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GREEN SYNTHESIS NANOCOMPOSITE 
MEMBRANES 

This utility patent application is a continuation-in-part of 
U.S. patent application Ser. No. 13/459,315, filed 30 Apr. 
2012, now U.S. Pat. No. 9,375,684, which claims the benefit 
of priority in U.S. Provisional Patent Application Ser. No. 
61/532,873 filed on 9 Sep. 2011, the full disclosures of 
which are incorporated herein by reference. 

This invention was made with at least partial government 
support under NIEHS contract no. P4ZES007380. The gov
ernment may have certain rights in this invention. 

TECHNICAL FIELD 

This document relates generally to membrane technology 
and membrane synthesis and, more particularly, to a nano
composite membrane incorporating metal nanoparticles syn
thesized in-situ in the pores of the membrane via green 
synthesis techniques. 

BACKGROUND SECTION 

2 
immobilized within the pores. More specifically, the nano
composite membrane is made by directly synthesizing and 
immobilizing the nanoparticles in-situ in the plurality of 
pores using the green reducing and capping agent while 

5 operating in diffusion or convection modes. 
In accordance with yet another aspect, a method of 

preparing a nanocomposite membrane comprises synthesiz
ing and immobilizing a plurality of metal nanoparticles 
in-situ in a plurality of pores of a macroporous membrane 

10 using a green reducing and capping agent. Metal cations 
from the precursor salts are immobilized by ion exchange on 
the membrane and the reducing agent (i.e. tea extract) is 
passed through the membrane pores in convective or diffu
sive modes, resulting in the in situ formation of metal 

15 nanoparticles. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The accompanying drawings incorporated herein and 
20 forming a part of the specification, illustrate several aspects 

of the nanocomposite membrane and together with the 
description serve to explain certain principles of the inven
tion. In the drawings: 

This document describes porous polymer membranes 
including metal nanoparticles synthesized and immobilized 25 

in-situ within the pores of the membrane while simultane
ously being reduced and capped with a green reducing and 
capping agent. Advantageously, the resulting nanoparticles 
are protected from oxidation and agglomeration and thereby 
provide more efficient and effective reductive degradation of 30 

toxic chlorinated organic compounds and other target con
taminants or pollutants of a water supply. 

FIGS. la and lb are schematical illustrations for two 
different methods for the preparation of the nanocomposite 
membranes of the present invention; 

FIG. 2 is a SEM and EDX for Fe/Pd nanoparticles 
reduced with ascorbic acid; 

FIG. 3a illustrates a convective flow apparatus for nano
particle synthesis in a PAA/PVDF membrane; 

FIG. 3b illustrates a diffusion cell for the synthesis and 
immobilization of the metal nanoparticles in-situ within the 
pores of a membrane; 

SUMMARY SECTION 

A nanocomposite membrane comprises a macroporous 
polymer membrane including a plurality of pores. A plural-
ity of metal nanoparticles are synthesized and immobilized 
in-situ within that plurality of pores. Further the nanopar
ticles are reduced and capped with a green tea reducing and 
capping agent. Each nanoparticle has a size of between 
about 30 nm and about 70 nm. Further between about 70% 
and about 80% of the nanoparticles that are immobilized on 
the membrane are inside the pores. The metal nanoparticles 
may be made from a number of different metal salts resulting 
in, for example, iron (Fe) nanoparticles, iron/palladium 
(Fe/Pd) bimetallic nanoparticles, iron/nickel (Fe/Ni) bime
tallic nanoparticles, iron/copper (Fe/Cu) bimetallic nanopar
ticles, iron/platinum (Fe/Pt) bimetallic nanoparticles, iron/ 
silver (Fe/Ag) bimetallic nanoparticles, iron oxide 
nanoparticles and mixtures thereof. 

The polymer membrane may be made from a material 
selected from a group consisting of polyacrylic acid-modi
fied polyvinylidene fluoride (PAA/PVDF), polysulfone, cel
lulose-based materials and polycarbonate. Typically the 
pores have a diameter of between about 100 nm and 700 nm. 
Further the green reducing and capping agent may be 
selected from a group consisting of green tea extract, poly
phenol, epicatechin, epicatechin gallate, epigallocatechin, 
rutin, tannic acid, D-glucose, glutathione, ascorbate, kaemp
ferol, quercetin, myricetin, maltose and mixtures thereof. In 
one particularly useful embodiment, the green reducing and 
capping agent comprises green tea extract. 

FIG. 4 is a SEM image for Fe nanoparticles (reduced 
35 using tea polyphenols) immobilized on a PAA/PVDF mem

brane ( cross-section) and the related EDX spectrum; 
FIG. 5 is a XRD spectra for Fe and Fe/Pd nanoparticles 

reduced with tea extract; 
FIG. 6 is a graphical representation of trichloroethylene 

40 (TCE) dechlorination using Fe nanoparticles immobilized 
on PAA/PVDF membrane using tea polyphenols as a reduc-
ing agent; 

FIG. 7 is a graphical illustration of a TCE dechlorination 
using Fe and Fe/Pd nanoparticles immobilized on PAA/ 

45 PVDF membrane using tea polyphenols as a reducing agent; 
FIG. 8 is a TCE dechlorination using Fe and Fe/Pd 

nanoparticles immobilized on PAA/PVDF membrane, using 
sodium borahydride (NaBh4 ) as a reducing agent; 

FIG. 9 is a graphical illustration of the effect of feed 
50 concentration on TCE dechlorination using Fe nanoparticles 

(reduced by tea extract) immobilized on PAA/PVDF mem
brane; and 

FIG. 10 is a graphic illustration of a normalized TCE 
dechlorination (vs first cycle) for Fe nanoparticle-immobi-

55 lized on PAA/PVDF membranes reduced by sodium bora
hydride and tea extract. 

Reference will now be made in detail to the present 
preferred embodiments of nanocomposite membranes, 
examples of which are illustrated in the accompanying 

60 drawings. 

DETAILED DESCRIPTION 

In accordance with an additional aspect, the nanocom
posite membrane comprises a macroporous polymer mem- 65 

brane including a plurality of pores where those plurality of 
pores incorporate metal nanoparticles synthesized and 

Reference is now made to FIGS. lA and lB which 
schematically illustrate two different methods for making a 
nanocomposite membrane apparatus 10 comprising a mac
roporous polymer membrane 12 including a plurality of 
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pores 14. A plurality of metal nanoparticles 16 are synthe
sized and immobilized within the pores 14. In the method 
illustrated in FIG. lA, the nanoparticles 16 are reduced and 
capped with a green reducing and capping agent, such as 
green tea extract, in a manner described in greater detail 
below. In the method illustrated in FIG. 1B, the nanopar
ticles are reduced with ascorbic acid. 

The nanoparticles 16 have a size of between about 30 nm 
and about 200 nm. Further between about 70% and about 
80% of the nanoparticles 16 immobilized on the membrane 
12 are inside the pores 14. The metal nanoparticles may be 
monometallic and/or bimetallic. Examples include Fe mono
metallic nanoparticles, Fe/Pd bimetallic nanoparticles, Fe/Ni 
bimetallic nanoparticles, Fe/Cu bimetallic nanoparticles, 
Fe/Pt bimetallic nanoparticles, Fe/Ag bimetallic nanopar
ticles, iron oxide nanoparticles and mixtures thereof. 

The macroporous polymer membrane 12 may be made 
from a material selected from a group consisting of poly
acrylic acid-modified polyvinylidene fluoride (PAA/PVDF), 
polysulfone, cellulose-based materials and polycarbonate. 
Typically the pores 14 have diameters of between about 100 
nm and 700 nm. The green reducing and capping agent green 
tea extract, may be selected from a group consisting of, 
green tea extract, polyphenol, epicatechin, epicatechin gal
late, epigallocatechin, rutin, tannic acid, D-glucose, gluta
thione, ascorbate, kaempferol, quercetin, myricetin, maltose 
and mixtures thereof. In one particularly useful embodiment, 
the reducing and capping agent is green tea extract com
prising green tea derived polyphenols. Significantly, it 
should be appreciated that the metal nanoparticles are 
directly synthesized and immobilized in-situ in the pores 
using the green reducing and capping agent by immersion, 
convection or diffusion. Diffusion mode allows for the most 
selective in-situ synthesis of nanoparticles within the pores. 

The method of preparing the nanocomposite membrane 
10 may be broadly described as comprising the synthesizing 
and immobilizing of a plurality of metal nanoparticles 16 
in-situ in a plurality of pores 14 of a macroporous polymer 
membrane 12 using a green reducing and capping agent. 
More specifically, metal cations from the precursor salts are 
immobilized on the membrane by ion exchange, the reduc
ing and capping agent, such as tea extract is passed through 
the membrane pores 14 and nanoparticles are formed in-situ 
in the membrane 12. In accordance with this approach it is 
possible to immobilize at least 70% of the nanoparticles 
immobilized on the membrane 12 within the pores 14. 

The macroporous polymer membrane 12 functions as a 
platform or support for immobilizing the metal nanoparticles 
16. The metal nanoparticles 16 are synthesized within the 
pores 14 and membrane 12 with green reducing agents 
which by definition, are nontoxic, and biodegradable. The 
resulting nanocomposite membranes 10 provide enhanced 
reactivity and excellent chemical processing performance. 
The direct in-situ synthesis of bimetallic Fe/Pd nanoparticles 
into a PAA-functionalized PVDF membrane is illustrated in 
FIG. lA. 

Prior to Fe2
+ ion exchange, PAA-functionalized PVDF 

membranes are immersed in NaCl (5-10 wt%) solution at 
pH 10 (adjusted with 0.1 M NaOH) for at least 3 h to convert 
the -COOH to COONa form. The membrane is then 
washed with DIUF to the neutral pH. Then, the membrane 
is immersed in FeCl2 solution (200 mL and 180 mg/L Fe2 +) 

4 
secondary metal, Pd, is deposited on the Fe nanoparticles 
(post-coating) by immersing the membrane in a K2 PdC14 

solution (20 mL, 25 mg/L Pd), in closed vials with vigorous 
shaking. For iron oxide nanoparticles, the Fe0 may be 

5 oxidized by treatment with air and/or hydrogen peroxide. 
An alternative approach is illustrated in FIG. 1B. Prior to 

ion exchange, PAA-functionalized PVDF membranes are 
immersed in NaCl (5 to 10% wt) solution at pH 10 for at 
least 3 h to convert the -COOH to COONa form. In the 

10 next step, the membrane is washed with DIUF until the pH 
of the washing solution becomes neutral. Then, the mem
brane is immersed in PdC12 solution at a pH of 4.7 for 3 h. 
Typically feed solution volume and concentration are 50 mL 
and 20 mg/L Pd2+, respectively. Nitrogen gas is bubbled to 

15 minimize oxidation. The reduction with ascorbic acid 50 ml, 
0.lM) in the presence ofFeCl3 (180 mg/L Fe) ensured Fe/Pd 
bimetallic nanoparticles formation. 

In addition to the immersion approach discussed above, 
PAA-functionalized PVDF membranes may be processed in 

20 convective mode utilizing a convective flow apparatus 10 as 
illustrated in FIG. 3a. Such as apparatus 10 includes a feed 
chamber 12 including a stirrer 14. The PAA/PVDF mem
brane 16 is held in a membrane holder 18 comprising a pair 
of plates. Pressure is applied to the system to force permeate 

25 solution into and through the pores of the membrane 16. 
More specifically, The PAA/PVDF membrane is mounted 

in a membrane filtration cell and a solution of FeC12 (0.2 L 
of 3.2 mM Fe2+) at pH 5.2 is filled in a feed chamber and 
permeated through the membrane. Ion exchange of iron 

30 occurs. Next, the reducing agent solution is optionally 
permeated through the membrane to convert Fe2

+ to Fe0 

nanoparticles. Alternatively, Fe0 may be left further 
untreated or treated alternatively with an oxidizing agent, 
such as with air and/or hydrogen peroxide, to allow for 

35 formation of iron oxide nanoparticles. In order to make 
bimetallic nanoparticles a solution of a secondary metal 
(0.02 L of 0.24 mM Pd2+) is permeated through the mem
brane and deposited by post-coating. Again, the membrane 
is washed with water between steps. In order to form Pd 

40 nanoparticles only, if the precursor is K2 PdC14 , the PAA
coated PVDF (negatively charged membrane) can be modi
fied using the well-established Layer-by-Layer technique 
with a positively charged polymer (i.e. polyallylamine 
hydrochloride, PAH or poly lysine, PLL); Pde]/- can be 

45 easily incorporated by ion exchange and reduced with one of 
the reducing agents mentioned above. In a specific example, 
PAA-coated PVDF membrane is mounted in the apparatus 
shown in FIG. 3a, 0.05 L of0.02 mM PAH (58000 MW) is 
permeated through the membrane, which becomes overall 

50 positively charged (amine groups from PAH are in 300% 
excess compared to carboxyl groups of PAA). Next 0.02 L 
of solution containing 1.46 mM Pd2+ at pH 4.2 is convec
tively ion exchanged on the membrane and reduced with a 
solution of epicatechin (0.06 L, 1.55 mM, molar ratio 3:1 

55 compared to Pd2+ to ensure complete reduction of all Pd2+) 
at 600C and pH 4.3. During this process the membrane 
changes color from white to dark brown/black indicating 
formation of Pd nanoparticles. 

Using the convective flow procedure, the nanoparticles 
60 are formed both on the external membrane area and inside 

at a pH of 5.5 (adjusted with 0.1 M NaOH) for 4 h. Nitrogen 
gas is bubbled to minimize Fe2

+ oxidation. The Fe2
+

modified membrane is then immersed in green tea extract 65 

(50 ml, 20 g/L) at pH 5. This ensures the formation of Fe 
nanoparticles. For the Fe/Pd bimetallic nanoparticles, the 

the membrane pores. Nanoparticle formation on the external 
surface can be avoided if the membrane is coated with PAA 
only in the pores. The main variable in convective flow 
processing is the permeated flux through the membrane, 
which can be modulated by changing pressure. 

In yet another approach, PAA-functionalized PVDF 
membranes may be processed in diffusion mode utilizing a 
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diffusion cell 20 as illustrated in FIG. 3b. The diffusion cell 
20 includes two chambers 22, 24 divided by a partition 26. 
Each chamber 22, 24 may include a stirrer 27. The mem
brane 28 is positioned over an opening in the partition 26. 
The chamber 22 is loaded with a metal salt solution (FeCl2 , 5 

K2 PdCl4 , etc.) while the other chamber 24 is loaded with a 
green reducing and capping agent solution. 

6 
90° C. for 4 hours. Nitrogen gas was continuously supplied 
to remove the oxygen, which acts as an inhibitor for the 
polymerization reaction. In order to ensure the proper wet
ting, hydrophilic PVDF membranes were used for the aque
ous phase polymerization. 

Fe and Bimetallic Fe/Pd Nanoparticle Synthesis in PAA 
Functionalized PVDF Membranes 

The flowchart for membrane functionalization and nano
particle synthesis is shown in FIG. 1. Prior to Fe2+ ion 
exchange, PAA-functionalized PVDF membranes were 
immersed in NaCl (5 to 10% wt) solution at pH 10 (adjusted 
with 0.lM NaOH) for at least 3 h to convert the --COOR 
to COON a form. In the next step, the membrane was washed 
with DIUF water until the pH of the washing solution 
became neutral. Then, the membrane was immersed in 
FeCl2 solution at a pH of5.5 (adjusted with 0.lMNaOH) for 
4 h. Typically the feed solution volume and concentration 
were 200 mL and 180 mg/L Fe2+, respectively. Nitrogen gas 
was bubbled to minimize Fe2 + oxidation. The Fe2 +-modified 

The solutions diffuse inside membrane pores because of 
the concentration gradient and react at pore interface where 
the metal ion and the reducing agent meet. In this processing 10 

setup the nanoparticles are formed in the membrane pores 
only. Thus, the diffusion mode approach is highly selective 
for synthesis of nanoparticles within membrane pores. For 
example in the case of Fe nanoparticles a solution of FeCl2 

(0.25 mL, 50-100 mg/L Fe2+) is fed in one chamber and the 15 

reducing agent (ex. tea extract or epicatechin) in the other, 
the nanoparticles with an average size of 30 nm are formed 
inside of the pores and the diffusive fluxes are determined by 
the concentration of the metal salt and reductant used. When 
nanoparticle formation is observed in either chamber (black 
color in the solution), the process is stopped. For bimetallic 
nanoparticles, a second step consists of filling the chambers 
with palladium salt ( ex. K2PdCl4 ) on one side and the 
reducing agent in the other. The Pd salt concentration is 
variable, depending on the amount desired to be deposited 

20 membrane was immersed in green tea extract (50 ml, 20 g/L) 
at pH 5, this ensured the formation of Fe nanoparticles. The 
green tea extract was prepared by immersion of 4 g dry 
green tea leafs in boiling water (200 mL) for 30 minutes; the 
liquid was filtered using 1) a filter paper and 2) a 200 nm 

on previously reduce Fe nanoparticles (for our purposes this 
is in the range from 3 to 5 wt% Pd of total metals). For iron 
oxide nanoparticles, Fe0 may be further treated with an 
oxidizing agent to allow for formation of iron oxide nano
particles rather than forming bimetallic particles. 

The following examples are presented to further illustrate 
the nanocomposite membranes and the method of making 
those membranes. 

EXAMPLE 1 

Materials 
All chemicals used were of reagent grade. Trichloroeth

ylene (TCE), ferrous chloride, and deionized ultrafiltered 
(DIUF) water were all purchased from Fisher Scientific. 
Potassium persulfate was purchased from EM Science, 
acrylic acid, potassium tetrachloropalladate (II), sodium 
borohydride and 1,2-dibromoethane (DBE) were purchased 
from Sigma-Aldrich. Chloride reference solution (100 ppm) 
was purchased from Thermo Electron Corporation and eth
ylene glycol (EG) from Mallinckrodt. Hydrophilized PVDF 
microfiltration membranes, with a thickness of 125 µm and 
nominal pore size of 650 nm were obtained from Millipore 
Corporation. 

Methods 
PAA Functionalization of Membrane 

25 microfiltration (regenerated cellulose) membrane. Fe nano
particles were also prepared using sodium borohydride 
(typically 50 mL, 10 g/L) as a reducing agent, instead of the 
tea extract. Iron oxide nanoparticles may be created by 
oxidizing the Fe0-particles formed after the tea extract 

30 treatment step. An optional treatment with an oxidizing 
agent may further accelerate oxidation. 

For the Fe/Pd bimetallic nanoparticles, the secondary 
metal, Pd, was deposited on the Fe nanoparticles by immers
ing the membrane (typically for 2 h) in a K2 PdCl4 solution 

35 (20 mL, 25 mg/L Pd in a mixture of ethanol/water 90: 10 vol 
%). This was performed in closed vials with vigorous 
shaking. 

Metal Analysis 
The amount of Fe captured during ion exchange and Pd 

40 deposited on the Fe-modified membrane was determined 
from material balance. In addition, membranes (after the 
dechlorination studies were completed) were digested by 
immersion in nitric acid (0.02 L, 35%) thus desorbing the 
metals in the solution phase. The concentrations for Fe and 

45 Pd in the feed, permeate and digested solutions were quan
tified using a Varian SpectrAA 220 Fast Sequential atomic 
absorption spectrometer equipped with a Fisher Scientific 
hollow cathode lamp. For Fe, the lamp was operated at a 
wavelength of 386.0 nm. The calibration plot was created 

50 using 4 different concentrations of Fe ranging from 25 to 200 
mg/L with R2=0.9995 and average analytical error of2%. In 
the case of Pd, the lamp was operated at a wavelength of 
246.6 nm and the linear calibration range is between 0.2 and 

PVDF membranes were functionalized with poly(acrylic 
acid) by in situ polymerization of acrylic acid. The polym
erization reaction was carried out in aqueous phase and the 
polymerization solution contained 40 mL deoxygenated 55 

DIUF water, the initiator potassium persulfate (0.6 g, -1 % 
wt.), 20 mL acrylic acid and 1 mL cross-linking agent 
ethylene glycol. This corresponds to 6.15 mo! % EG to 
acrylic acid molar ratio and the ether bond formed between 
carboxylic group and EG generate the cross-linking PAA 
network structure. EG is a bidentate ligand and binds to 
carboxylic acid groups in a 1:2 molar ratio; it is important to 
only do a partial (about 12.3% under our experimental 
conditions) cross-linking to leave free carboxylic groups 
(87.7%) for metal entrapment. The PVDF membrane was 
dipped in the polymerization solution for 2 minutes, sand
wiched between two Teflon plates and placed in an oven at 

28 mg/L Pd. The error of analysis was <2%. 
TCE Degradation Analysis 
Dechlorination of TCE was conducted by cutting PAA/ 

PVDF membranes containing Fe or Fe/Pd nanoparticles 
( original membranes were of 13 .2 cm2 external area and 125 
µm thickness) into small pieces and immersing them in 20 

60 mL sealed vials containing TCE (30 mg/L) solution. Probes 
were collected with a syringe at different times. TCE 
samples were extracted in pentane, and analyzed with a 
Hewlett Packard Series II 5890 GC-MS. In this analysis, the 
decrease of TCE concentration in time was monitored and 

65 EDB was used as an internal standard. The calibration was 
performed in between 5 and 50 mg/L TCE, linear 
R2=0.9899, and the average analytical error was <8.5%. 
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TCE was also dechlorinated under convective conditions; the nanoparticle loading (g/L). The specific surface area was 
determined to be 25 m2/g, assuming discreet, spherical 
nanoparticles (30 nm diameter, as observed by SEM imag
ing). For three different loadings ksA was approximately 

5 constant, the average value was 0.005 L/m2 h and the 
standard deviation -5%. 

for this case the PAA/PVDF membrane containing Fe/Pd 
nanoparticles was mounted in a filtration cell and a feed 
solution (0.2 L, 30 mg/L TCE) was permeated through the 
membrane. Instead of measuring the TCE (volatile) concen
tration in the permeate solution directly, the concentration of 
c1- in the permeate solution was measured using an Accu
met combination chloride electrode. Then, based on the 
assumption of a total dechlorination (1 degraded mo! ofTCE 
releases 3 moles of c1-) this was used to back calculate the 10 

concentration of TCE in the permeate solution. 

In order to ensure that TCE concentration decrease is due 
to reaction and not other processes such as evaporation 
(TCE is volatile) or physical adsorption on the membrane, 
control experiments were conducted. The same feed ofTCE 
(30 mg/L 0.02 L) in the presence of tea extract (20 g/L) was 

Results and Discussion 
Fe and Fe/Pd Nanoparticle Synthesis and Characteriza

tion 
The procedure for membrane modification and nanopar- 15 

ticle incorporation was described in previous section. Tea 
extract contains a number of polyphenols, the most common 
one being epicatechin or its ester forms with gallic acid. 
Polyphenols can directly complex and then reduce iron to 
zero valent particles. For example, the reduction potential 20 

for epicatechin is 0.57 V, sufficient for the reduction of Fe2+ 

shaken in a gas tight vial without the membrane; TCE 
samples were taken after 5, 10 and 24 h, respectively. The 
concentration of TCE was within 5% of the original value, 
showing that the evaporation does not play a significant role 
in TCE concentration decrease observed in dechlorination 
experiments. Secondly, the whole membrane was extracted 
in pentane and analyzed by GC-MS; no TCE was detected. 
As a consequence, it can be assumed that TCE concentration 
decrease observed during dechlorination studies is entirely 
due to reaction with Fe nanoparticles. In addition, dechlo-

to Fe0 (-0.44 V). 
A general reaction can be written as: 

nFe2
+ +2Ar-(OH)n -nFe0+2nA=0+2nH+, 

where Ar is the phenyl group and n is the number of 
hydroxyl groups oxidized by Fe2+. 

After the immersion of Fe2 +-modified membrane in the 
green tea extract, the membrane changes color from white to 
black (due to the formation of Fe0 nanoparticles on the 
membrane). The nanoparticle size can be controlled by 
adjusting PAA cross-linking in pores and by modification of 
reductant to exchanged metal ratio. For comparison pur
poses, Fe and Fe/Pd nanoparticles were also synthesized 
using the conventional hydride reducing reagent, sodium 
borohydride. For the Fe/Pd bimetallic nanoparticles, the 
secondary metal, Pd, was deposited by post-coating reaction 
of Fe with K2 PdCl4 solution. 

An SEM image for the cross-section of the PVDF/PAA 
membrane containing Fe nanoparticles is shown in FIG. 4a. 
It can be observed that the base nanoparticles are in the 
range from 20 to 30 nm and there are also some aggregates, 
between 80 and 100 nm. The Energy Dispersive X-ray 
(EDX) spectrum (FIG. 4b) confirms the presence of Fe and 
quantitative elemental analysis shows an atomic ratio Fe:O 
of approximately 1 :4. One would expect most of the "O" is 
from the COO groups of polyacrylic acid. Nanoparticle 
XRD pattern (FIG. 5) indeed shows iron to be in the metallic 
a-Fe form ((110), (200)) and Pd ((111) and (200)) peaks. 

TCE Dechlorination Studies 
The Fe and bimetallic Fe/Pd nanoparticles have been used 

to dechlorinate toxic organics, trichloroethylene (a common 
pollutant in groundwater) being used as a model compound. 
It is well known that dechlorination by Fe nanoparticles, 
occurs via electron transfer mechanism whereas in the Fe/Pd 
bimetallic system Fe generates H2 and Pd acts as a catalyst 
(the dechlorination occurs on Pd surface). 

Fe Nanoparticles 
The dechlorination performance for three membranes 

containing immobilized Fe nanoparticles is shown in FIG. 6. 
Some points were taken in duplicate, these were separate 
experiments (another cycle) showing a good reproducibility 
and stability (no nanoparticle deactivation observed). As 
expected, the rate of degradation increases linearly with 
increasing Fe loading. The surface normalized rate constant 
ksA can be written as: dC/dt=k065 C=ksA as Pm C, where "as" 
is the specific surface area of the nanoparticles (m2/g), Pm is 

rination experiments were conducted with "real" water taken 
from a contaminated site in Paducah KY; this water contains 
among others (82 mg/L alkalinity, 293 mg/L total dissolved 

25 solids and 1.2 mg/L turbidity), a more detailed description of 
the water quality can be found in literature [ 4 7]. For the 
same feed concentration ofTCE (30 mg/L), the discrepancy 
between the dechlorination results in "real" and DIUF water 
was within 5%. This shows a minimal impact of the matrix 

30 present in the contaminated site on dechlorination, and that 
our systems can be applied in the "real world". 

Fe/Pd Nanoparticles and Reaction Rate Evaluations 
It is well known that the addition of a secondary metal 

increases the dechlorination performance as shown in FIG. 
35 7. A PVDF/PAA membrane containing 8 mg Fe nanopar

ticles was used in dechlorination studies then it was post
coated with Pd (3 wt %. as of Fe) and the dechlorination 
experiment was repeated. The addition of a secondary metal 
led to almost a two-fold increase in ksA value, from 0.005 to 

40 0.008 L/m2 h. It is known that dechlorination performances 
by Fe and Fe/Pd nanoparticles (reduced by borohydride) in 
homogeneous phase, there is a more significant increase for 
the ksA of the two systems, at least 1 order of magnitude. 
However, since there is no data available for supported Fe 

45 and Fe/Pd nanoparticles on PVDF/PAA membranes, these 
were also synthesized (for comparison purposes) using 
sodium borohydride as a reducing agent. The dechlorination 
studies indeed showed a much higher discrepancy ( one order 
of magnitude) in ksA value for the Fe vs Fe/Pd systems (FIG. 

50 8). Due to the fact that the tea extract acts as both reducing 
and capping agent, some of the Fe nanoparticle surface 
becomes unavailable for Pd deposition using post-coating. 
As a consequence, Pd has a much smaller effect on dechlo
rination by Fe/Pd vs Fe nanoparticles, when reduced by the 

55 tea extract as opposed to sodium borohydride. Also the ksA 
values for both Fe and Fe/Pd systems were lower when 
reduced by tea extract (as mentioned before, 0.005 and 0.008 
L/m2 h, respectively) compared to the case when sodium 
borohydride was the reducing agent (0.016 for Fe and 0.105 

60 L/m2 h for Fe/Pd). 
The kinetic parameters were calculated assuming a 

pseudo first order kinetics (i.e. the rate of dechlorination 
depends only on the metal loading). In order to prove the 
validity of this assumption, it was important to determine the 

65 effect of the feed TCE concentration on dechlorination rates. 
FIG. 9 shows a plot of the TCE conversion on Fe and Fe/Pd 
nanoparticles (for 6 h reaction time) at different feed TCE 
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concentrations. The conversion does not change much 
( <20% change) over the feed concentration examined, 
showing that pseudo first order assumption can be used for 
kinetic data processing. 

10 
only in the membrane pores, as opposed to both membrane 
external surface and pores (in Example 1 ). 

Numerous benefits result from employing the concepts 
disclosed herein. Nanoparticles are directly synthesized in-

5 situ within the pores of a membrane without aggregation and 
loss. Further, nanoparticle synthesis is achieved without any 
complicated, time consuming and potentially yield reducing 
separation steps as required for solution based nanoparticle 
synthesis systems. 

Use of Convective Flow (residence time variations) 
Another very important aspect of the membrane sup

ported nanoparticles is its ability to be deployed under 
convective flow conditions. This was tested for one of the 
membranes, Fe/Pd (11.2 mg Fe, 3 wt% Pd as Fe) reduced 
with borohydride. For this experiment, the membrane was 10 

mounted in a filtration cell and a solution ofTCE (30 mg/L) 
was passed through. Under convective conditions, 27% TCE 
dechlorination was attained for 1.1 min residence time in the 
membrane (flux of l.6x1Q-4 cm3/cm2 s at 11.7 bar). The 
residence time was calculated as -i:=V/(AJJ, where Vis the 15 

membrane volume, A is the external area (13.2 cm2
), and Jv 

is the permeation flux (cm3/cm2/s). Also, V=EAL, where Eis 
the porosity (70% on average, from manufacturer's data) 
and L is the membrane thickness (125 µm). Using this 
residence time, the rate constant, k06s and ksA was deter- 20 

mined. Assuming CSTR the values were 19.8 h- 1 (k06J and 
1.32 L/m2 h (ksA), respectively. This shows that operation 
under convective conditions can eliminate diffusion limita
tions (as in the case of batch mode operation). 

What is claimed: 
1. An apparatus, comprising: 
a macroporous polymer membrane including a plurality 

of polyacrylic acid (PAA)-functionalized pores and 
a plurality of green capped and reduced metal nanopar

ticles entrapped and immobilized in situ by function
alized polyacrylic acid of said plurality of PAA-func
tionalized pores, said plurality of green capped and 
reduced metal nanoparticles comprising catalytically 
active iron oxide nanoparticles. 

2. The apparatus of claim 1 wherein said plurality of green 
capped and reduced metal nanoparticles are reduced by 
contact with a green reducing and capping agent selected 
from a group consisting of green tea extract, polyphenol, 

Nanoparticle Longevity and Fe Recapture 
However, a major benefit of using tea extract (epicat

echin) type capping agents is to minimize Fe oxidation and 

25 epicatechin, epicatechin gallate, epigallocatechin, rutin, tan
nic acid, D-glucose, glutathione, ascorbate, kaempferol, 
quercetin, myricetin, maltose and mixtures thereof. 

to maintain particles in non-agglomerated form without loss 
of activity. It is well studied that the aging of the Fe 
nanoparticles (reduced with borohydride) occurs not only 30 

due to dechlorination, but also due to the presence of 
common groundwater dissolved constituents, including oxy
gen. Initially, all four membranes were black. During the 
experiments, the Fe membrane reduced by borohydride 
showed the most pronounced oxidation (orange color). This 35 

was followed by the Fe/Pd membrane (also reduced by 
borohydride ), showing dark brown spots. On the other hand, 
both Fe and Fe/Pd membranes treated with tea extract 
retained the black color even after much longer reaction 
times (23 h vs 2 or 5) and multiple cycles. Moreover, in 40 

order to study the long term stability, one membrane (8 mg 
Fe reduced with tea extract) was stored in water and tested 
periodically over a period of 3 months and it showed 
dechlorination rates similar (within 15%) with the initial 
value. This trend is shown in FIG.10. Moreover, for the case 45 

of borohydride reduced Fe nanoparticles, the activity 
decreases to less than 20% of the initial value after only 4 
cycles. 

It is also important to mention that Fe0 (the reactant) 
oxidizes to Fe2+/Fe3 + during dechlorination, and it is recap- 50 

tured by the membrane-bound carboxylic acid groups on the 
membrane. Experimental verification by Fe analysis indeed 
showed no loss. This can be potentially regenerated back to 
the metal form by reducing agents. In contrast to homoge
neous phase nanoparticles applications, this approach pro- 55 

vides no loss of NPs and soluble iron in the solution phase. 

EXAMPLE 2 

The nanoparticles were synthesized in a diffusive cell 60 

with two chambers separated by the membrane. One cham
ber contained a mixture ofFeCl3 and Ascorbic Acid and the 
other K2 PdC14 . The solutions diffused in the membrane 
pores and Fe and Pd ions were simultaneously reduced to 
Fe/Pd nanoparticles in the presence of Ascorbic Acid. The 65 

major difference between this approach and the one 
described in Example 1 is that the nanoparticles are formed 

3. The apparatus of claim 2, wherein said green reducing 
and capping agent is green tea extract. 

4. The apparatus of claim 1 wherein each nanoparticle of 
said plurality of green capped and reduced nanoparticles has 
a size of between about 30 nm and about 70 nm. 

5. The apparatus of claim 4, wherein between about 70 
and about 80 percent of said nanoparticles immobilized on 
said membrane are inside said plurality of PAA-functional
ized pores, as compared to the surface of the membrane. 

6. The apparatus of claim 1, wherein said plurality of 
PAA-functionalized pores have diameters of between about 
100 nm and 700 nm. 

7. The apparatus of claim 3, wherein said green tea extract 
reducing and capping agent comprises polyphenols. 

8. An apparatus, comprising: 
a macroporous polymer membrane including a plurality 

of polyacrylic acid (PAA)-functionalized pores; and 
a plurality of reduced and green capped iron oxide nano

particles entrapped and immobilized in situ by func
tionalized polyacrylic acid within said plurality of 
PAA-functionalized pores, said plurality of reduced 
and green capped iron oxide nanoparticles reduced and 
capped in situ with a green reducing and capping agent; 
said apparatus being made by directly synthesizing and 
immobilizing said plurality of reduced and green 
capped iron oxide nanoparticles in-situ in said plurality 
of PAA-functionalized pores using said green reducing 
and capping agent while operating in diffusion mode. 

9. The apparatus of claim 8, wherein each nanoparticle of 
said plurality of reduced and green capped iron oxide 
nanoparticles has a size of between about 30 nm and about 
70nm. 

10. The apparatus of claim 9, wherein between about 70 
and about 80 percent of said plurality of reduced and green 
capped iron oxide nanoparticles immobilized on said mem
brane are inside said plurality of PAA-functionalized pores. 

11. The apparatus of claim 10, wherein said reduced and 
green capped iron oxide nanoparticles are made from a 
material selected from a group consisting of Fe/Pd, Fe/Ni, 
Fe/Cu, Fe/Pt, Fe/Ag and mixtures thereof. 
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12. The apparatus of claim 10, wherein said membrane is 
made from a material selected from a group consisting of 
polyacrylic acid-modified polyvinylidene fluoride, polysul
fone, cellulose-based materials and polycarbonate. 

13. The apparatus of claim 12, wherein said plurality of 5 

PAA-functionalized pores have diameters of between about 
100 nm and 700 nm. 

14. The apparatus of claim 8, wherein said green tea 
derived reducing and capping agents comprise polyphenols. 

15. A method of preparing a nanocomposite membrane 10 
comprising: ' 

functionalizing pores of a macroporous polymer mem
brane with polyacrylic acid (PAA); 

passing a first metal salt solution and a first reducing 
solution through the PAA functionalized pores by dif- 15 
fusion or convection, thereby synthesizing, entrapping 
and immobilizing a plurality of metal nanoparticles 
in-situ within functionalized polyacrylic acid of the 
PAA functionalized pores; 

passing a second metal salt solution and a second reduc- 20 
ing solution through the PAA functionalized pores by 
diffusion or convection to deposit a second metal on the 
plurality of metal nanoparticles, thereby forming a 
plurality of iron oxide nanoparticles; and 

12 
using a green reducing and capping agent to cap the iron 

oxide nanoparticles. 
16. The method of claim 15 including: 
immobilizing cations of precursor salts on the membrane· 

and ' 

diffusing the green reducing and capping agent through 
the membrane pores. 

17. The method of claim 16 including using a macropo
rous polymer membrane made from a material selected from 
a group consisting of polyvinylidene fluoride, polysulfone, 
cellulose-based materials and polycarbonate. 

18. The method of claim 17, wherein the iron oxide 
nanoparticles comprise Fe/Pd, Fe/N, Fe/Cu, Fe/Pt, Fe/Ag or 
mixtures thereof. 

19. The method of claim 16, including using a macropo
rous polymer membrane made of polyacrylic acid-modified 
polyvinylidene fluoride and making said plurality of iron 
oxide nanoparticles from Fe/Pd bimetallic material. 

20. The method of claim 19, including immobilizing at 
least 70% of said plurality of iron oxide nanoparticles 
immobilized on said membrane within said plurality of 
PAA-functionalized pores. 

* * * * * 
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