝑡 +  𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀,𝑉𝑉𝑅𝑅𝐶𝐶,𝑡𝑡�𝑡𝑡

𝑛𝑛

𝑡𝑡=0

(3.7)    

𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑁𝑁𝐶𝐶 ��𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀/𝐶𝐶 ∙ 𝐾𝐾� + �
1

(1 + 𝑅𝑅)𝑡𝑡
�𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶,𝑡𝑡�𝑡𝑡

𝑛𝑛

𝑡𝑡=0

�                     (3.8)    

In this level of hierarchy, the manufacturer and customer costs are both segmented into 

fixed (𝑆𝑆𝑀𝑀,𝑀𝑀𝑀𝑀𝑀𝑀 , 𝑆𝑆𝑀𝑀,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) and variable costs (𝑆𝑆𝑉𝑉,𝑀𝑀𝑀𝑀𝑀𝑀, 𝑆𝑆𝑉𝑉,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶). For HE, this distinction is 

important because it advocates for a redesign of manufacturing infrastructure, and therefore 

a common analysis in the HE domain may be assessing whether investing in new 

infrastructure will result in a return. In Equation (3.7), the variable costs to the 

manufacturer are allocated across four channels of production: virgin (𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀,𝑉𝑉𝑉𝑉𝑉𝑉,𝑡𝑡), reuse 

(𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀,𝑉𝑉𝐶𝐶,𝑡𝑡), remanufacturing (𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀,𝑉𝑉𝑀𝑀,𝑡𝑡), and recycling (𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀,𝑉𝑉𝑅𝑅𝐶𝐶,𝑡𝑡) in year, 𝑡𝑡 . Customer 

variable costs in year, 𝑡𝑡, are represented by (𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶,𝑡𝑡). Both manufacturer and customer 

variable costs are discounted at the 𝑅𝑅 discount rate to net present value (NPV).  
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In Equation (3.8) customer fixed costs are affixed to the total manufacturer costs per unit 

scaled by a profit margin, 𝐾𝐾. Total fixed and variable costs are scaled by the total number 

of units,  𝑁𝑁𝐶𝐶, to calculate the total cost to customers.  

A more granular view of the costs to the manufacturer are shown in Equations (3.9-3.13):  

𝑆𝑆𝑀𝑀,𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑆𝑆𝑅𝑅𝐸𝐸 + 𝑆𝑆𝑉𝑉𝐼𝐼𝑀𝑀𝑉𝑉𝐼𝐼                                               (3.9)  

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀,𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉�𝑆𝑆𝑉𝑉𝑀𝑀 + 𝑆𝑆𝑀𝑀𝑀𝑀 + 𝑆𝑆𝐶𝐶 + 𝑆𝑆𝑅𝑅𝐶𝐶 + 𝑆𝑆𝑂𝑂𝐶𝐶𝑂𝑂,𝑉𝑉𝑉𝑉𝑉𝑉�                       (3.10) 

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀,𝑉𝑉𝐶𝐶 = 𝑁𝑁𝑉𝑉𝐶𝐶�𝑆𝑆𝑉𝑉𝑅𝑅 + 𝑆𝑆𝐶𝐶 + 𝑆𝑆𝑅𝑅𝐶𝐶 + 𝑆𝑆𝑂𝑂𝐶𝐶𝑂𝑂,𝑉𝑉𝐶𝐶�                             (3.11) 

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀,𝑉𝑉𝑀𝑀 = 𝑁𝑁𝑉𝑉𝑀𝑀�𝑆𝑆𝑉𝑉𝑅𝑅 + 𝑆𝑆𝑀𝑀𝑀𝑀 + 𝑆𝑆𝐶𝐶 + 𝑆𝑆𝑅𝑅𝐶𝐶 + 𝑆𝑆𝑂𝑂𝐶𝐶𝑂𝑂,𝑉𝑉𝑀𝑀�                       (3.12) 

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀,𝑉𝑉𝑅𝑅𝐶𝐶 = 𝑁𝑁𝑉𝑉𝑅𝑅𝐶𝐶�𝑆𝑆𝑉𝑉𝑅𝑅 + 𝑆𝑆𝑉𝑉 + 𝑆𝑆𝑀𝑀𝑀𝑀 + 𝑆𝑆𝐶𝐶 + 𝑆𝑆𝑅𝑅𝐶𝐶 + 𝑆𝑆𝑂𝑂𝐶𝐶𝑂𝑂,𝑉𝑉𝑅𝑅𝐶𝐶�                   (3.13) 

Manufacturer fixed costs are segmented into the cost of equipment (𝑆𝑆𝑅𝑅𝐸𝐸) and the cost of 

infrastructure (𝑆𝑆𝑉𝑉𝐼𝐼𝑀𝑀𝑉𝑉𝐼𝐼). Equipment costs may include machines, tooling, and/or line 

changes and infrastructure costs would include facilities.  

The variable costs from virgin production are the cost of raw materials (𝑆𝑆𝑉𝑉𝑀𝑀), cost of 

manufacturing processes (𝑆𝑆𝑀𝑀𝑀𝑀), cost of transportation (𝑆𝑆𝐶𝐶), costs of environmental and 

societal externalities (𝑆𝑆𝑅𝑅𝐶𝐶), and case-specific costs (𝑆𝑆𝑂𝑂𝐶𝐶𝑂𝑂,𝑉𝑉𝑉𝑉𝑉𝑉).  Externalities are costs that 

indirectly impact the system (Ex. ecotoxicity, human health, climate change, etc.)  

The variable costs from reuse production are the cost of reverse logistics (𝑆𝑆𝑉𝑉𝑅𝑅), cost of 

transportation (𝑆𝑆𝐶𝐶), the costs of environmental and societal externalities (𝑆𝑆𝑅𝑅𝐶𝐶), and case-

specific costs (𝑆𝑆𝑂𝑂𝐶𝐶𝑂𝑂,𝑉𝑉𝐶𝐶). 
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The variable costs from remanufacturing production are the cost of reverse logistics (𝑆𝑆𝑉𝑉𝑅𝑅), 

cost of manufacturing processes (𝑆𝑆𝑀𝑀𝑀𝑀),  cost of transportation (𝑆𝑆𝐶𝐶), the costs of 

environmental and societal externalities (𝑆𝑆𝑅𝑅𝐶𝐶), and case-specific costs (𝑆𝑆𝑂𝑂𝐶𝐶𝑂𝑂,𝑉𝑉𝑀𝑀). 

The variable costs from recycling production are the cost of reverse logistics (𝑆𝑆𝑉𝑉𝑅𝑅), cost of 

recycling  (𝑆𝑆𝑉𝑉),  cost of manufacturing processes (𝑆𝑆𝑀𝑀𝑀𝑀),  cost of transportation (𝑆𝑆𝐶𝐶), the 

costs of environmental and societal externalities (𝑆𝑆𝑅𝑅𝐶𝐶), and case-specific costs (𝑆𝑆𝑂𝑂𝐶𝐶𝑂𝑂,𝑉𝑉𝑅𝑅𝐶𝐶). 

In an ideal case, all of the variable costs associated with environmental and societal 

externalities across each channel of production should be included. In practice, all of the 

externalities will likely not be known, but all that are known should be included. As an 

example, for climate change, the social cost of carbon (SCC) emissions can be included 

[81]. The SCC measures the economic harm, in dollars, of emitting one ton of carbon 

dioxide into the atmosphere. The EPA has currently calculated this to be $42/ton [82]. 

Accounting for SCC in the cost model would allow a manufacturer to account for the 

indirect impact that their manufacturing activities and decisions have on climate change. 

This approach affords the manufacturer to include the externalities that its stakeholders 

really care about, as well as set their own price on externalities. Some manufacturers may 

set the price higher than others, because their stakeholders may have a stronger response 

than others.   

The generic TLCCM model shown here is intended to be the starting point for a 

manufacturer trying to measure their total sustainable value creation in relation to adopting 

the Helical Economy. For implementation in practice, it is expected that this generic model 

will need to be adapted to industry specific cases.    
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3.2.2 Resource Consumption 

While the TLCCM does account for the material value in its model, this value can be 

dwarfed by all of their value-add activities throughout a manufacturer’s value chain. 

Because of this, in order to ensure resource consumption is minimized, this has to be 

measured independently. KPIs that already exist around resource consumption are often 

focused on measuring the mass of all resources utilized by an economy. For example, the 

material consumption metric used by the EU [83], looks at the mass flow of all materials 

through the economy. This number is often compared to the GDP of an economy in order 

to estimate the resource efficiency.  While good in practice, these types of KPIs treat all 

materials equally, and do not account for the differing footprints that materials have. For 

example, 1 kg of sand is not equivalent to 1 kg of aluminum. Therefore, mass-based KPIs 

are not sufficient. Instead, a value per kilogram of material needs to be assigned in order 

to prioritize and assess different resources. Because the TLCCM is already proposed as a 

metric, the value chosen should represent environmental or societal impact. Therefore, life 

cycle assessment’s (LCA) most robust indicator is proposed: Global Warming Potential 

(GWP). GWP not only quantifies a materials impact to climate change, but it also is 

representative of a physical view. The GWP value represents the energy and mass of 

material, which allows us to distinguish the importance of our starting example:  1 kg of 

sand vs. 1 kg of aluminum. The GWP of 1kg of sand is equivalent 0.01 kg CO2eq, while 

1 kg of aluminum is equivalent to 8.14 kg CO2eq, or 814 more than that of sand [84]. The 

metric proposed for resource consumption is shown in Equation (3.14). 

𝑅𝑅𝑆𝑆 =
∑ 𝑅𝑅𝑓𝑓𝑖𝑖 ∙ 𝑀𝑀𝑖𝑖
𝑊𝑊
𝑖𝑖=0

𝑁𝑁𝐶𝐶
                                                   (3.14) 
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Where, 𝑀𝑀𝑖𝑖 is the i-th material in kilograms and 𝑅𝑅𝑓𝑓𝑖𝑖 is the GWP value of the i-th material. 

The sum of all W materials being utilized across a manufacturer is then normalized to the 

total number of units, 𝑁𝑁𝐶𝐶, produced. This metric gives manufacturers the ability to track 

their resource consumption performance overtime and assess the tradeoffs of implementing 

helical economy initiatives.   

3.2.3 Technological Progress 

HE’s core value proposition is that it aims to maintain technological progress while 

maximizing sustainable value and minimizing resource consumption. A metric for 

technological progress is therefore vital for validating the core benefit of HE. However, 

technological progress is hard to measure and quantify. Often, it relies on the R&D dollars 

spent by a firm or by the number of patents granted to the firm in relation to the number of 

new products released. Neither of these KPIs are an actual measure of technological 

progress, but instead are only proxies. To move beyond a proxy, it requires an 

understanding of what technological progress actual is. For the sake of simplicity, let’s 

assume the definition of technological progress is interchangeable with innovation. 

Innovation can be defined in many ways: product innovation, process innovation, and 

business model innovation. To quantify innovation, one must look to the field of TRIZ, or 

the theory of inventive problem solving [85]. TRIZ defines five levels of innovation as 

seen in Table 3.1:  
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Table 3-1: Levels of Innovation [85] 

Level  Description 

Level 1 Apparent design change to an existing technical system 

Level 2 Improvement to an existing technical system 

Level 3 Elements of an existing system are completely replaced with knowledge 
obtained from outside the original domain. 

Level 4 Novel system that contains a breakthrough from other fields of science. 

Level 5 Pioneering discovery or breakthrough for a radically new system. 

To develop the metric for technological progress, an innovation factor (𝐼𝐼𝐼𝐼) is defined in 

Table 3.2 based on the relative percentage of each innovation level as determined in 

Genrich Altshuller’s The Innovation Algorithm [86].  

Table 3-2: Innovation Factor (IF) 

Level  IF Value 
Level 1 0 
Level 2 1 
Level 3 2.3 
Level 4 10.5 
Level 5 140 

Level 1 is set to 0, considering it to be incremental change and not innovation. Level 2 is 

set to 1, and levels 3-5 are inversely calculated based on the relative percentage of patents 

classified as each in comparison to Level 2. Now, that innovation factors are determined, 

these must be applied across the products being produced by a manufacturer. Equation 

(3.15) scales the 𝐼𝐼𝐼𝐼 by the total revenue 𝑃𝑃𝑖𝑖   from the j-th product. These values are summed 

across all of the products (𝑍𝑍)  produced by a manufacturer and then normalized by the total 

number of units produced, 𝑁𝑁𝐶𝐶, to obtain the technological progress metric.  
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𝑃𝑃𝑃𝑃 =
∑ 𝐼𝐼𝐼𝐼𝑖𝑖 ∙ 𝑃𝑃𝑖𝑖  𝑍𝑍
𝑖𝑖=1

𝑁𝑁𝐶𝐶
                                              (3.15)  

This KPI gives manufacturers the ability to track their technological progress over time 

and assess the tradeoffs of implementing helical economy initiatives.   

Overall, this section has proposed three KPIs for measuring HE performance across the 

core value proposition of maximizing sustainable value, minimizing resource 

consumption, and maintaining high levels of technological progress. These are intended to 

be the foundational KPIs and are intended to be iterative overtime and tweaked to account 

for special considerations in certain industries.  

3.3 The Helical Economy Manufacturing Method 

Now that the overall HE concept has been established, and the KPIs for measuring success 

have been identified, this section addresses how HE can be implemented in the 

manufacturing domain. It provides the conceptual level foundation for the future state 

vision of the Helical Economy Manufacturing Method (HEMM), which proposes 

redesigning manufacturing infrastructure at the product, process, and system levels. 

(Infrastructure in this context is defined as the physical structure, supporting equipment, 

and facilities needed to support manufacturing operations.)  

The HEMM framework consists of five core components: next-generation products, next-

generation processes and process equipment, next-generation factories and supply chains, 

next-generation IoT-enabled data infrastructures, and a next-generation workforce. The 

overview of the HEMM is shown in Figure 3.3. The following sub-sections will provide 

the conceptual level foundation for each of these core components. 
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Figure 3.3: Overview of the Helical Economy Manufacturing Method 
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3.3.1 Next-Generation Products 

At the product level, the linear economy has defined everything from the conceptual 

understanding of products; the design tools and processes that have been created to develop 

products; and the way the system boundary is defined when approaching the design of a 

product. Therefore, delivering on the HEMM vision requires a total redesign of what 

fundamentally defines a product. Looking at Figure 3.4 [71], the linear product is 

composed of an assembly of 𝑆𝑆1,𝑆𝑆2, … ,𝑆𝑆𝐼𝐼 components. The product is then used and 

disposed of resulting in zero sustainable value creation.  

 Figure 3.4: Conceptual Representation of Linear, Circular, and Helical 

Products [71] 
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The circular product is still composed of the same 𝑆𝑆1,𝑆𝑆2, … ,𝑆𝑆𝐼𝐼 components because it is 

still locked into being manufactured by the infrastructure that was designed for the linear 

economy environment. The linear tools and technologies of today’s manufacturing 

environment inherently limit the circular economy waste management centric approach of 

using recycled materials and ensuring recycling. Sustainable value is extracted through 

recycling of 𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝐼𝐼materials, and through the limited the reuse of products and 

components, but because the circular product is still locked into a linear infrastructure, 

there is an inherent degradation of value that occurs.  

HE goes beyond CE to include a redesign and reconfiguration effort. The helical product 

is comprised of modular components that are reconfigurable to the market demand. Post-

use, the product can be reconfigured into a new product, or the material can be transferred 

out of the product life cycle in the form of components via parts harvesting and/or materials 

via recycling. 

In practice, the product is IoT-enabled, and the collected data is fed into a new suite of 

design tools that are developed specifically for HE. The helical product must also be 

reconfigurable and use common components and materials. Using manual or automated 

processes, components must be able to be rearranged into new products to meet immediate 

demand. The product must also be designed in parallel to the process plan and process 

equipment in order to ensure the infrastructure is in place to take advantage of the modular 

and upgradeable product structure. The product must also prevent degradation of value and 

have the ability to be upgraded through reconfiguration and remanufacturing. 
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3.3.2 Next-Generation Processes and Process Equipment 

At the manufacturing process level, the linear economy has dramatically defined the 

existing technologies that are in use today. Since the Industrial Revolution, development 

and investment from manufacturers have supported a one-way flow of products, from 

getting raw materials at their gate to delivering a finished product to their end customers. 

As such, the current manufacturing process level infrastructure and technology caters to 

this linear economy derived one-way flow of inputs and outputs. To achieve the HEMM 

vision, helical manufacturing processes and process equipment must become multi-

dimensional, enabling a hybrid manufacturing and remanufacturing process that can 

continue to meet the current market demand. As shown in Figure 3.5 [71], helical 

manufacturing processes have a reverse capability built in parallel to that of the original 

manufacturing process. The material from the reverse manufacturing step is either 

transferred to a different process or retained and reprocessed.  

Current technologies that would support the HEMM at the process level are for example, 

a combined additive and subtractive manufacturing process and machine, as well as a 

combined assembly and disassembly robot that can simultaneously handle new product 

assembly and return product disassembly.   
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In practice, the process equipment is IoT-enabled, and data is actively collected and used 

to execute decision on which inventory to pull from and operations that need to take place. 

These decisions are made in combination with current market conditions to determine 

which products meet current demand. Data from products in the field and other process 

equipment is also used to continuously improve product performance. Using the 

information gathered from products in the field, near real-time sustainability performance 

enhancements can be made on the manufacturing floor.    

Figure 3.5: Conceptual Representation of Linear, Circular, and Helical 

Manufacturing Processes [71] 
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3.3.3 Next-Generation Factories and Supply Chains 

At the system level, helical products and processes come together to form next-generation 

factories and supply chains. Production in the HEMM vision has to be able to respond to 

market demand instantaneously. With this consideration, a the HEMM system level 

infrastructure builds on the concept of reconfigurable manufacturing systems (RMS) 

[64,87], with the  added premise of leveraging the same machines and lines for both 

manufacturing and remanufacturing. This creates a forward and reverse flow of products 

through the system that can move about the system in a nonlinear way (See Figure 3.6 

[71]).  Manufacturing “lines” in a HEMM become reconfigurable matrices of 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝐼𝐼 

process stages and 𝑁𝑁1,𝑁𝑁2, … ,𝑁𝑁𝑀𝑀 nodes interconnected through the IoT-enabled data 

infrastructure. Products in the forward manufacturing path take advantage of the 

reconfigurable and flexible manufacturing stage-node combinations to support many SKUs 

while achieving maximum throughput.  

Return products that enter in reverse are deconstructed into components and materials that 

are then allocated to the next best stage-node combinations that keep the components and 

materials at the highest possible value. Materials and components can be transferred to or 

from another product line at any point in the process via transfer points 𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑀𝑀. 

Because of the forward and reverse flow consolidation, this encourages the factory and 

supply chain levels to oriented close to the customer points of use.   
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In practice, the system is IoT-enabled and consists of interconnected products, process 

equipment, and system-level equipment. The data collected across this sensor network is 

used in order to make the decisions to move from a stage, node, and/or transfer point. These 

decisions are made using the HE KPIs of sustainable value creation, resource consumption, 

and technological progress.  

Figure 3.6:Conceptual representation of a helical manufacturing system. It is 

reconfigurable to support a forward and reverse material flow where the path is 

determined by the optimal combination of N stages, M nodes, and P transfer points. 

[71] 
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3.3.4 Next-Generation IoT-Enabled Data Infrastructure 

The Internet of Things (IoT) has been referred to as a means for aligning physical and 

information life cycles [88]. This vision suggests that this intimate connection and the 

information itself present a major source of value to manufacturers [88,89].  However, to 

extract this value, the IoT-enabled data infrastructure (Figure 3.7 [71]) has to be leveraged 

in a framework that presents an opportunity at realizing this value.  

Figure 3.7: Conceptual Representation of the IoT-Enabled Data Infrastructure [71] 
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In context of the HEMM framework, the IoT-enabled data infrastructure can be leveraged 

to widen the helix to maximum point of sustainable value creation. It achieves this by 

increasing the amount of life cycle information available to manufacturers through the use 

of dynamic data collection system, where data is collected via sensors and analytical 

models at product, process and system levels. This data allows one to construct a virtual 

system view of the complete manufacturing life cycle. This total life cycle-oriented data 

can then be used to train predictive models in solving for the optimum product 

design/configuration, the optimum process plan and equipment/tool design, and the 

optimum system and node matrix configuration, based on the three KPIs of sustainable 

value creating, resource consumption, and technological progress. However, this highly 

leveraged sensor network can come with a serious investment. To keep costs low, special 

attention should be paid to minimizing sensors deployed through the use of the domain 

expert knowledge of the physical system [90], as well as ensuring that every piece of data 

being collected and stored has a business purpose.  

3.3.5 Next-Generation Workforce 

While automation was been predicted to kill manufacturing jobs, Deloitte has shown this 

to be the opposite, but the increase in jobs are signaling a critical skills gap in between the 

talent pool and the jobs that are needed [91]. They predict that over 2 million US 

manufacturing jobs are will go empty between 2018 and 2028 [91]. In the context of HE 

and HEMM, the proposed framework reflects a highly automated manufacturing 

environment. However, even in a highly automated manufacturing environment, people 

will remain as a core foundational element of the HEMM,  
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That being said, the HEMM will continue to shift the skills in demand for the 

manufacturing sector away from low-skilled laborers and towards higher skilled 

technology-focused skills (data analytics, software development, simulation, robotics, 

mechatronics, etc.) [92].  This shift in demanded skills may cause a deeper skills gaps than 

already exists for the manufacturing sector, because it will require new skills across product 

design, process and process equipment design, as well as industrial and manufacturing 

engineering. In order to bridge this gap, industry-sponsored upskilling programs will need 

to grow rapidly, and education systems across the globe will need to invest heavily in 

technical schools with manufacturing-oriented training programs. Transitioning the current 

workforce into a next-generation workforce prepared to support the HEMM will take time 

since requires a fundamental change in the core infrastructure around manufacturing 

education and training. Because of the time lag, there is a critical need to start this 

investment as soon as possible.    

3.4 Chapter Summary and Discussion  

In this chapter, the Helical Economy (HE) framework was presented, key performance 

indicators for measuring its success were identified, and the conceptual form of the Helical 

Economy Manufacturing Method was presented. In developing the concept, HE was shown 

to be a novel advancement of CE that enables maximizing sustainable value, minimizing 

resource consumption, while maintaining technological progress. A visual representation 

highlighted the advances made by HE: 1) shifting the paradigm of sustainable 

manufacturing away from a waste management strategy and to a holistic redesign of 

manufacturing infrastructure at product, process, and system levels, and 2) By utilizing all 

6R elements, HE eliminates the linear infrastructure constraint and enables stakeholders to 
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extract more of the untapped sustainable value while maintaining high levels of 

technological progress.  These advances enable HE to support economic mobility of the 

developing world and global population growth. 

Three KPIs were then proposed: sustainable value creation (TLCC), resource consumption 

(RC), and technological progress (TP).  These KPIs will allow manufacturers to deploy 

helical economy solutions and track their success over time.   

The Helical Economy Manufacturing Method (HEMM) was then presented as the 

conceptual framework for implementing HE into the manufacturing domain. The HEMM 

consists of five core components: next-generation products, next-generation processes and 

process equipment, next-generation factories and supply chains, next-generation IoT-

enabled data infrastructures, and a next-generation workforce. Although largely 

conceptual, this work provided the critical foundational level of knowledge for how 

manufacturers may go about overhauling their linear economy manufacturing 

infrastructure. Without addressing the redesign aspect of manufacturing infrastructure, 

manufacturers will inherently be limited in the ability to create sustainable value or reduce 

resource consumption.  

Overall, this chapter provides the foundation for the Helical Economy and its application 

to the manufacturing domain. The following chapters will address the redesigning of 

manufacturing infrastructure at the product level, followed by designing the IoT and Data 

infrastructure.     
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CHAPTER 4 DESIGNING NEXT-GENERATION PRODUCTS FOR A HELICAL 
ECONOMY 

4.1 Introduction and Literature Review 

4.1.1 Motivation 

Product design has an outsized impact on sustainable value creation, resource 

consumption, and technological progress, and the Helical Economy vision cannot be 

realized without fundamentally changing the way products are designed. In a Helical 

Economy, product designers and engineers must expand their design scope beyond a single 

product, or even a single product line. Designers have to simultaneously design the product, 

the manufacturing process plan, the supply chain, the business model, and design in the 

capability to take advantage of all post-use activities (recovery, reuse, remanufacturing, 

recycling, and redesign/reconfiguration). 

It is well-known that product design is largely an iterative process. During the early design 

stages of a product, designers tend to know very little about their design problem, yet this 

is when they have the most design freedom and control in order to meet design constraints. 

The costs to manufacture and life cycle impacts are already defined by the time the designer 

receives initial feedback. This is known as the designer’s paradox (Figure 4.1 [93]).  

Because of this paradox, initial product designs are rarely optimal. This paradox, however, 

may be a result of the linear economy’s influence on the past several decades of product 

design tools, methodologies, and assessment frameworks. Products have been designed for 
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a linear economy for several years, with manufacturers iterating on their internal product 

development processes in order to continuously improve their ability to beat their 

competitors on price and time to market. Arming product designers with information on 

the life cycle performance of their product has not been a priority, even when this benefits 

the bottom line. The two traditional methodologies used in measuring the life cycle 

environmental and economic impact of a product, Life Cycle Assessment (LCA)[94] and 

Life Cycle Costing (LCC)[95], both require detailed design-level and system-level data. 

The timely collection of this data limits the design changes that can be made to a product 

without greatly affecting a manufacturer’s cost or schedule.  

To truly move the manufacturing sector towards the HEMM future vision, product level 

architecture needs to be redesigned, which will require new design tools and methods. This 

chapter begins with reviewing the literature in the field of product design as it applies to 

manufacturing, by summarizing the typical design process and the current state of the art 

on sustainable design tools. From this review, the product design challenges for realizing 

Figure 4.1:Designer's Paradox (Adapted from Dieter 

[93]) 
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the near-term vision of the HEMM are identified. The chapter then presents four initial 

methods to address these design challenges. The methods are segmented into two classes 

of product design: 1) new product design, and 2) adaptive product design and redesign. For 

new products, a Design for Helical Economy (DfHE) set of guidelines is proposed that 

aims to aid new product design towards an improved “near-net design” that is suitable for 

the HEMM. For adaptive product design and redesign, an initial toolkit is developed, the 

Helical Optimization and Prediction Engine (HOPE). HOPE is comprised of three product-

level methods: 1) predicting product life cycle performance during design (HOPE-Design),  

2) predictively and proactively maintaining a modular product (HOPE-Maintain), and 3) 

selecting optimal product configuration and reconfiguration (HOPE-Configure) 

4.1.2 Literature Review 

4.1.2.1 The Design Process 

Product design sits at a complex nexus between the fields of science, art, and 

psychology/sociology [96]. From a science perspective, a product requires a 

conglomeration of elements from the hard sciences that are put into action in a specific 

application. From an art perspective, a product must encompass creative elements that are 

novel and aesthetically appeasing. From a psychology/sociology standpoint, the design has 

to resonate with its customers and society. There are also many types of design: original 

design, adaptive design, and redesign [93]. Original design or new product design is a 

product that is striving to meet a new need or meet an existing need in an innovative way. 

This is the rarest form of design, and often has a low success rate. Adaptive design consists 

of taking elements of a known solution and applying them to meet a different need. 

Redesign is improving on an existing design, and this type of design is the most frequent. 



58 
 

With each of these types of design, there are numerous variables and competing elements 

at play, and because of the complexity required, there is not a “one-size-fits-all” solution 

for designing products. 

However, in order to streamline designing a product, a structured design process is often 

used. This structure allows designers and engineers the ability to apply a quantitative 

structure to design elements and the given constraints.  The design can then be iterated and 

improved upon in order to meet the requirements of the market demand. The most 

frequently cited design process [93,96] is comprised of four core stages: planning, concept 

design, embodiment design, and detail design.  

Detail Design
Completely defined product, optimized, and meets 

requirements and can be manufactured. Methods and Tools Used: CAD, CAM, PLM

Embodiment Design
Final concept is selected, architecture is defined, materials 
are selected, manufacturing processes are defined, robust 

dimensions are set
Methods and Tools Used: CAD, CAM, FEA, Simulation

Concept Design

Design concepts are created, iterated upon, and initial 
architecture and material specifications are determined

Methods and Tools Used: 3D Printing, Decision Matrix, 
Design Guides (DFM, DFE, etc.), Digital Sketching 

Planning Stage

Market signal defines the requirements and constraints for 
a design.

Methods and Tools Used: Storyboarding, Benchmarking, 
Requirements list, QFD  

Figure 4.2: Design Process Overview 
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During the planning stage, the customer need is defined, a requirements list is created that 

specifies how the product will function and identifies the major constraints. The 

preliminary look of the product is also defined during the planning stage.  

In the concept design stage, a spectrum of design concepts is generated and iterated upon 

using digital sketching and other tools. These concepts are down selected and non-

functional prototypes are created using rapid prototyping or 3D printing. In this phase, 

designers and engineers rely on high-level design guides for manufacturability, 

environmental impact, etc. The aim is to rapidly get to a prototype of a “near-net design”, 

or a design that is close to the desired final product. Initial architecture and materials are 

specified.   

In the embodiment design stage, the final concept is determined, the product architecture 

is finalized, materials are selected, and the manufacturing process plan is defined. The 

design is iterated upon in order to improve manufacturability and costs. Features that are 

not critical to the product requirements are removed. Computer-aided engineering and 

design (CAE, CAD) tools are used in order to create 2D and 3D models of the intended 

product. The design undergoes virtual simulation using FEA and other simulation tools in 

order to test the critical functional requirements and failure modes. This limits how many 

physical prototype builds must be done. However, multiple prototype builds will be 

completed in order to validate the design, product architecture, and the manufacturing 

process.  

In the detailed design phase, the product will be completely defined, and it will have been 

tested for functional performance and manufacturability. Computer-aided manufacturing 

(CAM) tools will be used in order to optimize the manufacturing process of the product 
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and components. The final Bill of Material (BoM) will be completed in the Product 

Lifecycle Management (PLM) system. 

This is a generic overview of the product design process, and it will differ from 

organization to organization. However, it highlights the linear nature of the design process, 

and the impact that this has on the ability to design a product that takes into account total 

life cycle impacts.  Since product design determines the majority of the embodied and 

downstream life cycle impacts, tools and methods are needed that can be used to predict 

the sustainability impacts of design decisions early on in the design process. The next 

section reviews the current methods and tools used in sustainable product design.   

4.1.2.2 Design Tools and Methods 

There has been significant research in developing sustainable product design tools and 

methods, or tools/methods that balance the triple-bottom-line (TBL), or the environmental, 

economic, and societal aspects of a product’s design. That being said, a number of 

“sustainable design tools” only consider one component of the TBL because these three 

elements can often be in tension.  This makes it extremely difficult to synthesize the data 

of these three elements into one common metric or result.  Because of that fact, a hybrid 

set of qualitative and quantitative tools are needed in order to support the development of 

sustainable products. In this section, the current sustainable product design tools and 

methods are reviewed and summarized.  

In doing the review, both academic and industry available tools were combined into a list. 

The search terms used were “sustainable product design tools”; “sustainable design tools”; 

“life cycle assessment design tools”; “life cycle costing design tools”; “product 



61 
 

sustainability assessment tools”; “product design for circular economy”; and “circular 

economy design tools”. Several tools from the search were compiled and analyzed across 

the following criteria (Shown in Table 4.1):  

1. Economic Consideration? Is this tool/method/approach using a cost element as a 

design decision variable? 

2. Environmental Consideration? Is this tool/method/approach using environmental 

impact as a design decision variable? 

3. Societal Consideration? Is this tool/method/approach using societal impact as a 

design decision variable? 

4. Which Design Stage (Planning, Concept, Embodiment, Detail) is the 

tool/method/approach used for, or what stage of data is required?   
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Table 4-1: Summary of Reviewed Sustainable Product Design Tools 

Name Description  Comments Design Stage Econ? Env?  Soc?  Reference 

GaBi, EcoInvent, 
openLCA, 
SimaPro, etc. 

Commercially available life cycle 
assessment databases and software 
that can calculate the environmental 
performance of a product across 
multiple environmental performance 
indicators. 

All of the commercial LCA tools require 
detailed data that is not readily available in 
a timely manner. They also lack in the 
connectivity of being able to be integrated 
into other design tools and manufacturing 
systems. 

Detail    Yes   Commercial  

ProdSI Quantitative approach for evaluating 
a product normalizes, aggregates to 
determine a ProdSI score across all 
three dimensions.  

ProdSi is very comprehensive, but the data 
required makes it less useful in the early 
design stages. However, using predictive 
modeling techniques may enable ProdSI to 
become an early design tool  

Detail Yes Yes Yes Zhang et al. 
(2012)[97] 

Granta Commercially available CAD, CAE, 
PLM integrated materials database 
that allows engineers to select, iterate 
on, and track materials during 
product design.  

Granta is limited to one component of 
design - materials.  

Embodiment, 
Detail 

Yes Yes   Commercial  

ResCOM 
Platform 

Several quantitative and qualitative 
tools that look at economic and 
environmental impacts with a focus 
on circular economy  

Partly funded by the European 
Commission, ResCOM is a good attempt at 
providing a toolkit for a designer looking 
to transition to Circular Economy.  

Planning, 
Concept, 
Embodiment 

Yes Yes   Rashid et 
al. 
(2013)[98] 

Multi-Objective 
Multiple Life 
Cycle Sustainable 
Product 
Configuration 
Design  

Quantitative approach that optimizes 
product configuration design using 
economic and environmental data and 
a genetic algorithm  

This method provides a good framework 
for configuration design optimization, and 
it can be a good foundational component of 
the HE transition.    

Embodiment, 
Detail 

Yes Yes   Badurdeen 
et al. (2018) 
[99] 

SolidWorks 
Sustainability  

Commercially available CAD, CAE, 
PLM integrated environmental 
impact assessment that uses screening 
life cycle assessment.  

Solidworks aims to bring LCA closer to the 
designer, but the same level of data is 
required, making it less applicable than it 
intends.  

Embodiment, 
Detail  

  Yes   Commercial  
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Ford's PSI  Quantitative method using life cycle 
assessment and life cycle costing 
approaches that does not reduce the 
different indicators down to a single 
score 

This is a good example of deploying LCA 
and LCC in an industry setting, but it is 
still limited by the data collection required.   

Detail Yes Yes   Schmidt 
and Taylor 
(2006) 

[100] 

Integrated 
ECQFD, AHP, 
and TRIZ 

Quantitative model that uses 
environmentally conscious QFD in 
order to establish design alternatives 
and use TRIZ to define innovation.  

Using TRIZ to consider the innovation is 
the contribution of this work, and this 
provides insight in how to leverage TRIZ 
for HE.  

Planning, 
Concept  

Yes Yes   Vinodh et 
al. (2014) 
[101] 

Multi-Objective 
Material 
Selection for 
Product Design  

Quantitative approach that narrows 
the focus to material selection and 
uses environmental and economic 
factors in the selection criteria.  

This approach is limited in that it only 
considers the material selection activity 
within product design.  

Embodiment, 
Detail  

Yes Yes   Zhou et al. 
(2009) 
[102] 

Combination of 
LCA and Virtual 
Development  

Combining LCA and SLCA and 
leveraging CAD and CAE tools to 
develop a prototype-free design  

Although this approach considers societal 
impacts, the data quality is questionable to 
be used in practice.  

Concept, 
Embodiment, 
Detail 

  Yes Yes Luthe et al. 
(2013) 
[103] 

Integrated Eco-
Design Decision 
Making (IEDM)  

Combines life cycle assessment, eco-
process model, and eco-enhanced 
QFD process. Also uses an ecodesign 
house of Quality  

This approach ignores economic and social 
impacts. 

Detail   Yes   Romli et al. 
(2015) 
[104] 

Normative 
Decision 
Analysis Method 
for the 
Sustainability-
based Design of 
Products 
(NASDOP) 

Combines LCC and LCA and uses 
normative decision-making methods 
to deal with conflicting criteria  

Because this uses LCA and LCC data, this 
is still limited in the data collection 
required. Although they say this conceptual 
design stage, it seems to fit better under the 
embodiment design stage. 

Embodiment Yes Yes   Eddy et al. 
(2013) 
[105] 

Design for 
Multiple Life 
Cycles  

A set of design thinking guidelines 
aimed at new product design that 
incorporates Design for Upgrade, 
Design for Assembly, Design for 
Disassembly, Design for Modularity, 
and others 

This qualitative set of guidelines presents a 
composite structure of other DfX 
guidelines and this provides insight into 
how to structure a DfHE set of guidelines. 

Planning, 
Concept 

Yes Yes Yes Go et al 
(2015) 
[106] 
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Based on the tools reviewed, the research is still very nascent along a few dimensions. In 

particular data collection is still an issue with most of the methods and tools reviewed. In 

addition, for HE and HEMM implementation, none of the existing tools incorporate the 

reconfiguration element into their methodologies. Lastly, most of the methods are siloed 

without the connectivity being demonstrated to already existing enterprise-level 

manufacturing data and systems.  The next section will use the literature view as a starting 

point in order to highlight the product-level design challenges that face the HE and HEMM 

vision.  

4.2 Product Design Challenges for a Helical Economy 

From Chapter 3, we know that Helical Products (HPs) are defined as: 

A product that must be reconfigurable and use common components and materials. 

Using manual or automated processes, components must be able to be rearranged into 

new products to meet immediate demand. The product must also be designed in parallel 

to manufacturing and remanufacturing/configuration process plans. The product must 

prevent degradation of value and have the ability to be upgraded through 

reconfiguration and remanufacturing. 

In order to achieve a truly helical product, the paradigm of the “Designer’s Paradox” must 

be shifted. New tools and methods have to be developed to bend and move the knowledge 

curve up into the early design process. Designers need tools that allow them to know the 

life cycle impacts and implications of their design decisions on the overall product life 

cycle. This has to systematically be addressed across new product design, adaptive design, 

and redesign activities.  
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Based on the previous section’s review of product design and the existing design tools and 

methods available, four near-term product design challenges are highlighted for being able 

to bend the knowledge curve and realize the HEMM vision:  

1) For new product design, a new qualitative design guide is needed that brings to 

light the elements of helical economy that must be addressed at the earliest part of 

the design process.  

2) For adaptive product design and redesign, the ability to predict life cycle 

performance from historical or IoT sensor information must be developed.    

3) For modular products with multiple lifecycles, a method must exist for 

proactively predicting when a module requires maintenance or failure is imminent. 

Figure 4.3: Shifted Paradigm of Designer's Paradox in 

order to achieve Helical Products 
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4) For designing modular products for multiple lifecycles, there must be process in 

place to systematically use historical information and predictive data in order to 

optimize a product’s initial configuration and each life cycle reconfiguration. 

For new product development, no prior knowledge of a particular design configuration 

exists. No historical data exists to be mined, and therefore, a designer has to use qualitative 

frameworks which consist of design guidelines, industry standards, and other experience-

driven rules to design a “near-net” initial design. For HPs, we define a “near-net” design 

as a product that utilizes the benefits of the HE but may not be optimal. A set of guidelines 

must be created that allows a designer to get to a “near-net” helical design in a timely 

manner. These sorts of guidelines exist for other design goals, but one must be created 

specifically for HE.  

Predicting life cycle performance is also a grand challenge for realizing a helical product, 

because the designer ideally has to design a product that is multi-generational and can stand 

the test of time. This is a highly complex and dynamic system level problem that requires 

an understanding of multiple fields of study and the interrelationships between them.  For 

HPs, the life cycle performance that is of interest is based on the metrics described in 

Chapter 3: sustainable value creation, resource consumption, and technological progress.  

At the core of HE is the concept of modular and reconfigurable products that can be 

configured and reconfigured at the time of manufacturing and remanufacturing in order to 

satisfy the product demand of that particular time. In addition, these products must be able 

to be maintained across multiple life cycles. In order to make this a reality, one must be 

able to optimize the product configuration at a given moment in time in order to maximize 

sustainable value creation, minimize resource consumption, and maximize technological 
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progress. One must also be able to predict needed maintenance or imminent failure of a 

product module. This challenge is also highly complex, and it also must be broken down 

into something that is tractable and can be improved upon. Therefore, the initial target 

should be to assume that a modular product architecture is designed.  

4.3 Initial Methods for Industry Implementation 

4.3.1 New Product Design: Design for Helical Economy (DfHE) Guidelines 

The first design challenge addressed is the challenge that focuses on the class of design 

problems surrounding new product design. For new product design problems, the goal is 

to get the designer to a “near-net” helical design in a timely manner. Therefore, we present 

a qualitative Design for Helical Economy (DfHE) set of guidelines (Figure 4.4):
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Design for Helical Economy (DfHE) Guidelines 

Design for Multiple Life Cycles  

Description: Helical products are designed in tandem with defining the manufacturing 

process plans, the supply chain designs, and corresponding business models. Reverse 

logistics should be incorporated in the design process, and the level of durability should be 

optimized for multiple product lifetimes.  

Design for Interconnectivity  

Description: Helical products use IoT-networked or embedded sensor data obtained 

throughout the manufacturing, use, and use phases in order to best optimize the downstream 

activities of reuse, remanufacturing, and recycling. This enables life cycle performance data 

to be collected and validated.  

Designing for Assembly, Disassembly, and Reassembly  

Description: Helical Products need to not only be designed for easily assembly, but they also 

must be able to be disassembled easily in order to be reconfigured via manual or automated 

processes.  

 

Designing for Modularity and Upgradeability 

Description: Helical products are designed using modular components that have standard 

mechanical and electrical interfaces. Components that are upgradeable are decoupled with 

static modules.  

Figure 4.4: DfHE Guidelines 
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Design for Multiple Life Cycles 

When designing HPs, the scope has to expand to include the manufacturing process, 

system, and even business model. In other words, designing a product with snap-fits or 

screws is not sufficient for a HP. There has to be a process in place that can take advantage 

of these features. In fact, this expanded scope increases the types of features that can be 

implemented. As long the as the downstream process is in place in order to take advantage 

of the connection feature, the options are limitless. The following list is a set of guidelines 

that a designer can use to incorporate multiple life cycle design thinking into their product: 

1. Reduce the technological, emotional, and regulation obsolescence of the product. 

Define a product architecture that can feasibly support new technology, changes in 

customer demand, and forthcoming legislation.    

2. Use base materials in the design that are common and in demand across multiple 

applications. Proprietary materials for a single application may limit the full 

potential of the HEMM. 

3. Concurrently design the manufacturing process plan, design the factory and supply 

chain, and the corresponding business models. This ensures the downstream 

infrastructure is aligned with the product features. 

4. If reverse logistics costs are not sunk costs, ensure the embedded value of the 

product exceeds the planned for reverse logistics costs. 

Design for Interconnectivity 

HPs must advantage of smart manufacturing paradigms in which the product leverages an 

IoT network across all manufacturing stages. This data gives adds value to a given product, 

as all of the information regarding the manufacturing, use, and post-use lives with the 
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product. Not all products that are designed for interconnectivity have to leverage active 

sensing measures. For example, a cost-conscious product may leverage passive sensing at 

only a set number of touchpoints across the life cycle.  The following list is a specific set 

of guidelines for designing for interconnectivity in order for a designer to take this into 

consideration when designing a product: 

1. Ensure total life cycle and multi-generational coverage: manufacturing, use, and 

post-use. Designing the connectivity of a product in a HEMM has a long-standing 

impact on the data that can be used in order to improve and optimize the system 

overtime, so ensuring total coverage upfront is vital.  

2. Hardware used must be minimized in order to control costs and long-term 

maintenance of the data collection infrastructure.  

3. Enable two-way communication in order for the product to report life cycle 

information and also allow for information to be pushed to the product in-field. 

This also can allow for communication to the customer on when the optimal use 

of a product has been met. 

Designing for Assembly, Disassembly, and Reassembly 

HPs must take advantage of assembly, disassembly, and reassembly. Since the value 

proposition of HPs is reconfiguration, upgradeability and minimized resource 

consumption, a designer must take into account the required assembly, disassembly, and 

reassembly activities that are directly associated with their design decision. For example, 

designing a mobile consumer electronic product without a replaceable battery is instantly 

a no-go, as the battery will degrade overtime and the product will be rendered useless. In 
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addition, this will make recycling and remanufacturing extremely difficult and unsafe.  The 

following list is a set of guidelines that a product designer should follow in order to design 

for assembly, disassembly, and reassembly: 

1. Design the interfaces and connections that are easy to handle and reuse, and, if 

needed, design the tools and equipment necessary. 

2. Limit the components that are not durable in the design. This prevents damage 

during assembly, disassembly, and reassembly processes. 

3. Wear components should not be nested in the design and should be easily able to 

be removed and replaced. 

4. Design the assembly, disassembly, and reassembly sequences concurrently with 

defining the product architecture.  

Designing for Modularity and Upgradeability 

The core value proposition of HPs relies on a modular and upgradeable product architecture 

that can stand the test of time. For example, if a designer architects a core assembly of a 

product’s maintenance schedule to be a one-piece architecture, then the entire assembly 

must be replaced at the time of maintenance. The result is a sub-optimized module that 

prevents the product from maximizing its potential along the HEMM dimensions of 

sustainable value, resource consumption, and technological progress. To avoid this, the 

following list of guidelines allows a designer to incorporate elements of modularity and 

upgradeability into their product: 

1. Modules should be defined based on components with similar materials and 

expected lifetimes. A Design Structure Matrix (DSM) can be used in order to 

support module selection.   
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2. Design with common components when possible, in order to ensure demand at 

the component level, reducing the number of components that have to be 

deconstructed into raw materials.  

3. Modules and components that are subject to technological or emotional 

obsolescence should be decoupled from the ones that are not. 

4. Hardware components and modules should be designed in order to support software 

updates across multiple life cycles. 

4.3.2 Adaptive Product Design and Redesign: Helical Optimization and Prediction 
Engine (HOPE) 

For adaptive product design and redesign, it is assumed that a modular product architecture 

and infrastructure has been realized. The goal is then to put quantifiable bounds on the 

decision space in order to make predictions and optimization decisions. To achieve this 

and to address the second, third, and fourth design challenges in 4.2, an initial framework 

for a toolkit is developed, the Helical Optimization and Prediction Engine (HOPE) (Figure 

4.5). HOPE is comprised of three product-level modules: 1) predicting product life cycle 

Figure 4.5: HOPE Framework 
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performance during design (HOPE-Design), and 2) predictively and proactively 

maintaining a modular product (HOPE-Maintain), and 3) selecting optimal product 

configuration and reconfiguration (HOPE-Configure) which is planned as future work.  

4.3.2.1 HOPE-Design, Predicting Life Cycle Performance 

Product designers face increasing demand to design sustainable products, yet they have no 

knowledge of the sustainability impacts of the design until the product is already in 

production. This is due to the fact that the two traditional methodologies used in measuring 

the life cycle environmental and economic impact of a product, Life Cycle Assessment 

(LCA) and Life Cycle Costing (LCC), both require detailed design-level and system-level 

definition. This timely input prevents the results of these methods from being used to 

inform design improvements.  

Product manufacturers tend to perform environmental assessments of their products as a 

compliance-oriented strategy in the latter design stages of the product’s design cycle. Since 

production has already begun at this point, this information provides little value to 

enhancing the overall sustainability of the product. Instead, a method is needed that can be 

used to predict the impacts of design decisions in the early design stages. This bends the 

knowledge curve in the direction of the product designer, moving towards the HE vision 

at the product-level. This first HOPE component is HOPE-Design Figure 4.6, which looks 

into developing a predictive performance relationship of a product in order to gain early 

insight into the life cycle performance across the helical economy dimensions of 

sustainable value, resource consumption, and technological progress. Instead of requiring 

a full life cycle assessment (LCA) or life cycle cost (LCC) analysis, this approach uses pre-

existing LCA and LCCs and extracts out a finite number of design features that are major 
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cost and impact drivers using machine-learning techniques, and then uses them to estimate 

the life cycle performance of a product. The goal is to provide a designer or engineer with 

directionally correct heuristics instead of first requiring detailed life cycle information that 

is timely to collect. The methodology is then put into action in a case study of the consumer 

electronics printing industry.  

Figure 4.6: HOPE-Design Framework 
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At a high level, HOPE-Design uses previously recorded detailed life cycle assessment data 

and life cycle costing data is recorded for 𝑀𝑀  variations or generations of a product line. 

An 𝑁𝑁 number of features are then selected that are under the control of the stakeholder 

involved. Machine learning (ML) techniques can then be used in order to train a model that 

can uses the finite number of design features in order to get directionally correct estimates 

of life cycle performance in the early stages of the design and development process. The 

set of features that are fed to the model may vary with different stakeholders, and therefore, 

with this framework multiple models can be produced for various stakeholders across the 

organization without them having to be knowledgeable of life cycle assessment or life cycle 

costing. In a general case, the training data is of the form in Table 4.2, where there are 𝑀𝑀 

rows of product variants with 𝑁𝑁 selected design features that have corresponding values 

for sustainable value, resource consumption, and technological progress.  

Table 4-2: Generic Data Structure of the Training Set 

 
Design Feature 
1 

Design Feature 
2 

Design Feature 
3 … 

Design Feature 
N  SV RC TP 

Product 1 𝑥𝑥11 𝑥𝑥12 𝑥𝑥13 … 𝑥𝑥1𝑛𝑛 𝑅𝑅11 𝑅𝑅12 𝑅𝑅13 
Product 2 𝑥𝑥21 𝑥𝑥22 𝑥𝑥23 … 𝑥𝑥2𝑛𝑛 𝑅𝑅21 𝑅𝑅22 𝑅𝑅23 
Product 3 𝑥𝑥31 𝑥𝑥32 𝑥𝑥33 … 𝑥𝑥3𝑛𝑛 𝑅𝑅31 𝑅𝑅32 𝑅𝑅33 
… … … … … … … … … 
Product 
M 𝑥𝑥𝑚𝑚1 𝑥𝑥𝑚𝑚2 𝑥𝑥𝑚𝑚3 … 𝑥𝑥𝑚𝑚𝑛𝑛 𝑅𝑅𝑛𝑛1 𝑅𝑅𝑛𝑛2 𝑅𝑅𝑛𝑛3 

This training set is then used to train a n-th dimensional, linear regression model to 

determine a predictive life cycle performance relationship. While some machine learning 

models use more complex computation methods, the mathematical model can be described 

using linear algebra and simplifying to the first order general case:  

Let Equation 4.1 represent the predictor matrix, A: 
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𝑃𝑃 = �
�

1 𝑥𝑥11 𝑥𝑥12
1 𝑥𝑥21
1 𝑥𝑥31

𝑥𝑥22
𝑥𝑥32

… 𝑥𝑥1𝑛𝑛
…
…

𝑥𝑥2𝑛𝑛
𝑥𝑥3𝑛𝑛

⋮ ⋮
1 𝑥𝑥𝑚𝑚1 𝑥𝑥𝑚𝑚2

 ⋮
… 𝑥𝑥𝑚𝑚𝑛𝑛

�
�                       ( 4.1 ) 

Let Equation 4.2 represent the response matrix, C, where the columns represent the HE 

KPIs of sustainable value, resource consumption, and technological progress: 

𝑆𝑆 = ��

𝑅𝑅11
𝑅𝑅21
𝑅𝑅31
⋮
𝑅𝑅𝑛𝑛1

𝑅𝑅12
𝑅𝑅22
𝑅𝑅32
⋮
𝑅𝑅𝑛𝑛2

𝑅𝑅13
𝑅𝑅23
𝑅𝑅33
⋮
𝑅𝑅𝑛𝑛3

��                                     ( 4.2 ) 

Let Equation 4.3 represent the parameters matrix, B: 

𝐵𝐵 = �
�

𝑅𝑅01
𝑅𝑅11
𝑅𝑅21
𝑅𝑅31
⋮
𝑅𝑅𝑛𝑛1

𝑅𝑅02
𝑅𝑅12
𝑅𝑅22
𝑅𝑅32
⋮
𝑅𝑅𝑛𝑛2

𝑅𝑅03
𝑅𝑅13
𝑅𝑅23
𝑅𝑅33
⋮
𝑅𝑅𝑛𝑛3

�
�                                     ( 4.3 ) 

Finally, let Equation 4.4 represent the residuals matrix, D: 

𝐷𝐷 = ��

𝜎𝜎11
𝜎𝜎21
𝜎𝜎31
⋮
𝜎𝜎𝑛𝑛1

𝜎𝜎12
𝜎𝜎22
𝜎𝜎32
⋮
𝜎𝜎𝑛𝑛2

𝜎𝜎13
𝜎𝜎23
𝜎𝜎33
⋮
𝜎𝜎𝑛𝑛3

��                                    ( 4.4 ) 

With these matrices defined, the regression function is known to be of form 𝑆𝑆 = AB + D, 

where A and C are known, B must be solved for while minimizing D. To find the least-

squares parameters, B, it is known the following equation must be solved: 

𝐵𝐵 = (𝑃𝑃′𝑃𝑃)−1𝑃𝑃′𝑆𝑆                                   ( 4.5 ) 

From solving this, three least squares predictive models for sustainable value, resource 

consumption, and technological progress can be defined in Equations 4.6-4.8:  
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𝑆𝑆𝑆𝑆 = 𝑅𝑅01 + 𝑅𝑅11𝑋𝑋1 + 𝑅𝑅21𝑋𝑋2⋯𝑅𝑅𝐼𝐼1𝑋𝑋3                         ( 4.6 ) 

𝑅𝑅𝑆𝑆 = 𝑅𝑅02 + 𝑅𝑅12𝑋𝑋1 + 𝑅𝑅22𝑋𝑋2⋯𝑅𝑅𝐼𝐼2𝑋𝑋3                          ( 4.7 ) 

𝑃𝑃𝑃𝑃 = 𝑅𝑅03 + 𝑅𝑅13𝑋𝑋1 + 𝑅𝑅23𝑋𝑋2⋯ 𝑅𝑅𝐼𝐼3𝑋𝑋3                         ( 4.8 ) 

These resulting equations are a function of the selected design features. These design 

features may change across stakeholders, allowing multiple predictive models to be 

generated for various stakeholders.  

To test the framework, the case study is limited to resource consumption, and utilizes 

already existing Life Cycle Assessment results. Publicly available Life Cycle Assessment 

results were collected from 20 laser printers. This previously calculated LCA data is treated 

as a small training set to build a regression model that can predict resource consumption, 

as it is defined in Chapter 3. Although, this dataset is very small, this dataset is used to 

simulate the framework. 23 different design were identified were selected for the set of 

printers, and a random set of six design parameters were selected as the features to train 

the model.  

Using the method as described above, the LCA results served as the response value, and 

each of the identified design features across the models represent the predictor matrix. This 

training set was then imported into Python, and a Support Vector Regression kernel from 

the sklearn library was used in order to generate a regression model for the six randomly 

selected design variables. The code used for this included in Appendix A. This was 

repeated 100 times in order to come up with 100 unique models with distinct feature sets. 

This serves the premise that different stakeholders across an organization care and have the 
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control over a different set of features, and this is done to simulate the creation of multiple 

models for various stakeholders involved. The percent error is used as a metric for 

determining how many of these models can be used as directionally correct assessments. 

The most accurate model in the set is shown in Equation 4.9: 

𝑅𝑅𝑆𝑆 = 981 + 5.65𝑋𝑋9 + 0.94𝑋𝑋3 − 4.64𝑋𝑋16 + 16.1𝑋𝑋12 − 0.13𝑋𝑋15 − 1.82𝑋𝑋2    (4.9) 

All of the models generated showed a percent error from the true value in the test models 

of less than 25%. All of the generated models and results are shown in Appendix B. Table 

4.3 shows the summarized performance for the most accurate model that is depicted in 

Equation 4.9:  

Table 4-3: Summary of Performance for Most Accurate Model 

Set Model  % Error  
Train MODEL 1 -12.829831 
Test MODEL 2 -2.485586 
Train MODEL 3 0.621047 
Train MODEL 4 2.51939 
Train MODEL 5 -15.348195 
Train MODEL 6 -2.619115 
Train MODEL 7 3.275619 
Train MODEL 8 -3.378509 
Test MODEL 9 0.174654 
Train MODEL 10 11.205968 
Train MODEL 11 0.570782 
Train MODEL 12 -9.076212 
Train MODEL 13 -1.996009 
Train MODEL 14 -6.86197 
Train MODEL 15 2.404463 
Train MODEL 16 -5.03862 
Train MODEL 17 -12.485986 
Train MODEL 18 1.983489 
Test MODEL 19 0.649684 
Test MODEL 20 0.635855 
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Overall, through the creation of multiple models for different stakeholders across an 

organization, life cycle performance information can be decentralized and democratized to 

where all stakeholders are united under the same KPIs. Limitations should be noted for this 

framework:  

1) This method assumes that a manufacturer has completed multiple detailed LCA and 

LCC studies across their product portfolio. With the interconnected IoT/Data Infrastructure 

of a Helical Economy Manufacturing Method, the data collection for these deep studies is 

intended to be easier and less costly. Each product manufactured in the HEMM will have 

near real time results for all three HE KPIs. Instead of using previously done studies, the 

training set can be acquired at the very beginning of a production ramp. This framework is 

forward looking and intends to accompany this alternate future. 

2)  This framework is more relevant for highly complex products. For a simplified product, 

for example a plastic cup, this framework would be overkill in that it is easy to define a 

parameterized LCA model. That being said, this framework is most useful for products that 

have thousands of components and complex life cycles that are not easily understood 

without applying computation. 

Although this initial proof-of-concept shows promise, there is significant improvement that 

can be made by fully characterizing necessary input features, surveying other mathematical 

methods for composing the predictor equations, and expanding to the other two HE KPIs 

of sustainable value and technological progress.  

4.3.2.2 HOPE-Maintain, Predictive Maintenance for a Modular Product 
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Scheduled maintenance or planned preventive maintenance has been well established in 

industries for many years. The automobile industry is the best example of this, with 

schedule oil changes, part replacement, etc. in order to keep the automobile working in its 

best condition. However, scheduled maintenance introduces a lot of waste, as it reduces 

each condition down to its statistical probability. Therefore, many components are replaced 

well before the end of their useful life. That being said, in the context of IoT, there exists 

the ability to monitor products in real-time, and only repairing, maintaining, and replacing 

modules within that product as the data stream indicates it. Various approaches can be 

used, from simplified knowledge-engineered rules to embedded machine learning 

algorithms. This approach has the ability to extend the life of products, maximize 

sustainable value and reduce overall resources. 

The second component of HOPE, HOPE-Maintain, assumes an IoT-enabled modular 

product, and then predicts the remaining life of that particular module.  At a high level, the 

HOPE-Maintain framework is shown in Figure 4.7.  
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HOPE-Maintain relies on IoT-based sensor data that returns sensor readings about the 

module’s health. These sensors are designed concurrently with the product and distinctly 

capture the likely failure mode of a module. This sensor data is then aggregated into a 

historical database form and used to train a random forest regression machine learning 

Figure 4.7: HOPE-Maintain Framework 
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model that predicts the remaining life of the module. Once the prediction is made, the 

module can be replaced based on a set of criteria.   

To test the framework, a case study takes sample data from 1882 modules of a mass-

produced product. Over 400,000 observed instances and seven million distinct data points 

were used to train a random forest regression ML model.  The code used for this is included 

in Appendix C. In Figure 4.8, the distribution of the test set prediction is shown. Figure 4.9 

shows the prediction of a single module throughout its lifetime.  

With this prediction, the module can be replaced based on a set of conditions. These 

conditions ideally would be tied to the KPIs of the HEMM, which are sustainable value, 

resource consumption, and technological progress. That being said, this part has not yet 

been developed, and is a current limitation of HOME-Maintain.  

 

Figure 4.8:Distribution of Test Set Predictions 
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4.3.2.3 Future Work, HOPE-Configure, Optimizing Modular Product Configuration 
and Reconfiguration 

The value proposition of HE and the HEMM is grounded in redesigning manufacturing 

infrastructure at product, process, and system levels. At the product-level, the infrastructure 

referred to is the product architecture itself. Product architecture must be redesigned to be 

modular and reconfigurable in order to maximize sustainable value, minimize resource 

consumption, while maintaining technological progress. The previous sections have 

outlined potential methods in order to arrive at a modular product architecture, but if it 

assumed that a modular architecture can be defined, then there must be a process in place 

for systematically determining initial product configurations and reconfigurations to ensure 

they are optimized for the HE KPIs of sustainable value, resource consumption, and 

Figure 4.9: Comparison of Actual Remaining Module and Predicted Module Life 
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technological progress. Therefore, in this section the third component of HOPE, HOPE-

Configure, is framed and outlined as a future addition to the HOPE framework.  

HOPE-Configure assumes a modular product with a finite number of configurations, and 

then selects an optimal initial configuration and reconfiguration according the HE KPIs.  

At a high level, the HOPE-Configure framework is shown in Figure 4.10.  

Figure 4.10: Overview of HOPE-Configure 

Framework 
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In practice, HOPE-Configure is used to determine when a modular product should be 

reconfigured based on market demand and technical constraints in order to optimize for 

sustainable value and resource consumption. Technological progress is omitted here as it 

is assumed that this has been taken into account during early design of the product modules 

and associated architecture. Mathematically, HOPE – Configure can be generally 

formulated as a standard multi-objective optimization problem: 

𝑀𝑀𝑅𝑅𝑅𝑅 𝑊𝑊(𝑥𝑥) = �𝑆𝑆𝑆𝑆(𝑥𝑥),𝑅𝑅𝑆𝑆(𝑥𝑥)�, 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑅𝑅𝑅𝑅𝑡𝑡 𝑡𝑡𝑅𝑅                 ( 4.10 ) 

𝑅𝑅𝑎𝑎(𝑥𝑥) ≥ 0,𝑅𝑅 = 1, 2, … ,𝑅𝑅                                  ( 4.11 ) 

ℎ𝑏𝑏(𝑥𝑥) = 0, b= 1, 2, ... , n                              ( 4.12 ) 

𝑥𝑥 = (𝑁𝑁1,𝑁𝑁2, … ,𝑁𝑁𝐼𝐼 )                                         ( 4.13 ) 

𝑊𝑊(𝑥𝑥) is the objective function, and 𝑆𝑆𝑆𝑆(𝑥𝑥) is the minimum objective function for the total 

life cycle cost, and 𝑅𝑅𝑆𝑆(𝑥𝑥) is the minimum objective function for resource consumption. 

𝑅𝑅𝑎𝑎(𝑥𝑥) are the inequality constraints and  ℎ𝑏𝑏(𝑥𝑥) are the equality constraints that reflect 

market or technical constraints. The 𝑥𝑥 is the binary decision vector of which 𝑁𝑁 modules 

will be configured in the product or not. The result of the optimization will be the pareto 

optimal set of configurations. Doing this for the initial configuration is less novel, and 

similar approaches have been taken before [99,107].  

However, for product reconfiguration, the problem then becomes a modular product made 

up of a finite number of modules, along with a set number of modules that can be added to 

the product in order to upgrade the function and/or add/change functionality of the product. 

The question then becomes is it optimal for the product to remain in the current 
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configuration or switch into another configuration subject to the technical and market 

constraints. HOPE-Configure is in progress as a future addition to HOPE, so no case study 

is provided, but the overall framework outlines the approach.  

4.4 Chapter Summary and Discussion 

This chapter addressed designing next generation products for a Helical Economy by first 

motivating and defining the problem, then reviewing the state of the art, and then 

identifying the primary challenges, and then finally presenting the DfHE guidelines for 

new product design and the Helical Optimization and Prediction Engine (HOPE) for 

adaptive design and redesign. These two elements aim to move manufacturers towards the 

HE and HEMM future vision.  

In defining the problem, it was stated that product design has an outsized impact on the 

sustainable value and resource consumption obtained by manufacturing. Because of this, 

product designers in a HE need to be able to concurrently design the product, the 

manufacturing process, the supply chain, and simultaneously design for a multi-

generational life cycle.  

The four primary challenges identified for designing next-generation products for a HE 

include: 1) For new product design, a new qualitative design guide is needed that brings to 

light the elements of helical economy that must be addressed at the earliest part of the 

design process, 2) For adaptive product design and redesign, the ability to predict life cycle 

performance from historical or IoT sensor information must be developed, 3) For modular 

products with multiple lifecycles, a method must exist for proactively predicting when a 

module requires maintenance or failure is imminent, and 4) For designing modular 
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products for multiple lifecycles, there must be process in place to systematically use 

historical information and predictive data in order to optimize a product’s initial 

configuration and each life cycle reconfiguration. 

The chapter then presents two components for industry implementation that take aim at the 

above design challenges: 1) Design for Helical Economy (DfHE) set of guidelines for new 

product design that aims for product designers to get to a near-net HE design, and 2) the 

Helical Optimization and Prediction Engine (HOPE), a quantitative framework for 

redesigning next-gen products. The DfHE guidelines are rooted in four themes:  

1. Designing for Multiple Life Cycles 

2. Designing for Interconnectivity 

3. Designing for Assembly, Disassembly, and Reassembly  

4. Designing for Modularity and Upgradeability 

The set of 15 guidelines is intended to give a designer a set of guardrails or design 

constraints at the earliest of design stages, while not being overly prescriptive or 

quantitative in an effort to not hinder creativity.   

The proposed Helical Optimization and Prediction Engine (HOPE) framework is a set of 

three modules, two of which are presented with case studies, and a third which is presented 

as a future addition. HOPE is aimed at being the quantitative driving structure for adaptive 

product design and redesign. The first module, HOPE-Design, aims at predicting life cycle 

performance, performance in this case being referred to as the HE KPIs. The module takes 

existing LCA or LCC data from an historical database or an IoT collected sensor system 

and uses a support vector machine regression model to train predictive models for various 
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stakeholders. For a highly complex product, multiple models can be produced and only the 

driving parameters controlled by the stakeholder are surfaced to them. This collectively 

unites stakeholders across the organization under the same quantitative structure and 

common goals. The second module HOPE-Maintain, takes a modular product that is IoT-

enabled and predicts the remaining life of that module. Sensors capture the health of the 

module and this data is aggregated and stored in a centralized database. A random forest 

regression model is trained and then used to predict the remaining life of modules in the 

field. These modules can then be replaced based on a set of criteria. The third component 

of HOPE, HOPE-Configure, is framed as a future addition to HOPE. This module is 

intended to optimize a modular product’s configuration and reconfiguration based on the 

HE KPIs. The initial configuration problem is quite easy to frame, but the reconfiguration 

problem ideally takes a modular product made up of a finite number of modules, along 

with a set number of modules that can be added to the product in order to upgrade the 

function or add/change functionality of the product. The problem then becomes is it 

optimal for the product to remain in the current configuration or switch into another 

configuration subject to the technical and market constraints. Once this is solved, HOPE 

will span multiple life cycles stages and offer a multi-generational view of a product.    

Overall, this chapter provides the initial foundation for designing next-generation products 

for the Helical Economy and HEMM. By addressing multiple facets of design and design 

stages, manufacturers will be able to use the DfHE or HOPE to take a first step towards the 

HEMM future vision.  
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CHAPTER 5 DESIGNING AN IOT-ENABLED DATA INFRASTRUCTURE FOR A 
HELICAL ECONOMY 

5.1 Introduction and State of the Art 

5.1.1 Motivation 

With the race to monetize data, manufacturers are going “all in” on big data. The 

International Data Corporation predicts global Internet of Things (IoT) spend to top $1.29 

trillion by 2020 [108], with the manufacturing sector being the dominant contributor. 

Manufacturers across the globe are investing hundreds of billions of dollars in Industrial 

Internet of Things (IIoT) and Industry 4.0 infrastructures and the necessary skilled 

personnel to support them. This level of investment reflects the opportunity at stake. The 

manufacturing industry generates more data than any other sector [109]. That unstructured, 

semi-structured, and structured data can ideally be processed and then used to achieve 

significant improvement in product design, manufacturing efficiency, cost reductions, 

scalability, resiliency, and environmental sustainability [110,111]. However, with the 

current approach (Figure 5.1), these manufacturers may be looking for diamonds (i.e., 

efficiencies and cost savings) in the rough (billions of unstructured data points) in order to 

justify the initial investment and ongoing costs. 
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The data seems to agree that the current approach is flawed. In 2017, Cisco produced 

survey results that indicated ~75% of IoT initiatives have been failures [112]. Gartner has 

also reported that 60% of IoT and big data projects fail to go beyond a pilot and predicts 

that by 2022, only 20% of IoT data insights will drive business outcomes [113]. Based on 

the lack of results in industry, there is fundamental problem with the current approach to 

IIoT and Industry 4.0 initiatives.  The current approach of creating these extensive IoT 

frameworks involves outfitting legacy products, manufacturing equipment, and 

manufacturing systems with numerous sensor nodes and IT systems in order to collect a 

significantly large dataset, only to have a fraction of the dataset return business value. 

Although excellent in theory, this approach can lead to an astronomical initial investment 

that could hinder any practical implementation in a cost-constrained production 

environment. In addition, if this approach is implemented blindly, there is a great risk 

associated with managing the new overhead. This trap is caused by the idea that 

information is free. While information is free, the ability to access it and use it in a way 

Figure 5.1: An overview of the traditional approach to designing IoT 

systems 
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that can be beneficial is far from free. Everything from collecting the data points, to 

processing, and then storing them has an associated cost. If only one million data points 

out of the original one billion is actually usable in a way that they can see a return on 

investment, then 99.9% of the data collected was wasted, and it directly impacts the bottom 

line.  

With that in mind, there is a need for a counter approach to implementing IIoT and Industry 

4.0 projects. This must begin with defining the key business outcomes that are desired, and 

although many companies are going after cost reductions, those reductions will inevitably 

give way to the law of diminishing returns.  Instead manufacturers can apply the Helical 

Economy and HEMM framework to their IIoT and Industry 4.0 implementations in order 

to achieve a holistic result of maximizing sustainable value creation, minimizing resource 

consumption, and ensuring continued technological progress. This chapter begins with 

reviewing the current state of the art in designing IoT and data infrastructures for the 

manufacturing sector. From this review, the primary challenges for designing an IoT and 

data infrastructure for the HEMM are summarized. The chapter then presents an alternative 

implementation of an IoT infrastructure using two initial methods: 1) a method for reducing 

sensor hardware, and 2) a method for reducing the size of the data set needed.  The chapter 

is then concluded with a summary and relevant discussion. This chapter includes work that 

was done when the author was on an industry research team at Lexmark International that 

resulted in: two published US patents ([114], [115]),  one co-authored journal publication 

[116], and one co-authored submitted journal paper. The author was a lead contributor to 

the foundational work shown in this chapter, and the integration plan of this foundational 
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work into the overarching theory and strategy for designing IoT-enabled data 

infrastructures for HE in the manufacturing domain was the author’s sole contribution.  

5.1.2 State of the Art and Previous Case Studies 

For years, the vision of the IoT and its impact on product design and manufacturing has 

been molded for future implementation. It can be said that the IoT is a means for aligning 

the physical and information life cycles [88]. This vision suggests that this intimate 

connection and the information itself present a major source of value [88,89].  Dubey et al. 

[58] suggest that Big Data (BD) is one of the emerging research areas that are considered 

“game changers” in the manufacturing sector, with the claim that the use of big data can 

see a 15-20% increase in return on investment and surplus cash for customers [58]. Because 

of the well-documented opportunity, the manufacturing arena has seen an array of concepts 

arise and gain significant interest in the last decade (See Figure 5.2): Industry 4.0, Cyber-

Physical Systems (CPS), Industrial Internet of Things (IIoT), Smart Manufacturing, 

Factories of the Future, and Digital Thread and Digital Twin.  

The “Industry 4.0” concept came out of Germany and was first published in 2011 by 

Kagermann [117]. The underlying premise is that the first industrial revolution (Industry 

Industry 4.0

Origin: 
Germany, 2011

Cyber-Physical 
Systems (CPS)

Origin: NSF, 
2006

Industrial 
Internet of 

Things (IIoT)

Origin: General 
Electric

Smart 
Manufacturing 

Origin: NIST

Factories of the 
Future

Origin: EU PPP

Digital Thread 
and Digital 

Twin

Origin: 
Aerospace 

(NASA, USAF)

Figure 5.2: Overview and Origin of concepts in the IoT domain for the manufacturing 

industry 
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1.0) was the product of the rise of steam power, the second industrial revolution (Industry 

2.0) was the product of the rise of the assembly line and mass production, the third 

industrial revolution (Industry 3.0) was the product of the rise of computers and 

automation, and claims that the fourth industrial revolution (Industry 4.0) will be the 

product of the rise of the Industrial Internet of Things and Cyber-Physical Systems (CPS).   

Cyber-Physical Systems (CPS), said to have been coined around 2006 by Helen Gill 

(National Science Foundation) [118], are defined to be a harmonization of physical 

processes and the computational world through mechanisms such as embedded sensors and 

feedback control systems [49]. Industry 4.0 takes CPS and envisions a next-generation 

manufacturing industry where CPS are highly utilized on the factory floor [50]. In addition, 

the approach claims that high value data and analytics, collected from the CPS, are 

leveraged to make manufacturing more efficient, more customizable, and more resilient 

[51,52]. There has also been previous work that looks at extending CPS to Socio-Cyber-

Physical Systems within production networks. In this work, the human element of 

creativity and problem solving are combined with the technological innovation of CPS 

[53].  

The Industrial Internet of Things (IIoT) which refers to the Industrial Internet, said to have 

been first coined by General Electric [119], is rooted in IoT applications that are targeted 

at industrial and manufacturing environments. IIoT applications are underpinned by the 

interconnectivity of products and machine-to-machine communication in combination with 

cloud computing and sensor-based data collection.   
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Smart Manufacturing is defined by NIST as: “fully-integrated, collaborative manufacturing 

systems that respond in real time to meet changing demands and conditions in the factory, 

in the supply network, and in customer needs [120].”  

Factories of the Future is a public-private partnership in EU that is focused on advancing 

manufacturing research and innovation, with partial focus on two relevant research 

initiatives: adaptive and smart manufacturing, as well as digital, virtual and resource-

efficient factories.   

The Digital Twin and the Digital Thread concepts were first established in the aerospace 

industry [121,122], and respectively refer to the digital replication of a physical asset, and 

the interconnectivity and data flow of that asset throughout its lifecycle. Both of these 

concepts have found their way into Industry 4.0 and IIoT conceptualizations, with NIST 

forming a research program around Digital Thread for Manufacturing Systems.   

It can be seen that across all the various concepts across manufacturing, there is significant 

overlap of the core concepts and intended outcomes. Also, these concepts usually limit the 

scope to within the metaphorical walls of the manufacturer being considered, therefore 

missing the integration with the pre-manufacturing, use, and post-use phases of the life 

cycle. Also, although CPS has dominated areas such as industrial automation, home 

automation, green transportation, and smart cities [54], the application to sustainability-

focused outcomes is newly forming and presents a novel opportunity for establishing initial 

methodologies. The sought-after gain from such an implementation mainly aims at 

reducing energy and resource consumption, but it is suggested that improvements to 

sustainability can also come in the form of combining multi-source information, and then 
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making a calculated decision from that information using cloud computing and web 

services [123]. 

There have been several case studies involving the use of IoT and BD in order to drive 

sustainable value creation. In Pan et al. [55], a framework is built surrounding the HVAC 

and building industry and the use of IoT systems to improve energy usage. The approach 

envisions creating significant economic benefits, as well as social and environmental 

benefits. Tao et al. [56] presents integration between an IoT system and a traditional PLM 

system. This work provides an idea for collecting environmental and life-cycle data 

throughout the entire life cycle. The work also proposes the idea of a big Bill of Material 

(BOM) that uses the integration interface with the IoT systems in order to exchange and 

transform information. The next case considers the idea of using cloud-based technologies 

in order to support product services [57]. In other words, a decision support system is built 

on top of the BD foundation. In other cases, these services are built to be proactive by 

building in predictive models and analytics into the decision support system [58].  

Another case is seen in the food production sector where the application of BD to the supply 

chain can have implications for many industries. The work claims that analytics can 

translate customer sustainability requirements into an increase in sales, by being able to 

mine the rationale from metadata. In addition to the positives, the utilization of BD results 

in negatives as well. For example, tailored consumer level detail can result in the loss of 

purchasing options [59].  The Ellen MacArthur Foundation has also done initial work 

outlining the role that “intelligent assets” will have in their Circular Economy vision [124].  

There are also case studies where IoT has been deployed in combination with machine 

learning in order to realize operational efficiencies and cost reductions. Wu et al. [125] 
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established a data-driven smart manufacturing application for tool wear prediction using 

machine learning algorithms. Shin et al. [126] developed a BD infrastructure driven 

analytics model for predicting manufacturing power consumption using MTConnect [127] 

and a neural network. Kumar et al. [128] uses a MapReduce-based BD framework for fault-

detection in a steel plate manufacturing application.   

The next section will use the learnings from the problem definition and prior art to identify 

the primary challenges for designing an IoT and data infrastructure for HE and the HEMM 

vision.  

5.2 IoT and Data Infrastructure Design Challenges for a Helical Economy 

In order to achieve a HE and HEMM, the IoT and data system must act as the “glue” of the 

HEMM. Data must be collected at the product level, the process level, and at the system 

level using networked sensors that send data to a centralized data store. In addition, data 

must be collected across all life cycle phases: design, manufacturing, use, and post-use. 

The data collected must be compiled and analyzed in order to make decisions such as: 

reconfiguring the product, determining the optimized process plan, and/or but not limited 

to determining the optimal system level configuration. An application layer can sit on top 

of this data infrastructure layer to operate as the overall control system. This system will 

be comprised of dashboards and monitoring control, optimization functions, and machine 

learning derived predictive analytics to support decision making at every life cycle stage.  

Based on the industry success rate of IoT projects, current research approaches are either 

not being successfully spun out of academic domains or not being adopted, and therefore, 

a counter approach must be defined for designing an IoT and data infrastructure for a HE. 
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More attention needs to be given to minimizing the required infrastructure in order to 

reduce initial and reoccurring expense. For a HE and HEMM specifically, the IoT and Data 

infrastructure must also span beyond the manufacturer’s physical domain and to all other 

life cycle stages: pre-manufacturing, use, and post-use. The size of and breadth of this level 

of data coverage will require unprecedented challenges with data security. Therefore, three 

primary challenges can be highlighted for designing an IoT and data infrastructure for the 

HE and HEMM vision:  

1) Reducing the number of sensors required by designing and selecting the hardware 

specifically based on the end-use application, which will reduce the overall cost of 

the infrastructure required. 

2) Reducing the amount of data required for end-use applications, such as machine-

learning based analytics.   

3) Ensuring secure harmonization of data across products, manufacturing equipment, 

and manufacturing systems, logistics providers, and customers. 

The first and second challenge must address the issues present in the traditional approach 

of implementing an IIoT, which is to retrofit existing infrastructure with numerous sensor 

nodes and collect as much data as possible, with the hope to convert a fraction of this data 

into business value. This approach balloons the cost of the system and creates unnecessary 

waste. Instead, a counter approach would be to deploy only the number of sensors required 

and to collect only the data that provides business value. This approach can give the IoT 

and data infrastructure a lean overall cost structure and higher chance of success.  

The third challenge must ensure data harmonization across products, processes, and 

systems, as well as across multiple life cycles at the pre-manufacturing, manufacturing use, 
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and post-use stages. Although highly conceptual, this challenge would result in the overall 

control system for the HEMM, knowing what products to manufacture, what products to 

reconfigure, the optimal disposition of a product, managing the overall flow throughout the 

system to constantly ensure maximized sustainable value creation, minimized resource 

consumption, and continued technological progress. This end goal is difficult to achieve in 

that multiple sub-problems have to be solved at the product, process, and system level in 

order for this to be able to put into production. There is no “silver bullet” solution that will 

make this a reality overnight. In addition, the security challenge that this level of 

interconnectivity requires, in itself, requires significant research and development 

investment.  

5.3 Initial Methods for Industry Implementation 

In this section, the first two primary challenges that were identified in 5.2 are addressed: 

1) reducing sensor count and 2) data set reduction for machine-learning based applications. 

The first method discussed is a method for reducing the number of sensors required for a 

supervised machine learning classification system and the second method discussed is a 

method for reducing the data set required for machine-learning applications in cost 

conscious domains. These methods were created as part of an industry team, and the 

general cases of both methods have high relevance to HE and the manufacturing domain.   

5.3.1 Scalable Method for Reducing Sensor Infrastructure in Machine Learning IoT 
Applications 

5.3.1.1 Introduction 

Many manufacturers have incorporated IIoT sensor-based control schemes across their 

products and their manufacturing infrastructure.  Recently, these manufacturers have begun 
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using machine learning algorithms to leverage this trend to enable new functionality. IIoT-

based multi-sensor information may be used to generate input features for algorithms the 

span all stages of the manufacturing life cycle. Concerns arise with the rising use of sensor 

hardware to gain new pieces of information.  

This section discusses a method to reduce the number of sensors required for an IoT-based 

supervised machine learning classification system. Expert knowledge of a sensor’s 

interaction within the system allowed more information to be distilled from a measurement. 

The system hardware and control system were concurrently developed, and a temporal data 

stream was leveraged in order to capture more distinct information.  The time series data 

was discretized into several distinct zones of interest corresponding to the sensor’s 

response to different events happening in the system. A difference method allowed the 

extraction of additional features that would aid the learning algorithm’s performance.  This 

methodology is validated by a case study of a media classification system developed for a 

commercial laser printer, which was manufactured and deployed at a large volume. The 

results from this method exceeds that of embodiments using multiple sensors. Finally, the 

HE implications of this design methodology and advantages over a traditional multi-sensor 

approaches are discussed. 

5.3.1.2 Methodology 

In concurrently developed IoT infrastructures, the designer has access to significantly more 

information about the situation than is often available with analyzing time series data in a 

general case. Time series data output by a single sensor may contain information about 

multiple physical quantities due to system dynamic behavior. Therefore, multiple physical 

quantities do not always need to be measured by the same number of physical sensors. The 
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designer has an opportunity to tune the hardware to produce a time series output from a 

single sensor and then discretize the output with domain expert knowledge to produce 

multiple features while preserving uniqueness. This results in a system with fewer sensor 

nodes and a lower associated cost. 

The traditional approach to IoT machine learning based systems is shown in Figure 5.3, 

and it places the burden of the system on the sensor nodes themselves. The physical system 

is outfitted with a complex network of sensor nodes in order to collect a large amount of 

data coinciding with various attributes of the system. In this figure it can clearly be seen 

that there are four nodes that are collecting data and storing that data in the cloud. There 

are two issues with this setup: 1) It requires hardware for each node, 2) The data is stored 

in the cloud and must sifted through to come up with the needed subset. This results in an 

inflated system with considerable amount of resources and energy being required for the 

hardware, as well as a large amount of required processing in order to consume the data. 

Figure 5.3: Traditional IoT Approach with Extensive Sensor Nodes 
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With that in consideration, this setup shows that there is much left to be desired in terms 

reducing the overall cost and footprint of the system. 

The proposed alternative approach illustrated by Figure 5.4 puts the burden of the system 

on the domain expert knowledge and the temporal output of a single node. The domain 

expertise is used to partition the measurement time series 𝑅𝑅(𝑡𝑡) into discrete intervals, such 

that:      

𝑅𝑅(𝑡𝑡) =

[𝑥𝑥(𝑡𝑡1, 𝑡𝑡2):
𝑥𝑥(𝑡𝑡2, 𝑡𝑡3):

⋮
𝑥𝑥(𝑡𝑡𝐼𝐼−1, 𝑡𝑡𝐼𝐼):

   �𝛹𝛹𝑡𝑡1,𝑡𝑡2�,
   �𝛹𝛹𝑡𝑡2,𝑡𝑡3�, 

    �𝛹𝛹𝑡𝑡𝑁𝑁−1,𝑡𝑡𝑁𝑁��

                                         ( 6. 14 ) 

Here, the time intervals [(t1, t2), (t2, t3), …, (tN−1, tN )] correspond to known physical 

events in the system and [x(t1, t2), x(t2, t3), . . . , x(tN−1, tN )] is the set of discrete 

Figure 5.4: Proposed Method for Sensor Reduction 
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measurement intervals. Ψ is a set of statistical measures (mean, variance, skewness, 

range, minimum, maximum, etc.) taken within the corresponding measurement 

interval to describe the interval under inspection. 

The classifier is trained on collected data that is of the form (𝑅𝑅𝑘𝑘, 𝑥𝑥𝑘𝑘). Ideally, 𝑥𝑥𝑘𝑘 = 𝜙𝜙𝑘𝑘, 

where 𝜙𝜙𝑘𝑘 is the set of intrinsic physical properties in the system (𝜙𝜙𝑘𝑘 =

[𝜙𝜙1,𝜙𝜙2, … ,𝜙𝜙𝐼𝐼1] 𝑘𝑘𝐶𝐶  ∈  ℝ𝐼𝐼1).  𝑁𝑁1 represents an ideal set of intrinsic properties, and Ψ ⊆

 𝜙𝜙𝑘𝑘. In other words, the sets to be classified are well separated by a measurement of some 

direct attribute. In the practical case, this is not so. Every measurement is a function of 

both the intrinsic property being measured and the properties of the physical system 

involved in that measurement. These properties include the structure of the system and its 

operation, which are controllable by the system designer, and known environmental 

factors which may not be controllable by the designer. Considering the form of the 

constructed intervals and corresponding statistical measures, the training data examples 

𝑥𝑥𝑘𝑘 are such that: 

𝑥𝑥𝑘𝑘 =

[𝑓𝑓1(𝜙𝜙𝑘𝑘,𝑌𝑌1,𝑍𝑍𝑘𝑘),
𝑓𝑓2(𝜙𝜙𝑘𝑘,𝑌𝑌2,𝑍𝑍𝑘𝑘),

⋮
𝑓𝑓𝐼𝐼(𝜙𝜙𝑘𝑘,𝑌𝑌𝐼𝐼 ,𝑍𝑍𝑘𝑘)]

                                                 ( 6.15 ) 

Here, (𝑓𝑓1, 𝑓𝑓2,…,𝑓𝑓N) are nonlinear functions of the arguments: 𝜙𝜙𝑘𝑘, the  intrinsic  

physical  properties;  𝑍𝑍𝑘𝑘 ∈  ℝ𝐼𝐼2 which are known, quantifiable extrinsic system 

properties that influence the measurement (𝑁𝑁2 is the number of extrinsic properties 

affecting measurements); and (𝑌𝑌1, 𝑌𝑌2,…,𝑌𝑌N), which are uncontrollable external 

factors that are a function of the hardware design. 
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In the case of systems where measurements taken in different intervals are coupled, 

taking the difference between two functions can help to train the classifier with 

independent information about system interactions and decouple external factors that 

influence the measurement. This can be justified with a brief expansion analysis [116]. 

Given two functions 𝑓𝑓𝑖𝑖 and  𝑓𝑓j, the Taylor series expansions can be taken about a nominal 

operating point as: 

𝑓𝑓𝑖𝑖(𝜙𝜙𝑘𝑘,𝑌𝑌𝑖𝑖,𝑍𝑍𝑘𝑘) = 𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝜙𝜙𝑘𝑘

∆𝜙𝜙𝑘𝑘 + 𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑌𝑌𝑖𝑖

∆𝑌𝑌𝑖𝑖 + 𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑍𝑍𝑘𝑘

∆𝑍𝑍𝑘𝑘 + 𝑆𝑆𝑖𝑖                 ( 6.16 ) 

𝑓𝑓𝑗𝑗�𝜙𝜙𝑘𝑘 ,𝑌𝑌𝑗𝑗 ,𝑍𝑍𝑘𝑘� = 𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝜙𝜙𝑘𝑘

∆𝜙𝜙𝑘𝑘 + 𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝑌𝑌𝑗𝑗

∆𝑌𝑌𝑗𝑗 + 𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝑍𝑍𝑘𝑘

∆𝑍𝑍𝑘𝑘 + 𝑆𝑆𝑗𝑗                 ( 6.17 ) 

Taking the difference yields: 

𝑓𝑓𝑖𝑖(𝜙𝜙𝑘𝑘,𝑌𝑌𝑖𝑖,𝑍𝑍𝑘𝑘) − 𝑓𝑓𝑗𝑗�𝜙𝜙𝑘𝑘,𝑌𝑌𝑗𝑗 ,𝑍𝑍𝑘𝑘� =                          ( 6.18 ) 

�
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝜙𝜙𝑘𝑘

∆𝜙𝜙𝑘𝑘 +
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑌𝑌𝑖𝑖

∆𝑌𝑌𝑖𝑖 +
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑍𝑍𝑘𝑘

∆𝑍𝑍𝑘𝑘 + 𝑆𝑆𝑖𝑖� − �
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝜙𝜙𝑘𝑘

∆𝜙𝜙𝑘𝑘 +
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝑌𝑌𝑗𝑗

∆𝑌𝑌𝑗𝑗 +
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝑍𝑍𝑘𝑘

∆𝑍𝑍𝑘𝑘 + 𝑆𝑆𝑗𝑗� = 

∆𝜙𝜙𝑘𝑘 �
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝜙𝜙𝑘𝑘

−
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝜙𝜙𝑘𝑘

� + �
𝜕𝜕𝑓𝑓i
𝜕𝜕𝑌𝑌𝑖𝑖

∆𝑌𝑌𝑖𝑖 −
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝑌𝑌𝑗𝑗

∆𝑌𝑌𝑗𝑗� + ∆𝑍𝑍𝑘𝑘 �
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑍𝑍𝑘𝑘

−
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝑍𝑍𝑘𝑘

� + 𝑆𝑆𝑖𝑖 − 𝑆𝑆𝑗𝑗 = 

0 + �
𝜕𝜕𝑓𝑓i
𝜕𝜕𝑌𝑌𝑖𝑖

∆𝑌𝑌𝑖𝑖 −
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝑌𝑌𝑗𝑗

∆𝑌𝑌𝑗𝑗� + 0 + 𝑆𝑆𝑖𝑖 − 𝑆𝑆𝑗𝑗 

For the same training example, ∆𝜙𝜙𝑘𝑘 = 0. The same is true for ∆𝑍𝑍𝑘𝑘. Therefore, the only 

remaining terms are those that include ∆𝑌𝑌𝑖𝑖 and ∆𝑌𝑌𝑗𝑗, the associated partial derivatives, and 

the difference of the offset constants. The new feature 𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑗𝑗 , is solely a function of ∆𝑌𝑌𝑖𝑖 

and ∆𝑌𝑌𝑗𝑗, which are functions of certain fixed extrinsic system properties. With feature 

selection effectively decoupled from the number of nodes required, the result is a reduction 



104 
 

of sensor nodes and associated cost.  Every system measurement is a function of both the 

intrinsic property being measured and the properties of the physical system involved in that 

measurement. These physical properties include the structure of the system and its 

operation, which are controllable by the system designer, and environmental effects, which 

may not be controllable by the designer but are known.  The resulting system consolidates 

the hardware required to a singular node, drastically reducing the overall footprint of the 

system from a cost, energy, and resources perspective.  

5.3.1.3 Case Study 

The case study applies the sensor reduction approach to a commercial laser printer intended 

for use in a managed print services environment. To address the issue of printer users not 

changing their media settings, an inexpensive sensor system and embedded machine 

learning algorithm were implemented to automatically determine the print media without 

any user input.  

A low-cost LED/phototransistor pair was used as the single sensor, and by leveraging 

domain expert knowledge, this sensor output was discretized in a way that it would capture 

relevant information from different aspects of the printer’s operation. These discretized 

features were configured as the training set to an embedded machine learning (ML) 

algorithm. The resulting ML model was embedded in the printer’s firmware and used to 

control the relevant printer parameters in near real time.  

A cross section of the printer media path is shown in Figure 5.5 [116].  The highlighted 

region contains a section view of the sensor positioned on opposite sides of the printer’s 

media path between two media feed nips.   
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Like mentioned above, the sensor’s output was directly a function of the amount of light 

that was transmitted through the media. This corresponded to multiple physical elements 

of the media: media basis weight, media roughness, etc. Other properties extrinsic to the 

media under inspection also played a role: print speed, location of print media, etc.  

This complex measurement was featurized in a way to obtain maximum information, while 

maintaining feature uniqueness. This was critical for the success of an ML implementation. 

This was achieved by breaking down the measurement according to Table 5.1 [116]. The 

resultant time series data was divided into zones that correspond to changes to the media 

and system interaction as the media moves throughout the printer.

Figure 5.5: A cross section of the printer media path, with the highlighted 

region showing the sensor area [116] 
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Table 5-1: Simplified model of the sensing system [116] 
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The features used for the machine learning algorithm are provided in Table 5.2 [116]. Features 𝑥𝑥1, 

𝑥𝑥2, … 𝑥𝑥5 are extrinsic system properties and uncontrollable external factors that are provided by 

the printer system’s embedded firmware. Features 𝑥𝑥6, 𝑥𝑥7, … 𝑥𝑥18 contain information about the 

physical properties of the media, but each of these are coupled to the extrinsic factors and the 

external factors. Features 𝑥𝑥19, 𝑥𝑥20, 𝑥𝑥21, and 𝑥𝑥22 represent the features that are the output of the 

differencing method used to decouple the features related to physical media properties. 

Constructing the feature set in this manner allowed the use of a single sensor for maximized 

performance. Figure 5.6 [116] shows a set of features across media types.  Feature 7 is 

predominantly a measure of the media opacity. Feature 18 is measure of the uniformity of the sheet 

and features 19 and 20 are difference features that decouple the opacity measurement from things 

like the interaction of the media and system. The features in Figure 5.6 demonstrate the unique 

information that each of these features provide the ML algorithm.  
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Table 5-2: List of Features Extracted from the Single Sensor [116] 



 
109 

 

 

After gathering a training set and training an ML algorithm, the algorithm was distilled 

into a set of decision polynomials that were able to be utilized by the printer’s firmware to 

make rapid decisions.  

The results of this sensor reduction approach are given in Table 5.3 [116], with the single 

node mean, which simulates a single sensor, and the domain expert knowledge which 

represents the method detailed here. The decision of the algorithm was then fed into a 

confisuion matrix that would dictate whether operating parameters would have to be 

changed or not. That being said, “% Acceptable” refers to boundary cases where no change 

is required and therefore inaccuracies are acceptable.  

Figure 5.6: Representative Features after scaling [116] 
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5.3.1.4 Conclusions 

This method for reducing sensor hardware by leveraging domain expert knowledge and 

temporal data for the design of an IoT system resulted in a lower cost and complexity than 

more traditional approaches. This methodology was demonstrated in a case-study of a 

mass-produced electrophotographic printer in a system designed to classify media types. 

The proposed methodology increased classifier accuracy by 16% and classifier 

acceptability by 6.5% when compared with a more traditional method that did not leverage 

domain expert knowledge to enrich the dataset. The methodology used can be applied to 

Table 5-3: Classification results showing a single node mean compared to the domain 

knowledge feature set [116] 
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IoT applications seeking to benefit from a high computation tasks such as ML, while still 

meeting cost constraints. 

The methodology described has significant cost advantages over the traditional approach. 

These advantages stem from several fundamental aspects of single sensor design.  This 

includes a reduction in hardware and the associated non-recurring engineering expenses. 

This proposed approach can greatly benefit the manufacturing industry, and more 

specifically it can be a key component of designing an IoT and data infrastructure for a HE 

and a HEMM. The approach offers a lower cost implementation for driving maximizing 

sustainable value, minimizing resource consumption, and ensuring continued technological 

progress.  

5.3.2 Method for Reducing Data Set for Machine Learning IoT Applications 

5.3.2.1 Introduction 

Production IoT-based systems utilizing high computational tasks such as ML usually 

requires a large amount of data in order to achieve the desired outcome.  Unfortunately, 

this causes ML solutions to be impractical for low-cost sensor applications. This section 

discusses a new calibration method that results in the ability to use a low-cost hardware 

option and reduce the required training set within an IoT-based ML application.  The 

method, Reference Calibration Mapping (RCM), creates a reference space from a single 

sensor and aims at transforming output from the remaining sensor population into that 

reference space. The training of the ML model is then performed on a featurized set of 

training data, and predictions are made after the sensor output is mapped to the reference 

space and featurized. This method was formed as the part of an industry team, and the 

relevance to HE is discussed in the conclusion. 
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5.3.2.2 Methodology 

The following phases describe how a general system can apply the RCM method: 

Phase 1: Characterize the sensing system (empirically or analytically) to gain an 

understanding of expected variation and how this variation would impact sensor output.  

Using this information, select a sensor as the reference standard. 

Phase 2: Develop a reference calibration map to transform all sensor outputs within the 

sensor population back to the characterized reference standard. 

Phase 3: Gather training data using the reference standard across all considered features 

and train the ML algorithm using this reduced data set. 

Phase 4: In the final calibration step during manufacturing, adjust the system to continue 

to emulate the reference system.  Apply the calibration map to transform the resulting 

outputs into the same space of the reference system.   

5.3.2.3 Case Study 

The deployed system was a media classification system in a laser printer product. The 

sensors chosen for this application were inexpensive and the mechanical tolerances for 

sensor placement from system to system and part to part sensor tolerances threatened to 

push the development expense in schedule and cost beyond the set constraints.   
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The simplified inexpensive design still had tolerance issues to overcome.  Sensor to sensor 

variation, both in mechanical placement tolerance and in the sensor itself, was still 

requiring a data training set that exceeded existing resources.  This is visualized in Figure 

5.7 [129], where the yellow region indicates the variation part to part. To address this issue 

the team developed a process called “reference calibration mapping” in which all systems 

were measured during manufacturing and they were mapped to the space of a reference 

sensor in order to reduce the overall training set needed.   

 

The first step in sensor reference calibration mapping was to select a “reference” sensor 

system, which would be used to collect all of the data for the SVM ML algorithm.  The 

second step was to determine a mathematical relationship that would be used to drive all 

Figure 5.7: The physical system (bottom) and the angular displacement tolerances 

shown in yellow for the chosen sensor [129] 
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sensors to the same reference space as the golden reference.  To do this a ‘Performance 

Indicator’ metric was developed which could be measured on the production line for each 

system by checking the sensor output with no media present, and with a “golden” standard 

present.  That ratio is shown in the below equation:   

𝑃𝑃𝐼𝐼 =  

∑(1024 − 𝑃𝑃𝑆𝑆)
𝑁𝑁𝑀𝑀𝐶𝐶

∑(1024 − 𝑁𝑁𝑃𝑃𝑆𝑆)
𝑁𝑁𝐼𝐼𝑀𝑀𝐶𝐶

 

Where PI is the performance indicator, PC is the calibration value with paper present, NPC 

is the calibration value with no paper present, and 𝑁𝑁𝑀𝑀𝐶𝐶 is the number of trials with paper, 

and 𝑁𝑁𝐼𝐼𝑀𝑀𝐶𝐶  is the number of trials without paper. PI was then used to determine a correction 

factor needed to bring the system being measured to that of the ideal system.  That 

correction factor (CF) is given in the below equation:  

𝑆𝑆𝐼𝐼 =  
𝑃𝑃𝐼𝐼𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟
𝑃𝑃𝐼𝐼𝑟𝑟𝑎𝑎𝑐𝑐𝑖𝑖𝑏𝑏𝑟𝑟𝑎𝑎𝑡𝑡𝑟𝑟𝑐𝑐

 

Where 𝑃𝑃𝐼𝐼𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟 is the performance indicator of the reference sensor, and the 

𝑃𝑃𝐼𝐼𝑟𝑟𝑎𝑎𝑐𝑐𝑖𝑖𝑏𝑏𝑟𝑟𝑎𝑎𝑡𝑡𝑟𝑟𝑐𝑐 is the performance indicator of the sensor being calibrated. When in use the 

sensor output (𝑊𝑊𝑥𝑥) from the particular device is modified by the correction factor as shown 

in the following equation: 

𝑊𝑊𝑟𝑟𝑎𝑎𝑐𝑐𝑖𝑖𝑏𝑏𝑟𝑟𝑎𝑎𝑡𝑡𝑟𝑟𝑐𝑐 = (1 − 𝐾𝐾) + 𝐾𝐾(𝑊𝑊𝑥𝑥) 

This maps the sensor output under inspection to the space of the golden sample sensor.  

The mapped output is then used by the machine learning algorithm in order to classify the 

printer media.  

Table 5.4 below shows the classification performance before and after the calibration 

method was applied.  Without RCM, the algorithm was 57.5% accurate, and when 
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acceptable misidentifications were included that accuracy rose to 76.9%.  In the RCM 

corrected system, the printers tested identified the correct media 85.4% of the time and 

with allowable misclassifications that rose to 99.95%.  

A similar optical sensor deployed in the same system had a bill of materials of ten times 

the resulting system. By lowering hardware performance requirements, the resulting 

system was able to take advantage of the cost savings by compensating with the presented 

calibration method. The method saved the generation of training data for system tolerances 

and based on the distribution of data seen with early prototype builds that is estimated to 

be 1/40 of the data that would have been needed for similar performance.   

Table 5-4: Performance Before and After RCM Method was applied [129] 
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5.3.2.4 Conclusion 

The case study validates RCM as a calibration method for implementing ML in low-cost 

IoT applications, which as high relevance to HE. RCM shifts the paradigm in implementing 

ML in production-scale systems. Traditional methods require multiple robust sensors, 

ongoing calibration, or ongoing ML. In addition to hardware, traditional methods require 

order of magnitude larger training sets. By lowering overall system hardware and 

development costs, RCM extends ML's feasible solution space to include cost-constrained 

applications such as embedded sensors in consumer electronics, predictive maintenance 

and cost-optimization solutions for manufacturing applications, and IoT-enabled 

agriculture management systems. RCM also has high relevance to use cases where sensors 

are not networked for data security and/or privacy reasons.  

Applying the RCM approach to other manufacturing IoT system design, and more 

specifically for realizing the HE and HEMM vision, the following steps are required: first, 

the sensor system needs to be characterized empirically or analytically. Next, a reference 

sensor is selected. Then, a calibration map is generated to transform all sensor outputs 

within the expected sensor population back to the selected reference sensor. This 

calibration map will be device specific and will vary according to the system design. 

Training data can then be collected using the reference sensor system. Once trained, the 

ML algorithm and calibration map can be embedded in the control systems of the entire 

sensor population. The result will be a lower overall cost and reduced long-term 

maintenance.  
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5.4 Chapter Summary and Discussion 

This chapter addressed designing an IoT-enabled data infrastructure for a Helical Economy 

by first motivating and defining the problem, then reviewing the state of the art, and then 

identifying the primary challenges, and then finally presenting two initial methods for 

industry implementation to move manufacturers’ IIoT implementations towards the HE 

and HEMM future vision.  

In defining the problem, it was stated that most IIoT and Industry 4.0 projects fail, revealing 

that there is fundamental problem with the current approach to IIoT and Industry 4.0 

initiatives.  The race to market has developed an approach that encourages the creation of 

extensive IoT sensor networks that involve retrofitting legacy products, manufacturing 

equipment, and manufacturing systems with numerous sensor nodes and IT systems in 

order to collect a significantly large dataset. This requires a significant investment in the 

sensor hardware and in the reoccurring cost to store and maintain the data. Therefore, it 

was noted that a counter approach is needed to increase the success rate of implementation, 

and it was proposed that the Helical Economy and HEMM framework could give the IIoT 

and Industry 4.0 implementations a holistic business outcome of maximizing sustainable 

value creation, minimizing resource consumption, and ensuring continued technological 

progress. 

The state of the art was then reviewed across the concepts of Industry 4.0, Smart 

Manufacturing, Cyber-Physical Systems, Industrial Internet of Things, Factories of the 

Future, and Digital Twin and Digital Thread. Since the success of industry implementation 

is low, the state-of-the-art research concepts and approaches are missing a key element. In 

defining the primary challenges for designing the IoT and data infrastructure for the 



118 
 

HEMM vision, it was determined that the counter approach to the current IoT approach 

would be to minimize the required sensor infrastructure and associated data. In addition, 

for a HE and HEMM specifically, it was noted that the infrastructure must span all life 

cycle stages: pre-manufacturing, use, and post-use, and that the size and breadth of this 

data coverage would require an investment in data security. Along those dimensions, the 

three primary challenges we noted for designing an IoT and data infrastructure for a HE: 

1) reducing the number of sensors required, 2) reducing the amount of data required, and 

3) ensuring secure harmonization of data across products, processes, and systems, and all 

life cycle stages.  

The chapter then discusses two initial methods for industry implementation of HE at the 

IoT-enabled data infrastructure level: 1) a method for reducing overall sensor count, and 

2) a method for reducing the training data set needed for sensor-based machine-learning 

applications. The first method was a concurrent engineering approach where the sensor 

hardware and end-use analytics system was designed in parallel. The advantage from this 

approach is that in an IoT-based system, the number of sensors can be reduced without 

losing performance.  Many industries can benefit from this method, especially the HEMM 

due to the unique use of unstructured and structured data to drive maximum sustainable 

value, minimized resource consumption, and continued technological progress. A case 

study was presented that looked at the consumer printing process and a sensor solution that 

aims at improving the field service issues. The case study validates the approach of 

concurrently designing a product, process, and/or system in parallel with the IoT 

framework in order to minimize costs and improve functionality. The combination of the 
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domain/expert knowledge and the machine learning algorithm creates a robust framework 

for use in various applications.  

The second method was a calibration method, Reference Calibration Mapping (RCM), that 

aims to reduce the data set size for IoT-based machine learning applications. Overall, RCM 

shifts the paradigm in implementing ML in production-scale IoT systems. Traditional 

methods would have required multiple sensors with tightly controlled static measurements, 

ongoing calibration or ongoing machine learning as opposed to an independent embedded 

algorithm.  Additionally, traditional methods would have required a much larger training 

set for the machine learning algorithm, which would have been more expensive to develop 

and difficult to implement.  The RCM method resulted in a robust yet inexpensive system 

which is now in production and performing well in the field.  

Overall, this chapter provides the initial foundation for designing an IoT and data 

infrastructure for the Helical Economy and HEMM. By aligning the desired business 

outcomes of an Industry 4.0 or IIoT project with the desired outcomes of the HEMM, 

manufacturers will be able to take a first step towards maximizing sustainable value, 

minimizing resource consumption, while ensuring technological progress.
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

6.1  Summary of Contributions 

The contributions of this PhD work are threefold:  

1. Presented a paradigm shift from Circular Economy to Helical Economy for 

advancing sustainable manufacturing through a novel framework for the Helical 

Economy Manufacturing Method (HEMM). 

2. Identified the major research problems at the product level and developed initial 

methods to make near-term progress towards the HEMM. 

3. Identified the major research problems in designing next-generation IoT-enabled 

data infrastructures and presented an integration plan with HEMM. 

In Chapter 3, the Helical Economy (HE) concept was proposed through an abstraction that 

compares its benefits in relation to the Circular and Linear Economy alternatives. Three 

key performance indicators (KPIs) were then proposed: sustainable value creation, 

resource consumption, and technological progress. The framework for the Helical 

Economy Manufacturing Method was then presented focusing on redesigning 

manufacturing infrastructure at product, process, and system levels with a strong emphasis 

on utilizing an IoT data infrastructure and leveraging an upskilled workforce. 

Chapter 4 examined the product component of the HEMM framework. The major research 

problems and challenges for designing products were then identified. Initial methods for 

industry implementation were then presented for two classes of product design: 1) new 

product design, and 2) adaptive product design and redesign. For new product design, a 

new set of Design for Helical Economy (DfHE) guidelines was presented. For adaptive 
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product design and redesign, an initial framework for a toolkit was proposed, the Helical 

Optimization and Prediction Engine (HOPE), comprised of three product-level modules: 

1) predicting product life cycle performance during design (HOPE-Design), 2) predictively 

and proactively maintaining a modular product (HOPE-Maintain), and 3) selecting optimal 

product configuration and reconfiguration (HOPE-Configure). 

In Chapter 5, the IoT-enabled data infrastructure component of the HEMM framework was 

examined. The major design challenges related to establishing an IoT-enabled data 

infrastructure for the HEMM were identified, and two initial methods for industry 

implementation were  presented: 1) A scalable method for reducing the overall sensor 

infrastructure needed through the use of machine-learning (ML) and concurrent 

engineering, and 2) A method for reducing the training set needed in deploying machine-

learning-based sensor systems in a smart-manufacturing infrastructure. 

Collectively, this initial work establishes the foundational body of knowledge for the HE 

and the HEMM, provides implementation methods at the product and IoT-enabled data 

infrastructure levels, and it shows a great potential for HE’s ability to create and maximize 

sustainable value, optimize resource consumption, and ensure continued technological 

progress with significant economic growth and innovation.   

6.2   Future Work  

Although this work is foundational in proposing a paradigm shift away from the CE status 

quo of recycling and reuse of materials and to a more innovative perspective of redesigning 

manufacturing infrastructure at product, process, and system levels, the work only 

examined two components of the larger HEMM vision. Future work must address the three 
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remaining components of the HEMM: 1) next-generation process equipment design and 

process planning, 2) next-generation factory and supply chain design, and 3) next-

generation workforce training.  

6.2.1 Next-Generation Process Equipment and Planning for a Helical Economy 

It should be well understood that in order to achieve a change in an output, there are three 

options: change the output directly, change the input, or change the process. In the case of 

manufacturing for a Helical Economy, Chapter 3 made the case that changing of the output 

directly has limitations that hinder the ability to maximize sustainable value creation, 

minimize resource consumption, while ensuring technological progress; therefore, the 

chapter presented the Helical Economy Manufacturing Method (HEMM) as a fundamental 

paradigm shift. Chapter 4 addressed changing the input through designing a product for a 

Helical Economy. Although product design holds an outsized impact, this alone cannot 

realize the long-term HEMM vision without concurrently addressing the design and 

selection/planning of process level infrastructure (machines, tooling, automation 

equipment, and supporting equipment).  

Today, the current process-level infrastructure (machines, tooling, material handling 

systems, automation equipment, etc.) has been, and is still being designed, for the linear 

economy model of “take – make – use - dispose”. The infrastructure has been optimized 

to cost efficiently go from input to output with maximum speed and quality. Machines and 

tooling have not been developed with the total life cycle of a product in mind, making it 

extremely difficult to close the loop on material flow and extract value in the post-use stage 

of a product.    
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At the same time, the process planning activities of selecting manufacturing processes, 

sequencing manufacturing operations, and selecting equipment are also being done in a 

linear nature. The product design is handed off, the process plan is created, and then the 

plan is executed. The current process planning does not take into consideration the total 

life cycle of a product, leaving the post-use activities such as remanufacturing, 

refurbishment, reconfiguration, and recycling undefined.  

In order to achieve the long-term vision of the Helical Economy, manufacturers need to 

redesign process-level infrastructure, which will require new approaches to manufacturing 

equipment design and process planning. This work will require defining the equipment and 

process planning design challenges for realizing the near-term vision of the HEMM, and 

then developing initial methods and tools to address these challenges.  

6.2.2 Next-Generation Factory and Supply Chain Design for a Helical Economy  

A core component of the HEMM vision is the redesign of factories and supply chains in 

order to take advantage of a forward and reverse flow of product. The Helical Economy 

Manufacturing System (HEMS) is comprised of four major components: Modular and 

Reconfigurable Products, Hybrid Manufacturing Processes and Tooling, Integrated 

Forward/Reverse Flow Production Systems, and IoT Data Infrastructures.  

1. Modular and Reconfigurable Products 

o A product that is upgradeable, disassemble, uses a set of common 

components, and is extremely durable.  

2. Hybrid Manufacturing Processes and Tooling 
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o A process that is designed to accommodate a forward and reverse flow of 

inputs and outputs. These processes are multi-dimensional, combining 

subtractive and additive manufacturing processes or assembly and 

disassembly processes.    

3. Two-Way Flow Production Systems 

o A production system designed for a forward and reverse flow of products. 

Manufacturing lines are reconfigurable matrices of multiple manufacturing 

stages, each with a distinct goal to minimize the total life cycle cost.  

4. IoT Data Infrastructures  

o The IoT and data infrastructure is the software backbone of the helical 

system. Data is collected at the product level, the process level, and at the 

system level using networked sensors that send data to a central cloud.  

Each of these four technologies have been proven technically viable in their respective 

domains, and although they haven’t reached mainstream commercialization, the HEMS 

utilizes these technologies in defining a next-generation manufacturing system that aims to 

minimize resource consumption while serving a world of 10 billion people and beyond. To 

move from concept to implementation, manufacturing practitioners will need a decision 

support toolkit that helps them design and understand the value proposition of all four of 

the major components. 

Because the HEMS calls for a new infrastructure installation or an overhaul of an existing 

manufacturing operation, the capital investment needed to even fully pilot the concept is 

quite high.  Therefore, there is a need to estimate the potential benefit of HEMS from 
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limited data. For the first tool, we propose an addition to HOPE (Helical Optimization and 

Prediction Engine), HOPE-System, an adaptive multi-method simulation model. HOPE-

System takes a current product’s Bill of Material (BoM) as the input, creates an abstraction 

of the product, and then simulates the product in a traditional manufacturing system, and 

in an adapted HEMS system. HOPE-System will provide outputs such as the potential total 

life cycle cost savings and the environmental benefits of transitioning to a HEMS. Since 

Industry partners are needed in order to pilot, validate, and iterate on HEMS, this tool 

provides a cost-effective and low-risk way to communicate the potential value of HEMS 

to industry stakeholders. Decision makers can compare these benefits to the estimated 

initial capital investment required for a pilot.  

6.2.3 Next-Generation Workforce Training for a Helical Economy 

The HEMM will continue to shift the skills in demand for the manufacturing sector away 

from low-skilled laborers and towards higher skilled technology-focused skills (data 

analytics, software development, simulation, robotics, mechatronics, etc.).  In order to 

bridge this gap, industry-sponsored upskilling programs will need to be developed in 

collaboration with higher education systems. Transitioning the current workforce into a 

next-generation workforce prepared to support the HEMM will take time since it requires 

a fundamental change in the core infrastructure around manufacturing education and 

training.  

Because of the time lag, there is a critical need to start this investment as soon as possible.  

To start, an industry partnership should be formed, and a pilot training program should be 

launched. This pilot can then be monitored, and it will provide a research testbed for the 

continued study of manufacturing workforce development for HE and the HEMM.  
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6.3   Industry Collaboration  

The adoption of the Helical Economy (HE) and the Helical Economy Manufacturing 

Method (HEMM) is up to industry. The manufacturing sector must reinvent itself in order 

for it to support an equitable future for a world of 10 billion people. This reinvention will 

require multiple stakeholders from academia, government agencies, and industry to come 

together to support its continued refinement and development. A diverse consortium of 

stakeholders is critically needed in order to ensure the research work on HE and HEMM 

makes its way into the industrial domain. 

For this continued future development, investment from a consortium of stakeholders 

would be directed into building a pilot facility that can serve as the testbed for HEMM 

development at product, process, and system levels. This pilot facility would enable a 

testbed for continued research in developing new product architecture designs, new 

manufacturing process equipment and tooling, new manufacturing systems, and new 

software and control systems. It is expected that a pilot facility of this nature would require 

a significant capital investment, and as such, it would require many avenues of financial 

support, and the incentive offered to industry partners would be that the IP being generated 

would be shared IP among the invested companies.  The goal of the pilot would be to build 

an end-to-end proof-of-concept that can then be used to showcase the value proposition of 

the HEMM to manufacturing stakeholders, as well as serve as training opportunity for the 

next-generation workforce.  

It is without a doubt that the future of the manufacturing sector is dependent on the 

reinvention of the status quo into a next-generation innovation hub centered around the 
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Helical Economy goals of maximizing sustainable value, minimizing resource 

consumption, and maintaining technological progress.   
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APPENDICES 

Appendix A: HOPE-Design Code 
 
import pandas as pd 
import matplotlib.pyplot as plt 
import seaborn as sn 
import sklearn 
from sklearn import svm 
from sklearn.svm import SVR 
import numpy as np 
%matplotlib inline 
 
Data=pd.read_csv('chapter_four_printer_data_obs.csv') 
Features = Data.iloc[:,1:24] 
#Going to Run through a 100 scenarios of features, 
#in order to simulate creating different heuristics for different stakeholers. 
 
ResultCols=[] 
for i in range(0,100): 
     
 #Need to downselect parameters 
Subset = Features.sample(6, axis=1) 
print(Subset) 
print(Subset.columns) 
     
#Split the Dataset into Test and training set, 80/20 
xTrain, xTest, yTrain, yTest = sklearn.model_selection.train_test_split(Subset, 
Data.o_gwp_total, test_size = 0.2, random_state = 0) 
     
#Define the Model 
    svr_poly = SVR(kernel='linear', degree=2, max_iter=10000) 
     
    #Fit the Model 
    model = svr_poly.fit(xTrain, yTrain) 
     
    #Predictions 
    yPred=model.predict(xTest) 
    print(100*(yPred-yTest)/yTest) 
    yPredTot=model.predict(Subset) 
    print(100*(yPredTot-Data.o_gwp_total)/Data.o_gwp_total) 
     
    #Collate Results 
    ResultCols.append([Subset.columns.values, np.mean(abs((100*(yPred-
yTest))/yTest))]) 
    Results=pd.DataFrame(ResultCols, columns=['feature_set', 'percent_error']) 
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    Results.to_csv('Results_chap4.csv') 

 Appendix B: HOPE-Design Complete Data 

iteration feature_set percent_error 
0 ['feature_10' 'feature_4' 'feature_15' 'feature_11' 'feature_12' 

 'feature_14'] 
20.13243764 

1 ['feature_4' 'feature_21' 'feature_8' 'feature_12' 'feature_11' 
 'feature_17'] 

17.63331526 

2 ['feature_23' 'feature_17' 'feature_7' 'feature_5' 'feature_3' 'feature_9'] 8.54689993 
3 ['feature_13' 'feature_4' 'feature_2' 'feature_23' 'feature_11' 

 'feature_16'] 
5.84460969 

4 ['feature_15' 'feature_4' 'feature_1' 'feature_18' 'feature_3' 'feature_7'] 8.138966544 
5 ['feature_7' 'feature_1' 'feature_22' 'feature_10' 'feature_11' 

 'feature_14'] 
16.78727387 

6 ['feature_18' 'feature_19' 'feature_23' 'feature_12' 'feature_9' 
 'feature_21'] 

8.259092553 

7 ['feature_7' 'feature_21' 'feature_8' 'feature_9' 'feature_22' 'feature_15'] 15.411699 
8 ['feature_3' 'feature_13' 'feature_2' 'feature_22' 'feature_6' 'feature_23'] 5.888074451 
9 ['feature_8' 'feature_9' 'feature_1' 'feature_23' 'feature_11' 'feature_13'] 10.56114525 

10 ['feature_6' 'feature_23' 'feature_22' 'feature_21' 'feature_1' 'feature_9'] 6.549494991 
11 ['feature_2' 'feature_19' 'feature_13' 'feature_4' 'feature_17' 

 'feature_22'] 
6.023092477 

12 ['feature_17' 'feature_20' 'feature_13' 'feature_12' 'feature_15' 
 'feature_22'] 

15.91003849 

13 ['feature_18' 'feature_17' 'feature_9' 'feature_4' 'feature_12' 'feature_5'] 20.02365249 
14 ['feature_19' 'feature_10' 'feature_9' 'feature_2' 'feature_7' 'feature_15'] 5.032913393 
15 ['feature_11' 'feature_15' 'feature_23' 'feature_21' 'feature_4' 

 'feature_22'] 
11.22425786 

16 ['feature_1' 'feature_8' 'feature_18' 'feature_19' 'feature_2' 'feature_16'] 2.572823017 
17 ['feature_23' 'feature_3' 'feature_22' 'feature_6' 'feature_12' 'feature_1'] 6.801404671 
18 ['feature_14' 'feature_18' 'feature_3' 'feature_5' 'feature_17' 

 'feature_12'] 
2.170759613 

19 ['feature_10' 'feature_11' 'feature_17' 'feature_6' 'feature_2' 'feature_4'] 5.682699405 
20 ['feature_1' 'feature_5' 'feature_4' 'feature_12' 'feature_11' 'feature_3'] 4.159805229 
21 ['feature_11' 'feature_9' 'feature_6' 'feature_23' 'feature_12' 'feature_2'] 8.718468572 
22 ['feature_5' 'feature_12' 'feature_1' 'feature_19' 'feature_22' 'feature_4'] 20.64811107 
23 ['feature_16' 'feature_20' 'feature_11' 'feature_14' 'feature_5' 

 'feature_3'] 
3.693959486 

24 ['feature_10' 'feature_7' 'feature_16' 'feature_14' 'feature_18' 
 'feature_23'] 

7.534997654 

25 ['feature_23' 'feature_17' 'feature_10' 'feature_12' 'feature_18' 
 'feature_9'] 

7.079882445 

26 ['feature_12' 'feature_17' 'feature_5' 'feature_8' 'feature_6' 'feature_23'] 10.79887002 
27 ['feature_23' 'feature_12' 'feature_11' 'feature_6' 'feature_1' 

 'feature_14'] 
10.61457981 
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28 ['feature_1' 'feature_9' 'feature_13' 'feature_12' 'feature_3' 'feature_21'] 1.661614042 
29 ['feature_18' 'feature_4' 'feature_9' 'feature_20' 'feature_1' 'feature_6'] 21.08958979 
30 ['feature_7' 'feature_4' 'feature_22' 'feature_6' 'feature_16' 'feature_15'] 18.17585328 
31 ['feature_21' 'feature_2' 'feature_15' 'feature_19' 'feature_16' 

 'feature_5'] 
6.498798838 

32 ['feature_22' 'feature_7' 'feature_4' 'feature_14' 'feature_1' 'feature_2'] 5.330361779 
33 ['feature_9' 'feature_1' 'feature_14' 'feature_15' 'feature_20' 'feature_5'] 20.23868598 
34 ['feature_14' 'feature_1' 'feature_19' 'feature_13' 'feature_7' 

 'feature_18'] 
9.95617851 

35 ['feature_13' 'feature_2' 'feature_19' 'feature_4' 'feature_17' 
 'feature_21'] 

3.97731027 

36 ['feature_23' 'feature_12' 'feature_16' 'feature_8' 'feature_7' 
 'feature_18'] 

6.833455028 

37 ['feature_14' 'feature_21' 'feature_8' 'feature_4' 'feature_9' 'feature_2'] 3.094527388 
38 ['feature_7' 'feature_22' 'feature_12' 'feature_16' 'feature_19' 

 'feature_13'] 
17.82961256 

39 ['feature_16' 'feature_23' 'feature_10' 'feature_12' 'feature_21' 
 'feature_18'] 

4.153161171 

40 ['feature_1' 'feature_6' 'feature_20' 'feature_13' 'feature_23' 
 'feature_18'] 

6.358244034 

41 ['feature_20' 'feature_8' 'feature_12' 'feature_16' 'feature_22' 
 'feature_7'] 

17.35488007 

42 ['feature_20' 'feature_9' 'feature_15' 'feature_10' 'feature_7' 
 'feature_12'] 

19.00403102 

43 ['feature_3' 'feature_18' 'feature_13' 'feature_23' 'feature_1' 'feature_4'] 6.187016454 
44 ['feature_23' 'feature_18' 'feature_11' 'feature_13' 'feature_19' 

 'feature_4'] 
9.127162866 

45 ['feature_20' 'feature_19' 'feature_9' 'feature_16' 'feature_3' 'feature_7'] 4.406636985 
46 ['feature_22' 'feature_16' 'feature_23' 'feature_12' 'feature_7' 

 'feature_6'] 
8.021661927 

47 ['feature_20' 'feature_3' 'feature_2' 'feature_22' 'feature_6' 'feature_5'] 9.629970596 
48 ['feature_19' 'feature_16' 'feature_21' 'feature_18' 'feature_6' 

 'feature_5'] 
12.56367952 

49 ['feature_5' 'feature_15' 'feature_23' 'feature_13' 'feature_21' 
 'feature_3'] 

4.120674399 

50 ['feature_19' 'feature_23' 'feature_10' 'feature_9' 'feature_8' 
 'feature_18'] 

6.914484294 

51 ['feature_13' 'feature_18' 'feature_9' 'feature_1' 'feature_23' 
 'feature_16'] 

7.413659989 

52 ['feature_18' 'feature_6' 'feature_21' 'feature_19' 'feature_2' 'feature_9'] 3.147082516 
53 ['feature_5' 'feature_7' 'feature_10' 'feature_12' 'feature_2' 'feature_4'] 5.307009266 
54 ['feature_9' 'feature_3' 'feature_16' 'feature_12' 'feature_15' 'feature_2'] 1.573394568 
55 ['feature_17' 'feature_11' 'feature_2' 'feature_5' 'feature_8' 'feature_9'] 6.517859469 
56 ['feature_1' 'feature_11' 'feature_12' 'feature_13' 'feature_16' 

 'feature_19'] 
18.43893383 

57 ['feature_9' 'feature_17' 'feature_3' 'feature_15' 'feature_23' 'feature_5'] 8.586257286 
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58 ['feature_15' 'feature_5' 'feature_1' 'feature_17' 'feature_18' 
 'feature_11'] 

17.26043931 

59 ['feature_18' 'feature_5' 'feature_2' 'feature_19' 'feature_10' 'feature_4'] 9.061607722 
60 ['feature_4' 'feature_21' 'feature_7' 'feature_22' 'feature_9' 'feature_16'] 17.99960924 
61 ['feature_12' 'feature_21' 'feature_13' 'feature_23' 'feature_2' 

 'feature_18'] 
5.581462882 

62 ['feature_22' 'feature_5' 'feature_17' 'feature_3' 'feature_21' 'feature_8'] 13.65337468 
63 ['feature_18' 'feature_17' 'feature_14' 'feature_9' 'feature_23' 

 'feature_16'] 
5.814983297 

64 ['feature_20' 'feature_10' 'feature_12' 'feature_11' 'feature_9' 
 'feature_21'] 

19.42189095 

65 ['feature_23' 'feature_22' 'feature_16' 'feature_13' 'feature_10' 
 'feature_1'] 

8.373935044 

66 ['feature_21' 'feature_13' 'feature_2' 'feature_18' 'feature_9' 
 'feature_14'] 

3.548832439 

67 ['feature_7' 'feature_12' 'feature_21' 'feature_6' 'feature_3' 'feature_10'] 2.058378992 
68 ['feature_5' 'feature_23' 'feature_10' 'feature_22' 'feature_13' 

 'feature_12'] 
10.70633251 

69 ['feature_5' 'feature_12' 'feature_21' 'feature_9' 'feature_16' 'feature_6'] 17.27849052 
70 ['feature_19' 'feature_20' 'feature_4' 'feature_9' 'feature_10' 'feature_3'] 4.961327309 
71 ['feature_4' 'feature_9' 'feature_20' 'feature_8' 'feature_12' 'feature_11'] 20.23554288 
72 ['feature_10' 'feature_18' 'feature_17' 'feature_6' 'feature_2' 'feature_4'] 8.665338352 
73 ['feature_19' 'feature_4' 'feature_15' 'feature_10' 'feature_18' 

 'feature_23'] 
9.001541771 

74 ['feature_11' 'feature_19' 'feature_14' 'feature_18' 'feature_5' 
 'feature_13'] 

17.82042009 

75 ['feature_9' 'feature_17' 'feature_11' 'feature_5' 'feature_19' 'feature_3'] 4.080543004 
76 ['feature_1' 'feature_18' 'feature_4' 'feature_14' 'feature_5' 'feature_9'] 21.08516999 
77 ['feature_18' 'feature_10' 'feature_6' 'feature_17' 'feature_7' 'feature_5'] 9.539207613 
78 ['feature_9' 'feature_4' 'feature_5' 'feature_8' 'feature_22' 'feature_6'] 19.9016492 
79 ['feature_9' 'feature_16' 'feature_8' 'feature_6' 'feature_14' 'feature_11'] 17.91531454 
80 ['feature_23' 'feature_14' 'feature_6' 'feature_20' 'feature_12' 

 'feature_19'] 
10.69524811 

81 ['feature_10' 'feature_4' 'feature_18' 'feature_12' 'feature_6' 
 'feature_21'] 

21.21360889 

82 ['feature_1' 'feature_5' 'feature_21' 'feature_17' 'feature_12' 
 'feature_16'] 

16.28509326 

83 ['feature_8' 'feature_22' 'feature_11' 'feature_10' 'feature_3' 
 'feature_19'] 

5.96148573 

84 ['feature_11' 'feature_17' 'feature_13' 'feature_19' 'feature_9' 
 'feature_6'] 

17.85907959 

85 ['feature_20' 'feature_23' 'feature_13' 'feature_15' 'feature_6' 
 'feature_17'] 

6.57186724 

86 ['feature_5' 'feature_9' 'feature_3' 'feature_19' 'feature_20' 'feature_18'] 4.262436494 
87 ['feature_12' 'feature_14' 'feature_8' 'feature_7' 'feature_22' 

 'feature_18'] 
20.92851944 

88 ['feature_5' 'feature_16' 'feature_11' 'feature_1' 'feature_7' 'feature_3'] 3.993088221 
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89 ['feature_7' 'feature_5' 'feature_21' 'feature_19' 'feature_17' 
 'feature_13'] 

10.16780605 

90 ['feature_12' 'feature_16' 'feature_4' 'feature_19' 'feature_9' 
 'feature_15'] 

18.43780484 

91 ['feature_8' 'feature_18' 'feature_1' 'feature_15' 'feature_17' 
 'feature_22'] 

9.440866217 

92 ['feature_5' 'feature_9' 'feature_3' 'feature_19' 'feature_21' 'feature_18'] 5.396831287 
93 ['feature_12' 'feature_19' 'feature_23' 'feature_5' 'feature_1' 'feature_3'] 6.574713278 
94 ['feature_22' 'feature_5' 'feature_17' 'feature_12' 'feature_4' 

 'feature_10'] 
16.98229496 

95 ['feature_11' 'feature_15' 'feature_21' 'feature_3' 'feature_22' 
 'feature_7'] 

3.001170812 

96 ['feature_9' 'feature_13' 'feature_18' 'feature_6' 'feature_12' 
 'feature_11'] 

21.27413141 

97 ['feature_14' 'feature_20' 'feature_15' 'feature_17' 'feature_18' 
 'feature_22'] 

9.434329479 

98 ['feature_21' 'feature_12' 'feature_5' 'feature_10' 'feature_1' 
 'feature_14'] 

18.59119095 

99 ['feature_2' 'feature_20' 'feature_6' 'feature_17' 'feature_5' 'feature_4'] 5.66813044 

Appendix C: HOPE-Maintain Code 

import os 
import pickle 
import pandas as pd 
import matplotlib 
import numpy as np 
import matplotlib.pyplot as plt 
module.to_csv('ModuleLife.csv') 
#Sort Data Properly 
modulesort=module.sort_values(['moduleserialnumber', 'side_bin'], ascending=[True, 
True], inplace=False) 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.ensemble import RandomForestRegressor 
# change side_bin to sides for training 
modulesort['side_bin']=modulesort['side_bin']*500 
#Looks good 
modulesort.head() 
#Remove NaNs, if any 
modulesort = modulesort.dropna() 
#Module List 
modulelist=pd.DataFrame() 
modulelist=modulesort[['moduleserialnumber']].drop_duplicates() 
#Split Into a Train/Test Set 80/20 by Modules for independent look 
modulelist['is_train'] = np.random.uniform(0, 1, len(modulelist)) <= .80 
#Capture train/test list of modules 
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trainfus, testfus = modulelist[modulelist['is_train']==True], 
modulelist[modulelist['is_train']==False] 
#Capture train/test datasets 
train, test = 
modulesort[modulesort['moduleserialnumber'].isin(trainmod['moduleserialnumber'])], 
modulesort[modulesort['moduleserialnumber'].isin(testmod['moduleserialnumber'])] 
print("Train Observations: " + str(len(train))) 
print("Test Observations: " + str(len(test))) 
modulesort['diff_int_value_coup']=(modulesort['average_int_value']-
modulesort['hist_average_int_value'])*modulesort['starting_bin'] 
#Drop Training Split Boolean 
#features = 
modulesort.columns[[4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,
29,30,31,32,33,34]] 
features = modulesort.columns[[4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]] 
print(modulesort['starting_bin'].mean()) 
print("Features: ", features) 
#Initialize RF  
rfm = RandomForestRegressor(n_estimators=250, oob_score=True, n_jobs=-1, 
max_features=2, verbose=4,) 
#Fitting 
rfm.fit(train[features], train['life remaining']) 
rfm.predict(test[features]) 
rsq=rfm.score(test[features], test['life remaining']) 
print("TRAIN R^2: ", rfm.oob_score_) 
print("TEST R^2: ", rsq) 
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